当前位置: 仪器信息网 > 行业主题 > >

真实差分高分辨热膨胀仪

仪器信息网真实差分高分辨热膨胀仪专题为您提供2024年最新真实差分高分辨热膨胀仪价格报价、厂家品牌的相关信息, 包括真实差分高分辨热膨胀仪参数、型号等,不管是国产,还是进口品牌的真实差分高分辨热膨胀仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合真实差分高分辨热膨胀仪相关的耗材配件、试剂标物,还有真实差分高分辨热膨胀仪相关的最新资讯、资料,以及真实差分高分辨热膨胀仪相关的解决方案。

真实差分高分辨热膨胀仪相关的资讯

  • TA 仪器推出三条全新热膨胀仪产品线
    美国特拉华州纽卡斯尔市。 2017 年 3 月 1 日 - TA 仪器隆重推出三条全新热膨胀仪产品线,性能卓越的 800 平台喜迎新成员:DIL 820、DIL 830 和 ODP 860。这三款系列仪器均采用 TA 的专属真实差分技术,与强劲的竞争对手的系统相比,测量精确度超出十倍,进一步巩固了 TA 作为全球热分析技术领导者的杰出地位。 这三条新热膨胀仪产品线均基于获得专利的光学传感器,能够以高达 1nm 的分辨率分析样品。每款系统均配备新型高速、无温度梯度加热炉,确保温度控制达到最佳状态,缩短不同测试之间的停机时间。 TA 热膨胀仪属于高精度系统,设计用于测量动态热力变化引发的样本尺寸变化。这些热膨胀仪广泛应用于材料科学、陶瓷制造以及金属加工等领域的众多应用。它们在研究环境和生产控制过程中表现出众。 谈及本次发布的这款新产品,TA 仪器的高温产品经理 Piero Scotto先生 表示:“这是行业领先的热膨胀仪产品。通过将崭新系统设计与差分技术(每款仪器的核心)完美相融,TA 已经成为这一产品领域的新晋市场领导者。TA 仪器提供品类齐全的热膨胀仪,其优异性能和优惠价格符合所有用户的不同需求。 这款新平台由以下部件组成:精确测量尺寸变化的 DIL 830 系列高分辨率卧式推杆热膨胀仪、适用于精密烧结研究的 DIL 820 系列创新型立式推杆热膨胀仪以及执行非接触式样品测试的 ODP 860 多模光学膨胀测量平台。TA 仪器是沃特世公司(纽约证交所:WAT)的子公司,是热分析、流变测量和微量热测量领域分析仪器的领先制造商。公司总部位于美国特拉华州纽卡斯尔市,于 24 个国家/地区设立了办事机构。联系人:-全球营销总监 Ed Moriarty电话:302-427-1033 emoriarty@tainstruments.com TA仪器中国市场主管 Vivian Wang 电话 021-34182128vwang@tainstruments.com
  • 德国耐驰热膨胀仪 DIL 402 Expedis:突破量程与分辨率的局限
    对于传统的热膨胀仪,测试量程与分辨率这两个参数很难两全。如果分辨率上升,测量范围通常下降,反之亦然。德国耐驰公司热膨胀仪DIL 402 Expedis通过新型自反馈光电位移测量系统 NanoEye 克服了这一技术上的矛盾。Nanoeye是一种新型的自反馈光电位移测量系统,在过去尚不可能实现的测量范围内具有良好的线性度和最大的分辨率。这是市场上第一个支持调制力(振荡型载荷)的水平膨胀仪系列,藉此打破了膨胀测量和热机械分析(TMA)之间的鸿沟。  热膨胀仪DIL 402 Expedis分为:Classic,Select ,Supreme三个版本。后两个版本是专门为研发和复杂的工业应用而设计的:即全面的、配置齐全的Supreme版本和可升级的Select版本。       功能原理  在测试中,如果样品膨胀,图形中的所有绿色部分都会在线性导轨(蓝色)的引导下向后移动。光电解码器直接在适当的刻度上确定相应的长度变化。     识别功能与数据库  用于识别和解释DIL测量的包括几个耐驰的数据库,其中有来自陶瓷、无机、金属、合金和聚合物或有机领域的上百条数据。此外,还可以创建特定于用户的库。它们可以与计算机网络中的其他用户共享。  识别允许从测量曲线的绝对值、斜率或形状中识别未知样本。这也为比较已知的样品与未知样品、评价材料质量提供了可能性。所有测量值都可以存储在庞大的数据库中,并且始终可用于识别或质量评价。
  • 我司中标快速热导率仪、热膨胀仪项目
    2009年12月15日,我司北京销售经理以真诚的销售服务成功中标中国地震局地质研究所“快速热导率仪项目”。欢迎广大客户咨询本公司产品。  我司中标沈阳工业大学材料学院“热膨胀仪项目”
  • 北京大学引进德国巴赫BAEHR光学热膨胀仪
    德国巴赫(BAEHR)热分析公司DIL806光学热膨胀仪进入我国最高学府-北京大学 DIL806光学膨胀仪是目前世界上唯一利用光学原理进行测量的热膨胀仪,技术上比传统热膨胀仪更胜一筹。具体表现在: 1、利用光学原理测量是绝对测量,无需对测量结果进行校正(传统热膨胀仪是相对测量,必须对测量结果进行校正); 2、测量系统无需与试样接触,没有附加的外力作用在试样上,测量更准确; 3、对试样的外形没有严格要求,外形不规则试样,薄试样,甚至发生固-液-固相转变过程的试样,均可进行完美地测试,极大地扩展了热膨胀仪的应用范围。 Disc furnace – 盘式加热炉 Sample – 被测试样 Sender – 激光发送器 Receiver – 激光接收器 北京仪尊科技有限公司是德国巴赫热分析公司在我国的唯一代理,如想更详细地了解该仪器,请登录我公司网站,或与我公司直接联系: 电话:010-84831960 84832051 邮箱:sales@esum.com.cn 网站:www.esum.com.cn
  • 我司中标沈阳工业大学材料学院“热膨胀仪项目”
    我司北京销售经理以真诚的销售服务成功中标沈阳工业大学材料学院“热膨胀仪项目”。欢迎广大客户咨询本公司产品。
  • 我司成功中标中国矿业大学热膨胀仪采购项目
    2010年1月14日,我司北京销售部,在北京销售经理的直接参与下,共同努力,精诚合作,终于用自己熟练的专业知识,完美的服务能力,赢得中国矿业大学的青睐,成功中标其“热膨胀仪”采购项目。 在此我们恭喜北京销售部的所有同仁,并预祝大家不断取得新的更好的成绩。
  • 德国耐驰60周年回顾系列(二):“纳米眼”带来膨胀计分辨率变革
    本文作者:Aileen Sammler 作为德国耐驰60年发展回顾的一部分,本文将介绍德国耐驰总经理Jürgen Blumm博士在其论文中对膨胀计的研究,以及已获专利的纳米眼测量系统是如何彻底改变膨胀计的。1995年,Jürgen Blumm在耐驰应用实验室开始了他的职业生涯。通过与维尔茨堡大学合作的烧结优化研究项目,他将他的论文专注于“烧结过程前后高性能陶瓷的热特性”这一主题。测量方法扩展并结合了他的博士论文,为烧结过程的分析提供了一种全新的方法。动力学模拟计算为陶瓷材料烧结过程的优化做出了开创性的贡献。Jürgen Blumm是最早利用膨胀计(DIL)研究多步烧结动力学的人之一。图:在2002年NGB成立40周年之际展示膨胀计——左起:Jürgen Blumm博士、Dagmar Schipanski教授、Hans Peter Friedrich博士和Wolf Dieter Emmerich博士(1974年至2005年任耐驰总经理)Jürgen Blumm博士论文节选:“在高性能陶瓷的生产中,在大多数情况下,粉末状的原材料会被添加剂(粘合剂、烧结添加剂)抵消。然后,粉末通过模压工艺(如压制)转化为坯体。”然后,通过烧结过程使材料凝固,凝固过程中粉末颗粒粘合在一起,孔隙率降低。烧结通常是热处理的一部分,在此过程中的温度控制对陶瓷的结构性能具有决定性影响。在当今许多工业领域,材料和部件都采用了计算机辅助建模和制造工艺优化的方法。例如,多年来,铸造技术中优化凝固过程的模拟程序得到了广泛应用。然而,在陶瓷元件的生产中,这些方法尚未建立。通过膨胀计测量长度变化,并随后对测量数据进行热动力学评估,可以深入了解烧结过程中的复杂过程和反应过程,而仅仅通过膨胀测量是无法实现的。此外,热动力学分析的使用还提供了通过计算机辅助模拟优化陶瓷材料致密化的可能。”获得专利的纳米眼测量系统:膨胀计的一场革命谁还记得?过去,长度变化是通过感应式位移传感器检测的。这种模拟测量原理表现出不便的非线性,必须反复手动校准。现在,德国耐驰的专利纳米眼测量系统具有100%的线性。由于校准是在测量系统的制造过程中进行的,因此不再需要校准。2015年,德国耐驰通过DIL Expedis® 系列引入了膨胀计测量系统的革命性新概念。当时新集成的纳米眼测量系统基于光电测量传感器和力的施加的相互作用,其在致动器的帮助下被精确控制。从那时起,无论样品的膨胀或收缩如何,都可以施加10mN到3N之间的恒定力。在此之前,不可能在保持相同分辨率的同时增加测量范围。纳米眼测量系统提供了以前无法实现的分辨率,在高达50 mm的整个测量范围内,分辨率高达0.1 nm,且具有完美的线性。耐驰(NETZSCH Gerätebau)机械开发负责人Fabian Wohlfahrt博士解释说:“已获专利的测量系统的其他重要技术特性包括无摩擦膨胀、力控制回路,以及通过自动样本长度测量提高测量范围,同时提高分辨率和减少操作员影响。”自2012年以来,Fabian Wohlfahrt博士一直在耐驰工作,他撰写了关于纳米眼膨胀计测量系统开发的博士论文。但耐驰不仅使膨胀行为的测定更加准确,还简化了在开始测量之前正确插入样品的过程。多点触控软件功能可帮助用户在插入样本后正确安装样本。此外,不再需要手动确定样本长度。如今,纳米眼膨胀计测量系统自动处理所有这些任务。照片:纳米眼测量单元示意图点击直达:热膨胀仪专场德国耐驰展位
  • 德国Neaspec推出全新功能模块,助力热膨胀及拉曼研究领域
    德国Neaspec公司推出的neaSNOM超高分辨散射式近场光学显微系统和nano-FTIR纳米傅里叶变换红外光谱仪以其稳定的性能,高的空间分辨率和的客户体验,自面市以来,在等离子激元、物质鉴别、二维材料、生物成像等领域均获得了广泛好评和青睐。目前国内已有清华大学、南开大学、中科院物理所等数所高校和机构用户使用Neaspec产品进行更深层次的科学研究,并给出高的评价。“NeaSNOM显微镜系统大地促进了我们的贵金属纳米结构表面等离激元研究”,中山大学陈焕君教授如是说。 Neaspec公司也秉承一贯的立创新和开拓进取精神,努力为客户提供优质的服务和便捷的实验工具。近期,Neaspec公司推出了全新的Photo Thermal Expansion(PTE+)和Tip Enhanced Raman Spectroscopy(TERS)功能模块,期待可以更好地服务广大科研工作者。 Photo Thermal Expansion(PTE+)功能模块基于被检测物质在激光照明下的热膨胀,通过机械变化的检测还原物质的吸收光谱。对于热膨胀系数较大物质,尤其是高分子材料,PTE模块可以提供良好的吸收谱线,对物质鉴别、材料分析工作是很好的补充。 Tip Enhanced Raman Spectroscopy(TERS)功能模块将大拓展现有产品应用领域。物质的拉曼光谱不同于吸收或者反射光谱,反映的是非弹性散射光性质,可以得到分子振动、转动方面的信息。但是由于其信号弱,一般难以直接应用于实际分析。针增强拉曼光谱利用了AFM探针纳米的曲率半径,对物质的拉曼信号可以起到良好的增强作用。Neaspec公司基于该技术,与s-SNOM技术结合,推出了该项全新模块,以期在分子检测方面为科研工作者提供更大的便利。相关产品链接neaSNOM超高分辨散射式近场光学显微镜http://www.instrument.com.cn/netshow/C170040.htmnano-FTIR纳米傅里叶红外光谱仪http://www.instrument.com.cn/netshow/SH100980/C194218.htm
  • 德国耐驰60周年回顾系列(三):膨胀计到底能用来做什么?
    本文作者:Aileen Sammler 作为德国耐驰60周年纪念的宣传活动的一部分,本文将详细介绍膨胀计的不同应用领域。  耐驰获得专利的最新技术  德国耐驰拥有极佳的膨胀测量系统——测量单元的功能设置在许多国家获得专利,并具有许多优点,例如:  初始样品长度不限范围以及在更高分辨率下的长度变化  明确的低恒定接触力  力控制调节,推杆无冲击且可重复移动  初始样品长度的自动识别  图:DIL 402 Expedis®  Supreme代表了顶尖的膨胀计技术:自动测定样品长度、在非常广的测量范围内保持恒定的分辨率、测量系统极好的温度稳定性以及双吊炉扩展的温度范围。除此之外,测量系统还可以进行力调制,从而连接热机械分析(TMA)。图:DIL 402 HT Expedis® –2800°C高温版本:无论在航空航天、发电、石油和天然气行业还是要求极严的研究项目中,最高温度可达2400°C或2800°C的石墨炉都能为金属、合金、陶瓷和复合材料的热膨胀测定提供了恰到好处的配置。图:手套箱版本的DIL 402 Expedis® Supreme,适用于对氧气或水分敏感的材料,以及用户必须避免接触样品的情况。膨胀计的外壳完全由不锈钢制成。因此,不存在与样品或环境相互作用的塑料零件。膨胀计可以测量各种材料如今,膨胀计可用于测量各种材料——从塑料、陶瓷、玻璃到建筑材料。玻璃成分的变化也可以通过测量热膨胀系数或测定玻璃化转变温度快速而容易地确定。此外,相变会影响建筑材料(如混凝土)的膨胀和收缩行为。这些对使用它们的系统的统计可靠性和使用寿命有重大影响。通过膨胀计,可以研究膨胀和收缩等尺寸变化,以及体积变化。几十年来,这些方法已成功地在工业和研究中心应用了数十年,如瑞士日内瓦附近的欧洲核子研究中心。耐驰期待着膨胀测量未来数十年依然可以“发光发热”。你知道吗?德国耐驰(NETZSCH-Gerätebau)不仅仅在高温领域表现极佳,在低温膨胀计领域也处于第一梯队,可以实现最低至-260°C的膨胀测量。例如,这些膨胀计用于磁悬浮列车的功能测试。图:DIL 402ED点击直达:热膨胀仪专场德国耐驰展位
  • 反常热膨胀光学晶体研究获进展 有望提升精密光学仪器稳定性
    近日,中国科学院理化技术研究所研究员林哲帅、副研究员姜兴兴等提出实现晶体热膨胀的超各向异性,为光学晶体反常热膨胀性质的调控提供了全新的方法,对于光学晶体中轴向反常热膨胀性质的功能化具有重要意义。   在外界温度变化时,常规光学晶体因“热胀冷缩”效应,无法保持光信号传输的稳定性(如光程稳定性等),限制了其在复杂/极端环境中精密光学仪器的应用。探索晶体的反常热膨胀性质如零热膨胀,“对冲”外界温场对晶体结构的影响是解决这一问题的有效途径。   然而,通过晶格在温度场作用下的精巧平衡来实现零热膨胀颇为困难,一方面,热膨胀率严格等于零的晶体在自然界中不存在;另一方面,目前化学组分调控晶体热膨胀性质的方法,例如多相复合、元素掺杂、客体分子引入和缺陷生成等,影响晶体的透光性能,不利于光学应用。如何在严格化学配比的晶体材料中,利用其本征的热膨胀性能来实现大温度涨落下的光学稳定性,具有重要的科技意义。   该研究团队提出实现晶体热膨胀的超各向异性,即沿晶体结构的三个主轴方向分别具有零、正、负热膨胀性,来调控光学晶体反常热膨胀性质的新方法。研究通过数学推导严格证明了当沿着三个主轴方向分别具有零、正、负热膨胀时,晶体具有最大的热膨胀可调性,可实现热膨胀效应和热光效应的精巧“对冲”,获得完全不随温度变化的光程超级稳定性。   研究在具有高光学透过的硼酸盐材料中探索,系统分析了晶格动力学特征。在此基础上,研究在AEB2O4 (AE=Ca或Sr)中发现了首个沿着三个主轴方向零、正、负热膨胀共存的特性。原位变温X射线衍射实验证明AEB2O4晶体具有宽的零、正、负热膨胀共存的温区(13 K ~ 280 K)。   在相同温度区间内,光程的变化量比常规光学晶体(石英、金刚石、蓝宝石、氟化钙)低三个数量级以上。第一性原理结合变温拉曼光学揭示了AEB2O4这种新奇的热膨胀性质源自离子(AEO8)基团拉伸振动和共价(BO3)基团扭转振动之间热激发的“共振”效应。相关研究成果发表在Materials Horizons上。   近年来,该团队致力于光电功能晶体反常热学和反常力学性能的研究,发现了系列具有负热膨胀、零热膨胀、负压缩以及零压缩性能的光电功能晶体,有望为复杂/极端环境下光学器件的稳定性和灵敏度问题提供解决方案。
  • 我司自动快速热膨胀相变仪中标
    我司中标中科院金属研究所“全自动快速热膨胀相变仪”招标采购项目  我司北京销售部,在北京销售部经理的直接参与下,共同努力,精诚合作,终于用自己熟练的专业知识,完美的服务能力,赢得中科院金属研究所的青睐,成功中标其“全自动快速热膨胀相变仪”招标采购项目。 在此我们恭喜北京销售部的所有同仁,并预祝大家不断取得新的更好的成绩。
  • 德国耐驰60周年回顾系列(一):最古老!陶瓷行业诞生的膨胀计
    本文作者:Aileen Sammler德国耐驰公司(NETZSCH-Gerätebau GmbH)将在2022年正式庆祝公司成立60周年的纪念日。为此,我们将关注耐驰仪器背后的故事——耐驰分析仪器及其在过去几十年中的发展。1月份,我们将从膨胀计开始,它是德国耐驰历史上最古老的仪器之一。1962年,德国耐驰公司(NETZSCH-Gerätebau GmbH,NGB)在塞尔布成立。在过去的60年里,德国耐驰已经成为世界领先的热分析制造商之一。我们为我们的员工感到自豪,他们以非凡的决心和毅力推动着耐驰前进。我们感谢与我们的客户和合作伙伴间彼此信任和富有成效的合作。我们共同倡导质量、专业、创新和可持续性,并将在未来几十年继续坚守。德国耐驰多年来一直由Thomas Denner博士和Jürgen Blumm博士成功地管理。Thomas Denner博士非常清晰地记得他在塞尔布的开始:“当我2004年开始在耐驰工作时,我对员工的积极特别印象深刻。从公司成立的第一天起,我还偶然结识了一些同事。一方面,我感觉到他们有着精明的头脑,另一方面非常愿意探索未知。他们对过去取得的成就的自豪感和可持续发展的追寻今天也能感受得到。这将使我们能够在未来几个月里向你们展示我们的许多不同的系统和设备,它们最初出现在热的材料表征,目前采用了当今最先进的技术延续至今。我们将从一个仪器开始,这个仪器在很多年前就已经是一篇博士论文的焦点,最近又在一篇论文的背景下得到了解决,并立即带来了专利技术。我自豪地期待着接下来的耐驰60年主题月。”耐驰历史回顾早在20世纪50年代,在Netzsch兄弟的管理下,就建立了完整的陶瓷产品生产线。在向精细陶瓷行业的客户提供完整的生产设备的过程中,这些客户还要求能够购买相关的测试或实验室设备。这就是决定开发和制造用于建立陶瓷实验室的专用仪器的原因。这种设备的开发最初是从小规模做起的:这些想法被纳入了前耐驰公司(Maschinenfabrik Gebrüder Netzsch)学徒车间的测试仪器中。为了加强“测试仪器”部门的开发、生产和销售活动,耐驰公司(NETZSCH-Gerätebau GmbH)于1962年6月27日成立,总部设在塞尔布。随后,最早陶瓷行业实验室仪器的研制成果之一是:通过热膨胀测量装置,促进陶瓷碎片和釉料膨胀系数的协调。为此,研制了膨胀计。膨胀计——过去和现在德国耐驰膨胀计(简称DIL)的发展可以追溯到瓷器行业,也可以追溯到耐驰的诞生地——德国上UpperFranconi的塞尔布。使用膨胀计的目的是能够准确了解瓷碟在烧制过程中可能发生的膨胀,以防止裂纹和断裂的形成,并确定最终产品的准确尺寸。如今,膨胀计是研究陶瓷、玻璃、金属、复合材料和聚合物以及其他建筑材料长度变化的首选方法。它用于获取有关热行为和工艺参数或烧结和交联动力学的信息。膨胀计用于质量保证、产品开发和基础研究。第一台膨胀计在塞尔布使用图:60年代最早使用的膨胀计之一,曾在Rosenthal使用,现在在塞尔布Porzellanikon德国陶瓷博物馆展出(Porzellanikon德国陶瓷博物馆,位于象征欧陆三百年瓷器发展的历史重镇—德国塞尔布市(Selb),由德国名瓷罗森塔(Rothantal)1866年创立的厂房改建,总占地11,000平方米。Porzellanikon不仅是德国首家陶瓷博物馆,更是全欧洲最大的陶瓷博物馆,其不同于一般博物馆,展示的不只是瓷器的过去,更是它的现在与未来,从艺术、历史、商业到尖端科技,勾勒出一个清晰完整的瓷器现代新风貌,更是承载着欧洲陶瓷历史与艺术的珍贵宝库。)塞尔布——世界瓷都。Rosenthal、Hutschenreuther或Villeroy&Boch等名字在国际上都很有名,与Upper Franconia的这座小城有着密切的联系。60多年前,这家瓷器厂的前所有者Philipp Rosenthal给Erich Netzsch打电话。“我们杯子的把手在烧制过程后会断裂。我们需要一些东西来确定瓷器的膨胀行为,以优化生产过程,”这次谈话可能就是一切的开始。这就是膨胀计的诞生!顺带一提,在Rosenthal工作了近30年后,第一台测量设备于1996年移交给了塞尔布Porzellanikon德国陶瓷博物馆,在那里仍然可以欣赏它。从X-Y绘图仪的打印输出到Digital Proteus® 评估图:Stefan Thumser(前排,左三)和服务部门的同事(1997年)Stefan Thumser于1984年开始他作为能源设备的机电和电子技术员的学徒生涯。作为德国耐驰客户服务部门的长期支柱,他负责耐驰设备的调试、故障排除和基础培训,目前拥有38年的经验和专业知识。几十年来,他积极参与了膨胀计的开发,今天,他随时报告膨胀计取得的进展。Stephan Thumser回忆道:“过去操作膨胀计是真正的手工工作。除了插入样本,许多设置都必须手动选择。这些有时就要花一个小时。如今,你不必再担心这个问题了。只需插入样本,然后通过软件控制开始测量。”图:1979年为陶瓷制造商 Rosenthal定制的膨胀计。这种膨胀计仍然可以在塞尔布的Rosenthal 直销中心看到。“在膨胀计的历史发展过程中,最显著的差异是在测量评估领域。这过去是通过记录仪器以模拟格式进行的,例如2通道记录仪、X-Y绘图仪或所谓的KBK-6彩色点阵打印机。获得的测量数据无法 1:1转换为测量结果,因为样品架和推杆的固有膨胀作为误差包含在记录中。而手动校正这些测量值很费力,通常需要数小时的详细工作。如今,只需点击鼠标和/或通过Proteus® 软件即可完成。在测量后的几秒钟内,自动校正后完整曲线出现在计算机上。一次测量的准备工作,包括设置测量范围和开始位置,以及通过质量流量控制器调节气体,现在只需按下一个按钮即可完成。”即使在早期,质量、创新和客户满意度也是耐驰的首要任务。因此,膨胀计多年来不断改进。Stefan Thumser接着说:“2015年,随着新的DIL 402 Expedis® 仪器系列的开发,在一台仪器上安装两个熔炉也成为可能,可以进行更快、更灵活的操作。”图:用于手动测量评估的旧KBK打印机(6色多通道打印机)点击下方链接直达:热膨胀仪专场德国耐驰展位
  • ACS:膨胀显微法与STED结合新法,衍射极限分辨提高30倍
    p    strong 仪器信息网讯 /strong 在提高显微镜分辨率方面,两种方法结合往往比一种方法更好。近日,德国马克斯普朗克分子细胞生物学与遗传学研究所Helge Ewers博士及其同事发表论文(ACS Nano 2018, DOI:10.1021/acsnano.8b00776),文中介绍了一种新的提高显微镜分辨率的方法——ExSTED,即将受激发射损耗(STED)荧光显微术与膨胀显微镜法相结合的方法。STED显微术使用一个环形的激光束精确地控制在标记样本上的荧光团激活的位置。通常情况下,STED的分辨率可以将显微镜光学衍射极限提升10倍。膨胀显微镜法是将固定样品嵌入水凝胶中,将样品溶胀并拉伸至其原始尺寸的四倍,导致物理分辨率提高的方法。将这两种方法结合,Helge Ewers博士及其同事获得了比光学衍射极限提升30倍的效果。 /p p style=" text-align: center" img style=" width: 450px height: 388px " src=" http://img1.17img.cn/17img/images/201805/insimg/26d1f3ac-c39c-4d29-8d6b-f2cda2131146.jpg" title=" 01.jpg" height=" 388" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " ExSTED法观察细胞中微管的图像,色标表示三维空间中各种小管的深度(来自ACS Nano) /span /p p   文章中使用ExSTED方法对三维细胞的微管网络进行成像。 由于扩大样品扩散荧光标记,所有样品观察区域的信号都大大减少。 为了抵消信号减少,研究人员使用多种抗体来增加添加到微管中的荧光标记的数量。他们希望通过第二次扩展样本和寻找放大荧光信号的方法来进一步提高显微镜的分辨率。 /p
  • 具有负泊松比与负膨胀系数的新型双负超材料
    负泊松比材料在受到压缩载荷时横向收缩,负热膨胀系数材料在受热时发生收缩现象。而负泊松比和负热膨胀系数相结合的新型超材料为材料的特殊需求提供了进一步的可能性。香港城市大学深圳研究院介绍了一种具有负泊松比与负热膨胀系数的双负超材料(Extreme Mechanics Letters, 2019)。这种新型超材料基于传统的星型内凹结构。为了提高该结构的负泊松比,研究者分别在结构和排列方式上进行了创新。这种结构和排列上的创新使得超材料在受到外界力/位移载荷时呈现出内凹变形机制,从而表现出负泊松比。图1(a), (b)新构型超材料的结构以及(c), (d)两种不同的排列方式。为了得到负热膨胀系数,在一个结构中引入了两种热膨胀系数不同的材料(图1a)。蓝色的杆的热膨胀系数较小,而红色的杆热膨胀系数较大。研究者用大量的数值模拟对新构型超材料的负热膨胀系数进行了验证。在加热时红色的杆因为需要伸长的更多而使得垂直方向蓝色的杆发生弯曲,从而减小了整个结构所占有的空间,表现出负的热膨胀系数(图2)。图2新构型超材料受热变形图。为了验证该超材料的负泊松比行为,研究者们采用摩方P130 打印机对材料进行了制备。并用试验和数值仿真相结合的方法对其负泊松比行为进行了验证,两者吻合的较好。由于材料打印的尺寸在微米级别,这也为材料在声学、光学等方面的应用提供了可能性。图3新构型超材料电镜观测图以及受力变形图。该研究工作发表于Extreme Mechanics Letters,香港城市大学深圳研究院陆洋老师为通讯作者。摩方nanoArch® P130打印的轻质高强结构材料,最小杆径8 μm。深圳摩方材料科技有限公司持续助力香港城市大学深圳研究院在超材料领域的研究及应用,其自主研发的nanoArch® P130 3D打印机精度高达2微米。除上述研究工作中的超材料应用外,另一重要的应用是轻质高强力学超材料,具有超轻质量和超高强度。其优异的力学性能得益于其中的微晶格结构,如上图所示,这些微晶格结构非常复杂,使用传统的二维制造技术无法加工制作,而摩方的微尺度3D打印技术则可以快速高效加工出这种复杂三维微结构,且具有极高的打印分辨率(图中微点阵结构,最小杆径8 μm)。BMF nanoArch® P130打印系统
  • 硼酸盐零膨胀新材料:可用于低温高精度光学仪器
    ZBO晶体的近零膨胀性质、优异的透过性能以及良好的生长习性  热胀冷缩是自然界物体的一种基本热学性质。然而也有少数材料并不遵循这一基本物理规则,存在着反常的热膨胀性质,即其体积随着温度的升高反常缩小(或不变)。其中,有一类材料的体积在一定温区内保持不变,称为零膨胀材料,在很多重要的科学工程领域具有重要的应用价值。目前已有的绝大多数零膨胀材料是通过将具有负热膨胀性质的材料加入到其它不同材料中,通过化学修饰的手段控制其膨胀率,形成零膨胀状态。而纯质无掺杂的零膨胀晶体材料因为能够更好地保持材料固有的功能属性,在各个领域更具应用价值。但由于在完美晶格中实现负热膨胀与正膨胀之间的精巧平衡十分困难,纯质无掺杂晶体材料中的零膨胀现象非常罕见。迄今为止仅在七种晶体中发现了本征的零膨胀性质。同时,在目前已有的零膨胀晶体材料中含有过渡金属或重原子,其透光范围仅仅截止于可见波段,因此探索具有良好透光性能的纯质无掺杂零膨胀晶体材料是热功能材料领域及光学功能材料领域里极具科学价值的研究热点。  中国科学院理化技术研究所人工晶体研究发展中心研究员林哲帅课题组与北京科技大学教授邢献然课题组合作,首次在单相硼酸盐材料体系中发现了新型零膨胀材料。相关研究成果发表在国际材料科学期刊《先进材料》上(Near-zero Thermal Expansion and High Ultraviolet Transparency in a Borate Crystal of Zn4B6O13, Adv. Mater.,DOI:10.1002/adma.201601816)。他们创新性地提出利用电负性较强的金属阳离子限制刚性硼氧基团之间的扭转来实现零膨胀性质,并在立方相硼酸盐Zn4B6O13(ZBO)中实现了各向同性的本征近零膨胀性质。  ZBO晶体具有硼酸盐晶体中罕见的方钠石笼结构:[BO4]基团共顶连接形成方钠石笼,[Zn4O13]基团被束缚在方钠石笼中,[BO4]基团之间的连接处被较强的Zn-O键固定住。通过变温X射线衍射实验,证明了ZBO晶体在13K-270K之间的平均热膨胀系数为1.00(12)/MK,属于近零膨胀性质,其中在13K-110K之间的热膨胀系数仅为0.28(06)/MK,属于零膨胀性质。他们利用第一性原理计算结合粉末XRD数据精修揭示了ZBO的近零膨胀性质主要来源于其特殊的结构所导致的声子振动特性:低温下对热膨胀有贡献的声子模式主要来源于刚性[BO4]基团之间的扭转,刚性 [BO4]基团之间的扭转被较强的Zn-O所限制,使得其在13K-270K之间呈现出非常低的热膨胀系数。  ZBO晶体具有良好的生长习性。林哲帅课题组与中科院福建物质结构研究所吴少凡课题组合作,获得高光学质量的厘米级晶体。经过测试表明,ZBO的透光范围几乎包含了整个紫外、可见以及近红外波段,紫外截止边是所有零膨胀晶体中最短的。同时其还具有良好的热稳定性、高的力学硬度以及优异的导热性能。综合其优良性能,ZBO晶体在应用于低温复杂环境中的高精度光学仪器,例如超低温光扫描仪、空间望远镜和低温光纤温度换能器中具有重要的科学价值。  许多硼酸盐晶体材料在紫外波段具有良好的透过性能。同时,由于硼氧之间强的共价相互作用,硼氧基团内部的键长键角随温度基本保持不变,而硼氧基团之间的扭转能够引起骨架结构硼酸盐的反常热膨胀效应。林哲帅课题组率先在国际上对硼酸盐体系展开了反常热膨胀性质的探索。在前期工作中,他们与理化所低温材料及应用超导研究中心研究员李来风课题组合作,发现了两种具有罕见二维负热膨胀效应的紫外硼酸盐晶体(Adv. Mater. 2015, 27, 4851 Chem. Comm. 2014, 50, 13499),并对其机制进行了阐明(J. Appl. Phys. 2016,119, 055901)。  相关工作得到了理化所所长基金、国家自然科学基金以及国家高技术研究发展计划(“863”计划)的大力支持。
  • CT分辨率知多少—高分辨率微纳CT的精确度量
    在 X 射线 CT 中,空间分辨率是重要的量化参数之一,它被定义为重建图像中两点之间可以区分的最小线性距离。因此,对空间分辨率的适当评估是至关重要的,特别是对于微纳 CT 这种高精度要求的成像系统。目前有两种最常见的空间分辨率评估方法:第一种是利用分辨率测试卡评估,其包含了可进行直接视觉评估的图案结构,在工艺上可制成二维和三维结构,适用于 X 射线断层和 X 射线 CT。测试卡的优势在于操作简单,可直观评估分辨率。但测试卡有一个明确定义的结构分布,只能评估测试卡上所列的图案尺寸;第二种是利用遵守 ASTM E1695-95 标准(Standard Test Method for Measurement of Computed Tomography (CT) System Performance)的斜边法或边缘瞬变法,光源扫描圆柱体或球体边缘,随后基于一套标准的数据处理方法计算空间分辨率。该方法需严格遵守测试标准,能够精确度量空间分辨率且不受测试卡的图案尺寸限制。1Resolution-spirit—微纳 CT 空间分辨率测试捷克CACTUX公司推出的 Resolution-spirit 是按照 ASTM E1695-95 标准制造的微纳 CT 模体,并由超精密三维测量机 nano-CMM 标定。Resolution-spirit 是一个高精度的红宝石球(Φ=0.5~5 mm),粘在一根碳棒上,如下图(左)所示。为评估 XY 平面的分辨率,只需对模体成像,如下图(右)所示,其中绿点为计算的质量中心。用户只需对模体边缘像素的数据进行处理,即两个红色圈内的数据,以质量中心为准,获得不同半径下强度分布—边缘响应函数(ERF)。这里最大挑战是以非常高的精度确定质量中心,如果没有正确地定义中心,那么根据中心对像素进行分组将不准确,错误将导致边缘模糊。然后依次通过求导和傅里叶变换得到点扩散函数(PSF)和调制传递函数(MTF),根据体素大小和 MTF 精确算出空间分辨率。最后类推到其他平面,可获得 CT 系统的三维空间分辨率。例如,布尔诺理工大学的研究人员利用传统 2D 分辨率测试卡和模体对 Heliscan 微米 CT 进行分辨率测试,如下表所示,模体能提供更精确的度量。2 Voxel-spirit—纳米 CT 体素校准在锥束 X 射线 CT 中,光源、样品和探测器之间的距离(SOD和SDD)影响重建体的视觉保真度和体素大小。除了这两个距离的估计存在偏差外,体素大小的真实值还受到 X 射线源漂移、CT 组件热膨胀、探测器和转台倾斜等因素的影响。因此,使用参考样品进行校准是防止在估计体素大小时出现误差的适当工具。对于视场在 10 mm及以上的锥束CT,体素尺寸校准已经很好地建立起来,并且有大量合适的参考样品可用。然而,对于小视场、高分辨率的微纳 CT 来说,很难找到合适的参考样品。CACTUX 的 Voxel-spirit 可以对 SOD 和 SDD 的误差进行精确校准,从而提高重建质量和体素大小的准确性,其适用于视场较小且锥束放大倍率接近 1 的微纳 CT。voxel-spirit由两个高精度的红宝石球(Φ=0.3 mm)组成,它们粘在一根碳棒上,球中心间距(约0.5 mm)并且经过 nano-CMM 严格度量,精度约 70 nm,如下图所示。首先保证两个球体完全在视场内,光源中心与探测器平面正交,两球中心连线平行于探测器平面。在对 Voxel-spirit成像后,可根据下图公式 1 计算体素大小。根据这种关系,在体素大小上的误差可能是由于 SOD 和 SDD 的不精确以及像素大小 p 的不精确造成的,而这些在实验中都是难以精确测量的。因此,在给定的 CT 测量条件下,利用图像中两球中心间距 lCT 和真实度量过的球中心间距 lref,可以获得体素修正因子 cf,算出修正后的体素大小,如下图公式 2、3。3 R1-shadow—微纳 CT 机械误差校正在微纳 CT、双能 CT 或 4D CT中,旋转转台同样会引入误差,即旋转中心的不对准、装台的不稳定或移动等等。尤其是针对颗粒、粉末样品,更容易受到这些机械误差的影响。CACTUX 的 R1-shadow 可以快速直观地纠正这些机械误差,并且提供配套的数据处理软件。R1-shadow是一个由 kapton 制成的样品基底(Φ=25~100 um),在中心处有一根碳纤维增强棒(Φ=2.5~10 um)作为机械误差校准的参考基准点,如下图所示。在确保基准点获得较高对比度的图像后,即可开始 CT 测量。下图展示了胶囊颗粒在机械误差修正前后的图像,可以清晰看到修正后的红色区域伪影消除了。 点击获取产品详细信息:捷克 CactuX—致力于提升您微纳 CT 系统的成像质量和测试效率参考文献:1. Standard Test Method for Measurement of Computed Tomography (CT) System Performance: E 1695–95. 1st edition. United States: American Society for Testing and Materials, 2013.2. Bla&zcaron ek P, &Scaron rámek J, Zikmund T, et al. Voxel size and calibration for CT measurements with a small field of view. Proceedings of the 9th Conference on Industrial Computed Tomography (iCT 2019), Padova, Italy. 2019: 13-15.3. Zemek M, Bla&zcaron ek P, &Scaron rámek J, et al. Voxel size calibration for high-resolution CT. 10th Conf. on Industrial Computed Tomography. 2020: 1-8.4. Laznovsky J, Brinek A, Salplachta J, et al. 3D spatial resolution evaluation for helical CT according to ASTM E1695–95. 10th Conference on Industrial Computed Tomography. 2020.5. Laznovsky J,Brinek A, Salplachta J, et al. Comparison of two different approaches for Spatial Resolution determination for X-ray Computed Tomography with helical scanning trajectory.
  • XRD冷热台助力我国零膨胀钛合金特殊材料研发
    在航空航天、微电子器件、光学仪器等精密仪器设备中应用的结构部件,对尺寸稳定性有极为严苛的要求。由于温度升高或降低而导致的材料形状变化对其功能特性和可靠性有着很大影响。因此,具有近零热膨胀性能的钛合金在需要高尺寸稳定性的结构中具有极高的应用价值。例如,美国国家航空航天局已针对太空望远镜所需的超高稳定性支撑结构,使用这类钛合金制造了镜体支架。在激光加工领域,已有使用这种材料制造的光学透镜筒体,解决了透镜焦点热漂移的问题。这类材料特殊的热膨胀性能与其内部αʺ马氏体物相的各向异性热膨胀行为有关。但是,现有的通过冷加工工艺获得的低热膨胀系数限制于单相马氏体相区,即使用温度上限通常小于~100℃,限制了其在工程领域的广泛应用。近期东莞理工学院中子散射技术工程研究中心王皓亮博士在冶金材料领域的TOP期刊《Scripta Materialia》上发表题目为《Nano-precipitation leading to linear zero thermal expansion over a wide temperature range in Ti22Nb》的研究论文。论文介绍了在宽温域线性零膨胀钛合金特殊热膨胀性能形成机理方面取得的新的进展。论文第一作者为东莞理工学院机械工程学院王皓亮博士,通讯作者为机械工程学院孙振忠教授,共同通讯作者为比利时鲁汶大学Matthias Bönisch博士,合作作者有中国散裂中子源殷雯研究员和徐菊萍博士等。王皓亮博士主要从事金属材料物相晶体结构、微观组织及应力分析;钛合金固态相变及功能性研究;高等级耐热钢焊接接头蠕变失效预测研究。1.拉曼光谱在材料研究中的应用(图1.Ti22Nb合金通过析出纳米尺寸第二相获得的宽温域零膨胀性能)研究人员利用中子衍射技术表征材料微观结构的巨大优势,配合使用XRD冷热台(变温范围 -190℃到600℃ ,温控精度±0.1℃,文天精策仪器科技(苏州)有限公司)实现测试样品的温度变化,精确鉴定了线性零膨胀Ti22Nb钛合金中的物相组成,证实了依靠溶质元素扩散迁移形成的等温αʺiso相也具备调控热膨胀系数的功能。相对于冷加工材料,该研究中通过机械+热循环处理获得的双相复合材料,其低热膨胀行为的作用范围被拓宽至300℃。结合其他原位X-ray衍射和EBSD/TKD电子显微表征技术,在纳米到微米尺寸范围内全面分析了材料微结构要素,澄清了热循环过程中纳米尺寸αʺiso相的形成路径,揭示了微观晶格畸变/相变应变、晶体学取向参量和宏观热膨胀系数的之间的定量关系,为设计具有较宽使用温度范围的低/负热膨胀钛合金提供了新的途径,是从理论研究向技术和产品层面跃进的重要依据和前提。 (图2.(a)不同状态Ti22Nb合金中子衍射谱线,(b)原位升降温XRD谱线(c)母相及析出相衍射峰强度随温度演化规律)(图3.原位升降温XRD测试)图4.原位XRD冷热台
  • 岂止于图谱——TA仪器测试技术分享会取得圆满成功
    2015年4月28日,“岂止于图谱——TA仪器测试技术分享会”在上海西藏大厦万怡酒店顺利举行。此次会议有别于传统的以产品推介为主的分享会,主要针对工业客户的需求,以日常分析测试工作为基础,就如何正确又巧妙的安排热分析测试,如何正确解读热分析、流变和热物性测试数据,及许多客户关心的热点问题和应用进行了讲解。 本次会议主题新颖、内容针对性强、技术含量高,因此吸引了来自工业领域及学术领域的数十家单位超过百名用户的参加,更有从苏南和浙江的用户特意赶来参加我们的分享会。会上, TA仪器亚太区的产品应用经理许炎山先生结合自己丰富的应用经验对热分析数据差异进行了详细的解读。除此以外,作为热分析领域首屈一指的应用专家,许经理通过对TA仪器国内外各种经典案例的阐述和分析, 深入浅出的向大家展示了如何做出真正好的数据和图谱以及如何辨别数据的真伪,确保实验结果的真实可靠。 许经理还特别就热分析在几个热点行业中的应用做了深入大探讨,如:1)关于利用TGA如何判定分解温度及分解速率,指出了不同的TGA方法应对不同测试目的而得到准确的测试数据和效果。如使用高分辨TGA方法测定材料的分解温度较之常规的TGA升温方法更为精确;利用不同气氛比例下样品的分解速率获得样品的饱和蒸汽压和热分解速率;利用TGA分解动力学的方法分析了材料的长期耐热性和失效时期;利用温度调制TGA方法直接获得材料的分解活化能; 2)用DSC的方法解决工业中出现的不同材料问题。如家电产品各部件正常与失效品材质分析比较;PP/PE BLEND 定量检测;封装用PI膜材质鉴定;PET宝特瓶胚加工性优劣分析;3)DMA中时间温度等效(TTS)在分析产品中的应用。如通过TTS功能选择智能手机中的高分子振膜。由于案例生动形象,加上许经理风趣幽默的讲解,与会者纷纷对此演讲表现出了浓厚的兴趣,高度赞扬了许经理的高超的专业技术知识及大师风范。 当天下午,TA仪器应用专家李润明博士以及马倩博士分别就材料研发涉及的黏弹测试技术以及如何测定材料的热传导性能进行了生动的讲解。李润明博士的报告集中介绍了流变技术在日常工作中的重要应用,如日常建筑、航空航天,汽车行业等各个领域中所使用的材料都经历着流变学的行为,而用流变的技术来模拟和反馈这些材料的行为是各个研发分析专家必不可少的手段。特别地,李博士深入地探讨了利用流变技术获得材料研究中应力-应变曲线的速率依赖性,应力-应变曲线的温度依赖性,固体/流体的模量对频率依赖特征,结晶对动态模量的影响,交联对动态模量的影响,固化过程中的黏弹性演变,最低黏度温度和凝胶化温度测定等诸多方面。 对于TA仪器新产品家族——热物性测量仪器,马倩博士深入潜出地介绍了不同热物性测量仪器在日常生活中的应用。热物性仪器包括了导热仪,热膨胀仪,热相变仪和热显微镜等,可覆盖的材料包括了高分子材料,复合材料,金属材料,无机非金属材料等等。马博士对日常生活中人们通常忽略的应用场合作了精彩的分析,如测定热扩散系数对于盘式制动器的重要指导意义,灶台材料热扩散系数的重要性,建筑材料导热系数的指导意义,电子元器件热管理和散热设计等。特别地,马博士指出了不同的材料应当使用不同的测试方法,而TA仪器的热物性测量仪器涵盖了不同形态的材料,如除了常规的固体材料外,对于膜状材料,液体材料和粉体材料也能轻松测量。最后,马博士对新仪器高温光学膨胀仪作了详细介绍。高温光学膨胀仪可以实时监控和测定材料在升温过程中形态的变化过程,其收缩、膨胀,熔融坍缩等过程能采用实时视频的方式记录下来,并直接得出材料的烧结点、软化点、球化、半球化和熔点等重要信息。 TA仪器优秀的技术专家们的精彩演讲获得了与会者的热烈反响,演讲结束后的互动环节上大家纷纷提出自己的问题及看法。甚至在结束后,仍有大量与会者们希望与技术专家们进行进一步交流。 会后,与会者们纷纷表示TA仪器应多多举办这种技术应用为主的,并切合用户需求的分享会;同时,TA仪器还借此会议公布了官方微信公众账号,希望为大家提供一个更好的线上交流互动平台,供用户获得更多的应用文章、技术视频等产品技术信息。TA仪器亚太区的产品应用经理许炎山先生正在报告中TA仪器流变技术专家李润明博士正在进行案例讲解会议间歇,许炎山经理就客户提出的问题进行耐心的回答会议间歇,TA仪器南方区经理董传波先生正在和客户进行技术交流TA仪器热物性技术技术专家马倩博士正在回答客户关于导热仪的相关技术问题
  • 电池膨胀行为研究:圆柱电芯膨胀特性的表征方法
    圆柱电芯的膨胀力主要源于电池内部的化学反应和充放电过程中的物理变化。在充电过程中,正极上的活性物质释放电子并嵌入负极,导致正极体积减小,负极体积增大。同时,电解液在充电过程中发生相变及产气副反应,也会造成一定的体积变化。这些因素共同作用,使得圆柱电芯在充放电过程中也会产生膨胀力。随着充放电次数的增加,这种膨胀力逐渐累积,导致电芯的尺寸发生变化。这种尺寸变化不仅会影响电池的外观和使用寿命,还可能对电池的安全性产生影响。因此,准确表征圆柱电芯的膨胀力对于优化电池设计、提高电池性能和安全性具有重要意义。表征圆柱电芯膨胀行为的方法电池的膨胀行为分为尺寸上的膨胀量和力学上的膨胀力测量。目前,对于软包电池、方壳电池膨胀行为的测量表征,已有较多研究和相应的测试手段及设备,在此不再赘述。但对于圆柱型电池的膨胀行为研究相对较少,也没有较好的商业化膨胀力评估手段。目前在文献资料中,常见的圆柱电芯膨胀行为的表征手段主要有以下几种:1、估算法如图1和图2所示,有研究表明圆柱型电池的膨胀变化与电池的SOC和SOH状态具有一定的相关性。但该方法建立在圆柱型电池的膨胀在整个圆周上是均匀的。图 1 单次充放电过程中,圆柱型电池的可逆膨胀变化图 2 电池老化过程中,圆柱型电池的SOH变化与不可逆膨胀之间的关系直接测量法通过在圆柱电芯外部施加压力,通过贴附应变片测量应变,该方式计算复杂,无法直观体现膨胀力。2、影像分析法影像分析法是一种无损检测方法,如利用CT断层扫描、中子成像、X射线、超声波等影像技术观察电芯内部的形变情况,通过分析影像的变化来测算电芯尺寸变化。这种方法适用于多种类型的圆柱电芯,且对电芯无损伤。然而,影像分析法需要使用昂贵的专业设备,且测量精度易受到设备性能和操作人员经验的影响。3、薄膜压力法一般需解剖圆柱电池,在电芯内部嵌入薄膜压力传感器或压敏纸的方式,从而获得圆柱电芯在不同方位上的膨胀力分布情况。但薄膜压力传感器精度一般较低,成本高;而压敏纸分析,具有滞后性。该测试均为破坏性测试。表征圆柱电芯膨胀行为存在的问题有研究表明,圆柱型电池电池实际的膨胀是明显偏离预期的均匀膨胀,在周长上会形成膨胀和收缩的区域,这取决于圆柱型电池的卷芯卷绕方向。因此,使用体积变化来研究老化或预测SOC需要特别谨慎,因为膨胀会因测量位置而显著不同,测量结果可能因测量方法而有偏差。电弛膨胀测试解决方案电弛自主研发的电池膨胀测试系统,高度集成了温控、充放电、伺服控制、高精度传感器等模块,并提供企业级系统组网功能。该系统可对多种电池种类和电池形态的电池进行膨胀行为测试,包括碱金属离子电池(Li/Na/K)、多价离子电池(Zn/Ca/Mg/Al)、其他二次金属离子电池(金属-空气、金属-硫)、固态电池,以及单层极片、模型扣式电池(全电池、半电池、对称电池、扣电三电极)、软包电池、方壳电池、圆柱电池、电芯模组。同时,可为不同形态电池提供定制化夹具,开展手动加压、自动加压、恒压力、脉冲恒压、恒间距、压缩模量等不同测试模式的研究。本产品还可方便扩展与电池产气测试、内压测试、成分分析的定制集成。为锂电池材料研发、工艺优化、充放电策略的分析研究提供了良好的技术支持。参考文献Jessica Hemmerling, 2021. Non-Uniform Circumferential Expansion of Cylindrical Li-Ion Cells—The Potato Effect. Batteries, 7, 61.
  • Science:低成本的超高分辨率成像
    显微镜一直是生物学研究中的重要工具,随着技术的发展显微镜的分辨率在不断提高。最新的超高分辨率显微镜已经达到了超越衍射极限的分辨率。现在MIT的研究团队通过另一种巧妙的方式达到了同样的目的。   研究人员并没有在显微镜上下功夫,而是从组织样本下手,利用一种吸水膨胀的聚合物将组织样本整体放大。这种方法非常简单成本也很低,能用普通共聚焦显微镜达到超越200nm的分辨率。这项发表在Science上的成果,能使更多科学家接触到超高分辨率成像。   &ldquo 你在常规显微镜下就可以实现超高分辨率成像,不需要购买新设备,&rdquo 文章的资深作者,MIT的副教授Ed Boyden说,Fei Chen和Paul Tillberg是这篇文章的第一作者。   物理放大   衍射极限曾经是光学显微镜的最大障碍之一,使其分辨率无法突破200nm,然而这个尺度恰恰是生物学家最感兴趣的。为了克服这个问题,科学家们开发了超高分辨率显微技术,该技术获得了去年的诺贝尔化学奖。   然而,超高分辨率显微镜最适合用于薄样本,成像大样本的时间比较长。&ldquo 如果想要分析大脑,或者理解肿瘤转移中的癌细胞,或者研究攻击自身的免疫细胞,你需要在高分辨率水平上观察大块的组织,&rdquo Boyden说。   为了使组织样本更容易成像,研究人员使用了聚丙烯酸盐制成的凝胶,这是一种高度吸水的材料,通常用于尿不湿中。   研究人员首先用抗体标记想要研究的细胞组分或蛋白,这种抗体不仅连有荧光染料,还能够将染料连到聚丙烯酸盐上。研究人员向样本添加聚丙烯酸盐并使其形成凝胶,然后消化掉起连接作用的蛋白,允许样本均匀膨胀。样本遇到无盐的水之后膨胀了100倍,但荧光标记在整个组织中的定位并没有改变。   人们一般用普通共聚焦显微镜进行荧光成像,不过它的分辨率只能达到几百纳米。研究人员通过放大样本,用共聚焦显微镜达到了70nm的分辨率。&ldquo 这种膨胀显微技术能够很好的整合到实验室已有的显微系统中,&rdquo Chen补充道。   大样本   MIT的研究团队用这种膨胀显微技术,在常规共聚焦显微镜下成像了500× 200× 100微米的大脑组织切片。而其他超高分辨率技术难以成像这么大的样本。   &ldquo 其他技术目前可以达到更高的分辨率,但使用起来比较难也比较慢,&rdquo Tillberg说。&ldquo 我们这个方法的优势在于,使用简单而且支持大样本。&rdquo   研究人员认为,这一技术对于研究大脑的神经连接非常有用。Boyden的团队将注意力放在大脑研究上,不过这一技术同样适用于肿瘤转移、肿瘤血管生成、自身免疫疾病等研究。
  • TA仪器携4款新品亮相Pittcon 2017
    p    strong 仪器信息网讯 /strong Pittcon 2017展会(匹兹堡分析化学和光谱应用会议暨展览会)于2017年3月6-10日在美国芝加哥McCormick Place会展中心开幕。作为全球科学仪器行业内历史悠久、规模最大的展会,本届Pittcon2017共设1400个展位,在占地410,540平方英尺的展馆内展出全球工业、学术和政府实验室领域的产品和服务。此次展会吸引了全球28个国家和地区的789家企业参展,其中122家为首次参展。仪器信息网作为合作媒体全程参加了本次盛会。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201703/insimg/359d4daf-2aec-491c-bf70-787b5e38090b.jpg" title=" 1.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " strong TA仪器展位 /strong /span /p p   借此盛会,作为热分析、流变仪和微量热仪等分析仪器的领先制造商,沃特世公司子公司——TA仪器携多款重磅新品亮相展会,包括全新的同步差示扫描量热仪/热重分析仪- Discovery SDT 650,光学热膨胀仪Dilatometer 800系列全新三款新品:DIL 820,DIL 830和ODP 860等。众多亮点产品引起参会者的广泛关注。 /p p    span style=" color: rgb(255, 0, 0) " strong 差示扫描量热仪/热重分析仪-Discovery SDT:集先进技术于大成 /strong /span /p p   据悉,全新的差示扫描量热仪/热重分析仪- Discovery SDT 650在本次展会为首次展出。Discovery SDT 650拥有前所未有的灵敏度、基线稳定性、温度及气氛控制性能。SDT 650是第一台融合所有TA最先进技术的同步热分析仪,包括调制DSC& reg ,调制TGA& #8482 ,及高分辨TGA& #8482 ,集先进技术于大成,势必会开拓仪器分析的新领域。SDT 650是唯一能够同时测试热流和热重的系统。另外,SDT 650可以同时做双样品的TGA测试,TA专有的这项技术,将会有力的提高实验室工作效率。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201703/insimg/813e2764-3c76-4275-b7eb-54a493d9efe4.jpg" title=" 2.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " strong 差示扫描量热仪/热重分析仪-Discovery SDT /strong /span /p p   同步热分析仪SDT 650能同时得到样品随着时间和温度变化的热流及重量变化信息。温度范围从室温至1500° C、各种材料均可在SDT 650进行实验,出色地满足生产监控以及科研开发等需求。 /p p   TA 仪器总裁Terry Kelly评论说:“我们从未有过在一台仪器上赋予如此多的功能,包括最精准的热流、重量测试,最先进的技术以及强大的自动化操作系统。TA自 2016年推出新的Discovery系列以来受到广泛的赞誉,客户表示‘获得优异的数据,从无如此简单过!’ SDT 650势必会成为热分析实验室最强大的分析表征仪器”。 /p p   SDT 650标配了TA的卧式双杆热天平技术与创新的快速连接杆设计,确保了使用和时间上的灵活性。与所有TA热分析仪器一样,SDT 650测试炉提供5年质保。 /p p   仪器配置30位的线性自动进样器。该设计坚固可靠并大大提高了实验测试效率,允许用户进行灵活的实验编程、自动无人化操作、仪器自动校准和验证。 此外,SDT 650同时具备Discovery系列独有的功能,包括“一键触碰”式APP设计和强大的控制分析软件TRIOS 。 /p p    span style=" color: rgb(255, 0, 0) " strong Dilatometer 800系列三款新品:DIL 820,DIL 830,ODP 860 /strong /span /p p   3月1日,TA仪器正式推出光学热膨胀仪Dilatometer 800系列的三款新品:DIL 820,DIL 830和ODP 860。由于均采用了TA独有的真差分技术,这些仪器的测量精度比市面竞争系统提高了10倍。基于这些高精度系统设计,该系列产品可用于由动态热事件引起的样本的尺寸变化的精密测量,广泛应用于材料学(陶瓷、金属等)、环境和生产控制过程等领域。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201703/insimg/8322372c-8be9-4136-a8df-598f43d8dbdb.jpg" title=" 0.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " strong DIL 820,DIL 830和ODP 860 /strong /span /p p   DIL 830:用于精确测量尺寸变化的高分辨率水平推杆膨胀仪系列;DIL 820:用于精确烧结研究的创新型垂直推杆膨胀仪系列;ODP 860:多模光学膨胀测量平台,用于样品的无接触测试。 /p p   三款新品基于专利的光学传感器,可以分析高达1nm分辨率的样品。系统未设温度梯度炉,保证了在最佳温度控制的基础上,减少测试之间的停机时间。 /p p   TA 仪器的高温产品经理Piero Scotto评价说:“这是市场上最好的膨胀仪。新的系统设计结合众多仪器的核心技术,使得TA成为该产品领域新的市场领导者。” /p
  • PSC发布mIRage超高空间分辨红外成像光谱仪新品
    超高空间分辨红外成像光谱仪 — —mIRage O-PTIR系统 产品简介:美国PSC (Photothermal Spectroscopy Corp, 前身Anasys公司)最新发布的一款应用广泛的亚微米级空间分辨率的红外光谱和成像采集系统mIRage。基于独家专利的光热诱导共振(PTIR)技术,mIRage产品突破了传统红外的光学衍射极限,其空间分辨率高达500 nm,可以帮助科研人员更全面地了解亚微米尺度下样品表面微小区域的化学信息。 mIRageTM O-PTIR 光谱O-PTIR (Optical Photothermal Infrared) 光谱是一种快速简单的非接触式光学技术,克服了传统IR衍射的极限。与传统FTIR不同,不依赖于残留的IR 辐射分析,而通过检测由于本征红外吸收引发的样品表面快速的光热膨胀或收缩,来反映微小样品区域的化学信息。 mIRage工作原理:• 可调的脉冲式中红外激光汇聚于样品表面,并同时发射与红外激光共线性的532 nm的可见探测激光;• 当IR吸收引发样品材料表面的光热效应,并被可见的探测激光所检测到;• 反射后的可见探测激光返回探测器,IR信号被提取出来;• 通过额外地检测样品表面返回的拉曼信号,可以实现同时的拉曼测量。 O-PTIR克服了传统红外光谱的诸多不足:• 空间分辨率受限于红外光光波长,只有10-20 μm• 透射模式需要复杂的样品准备过程,且只限于薄片样品• 无传统ATR模式下的散射像差和接触污染 O-PTIR的优势之处在于: • 亚微米空间分辨的IR光谱和成像(~500 nm),且不依赖于IR波长• 与透射模式相媲美的反射模式下的图谱效果• 非接触测量模式——使用简单快捷,无交叉污染风险• 很少或无需样品制备过程 (无需薄片), 可测试厚样品• 可透射模式下观察液体样品• 可以与拉曼联用,实现同时同地相同分辨率的IR和Raman测试,无荧光风险mIRage 技术参数 波谱范围模式探针激光样品台最小步长样品台X-Y移动范围IR (1850-800 cm-1)反射 532 nm 100 nm 110*75 mmIR (3600-2700 cm-1)透射Raman (3900-200 cm-1)反射 重要应用实例分析: 1、多层薄膜 高光谱成像: 1 sec/spectra. 1 scan/spectra样品区域尺寸:20 μmx 85 μm size. 1 μm spacing.图谱中可以明显看出在不同区域上的羰基,氨基以及CH2 拉伸振动的分布。 2、高分子膜缺陷左:尺寸为240 μm的两层薄层上缺陷的光学图像;右:在无缺陷处(红色)和缺陷处(蓝色)的样品的IR谱图,998 cm-1处为of isotactic polypropylene 的特征红外吸收峰。 3、生命科学 左:70*70 μm范围的血红细胞的光学照片;中:红色条框区域在1583cm-1处的Raman照片;右:红血细胞选择区域的同步的IR和Raman图谱 上左:水中上皮细胞的光学照片;上右:目标分子能够在红外光谱上很容易的区分和空间分离,可以明显看到0.5-1.0 μm的脂肪包体;下:原理示意图:红外光谱测量使用透射模式,步长为0.5 μm。 4、医药领域 左:PLGA高分子和Dexamethasone药物分子的混合物表面的光学照片中:在1760 cm-1 出的高光谱图像,显示了 PLGA在混合物中的分布,图像尺寸40 μm * 40 μm右:在1666 cm-1 出的高光谱图像,显示了 Dexamethasone在混合物中的分布,图像尺寸40 μm *40 μm 5、法医鉴定 左:800 nm纤维的光学照片右:纳米纤维不同区域的O-PTIR图谱 6、其他领域• 故障分析和缺陷• 微电子污染• 食品加工• 地质学• 考古和文物鉴定 部分用户及发表文章 [1] Ji-Xin Cheng et al., Sci. Adv.2016, 2, e1600521.[2] Ji-Xin Cheng et al., Anal. Chem. 2017, 89, 4863-4867.[3] Label-Free Super-Resolution Microscopy. Springer, Biological and Medical Physics, Biomedical Engineering.创新点:基于独家专利的光热诱导共振(PTIR)技术,mIRage突破了传统红外的光学衍射极限,空间分辨率高达500 nm;可以与拉曼联用,实现同时同地相同分辨率的IR和Raman测试,但无任何荧光风险;非接触式测量,避免了交叉污染。 mIRage超高空间分辨红外成像光谱仪
  • Cell:细胞如何避免过度膨胀?
    所有细胞都有一个最为基础的功能,即控制自己的体积避免过度膨胀。数十年来,人们一直在寻找实现这一功能的蛋白,现在来自斯克里普斯研究所(Scripps Research Institute)的科学家们终于找到了它。这个称为 SWELL1 的蛋白解决了一个重要的细胞生物学谜题,并且与健康和疾病有着密切的关联。例如,该蛋白的功能出现异常,会造成一种严重的免疫缺陷。 论文资深作者、斯克里普斯研究所教授 Ardem Patapoutian 表示:&ldquo 认识这种蛋白及其编码基因,为人们开辟了新的研究方向。&rdquo 相关研究作为封面文章发表在近期的《细胞》(Cell)杂志上。 揭晓谜底 水分子能够轻松穿过绝大多数细胞的膜,而水分子的流动倾向于平衡膜内外的溶质浓度。&ldquo 实际上水是跟着溶质走的,&rdquo 文章的第一作者 Zhaozhu Qiu 说。&ldquo 细胞外溶质浓度减少或者细胞内溶质浓度增加,都会使细胞被水充满。&rdquo 几十年前人们通过实验发现,细胞膜上存在着某种离子通道,能够作为细胞膨胀的关键安全阀,他们将这种未知离子通道称为 VRAC (体积调控的阴离子通道)。当细胞膨胀时 VRAC 就会开启,允许氯离子和其他一些带负电的分子流出。这时水分子也会跟着流出,从而减轻细胞的膨胀。 &ldquo 在过去三十年中,科学家们已经知道 VRAC 通道的存在,但对它并不了解,&rdquo Patapoutian 说。 由于技术限制,人们一直未能找到组成 VRAC 的蛋白及其编码基因。现在,Qiu及其同事在这项新研究中进行了快速的高通量荧光筛选。他们改造人类细胞使其产生一种特殊的荧光蛋白,当细胞膨胀 VRAC 通道打开时,这种蛋白发出的光会淬灭。 在诺华制药研究基金会基因组学研究所(Genomics Institute of the Novartis Research Foundation)的自动化筛选专家的帮助下,研究人员培养了大量供筛选的细胞,并通过RNA干扰分别在这些细胞中阻断不同基因的活性。他们主要寻找能持续发光的细胞,持续发光表明基因失活破坏了细胞的 VRAC 。 研究团队经过几轮测试,最终找到了一个基因。2003年科学家曾发现过这个基因,并将其称为LRRC8,不过当时人们只知道它可能编码一个跨膜蛋白。现在,研究人员将它重新命名为 SWELL1 。 涉及的疾病 研究人员通过进一步实验发现, SWELL1 的确位于细胞膜上,而且该蛋白的特定突变能改变 VRAC 通道的性能。&ldquo 它至少是 VRAC 通道的一个主要部件,是细胞生物学家长期追寻的蛋白,&rdquo Patapoutian 说。 下一步,研究团队将进一步研究 SWELL1 的功能。例如,在小鼠模型中观察不同细胞类型缺乏 SWELL1 所造成的影响。 2003 年人们最初发现这个基因,是因为该基因突变会导致一种非常罕见的无丙种球蛋白血症(agammaglobulinemia)。这种疾病的患者缺乏生产抗体的B细胞,因此很容易受到感染。这也说明, SWELL1 是B细胞正常发育所需的蛋白。 &ldquo 此前有研究指出,因为中风会导致脑组织肿胀,所以这种体积敏感性的离子通道与中风有关。另外,这种蛋白可能还涉及了胰腺细胞的胰岛素分泌。&rdquo Patapoutian 说。&ldquo 这样的线索有待我们一一解析。&rdquo
  • 阳江合金材料实验室预算3090万元采购8套科学仪器
    阳江合金材料实验室于2019年10月挂牌成立,由广东省人民政府和阳江市人民政府共同投资建设。目前实验室科研面积8235m2,中试车间6200m2,实海腐蚀试验场20000m2,组建了合金材料智慧研发平台,合金材料孵化转化平台,以及合金材料工程化验证平台,实验研究设备投入近亿元。为进一步开展科研,阳江合金材料实验室于近日公布了一批仪器采购意向,采购品目涉及场发射电子探针、X射线显微CT、裂纹尖端位移试验机、实用大样品氢含量定量分析装置、纳米压痕等,预算金额相加达3090万元,预计采购时间为2022年6月。阳江合金材料实验室2022年6月仪器采购意向序号名称数量预算需求1热膨胀仪1200万元在一定的温度程序、负载力接近于零的情况下,测量样品的尺寸变化随温度或时间的函数关系。可测量固体、熔融金属、粉末、涂料等各类样品,广泛应用于无机陶瓷、金属材料、塑胶聚合物、建筑材料、涂层材料、耐火材料、复合材料等领域。2高温激光共聚焦显微镜1200万元高温激光共聚焦显微镜是一种用于冶金工程技术领域的原位观察分析仪器,最高观察温度1700℃,高温拉伸最高温度1200℃。3场发射电子探针1750万元可以对试样中微小区域(微米级)的化学组成进行定性或定量分析。可以进行点、线扫描(得到层成分分布信息)、面扫描分析(得到成分面分布图像)。4纳米压痕1300万元纳米尺度下的物理力学性能测试可对包括有机高分子材料在内的固体材料和薄膜材料进行连续动态载荷下纳米硬度、弹性模量、纳米划痕、摩擦系数、屈服强度以及界面结合力的测试。5实用大样品氢含量定量分析装置1350万元主要用于精确测量实用大样品钢材或零件在室温至1000℃环境下的氢含量。6高温疲劳试验机170万元可进行常温和-40℃~200℃的高低温环境条件试验。通过特殊设计推进(出)机构,可实现有高低温境条件和无高低温环境条件两用试验功能。7X射线显微CT1720万元可用于从宏观到微观的多尺度范围内得到材料内部的孔隙、裂纹、夹杂物等三维信息,为优化工艺调整提供判断依据,不仅可以进行多尺度的高分辨、高通量三维成像,也支持快速和长时间连续扫描,以及快速“4D”动态原位成像。8裂纹尖端位移试验机1500万元裂纹尖端张开位移是弹塑性断裂力学中的一个重要参量,裂纹体受载后,裂纹尖端附近存在的塑性区将导致裂纹尖端的表面张开,这个张开量就称为裂纹尖端的张开位移,通常用δ来表示。当裂纹尖端的张开位移δ达到材料的临界值δc时。裂纹即发生失稳扩展。使用高性能疲劳及断裂韧性试验系统可以测量裂纹尖端张开位移。
  • 热分析仪国际厂商主流产品类别及型号汇总——下篇
    p   热分析仪器(Thermal Analyzer)是在程序控温和一定气氛条件下,测量物质的物理性质( span style=" color: rgb(255, 0, 0) " 力、热、电、声、光、磁 /span span style=" color: rgb(255, 0, 0) " 及质量、尺寸等指标 /span )随 span style=" color: rgb(255, 0, 0) " 温度 /span 或 span style=" color: rgb(255, 0, 0) " 时间 /span 变化关系的一大类仪器。可以与分析化学仪器和电镜仪器联用,并互为补充。几乎应用于所有的材料领域,是研究开发、工艺优化和质量管控必不可少的工具。 /p p    strong 国际上生产和营销热分析仪器的主流厂商有(排名不分先后) span style=" color: rgb(255, 0, 0) " 赫尔、日立高新、林赛斯、马尔文帕纳科、梅特勒-托利多、耐驰、PE、理学、新科、塞塔拉姆、岛津、TA /span 等。 /strong /p p strong   涵盖的热分析仪类别有 span style=" color: rgb(255, 0, 0) " 热重分析仪 /span ( span style=" color: rgb(0, 176, 240) " TGA-Thermal Geometric Analyzer /span )、 span style=" color: rgb(255, 0, 0) " 差热分析仪 /span ( span style=" color: rgb(0, 176, 240) " DTA-Differential Thermal Analyzer /span )、 span style=" color: rgb(255, 0, 0) " 差示扫描量热仪 /span ( span style=" color: rgb(0, 176, 240) " DSC-Differential Scanning Calorimeter /span )、 span style=" color: rgb(255, 0, 0) " 同步热分析仪 /span ( span style=" color: rgb(0, 176, 240) " STA-Simultaneous Thermal Analyzer /span )、热机械分析仪( span style=" color: rgb(0, 176, 240) " TMA-Thermomechanical Analyzer /span )、 span style=" color: rgb(255, 0, 0) " 动态热机械分析仪 /span ( span style=" color: rgb(0, 176, 240) " DMA-Dynamic Mechanical Analyzer /span )、 span style=" color: rgb(255, 0, 0) " 热膨胀仪 /span ( span style=" color: rgb(0, 176, 240) " DIL-Thermo Dilatometer /span )、 span style=" color: rgb(255, 0, 0) " 反应量热仪 /span ( span style=" color: rgb(0, 176, 240) " RC-Reaction Calorimeter /span )、 span style=" color: rgb(255, 0, 0) " 导热系数测量仪 /span ( span style=" color: rgb(0, 176, 240) " TCMA-Thermal Conductivity Measuring Apparatus /span )、 span style=" color: rgb(255, 0, 0) " 等温滴定量热仪 /span ( span style=" color: rgb(0, 176, 240) " ITC- Isothermal Titration Calorimeter /span )、 span style=" color: rgb(255, 0, 0) " 熔点仪 /span ( span style=" color: rgb(0, 176, 240) " MPA-Melting Point Apparatus /span )等。 /strong /p p   下面,就让仪器信息网编辑带您领略一下这些厂商及其旗下产品的风采吧! /p p br/ /p p style=" text-align: center " strong 下篇 /strong /p p style=" text-align: center " strong a href=" http://www.instrument.com.cn/news/20180621/466282.shtml" target=" _blank" title=" " (查阅上篇请点击) /a /strong /p p style=" text-align: center " strong span style=" color: rgb(31, 73, 125) " 美国珀金埃尔默股份有限公司(PE-PerkinElmer) /span /strong /p p   PE公司的热分析仪有DSC、TMA、DMA、STA、TGA等几类。 /p p style=" text-align: center " strong 差示扫描量热仪DSC 8500 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/09f10a58-1c09-4b82-a038-e929b1ecd14e.jpg" title=" PE差示扫描量热仪DSC 8500.jpg" width=" 300" height=" 294" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 294px " / /p p   DSC 8500拥有第二代的Hyper-DSC技术,将引导您对材料的结构和性能方面的无限认知。DSC 8500具有Hyper-DSC技术、双炉体设计和更佳的测试能力,其准确度和灵敏度胜过目前任何一款DSC。 /p p   特点:极快的程控升降温速率,高达750º C/min 弹道降温技术,冷却速率可达2100º C/min,模拟真实生产过程 超快速的数据采集速率(最快可达100点/秒),提供丰富全面的数据讯息。 /p p   DSC 8500典型应用包括:药物多晶型表征——有效抑制多晶转变过程 医药品加工工艺研究——深入研究加工过程对无定型/结晶区比例的影响 塑料加工过程模拟——分析加工过程对产品性能的影响。 /p p style=" text-align: center " strong 热机械分析仪TMA 4000 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/da6a0e58-3d1e-4e97-830c-9e871805d708.jpg" title=" PE热机械分析仪TMA 4000.png" width=" 300" height=" 300" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 300px " / /p p   PerkinElmer公司的TMA4000是一款设计简洁、使用方便、稳固耐用的热机械分析系统,非常适用于精确测量小型元件的膨胀性能以及低膨胀系数,例如电路板、元件材料等。在如今预算明确而且RoHS、ASTM和ISO等法规要求日益严格的时代,实用高效的TMA可以让您的每位实验室工作人员都成为专家。此外,TMA4000可提供全套的合规夹具选项,满足不同行业、不同测试方法的严格要求。 /p p style=" text-align: center " strong 动态热机械分析仪DMA 8000 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/9d8ab626-8767-4513-8983-2187873e1135.jpg" title=" PE动态热机械分析仪DMA 8000.png" width=" 300" height=" 300" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 300px " / /p p   DMA 8000的创新型设计、高效灵活的操作使之成为材料研究开发和生产线质量控制的理想仪器。可广泛应用于聚合物、复合材料、制药以及食品行业。 /p p   湿度发生器及控制器是DMA8000功能强大的选配件,可以精确发生和控制样品测试环境的相对湿度,它提供了可在规定相对湿度条件下测定动态力学性能的简便方法。 /p p   DMA 8000标准炉体具有石英窗口配置,便于用户监控整个测试过程中样品和夹具系统的状态,同时可存储样品测试过程的视频文件,便于数据处理时辅助分析。 /p p   DMA8000专配的试料夹是制备样品的独特工具,可以轻松的制备粉末状或其它难成型样品进行DMA测试,例如药品粉末、凝胶以及咖啡、茶叶、中药等天然材料。 /p p   DMA8000以其卓越的设计和优越的性能,是从事高聚物、医药和食品等领域高级研究和质量控制的理想仪器,是您完美的选择! /p p style=" text-align: center " strong 同步热分析仪STA 8000 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/28bb9e2f-df76-44a5-b425-4225c605216a.jpg" title=" PE同步热分析仪STA 8000.jpg" width=" 300" height=" 200" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 200px " / /p p   PerkinElmer全新推出的同步热分析产品系列可在单台紧凑型设备中实现重量信号和热流信号的同步监测,赋予您双倍的热分析能力,满足您不同的需求。PerkinElmer的同步热分析仪(STA)产品系列可实时监测样本重量以及热流信号随温度或者时间变化曲线。凭借独创的传感器技术和紧凑型炉体设计,PE的STA仪器可以胜任从常规品质检测到科学研究等各个领域。因此,无论您从事的是无机物材料表征、聚合物结构剖析、亦或是油品品质检测工作,STA 8000系列产品将差热分析技术(DTA或DSC)与久经验证的热重分析(TGA)技术完美融合,您都可以获得可靠的测试结果和明确的数据阐释。 /p p style=" text-align: center " strong 热重分析仪TGA 8000 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/65888bb6-a625-49b5-ae74-ffa8c617dfe4.jpg" title=" PE热重分析仪TGA 8000.jpg" width=" 300" height=" 319" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 319px " / /p p   PerkinElmer公司全新推出的TGA 8000型热重分析仪正是秉承着这一理念进行设计的,不仅可以让您完全掌控样品的测试环境,而且还兼顾了测试的高通量和数据的可靠性,甚至在无人值守的状态下依然可以完美的高效运行。另外,PerkinElmer公司先进的联用技术赋予这款仪器可以完美的与FTIR,MS,GC/MS进行联合使用,让您能够透彻的研究逸出气体的定性定量信息。换句话说,TGA 8000是一款以简御繁的高效测试平台。 /p p style=" text-align: center " a href=" http://www.instrument.com.cn/netshow/SH100168/" target=" _blank" title=" 珀金埃尔默" img src=" http://img1.17img.cn/17img/images/201806/insimg/9b6c40fc-f7f3-4c7f-9980-32062f0121c3.jpg" title=" PE.jpg" width=" 300" height=" 164" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 164px " / /a /p p span style=" color: rgb(31, 73, 125) " i PE公司简介: /i /span /p p span style=" color: rgb(31, 73, 125) " i   PerkinElmer股份有限公司是一家全球性的业界著名技术领先公司,其业务集中在三个领域——生命科学、光电子学和分析仪器。 /i /span /p p span style=" color: rgb(31, 73, 125) " i   PerkinElmer是分析仪器行业无可争议的技术领先和主导者。领先的技术,精湛的工艺,全面的客户服务,让PerkinElmer成为分析仪器界新技术和完善产品的代名词,并赢得了分析仪器客户的衷心信赖和支持,成为在原子光谱(原子吸收、电感耦合等离子体发射光谱仪、电感耦合等离子体质谱仪)、分子光谱(傅里叶变换红外/近红外、紫外/可见近红外光谱仪、荧光、旋光)、气相色谱和气相色谱-质谱联用仪、液相色谱仪以及热分析系统(差热分析、热重、动态/静态热机械分析仪、同步热分析仪)等化学分析仪器领域最著名的供应商之一。 /i /span /p p span style=" color: rgb(31, 73, 125) " i   PerkinElmer同时也是生化领域占全球第三位的领先供应商,特别是在药物高通量筛选、全自动液体处理和样品制备以及遗传疾病筛查方面是世界第一位的供应商。 /i /span /p p span style=" color: rgb(31, 73, 125) " i br/ /i /span /p p style=" text-align: center " strong span style=" color: rgb(31, 73, 125) " 日本株式会社理学(RIGAKU) /span /strong /p p   理学公司的热分析仪有DSC、STA、TMA、DIL等类别。 /p p style=" text-align: center " strong 差示扫描量热仪DSC 8271 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/d7e63a80-19d8-4f47-9fe2-a566c577137f.jpg" title=" 理学差示扫描量热仪Thermo Plus EVO2 DSC 8271.jpg" width=" 300" height=" 417" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 417px " / /p p   一个拥有最快冷却速度的小型紧凑熔炉。仅需4分钟就可以从400℃冷却到50℃(使用一个冷却风扇)。这个由小型紧凑熔炉提供的快速冷却能力与快速气体置换大大缩短了测量之间的等待时间。从而为快速高效地执行重复性实验提供了一个有效的操作环境。可以安装一个自动进样装置。设计还考虑到可以安装到不同的环境中。 /p p   特点:实现高灵敏度、高性能、低噪音 能够快速进行气体置换 卓越的加热和冷却率提高了测量效率 安全性体现在整个系统上。 /p p style=" text-align: center " strong 热重差热分析仪TG-DAT /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/7f9e2139-8176-40d0-b12d-07fd0e561f41.jpg" title=" 理学热重差热分析仪TG-DAT Standard model.jpg" width=" 300" height=" 297" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 297px " / /p p   Thermo Plus TG-DTA系列的设计重点在于紧致性和功能性。模块化设计的基本单元允许在各种环境下灵活安装。为了更精确的差示补偿,平衡机制采用三重线圈。这些专门系统解决各种测量需要。无数特定的应用可用于扩大热分析的使用范围。 /p p   特点:水平差示三重线圈平衡的精确补偿 紧凑炉体大大加快加热和冷却 动态TG测量模式-阶梯等温分析(SIA)法-恒定速率控制(CRC)法 测量温度范围-环境温度到1100℃:标准模型-环境温度到1500℃:高温模型 操作温度范围(最大)-950℃:红外加热炉体模型。 /p p style=" text-align: center " strong 热机械分析仪TMA 8310 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/bfa5bb13-9a7d-4cad-9f78-d7f31a178ac3.jpg" title=" 理学热机械分析仪TMA 8310.png" width=" 300" height=" 240" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 240px " / /p p   Thermo Plus TMA采用一个差示扩展系统来实现高精度测量。理学的尖端技术专长被纳入紧凑的机身。TMA要求的不同测量方法可以通过简单地更换附件进行处理。该TMA具有出色的功能性和操作效率,满足品质保证部门的高可靠性要求。设计特征,例如一个样品调整机制使其操作简单。 /p p   特点:通过差示法的高灵敏度,高精度测量 多测量系统优越于其可扩展性 灵活处理各种样品尺寸 通过启用一个紧凑的电炉,加热和冷却率显著增强 差示TMA的第一个简单样品设置机制 强调整个系统的安全 不同的测量方法:压缩加载法、拉伸加载法、渗透法、高灵敏度差示渗透法 测量温度范围-标准模式:室温到1100℃-高温模式:室温到1500℃。 /p p style=" text-align: center " strong 热膨胀仪TDL 8411 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/0f38095d-11e8-4a8b-96d8-40011d902372.jpg" title=" 理学热膨胀仪TDL 8411.png" width=" 300" height=" 240" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 240px " / /p p   TDL8411采用了Rigaku有声誉的差胀原理,由探测机理本身产生的热膨胀或收缩可被消除。即使是在低膨胀材料和低厚度样品的膨胀和收缩测量中,它仍提供了高精确度和卓越的重现性。自动长度确定功能可自动测量样本长度并记录,使连续测量的操作变得容易。最大可设置24个样本,除了连续测量之外,还可以进行单次测量和中断序列测量。 /p p style=" text-align: center " a href=" http://www.instrument.com.cn/netshow/SH100879/" target=" _blank" title=" 理学" img src=" http://img1.17img.cn/17img/images/201806/insimg/4f62836e-3737-4793-bfd1-c3067e0218b4.jpg" title=" 理学.jpg" width=" 300" height=" 115" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 115px " / /a /p p i span style=" color: rgb(31, 73, 125) " 理学公司简介: /span /i /p p i span style=" color: rgb(31, 73, 125) "   理学公司自1951年成立以来,一直站在研究分析和工业仪器技术的最前沿。当今伴随着数百个重大创新,理学公司在以下领域成为世界的领导者。其中包括一般X射线衍射(XRD),薄膜分析(XRF、XRD及XRR),X射线荧光光谱学(TXRF、EDXRF及WDXRF),小角度X射线散射(SAXS),蛋白质和小分子X射线晶体学,拉曼光谱学,X射线光学器件,半导体计量学(TXRF、XRF、XRD及XRR),实验室自动化,X射线源,计算机体层摄影,非破坏性检查以及热分析。 /span /i /p p i span style=" color: rgb(31, 73, 125) "   理学对X射线及其补充技术深层理解,真正的力量是与客户共同合作的意愿。通过推进全球科学和工业领域的合作关系、对话和创新,理学经过不懈努力向客户提供完全集成的分析解决方法。 /span /i /p p i span style=" color: rgb(31, 73, 125) "   理学致力于开发支持大学院校、工业和政府实验室,与最终客户为中心的集成解决方案的各种不同的学科,提供广泛学科的以客户为中心的集成分析解决方法,包括结构蛋白质组学、超微工程研究、一般用途的x射线衍射(XRD)和光谱学(XRF)、材料分析和品质管理。 /span /i /p p i span style=" color: rgb(31, 73, 125) "   无论为创造更好的半导体芯片提供工具,实现药物开发,改善生产线品质或探索前沿的纳米技术,理学都将提供创新的产品和服务。 /span /i /p p i span style=" color: rgb(31, 73, 125) " br/ /span /i /p p style=" text-align: center " strong span style=" color: rgb(31, 73, 125) " 韩国新科有限公司(SCINCO) /span /strong /p p   新科公司的热分析仪有TGA、DSC、STA。 /p p style=" text-align: center " strong 热重分析仪TGA S-1500 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/90a26efc-adbf-4d92-a101-a1f409b9bba6.jpg" title=" 新科同步热分析仪STA S-1500.jpg" width=" 300" height=" 400" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 400px " / /p p   热重分析仪TGA S-1000/1500是在程序控温下,测量样品的重量随温度变化而变化的仪器。它配有精确定位的小体积加热炉,可以快速加热和冷却以提高实验效率。 /p p   主要特点:高灵敏性重量准确度为0.1ug,高灵敏度的微天平 冷却方式采用水冷,降温快速,使用安全,保护加热炉周边的电子元件 可与FT-IR/GC联用,联用时分辨率极高 加热炉的体积小,气氛转换快 不换加热炉也能做EGA实验。 /p p style=" text-align: center " strong 差示扫描量热仪DSC S-650 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/8dec4d22-bb71-4de8-9167-bdda7bbefe6a.jpg" title=" 新科差示扫描量热仪DSC S-650.jpg" width=" 300" height=" 192" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 192px " / /p p   差示扫描量热仪DSC S-650是用来测量热流随温度及时间变化而变化的仪器。由于采用精密的电子元件,它的灵敏度比市场上同类的DSC灵敏度高出两倍,有很好的重现性和高的信噪比。 /p p   主要特点:可转换4种气体分析,可满足多种条件下的实验 简洁而紧凑的设计,节约实验室空间,且能保证实验的高效率性 采用小体积扫频加热炉,易于气氛转换 采用安全双重盖,在两个盖子中间能形成空气层,能更有效的隔离外部大气对加热炉的影响 使用压样工具,可防止样品溢出来污染加热盘,防止噪声,防止数据的不稳定。 /p p style=" text-align: center " strong 同步热分析仪STA S-1500 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/f9b5a347-3203-41a7-8bec-ba3d34965b79.jpg" title=" 新科热重分析仪TGA S-1500.jpg" width=" 300" height=" 323" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 323px " / /p p   同步热分析仪STA可以同步实现DSC和TGA实验,它既能测量样品随温度或时间变化的焓变也能测量样品重量的增加或损失。 /p p   主要特点:小体积扫频加热炉,气氛转换快,与FT-IR等联用时可得出高效的分析结果 天平机械装置为直立式类型,再现性好又非常稳定 水冷-延长加热炉寿命,短时间内快速冷却而增加了实验次数,安全-保护加热炉周围的电子部件 模型升级,在STA-650基础上更换简单的部件即可转换成STA-1500(室温~1500℃),在STA-1500基础上更换简单的部件即可换成低温下做实验的STA-650(-125℃~650℃) 4路气体转换开关,可转换4种气体,满足多种条件下的实验。 /p p style=" text-align: center " a href=" http://www.instrument.com.cn/netshow/SH100970/" target=" _blank" title=" 新科" img src=" http://img1.17img.cn/17img/images/201806/insimg/f140480d-6e24-4a66-b8fa-bd84adf579b7.jpg" title=" 新科.jpg" width=" 300" height=" 131" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 131px " / /a /p p i span style=" color: rgb(31, 73, 125) " 新科公司简介: /span /i /p p i span style=" color: rgb(31, 73, 125) "   SCINCO成立于1990年,积极投身于当时韩国仍未涉足的高科技分析仪器制造领域,现今SCINCO定位成为一家帮助国家科学发展的公司。新科是韩国国内最好的分析仪器专业公司,于1994年开始开发并推出PDA紫外-可见分光光度计,以及彩色分光光度计、荧光光谱仪、热分析仪和最近发布的双光束紫外-可见分光光度计等产品。SCINCO提供各家世界领先分析仪器公司的产品,并提供良好的服务。依据不用应用领域划分的5个部门提供高科技仪器及应用支持。 /span /i /p p i span style=" color: rgb(31, 73, 125) "   SCINCO研发中心成立于1995年,并于2005年5月搬迁至高科技产业圣地大田市。SCINCO将通过对核心技术的不断研究和投资,为国内外客户提供有用的分析仪器和服务,与客户共同成长。 /span /i /p p i span style=" color: rgb(31, 73, 125) "   SCINCO的管理理念是“世界上最好的产品、卓越的客户支持、优秀的人力资源、不断发展的新技术”。SCINCO将不断倾听客户的意见,承诺永远以更好的方式面对客户,并努力成为世界一流的分析仪器公司。 /span /i /p p i span style=" color: rgb(31, 73, 125) " br/ /span /i /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong 法国塞塔拉姆仪器公司(SETARAM) /strong /span /p p   塞塔拉姆公司的热分析仪有RC、DSC、TGA、STA、TMA、DIL等。 /p p style=" text-align: center " strong 混合反应微量热仪C80 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/fbc8657b-34cd-452a-ae7c-981c66d33765.jpg" title=" 塞塔拉姆混合反应微量热仪C80.jpeg" width=" 300" height=" 226" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 226px " / /p p   C80微量热仪是法国塞塔拉姆(Setaram)公司经典微量热仪。采用卡尔维(CALVET)量热原理的三维传感器(“3D-sensor”),全方位探测样品热效应。具有量热效率高、样品量大、实现原位混合等特点,完全真实反映样品的物理化学性质,并提供无与伦比的测试精度。C80配备多种样品池,具有混合、搅拌、定量加样等功能。基于卓越的性能和可靠的表现,C80以用户最多,应用面广和工作方式灵活等赢得全球广大用户的信任与依赖。特别适用于催化反应、水泥水化、润湿和吸附反应、CO2捕获与封存、储氢材料、过程安全的评价及火炸药、推进剂等含能材料的研究。 /p p style=" text-align: center " strong 差示扫描量热仪SETLINE& reg DSC+ /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/cfba2693-38ee-4860-a04d-8509117a6ee6.jpg" title=" 塞塔拉姆差示扫描量热仪SETLINE& reg DSC+.png" width=" 300" height=" 234" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 234px " / /p p   SETLINE& reg DSC+主要用于测量:大多数材料的熔融结晶温度和焓值 聚合物的玻璃化转变温度 固化热/聚合物固化程度 相图 固体或液体的比热容 聚合物的氧化诱导时间 使用Van& #39 t Hoff方法计算纯度 材料分解和热稳定性。 /p p style=" text-align: center " strong 超高温热重分析仪SETSYS Evolution TGA /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/3124dd79-7cdc-4b49-9a21-8e176409aa43.jpg" title=" 塞塔拉姆超高温热重分析仪SETSYS Evolution TGA.jpeg" width=" 300" height=" 226" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 226px " / /p p   Setsys Evolution是法国塞塔拉姆仪器公司的热分析旗舰产品,以追求极致性能为诉求,覆盖高温及超高温范围。系统高度模块化,可扩展性极强,满足各种苛刻条件下的测试需要,尤其适用于金属高温氧化及腐蚀、高性能陶瓷、催化及其他高端研发领域。系统采用业内独树一帜的上天平、悬挂式传感器设计,确保无可比拟的热重及量热基线重复性 传感器采用即插即用式接口,方便用户自行更换 加热炉配备水冷系统,性能极为稳定,高温段测试游刃有余。热重方面采用塞塔拉姆独有的光电天平技术,提供超高测试精度的同时,还克服了通常采用电子天平的热重系统所固有的稳定性问题,无需额外水浴保护、无需预热即可长期稳定工作。独具匠心的设计,卓尔不群的性能表现,使得Setsys Evo成为业内同步热分析的标杆产品,广受全世界范围高端用户青睐。可扩展为同步热分析仪,或是热机械分析仪。 /p p style=" text-align: center " strong 高温同步热分析仪LABSYS evo STA 1600 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/6050bede-decc-49c4-aa0b-05190f736f5f.jpg" title=" 塞塔拉姆高温同步热分析仪LABSYS evo STA 1600.jpeg" width=" 300" height=" 226" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 226px " / /p p   同步热分析仪(TGA-DTA/DSC)将热重分析(TG)与差热分析(DTA)或差示扫描量热(DSC)集成一体,在特定的气氛和程序控温条件下,样品可能发生分解、氧化、挥发、相变、玻璃态转变、熔融、气化、裂解等反应,表现出质量和差热/热流的信号变化,从而获得相变反应热、玻璃化转变温度、氧化稳定性、反应动力学、热焓、纯度、熔点、比热、结晶度、材料氧化稳定性(氧化诱导期)和裂解动力学等相关热重与差热/热流数据信息。广泛应用于冶金、聚合物、陶瓷、催化、化工、含能材料、制药、食品和涂料等各类领域。 /p p style=" text-align: center " strong 超高温热机械分析仪SETSYS Evolution TMA /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/7e7ac339-a44f-4646-aeb0-b0ce66c9bbdb.jpg" title=" 塞塔拉姆超高温热机械分析仪SETSYS Evolution TMA.jpg" width=" 300" height=" 300" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 300px " / /p p   基于塞塔拉姆公司SETSYS Evolution平台的高端热机械分析仪,实现材料的膨胀、收缩、拉伸、三点弯曲、穿刺、线膨胀、体膨胀等的定量测试。仪器具有温度拓展功能,最高工作温度可达2400度。模块化设计可实现TMA和STA同步热分析功能的相互切换,灵活性和扩展性强。 /p p   应用领域:航空航天、核工业、陶瓷、冶金等领域 生命科学和制药研究方面 过程安全如预测逃生时间 能源开发利用如燃气水合物和钻井泥浆的应用 薄膜光纤,陶瓷烧结以及合金热分析等 对材料线性膨胀(线膨胀系数)、玻璃化转变,还原及形成网状结构过程和材料的软化点测试。 /p p style=" text-align: center " strong 机械热膨胀仪DIL-TCi /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/8b1135b8-eb3f-4a05-843b-9232d3da715d.jpg" title=" 塞塔拉姆机械热膨胀仪DIL-TCi.jpeg" width=" 300" height=" 226" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 226px " / /p p   当代新型陶瓷、金属粉末与复合材料领域的不断发展,要求精确地掌握材料的热膨胀和烧结特性。对于各类反应与相转变的研究。塞塔拉姆公司提供的最新研发的热膨胀仪DIL-TCi,操作十分简便,具备优异的性能,更可同时得到导热系数仪,以满足对于测量系统的各类要求。 /p p   DIL-TCi配备了高灵敏度位移传感器、完善的温度控制体系,使得这款仪器的测试精确度高、重现性好,同时该仪器的还配置有专用导热系数仪探头,还可以对材料的热物性进行表征,测试导热系数值,热扩散系数,比热容等。 /p p   仪器采用卧式设计,这种设计的优点在于炉子容易操作,装载样品简便。即使非理想尺寸的样品都可以很轻松的放进管状样品支架的凹槽中。热电偶直接接近样品测温,保证温度测量的重复性。同时该仪器还能测得样品导热系数值。仪器为真空密闭结构,可使测量在真空或设定的纯净惰性气氛下进行。 /p p   仪器备有两种炉体:RT~1200℃,RT~1600℃。两者可自由更换,提供多种材料与规格的样品支架与样品容器,其应用领域覆盖了几乎所有的新材料研发和基础研究、产品质量控制等需要高精度测量热膨胀的领域,测量的样品形态包括固体、液体、粉末、膏体、陶瓷纤维等等。 /p p style=" text-align: center " a href=" http://www.instrument.com.cn/netshow/SH101322/" target=" _blank" title=" 塞塔拉姆" img src=" http://img1.17img.cn/17img/images/201806/insimg/4eef922a-8643-4e73-89a0-ba7971282041.jpg" title=" 塞塔拉姆.jpg" width=" 300" height=" 120" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 120px " / /a /p p i span style=" color: rgb(31, 73, 125) " 塞塔拉姆公司简介: /span /i /p p i span style=" color: rgb(31, 73, 125) "   法国凯璞科技集团旗下的塞塔拉姆仪器为全球顶级热分析及量热仪的制造商,塞塔拉姆位于热分析和量热仪技术的发源地-法国。在高温和超高温热分析领域以其独特的光电天平技术和模块化设计一直处于行业领先地位。 /span /i /p p i span style=" color: rgb(31, 73, 125) "   以C80,SENSYS为代表的卡尔维微量热仪和高压DSC产品更是行业内的标准,特别是高压DSC技术稳定性和灵敏度无与伦比。 /span /i /p p i span style=" color: rgb(31, 73, 125) "   2008年,新EVO系列仪器诞生,其中LABSYS EVO综合热分析仪技术指标优越,性能及灵活性超过其他同类进口产品。同年收购美国HY能源技术公司,全面进军储氢领域。 /span /i /p p i span style=" color: rgb(31, 73, 125) "   在四十多年的发展过程中,塞塔拉姆公司不断研发生产客户定制的分析仪器,保证客户应用的最大利益,其产品在高温,如航空航天、核工业、陶瓷、冶金、食品等领域,生命科学和制药研究方面,过程安全如预测逃生时间,能源开发利用如燃气水合物和钻井泥浆的应用上一直处于世界最领先的地位。除了品种齐全的标准仪器之外(DTA,DSC,TGA,simultaneous TGA-DTA/DSC,TGA-EGA coupling,TMA,TSC,calorimeter),塞塔拉姆公司还不断推出为客户量身定制的分析仪器。 /span /i /p p i span style=" color: rgb(31, 73, 125) " br/ /span /i /p p style=" text-align: center " strong span style=" color: rgb(31, 73, 125) " 日本岛津制作所(SHIMADZU) /span /strong /p p   岛津公司的热分析仪系列有DSC、TMA、STA、TGA、DTA等。 /p p style=" text-align: center " strong 差示扫描量热仪DSC-60A Plus /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/8901c99e-d9ec-4d64-931b-d3eac5af11fd.jpg" title=" 岛津差示扫描量热仪DSC-60A Plus.jpg" width=" 300" height=" 306" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 306px " / /p p   作为一种最新理念,岛津打破了“自动取样器是昂贵、笨重并且专用的机器”的传统观念,推出了代表“内置自动进样器”概念的DSC-60A。并且,DSC-60A还使用先进的软件功能来节约成本,提高效率 并且机身小巧,可安装在有限的空间内。 /p p   特点:通过改进型的DSC探测器提高灵敏度和分辨率 卓越的信噪比 内置的冷却装置 操作简单方便的探测器清洁 可通过网络传输数据 基于OLE的动态报告功能 完全兼容Windows的32位应用程序 与TA-50系列兼容。 /p p style=" text-align: center " strong 热机械分析仪TMA-60H /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/e352fee6-9b0c-49f2-9a03-e825f5f12b28.jpg" title=" 岛津热机械分析仪TMA-60H.jpg" width=" 300" height=" 526" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 526px " / /p p   多功能TMA-60使用全膨胀方式可适用于多种形状的样品(例如柱形、薄膜和纤维)以及不同的测量类型(膨胀、拉伸和针刺)。(使用LTB-60冷却炉,可实现低于室温的测量。) /p p   为了更精确的测量陶瓷和玻璃的热膨胀特性,TMA-60H使用示差膨胀方式,为在高温范围内的测量提供了更精确的结果。 /p p   使用了新型的高精度、低漂移的位移传感器。由于高准确度数字位移传感器的使用,TMA-60/60H的测量准确度比传统的TMA有了显著的提高。同时,位移测量范围内覆盖从微小到显著的各种形变。 /p p   TMA-60的自动测量功能是真正的创新技术。通过使用TMA-60的自动测量方法,数字位置传感器可直接对样品的变形进行测量。所以,与通过计算移动距离进而得到样品长度的方法相比,TMA-60可得到更加精准的结果。 /p p   TMA-60与TMA-60H炉体容易替换,并且插入式样品温度传感器从根本上使维护简化。 /p p   标准系统含有气体流动通道,允许独立引入吹扫气或水蒸气和反应气。(使用可选的FC-60A来控制气体的自动切换)。 /p p   内置冷却风扇,可在测量后自动冷却炉体。 /p p   使用业内领先的TW-60WS软件系统。充分利用在Windows操作环境中便利操作和多种应用程序。 /p p style=" text-align: center " strong 差热热重同步分析仪DTG-60A /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/1dde89c5-dd4e-4f2c-9cc5-43c7a3318676.jpg" title=" 岛津差热热重同步分析仪DTG-60A.jpg" width=" 300" height=" 341" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 341px " / /p p   如果在各种应用中需要最大的灵活性和高性能,新型DTG-60/60H就体现了所有这些优点。改进了差热-热重同步分析仪(TG/DTA)所需的基本功能。可设置氛围气自动切换。TA-60WS软件提供了先进的数据采集采集、分析和报告功能,确保了方便的同步热分析。 /p p   DTG-60A是新型的自动差热-热重同步分析仪,定义了热分析自动进样技术的新标准。与传统自动进样器复杂的操作和设置过程相比,内置自动取样器能大大简化操作和设置。 /p p   24位样品可用于分析,另有附加的样品盘可快速重新加载到自动进样器,从而可一次性提供超过24小时的完全自动分析。 /p p style=" text-align: center " strong 热重分析仪TGA-51H /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/fc627c19-c2db-4ef2-818b-accd6c106ee8.jpg" title=" 岛津热重分析仪TGA-51H.jpg" width=" 300" height=" 423" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 423px " / /p p   该热重分析仪在振动性、稳定性、噪声水平、室温波动的耐受性等测试中的表现都非常令人满意。可清晰检测出样品几微克的重量变化。另有高温型(H-型)以及大样品量型(51-型)可满足陶瓷、催化剂等领域的应用需要。 /p p style=" text-align: center " strong 高温型差热分析仪DTA-50 /strong br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/2e579537-586d-4bd6-81a2-8ccbcb80345e.jpg" title=" 岛津高温型差热分析仪DTA-50.jpg" width=" 300" height=" 411" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 411px " / /p p   DTA-50使用高灵敏度的哑铃型检测器。温度控制器、气体流量调节器和传输接口都集成在一个紧凑的机身内。同时,还可以实现高温度DSC的功能。高温热流型DTA,可以进行定量热分析,快速响应、高灵敏度、准确温度控制、高温DSC功能、快速吹扫。 /p p style=" text-align: center " a href=" http://www.instrument.com.cn/netshow/SH100277/" target=" _blank" title=" 岛津" img src=" http://img1.17img.cn/17img/images/201806/insimg/bb7f85dc-1b24-4d47-b771-7189565f7a0f.jpg" title=" 岛津.jpg" width=" 300" height=" 100" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 100px " / /a /p p span style=" color: rgb(31, 73, 125) " i 岛津公司简介: /i /span /p p span style=" color: rgb(31, 73, 125) " i   岛津企业管理(中国)有限公司成立于1999年8月11日,是岛津制作所的海外子公司。岛津制作所是著名的测试仪器、医疗器械及工业设备的制造厂商,自1875年创业以来始终坚持“以科学技术向社会做贡献”,不断钻研领先时代、满足社会需求的科学技术,开发生产具有高附加值的产品。并以实现“为了人类和地球的健康”这一愿望作为岛津的经营思想,以光技术、X射线技术、图像处理技术这三大核心为基础,不断革新,不断挑战,一如既往地对科学技术发展做出贡献。特别是在2002年岛津制作所的田中耕一荣获诺贝尔化学奖,开创了岛津研究人员获奖的先河。 /i /span /p p span style=" color: rgb(31, 73, 125) " i   岛津企业管理(中国)有限公司自成立之日起便继承了岛津制作所100多年以来的创业理念,成立至今已取得了巨大的发展。目前,在全国有13个分公司,5个分析中心,60多个技术维修点,开拓了岛津制作所在中国国内的业务,满足顾客对于岛津公司及其附属公司生产的高科技分析和测试仪器、医疗器械及工业设备等产品日益增长的需要,更有效,更及时地提供优质的服务。 /i /span /p p span style=" color: rgb(31, 73, 125) " i   岛津企业管理(中国)有限公司愿与您共同前进,去实现人类美好的理想。还望各位给予岛津进一步的支持和指导。岛津将以饱满的热情和扎实的工作努力回报大家的关爱。 /i /span /p p span style=" color: rgb(31, 73, 125) " i br/ /i /span /p p style=" text-align: center " strong span style=" color: rgb(31, 73, 125) " 美国TA仪器公司 /span /strong /p p   TA公司的热分析仪有DSC、TGA、STA、DMA、TMA、DIL、TCMA。 /p p style=" text-align: center " strong 差示扫描量热仪Discovery DSC 2500 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/fd75edd9-e351-4830-945b-f4097476ed7f.jpg" title=" TA差示扫描量热仪Discovery DSC 2500.jpg" width=" 300" height=" 190" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 190px " / /p p   全新融合加热炉(Fusion Cell)采用专利技术,拥有无可匹敌的基线平直度、灵敏度、分辨率、重现性和可靠性。 /p p   独有的T4P Tzero热流技术助力实现极致DSC性能,以及在单次运行中执行热容测量并存储测量结果的独特能力。 /p p   创新性的APP式触摸屏让仪器实现了简单的一键触碰功能,提高了可用性,比之前的DSC更易于获得满意的数据。 /p p   高可靠度线性自动进样器可全天候无忧运行、灵活的程序允许随心所欲的设计和完成复杂的测试,同时可设置闲时的自动校准及日常的仪器验证。 /p p   调制DSC(MDSC)可以实现复杂热现象的有效分离。 /p p   提供温度范围较宽的各种机械制冷方案,削减了液氮开支,确保在执行扩展自动进样器程序过程中不间断低温运行。 /p p   Tzero压样器和盘,可以实现快速、简单和可重复的样品制备。 /p p style=" text-align: center " strong 热重分析仪Discovery TGA 5500 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/8c604f7a-184e-490c-9bfc-9675e6f1e875.jpg" title=" TA热重分析仪Discovery TGA 5500.jpg" width=" 300" height=" 313" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 313px " / /p p   TGA 5500将最高水平的性能和功能合二为一,轻松满足研究人员的需求。TGA 5500旨在最大程度的实现温度控制,同时尽可能减小漂移(漂移低于任何同类TGA竞争产品,即使是哪些使用测试后数据处理的产品也不例外)。TA专利红外加热炉具备最快的加热和冷却速率。全新的自动进样器则树立了高生产力标准。 /p p style=" text-align: center " strong 同步热分析仪Discovery SDT 650 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/b50f0995-d487-4cfa-80dc-b8d9136db73d.jpg" title=" TA同步热分析仪Discovery SDT 650.jpg" width=" 300" height=" 300" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 300px " / /p p   Discovery SDT 650拥有前所未有的灵敏度、基线稳定性、温度及气氛控制性能。SDT 650是第一台融合所有TA最先进技术的同步热分析仪,包括调制DSC& reg ,调制TGA& #8482 ,及高分辨TGA& #8482 ,集先进技术于大成,势必会开拓仪器分析的新领域。SDT 650是唯一能够同时测试热流和热重的系统。另外,SDT 650可以同时做双样品的TGA测试,TA专有的这项技术,将会有力的提高实验室工作效率。 /p p style=" text-align: center " strong 大力量动态热机械分析仪ELECTROFORCE& reg DMA 3200 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/4802ab30-9b88-42ab-9524-4a348db76add.jpg" title=" TA大力量动态热机械分析仪ELECTROFORCE& reg DMA 3200.jpg" width=" 300" height=" 380" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 380px " / /p p   DMA 3200采用已获专利的ElectroForce线性电机技术,同时带来无与伦比的性能和数据准确度。这种独特的电机技术结合了强大的稀土磁体和无摩擦弯曲悬挂设计,可在各种频率和振幅下实现精确的力和位移控制。DMA 3200电机提供高达500N的力输出和1微米到13毫米的可控位移。可在静态和动态两种模式下进行测试。 /p p   此外,无摩擦动磁式设计消除了其他电机设计中存在的故障点,例如移动电线或轴承老化。这确保了最可靠耐用的性能 通过在ElectroForce疲劳测试仪器中数十年的免维护使用,证明可进行数十亿次循环。该款电机是行业内唯一拥有10年质保的电机。 /p p   凭借此项高效、安静且无需润滑的电机技术,DMA 3200几乎可以用于所有场所 从实验室到生产车间,或从洁净室到办公区域。 /p p style=" text-align: center " strong 热机械分析仪Q400EM /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/7ef3dcc7-2718-4641-aee1-521aa12e2ef0.jpg" title=" TA热机械分析仪Q400EM.jpg" width=" 300" height=" 300" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 300px " / /p p   Q400EM是一款高性能、研发级的热机械分析仪(TMA),它的操作模式、测试探头、可用测试信号都具有无可比拟的灵活性。增强模式Q400EM除了TMA基本测试,还能进行瞬态(应力/应变)、动态和调制TMA& #8482 (M-TMA& #8482 )实验,实现更为完整的粘弹性材料表征,并可以解析重叠热效应(MTMA)。Q400拥有与Q400EM相同的基本性能和数据可靠性,但是没有增强模式EM功能,是研发、教学和质量控制的理想工具。 /p p style=" text-align: center " strong 真实差分高分辨热膨胀仪DIL 832 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/c29a79a3-c63b-43d4-b6bf-835cbbe81b6e.jpg" title=" TA真实差分高分辨热膨胀仪DIL 832.jpg" width=" 300" height=" 234" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 234px " / /p p   凭借以下令人印象深刻的独特技术和功能,DIL 832成为所有研发实验室执行机械和尺寸特性表征的理想工具:TA仪器独家True Differential& #8482 技术、获得专利的1nm分辨率光学编码器、一系列新型动态加热炉以及新款线性样品加载电机。打造业界性能最佳的卧式推杆膨胀仪,不受被测应用或材料的影响。 /p p   在5000μm总测量范围内,线性电机可确保0.01至1.00N样品加载力,力解析度为0.01N,线性度优于0.01N。 /p p   获得专利的新型增量式光学编码器将长度测量的真实分辨率降至1nm,达到同类产品的最佳水准。支持测量短小样品,同时保持优异?L分辨率。 /p p   应用新型设计的测量头外壳及有源电气热稳定性确保检测核心具备前所未有的稳定性。DIL 832将TA仪器的独家True Differential& #8482 技术与TA仪器加热炉的独特设计相结合,提供业界领先的0.01× 10-6K-1CTE精确度。 /p p   DIL 832自动记录初始样品长度,支持的最大样品长度为25mm,最大直径为6mm。 /p p   水冷炉提供动态性极强的温度编程功能,最大加热速率为50K/分钟,由1000° C冷却至室温仅需13分钟,仅为同类仪器的1/15。 /p p   集成电子元器件提供网络连接,而集成触摸屏允许用户直接在仪器中执行多项功能,实时显示测量参数和测试完成时间。 /p p style=" text-align: center " strong 激光闪射导热仪Discovery DLF 1600 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/6d27b1dc-d96d-4479-8b2d-8425e06d7200.jpg" title=" TA激光闪射导热仪Discovery DLF 1600.jpg" width=" 300" height=" 243" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 243px " / /p p   Discovery激光闪光DLF 1600是一款先进的独立仪器,可测量材料的热扩散系数和比热容,温度范围从室温直至1600° C。其独特设计中包含专属激光器、激光光纤、检测器和加热炉技术,以及获得专利的独特高纯度氧化铝五样品位转盘,可提供空前的测量精度和样品处理量。DLF 1600可在包括空气、惰性气体或真空等的各种环境条件下运行,并表现各种不同材料的特性,其中包括聚合物、陶瓷、碳、石墨、复合材料、玻璃、金属和合金等。 /p p style=" text-align: center " a href=" http://www.instrument.com.cn/netshow/SH100670/" target=" _blank" title=" TA" img src=" http://img1.17img.cn/17img/images/201806/insimg/2b185320-5af5-4e5a-8eb8-9108a1e7925e.jpg" title=" TA.jpg" width=" 300" height=" 184" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 184px " / /a /p p span style=" color: rgb(31, 73, 125) " i TA公司简介: /i /span /p p span style=" color: rgb(31, 73, 125) " i   TA仪器以先进的高科技产品、出色的产品质量和无懈可击的售后支持享誉全球,越来越多的客户向其同行推荐TA的产品。TA仪器的总部位于美国特拉华州纽卡斯尔市,TA为拥有技术精湛的专业销售团队而自豪,同时TA仪器的服务团队因识丰富、态度友好、响应迅速而得到全球广泛认可。 /i /span /p p span style=" color: rgb(31, 73, 125) " i   TA的技术支持团队致力于协助客户解决一切有关热分析、流变分析和机械试验的难题,通过致电客户、向客户发送电子邮件而提供技术支持,或借助互联网在线提供技术支持。 /i /span /p p span style=" color: rgb(31, 73, 125) " i   TA仪器的前身是杜邦公司于1963年成立的仪器产品部。该仪器产品部于1990年从杜邦独立,并于1996年被美国沃特世集团并购。TA仪器从杜邦独立后迅速成长为热分析领域的技术领袖,迄今一直保持领导地位。 /i /span /p p span style=" color: rgb(31, 73, 125) " i   时至今日,TA已收购了众多公司,产品领域大幅拓展,包括:流变分析系统、微量热分析系统、导热系数与热扩散系数分析系统、膨胀分析系统、橡胶检测系统,以及动态热机械表征系统。TA始终坚守承诺,向客户提供高度可靠、性能卓越的产品,满足客户对产品物理性能的各种要求。 /i /span /p
  • 淬火/变形膨胀仪(相变仪)在上海大学正式投入使用
    世界最先进的相变仪产品—德国巴赫公司的DIL805淬火/变形膨胀仪,已于2006年11月23日在上海大学顺利验收,并正式投入使用。DIL805相变仪外观雍容华贵、工艺制作精美、性能先进可靠、操作及其方便,处处绽放着顶尖级仪器的品位,备受用户的青睐。我们相信该仪器必将成为我国钢铁及合金研究领域最得力的助手。 有关此产品的详细介绍,请登陆www.esum.com.cn或电话咨询:010-84831960。
  • 全新一代纳米光谱与成像系统-neaSCOPE,在可见、红外和太赫兹光谱范围实现10 nm高分辨光谱和成像!
    一、 neaspec推出全新一代纳米光谱与成像系统neaSCOPE系列产品 近期,全球知名纳米显微镜领域制造商neaspec推出了纳米光学显微镜neaSCOPE全新一代系列产品,加载了全新技术,拓展了产品功能,以满足客户多样的实验需求。neaSCOPE是基于针增强的纳米成像和光谱,以应用为目的,满足客户在科学,工程和工业研究等不同领域的科研需求。由于其高度的可靠性和可重复性,neaSCOPE已成为纳米光学领域热点研究方向的科研设备,在等离子激元、二维材料声子化、半导体载流子浓度分布、生物材料红外表征、电子激发及衰减过程等众多研究方向得到了许多重要科研成果。neaSCOPE技术特点和优势包括:♢ 行业的针增强技术,高质量的纳米分析实验数据。♢ 采用模块化设计,针对用户的实验需求量身定制配置,同时兼顾未来的升需求,无需重复购置主机。♢ 软件使用方便,提供交互式用户引导功能,让新用户也能快速上手。流程化的软件界面,逐步引导用户轻松完成实验操作。♢ 功能多样、可靠性高,已得到大量发表文章的印证,在纳米光学领域有很深的影响力,是国内外实验室的头号选择。二、neaSCOPE全新一代产品型号 IR-neaSCOPE:基于AFM 针的激光诱导光热膨胀的纳米红外成像和光谱。IR-neaSCOPE可测量纳米红外吸收谱。该设备利用AFM-IR机械信号来检测样品中激光诱导的光热膨胀。IR-neaSCOPE无需红外探测器和光学干涉仪,为热膨胀系数大的样品(如聚合物、生物材料等)提供了一种经济高效的纳米红外成像及光谱研究的解决方案。IR-neaSCOPE提供红外吸收成像,点光谱和高光谱成像,并可升到IR-neaSCOPE+s,拓展更多功能,实现更多种类材料的研究。♢ 将样品的光学与机械性质有效地去耦,实现无伪影的吸收测量。♢ 将激光地聚焦在探针上,实现优化条件下对样品的无损表征。♢ 互动式软件界面,帮助新用户直接上手,获取高质量数据。IR-neaSCOPE+s:探测商用AFM针的弹性散射光,实现纳米红外成像和光谱。IR-neaSCOPE+s能实现10 nm空间分辨率的化学分析和电磁场成像。该设备利用先进的近场光学显微镜技术来测量红外吸收和反射率,以及局部电磁场的振幅和相位。设备支持红外纳米成像、点光谱、高光谱、以及纳米 FTIR,可使用CW照明源,宽波激光器,以及同步辐射源。IR-neaSCOPE+s在有机和无机材料分析方面具有广泛的应用案例以及特殊的近场表征手段,如定量s-SNOM或亚表面分析。♢ 同时探测样品吸收和反射,适用于各类型材料。♢ 快速可靠的s-SNOM成像和光谱系统,在不影响数据质量的情况下实现高效数据产出。♢ 结合多光路设计和多项技术,实现大量选配功能(纳米 FTIR、透射、底部照明、光电流等)。...… VIS-neaSCOPE+s:局部电磁场偏振分辨的近场成像(振幅和相位)。VIS-neaSCOPE+s优化了可见光波长范围内的振幅和相位的矢量场成像。利用的s-SNOM技术实现对等离子体纳米结构和波导结构的近场成像和光谱研究。VIS-neaSCOPE+s提供灵活的光路配置,能够进行偏振测量、侧面和底部照明。同时支持升纳米FTIR 和TERS功能。♢ 检测局域电磁场的振幅和相位,实现对波衰减、模场和色散的全面表征。♢ 有的100%无背景检测技术和稳定的无像差对焦,保证在可见光全波数范围内的实验结果。♢ 灵活的光路选配,可将光源聚焦到样品或探针上,适用于等离子体不同的研究方向。 THz-neaSCOPE+s:纳米尺度太赫兹 (THz) 近场成像和光谱多功能平台。THz-neaSCOPE+s可在纳米尺度上实现太赫兹成像和光谱。该设备基于完全集成的紧凑型 THz-TDS 系统,可直接用于半导体纳米结构、二维纳米材料和新型复合材料系统的电导率研究。THz-neaSCOPE+s同时支持用户自由耦合太赫兹和亚太赫兹源,并集成了市面上SPM仪器中的软件界面,是强大的纳米太赫兹分析仪器。 ♢ 全反射光路,大程度上兼容宽波和单波太赫兹源,覆盖全部光谱范围。♢ 模块化设计和多光束路径设计,支持多种分析功能,包括光电流、泵浦以及纳米FTIR。♢ 基于THz-TDS 技术,实现紧凑且完全集成的太赫兹纳米光谱。 IR-neaSCOPE+fs:10 fs 时间分辨率和 10 nm 空间分辨率的超快泵浦光谱。IR-neaSCOPE+fs实现了泵浦光谱空间分辨率的突破。设备基于纳米FTIR 的fs激光系统,提供完全集成的硬件和软件系统,实现纳米的时间动态研究。该系统具备有的双光路设计、无色散光学元件、以及可选配的SDK,兼容各种泵浦激光器,使用成熟的高功率实验配置进行突破性的超快研究。♢ 完全集成的系统,帮助用户免于复杂的设备调试,专注于研究本身。♢ 无芯片的光学元件进行光聚焦和收集达到大时间分辨率。♢ 灵活的硬件和软件界面,可根据客户实验需求定制。 IR-neaSCOPE+TERs:nano-FTIR与nano-PL和TERS相结合,突破性的纳米尺度光谱探测技术。IR-neaSCOPE+TERs将纳米FTIR与针增强拉曼TERS和光致发光(PL)光谱相结合,在同一显微镜内利用弹性和非弹性散射光同时进行表征。该系统通过简单的光路校准可实现互补的红外光和可见光散射,可使用商用镀金的AFM探针进行稳定的纳米拉曼和PL表征。 ♢ 模块化设计和多光路设计,实现AFM探针在同一位置的纳米FTIR和纳米拉曼/PL光谱。♢ 通过简单的光路校准收集AFM探针针的强弹性散射光。♢ 使用商用AFM探针获得大 TERS 信号。♢ 优化的软件数据收集处理,在同一用户界面进行所有测量。 cryo-neaSCOPE+xs:超低温环境纳米光学成像和光谱。cryo-neaSCOPE+xs可在端低温下实现近场光学纳米成像和纳米光谱。该设备可获得高质量的近场信号,且支持可见光、红外光、以及太赫兹源。因此,该系统可实现10 K以下不同能相关的研究。cryo-neaSCOPE+xs 基于全自动干式低温恒温器,无需液氦。该系统同时具备共聚焦以及接电功能,以实现低温条件下的多功能研究。♢ 的s-SNOM和纳米FTIR技术,实现低温下纳米光学分析,温度低至10K。♢ 使用neaspec 照明和检测模块,兼容红外到太赫兹光源,应用领域广泛。♢ 使用全自动闭式循环高真空干式低温恒温器,降温速度快,使用成本低。 三、背景简介neaspec创立于2007年,起源于德国马克斯普朗克研究所,因其在纳米分析领域的一系列突破性技术而受到广泛关注。neaspec和Quantum Design结为全球战略合作伙伴,并于2013年次引入中国。产品经过多次升换代,设备的各方面性能均已达到高度优化。目前在国内的用户包括清华大学、北京大学、中国科学技术大学、中山大学、中科院诸研究所等高校和研究所。此次升使得系统在软件用户交互性、模块化、后续升兼容性方面具有更大的提升。 四、应用案例1. Nature: 双层旋转的范德瓦尔斯材料中的拓扑化激元和光学魔角 相关产品:IR-neaSCOPE+s 2018年W. Ma等在Nature报道了范德瓦尔斯材料α-MoO3 中的面内双曲声子化激元的重要发现。2020年6月,G.W. Hu等在此基础上通过理论预测并在实验上证实了双层旋转范德瓦尔斯材料α-MoO3体系,可以实现由转角控制的声子化激元从双曲到椭圆能带间的拓扑变换。在这个变换角附近,光学能带变成平带,从而实现激元的直线无衍射传播。类比于双层旋转石墨烯中的电子在费米面的平带,作者因此将这一转角命名为光学魔角。 研究中作者采用散射型近场光学显微镜(s-SNOM)对双层α-MoO3 旋转体系进行扫描测试。实验结果显示,在接近魔角时,光学能带变平,声子化激元沿直线无衍射传播。此外,通过测试不同转角的双层体系,作者成功观测到在不同频段大幅可调的低损耗拓扑转换和光学魔角。这一重要发现奠定了“转角光子学”的基础,为光学能带调制、纳米光操控和超低损耗量子光学开辟了新的途径,同时也衍生出“转角化激元”这一重要分支研究方向,为进一步发展“转角声学”或“转角微波系统”提供了重要的线索和启发。(引自:中国光学-公众号,2020年6月11日《Nature:光学魔角!二维材料转角遇见光》) 【参考】 Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 2020, 582, 209-213.2. Nature: 天然双曲材料的声子化研究 相关产品:IR-neaSCOPE+s W. Ma在自然材料体系(α-MoO3)中观察到在平面内各项异性传播的声子化激元,包括传播速度不同的平面椭圆型和单向传播的平面双曲型声子化激元;并发现了在α-MoO3中支持的声子化激元具有低的损耗。实验发现,α相三氧化钼在两个光谱范围内存在两个剩余射线带,声子化激元的传播行为在两个剩余射线带内表现出不同的性质。在低剩余射线带内,α相三氧化钼可以在中红外波段支持双曲型声子化激元,也就是说声子化激元仅沿一个方向传播([001]方向),在垂直方向[100]的传播完全被抑制,这种化激元有多种具吸引力的性质,它具有强的场局域特性,可以支持厚度可调节的波导模式,并且损耗低。而在另外一个剩余射线带内,α相三氧化钼在中红外波段支持椭圆型声子化激元,化激元沿着[001]和垂直方向[100]以不同的波长进行传播,这种化激元传播寿命高达约8 ±1 ps,远高于目前已知的高寿命。研究进一步促进了光学器件的微型化和多元的调制特性,并且再次证明自然材料中仍然具有无穷的挖掘潜力。 【参考】 In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature, 2018, 562, 557–562. 3. 纳米空间分辨超快光谱和成像系统在范德瓦尔斯半导体研究中的应用 相关产品:IR-neaSCOPE+fs近年来,范德瓦尔斯(vdW)材料中的表面化激元(SP)研究,例如等离化激元、声子化激元、激子化激元以及其他形式化激元等,受到了广大科研工作者的关注,成为了低维材料领域纳米光学研究的热点。其中,范德瓦尔斯原子层状晶体存在特的激子化激元,可诱导可见光到太赫兹广阔电磁频谱范围内的光学波导。同时,具有较强的激子共振可以实现非热刺激(包括静电门控和光激发)的光波导调控。2020年7月,美国哥伦比亚大学Aaron J. Sternbach和D.N. Basov教授等研究者在Nature Communications上发表了题为:“Femtosecond exciton dynamics in WSe2 optical waveguides”的研究文章。研究者以范德瓦尔斯半导体中的WSe2材料为例,利用德国neaspec公司的纳米空间分辨超快光谱和成像系统,通过飞秒激光激发研究了WSe2材料中光波导在空间和时间中的电场分布,并成功提取了飞秒光激发后光学常数的时间演化关系。同时,研究者也通过监视波导模式的相速度,探测了WSe2材料中受激非相干的A-exciton漂白和相干的光学斯塔克(Stark)位移。【参考】 Aaron J. Sternbach et.al. Femtosecond exciton dynamics in WSe2 optical waveguides, Nature Communications, 11, 3567 (2020) 4. ACS Nano:光致发光、拉曼、近场光学同步测量技术揭示二维合金材料新特性 相关产品:IR-neaSCOPE+TERs 单层异质结构的应用潜力直接受到材料内在和外在的缺陷影响。乔治亚大学的研究人员在Abate教授的带领下,利用neaSNOM散射式近场光学显微镜,研究了二维(2D)单层合金光致氧化过程中纳米尺度下的奇异界面现象。他们发现界面张力可以通过建立稳定的局部势阱来集中本征激子,从而实现高的热稳定性和光降解稳定性。该实验结果由neaspec公司特的nano-PL / Raman和s-SNOM同步测量技术所采集,并已发表在ACS NANO中。在实验中,作者合成了由单层面内MoS2-WS2异质结构制成的2D纳米晶体,这些晶体在富Mo的内部区域和富W的外部区域间,显示出了较强的纳米合金界面。在针增强照明刺激下(100天),作者进一步观察到,光降解过程中界面的激子稳定性、局域性和不均匀性。得益于高度敏感的s-SNOM成像技术,作者探测到富W的外部区域的反射率出现急剧下降。该反射率始于晶体边缘,并随时间向内传播。在同一样品区域获得的高光谱纳米光致发光(nano-PL)图像显示,W氧化相关的激子的猝灭会遵循与s-SNOM相同的模式(在边缘开始并向内传播)。值得注意的是,合金界面的内部区域表现出了强大的抗氧化能力。即使在光降解100天后,它仍具有很强的s-SNOM信噪比和未淬灭的nano-PL信号。为了进一步研究结构变化,作者使用nano-PL进行了增强拉曼高光谱纳米成像测量,并在同一扫描区域的每个像素处获取了空间和光谱信息。实验结果表明,在整个晶体的光降解过程中,WS2拉曼峰逐渐消失,而在内部区域中的MoS2仍然存在。该结果表明在相同的环境条件、同一显微镜下测量相同的晶体,由于热诱导的合金和基底晶格常数的不匹配,导致光氧化与局部应变存在一定的关联。而合金界面可防止该应变传播到内部区域,从而防止其降解。 【参考】 Photodegradation Protection in 2D In-Plane Heterostructures Revealed by Hyperspectral Nanoimaging: The Role of Nanointerface 2D Alloys. ACS Nano 2021, 15, 2, 2447–2457. 5. Cryo-SNOM低温近场在氧化物界面的新应用 相关产品:cryo-neaSCOPE+xs 氧化物界面处的二维电子体系(2DES)做为一个特的平台,将典型复合氧化物、强电子相关的物理特性以及由2DES有限厚度引起的量子限域集成于一体。这些特的性质使其在电子态对称性、载流子的有效质量和其它物理特性方面与普通半导体异质结截然不同,可以产生不同于以往的新现象。然而氧化物界面多掩埋于物质间使其难以探测,为探究其局限2DES需要一个无创并且具有很高空间分辨率的表征技术,如果还能提供一个较宽范围内温度变化的平台将大地推进该领域的研究。通常光学显微镜可用于上述研究,其中,远场的探测技术由于受到波长和衍射限的限制缺乏空间分辨率,而红外波段的光束探测传导电子的Drude反应分辨率仅有几个微米的量,无法满足测试需求,而利用散射式近场光学显微镜(s-SNOM)可以克服这一限制,使其具有10-20 nm的空间分辨率并获得光响应信号中的强度和相位信息。近期,Alexey B. Kuzmenko团队在Nat. Commun.上获得新进展,他们利用s-SNOM来研究从室温下降到6K时LaAlO3/SrTiO3界面的变化情况,从近场光学信号,特别是其中的相位分量信息可以看出对于界面处的电子系统的输运性质具有其高的光学敏感度。这一模型说明了2DES敏感性来源于AFM针和耦合离子声子模型在很小穿透深度下的相互作用,并且该模型可以定量地将光信号的变化与冷却和静电选通控引起的2DES传输特性的变化相关联,从而提供操控光学信息的有效手段。从利用s-SNOM得到的实验结果和建立的模型结果来看,二者之间具有很好的拟合,这一结果说明了电子声子相互作用对于在零动量时的表面声子离子模型的散射化吸收具有至关重要的作用。【参考】 High sensitivity variable-temperature infrared nanoscopy of conducting oxide interfaces. Nature Communications 2019, 10, 2774. 6. Science:近场太赫兹光电流-石墨烯等离子体在近费米速度传播下的非局域量子效应 相关产品:THz-neaSCOPE+s西班牙光子科学研究所(ICFO)的 Marco Polini教授和Frank H. L.Koppens教授在《Science》上发表了题为:Tuning quantum nonlocal effects in graphene plasmonics的文章。 在本篇文章中,研究者利用散射式近场光学手段,对石墨烯-(h-NB)-金属复合体系表面进行了纳米尺度下的精细扫描,由此观测到了太赫兹波段下的石墨烯等离子体以近费米速度进行传播。研究发现,在慢的速度(数百倍低于光速)下,石墨烯等离子的非局域响应得以探测,通过近场成像能够以无参数匹配手段清晰地揭示无质量的Dirac电子气体的量子描述,进而展示了三种类型的非局域量子效应,即单粒子速率匹配,相互增强费米速率和相互减弱压缩性。通过该近场光学的研究方法,研究者终提供了确定电子体系的全时空反应的新途径。 【参考】 Tuning quantum nonlocal effects in graphene plasmonics. Science 2017, 357, 187. 五、部分发表文章[1]. Nature (2021) 596, 362[2]. Science (2021) 371, 617[3]. Nature Physics (2021) 17, 1162[4]. Nature Phot. (2021) 15, 594[5]. Nature Chem. (2021) 13, 730[6]. Nature (2020) 582, 209[7]. Nature Phot. (2020) 15, 197[8]. Nature Nanotech. (2020) 15, 941[9]. Nature Mater. (2020) 19, 1307[10]. Nature Mater. (2020) 19, 964[11]. Nature Phys. (2020) 16, 631[12]. Nature (2018) 562, 557 [13]. Nature (2018) 359, 892[14]. Science (2018) 362, 1153 [15]. Science (2018) 361, 6406 [16]. Science (2018) 359, 892[17]. Science (2017) 357, 187[18]. Science (2014) 344, 1369[19]. Science (2014) 343, 1125
  • PSC发布非接触式亚微米分辨红外拉曼同步测量系统新品
    非接触式亚微米分辨红外拉曼同步测量系统 — —mIRage O-PTIR系统 产品简介:美国PSC (Photothermal Spectroscopy Corp, 前身Anasys公司)最新发布的一款应用广泛的亚微米级空间分辨率的非接触式亚微米分辨红外拉曼同步测量系统。基于独家专利的光热诱导共振(PTIR)技术,mIRage产品突破了传统红外的光学衍射极限,其空间分辨率高达500 nm,可以帮助科研人员更全面地了解亚微米尺度下样品表面微小区域的化学信息。 mIRageTM O-PTIR 光谱O-PTIR (Optical Photothermal Infrared) 光谱是一种快速简单的非接触式光学技术,克服了传统IR衍射的极限。与传统FTIR不同,不依赖于残留的IR 辐射分析,而通过检测由于本征红外吸收引发的样品表面快速的光热膨胀或收缩,来反映微小样品区域的化学信息。 mIRage工作原理:• 可调的脉冲式中红外激光汇聚于样品表面,并同时发射与红外激光共线性的532 nm的可见探测激光;• 当IR吸收引发样品材料表面的光热效应,并被可见的探测激光所检测到;• 反射后的可见探测激光返回探测器,IR信号被提取出来;• 通过额外地检测样品表面返回的拉曼信号,可以实现同时的拉曼测量。 O-PTIR克服了传统红外光谱的诸多不足:• 空间分辨率受限于红外光光波长,只有10-20 μm• 透射模式需要复杂的样品准备过程,且只限于薄片样品• 无传统ATR模式下的散射像差和接触污染 O-PTIR的优势之处在于: • 亚微米空间分辨的IR光谱和成像(~500 nm),且不依赖于IR波长• 与透射模式相媲美的反射模式下的图谱效果• 非接触测量模式——使用简单快捷,无交叉污染风险• 很少或无需样品制备过程 (无需薄片), 可测试厚样品• 可透射模式下观察液体样品• 可以与拉曼联用,实现同时同地相同分辨率的IR和Raman测试,无荧光风险mIRage 技术参数 波谱范围模式探针激光样品台最小步长样品台X-Y移动范围IR (1850-800 cm-1)反射 532 nm 100 nm 110*75 mmIR (3600-2700 cm-1)透射Raman (3900-200 cm-1)反射 重要应用实例分析: 1、多层薄膜 高光谱成像: 1 sec/spectra. 1 scan/spectra样品区域尺寸:20 μm x 85 μm size. 1 μm spacing.图谱中可以明显看出在不同区域上的羰基,氨基以及CH2 拉伸振动的分布。 2、高分子膜缺陷左:尺寸为240 μm的两层薄层上缺陷的光学图像;右:在无缺陷处(红色)和缺陷处(蓝色)的样品的IR谱图,998 cm-1处为of isotactic polypropylene 的特征红外吸收峰。 3、生命科学 左:70*70 μm范围的血红细胞的光学照片;中:红色条框区域在1583cm-1处的Raman照片;右:红血细胞选择区域的同步的IR和Raman图谱 上左:水中上皮细胞的光学照片;上右:目标分子能够在红外光谱上很容易的区分和空间分离,可以明显看到0.5-1.0 μm的脂肪包体;下:原理示意图:红外光谱测量使用透射模式,步长为0.5 μm。 4、医药领域 左:PLGA高分子和Dexamethasone药物分子的混合物表面的光学照片中:在1760 cm-1 出的高光谱图像,显示了 PLGA在混合物中的分布,图像尺寸40 μm * 40 μm右:在1666 cm-1 出的高光谱图像,显示了 Dexamethasone在混合物中的分布,图像尺寸40 μm *40 μm 5、法医鉴定 左:800 nm纤维的光学照片右:纳米纤维不同区域的O-PTIR图谱 6、其他领域• 故障分析和缺陷• 微电子污染• 食品加工• 地质学• 考古和文物鉴定 部分用户及发表文章 [1] Ji-Xin Cheng et al., Sci. Adv.2016, 2, e1600521.[2] Ji-Xin Cheng et al., Anal. Chem. 2017, 89, 4863-4867.[3] Label-Free Super-Resolution Microscopy. Springer, Biological and Medical Physics, Biomedical Engineering.创新点: mIRage O-PTIR (Optical Photothermal Infrared) 是基于独家专利的光热诱导共振(PTIR)技术,m其突破了传统红外的光学衍射极限,空间分辨率高达500 nm,可有效助力科研人员更全面地了解亚微米尺度下样品表面微小区域的化学信息。 非接触式亚微米分辨红外拉曼同步测量系统
  • 静态力学分析
    p style=" text-align: center " strong 原创: 徐颖【苏大】 江苏热分析 /strong /p p   研究物质形变或力学性质与温度关系的方法,常称之为热机械分析法,该法包括热膨胀法(DIL)、静态热机械分析(TMA)和动态热机械分析(DMA)三种技术,它们之间的差别最主要的来自于它们测量时负载力的不同。热膨胀法是测量试样负载力为零,即仅有自身重力而无外力作用时,在程序温度控制下,膨胀或收缩引起的体积或长度的变化 静态热机械分析是测量材料在静态负载力(非交变负荷)作用下,形变与温度间关系的技术 动态热机械分析是在程序控制温度下,测量材料在动态负载力(交变负荷)下动态模量和力学阻尼(或称力学内耗)与温度关系的一种技术。 /p p strong 一、TMA基本原理和结构 /strong /p p   静态热机械分析仪是在热膨胀仪的基础上发展起来的,它的基本原理和热膨胀仪相同,不仅可以替代热膨胀仪,而且在结构和功能上有进一步的扩充和提升。 /p p   (1) 可以设定试样所受负荷的大小,改变负荷会得到不同的热形变曲线,因此负荷大小成为一个重要的实验参数。而且将负荷大小设置为与材料实际使用中所受的力相近,热形变曲线更有实用价值。此外选用合适的负荷大小,可以得到更理想的曲线。 /p p   (2) 可选用更多不同的探头,大多配备拉伸、压缩、穿透(或称针入)和弯曲等探头,除了能测定热膨胀系数和各种相变点之外,还可以研究定应变的应力松弛和定应力的蠕变等力学性能。图1是DIL和TMA可选用探头和基本原理示意图。 /p p style=" text-align: center " img title=" 图1 热膨胀和热机械分析原理示意图.jpg" alt=" 图1 热膨胀和热机械分析原理示意图.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/ef21716a-4636-4630-8ec4-1facf9de83a5.jpg" / /p p style=" text-align: center " strong 图1 热膨胀和热机械分析原理示意图 /strong /p p style=" text-align: center " strong (a)热膨胀和TMA装置原理 1—仪器的基本形式 2—水平热膨胀 /strong /p p style=" text-align: center " strong 3—垂直热膨胀或TMA 4—TMA的垂直膨胀(天平型) (b)TMA的应力类型 /strong /p p   TMA按机械结构形式不同,可以分为天平式和直筒式两大类。天平式TMA的施力方向(拉伸还是压缩)和大小是通过刀口式天平来控制的,再根据试样与天平的相对位置又可分为上皿式和下皿式。直筒式TMA根据施力控制原理、方式不同可分为三种:弹簧型,通过顶部加压砝码和弹簧相互协调控制负载的方向和大小 磁力型,通过磁钢和控制磁拉力线圈中直流电的方向来决定负载的方向和大小 浮子型,通过浮子、浮液和顶部加压砝码来控制负载,浮子材料使用低密度的聚合物,而浮液采用高密度氟氯硅油。 /p p   以上这些分类实际上是依据TMA施力方式不同来分的,仪器其他部分:炉体、温度控制、气氛控制等雷同于差热仪、热重仪。而位移检测系统则都是由差动变压器将位移转变为电压信号,经相敏放大器、有源滤波器、电压放大器、A/D转换器后再进行数据处理。 /p p strong 二、操作模式 /strong /p p   TMA的操作模式可分为五种: /p p   (1) 标准模式,可进行3个实验程序。一个是线性升温时负载力保持恒定,监测位移的变化,则得到最经典的热膨胀曲线 如果线性升温保持恒定的应变,检测力的变化,可用于评价薄膜或纤维的收缩力。恒温条件下,往往设置力呈线性变化,监测其所产生的应变,可获得力位移曲线和模量信息。 /p p   (2) 应力/应变模式,有2个实验程序。在恒温条件下,施加线性变化的应力或应变,测量对应的应变或应力,从而得到应力/应变图谱及相关的模量信息。所计算出的模量可以分别作为应力、应变、温度或时间的函数来表示。图2就是保持恒温,应力线性增加,所获得的应力/应变曲线。该曲线的形状受所设温度及样品加工工艺的影响。 /p p style=" text-align: center " img title=" 图2 温度恒定,线性应力作用下所得应力_应变曲线.png" alt=" 图2 温度恒定,线性应力作用下所得应力_应变曲线.png" src=" https://img1.17img.cn/17img/images/201812/uepic/63918f4f-cced-471e-9587-5358e2d3a7ea.jpg" / /p p style=" text-align: center " strong 图2 温度恒定,线性应力作用下所得应力/应变曲线 /strong /p p   (3) 蠕变/应力松弛模式,可进行2个实验程序。一个是蠕变实验,即应力保持恒定,监测应变随时间的变化,获得柔量数据 另一个是应力松弛实验,应变保持恒定,监测应力的衰减,获得松弛模量数据。二者均为瞬态测试,可评估材料形变及回复性质。 /p p   (4) 动态TMA模式,在线性升温条件下,对样品施以正弦变化的力。测量由此产生的正弦变化的应变。通过应力、应变数据计算储能模量E& #39 、损耗模量E〞和损耗因子Tanδ对时间、温度或应力的关系,一般适用于薄膜的研究。 /p p   (5) 调制TMA模式,类似于调制DSC,是温度控制方式在传统的线性升温的基础上叠加一个设定振幅和周期的正弦波温度变化程序,将原始信号(总位移和热膨胀系数)解析成可逆和不可逆部分,可逆部分可获得相变信息(如Tg),不可逆部分得到具有时间依赖性的动力学过程(如应力松弛)。 /p p strong 三、TMA典型谱图及解析 /strong /p p   图3是比较典型的热膨胀曲线图,TMA(或DIL)确定线膨胀系数的公式为: /p p style=" text-align: center " img title=" 式1-1.jpg" alt=" 式1-1.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/66c902b0-66e8-461f-9910-a288f34faefc.jpg" / /p p   式中l0为样品原始长度,Δl/ΔT为热膨胀曲线的斜率。相应的体膨胀系数γ的计算公式如下: /p p style=" text-align: center " img title=" 式1-2.jpg" alt=" 式1-2.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/0a79f259-09f2-436d-82c0-69a18aeaef5b.jpg" / /p p 其中V0为样品原始体积,ΔV/ΔT为热膨胀曲线的斜率。 /p p style=" text-align: center " img title=" 图3 热膨胀曲线以及线膨胀系数α的确定.png" alt=" 图3 热膨胀曲线以及线膨胀系数α的确定.png" src=" https://img1.17img.cn/17img/images/201812/uepic/480a5479-2a22-47f0-9e37-465d8ca4609b.jpg" / /p p style=" text-align: center " strong 图3 热膨胀曲线以及线膨胀系数α的确定 /strong /p p   热膨胀曲线也可以确定材料的玻璃化转变温度Tg,图4是比较常见的高分子材料和金属的热膨胀曲线,从(a)中可以看到聚苯乙烯PS的膨胀曲线突变处所做的外推温度就是Tg。如果将热膨胀曲线对温度一阶求导,如图5-7下方,将得到一个类似于DSC在Tg处台阶的曲线,更容易确定Tg值。 /p p style=" text-align: center " img title=" 图4常见的热膨胀曲线(a)聚苯乙烯PS;(b)高(低)密度聚乙烯PE;(c)金属Al、Pt和玻璃.jpg" alt=" 图4常见的热膨胀曲线(a)聚苯乙烯PS;(b)高(低)密度聚乙烯PE;(c)金属Al、Pt和玻璃.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/ab420d73-d6f7-40f3-8a62-8586c92c66fa.jpg" / /p p style=" text-align: center " strong 图4常见的热膨胀曲线(a)聚苯乙烯PS (b)高(低)密度聚乙烯PE (c)金属Al、Pt和玻璃 /strong /p p style=" text-align: center " img title=" 图5 TMA热膨胀曲线及其一阶导数曲线确定Tg.jpg" alt=" 图5 TMA热膨胀曲线及其一阶导数曲线确定Tg.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/79777183-9912-4ea3-a0ef-34a0ee703a9b.jpg" / /p p style=" text-align: center " strong 图5 TMA热膨胀曲线及其一阶导数曲线确定Tg /strong /p p style=" text-align: center " img title=" 图6 几种不同类型的热机械曲线示意图.jpg" alt=" 图6 几种不同类型的热机械曲线示意图.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/7ec3e314-83b7-4eac-b62f-5d60ce321bb8.jpg" / /p p style=" text-align: center " strong 图6 几种不同类型的热机械曲线示意图 /strong /p p style=" text-align: center " strong (a) 非晶态无定形线形聚合物的温度—形变曲线 /strong /p p style=" text-align: center " strong (b) 非晶态无定形线型和交联型聚合物的蠕变曲线,1-线型 2-交联型 /strong /p p style=" text-align: center " strong (c) 不同力学状态高聚物的应力松弛曲线,1-玻璃态 2-高弹态 3-粘流态 /strong /p p   上文曾经提到TMA除了热膨胀法曲线之外,还可以研究保持应变恒定时的应力松弛和恒定应力下的蠕变行为,如图6。TMA所测的形变,除了一部分是样品自身膨胀或收缩引起的形变之外,还有一部分是应力引起的,这部分形变是分子相对移动时释放能量(粘性响应)或储藏能量(弹性响应)的结果,因此TMA所测形变实际上是膨胀行为和粘弹效应的加合。 /p p strong 四、TMA实验方法 /strong /p p   TMA是研究形变的技术,因此样品尺寸是否准确计量、是否稳定很重要,选用样品要求形状规整、无缺陷(气泡或裂纹),块状样品上下两面要求平行且光滑,复合材料尤其是高聚物中添加了无机填料要考虑两相间是否相溶,必要时类似于DSC测试要考虑去除热历史的影响。由于TMA的样品用量相对比TG和DSC要大,扫描速率相对的设定慢一些为好,一般5℃/min 保护气常用氮气或空气,流量10-50ml/min。 /p p   此外由于TMA配备有各种探头,了解这些探头的功能以及何种形态的样品适用于何种探头 了解测试的目的,在多种实验模式中选择合适的实验程序 负载力是TMA测试的一个重要参数,其大小的设定等等,这些往往依赖于实验人员的经验。 /p p   块状样品,一般适用的探头有:压缩探头、三点弯曲探头、针入(或称穿透)探头 所应用的测试有:线性膨胀系数、玻璃化转变温度、软化点、熔点、蠕变和松弛等等。 /p p   膜和纤维样品,一般适用的探头有:拉伸探头、针入探头 所测的参数:杨氏模量、玻璃化转变温度、软化点、蠕变、固化、交联密度和硬度等等。 /p p   粘性流体和胶,一般适用的探头有:剪切探头和针入式探头 适用的测试:粘性、凝胶化、胶体-熔体转变温度、固化和剪切模量。 /p p & nbsp /p p a href=" https://www.instrument.com.cn/zt/TAT" target=" _blank" 更多热分析相关知识请见专题:《热分析方法与仪器原理剖析》 /a /p
  • 【实验室动态】QD中国北京实验室引进美国PSC非接触亚微米分辨红外拉曼同步测量系统-mIRage样机
    2020年,QD中国迎来了公司的十六个年头。为满足国内日益增长的红外仪器测试需求,更好的为国内的科研工作者提供专业技术支持和服务,Quantum Design中国子公司北京总部的样机实验室迎来了一个新的面孔——美国PSC公司(Photothermal Spectroscopy Corp., 前身Anasys)非接触亚微米分辨红外拉曼同步测量系统 mIRage。 mIRage 红外拉曼同步测量系统是一个全新的光谱测试系统,基于的光热诱导共振(PTIR)技术, mIRage产品突破了传统红外光谱系统的两大难题:1. 无需接触式的ATR部件及AFM探针技术,即可实现亚微米空间分辨的红外光谱和成像分析;2. 非接触的反射测量模式,提供媲美透射模式的IR谱图质量和标准的谱图数据库,大大简化了样品制备和图谱分析过程,并支持厚样品和液体样品的测试。 图 1. mIRage系统及O-PTIR技术原理示意图mIRage采用可调脉冲式中红外激光器激发样品表面,产生光热诱导热膨胀效应,然后将可见光聚焦到样品上作为“探针”探测产生的光热效应,从而实现快速、简易的样品探测,且不接触样品。基于O-PTIR技术,mIRage可支持多种红外测量模式,包括反射模式下高速的单点(图2 A)和线性扫描红外谱图(图2 B)以及亚微米分辨的单一波长下的高光谱成像(图2 C和D),分析样品目标位置上的化学组成及分布。 图2. mIRage系统数据示例(A)单一纤维不同位置的O-PTIR谱图. (B)高分子薄膜红外线性扫描谱图.(C)多层薄膜单一波长下的高光谱红外成像及谱图. (D) 数据存储单元单一波长下的O-PTIR成像, 用于污染检测 另外mIRage可与拉曼联用,实现同时同地相同分辨率的IR和Raman测试(图3A),无荧光风险;且可选配透射模块(图3B),用于观察液体样品,满足科研工作者的不同测试需求。图3. 血红细胞的O-PTIR和Raman同步谱图测试及成像. (B) 透射模式下观察液体样品(上皮细胞) mIRage非接触式亚微米分辨红外拉曼同步测量系统,可以快速,准确的实现样品亚微米尺度的红外光谱和成像检测,被广泛应用于多层薄膜、高分子聚合物、生命科学(骨头,细胞,头发等)、医药、法医鉴定、缺陷分析、微电子污染、食品加工、地质学及考古和文物鉴定等多种应用领域。更多的应用仍在不断开发和探索中,我们期待与您早日合作,共同进步!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制