当前位置: 仪器信息网 > 行业主题 > >

数字模拟电路综合实验箱

仪器信息网数字模拟电路综合实验箱专题为您提供2024年最新数字模拟电路综合实验箱价格报价、厂家品牌的相关信息, 包括数字模拟电路综合实验箱参数、型号等,不管是国产,还是进口品牌的数字模拟电路综合实验箱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合数字模拟电路综合实验箱相关的耗材配件、试剂标物,还有数字模拟电路综合实验箱相关的最新资讯、资料,以及数字模拟电路综合实验箱相关的解决方案。

数字模拟电路综合实验箱相关的资讯

  • 我国自主研发的质子位移损伤效应模拟试验装置建成出束
    8月9日,我国自主研发的质子位移损伤效应模拟试验装置(PREF)——60MeV质子加速器建成出束,首次成功储存、加速、慢引出质子到实验终端。质子位移损伤效应模拟试验装置(PREF)由中国科学院近代物理研究所承担建设,可提供10-60MeV能量段连续精确可调、高流强、高占空比、大扫描面积的高品质质子束流,是目前国内唯一的位移损伤效应模拟试验专用装置。质子位移损伤效应模拟试验装置——60MeV质子加速器全景图。受访者供图基于几代离子加速器设计、建造的技术和经验积累,近代物理研究所加速器团队首次在超小型质子同步加速器中采用了钛合金瓷环内衬极高真空室及全储能非谐振大功率电源新技术,研发了快上升全波形动态磁场补偿和全系统同步性实时测量技术,实现了加速器全过程数字模拟和束流的精准操控。同时,团队还通过工程全系统BIM(建筑信息模型)建模,严控工艺规范和流程,实现了工程质量大幅提升,为装置的高效运行打下了良好基础。据了解,该装置基于重大基础前沿研究需求而研发,将填补我国空间辐射效应试验能力缺项,成为承载我国空间科学、空间技术和国产宇航元器件发展的重要试验平台。同时,该装置的建成出束也将为我国应用加速器的进一步推广打下坚实基础。PREF质子同步环束流强曲线。受访者供图
  • 河海大学订购宏展步入式模拟环境高低温恒温恒湿淋雨综合实验室
    河海大学订购宏展步入式模拟环境高低温恒温恒湿淋雨综合实验室我公司在河海大学关于"步入式模拟环境高低温恒温恒湿淋雨综合实验室"的招标活动中,以886分的高票中标。通过现场9位评委公平、公证、公开的评比方式,能够在众多的同行中夺的标魁,一方面取决于公司自身的技术实力和资本实力,另一方面源自于公司的技术成熟度和自身生产加工实力带来的成本优势。我们在竟标过程中不论专业技术分、质量分、售后服务分、价格分等各方面都领先于通行**的优势。招标会从上午9点开始,经过**轮的开标价格公布、公司资格审查 ,独立的技术方案讲解问答,再到第二轮的**终报价以及主持人公开宣布中标单位,整个招标会直到中午12点结束耗时近三个小时."步入式模拟环境高低温恒温恒湿淋雨综合实验室"不是一个普通的实验室,它主要是解决客户产品在不同的气候环境下[包括高原气候反应低压缺氧等]进行的吹风角度、风速、模拟大气压力、换气、霜冻及一氧化碳含量等综合性能工况实验。要解决这些综合条件下的工况环境实验,我们必须要将所有的结构和系统进行综合数据采集及分析处理,这集中了空气力学、自动化控制、气体分析、数据采集、机械结构、气候环境等各种原理21世纪,随着地球村的成型,终端用户对产品的工况品质要求越来越高。他**不是在一个固定的气候或机械环境条件下来进行一个简单的模拟实验,它直接模拟终端用户的操作动作、当地的海拔高度所带来的气压变化及温湿度条件来进行各种工况实验。所以,此类实验室的需求,一定是以后的环境测试大势所趋。我们也将集中全厂的技术力量,来制造一间满足客户要求的高品质实验室。
  • 阿泰可发布阿泰可整车综合性能环境试验舱(转毂+红外线阳光模拟)新品
    该套环境舱主要用于整车高低温存放试验、整车除霜、除雾性能试验、整车冷起动性能试验、整车采暖及制冷性能试验、整车热平衡试验、零部件耐高低温试验等。该产品主要由气候模拟试验室主体、升降温装置、新风/尾排系统、阳光模拟系统、仓内温度采集系统、电气控制系统构成。采用复叠式螺杆压缩机组分布式IO控制系统应用 l 设备可靠性提高l 压缩机使用寿命延长l 动力平衡好,节能环保l 控制系统更加灵活、可靠 一. 主要技术指标1 温度指标温度范围:-40℃~+60℃;温度均匀度:≤±2℃(空载);温度偏差:≤±2℃(空载);温度控制精度:≤±0.5℃(无热负荷,稳态)≤±2℃(有热负荷,稳态)升温速度:≥1℃/min(带载,发动机不启动,全程平均);降温速度:≥0.7℃/min (带载,发动机不启动,全程平均);负载:汽车,重量≤6吨;依据标准序号试验项目依据标准1汽车起动性能试验方法GB/T12535-20072除霜除雾试验GB11556-20093电机性能试验GB/T 18297-2001(参考)4太阳辐射试验GB /T 2423.24-19955恒定湿热试验方法GB/T2423.3-20066汽车采暖性能要求和试验方法GB/T 12782-20077汽车空调整车性能试验方法QC/T658-2000 创新点:采用复叠式螺杆压缩机组分布式IO控制系统应用 l 设备可靠性提高l 压缩机使用寿命延长l 动力平衡好,节能环保l 控制系统更加灵活、可靠
  • 国网的“劳伦斯实验室”
    “电力系统是世界上最庞大,最复杂的人造系统,甚至超过航空航天。”在国家电网仿真中心交直流电力系统数模混合仿真实验室,很容易体会到中国电科院总工程师汤涌这个说法。  在数百平方米的大厅里,2米多的黑色大型机柜排排矗立,里面的无数电子电路板加上一个大型计算机程序,就能模拟出真实的电网运行。在计算机终端屏幕上,显示着一张完整的全国电网地图。需要了解什么条件下的电网状况,在计算机上设置参数即可见,而物理的电子电路板能帮助计算机提高数字模拟准确度。看起来像插拔积木一般操作电路板,可能是在设置一个从四川到上海的完整电力系统。  这是世界上最先进的第三代电力模拟系统。楼下的第一代动态模拟系统实验室则布满了小型发电机、变压器、线路、电动机、冰柜、大大小小的灯泡等,是一个更为直观的微缩电力系统。  “航空航天系统难在精密,电力系统难在规模大、范围广、元件多,而且不能现场试验。”汤涌告诉记者,仿真试验研究对电力系统来说尤为重要。目前特高压电网的方案,都要在这个仿真中心反复试验,以论证安全可靠性。  当年论证三峡工程的输变电方案,为了多种试验方法相互验证,汤涌和同事们专程去俄罗斯做了三个月的试验。  这个投资2亿人民币建设的电力系统仿真中心与三个特高压试验基地、计量中心和国家风电研究检测中心一起,构成了大电网试验研究的物理基础。“我们国家的资源分布和需求决定了要发展特高压。”中国电科院电工研究所副所长来小康说,特高压不是一个技术和安全问题,而是经济需要远距离传输。  现在特高压技术让国家电网在国际上的声音变大了。“由于我们地大网大,所以这方面的研究比较强。”来小康坦承,“如果没有特高压,没有大电网,有可能我们什么都不如人家。”  曾深入研究特高压的美俄等国均放弃了建设,而中国的1000千伏交流示范工程已在争议中投运一年半。凭借国家电网公司特高压相关技术装备和试验基地,中国电科院开始争夺国际话语权。中国的特高压交流标准电压被国际电工委员会、国际大电网组织推荐为国际标准电压。国际电工委员会还成立了高压直流输电新技术委员会,并将秘书处设在中国,由国网公司承担相关工作。  事实上,中国电科院早在1996年就开始做特高压的论证,甚至20年前就开始涉及这一概念。“专家觉得一个问题有研究价值,就会推动上面立项。”  如今被国网人频繁提及的可控串补装置,就是名誉院长周孝信90年代看到的方向,并推动了研究。“首先是在院里自己立项,用一些基金先做起来,几年以后有了一定基础,觉得能做,就申请国家项目,像串补就是973项目。”等继续研究到了可以工程实施的阶段,国家电网公司就要介入支持。这时资金需求大,国网还要掂量上不上,找内外很多专家一起论证。汤涌告诉记者,一种技术从初期跟进到实验室再到现场应用,往往要十几年之久,院里重大的科技示范项目无不是十年磨一剑。  中国电科院成为世界第四个掌握这一技术的企业,该产品在国内市场占有率达50%以上,并出口海外。  汤涌领导的电力系统研究所还有支撑电网运行调度,解决疑难杂症的任务。从国家电网发展规划的制定开始,他们就要参与规划方案评估,考虑预想事故对规划方案的影响,运行现场出现异常,马上赶去找原因、提措施。此外,集中封闭搞项目会战也是常事儿。“我们相当于专家门诊,地方上自己看不好的就送到我们这来。”  在高压所高级工程师李同生的回忆里,类似的技术服务是电科院建立初期的首要工作,主要为解决生产运行中的实际问题。在输电线路频繁发生事故的年代,现场调查和措施改进是他们最重要的日常工作。  但后来,科研和技术服务的比例从“三七开”变成了“七三开”。第一个330千伏的刘家峡输变电工程,反复论证实验、更改方案的三峡输变电工程,正在建设的特高压电网,后面都是电科院在做技术理论支撑。  但此前多年,无论技术服务还是科学理论研究,都与电科院自身产业关系不大。汤涌记得,中国电科院的主要风格一直潜心做科研,直到2000年的转制大会之后,科研开始加速面向市场,电科院旗下的科技公司逐渐背上盈利任务。  但南瑞的机电自动化保护范围较专,主打一种核心产品,中国电科院的综合科研技术仍是国内第一。在企业的带动下,其技术研究和成果应用更加一体化,对产业需求的预测也更有的放矢。  电科院的6000多名员工里,科研和产业的比例为1:2,去年的营收是34亿。不过若算人均值,还是“南瑞效益更好”。  中国电科院承担着国家电网公司研发中心的功能,有做前瞻性研究,引领行业的作用,但来小康坦言:“当然我们原来的工作基础和产业结合还不是那么紧密,不一定做得很好,但我们在往这个方向上努力。原来研究院以技术支撑为主要工作,现在向引领作用发展。”  2006年,新能源研究所和电工与新材料研究所相继成立,均指向前瞻性研究。  新能源研究所成立时只有5个人,就将研究方向定为风电并网分析、风电机组检测、风能资源评价和风电功率预测。而那时外界还很少有人了解风电产业这些需求。如今已有90多人的新能源所,每天只有十几个人坐在工位上,大部分跑在各种现场。其研究也已初具规模,成为国内唯一具有国际互认可资质的风电检测机构。  尝试对不可预知的风电进行功率预测,也是新能源所的工作内容。“我们拿以前的历史数据,加上数据天气预报,来预测明天的发电情况,能滚动预测未来24到48小时。”新能源所一位专家说,现在的准确率基本达到国际水平,已有7个网省电力调度中心投运了这套系统。不过汤涌认为,这些数据还是测算出来的:“看系统精准度,我们得说5年以后论英雄。”  为了在世博上展示电网对风、光等可再生能源的调度能力,新能源所为国家电网馆做了风光储调度系统,智能电网、储能电站的控制系统等。有一段时间,他们每天工作到凌晨4点,但很多人至今还没有进过世博园。  储能是来小康主管的工作内容之一。新能源和大电网催生了这一新的市场空间,他称这可能是“改变电网发展方式的革命性技术”,而中国也许会走在世界前列。他认同科技部一位副部长的论断:“中国的科研实力和国情相对应,在第三世界国家的前列,但我们电力是再往前一点。”  中国电科院区内有个电动汽车充电站,也是来小康辖下的试验田。“我们充电技术没有拖电动汽车的后腿,时间表是由汽车制造业确定的。”他担心的是,各方一哄而上建充电站,不考虑对电网的影响,有一天会重蹈风电的覆辙。  除了研究这些已为人熟知的东西,来小康还是超导电力研究所所长。“超导材料会引发整个电力系统的革命,但这是30年后的技术,我们也在关注了,这就是科技引领作用。”  这样的作用,让人想起美国劳伦斯伯克利国家实验室。这个创建于1931年的实验室,已诞生了10个诺贝尔奖得主。
  • 北京市科委积极推进“省部共建国家重点实验室培育基地”工作
    近年来,北京市科委积极推进“省部共建国家重点实验室培育基地”建设,依托北京地方重点高校,组建具有鲜明地方特色优势和高水平科研队伍的、符合地方经济与科技发展战略需求的优秀重点实验室。  目前,科技部与北京市共建的省部共建国家重点实验室培育基地有以北京工业大学为依托单位的“北京市交通工程重点实验室”,以首都师范大学为依托单位的“北京市城市环境过程与数字模拟重点实验室”。  按照科技部“关于组织申报省部共建国家重点实验室培育基地的通知”的要求,北京市科委积极组织依托地方重点高校、科研院所组建的优秀重点实验室开展申报工作,经过专家评审,推荐依托首都医科大学组建的北京市脑重大疾病重点实验室申报“省部共建国家重点实验室培育基地”。首都医科大学拥有8个国家级重点学科,3个教育部重点实验室,在神经科学学科方面拥有特色与优势,在脑卒中、神经变性病、脑肿瘤等领域特色鲜明,拥有亚洲最大的神经外科中心、国内最大的神经病学系、国内最大的神经科医师培训基地 首都医科大学组建的北京市脑重大疾病重点实验室在研究脑重大疾病的病因和发病机制,发现疾病早期预警、诊断及分子分型标志物,研发综合性、个体化及高科技治疗手段取得的突破,能大幅度提高我国对于脑重大疾病预防、诊断和治疗的水平和能力。  下一步,北京市科委将以省部共建国家重点实验室培育基地的要求为目标,依托市属重点高校和科研院所,积极组建与培育一批具有地方特色和优势的重点实验室,加快推进北京市的“省部共建国家重点实验室培育基地”建设工作。
  • 首师大省部共建国家重点实验室培育基地建设计划通过专家论证
    6月30日,市科委组织专家对依托首都师范大学建设的“北京市城市环境过程与数字模拟重点实验室—省部共建国家重点实验室培育基地”建设计划进行了论证。会议由市科委法规处主持,科技部基础研究司基地建设处处长周文能、首都师范大学常务副校长宫辉力等领导出席会议。  来自北京大学、中科院等高校和科研院所的7位专家听取了实验室建设计划汇报,并对实验室进行了现场考察。经过讨论,专家组认为实验室建设目标明确、措施可行,一致同意建设计划通过论证。专家组建议实验室建设依托单位进一步加大条件保障与支持力度,加强高水平的国际合作,优化运行机制,为实验室顺利进入国家重点实验室行列创造条件。  城市环境过程与数字模拟国家重点实验室培育基地紧密围绕国家在快速都市化进程中面临的重大环境变化的迫切需求,以北京和首都圈为主要研究对象,有机集成遥感、地理信息系统、全球定位系统和常规技术方法,开展城市近地表空间环境系统演变规律、调控机理与数字模拟方法研究,探索北京和首都圈协调、可持续发展模式,为国家解决都市化过程所面临的重大环境问题提供技术支撑和具体对策。
  • 浅谈国际模拟环境试验设备发展趋势
    p style="text-align: justify text-indent: 2em "span style="font-size: 16px "环境试验设备经历了由单一环境因素模拟向多环境因素模拟,从静态模拟到动态模拟,由简单控制到微机全自动控制的发展过程。目前的发展方向是“更快、更好、更省”,并呈现以下特点:/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(1)试件尺寸:从小尺寸向大尺寸、全尺寸方向发展,试样从材料向构件、整机发展;/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(2)提高环境因素模拟精度:如目前模拟太阳辐射的光源主要是氙灯,尽管氙灯的光谱与太阳光谱接近,但光谱上某些点段相差较大。实践表明这些差别对有些材料样品的试验结果有影响,国外一些厂家在积极寻找新的光源。另外对氙灯光强的控制正在由点段控制向全光谱段控制方向发展。/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(3)自然环境试验从典型环境向严酷与极端环境发展,向自然环境加速试验发展,向实验室模拟自然环境加速试验发展,并开始应用计算机数字仿真技术。/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(4)采用新的控制技术:大量采用计算机领域内的新技术,如显示触摸屏技术、span style="font-size: 16px font-family: " times="" new=""PLC/span技术、现场总线技术等。试验过程的检监测技术已向现场连续观察与检测方向发展,并对观察与检测结果实现远程传输。/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(5)更接近于实际环境的综合箱:如振动试验箱已经发展成为三综合(温度、湿度、振动)、四综合(温度、湿度、低气压、振动)试验箱,并且出现了多维振动试验箱;腐蚀试验箱由单一腐蚀试验向循环腐蚀试验(腐蚀-湿热-干燥-腐蚀)箱方向发展。/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(6)大型综合专用设备:为适应各行各业的需要,研发制作大型综合专用的环境试验设施,如美国陆军阿伯丁靶场的兵器环境试验设备能让车辆在行驶道路条件下,模拟低温、高温、湿热、低气压等多参数组合环境。该设备有span style="font-size: 16px font-family: " times new roman" "1000msup3/sup/span、span style="font-size: 16px font-family: " times new roman" "145msup3/sup/span和span style="font-size: 16px font-family: " times new roman" "45msup3/sup/span三个环境试验室,采用一套空气制冷系统和各自独立的电加热设备。在大型环模设备中首次成功采用了空气制冷。该设备最大试验室空间尺寸为span style="font-size: 16px font-family: " times new roman" "16m× 8m× 8m/span(长× 宽× 高),温度范围为常温span style="font-size: 16px font-family: " times new roman" "~50℃/span,相对湿度可到span style="font-size: 16px font-family: " times new roman" "85× (1± 0.05)%RH(≤40℃)/span,模拟的最大太阳辐射强度为span style="font-size: 16px font-family: " times new roman" "1kW/msup2/sup/span,模拟的最大风速为span style="font-size: 16px font-family: " times new roman" "35m/s/span。/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(7)重视各种试验数据的管理和应用:发达国家以数据库、数据手册、标准规范等集成性成果作为其共享与保护的手段,同时为研究、设计和技术改进提供了科学依据,避免了设计的盲目性。美军在自然环境试验中,经过长期系统的环境试验数据积累,出版了腐蚀手册,开发了新的耐候材料和产品,并制定了大量的材料生产、产品设计、工程设计等一系列标准和规范。美国制定的各类环境试验方法标准,为世界各国普遍采用,其中不少已成为国际标准。如美国著名的《尤利格腐蚀手册》、《军工材料与构件环境适应性数据汇编》等集成性成果已在全世界推广应用,形成了一种独立的知识产权,实现了材料与产品环境试验数据面向全社会的共享与服务。日本也十分重视自然环境适应性数据共享与保护。他们大约有span style="font-size: 16px font-family: " times new roman" "40/span个大气环境试验站,并形成网络体系,通过对原始数据的分析处理,建立共享服务数据库,面向社会为国家重点工程、项目研究、材料生产与应用部门提供数据服务。英国共有各类大气暴露场span style="font-size: 16px font-family: " times new roman" "40/span个左右,仅钢铁研究协会就有span style="font-size: 16px font-family: " times new roman" "8/span个,其中最大的是卡林顿暴露场。对于各试验站产生的环境试验数据,他们通过环境数据采集自动化、测试数据数字化和数据汇交格式标准化,建立完善的国家试验站网计算机网络。以关键材料、通用零部件、核心元器件等基础产品为对象,系统积累它们在各类环境中的环境因素及环境适应性数据,研究其与这些环境相互作用、性能演变及失效机理。为环境严酷度评估、装备产品环境适应性评价、实验室加速试验方法研究、环境试验标准制定、数据共享等提供技术支撑和服务。如英国皇家化学会数据库span style="font-size: 16px font-family: " times new roman" "(RCS)/span等,都通过大型数据库实现数据资源的有偿使用,有力促进了数据资源的推广与应用。/span/pp style="text-align: center text-indent: 0em "span style="font-size: 16px "img style="max-width: 100% max-height: 100% width: 280px height: 250px " src="https://img1.17img.cn/17img/images/201908/uepic/07635131-5027-48ed-a1c9-48fd8d31b2ed.jpg" title="试验箱.jpg" alt="试验箱.jpg" width="280" height="250" border="0" vspace="0"//span/pp style="text-align: justify text-indent: 2em "strongspan style="text-indent: 2em " /spanspan style="text-indent: 2em "环境试验设备发展趋势/span/strong/pp style="text-align: justify text-indent: 2em "1. 提高加速性和相关性/pp style="text-align: justify text-indent: 2em "加速性和相关性本身是相互矛盾的,提高加速性一般会牺牲相关性。从试验技术的角度来看,提高加速性并不难,难就难在同时提高加速性和相关性。不管从客户要求或技术发展方面看,提高加速性和相关性是气候环境试验技术的重要发展方向。/pp style="text-align: justify text-indent: 2em "2. 开发多因素综合试验/pp style="text-align: justify text-indent: 2em "由于材料在自然环境中受到多种复杂因素的综合作用,因而要更真实地再现材料在自然环境中的腐蚀和老化,必须尽可能综合考虑多种自然环境因素。近几年,模拟海洋性气候环境的加速试验方法向多因素试验方向发展。多因素模拟加速试验方法分为多因素组合循环模拟加速试验方法和多因素模拟加速试验方法。多因素模拟加速试验方法由于考虑两个或两个以上主要环境因素的同时作用,能更真实地模拟多种环境因素的协同效应。/pp style="text-align: justify text-indent: 2em "3. 开发环境适应性仿真/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "1992/span年span style="font-family: " times new roman" "7/span月,美国国防部研究与工程署在《美国国防部核心技术计划》中,将“环境影响”列为112项核心技术之一,span style="font-family: " times new roman" "2005/span年的技术目标是对大气、海洋、地球和空间环境在自然和人工平台(如飞机、导弹、舰船等)两方面的影响进行研究、建模和仿真。在建模和仿真的研究方面,美国陆军在阿伯丁试验场、红石试验中心、达格威试验场和尤马试验场,开展自然环境和诱发环境对装备及其材料性能影响的虚拟试验场研究。在环境适应性规律分析和建立数学模型方面,我国学者创造了灰色理论,并在环境影响规律方面得到成功的应用;神经网络仿真模型理论被成功地应用于环境行为规律的建模和仿真。在积累大量可靠基础数据的基础上,实现对装备环境适应性进行仿真是装备环境工程的发展方向和目标。/ppbr//p
  • 英斯特朗 -- 【案例分享】采埃孚6自由度轴耦合道路模拟试验台
    采埃孚“底盘系统”业务部的轴耦合车桥试验台以其优异的特性被广泛应用于多种车辆类型的试验,从小型车辆,如大众Polo,到SUV,如戴姆勒M级,宝马X5,以及厢型车辆,如戴姆勒Sprinter,大众Crafter等车型车桥的测试中。轴耦合试验台对于车桥道路数据的模拟试验使设计人员能够在台架试验中获得实际路况条件下载荷时间函数。车轴的耐久性测试有两种方式:一种是在汽车制造商指定的放行试验试验场进行的道路试验,另外一种是轴耦合试验台进行的车桥道路谱模拟试验(车桥试验台简称“SSP”=道路模拟试验台),道路谱是利用记录在汽车制造商指定的测试路段上的实际采集数据。道路模拟试验可以代替驾驶试验,并且具备以下几个重要优势:1.节省试验时间 (因为24小时连续试验,使得测试时间减少到20%以下) 2.试验不受天气影响3.可过滤掉不会造成损伤的测试路段,以缩短测试时间4.载荷试验的可重复性精度提高轴耦合试验台由两个对称的加载单元组成,分别布置在静压支撑旋转平台上,这样的设计使得车桥在试验中可以转向。纵向、横向、垂直作用力以及制动、转向、外倾和动力输入等力矩可以被导入到车桥结构当中。方向盘的旋转由伺服控制液压马达完成。同时试验台也可以进行不带转向的试验。
  • 我国首座城镇燃气掺氢综合实验平台投用
    日前,我国首座城镇燃气掺氢综合实验平台在深圳投用。该实验平台集测试、应用、生产功能于一体,标志着我国天然气掺氢输送管道及综合利用,以及“氢进万家”进入全新发展阶段,为我国利用现有城镇燃气管道掺氢提供了可推广、可复制模式。本版文图由石工建中原设计公司李慧提供。实验平台流程图在深圳市北部,距离市中心一个多小时的车程,坐落着深圳燃气集团公司求雨岭场站。在该场站的东南侧,一片郁郁葱葱的丘陵下,我国首座城镇燃气掺氢综合实验平台正安静运行着。石工建中原设计公司设计的氢能应用综合服务站规划图。“掺氢”是将氢气与天然气进行不同比例混合,再利用现有的天然气管网进行输送。深圳燃气掺氢综合实验平台集测试、应用、生产功能于一体,掺氢比例为5%~20%,可实现绿电制氢、天然气掺氢、管道输送、管材验证等多维度技术应用和全流程工艺与设备应用示范,实现城镇燃气、氢气“掺-输-用”一体化功能。该平台投用为我国利用现有城镇燃气管道掺氢提供了可推广、可复制模式,标志着“氢进万家”进入全新发展阶段。该平台隶属于国家重点研发计划“氢能技术”重点专项“中低压纯氢与掺氢燃气管道输送及其应用关键技术”,是深圳燃气集团公司于2022年联合中国石油大学(华东)、中国石化、清华大学、中科院、万和等10家单位共同参与的“产学研用”协同创新项目。其中,中国石化石油工程建设公司中原设计公司负责构建纯氢/掺氢输配管网模型、示范工程设计及相关标准规范的编制等工作。掺氢输送是氢能利用的重要途径之一我国是能源需求大国,能源消费量保持增长的同时也面临着严峻的低碳环保压力。氢气作为清洁能源,资源量丰富。作为燃料,具有零碳排放、速度快、效率高等特点。国家重点研发计划“氢能技术”重点专项是以推动能源革命、建设能源强国等重大需求为牵引,系统布局氢能绿色制取、安全致密储输和高效利用技术,贯通基础前瞻、共性关键、工程应用和评估规范等环节。其中,氢能运输属于研究范围。通常来看,产氢的地区和用氢的地区相距甚远,运输成本高,对管材安全性要求高。氢能运输成为制约氢能产业发展的薄弱环节,经济性和安全性均有待提高。为解决地区间长距离、大规模氢气资源输运与调配难的问题,掺氢天然气被提议为一种高效、安全输运的优选方案。据统计,2023年我国天然气消费量约3945亿立方米,按照10%的掺氢比例输运氢气可达350万吨,每标准立方米氢气的输运成本为0.12~0.46元。目前,全球已开展多项关于掺氢天然气的示范。欧洲氢骨架计划利用和改造现有的天然气管道实现氢气管道的基础设施建设,在英国基尔大学等已建成应用示范。他们将氢气掺入城镇燃气利用,验证了掺氢天然气与燃气管网的适应性。我国天然气管网发展较为成熟,如果用天然气掺氢的形式代替纯天然气,可充分利用现有基础设施,大大节约投资成本,形成氢气的普及利用,实现“氢进万家”。打通“制氢-掺氢-输氢-用氢”链条如何生产氢、把氢运输出去、让氢进万家?西安交通大学教授魏进家认为,我国首座城镇燃气掺氢综合实验平台的投用,就能打通氢能从生产到运输再到使用的整个链条。该实验平台主要针对中低压纯氢与掺氢燃气管输系统的本质安全、工艺和完整性管理及终端应用,通过机理探究等手段,消除中低压纯氢与掺氢燃气管道输送及应用瓶颈,形成以关键设备和工艺软件为核心的技术体系,并围绕管输工艺、管材、实验方法、应急抢修、燃烧器具编制标准体系。项目研究人员介绍,掺氢燃气管输部分需要建立一个科学的燃气掺氢综合实验平台,研究现役城镇燃气输配系统是否适用于掺氢天然气、最合适的掺氢比是多少、关键设备和部件是否需要改造等关键技术问题,形成相应的评价标准体系,为掺氢天然气在城镇燃气领域进行大规模应用奠定基础,进而建设以氢能社区为示范的产业体系。为了让实验数据更贴近实际、更真实,实验平台模拟了城镇燃气的全部应用场景,主要包括掺混模块、减压调压模块、管材相容性评价模块、燃气器具测试模块、终端利用模块。天然气与氢气通过掺混模块,能够得到掺氢体积比为5%~20%、掺氢精度为1%的掺氢燃气。减压调压模块进入管材相容性评价模块进行长周期实验测试后再进入燃气器具测试模块进行验证。测试完成,掺氢燃气进入千家万户。天然气掺氢,安全是重点。项目研究人员在天然气管道完整性管理技术的基础上,初步建立了掺氢天然气管道完整性管理技术,对掺氢天然气管道进行全生命周期安全管控。技术人员在平台各关键节点安装氢气报警器,并采购专业的氢气泄漏探测器,每两小时进行一次巡查。基于BIM建模技术,建立了平台数字化三维模型,并接入远程监控系统,对平台数据进行实时监控。该平台还为氢气泄漏提供了架空、埋地、管廊等不同场景的监测方法验证及事故后果测试。终端还预留热电联供系统、氢气分离纯化装置的测试功能,发挥氢能能源互联媒介和高效耦合的特性,推动氢能与电力、热力等能源的互联互补,实现氢能进入社区楼宇、居民家庭、交通领域乃至工业园区。该平台还预留了光伏+谷电制氢模块,旨在打造包含“制-掺-输-用”全链条的绿氢典范项目。该平台不仅需要承担不同钢级、不同压力、不同口径的管材及阀门、连接件、表具等燃气基础设施的氢环境长周期实验,而且需要对多种燃气器具及终端应用场景开展适应性研究,这对平台整体设计工作提出更高要求。中原设计公司2018年率先在国内开展“天然气掺氢输送工艺技术研究”,形成了关于天然气掺氢的工艺技术并取得专利,因此承担该项目的平台设计任务。技术人员针对纯氢/掺氢管输应用流程中的关键环节,结合各课题的研究成果,突破了中低压纯氢与掺氢燃气管道安全稳定高效输送及应用中的理论与技术瓶颈,在优化工艺流程设计、满足测试功能、多模块可拆卸工装段安装设计、便于操作、安全防护设施设计等方面下足功夫,设计成果满足了多种实验要求,构建并形成了完整的科技实验平台及标准体系。助力实现“氢进万家”,减少碳排放据相关机构预测,碳中和后,我国氢气年需求量约1亿吨,中低压管输及应用将会成为促进氢能规模化应用的重要手段。国家能源局将纯氢与掺氢管道示范作为“十四五”的重点任务。中国石化、中国石油、中国海油等均开展了纯氢与掺氢管道示范规划。氢气规模化应用成为我国能源发展的主要方向之一。当前,我国天然气管网规模可观,年输运天然气量接近4000亿立方米,天然气管道超过100万公里,其中长输天然气管道接近10万公里、城市燃气输配管道超过90万公里。中国城市燃气协会发布《天然气管道掺氢输送及终端利用可行性研究报告》,预测“十四五”期间,我国新增天然气管道掺氢示范项目15~25个,掺氢比例3%~20%,年氢气消纳量15万吨,总长度在1000公里以上。其中,新增长输天然气管道掺氢示范项目2~5个,掺氢比例3%,年氢气消纳量10万吨,总长度在800公里以上;新增城镇燃气掺氢示范项目10~20个,掺氢比例3%~20%,年氢气消纳量5万吨,总长度在200公里以上。据管道掺氢国家重点研发计划项目负责人李玉星介绍,掺氢天然气相比纯天然气,是一种更清洁的低碳燃料。如果掺氢比例为10%~20%,我国每年可减少碳排放量1000万~2000万吨。在天然气中掺入20%体积比的氢气,燃烧后的氮氧化物、一氧化碳等均可减少20%以上。目前,我国城镇燃气每年的用气量约4000亿立方米,在天然气中掺入20%体积比的氢气,我国每年可减少碳排放量约3000万吨。与以氢气、一氧化碳等为主的煤制气、焦炉气等相比,天然气的主要成分为甲烷,掺氢燃气对管材的长周期、宽压力作用还需进一步明确。我国首座城镇燃气掺氢综合实验平台的投用,能更准确地对现役燃气基础设施进行适应性评价,并形成标准体系,推进“氢进万家”产业体系发展,助力实现“双碳”目标。探索清洁能源未来发展之路■中国石油大学(华东) 李玉星 教授依托科技部国家重点研发计划“中低压纯氢与掺氢燃气管道输送及其应用关键技术”研发的我国首座城镇燃气掺氢综合实验平台在深圳投用,为推广天然气管道掺氢技术提供了有力支持。天然气掺氢不仅代表了清洁能源技术的未来发展方向,而且为减少碳排放、推动可持续发展注入了新动力。我国氢能产业发展潜力逐渐释放考虑到氢能的独特优势,我国多地出台氢能产业支持政策。氢能制备、储运、基础设施建设等方面取得突破性进展,氢能产业发展潜力逐渐释放。目前,长三角、粤港澳大湾区、环渤海三大区域的氢能产业呈现集群化发展态势。我国掌握了一批电解水制氢装置、储运设备和燃料电池等先进技术,可再生能源制氢项目在华北和西北等地积极推进,电解水制氢成本稳中有降。天然气掺氢并非易事当前,减少碳排放、实现低碳发展已成为全球共识。天然气掺氢作为一种更加清洁低碳的能源替代方案,其必要性日益凸显。将氢气与天然气混合输送,不仅能够提高天然气的能源利用效率,而且能够降低燃烧产生的污染物排放量,有助于实现碳中和目标。然而,实施天然气掺氢并非易事。天然气和氢气的物理和化学性质差异较大,掺入氢气后可能会对燃气管道、阀门、连接件等基础设施产生由氢脆引发的氢致失效及泄漏等安全隐患。此外,掺氢比例的控制、氢气的制备与储存,以及掺氢后的输送与分配等问题,都需要进行深入研究和技术攻关。实现“氢进万家”还需更加努力我国首座城镇燃气掺氢综合实验平台的投用,为解决上述问题提供了有力支持。该平台不仅具备掺氢实验、测试验证和生产功能,而且能够模拟城镇燃气的全部应用场景。通过该平台,可以精准控制掺氢比例,确保掺氢过程的安全性和稳定性。该平台还能为下游用户提供不同比例的掺氢天然气。从目前运行情况来看,实现掺氢燃气的宽压力、长周期、规模化应用是可行的。未来还需对此进行长周期实验,更准确地对现役燃气基础设施进行适应性评价并形成标准体系。该平台的投用只是大规模推广掺氢天然气的开始,还要各大城燃企业一起努力,投入大量的人力、物力、时间来开展实验测试研究,形成相应的标准和评价体系。从产业链角度而言,天然气长输管道掺氢、氢气来源、下游燃器具适应性等相关问题还需进一步研究。可预见的是,随着可再生能源技术的不断发展和应用,氢能将成为一种重要的清洁能源。通过利用光伏、风电等制绿氢,可以为掺氢平台提供稳定、廉价的氢源。随着氢能产业链的不断完善和技术进步,掺氢比例有望进一步提高。总之,我国首座城镇燃气掺氢综合实验平台的投用,有望推动氢能技术的广泛应用和石油天然气行业的绿色低碳发展,为实现碳中和目标和可持续发展注入新动力。
  • 地震模拟试验技术与装备
    地震模拟试验技术是集机、电、液与计算机控制等多学科知识为一体的综合性技术,是土木工程、岩土工程、结构工程中大型结构试件抗震减灾、性能验证和破坏机理研究的核心技术手段。该技术以电液伺服控制技术、自动控制理论、模拟电子技术和信号处理等课程为技术基础。8月16日,由仪器信息网、中国仪器仪表行业协会试验仪器分会联合主办的第二届试验机与试验技术网络研讨会将召开。届时,哈尔滨工业大学副教授杨志东将在线分享报告,介绍国内外地震工程与工程振动领域的地震模拟试验技术研究成果与相关技术。欢迎业内人士报名听会,在线交流。附:第二届试验机与试验技术网络研讨会 参会指南为帮助业内人士了解试验技术发展现状、掌握前沿动态、学习相关应用知识,仪器信息网携手中国仪器仪表行业协会试验仪器分会于2023年8月16日组织召开第二届“试验机与试验技术”网络研讨会,搭建产、学、研、用沟通平台,邀请领域内科研与应用专家围绕试验机行业发展、试验技术研究、试验技术应用等分享报告,欢迎大家参会。1、进入会议官方页面(https://www.instrument.com.cn/webinar/meetings/testingmachine2023/)进行报名。2、报名开放时间为即日起至2023年8月15日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(微信号:iamgaolingjuan 邮箱:gaolj@instrument.com.cn)6、赞助联系人:周老师(微信号:nulizuoxiegang 邮箱:zhouhh@instrument.com.cn)
  • 中国首个燃烧模拟环境实验室建成
    高仿真模拟火场高危环境的燃烧模拟环境实验室,近日在上海东华大学建成。东华大学5日披露,该实验室拥有一个模拟中国人体型构造、可在不同活动姿势下精准感知高温热流、精确预报身体皮肤烧伤程度的燃烧假人。这对研发热防护新型服装材料,科学合理设计热防护装备,有效遏制火灾、战场和热辐射等危险环境对人体造成的热伤害,具有重大科学价值。  前身为中国纺织大学的上海东华大学,一直致力于推动中国功能防护服装的创新和评价研究,东华“火人”是其服装生物假人家族30年来的最新成员,它的“兄长”“神五假人”、“神七假人”曾在模拟环境气候条件下试穿宇航服,为神舟系列载人航天工程中宇航员在舱内外安全行走提供了科学保障。  “火人”设计项目负责人、东华大学服装设计与工程系主任李俊介绍,燃烧假人系统依据中国成年男性的体型度身定制的,身体表面均匀分布135个高温传感器,各部位关节都可活动,能模拟人体的多种着装姿态。  据介绍,如何准确评价消防服、阻燃耐高温作业服等特种服装的防护性能,是个困扰业界的难题。普遍使用的面料燃烧实验,无法反映其对人体作用的实际效果,容易在使用中造成防护不足。有了“火人”,它就可以穿着成衣在“火海”中走一遭,其拥有的精密仪器可对人体的实际防护效果作出准确评估。  据悉,该实验室是中国内地第一个燃烧假人实验室,综合运用了生物传热分析技术、材料改性技术、人机工程制造技术、传感器技术、燃烧工程和自动控制技术等,达到了国际领先水平。
  • 专注智慧实验室综合服务供应商 聚光科技亮相2018慕尼黑上海分析生化展
    10月31日-11月2日,聚光科技(杭州)股份有限公司(以下简称“聚光科技”),携智慧实验室业务平台旗下两大子公司北京吉天仪器有限公司(以下简称“吉天仪器”)、上海安谱实验科技股份有限公司(以下简称“安谱实验”),再度亮相“慕尼黑上海分析生化展(analytica China)”。展会现场图  作为亚洲重要的分析、生化技术、诊断和实验室技术风向标盛会,analytica China 2018共吸引来自26个国家和地区的950家行业先锋企业参展,27,000多名专业观众莅临。五大主题展区、智能化Live Lab现场模拟实验室、100余场专题报告、特色现场活动如火如荼。聚光科技展台图  此次,聚光科技展台的展示主题为“智慧实验室综合服务供应商“,从客户实际需求角度出发,分别展示了大农业、生态环境、食品安全三大行业从前处理、流动注射、质谱、光谱等检测仪器到试剂配套的整体解决方案。Kylin系列原子荧光光度计、APLE-3500快速溶剂萃取仪、iFIA7全自动多参数流动注射分析仪、SA-50液相色谱-原子荧光联用仪、Mars-400 Plus便携式气相色谱-质谱联用仪、SupNIR系列近红外分析仪、CNW C系列免疫亲和柱、CNW ELISA检测试剂盒、LDP-0600解析管活化仪、SPE固相萃取、标准品等众多聚光科技自行研发生产的专业实验室分析产品及试剂耗材集中亮相,安谱实验还带来了有“仪器界京东”之称的“电商平台”做现场展示,吸引了众多行业学者、专业客户的驻足、咨询及交流。聚光科技展台展品系列图片 聚光科技展台中外客户交流聚光科技实验室业务平台的整体实力及展示亮点,吸引了多家媒体至展台现场采访。 安谱实验副总经理吴刚接受仪器信息网采访吉天仪器市场总监王文熳女士接受中国化工仪器网采访安谱实验市场经理谢巧金女士接受中国化工仪器网采访吉天仪器产品经理李得勇博士接受主办媒体展台直播采访安谱实验黄诗尧接受主办媒体展台直播采访  展会同期,聚光科技展台还举办了“开心大乐透投”的现场活动,有趣新颖的活动参与不断,现场欢呼与笑声迭起。 活动现场
  • 上海仪迈模拟旋光仪退市 数字旋光仪全线推出
    p  今年是上海仪迈仪器科技有限公司成立五周年,这五年来,上海仪迈取得了哪些业绩?又有哪些运营心得?日前,借第十六届北京分析测试学术报告会暨展览会(BCEIA 2015)召开之际,仪器信息网视频采访了上海仪迈市场总监郑炜以及产品经理(PM)王彤。/pscript type="text/javascript" src="https://p.bokecc.com/player?vid=0EAD6B58BDF35CCF9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=true& width=600& height=490& playerid=621F7722C6B7BD4E& playertype=1"/scriptp  郑炜介绍说,上海仪迈成立这五年来,始终专注于物理光学与电化学仪器的研发与推广,并采用了国产仪器企业少有的PM负责制进行产品管理,坚持打造本土精品仪器。/pp  王彤则对上海仪迈PM负责制深有体会,对这种先进的产品管理模式表示十分认同。同时她表示,借助这种PM管理模式,上海仪迈先后推出了数字平台digi600、digi300系列以及120digi系列旋光仪,可以满足国内高中低端用户的全部应用需求,“就如同模拟电视向数字电视的转变一样,现在我们借本届BCEIA宣布,上海仪迈模拟平台旋光仪正式退市,接下来将是数字平台旋光仪的时代,上海仪迈现有产品已经可以替代市场中的所有产品。”/p
  • 我国航天领域首个大科学装置正式运行!可在地面模拟太空环境做实验
    综合央视新闻客户端、新华社报道,2月27日,由哈尔滨工业大学和中国航天科技集团联合建造的“空间环境地面模拟装置”国家重大科技基础设施项目正式通过国家验收,这是我国航天领域首个大科学装置,可以综合模拟低温、真空、电磁辐射等九大类空间环境因素,也被称为“地面空间站”。“空间环境地面模拟装置”国家重大科技基础设施项目,聚焦航天领域的重大基础性科学技术问题,构建我国首个空间综合环境与航天器、生命体和等离子体作用科学领域的大型研究基地,形成国际领先水平的空间环境耦合效应试验研究平台。相较于把实验仪器设备搬到太空,“地面空间站”既能节省成本、减少安全隐患,又可以根据科学问题和工程需要,设置特定的环境因素,不受时空限制进行多次重复验证,从而打造更加安全便捷的实验条件和科研手段。“这意味着未来许多需要抵达太空才能进行的实验,在地面上就能完成。”空间环境地面模拟装置常务副总指挥、哈尔滨工业大学空间环境与物质科学研究院院长李立毅说,项目建设坚持自主创新,突破了一系列关键技术,各系统已全部投入试运行和开放共享,服务于国内外多家用户单位,支撑了我国一系列国家重大航天任务的实施,取得了多项标志性成果。由中国工程院院士、苏州实验室主任徐南平等担任联合主任的国家验收委员会认为,该项目突破了空间环境模拟及其与物质作用领域的系列关键技术,项目总体建设指标处于国际先进水平,部分关键技术指标处于国际领先水平,装置运行成效突出,科技与社会效益显著,同意其通过国家验收。中国科学院院士、哈尔滨工业大学校长韩杰才说,该装置对我国重大科技创新突破、产业转型升级、高端人才培育等具有重要意义。未来学校将不断优化装置技术指标,持续提高装置科学水平,加速形成更多自主知识产权技术,为我国实现从航天大国向航天强国的重大跨越作出新的贡献。据了解,“空间环境地面模拟装置”从2005年开始论证,到正式通过验收,历时18年,去年试运行以来,已经服务了国内外多家用户单位,支撑了我国多款宇航电子元器件的研发和一系列国家重大航天任务的实施,取得了多项标志性成果。验收委员会认为,这一项目突破了空间环境模拟及其与物质作用领域的系列关键技术,项目总体建设指标处于国际先进水平,部分关键技术指标处于国际领先水平。
  • 2009年新建省部共建国家重点实验室名单公布
    关于批准2009年新建省部共建国家重点实验室培育基地的通知国科发基〔2010〕65号  各有关省、自治区、直辖市及计划单列市科技厅(委、局),新疆生产建设兵团科技局:  2009年新建省部共建国家重点实验室培育基地(以下简称省部共建实验室)评审工作已经结束。根据专家评审意见,经研究,决定批准 “北京市城市环境过程与数字模拟重点实验室”等34个实验室为省部共建实验室(名单见附件1)。自本通知下发之日起,上述34个实验室即进入省部共建建设实施期。现将有关事项通知如下:  1. 实验室统一命名为“XX省(自治区、市)XXX重点实验室—省部共建国家重点实验室培育基地”。科技部将统一授牌。  2. 请组织相关实验室和依托单位认真制定实验室建设计划,并进行专家论证(建设计划任务书参考格式见附件2)。建设期满一年后,应组织专家组对建设计划执行情况进行验收。论证和验收结果报科技部备案。  3. 省部共建实验室是相对独立的科研实体,要依托一级法人单位建设。依托单位要重点加强实验室人才队伍建设,并着力改善实验室环境和条件,保证实验室用房和仪器设备相对集中和统一管理。各实验室要以省部共建为契机,进一步凝练研究方向和发展目标,建设高水平的人才队伍,积极承担地方和国家重大科研任务,努力成为地方组织开展高水平研究、聚集和培养高层次人才、开展学术交流的重要基地,带动地方实验室的发展。  4. 实验室主管部门和依托单位要切实加强对省部共建实验室的经费支持,按照“省部共建,以省为主”的原则,保证实验室的开放运行。  省部共建实验室是科技部加强和指导地方科技工作的一项重要举措,希望你们切实加强对省部共建实验室的管理,努力使省部共建实验室成为地方实验室的示范工程。同时,要按照《关于加强地方实验室工作的若干意见》(国科基函〔2002〕20号)的要求,进一步做好本地区实验室建设和管理的相关工作。  附件:  1. 2009年新建省部共建国家重点实验室培育基地名单序号实验室名称依托单位1北京市城市环境过程与数字模拟重点实验室首都师范大学2天津市中空纤维膜材料与膜过程重点实验室天津工业大学3河北省交通工程结构力学行为演变与控制重点实验室石家庄铁道学院4山西省煤科学与技术重点实验室太原理工大学5内蒙古自治区哺乳动物生殖生物学及生物技术重点实验室内蒙古大学6吉林省人兽共患病预防与控制重点实验室军事医学科学院军事兽医研究所7黑龙江省电介质工程重点实验室哈尔滨理工大学8上海市现场物证重点实验室上海市公安局9江苏省有机电子与信息显示重点实验室南京邮电大学10浙江省亚热带森林培育重点实验室浙江林学院11安徽省现代显示技术重点实验室安徽华东光电技术研究所、合肥工业大学12福建省湿润亚热带山地生态重点实验室福建师范大学13江西省核资源与环境重点实验室东华理工大学14山东省心血管疾病转换医学重点实验室山东大学15河南省瓦斯地质与瓦斯治理重点实验室河南理工大学16湖北省纺织新材料与先进加工技术重点实验室武汉科技学院17湖南省微生物分子生物学重点实验室湖南师范大学、湖南省疾控中心18广东省华南应用微生物重点实验室广东省微生物研究所19海南省热带生物资源可持续利用重点实验室海南大学20广西壮族自治区有色金属及特色材料加工重点实验室广西大学、桂林理工大学21四川省非金属复合与功能材料重点实验室西南科技大学22重庆市三峡库区生态环境与生物资源重点实验室西南大学23贵州省绿色农药与农业生物工程重点实验室贵州大学24云南省农业生物多样性利用与保护重点实验室云南农业大学25西藏自治区青稞种质改良和牦牛繁育重点实验室西藏自治区农科院农业研究所26陕西省光电技术与功能材料重点实验室西北大学27甘肃省干旱生境作物学重点实验室甘肃农业大学28青海省高原作物种质资源创新与利用重点实验室青海省农林科学院29宁夏回族自治区西北土地退化与生态恢复重点实验室宁夏大学30新疆维吾尔自治区新疆特有药用资源利用重点实验室中国科学院新疆理化技术研究所31宁波市先进材料制造与应用重点实验室中国科学院宁波材料技术与工程研究所32青岛市生态化工重点实验室青岛科技大学33深圳市化学基因学重点实验室北京大学深圳研究生院34新疆生产建设兵团塔里木盆地生物资源保护利用重点实验室塔里木大学  2. 省部共建国家重点实验室培育基地建设计划任务书(参考格式)
  • 中国大陆全球领先!2023年全球集成电路产业综合竞争力百强城市出炉
    8月12日,世界集成电路协会(WICA)发布了2023年全球集成电路产业综合竞争力百强城市白皮书,报告显示,全球集成电路产业在历经三次产业中心转移后,已形成全球分工明确及高度专业化、空间聚集的产业特征,全球集成电路产业主要集中在中国、美国、韩国、日本、欧洲、其他亚太地区,在技术研发、制造生产、市场销售占有重要地位。中美领跑,韩日紧随其后美国集成电路产业链完备、成熟,在全球集成电路产业中综合优势最强,在IC设计、EDA、IP以及先进装备等领域持续保持领先优势。美国拥有世界一流大学、庞大的工程人才库和市场驱动的创新生态系统,每年美国半导体产业投入高额的研发资金。欧洲集成电路产业细分领域特色明显,半导体企业多脱胎于整机企业。欧洲在汽车电子、功率半导体和模拟电路等领域具有全球优势,在成熟过程方面,可基本自给自足,但在制造、封测和材料环节,少有企业能跻身全球前列。日本集成电路产业在半导体材料、半导体设备、特殊半导体产品等领域具有优势。目前日本的半导体材料产量占全球的比重超过50%,涵盖半导体领域19种关键材料中的14种。日本的半导体设备占全球市场的比重在40%以上。中国拥有全球最大的集成电路应用市场,产业链齐全,设计业和制造业处于全球中游水平,设计企业数量多且增幅大,封装测试技术水平已达到全球第一阵营。中国集成电路产业在汽车电子、物联网、工控和新能源等应用需求不断扩大、产业政策和资金供给等利好要素的支持下,将会呈现持续稳健发展的态势。综合结果显示,圣克拉拉、新竹、首尔、圣何塞、上海、东京、埃因霍温、新加坡、北京、奥斯汀位于全球集成电路产业综合竞争力百强城市前十名。2023全球集成电路产业综合竞争力百强城市排名城市国家洲别排名城市国家洲别1圣克拉拉美国北美洲51厦门中国大陆亚洲2新竹中国台湾亚洲52梅萨美国北美洲3首尔韩国亚洲53大分日本亚洲4圣何塞美国北美洲54南通中国大陆亚洲5上海中国大陆亚洲55居林马来西亚亚洲6东京日本亚洲56科林斯堡美国北美洲7埃因霍温荷兰欧洲57天津中国大陆亚洲8新加坡新加坡亚洲58台南中国台湾亚洲9北京中国大陆亚洲59格勒诺布尔法国欧洲10奥斯汀美国北美洲60格林斯伯勒美国北美洲11慕尼黑德国欧洲61宁波中国大陆亚洲12水原韩国亚洲62鹿儿岛日本亚洲13高雄中国台湾亚洲63费利蒙美国北美洲14圣迭戈美国北美洲64绍兴中国大陆亚洲15海法以色列亚洲65城南韩国亚洲16无锡中国大陆亚洲66泉州中国大陆亚洲17熊本日本亚洲67法兰克福德国欧洲18深圳中国大陆亚洲68达勒姆美国北美洲19尔湾美国北美洲69长沙中国大陆亚洲20德累斯顿德国欧洲70马六甲马来西亚亚洲21利川韩国亚洲71森尼维尔美国北美洲22苏州中国大陆亚洲72大连中国大陆亚洲23米尔皮塔斯美国北美洲73桃园中国台湾亚洲24福冈日本亚洲74宫崎日本亚洲25槟城马来西亚亚洲75诺伍德美国北美洲26日内瓦瑞士欧洲76苏黎世瑞士欧洲27大田韩国亚洲77珠海中国大陆亚洲28成都中国大陆亚洲78坦佩美国北美洲29钱德勒美国北美洲79米兰意大利欧洲30南京中国大陆亚洲80清州韩国亚洲31台中中国台湾亚洲81济南中国大陆亚洲32希尔斯伯勒美国北美洲82威尔明顿美国北美洲33凤凰城美国北美洲83曼谷泰国亚洲34武汉中国大陆亚洲84青岛中国大陆亚洲35平泽韩国亚洲85佐贺日本亚洲36巴黎法国欧洲86纳舒厄美国北美洲37拉斯达美国北美洲87福州中国大陆亚洲38西安中国大陆亚洲88龙仁韩国亚洲39长崎日本亚洲89雷丁英国欧洲40杭州中国大陆亚洲90朗蒙特美国北美洲41波特兰美国北美洲91马尼拉菲律宾亚洲42博伊西美国北美洲92科罗拉多斯普林斯美国北美洲43广州中国大陆亚洲93株洲中国大陆亚洲44华城韩国亚洲94班加罗尔印度亚洲45吉隆坡马来西亚亚洲95斯德哥尔库瑞典欧洲46重庆中国大陆亚洲96胡志明越南亚洲47鲁汶比利时欧洲97佛森美国北美洲48合肥中国大陆亚洲98三重日本亚洲49香港中国香港亚洲99赫尔辛基芬兰欧洲50剑桥英国欧洲100布卢明顿美国北美洲资料来源:WICA;整理:仪器信息网从2023年全球集成电路产业综合竞争力百强城市的区域分布来看,亚洲城市占60个,北美占26个,欧洲占14个,从国家和地区来看,入围百强城市最多的是美国和中国,并列第一为26个,其次分别为韩国、日本、中国台湾以及马来西亚,入围城市数量分别为9个、9个、5个和4个。资料来源:WICA,整理:仪器信息网超一线城市优势显著,无锡、苏州积极布局就中国大陆部分而言,上海凭借其显著的优势力拔头筹,位居榜首,北京稍逊一筹,位居其后,而无锡和苏州也凭借各自的强劲实力位列榜单前五。2023全球集成电路产业综合竞争力百强城市(中国大陆部分)排名城市国家洲别1上海中国大陆亚洲2北京中国大陆亚洲3无锡中国大陆亚洲4深圳中国大陆亚洲5苏州中国大陆亚洲6成都中国大陆亚洲7南京中国大陆亚洲8武汉中国大陆亚洲9西安中国大陆亚洲10杭州中国大陆亚洲11广州中国大陆亚洲12重庆中国大陆亚洲13合肥中国大陆亚洲14厦门中国大陆亚洲15南通中国大陆亚洲16天津中国大陆亚洲17宁波中国大陆亚洲18绍兴中国大陆亚洲19泉州中国大陆亚洲
  • 全国首个城市双碳模拟器在济南发布
    6月8日,第一届城市碳达峰碳中和高端战略研讨会暨济南双碳模拟器发布会召开,全国首个城市双碳模拟器——济南双碳模拟器正式发布。据介绍,济南双碳模拟器主要功能包括天空地碳监测多源数据的预处理、碳源汇动态模拟反演、减污降碳协同模拟等功能板块。模拟器的研发以济南市为应用目标,充分考虑了通用性和易移植性,可推广至各级行政区域、河流流域、不同规模的各种类型园区、不同行业或领域,服务各级政府、各行业部门等,使碳排放和碳汇监测、核算、预测预警、调度管理等实现数字化和智能化,实现数字双碳动态管理。目前,济南双碳模拟器的大气二氧化碳模拟和同化反演子模块已经顺利移植到国家超级计算济南中心服务器上并成功运行,开始为济南碳监测试点提供技术支持。城市双碳模拟器将对城市绿色低碳高质量发展提供重要数值模拟技术平台,能为政府碳排放动态调控和产业优化升级管理提供有力科学支撑,为我国众多城市实现碳达峰目标和碳中和愿景保驾护航。济南市科技局党组书记、局长陈西武介绍到,近年来,济南市紧紧围绕“双碳”工作目标,加快推动绿色低碳发展,成功申报国家碳监测评估试点城市,成为全国8个综合试点之一,率先开展了城市大气温室气体监测评估工作,为城市碳监测评估体系建设贡献了“济南案例”。中科院大气所在济南成立齐鲁中科碳中和研究院,为济南市聚集和培养了一批技术创新团队,为济南市碳排放监测和评估提供了技术支撑,特别是此次发布的济南双碳模拟器,必将推动相关绿色科技成果在济南落地转化,为济南市实现“双碳”目标奠定坚实基础。
  • 2024年1月份有135项标准将实施
    2024年1月份有135项标准将实施我们通过国家标准信息平台查询到,在2024年1月份将有135项与仪器及检测行业的国家标准、行业标准和地方标准将实施,具体数量明细如下: 在1月份新实施的标准中,与医药卫生相关的标准有36个,占据了27%,紧随其后的领域为电力半导体和农林牧渔食品。与医药卫生相关的36个标准中,主要为行业标准,包括医疗器械类标准、医学防护类标准、检测分析类标准等。食品相关标准24个,主要涉及各类种植、栽培、养殖技术规程。具体2024年1月份主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓农林牧渔食品标准(24个)GB 29753-2023 道路运输 易腐食品与生物制品 冷藏车安全要求及试验方法 GB/T 9985-2022 手洗餐具用洗涤剂 GB/T 17714-2022 啤酒桶质量通则 GB 7300.104-2022 饲料添加剂 第1部分:氨基酸、氨基酸盐及其类似物 L-缬氨酸 GB 7300.303-2022 饲料添加剂 第3部分:矿物元素 及其络(螯 )合物 碘酸钾 GB 4143-2022 牛冷冻精液 DB31/T 1434-2023 进口冷 链食品 外包装新型冠状病毒消毒技术规范 DB31/T 1431-2023 鸡毛菜全程机械化生产技术要求 DB36/T 1805-2023 稻田磷素 流失减控技术 规程 DB36/T 1804-2023 稻蛙共 作生产技术规程 DB36/T 1803-2023 棱角山矾培育技术规程 DB36/T 1802-2023 赤 皮青冈培育技术规程 DB36/T 1801-2023 火炬松采穗圃营建技术规程 DB36/T 1800-2023 灵芝菌种生产技术规程 DB36/T 1799-2023 茶树 菇 菌种鉴定技术规程 DB36/T 1798-2023 水稻机械化 穴 直播生产技术规程 DB36/T 1797-2023 籼 型杂交水稻父本移栽母本机插制种技术规程 DB36/T 1796-2023 水稻侧深施肥 除草机插同步作业技术规范 DB36/T 1795-2023 水稻大钵体 毯状苗 育秧技术规程 DB36/T 1794-2023 工夫红茶加工技术规程 DB36/T 1792-2023 油茶气象观测规范 DB36/T 1787-2023 机关食堂 反食品 浪费工作成效评估规范 DB36/T 784-2023 深 农配套 系猪生产技术规程 GB 7300.403-2022 饲料添加剂 第4部分:酶制剂 纤维素酶 环境环保标准(11个)HJ 1296-2023 水生态监测技术指南 湖泊和水库水生生物监测与评价(试行) HJ 1295-2023 水生态监测技术指南 河流水生生物监测与评价(试行) DB31/T 1433-2023 扬尘在线监测技术规范 DB31/T 1432-2023 城镇供水厂泥渣处理处置技术规范 DB34/T 4468-2023 城镇排水管网智能截流调蓄设施运行、维护及安全技术规程 DB32/T 4498-2023 城市河道水环境综合整治工程设计标准 DB11/ 1201-2023 印刷工业大气污染物排放标准 DB11/ 1227-2023 汽车制造业大气污染物排放标准 GB 28489-2022 乐器有害物质限量 GB 21288-2022 移动通信终端电磁辐射暴露限值 GB/T 43121.1-2023船舶和海上技术 水生有害物种 第1部分:压载水排放取样接口医药卫生标准(36个)GB/T 16886.9-2022 医疗器械生物学评价 第9部分:潜在降解产物的定性和定量框架 GB/Z 42217-2022 医疗器械 用于医疗器械质量体系软件的确认 GB/T 16886.15-2022 医疗器械生物学评价 第15部分:金属与合金降解产物的定性与定量 GB/Z 16886.22-2022 医疗器械生物学评价 第22部分:纳米材料指南 GB/T 16886.19-2022 医疗器械生物学评价 第19部分:材料物理化学、形态学和表面特性表征 GB/T 16886.18-2022 医疗器械生物学评价 第18部分:风险管理过程中医疗器械材料的化学表征 GB 42302-2022 呼吸防护 自吸过滤式逃生呼吸器 GB 2890-2022 呼吸防护 自吸过滤式防毒面具 GB 42301-2022 口岸公共卫生核心能力建设技术规范 YY/T 1886-2023 牙科学 胶囊装银汞合金 YY/T 1876-2023 组织工程医疗产品 动物源性生物材料DNA残留量测定法:荧光染色法 YY/T 1871-2023 医用隔离衣 YY/T 1870-2023 液相色谱-质谱法测定试剂盒通用要求 YY/T 1868-2023 乙型肝炎病毒核心抗体检测试剂盒(发光免疫分析法) YY/T 1867-2023 运动医学植入器械 带线锚钉 YY/T 1863-2023 纳米医疗器械生物学评价 含 纳米银 敷料中 纳米银 颗粒和银离子的释放与表征方法 YY/T 1862-2023 冠状动脉CT影像处理软件专用技术条件 YY/T 1861-2023 医学影像存储与传输系统软件专用技术条件 YY/T 1850-2023 男用避孕套 聚氨酯避孕套的技术要求与试验方法 YY/T 1842.7-2023 医疗器械 医用贮液容器输送系统用连接件 第7部分:血管内输液用连接件 YY/T 1789.6-2023 体外诊断检验系统 性能评价方法 第6部分:定性试剂的精密度、诊断灵敏度和特异性 YY/T 1473-2023 医疗器械标准化工作指南 涉及安全内容的标准制定 YY/T 0870.7-2023 医疗器械遗传毒性试验 第7部分:哺乳动物体内碱性彗星试验 YY/T 0730-2023 心血管外科植入物和人工器官 心肺旁路和体外膜肺氧合(ECMO)使用的一次性使用管道套包的要求 YY/T 0720-2023 一次性使用产包 通用要求 YY/T 0606.15-2023 组织工程医疗产品 评价基质及支架免疫反应的试验方法:淋巴细胞增殖试验 YY/T 0506.1-2023 医用手术单、手术衣和洁净服 第1部分:通用要求 YY/T 1835-2022 乳腺正电子发射断层成像装置性能和试验方法 YY/T 1789.4-2022 体外诊断检验系统 性能评价方法 第4部分:线性区间与可报告区间 YY/T 1789.3-2022 体外诊断检验系统 性能评价方法 第3部分:检出限与定量限 YY/T 0273-2022 牙科学 牙科银汞 调合 器 WS/T 819—2023 县级综合医院设备配置标准 DB31/T 1430-2023 医疗机构吸毒成瘾认定服务规范 DB31/T 1429-2023 乡村民宿卫生要求 DB36/T 1790-2023 家庭养老床位服务规范 DB36/T 1788-2023 医疗机构肿瘤登记报告和管理规范 石油天然气标准(8个)GB/T 43231-2023 石油天然气工业 页岩油气井套管选用及工况适用性评价 GB/T 43130.1-2023 液化天然气装置和设备 浮式液化天然气装置的设计 第1部分:通用要求 GB/T 43125-2023 页岩油产能评价技术规范 GB/T 43126-2023 页岩油地质甜点评价技术规范 GB/T 24259-2023石油天然气工业 管道输送系统GB/T 29171-2023 岩石毛管压力曲线的测定 GB/T 12574-2023 喷气燃料总酸值测定法 GB 42294-2022 陆上石油天然气开采安全规程 化工塑料标准(2个)GB/T 8038-2023 焦化甲苯 烃类杂质含量的测定 气相色谱法 GB 17762-2022 耐热玻璃器具的安全要求 轻工纺织标准(2个)GB/T 21898-2023 纺织品颜色表示方法 GB/T 42167-2022 服装用皮革 电力半导体标准(25个)GB/T 42968.1-2023 集成电路 电磁抗扰度测量 第1部分:通用条件和定义 GB/T 42970-2023 半导体集成电路 视频编解码电路测试方法 GB/T 42969-2023 元器件位移损伤试验方法 GB/T 42968.8-2023 集成电路 电磁抗扰度测量 第8部分:辐射抗扰度测量 IC带状线法 GB/T 42975-2023 半导体集成电路 驱动器测试方法 GB/T 42974-2023 半导体集成电路 快闪存储器(FLASH) GB/T 42973-2023 半导体集成电路 数字模拟(DA)转换器 GB/T 42972-2023 微波电路 检波器测试方法 GB/T 20870.5-2023 半导体器件 第16-5部分:微波集成电路 振荡器 GB/T 43027-2023 高压电源变换器模块测试方法 GB/T 43024.2-2023 压电、 介 电和静电振荡器的测量技术 第2部分:相位抖动测量方法 GB/T 43023-2023射频声表面波(SAW)器件和体声波(BAW)器件的非线性测量指南GB/T 16515-2023电子设备用电位器 第5部分:分规范 单圈旋转低功率线绕和非线绕电位器GB/T 22317.401-2023有质量评定的压电滤波器 第4-1部分:空白详细规范 能力批准GB/T 22319.6-2023石英晶体元件参数的测量 第6部分:激励电平相关性(DLD)的测量GB/T 43228-2023 宇航用抗辐射加固集成电路单元库设计要求 GB/T 43227-2023 宇航用集成电路内引线气相沉积保护膜试验方法 GB/T 43226-2023 宇航用半导体集成电路单粒子 软错误 时域测试方法 GB/T 43063-2023 集成电路 CMOS图像传感器测试方法 GB/T 20870.10-2023半导体器件 第16-10部分:单片微波集成电路技术可接收程序GB/T 43034.3-2023集成电路 脉冲抗扰度测量 第3部分:非同步瞬态注入法GB/T 43041-2023 混合集成电路 直流/直流(DC/DC)变换器 GB/T 43053-2023海上导航和无线电通信设备及系统 电子海图显示与信息系统(ECDIS) 操作和性能要求、测试方法及要求的测试结果GB 31241-2022 便携式电子产品用锂离子电池和电池组 安全技术规范 GB/T 22317.4-2023 有质量评定的压电滤波器 第4部分: 分规范 能力批准 能源标准(17个)GB/T 43058-2023光伏组件氨腐蚀试验GB/T 43057-2023光伏组件 动态机械载荷试验GB/T 43055-2023 农村低压安全用电通用要求 GB/T 43056-2023 沙漠光伏电站技术要求 GB 21341-2022 铁合金单位产品能源消耗限额 GB 25324-2022 铝用 炭素 单位产品能源消耗限额 GB 29448-2022 海绵钛和钛 锭单位 产品能源消耗限额 GB 21346-2022 电解铝和氧化铝单位产品能源消耗限额 GB 19044-2022 普通照明用荧光灯能效限定值及能效等级 GB 17896-2022普通照明用气体放电灯用镇流器能效限定值及能效等级DB36/T 1807-2023 水利水电工程基坑安全监测技术规程 DB36/T 1806-2023 水利水电工程预拌混凝土技术规程 GB 32030-2022 潜水电泵能效限定值及能效等级 GB 21518-2022 交流接触器能效限定值及能效等级 GB 29447-2022 多晶硅和 锗单位 产品能源消耗限额 GB/T 43123-2023船舶与海上技术 LNG燃气供应系统(FGSS)高压泵性能测试要求GB/T 43122-2023船舶与海上技术 LNG燃气供应系统(FGSS)性能测试要求机械车辆标准(9个)GB/T 43119-2023 自动驾驶封闭测试场地建设技术要求 GB/T 25334.1-2023 铁路机车车体 第1部分:内燃机车 GB/T 5338.2-2023系列1集装箱 技术要求和试验方法 第2部分:保温集装箱GB/T 25334.2-2023 铁路机车车体 第2部分:电力机车 GB/T 28712.2-2023 热交换器型式与基本参数 第2部分:固定管板式热交换器 GB 13057-2023 客车座椅及其车辆固定件的强度 GB/T 28712.3-2023 热交换器型式与基本参数 第3部分:U形管式热交换器 GB/T 28712.1-2023 热交换器型式与基本参数 第1部分: 浮 头式热交换器 GB 42295-2022 电动自行车电气安全要求 其他标准(1个)GB/T 15000.8-2023 标准样品工作导则 第8部分:标准样品的使用 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓ 扫码到APP免费下载 目前仪器信息网资料库 有近80万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有20多万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 首个大规模设备更新科技攻关实施方案印发:部署教学仪器设备等攻关任务
    为加强重点领域重大技术装备研发和成果转化,以科技创新引领支撑大规模设备更新和消费品以旧换新近日,中共浙江省委科技委员会办公室印发《浙江省推动大规模设备更新和消费品以旧换新科技攻关实施方案》(以下简称《实施方案》)。《实施方案》聚焦新型工业化、建筑和市政基础设施、交通运输和农业机械、教育文旅医疗、资源循环利用等5个重点领域,组织开展重大科技攻关,加快突破重大技术装备“卡脖子”难题和关键共性技术问题,加强技术源头创新和高质量供给,培育发展新质生产力。《实施方案》提出,2027年前,在5个重点领域部署20个重大任务,组织实施重大科技项目200项以上,取得重大国产化替代成果100项以上,关键核心技术自主可控水平进一步提升,产品更加数字化、高端化、智能化、绿色化,更好满足大规模设备更新和消费品以旧换新的科技创新需求。其中,在教育文旅医疗领域,部署实施教学仪器设备、文化旅游服务设备、医疗装备等3个重大攻关任务,重点攻克生物样品真空温导超低温冷冻、机械设计与制造教学数字模拟、超声换能器关键器件制造工艺、医学影像处理、医疗多模态人工智能等技术,研制生物电子显微冷冻教学装置、虚拟仿真教学平台、文化展演智能装备与系统、高端超声影像设备、多模态复合内窥镜、智能康复治疗及生命支持装备、大孔径超导磁体MRI成像系统等,在高性能冷冻透射电子显微仪、基于大语言模型场馆人机交换系统、演艺装备运动轴控制器、力反馈手术机器人等方面实现国产化替代。全文如下:《浙江省推动大规模设备更新和消费品以旧换新科技攻关实施方案》 为贯彻落实《国务院印发关于推动大规模设备更新和消费品以旧换新行动方案》和《浙江省推动大规模设备更新和消费品以旧换新若干举措》,加强重点领域重大技术装备研发和成果转化,以科技创新引领支撑大规模设备更新和消费品以旧换新,特制定如下方案。一、总体要求和目标 围绕推动大规模设备更新和消费品以旧换新,坚持系统观念,坚持有所为有所不为,坚持需求导向和问题导向,聚焦新型工业化、建筑和市政基础设施、交通运输和农业机械、教育文旅医疗、资源循环利用等5个重点领域,组织开展重大科技攻关,加快突破重大技术装备“卡脖子”难题和关键共性技术问题,加强技术源头创新和高质量供给,培育发展新质生产力。 2027年前,在5个重点领域部署20个重大任务,组织实施重大科技项目200项以上,取得重大国产化替代成果100项以上,关键核心技术自主可控水平进一步提升,产品更加数字化、高端化、智能化、绿色化,更好满足大规模设备更新和消费品以旧换新的科技创新需求。二、重点任务(一)加快推进新型工业化领域科技攻关。部署实施工业机器人、数控机床、激光制造装备、流程装备、新能源装备、半导体装备、工业软件等7个重大攻关任务,重点攻关机器人感知与控制技术、数控机床设计与精度保持性技术、复合化激光制造技术、流程装备流固耦合技术、叠晶圆级芯片封装技术、工业互联的可重构软件技术等,引领支撑专业化机器人、五轴联动数控机床、车铣复合加工中心、千瓦级高功率飞秒激光器、高端流程泵阀、燃气轮机、大型空分装备、压缩机和承压装备等创新水平提升,解决高端制造装备工控软件“卡脖子”问题,实现激光复合制造装备国际并跑,12英寸大硅片制造核心设备国产化替代。(责任单位:省科技厅、省发展改革委、省经信厅)(二)加快推进建筑和市政基础设施领域科技攻关。部署实施智能电梯、智慧安防、建筑节能等3个重大攻关任务,重点突破电梯可靠性设计制造、城镇监控设备传感检测、隧道安全施工装备可靠性设计制造等关键技术,引领支撑高性价比住宅电梯、智能化安防装备和低碳节能装备等创新水平提升,实现在城市电梯、智慧安防和建筑施工等领域的推广应用。(责任单位:省科技厅、省建设厅、省市场监管局)(三)加快推进交通运输和农业机械领域科技攻关。部署实施新能源汽车、智慧港航和绿色智能船舶、低碳航空无人机关键部件和装备、丘陵山区先进适用小型农业机械等4个重大攻关任务,重点攻克超高热效率甲醇内燃机、新型燃料重型卡车动力集成技术、新型动力船舶技术、内河船舶智能感知技术、新型能源正面吊装设备、城轨列车自主无人驾驶控制、高精尖小型农机装备制造关键技术,研制一批适用南方丘陵山区地形和产业特色的专用农机,形成长寿命、远距离、快充放、智能化的下一代新能源汽车制造体系,实现船舶动力、港航作业低碳化要求,轨道交通列控系统实现国产化替代。(责任单位:省科技厅、省交通厅、省农业农村厅、省海洋经济厅)(四)加快推进教育文旅医疗领域科技攻关。部署实施教学仪器设备、文化旅游服务设备、医疗装备等3个重大攻关任务,重点攻克生物样品真空温导超低温冷冻、机械设计与制造教学数字模拟、超声换能器关键器件制造工艺、医学影像处理、医疗多模态人工智能等技术,研制生物电子显微冷冻教学装置、虚拟仿真教学平台、文化展演智能装备与系统、高端超声影像设备、多模态复合内窥镜、智能康复治疗及生命支持装备、大孔径超导磁体MRI成像系统等,在高性能冷冻透射电子显微仪、基于大语言模型场馆人机交换系统、演艺装备运动轴控制器、力反馈手术机器人等方面实现国产化替代。(责任单位:省科技厅、省教育厅、省文化广电和旅游厅、省卫生健康委)(五)加快推进资源循环利用领域科技攻关。部署实施新能源汽车三电回收利用、退役风光组件回收利用、废旧电器电子产品回收利用3个重大攻关任务,重点攻关退役动力电池安全高效梯度利用、永磁电机能效提升改造及再制造、退役风光组件智能拆解及高值化回收、有价金属资源绿色拆解-智能分拣-高效分离回收等技术,在电机能效提升改造、退役风光组件高稳定层压件分离等方面取得重大技术突破,实现退役风光高效拆解技术与资源高值化利用装备的推广应用。(责任单位:省科技厅、省发展改革委、省生态环境厅)三、保障措施(一)强化组织领导。在省委科技委员会领导下开展重大技术装备科技攻关,建立完善工作清单,确保方案落地见效。各市可结合实际制定出台实施方案,进一步明确目标任务,落实主体责任,抓好各项任务落实。各级科技管理部门要加强与发展改革、经信、交通、建设、环保等部门沟通协调,强化部门联动,形成工作合力。(二)强化资金保障。在省重点研发计划专项资金中统筹安排项目,不再额外增加预算。鼓励省市县三级联动支持重大项目实施。支持省科创母基金以市场化方式参与投资,推动银行、保险等金融机构通过“浙科贷”“创新保”等产品支持技术攻关和成果转化。(三)强化联合创新。支持“链主”企业、科技领军企业、科技小巨人企业等龙头企业牵头,联合产业链上下游优势企业和高校院所,组织开展产学研联合攻关。优先支持与省实验室、省技术创新中心、省制造业创新中心等高能级科创平台联合攻关的重大项目,推进概念验证中心、中试基地建设。(四)强化宣传总结。通过各类媒体宣传重大技术装备科技攻关成果、实现国产化替代的技术和产品、突破“卡脖子”技术的科技企业等典型案例。总结强化科技创新支撑大规模设备更新和消费品以旧换新的有效做法和先进经验,探索出以科技创新推动产业创新,培育发展新质生产力的实践路径。
  • 生成式AI与模拟工具:正掀起科学仪器研发变革
    在科技飞速发展的时代,仪器研发正经历深刻变革。传统研发过程耗费大量时间、人力和资源,而生成式AI和模拟工具的引入,正在改变这一局面。生成式AI通过学习大量设计数据,迅速生成多种创新设计选项,不仅节省设计时间,还能在早期发现潜在问题,减少后期修改。无论是外观设计、功能布局还是材料选择,生成式AI都以超高速度和精度完成任务。确定设计方案后,模拟工具可以快速将其转化为可行产品。研发人员在虚拟环境中测试设计的可行性,从物理特性到操作性能,再到耐用性和安全性,模拟工具可以在制造前完成所有验证,降低研发成本,加快产品上市速度。当生成式AI与模拟工具结合,研发效率大幅提升。生成式AI提供多样设计选择,模拟工具帮助筛选最优方案。两者协同工作,使从创意到产品的全过程更加流畅,缩短研发周期,提升创新频率。生成式AI和模拟工具的结合,正改变仪器研发的规则,为企业带来前所未有的竞争优势。未来,随着技术进步,仪器研发将更加智能化和自动化,推动行业迈向新高峰。  在创新型仪器的研发过程中,涉及多个关键阶段,如设计与优化、原型制造以及设计验证测试(DVT)。每个阶段都至关重要,帮助研发团队从概念到产品的完整开发流程得以实现。分析维度内容 设计思路 以用户需求和市场需求为导向,结合前沿技术,提出创新型设计理念。 概念设计 通过头脑风暴、市场调研和用户反馈,确定仪器的功能、外观、材料等初步设计方案。 详细设计 使用CAD软件(如SolidWorks、AutoCAD)进行详细的结构设计、组件选型和系统布局。 性能优化 通过仿真与模拟(如热力学、流体力学、结构力学分析)优化设计,提高仪器性能和可靠性。 可制造性优化 考虑生产过程中的制造成本、装配便捷性、可维护性,优化设计以提高生产效率并降低成本。  在设计与优化阶段,研发人员基于用户需求和市场需求,结合前沿技术,提出了创新型设计理念。首先,研发团队通过头脑风暴、市场调研和用户反馈,确定仪器的功能、外观和材料的初步设计方案。接着,他们使用CAD软件(如SolidWorks和AutoCAD)进行详细的结构设计,定义零部件的精确尺寸和位置,确保所有组件的装配和互操作性。通过有限元分析(FEA)进行结构强度与应力分析,确保设计的安全性与可靠性。此外,团队还使用仿真工具进行热管理与散热设计,模拟设备内部的热流和温度分布,优化散热结构,以确保设备在安全的温度范围内运行。分析维度内容 原型开发 基于详细设计图纸,制造功能样机,通常使用3D打印、CNC加工或快速原型制造技术。 材料选择 选择适合的材料(如塑料、金属、复合材料)以平衡成本、重量、耐用性和功能需求。 部件制造与装配 制造和装配各个部件,构建完整的原型仪器,测试各个组件的互操作性。 功能测试 对原型进行初步的功能测试,确保仪器的基本功能符合设计预期,如电气测试、机械测试等。  原型制造阶段开始时,研发团队基于详细的设计图纸制造功能样机,这通常采用3D打印、CNC加工或其他快速原型制造技术。在这一过程中,他们仔细选择适合的材料,以平衡成本、重量、耐用性和功能需求。随后,团队制造和装配各个部件,构建完整的原型仪器,并对其进行初步的功能测试,以确保仪器的基本功能符合设计预期,包括电气和机械测试。分析维度内容 测试规划 制定详细的测试计划,包括测试目的、测试标准、测试方法和测试工具的选择。 环境测试 在极端环境条件下(如温度、湿度、震动)测试仪器的稳定性和耐用性,验证其是否能在实际工作环境中可靠运行。 性能测试 测试仪器的关键性能指标(如精度、速度、灵敏度),确保其达到或超出设计要求。 安全测试 进行电气安全、机械安全、软件安全等方面的测试,确保仪器在操作中不会对用户和环境造成危害。 合规测试 确保仪器符合相关行业标准和法规(如ISO、CE、FDA等),获取必要的认证和许可。 测试结果分析 收集和分析测试数据,评估仪器的性能和质量,识别并解决设计中的潜在问题。 设计迭代与优化 根据DVT测试结果进行设计优化,修正问题,进行设计迭代,并在必要时制造新的原型进行重新测试。  设计验证测试(DVT)阶段是确保产品质量的关键。首先,团队制定详细的测试计划,明确测试目的、标准、方法和工具选择。在极端环境条件下(如温度、湿度、震动),对仪器进行环境测试,以验证其稳定性和耐用性。此外,团队还会进行性能测试,确保仪器的关键性能指标(如精度、速度、灵敏度)达到或超出设计要求。为了保证安全,团队还进行电气、机械和软件安全测试,确保仪器在操作中不会对用户和环境造成危害。最后,合规测试确保仪器符合相关行业标准和法规,获取必要的认证和许可。测试结果分析后,团队会根据DVT测试结果进行设计优化,修正问题,并在必要时制造新的原型进行重新测试。分析维度内容 定型设计 经过多次迭代和优化,最终确定设计方案,为批量生产做准备。 生产工艺确定 确定量产过程中使用的生产工艺、设备和流程,确保产品的一致性和质量稳定性。 生产验证 通过试生产验证生产线的可靠性,确保产品质量满足量产要求。 市场反馈收集 初期产品投放市场后,收集用户反馈,进行必要的产品改进和升级。  在最终定型与量产准备阶段,经过多次迭代和优化后,研发团队最终确定设计方案,为批量生产做准备。这包括确定量产过程中使用的生产工艺、设备和流程,确保产品的一致性和质量稳定性。在试生产阶段,团队验证生产线的可靠性,以确保产品质量满足量产要求。最后,在产品投放市场后,团队还会收集用户反馈,进行必要的产品改进和升级。设计步骤关键任务详细内容1. 结构设计 概念建模 创建初步的3D模型 根据设计需求,建立设备的初步3D模型,定义整体外观和结构。 详细结构设计 完成详细的几何建模 设计内部结构,包含零部件的精确尺寸和位置,确保所有组件的装配和互操作性。 强度分析 结构强度与应力分析 通过有限元分析(FEA)评估结构的应力分布,确保结构的安全性与可靠性。 热管理设计 热管理与散热设计 模拟设备内部的热流和散热情况,优化散热孔布局和冷却系统。2. 组件选型 电子元件选型 电子元器件选择 选择符合设计需求的电源模块、处理器、传感器、连接器等电子元件,并在设计中标注其位置。 机械部件选型 标准机械件选型 选择标准机械部件,如螺钉、螺母、轴承、齿轮等,并集成到设计中。 材料选型 材料选择与应用 根据力学、热学及其他性能要求,选择合适的材料(如铝合金、塑料、复合材料等)。 采购件选型 外购件选型 选择市场上可采购的标准件或外购件(如显示屏、接口模块等),并与制造商对接,确保供应链的可行性。3. 系统布局设计 内部布局设计 内部元件布局优化 根据功能需求和物理空间,优化内部元件的排列,确保结构紧凑、操作便捷及热管理合理。 电气系统布局 电路和布线设计 设计内部电路布局,包括信号线、供电线和地线的位置,确保电气系统的安全和高效运行。 接口与连接设计 接口模块与外部连接设计 设计设备的输入输出接口布局,包括电源接口、数据接口、冷却系统接口等,并确保连接方便、牢固。 人机交互布局 控制面板与用户界面设计 设计用户界面布局,如控制按钮、显示屏的位置,确保用户操作的便捷性和界面的直观性。4. 装配与制造准备 装配设计 装配顺序与工艺流程设计 确定各组件的装配顺序,优化装配流程,减少制造时间和成本,确保装配的可靠性。 制造工艺设计 制造工艺与加工方案 制定加工方案,选择合适的制造工艺(如CNC加工、3D打印),并在设计中考虑制造公差和装配间隙。 设计验证 仿真验证与优化 通过仿真工具验证整个系统的设计,包括结构强度、热管理、振动和冲击测试等,确保设计满足所有技术要求。5. 技术文档与图纸输出 工程图纸生成 工程图纸与BOM表输出 输出详细的2D工程图纸,包括各零部件的尺寸标注、装配关系图、材料清单(BOM)等,供生产和采购使用。 技术文档编制 制造与装配说明文档 编制详细的制造与装配说明文档,包括每个工艺步骤的描述、注意事项、质量控制要求等。 版本管理与修订 设计版本管理与修订 通过PDM系统管理设计文件的版本,跟踪设计变更,确保所有团队成员使用最新的设计文件。  为了实现这些步骤,研发团队使用多种软件工具支持设计过程。首先,在结构设计中,SolidWorks和AutoCAD被用于初步的3D建模和详细的几何建模,确保设备的整体外观和内部结构合理。随后,通过SolidWorks Simulation进行结构强度与应力分析,确保设计的安全性。此外,团队使用SolidWorks Flow Simulation进行热管理设计,模拟热流和散热情况,以优化散热系统。接下来,组件选型阶段涉及选择电子元件、机械部件和材料,这些选择影响到最终产品的性能和制造成本。团队还会利用AutoCAD Electrical进行电气系统布局设计,确保信号线、供电线和地线的布线合理且高效。在系统布局设计阶段,研发人员优化内部元件的排列,设计设备的接口模块与外部连接,并确保人机交互界面的设计便捷直观。最后,装配与制造准备阶段中,团队通过SolidWorks进行装配设计,确定组件的装配顺序和工艺流程,并通过仿真工具验证整个系统的设计,确保结构强度、热管理、振动和冲击测试结果达到所有技术要求。在工程图纸生成和技术文档编制方面,研发团队使用SolidWorks和AutoCAD输出详细的工程图纸和材料清单(BOM),并编制制造与装配说明文档,确保生产过程的顺利进行。  整个设计与研发过程不仅依赖于软件工具的支持,还通过多学科优化工具(如ModeFrontier)进行综合性能优化,结合热力学、流体力学和结构力学的仿真结果,确保每次设计迭代都能提升设备的整体性能和可靠性。通过这些详细的步骤和方法,创新型仪器的研发得以高效进行,并最终实现从概念到产品的完整转化。在这一复杂的研发过程中,每个阶段都扮演着至关重要的角色,从设计概念的初步构思到最终的产品定型和量产准备。每一个环节都要求精细的操作和严密的协同,以确保研发过程的顺利推进。在设计与优化阶段,概念建模是研发工作的开端。使用SolidWorks等CAD软件,团队根据设计需求建立初步的3D模型。这一步骤的目标是定义设备的整体外观和结构,以便在后续阶段进行更详细的设计工作。接着,详细结构设计进一步精细化设备内部结构,确保所有零部件的尺寸和位置精确无误,并且组件之间能够顺利装配和互操作。这些工作需要SolidWorks和AutoCAD等软件的支持,以保证设计的准确性和可行性。  在这个阶段,强度分析也是不可或缺的一部分。通过有限元分析(FEA),研发团队能够评估设计中可能存在的应力分布问题,确保设备的结构在各种工作条件下都能保持安全和稳定。与此同时,热管理设计通过SolidWorks Flow Simulation进行,研发人员模拟设备内部的热流和温度分布,优化散热系统,确保设备在运行过程中能够有效地控制温度。组件选型是研发中的另一关键步骤。团队需要根据设计需求选择适当的电子元件和机械部件,如电源模块、传感器、螺钉、轴承等。这些部件不仅影响到设备的性能,还对生产成本和制造难度产生重要影响。在材料选型过程中,团队必须权衡力学、热学等多方面性能要求,选择最适合的材料,如铝合金、塑料或复合材料。这一过程还涉及外购件的选择,团队需要确保这些外购件与整体设计的兼容性,并与供应商对接,确保供应链的顺畅运作。系统布局设计阶段,研发团队进一步优化设备内部的元件布局,确保结构紧凑、操作便捷,尤其是在涉及热管理的情况下,布局优化显得尤为重要。电气系统布局设计需要特别考虑信号线、供电线和地线的布线位置,以保证电气系统的安全和高效运行。接口与连接设计则专注于设备的输入输出接口布局,确保连接方便、牢固,并满足使用环境的需求。人机交互布局设计通过控制面板和用户界面的合理安排,提升设备的操作便捷性和用户体验。在装配与制造准备阶段,研发团队必须制定装配顺序和工艺流程,确保每个组件能够顺利装配,减少制造时间和成本。通过仿真工具验证整个系统的设计,确保设计满足所有技术要求,如结构强度、热管理、振动和冲击测试等。工程图纸生成是这一阶段的重要任务,团队需要输出详细的2D工程图纸,包括零部件的尺寸标注和装配关系图,这些图纸是生产和采购的基础。技术文档编制也是装配与制造准备阶段的核心工作之一。团队需要编制详细的制造与装配说明文档,描述每个工艺步骤的具体操作、注意事项和质量控制要求。通过版本管理与修订工具,如PDM系统(如SolidWorks PDM),团队可以管理设计文件的版本,跟踪设计变更,确保所有团队成员使用最新的设计文件。仿真与模拟类型关键任务详细内容热力学分析(SolidWorks Flow Simulation, ANSYS) 热源识别与建模 识别并建模关键热源 确定设备内部发热元件(如处理器、激光器)的热源位置,建立热源模型,分析热量产生与传递路径。 散热设计与优化 散热系统设计与仿真 设计散热方案,如散热片、风扇、液冷系统,模拟热流和温度分布,优化散热结构,确保设备运行温度在安全范围内。 热管理策略优化 热管理系统优化 通过仿真分析设备在不同工作条件下的温度变化,优化热管理策略,如主动冷却、被动散热等,提升设备的可靠性。流体力学分析(ANSYS Fluent, SolidWorks Flow Simulation) 空气流动分析 内部空气流动模拟与优化 模拟设备内部空气流动情况,评估空气流动对散热效果的影响,优化风道设计,确保空气流动的均匀性和效率。 冷却液流动分析 液冷系统流动分析 模拟液冷系统中冷却液的流动情况,分析冷却液在热源处的流动速度和散热效率,优化管路布局和泵的选择。 密封与防护设计 防水防尘设计与验证 模拟设备在湿度、粉尘等恶劣环境下的密封性能,确保设备能够防水防尘,避免外界环境对内部元件的损害。结构力学分析(ANSYS Mechanical, SolidWorks Simulation) 应力应变分析 结构强度与应力分布分析 通过有限元分析(FEA),模拟设备在外力作用下的应力和应变分布,优化结构设计,避免应力集中和结构失效。 振动与冲击分析 振动与冲击响应分析 模拟设备在运输和操作过程中的振动和冲击,优化支撑结构和缓冲材料,确保设备的抗振性和抗冲击性。 疲劳分析与寿命预测 结构疲劳寿命预测 通过疲劳分析,预测设备在长期使用中的疲劳寿命,优化关键部件的设计,延长设备使用寿命,减少故障率。综合优化与迭代(Multidisciplinary Optimization Tools (MDO)) 多学科优化 综合性能优化 结合热力学、流体力学和结构力学分析结果,通过多学科优化工具(MDO)进行综合性能优化,提升设备整体性能。 设计迭代与验证 基于仿真结果的设计迭代 根据仿真结果进行设计修改和迭代,重新验证修改后的设计性能,确保每次迭代都能够提升设备的可靠性和性能。  在整个研发过程中,仿真与模拟技术为设计优化提供了重要支持。例如,热力学分析通过识别和建模设备内部的关键热源,帮助团队优化散热设计。流体力学分析则用于模拟设备内部空气和冷却液的流动情况,确保散热系统的高效性和设备的密封性能。结构力学分析通过应力应变分析、振动与冲击分析、疲劳分析等手段,评估设备在不同条件下的结构强度和使用寿命,帮助研发团队在设计过程中避免潜在的结构失效。通过多学科优化工具(如ModeFrontier),团队能够将热力学、流体力学和结构力学的仿真结果综合起来,进行全方位的性能优化。这样的多学科优化不仅提高了设备的整体性能,还减少了设计迭代的次数,加快了研发进程。设计迭代是研发过程中的常规步骤。基于仿真和测试结果,团队不断调整设计,修正问题,并通过制造新的原型进行重新测试。这一过程确保了最终产品在各个方面都达到了设计要求和质量标准。最终,在经过多轮设计迭代和验证后,团队最终确定产品设计,进入量产准备阶段。这包括确定生产工艺、设备和流程,以保证产品在批量生产中的一致性和质量稳定性。在试生产阶段,团队会验证生产线的可靠性,确保产品质量符合量产标准。产品投入市场后,团队还会持续收集用户反馈,并根据需要进行产品改进和升级。  通过这些系统的步骤,创新型仪器的研发得以高效、精准地进行,从而实现从概念到产品的顺利转化。这一过程不仅推动了技术的进步,还为企业带来了显著的竞争优势,帮助其在快速变化的市场中保持领先地位。未来,随着技术的进一步发展,仪器研发将朝着更加智能化和自动化的方向发展,继续推动整个行业迈向新的高峰。  拓展阅读:  三代测序技术相关仪器工艺创新概述  2024站在巨人肩上的仪器研发(附资料)  2024年基于人工智能的仪器研发思路  2024年科学仪器供应链及核心零部件分析
  • 锂电池安全性多尺度研究策略:实验与模拟方法
    作者:甘露雨 1,2 陈汝颂 1,2潘弘毅 1,2吴思远 1,2禹习谦 1,2 李泓 1,2第一作者:甘露雨(1996—),男,博士研究生,研究方向为锂离子电池安全性,E-mail:ganluyu@qq.com;通讯作者:禹习谦,研究员,研究方向为高比能锂电池关键材料、电池先进表征与失效分析,E-mail:xyu@iphy.ac.cn。单位: 1. 中国科学院物理研究所,北京 100190;2. 中国科学院大学材料科学与光电技术学院, 北京 100049DOI:10.19799/j.cnki.2095-4239.2022.0047摘 要 作为新一代电化学储能体系,锂离子电池在消费电子产品、交通动力系统、电网储能等领域具有重要的应用价值。然而,在锂离子电池的商业化进程中,安全性事故时有发生,影响了锂离子电池的大规模应用。本文从电池安全性的三个研究尺度:材料、电芯、系统,综述了与之对应的重要研究方法,其中每个尺度均包括基于物理样品的实验方法和基于计算机数学模型的模拟方法。本文介绍了这些方法的基本原理,通过典型案例展示了这些方法在安全性研究中的适用场景和作用,并探讨了实验和模拟方法之间的联系,着重介绍了材料热分析、材料加热过程中结构分析、电芯加速度量热分析、电芯安全性数值模拟等方法。基于对多尺度研究策略的系统综述,认为安全性研究需要在各个尺度联合同步开展。最后,展望了下一代锂电池,如固态电池、锂金属电池等,可能面临的电池安全性问题。这些新体系的安全性研究仍处于早期,其材料和验证型电芯的安全性研究是当前阶段值得关注的重要课题。关键词 锂离子电池;安全性;实验方法;数值模拟;固态电池;锂金属电池锂离子电池的研究始于1972年Armand等提出的摇椅式电池概念,商业化始于1991年SONY公司推出的钴酸锂电池,经历超过三十年的迭代升级,已经成熟应用于消费电子产品、电动工具等小容量电池市场,并在电动汽车、储能、通信、国防、航空航天等需要大容量储能设备的领域中展现出了巨大的应用价值。然而,自锂离子电池诞生开始,安全性便一直是限制其使用场景的重要问题。早在1987年,加拿大公司Moli Energy基于金属锂负极和MoS2正极推出了第一款商业化的金属锂电池,该款电池在1989年春末发生了多起爆炸事件,直接导致了公司破产,也促使行业转向发展更稳定地使用插层化合物作为负极的锂离子电池。如图1所示,锂离子电池进入消费电子领域后,多次出现了因电池火灾隐患而开展的大规模召回计划,2016年韩国三星公司的Note7手机在全球发生多起火灾和爆炸事故,除了引起全球性的召回计划外,“锂电池安全性”再次成为广受关注的社会话题。在电动交通领域,动力电池的安全性事故伴随着新能源汽车销售量的提升逐渐增加,据统计,中国在2021年有报道的电动车火灾、燃烧事故超过200起,电动汽车安全性成为消费者和电动车企最关心的问题之一。在储能领域,韩国在2017—2021年期间发生了超过30起储能电站事故,2021年4月16日北京大红门储能电站爆炸事故除导致整个电站烧毁外还造成2名消防员牺牲、1名员工失踪。随着锂离子电池的应用场景日益扩大,其安全性在工业界和学术界均引发了广泛的讨论和研究。图1 锂离子电池近年引起的安全事故在锂电池发展的早期阶段,产业界和学术界更关注锂电池发生安全性事故的本质原因,基于长期的认识积累,锂电池发生安全事故的本质可以总结为:电池在过充、过热、撞击、短路等异常使用条件下温度异常升高,引发内部一系列化学反应,引起电池胀气、冒烟、安全阀打开,同时这些反应会大量释放热量使整个电池温度进一步升高,最终各个化学反应剧烈发生,电池温度不可控地迅速上升,引起燃烧或爆炸,导致严重的安全事故,这一过程也被称为电池的“热失控”。电池从异常升温到热失控过程中存在多个重要的化学反应,它们与温度的对应关系如图2所示。图2 锂离子电池热失控的诱发机制随着锂离子电池的广泛应用,关于锂离子电池安全性的研究逐渐深入,从早期简单的描述现象和定性预测,发展为在多个尺度、采用多种手段研究安全性机理,基于精准测量和数值化模型准确预测电池安全性表现,最终提出应用化解决方案的综合性研究策略。如图3所示,目前对于电池安全性的研究一般从理解锂离子电池电芯的热行为出发,包括利用各类滥用条件测试确定电池的安全使用极限和失效表现,利用绝热量热等手段具体分析电池的热失控行为和特征温度,以及利用热失控数值模拟方法模拟电池的热失控表现;在认识电芯热行为的基础上,需要深入材料本质,利用热分析、物质结构和化学成分分析、理论计算等方法理解电芯发生热失控在材料层面的反应机制,从而为设计制造高安全性的电池提供基础理论的指导;此外,电芯作为电池系统的基础,其热失控行为的精准测量和准确模拟也为在系统层面设计更高安全性的电池系统和管理预警方案提供了理论指导。本文从材料热稳定性、电芯热安全性和大型电池系统热安全性三个尺度介绍安全性研究策略,着重介绍几种实验和模拟方法。基于商用体系锂离子电池的研究策略和成果,进一步探讨了这些方法对于产学研各界研发下一代锂电池所具有的重要意义。图3 锂离子电池安全性研究策略1 材料热稳定性研究锂离子电池发生热失控的根本原因是电池中的材料在特定条件下不稳定,从而发生不可控的放热反应。目前商业化使用的电池材料中,与安全性关系最密切的主要是充电态(脱锂态)过渡金属氧化物正极、充电态(嵌锂态)石墨负极、碳酸酯类电解液和隔膜,其中前三者在高温下均不稳定且会发生相互作用,在短时间内释放大量的热量,而现行常用的聚合物隔膜则会在140~150 ℃熔融皱缩,导致电池中的正负极直接接触,以内短路的形式快速放热。研究人员自20世纪末开始进行了大量材料热稳定性的研究工作,发展了以热分析认识材料热行为,结合形貌、结构、元素成分和价态表征综合研究内在机理的研究方法。近年来计算材料学的发展也为从原子尺度模拟预测材料的稳定性提供了新的方法和手段。1.1 热分析方法热分析是最直接和直观认识材料热行为的方法,指在一定程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。对于电池材料来说,一般关注其质量、成分、吸放热行为随温度的变化关系。质量与温度的关系可通过热重分析获得,吸放热与温度的关系可通过差示扫描量热法获得,TG和DSC可以设计在同一台仪器中同步测试,该种方法又被称为同步热分析。TG、DSC、STA等仪器通常采用线性升温程序,通过热天平、热流传感器等记录样品的质量、吸放热变化,由于发展时间较早,测试技术和设备工程化水平较为成熟,已成为认识材料稳定性最重要的测试手段之一。基于热分析结果可以确定材料发生相变、分解或化学反应的起始温度、反应量和放热量,但在锂离子电池中,往往更关心充电态材料在电解液环境下的稳定性和反应热。良好的热稳定性是电池材料进入应用的必要条件,而产热量和产热速度则影响电池热失控的剧烈程度。用于常规热分析样品的坩埚一般为敞口氧化铝材质或开孔的铝金属材质,为了研究材料在易挥发电解液中的热表现,需要使用自制或设备厂商专门提供的密封容器。Maleki等通过STA系统研究了钴酸锂/石墨圆柱电池中各种材料的热分解行为,由于电解液采用高沸点的EC溶剂,所以仅在敞口容器中便可以测试,研究发现全电池截止电压4.15 V时,脱锂态钴酸锂在178 ℃发生分解,产生的氧气和电解液反应释放大量热量,释放的能量达到407 J/g,嵌锂态负极的SEI会优先分解,温度在125 ℃之前,之后会出现持续的放热反应,释放能量为697 J/g,而当负极发生析锂后释放能量会上升到827 J/g,这一结论有力支持了近年来析锂电池安全性下降的报道。Yamada等利用DSC确认了充电态磷酸铁锂(LiFePO4)的稳定性很好,与电解液的反应温度大于250 ℃,放热量仅为147 J/g,显著低于层状氧化物材料。Noh等利用密封容器系统研究了不同Ni含量的三元正极材料Li(NixCoyMnz)O2,比较热分析结果发现脱锂态三元材料的热稳定性与Ni含量呈现负相关性,且在x0.6之后加速下降。材料经过改性后,其稳定性需要通过热分析进行确认,研究人员基于DSC发现核壳浓度、包覆等方法均能不同程度地提高正极材料的热稳定性。需要注意的是,热分析的数据质量与实验条件、样品制备方法密切相关,目前并没有严格一致的测试规范,文献中不同单位之间的测试结果横向对比性很差,很多电池材料的热稳定性尚缺乏准确定量的结论。除了DSC、TG外,还有一类特殊的热分析方法是利用加速度量热仪研究反应的起始温度。与常规热分析采用线性升温不同,ARC使用的升温程序是加热-等待-检索模式,即步进式地在每个温度点保持恒温,如果检索程序发现样品的升温速率超过0.02 K/min,则通过同步样品的升温速率保持样品处于绝热状态,从而跟踪样品的自加热升温过程,否则开始加热至下一个温度点进行恒温、检索。不难发现,ARC获取的是样品近似热力学上的失稳温度,由于检测精度高,获得的失稳温度往往比DSC、TG等方法获得的低很多。Dahn课题组基于ARC测试了大量材料-电解液体系的反应起始温度,基本均低于DSC数据中的放热主峰。事实上,Wang等在低升温速率的DSC测试中也发现充电态材料与电解液的放热起始点远早于剧烈的放热峰。这些信息表明材料失稳到完全失控的过程并不是突变式的,整个体系动态演变的过程仍然缺乏深入的研究认识。图4 (a) DSC基本原理;(b) 脱锂态正极-电解液的DSC测试结果1.2 物相分析技术电池材料在升温过程中发生相变和化学反应,其形貌、结构、成分和元素价态都有可能发生变化,这些变化需要基于对应的方法进行表征分析,如利用扫描电子显微镜观察材料热分解前后的形貌变化,利用X射线衍射和光谱学研究材料结构和元素价态演变。由于材料热分解和热反应存在显著的动力学效应,在加热过程中原位测试可以最大程度地还原物相变化的真实过程。目前较为成熟的原位表征技术主要有两类:一类是与热分析仪器串联使用的质谱、红外光谱等,可以实时监测物质分解产生的气体类型,判断材料加热过程中化学组成的变化;另一类是原位X射线衍射技术,通过特制的样品台,可以在升温过程中实时、原位测定材料的结构变化,目前全球多数同步辐射光源和一些实验室级的X射线衍射仪上都可以实现原位变温XRD测试。Nam等利用变温XRD发现脱锂态LiNi1/3Co1/3Mn1/3O2结构在350 ℃向尖晶石转变,而加入电解液后该转变温度会下降至304 ℃。Yoon等在LiNi0.8Co0.2O2中发现了类似的规律,并发现MgO包覆可以改善脱锂态正极在电解液中的相变。图5展示了变温XRD和MS的联用技术,系统研究了不同Ni含量的脱锂态NCM三元正极在升温过程中的结构和成分变化,研究发现三元正极失稳释放氧气的过程与结构在高温下转化为尖晶石相的行为直接对应,且这一过程的起始温度随镍含量的上升显著下降,NCM523的起始相变温度约为240 ℃,NCM811则小于150 ℃,从体相结构的本征变化解释了高镍正极在电池应用中热安全性差的原因。以上工作都是基于同步辐射光源实现的,由于同步辐射提供的光源质量高、扫谱速度快,更适用于研究与时间相关的动力学问题。除此之外,近年来基于X射线谱学以及拉曼光谱实现同步表征的方法均有所发展。结合通过热分析手段观察得到的材料热行为信息,并对升温过程中材料物相变化的研究,可以更深刻地理解材料演变以及电池体系热失稳的动力学过程,为材料的安全性改良提供理论指导。图5 基于原位XRD和质谱对镍钴锰酸锂结构稳定性的研究1.3 计算材料学基于材料原子结构计算预测材料的全部性质是计算材料学家的终极追求。材料的热力学稳定性可以基于密度泛函理论计算。DFT中判断材料稳定性的依据是反应前后的能量差ΔE是否小于0,如果ΔE小于0,反应能发生,则反应物不稳定,反之同理。Ceder等在1998年就计算了LiCoO2脱锂过程结构相变的过程,计算结果与实验结果吻合良好。然而目前大多数热力学计算不考虑温度效应,且热力学只能作为反应进行方向的判据,无法预测反应速率等动力学问题,考虑温度和动力学计算则需要使用成本较高的分子动力学、蒙特卡洛或者过渡态搜索方法。相对于材料本身的稳定性,计算材料学对于计算预测两种材料间的界面稳定性存在一定优势。Ceder等计算了不同正极和固态电解质之间的稳定性,为选取界面包覆的材料提供理论指导。Cheng等利用AIMD模拟Li6PS5Cl|Li界面,发现界面副反应会持续发生,材料界面之间的副反应是自发发生的,与通常认为的界面钝化效应有所差异。此外,正极材料中的相变析氧、过渡金属迁移等问题的计算模拟也都处于初期开发阶段,仍需持续探索。总的来说,目前阶段材料层级的理论模拟技术与实验技术的差距仍然较远,需要研究人员的持续努力。2 电芯热安全性研究电芯指电池单体,是将化学能与电能进行相互转换的基本单元装置,通常包括电极、隔膜、电解质、外壳和端子。电芯的热安全性特征是电池工业界最关注的内容之一,它是电池材料热稳定性的集中表现,也是制定规模化电池系统安全预警和防护策略的基础。由于电芯内部具有一定的结构,其安全性会呈现一些在纯材料研究中不被讨论的特点,使得电芯安全性具有更广泛的外延和认识角度。工业上一般通过滥用实验来研究和验证电芯产品的安全性,近年来基于扩展体积加速度量热仪(又称EV-ARC)的安全性测试方法有较快发展,此外电芯安全性模拟方法也从早期的定性分析发展到可以准确仿真预测热失控进展的水平。2.1 滥用测试国际电工委员会(IEC)、保险商实验室(UL)和日本蓄电池协会(JSBA)最初定义了消费电子产品电芯的滥用测试,模拟电芯工作可能遇到的极端条件,通常分为热滥用、电滥用和机械滥用。常见的热滥用为热箱实验,电滥用包括过充电和外部短路实验,机械滥用包括针刺、挤压、冲击和振动等。企业和行业标准一般将电池对滥用测试的响应描述为无变化、泄漏、燃烧、爆炸等,也可基于附加的传感器和检测系统记录温度、气体、电压对滥用的响应。电芯通过滥用测试的标准是不燃烧、不爆炸。锂电池应用早期研究人员大量研究了电池对各类滥用测试的响应与使用条件、材料体系、充电电量等的影响,提出了各类滥用机制引发电池热失控的机理。滥用测试中最难通过的项目是针刺测试,近年来关于针刺测试的存废引起了较大争议,但提高电芯的针刺通过率仍是锂电池安全性研究的重要课题之一。由于滥用测试针对的是商用成品电芯和贴近真实的使用条件,目前更多作为电池行业的安全测试标准而非研究手段。2.2 EV-ARC测试早期的ARC只适用于研究少量材料样品的热失控行为,Feng等发展了利用EV-ARC研究大体积电芯绝热热失控行为的方法,研究的方法原理和结论如图6所示,由于EV-ARC的加热腔更大,所以需要更精准的控温技术和更严格的校准方案。基于EV-ARC测试可以定量标定出电芯热失控的特征温度T1、T2和T3,分别对应电芯自放热起始温度、电芯热失控起始温度和电芯最高温度,为评价电芯安全性提供了更精确定量的评价指标,标准化的测试条件可以帮助建立统一可靠的电芯热失控行为数据库,分析了不同体系电芯的热失控机理。Feng等利用EV-ARC首次提出正负极之间的化学串扰会引起电芯在不发生大规模内短路的情况下热失控,说明脱锂正极释氧是现阶段影响电芯安全性的关键因素。Li等研究快充后的电芯发现快充析锂导致T1大幅下降,说明析锂同样是电芯安全监测中需要重点关注的问题。以上这些问题都是在常规的滥用测试中难以定量验证的。图6 基于EV-ARC对电芯热失控的研究相比于普通的加热滥用实验,EV-ARC实验环境的温度由程序精确控制,获得的测试结果重复性更好、数据可解读性更高,近年来已成为评价和研究电芯安全性的重要手段。然而EV-ARC模拟的绝热热失控环境与真实的电池滥用工况仍有所差异,评价电芯的实际安全性仍需大量模拟真实严苛工况的测试手段。2.3 高速成像技术为了更直观地理解热失控过程中电池内部物质、结构的演化,研究人员发展了结合红外测温以及原位针刺等辅助功能的透射X射线显微方法如图7(a)~(c)所示。由于热失控往往是在极短的时间内发生剧烈的反应,同时伴随剧烈的物相、结构变化。这一特点给TXM表征方法提出了相当高的时间分辨率的要求。实验室X光源能够发射出的X射线光电子数量有限,采集一组TXM影像数据需要较长的时间。为了观察剧烈变化的热失控过程,Finegan等在欧洲同步辐射实验室(ESRF)使用同步辐射光源将TXM的曝光时间降低至44 μs,配合针内预埋的热电偶温度传感器,实现了对针刺发生时电池内部形貌与刺入点温度的同步监控。该团队利用这种手段研究了刺针纵向与径向刺入18650商业圆柱电池时电池内部热失控行为的差异。Yokoshima等采用实验室光源进行连续实时的透射X射线照相技术,也得到了软包电池在针刺过程中结构随时间变化的一组透射投影图。该方法以4 ms的时间分辨率较为清晰地观察到了针刺入软包电池后电池内部每一层材料的形变过程,以及针刺深度与热失控程度的对应关系。图7 基于X射线成像技术对电芯热失控的研究由于透射投影图只能反映某一方向上二维的信息,如果要对真实三维空间中物质的分布做精确地定量,需要借助计算机成像技术。如图7(d)所示,Finegan等利用同步辐射光源X射线高亮度的特征,在欧洲同步辐射装置(ESRF)的线站上搭建了一套集合原位红外加热、红外测温与高速CT的装置。使用红外加热,实现在线的18650电池升温,同时进行连续的X射线CT成像。连续扫描的TXM投影图能够反映极高时间分辨率的热失控电池内部情形。基于每500张TXM重构得到1个X射线CT结果能够达到2.5帧每秒,实现了一定时间分辨率的电池内部空间分布成像。通过CT结果能够清晰地看到热失控过程中各个阶段的电池材料变化,如电极活性物质层破损、铜集流体融化再团聚等。结合TXM技术获得的投影图和高速X射线CT结果,可以清晰认识热失控过程中电池内部不同位置各个材料的反应、产气、结构破坏等失效行为。另一方面,配合诸如针刺、红外加热、挤压、拉伸等原位实验,可以帮助研究与理解电池的各类宏观失效行为。2.4 电芯热失控数值模拟电芯安全测试的维度广、涉及的测试项目多,通过实验评价电芯安全性需要大量样品和时间成本。同时,产品级电芯的研发周期长、成本高,安全性评估往往处于电芯研发周期的后端。通过数值模拟方法预测电芯安全性测试表现可以大幅度降低实验成本,且在产品研发的前期便对体系的安全性做出判断,大大提高研发效率。电芯热失控数值模型的核心是准确描述电芯热失控过程中的化学反应及吸放热量,从而基于能量守恒模拟电池温度在不同条件下的动态变化。化学反应的吸放热一般通过Arrhenius公式描述 (1)式中,图片指反应的产热量;图片为反应物的质量;图片为反应单位质量的吸放热;α为反应的归一化反应量;图片为机理函数;图片为反应的指前因子;图片为反应活化能。通过热分析实验可以测定求解以上参数,这也是热分析动力学的基本问题。电芯升温过程中内部会发生多个反应,它们对电芯升温的贡献可以看作线性叠加,通过准确描述所有反应即能较为精准地预测电芯在不同条件下的温度变化行为 (2)上述方程中,图片为电芯密度;图片为等压比热容;图片、图片、图片为电芯中沿各个方向的热导率;图片为对所有化学反应的产热速率求和;图片为电池与环境换热所引起的能量变化。预测温度变化需要求解二阶含时偏微分方程,如果认为电池中的反应和空间无关,电芯温度均匀上升且电芯体系与外界无热交换,也可简化为一阶微分方程 (3)基于该理论,Hatchard等将电池中主要的化学反应总结为SEI分解、负极-电解液反应、正极-电解液反应、电解液分解反应,计算了方形和圆柱电芯在热箱中的热行为。Spotnitz等总结了早期文献中的反应动力学参数,并基于均一电芯模型系统预测了不同材料体系的电芯在各类滥用测试中的表现。通过理论模拟,可以仅基于少量小规模实验数据对实际电芯的安全性表现进行系统预测。Feng等、Ren等基于热分析动力学和非线性优化算法重新标定了电池中关键反应的动力学参数并进行了更准确的热失控模拟,他们的模型利用DSC测试获得的参数准确预测了电池在ARC中的热失控表现,可以进一步用于预测热箱、短路等条件下的安全性。需要指出的是,不同材料体系、配方和工艺的电芯中涉及的反应机制和动力学可能存在差异,如近年来电芯内短路、正极-电解液反应和正负极化学串扰三者是否均在热失控过程中主导发生的问题引起了广泛争论,安全性的数学模拟并非空中楼阁,而是建立在具体实验和对电池内部化学反应深刻理解的基础上。由于算力的限制,早期的安全性仿真工作大多不考虑温度空间分布或只计算一维分布,而空间分布在大容量电池和真实工况中是不可忽略的,Kim等、Guo等较早提出了描述热失控温度分布的三维电池模型。近年来数值计算方法的发展和商业计算软件的成熟大幅降低了安全性模拟仿真的难度,Feng等利用商业化的有限元计算软件Comsol Multiphysics建立了大容量三元方形锂离子电芯的热失控仿真模型,可以模拟电芯在短路状态下热失控过程和温度的分布,与实测有较好地拟合结果。除了电芯的热行为,电滥用和力学失效对安全性也存在一定的影响,目前,通过构建电-热耦合模型研究电池非等温电化学性能和短路热失效表现的方法目前已较成熟[59-60],而力学失效如碰撞、针刺等引起热失控的数值模型仍需要持续地开发。3 系统热安全性研究电池系统的安全性是目前锂电池应用面临的最直接问题,其研究重点是系统中热失控的扩展规律与抑制、预警措施。目前商品化电芯的热失控无法完全避免,在系统层面防止热失控扩展是可能的安全性解决方案。在系统层级开展实验研究的成本较高,但难以避免,在模拟仿真的辅助下可以提前预测优化系统设计,降低实验成本。3.1 热失控扩展和火灾危险性测试电池系统热扩展的实验研究成本和危险性较高,主要方法是通过加热、过充、针刺等方式诱发电芯单体的热失控,并利用接触式热电耦、红外测温等手段研究温度在系统中的分布和变化,这种方式只能获得局部多点的热失控信息。Wang团队在国内首次开发了全尺寸锂离子电池火灾危险性测试平台,用来测量大尺寸动力电池及电池组的燃烧特性,除了可以获得电池温度变化外,还可以获得电池组失控过程中的质量变化、火焰温度等信息,同时基于锥形火焰量热等技术可以测定大型电池系统宏观燃烧所释放的能量。与电芯EV-ARC等方法获得的信息不同,在真实环境下实验得到的电池系统燃烧行为往往更加复杂,包含多个加速失重和喷射火焰的阶段。通过以上测试可以在实用层面评价大型电池组的安全性和失控风险,为安全性改良、预警、消防和灾害处置提供重要信息。3.2 灾害气体研究和预警方案设计电池实际使用和安全失效的过程中,气体的成分与生成规律是重要的研究课题,与电池热失控早期预警、爆炸、火灾蔓延等表现密切相关。从材料本质上看,电池中的有机电解液在高温下气化、活性组分高温副反应均会释放气体,加热条件下产生的混合气体可以通过气相色谱-质谱联用技术、傅里叶变换红外光谱等手段分析成分。目前这些气体检测技术已较为成熟,但在安全性研究过程中,气体的收集和定量仍需要特制的容器或取样器辅助实现。一般来说,电池热失效气体组分中除了惰性的CO2外还包括大量未完全反应的电解液溶剂、CO、H2和有机小分子,兼具可燃性和生物毒性,Ahmed等发现可燃气体的释放是加剧锂电池系统热失控扩散、诱发大规模火灾事故的重要原因。由于气体的扩散速度快,检测手段较成熟,气体监测有望成为电池系统安全预警的关键手段,Cui等利用同位素标记-质谱技术发现充电态电池在加热失控的早期负极的SEI分解会产生H2,促进电池的热失控。Jin等发展了一种通过小型MS监测H2实现模组过充热失控早期预警的手段,在8.8 kWh的磷酸铁锂-石墨电池包中进行了实验验证,发现可以在产生烟雾的10分钟之前发出安全预警。3.3 系统安全性模拟仿真相对于实验研究,模拟仿真消耗的实物资源少,在系统安全性研究中更具优势。系统热安全模拟一般建立在完备准确的电芯热失控数值模型的基础上,在由多个电芯单体构成的复杂电池系统中,每个单体内部温度均独立地遵循前文所述的电芯热失控模型,电芯之间交换热量通过热传导、对流和辐射形式进行,可以分别通过相应的公式进行描述,电芯热失控产热方程和传热方程共同构成了描述整个系统空间的温度场的数学模型。通过求解建立的数学模型,研究人员和工程师可以研究系统大小、空间布局、热管理模式等对电池系统稳定性、安全极限温度、热失控扩散表现等的影响。由于电池系统的结构往往较复杂,系统热安全模型往往需要在成熟的商业模拟仿真软件中进行,常用的软件平台有Comsol Multiphysics、ANSYS、Siemens Star-ccm+等。Feng等利用Comsol Multiphysics构建了由6个标准方形电芯组成的小型模组的热失控规律,研究了不同参数对热失控扩展的影响,提出了4 种抑制热失控扩展的方案,并对增加隔热层的方案进行了实验验证。Zhai等提出了18650锂离子电池模组热失控传播的多米诺预测模型,在Matlab中构建了较为简化的二维模型,预测模组中热失控传播的路径和概率,解释了模组中不同热失控初始位置对热失控传播行为的影响。目前学术界关于大型电池系统热安全性的研究仍然较少,作为一个工业界和学术界共同关心的问题,系统层级的安全性研究需要产学研的深入合作。4 下一代锂电池的安全性研究电池安全的预防、预警、预测依赖对从系统到电芯再到材料热失控构效关系的深刻理解。纵观近年来引起广泛关注的锂电池起火事件,大部分发生在新技术和新材料的初步应用阶段,如近几年多起采用高镍三元电池的电动汽车起火事件,而当大量事故引起广泛关注后,关于该电池体系的安全性研究才随之增多,电池安全研究于电池电化学性能研究的滞后性是电池安全研究中的一个鲜明特点。为了满足电动化浪潮带来的高安全、高能量密度要求,人们期望在锂离子电池中采用不可燃电解质或固态电解质,以彻底解决电池的安全性问题同时达到高能量密度。然而,电池安全性不仅与电池内部材料本身的热稳定性相关,还与材料之间的相互作用、电池内部的复杂环境息息相关。近期中国科学院物理研究所Chen等的工作显示,即使是采用了具有高热稳定性的固态电解质,在与金属锂接触的情况下,高温依然会发生热失控,且金属锂会受到温度的驱动,向固态电解质内部生长,进一步降低热失控的临界温度。清华大学Hou等报道了采用不可燃新型电解液的电池,由于锂盐和嵌锂态负极的剧烈反应,电池在高温下依然会发生热失控。这些结果说明,单维度提升锂电池安全性的设想往往是片面的,新体系的引入很有可能导致电池热失控反应链条的重构,从而使原本的安全预防预警措施不再生效,也很可能是新型锂电池体系容易出现安全事故的深层次原因之一。综上所述,为了在发展高能量密度电池的同时保证电池的安全性,研究者们需要在优化电芯电化学性能的同时,尽快同步地开展前瞻性电池安全性验证和研究。只有清晰全面地认识电池热失效机制和各个维度安全性的影响因素,才能在应用阶段做好电池的有效安全预防。图8给出了电池领域新材料和新技术从基础研究到规模量产的技术成熟周期。可以看出,一个新型技术的大规模应用需要投入巨额的人力物力,花费数十年的时间,才能真正实现量产。然而,电池的安全性验证却往往在电池接近量产的阶段才展开,且往往以通过电池安全测试标准为目的,无法系统深入地了解电池在全生命周期、实际复杂工况下的安全行为和内在机理,为日后的安全事故埋下隐患。对于早期的电池体系,由于能量密度不高,安全性问题并不突出,而最新的锂离子电池电芯能量密度已经可以达到300 Wh/kg以上,产学界广泛关注的锂电池新技术和新体系能量密度更高。这些具有高能量密度特性的新技术和新体系面临着更为严峻的安全性挑战,因此,将电池的安全性研究和验证步骤尽可能提前,在基本确定电芯结构后尽可能早地开展电池安全测试与机理研究工作,才有望在真实量产阶段前期就做好准备,摸清其安全性特征与行为,设计好对应的防护、预警措施。图8 电池领域新技术的成熟周期与高能量密度新体系的安全性研究目前,下一代化学储能电池的材料体系尚未有定论,可能用于新一代锂离子电池的新材料包括富锂材料、无锂高容量正极材料、硅基负极材料、锂金属负极材料、固态电解质等,如果考虑使用锂金属负极,锂电池概念的外延还可进一步扩展。然而从学术报道来看,与新材料热行为和新体系实用安全性相关的内容却鲜有报道,目前对绝大部分新型锂电池体系的安全性认知尚处于未知或初期阶段。本文所综述的研究方法既可以用于研究现有商业化锂离子电池的安全性,也可以从材料层级提前理解新型锂电池材料体系的热稳定性,并基于模拟仿真方法预测其电芯和系统的安全性,这对选定下一代锂电池的技术路线,保障高能量密度锂电池新技术平稳落地,具有重要指导意义。
  • 高精度电子测量仪器研发商模拟感知获数千万元融资
    5月5日消息,以高精度电子测量为特色的西安模拟感知信息科技(模拟感知)有限公司近日宣布完成数千万元人民币的首轮融资,投资方为上海超越摩尔(超越摩尔)。模拟感知信息科技位于西安,公司核心团队利用在高精度仪器研发领域积攒的经验,“降维”研发了多种现场仪表电子测量模组。将低噪声模拟链路设计、温漂/零漂抑制和精度补偿等技术成功应用在工业现场领域。模拟感知团队表示我国在电子测量领域大幅落后于西方,目前远不能满足我国经济发展的要求,有巨大的市场机遇。模拟感知基于技术相通性和产品归一化和积木化的原则,在仪表和仪器领域同时布局:• 在仪表领域,公司提供测量的核心模组(电路板卡),目标客户群体是我国广大的仪表厂商。公司在首系列产品的研发过程中,深刻感受到了来自客户的热情与支持,产品在测试阶段就收到了数量可观的订单。在下游客户的鼎力支持下,目前公司超声波气体流量计核心模组已完成了市场的闭环验证,气超整表准确度达到了0.5%级。公司会持续在仪表核心测量领域投入,助力我国仪表厂商实现产品的升级换代。• 在测量仪器领域,公司将于近期陆续推出用于实验室研发、新能源汽车测试、电池测试、电源芯片测试和航空发动机发电系统测试的相关产品。超越摩尔表示现代测量的实质是电子测量,无论是流量、温度还是形变,都是将被测量作为电信号进行采集、抽象和处理。 在被测信号进入数字处理芯片之前的模拟电路部分是整个测量系统的重中之重,也是我国同西方集团在通用电子测量领域差距最大的部分。模拟感知核心技术团队在相关领域耕耘多年,主导过多款超高精度仪器的研发和上市工作,在通用电子测量方向有非常明显的技术和经验优势,有实力成为行业的领军企业。
  • 怀柔综合性国家科学中心获批2030年将建成全球知名综合性科学中心
    p  在北京的“三大科学城”中,怀柔科学城知名度稍低。市发改委昨日公布,北京怀柔综合性国家科学中心建设方案已获得批复,将重点开展系统推进重点科学领域跨越发展等工作。br//pp  北京市发改委相关负责人介绍,5月25日,国家发展改革委、科技部联合批复了《北京怀柔综合性国家科学中心建设方案》,同意建设北京怀柔综合性国家科学中心。到2020年,北京怀柔综合性国家科学中心建设成效将初步显现 到2030年,全面建成世界知名的综合性科学中心。/pp  在国务院去年发布的《北京加强全国科技创新中心建设总体方案》中,北京将统筹规划建设中关村科学城、怀柔科学城和未来科学城,建立与国际接轨的管理运行新机制,推动央地科技资源融合创新发展。加强北京市与中央有关部门会商合作,优化中央科技资源在京布局,发挥高等学校、科研院所和大型骨干企业的研发优势,形成北京市与中央在京单位高效合作、协同创新的良好格局。/pp  中关村科学城主要依托中国科学院有关院所、高等学校和中央企业,聚集全球高端创新要素,实现基础前沿研究重大突破,形成一批具有世界影响力的原创成果。怀柔科学城重点建设高能同步辐射光源、极端条件实验装置、地球系统数值模拟装置等大科学装置群,创新运行机制,搭建大型科技服务平台。未来科学城着重集聚一批高水平企业研发中心,集成中央在京科技资源,引进国际创新创业人才,强化重点领域核心技术创新能力,打造大型企业集团技术创新集聚区。/pp  在国家发改委和科技部联合批复的建设方案中,这座综合性国家科学中心将重点开展7个方面工作,即系统推进重点科学领域跨越发展 推进国家重大科技基础设施集群发展 科学布局前沿交叉研究平台 集聚国内外一流科技创新人才及团队 谋划推动实施重大科技计划 积极推进全面创新改革先行先试 统筹布局前瞻未来的国家实验室。/ppbr//p
  • 恭喜重庆地质仪器厂选用爱佩品牌模拟运输振动台
    恭喜重庆地质仪器厂选用爱佩品牌模拟运输振动台壹台,型号:AP-ZD-300,签定日期2015年12月03日,送货地址位于:重庆市沙坪坝区先锋街2号。业务负责人:李冬梅;电话:86-0769-81015055 手机:13316686114;全国服务热线:400-6727-800。重庆地质仪器厂是1969年为响应党中央关于加强三线建设的号召,由北京地质仪器厂、上海地质仪器厂与原重庆地校留守处的部分职工内迁组成的一个企业,工厂原属地矿部(国土资源部)现属为国机集团下的中国地质装备总公司领导,生产地球物理勘探仪器的专业生产企业,性质为全民所有制。重庆地质仪器厂主要从事地质勘探仪器的生产、开发、经营,兼营数字仪表、环保仪器、汽车电器及电子仪器产品和社会有关机械电子一体化产品。面向全国找矿、工程勘探、环境监测,地震预报,寻找地下水源等方面的产品和服务,属于高科技产品生产企业。2001年通过ISO9001质量体系认证,2010年7月获重庆市高新技术企业认定,重庆市沙坪坝区“企业研发中心认定。企业位于重庆市沙坪坝区先锋街2号,是重庆市园林式企业,工厂全厂占地面积18.3万平米,其中生产用地约4.5万平米。企业在2010年被评为重庆市精神文明单位。重庆地质仪器厂主要专业产品有六大系列:1、地震仪器系列产品:DZQ48/24/12等各种型号的地震仪器,高分辨率地震仪,数字深层地震仪等。主要用于:水、工、环的,地质基础调查及找矿。2、测井仪器系列主要产品有:综合数字测井系统、系统轻便工程测井,绞车控制器等各种测井产品、各种用途探管,测斜仪系列产品。主要用于:煤田数字测井,水文工程数字测井,固体金属矿测井,工程测井等。3、电法仪器系列:其中又分为直流电法和交流电法,二大系列产品。主要产品有DZD6—6A多功能直流电法仪,DUK-2A高密度电法测量系统,工程瞬变电磁测量系统等各种型号产品,用于寻找地下水及水、工、环地质勘察,矿产资源勘察等。4、放射性仪器系列有FD-803A,NP-4 γ射线能谱仪等多种系列产品,用于找矿及环境监测等。5、地震传感器系列主要产品有低频系列检波器,大振级检波器,井中三分量检波器和各种中高频检波器等。主要用于深部的地质勘探、人工地震监测、各种工程振动监测和道路、建筑等安评检测等。6、社会产品:汽车、摩托车电喇叭,以及承揽表面加工业务。爱佩品牌模拟运输振动台符合美国及欧洲运输标准及 EN、ANSI、UL、ASTM、ISTA国际运输标准。试品装夹采用导轨式,操作方便、安全、 数字仪表显示振动频率、 同步静噪皮带传动,噪声极低、机台底座采用重型槽钢配减振胶垫,安装方便,运行平稳,无需安装地脚螺丝。重庆地质仪器厂选用的模拟运输振动试验台更多优势特点参数价格请联系爱佩公司客服人员.
  • 如何使用3D模拟准确沟通外观标准及外观解决方案
    外观的复杂性不仅仅局限于颜色,它是材料独特属性的集合体,包括纹理、光泽、透明度和特殊效果等。这些属性与环境因素如光照、背景及观察角度相互作用,共同影响我们对物品外观的感知。在设计到生产的过程中,初期外观特性的准确传递常受阻,导致匹配错误、审批延迟和成本增加。解决这一挑战的方法在于采用可以精确测量、编辑和通用地沟通外观特性的虚拟环境,以确保设计意图的精准实现和流程的高效进行。一、涂料、涂层和汽车行业中的外观在涂料、涂层和汽车行业中,外观的理解远超过简单的颜色识别。对于下图中的车辆,尽管许多人可能会直接回答“蓝色”,这样的描述并没有全面捕捉到车辆外观的复杂性和细节。真实的外观特性或属性包括但不限于颜色的深浅、光泽度、金属质感或珠光效果、以及涂层的质感和透明度等。这些细节共同构成了我们对车辆外观的全面感知,而简单归纳为“蓝色”未能充分表达这种多维度的视觉体验。虽然用“蓝色”来描述车辆是一种便于理解和沟通的方式,比如帮助某人在停车场中找到这辆车,但这种描述并没有涵盖汽车外观的全部信息。例如,这辆车在直射光下会呈现出蓝绿色,而在阴影下则转变为接近黑色的深墨蓝。此外,其高光泽漆面能够产生镜面般的反射效果,而使用的特效颜料则赋予了车身独特的光泽度。这些复杂的变化和细节共同构成了车辆独特的视觉特性,超越了简单的颜色描述,反映了光线和观察角度对汽车外观感知的影响。二、时尚、家居与电子产品材料外观随着材料日益复杂,制造商和品牌越发认识到,描述外观不能仅限于颜色。为了吸引供应商同时加速产品上市,紧跟潮流和消费者偏好变化成为了他们的共同目标。然而,沟通外观的过程充满挑战。一方面,靠图像传达复杂的外观特性并非易事,因位置和光线的不同,外观会产生变化,如光泽、纹理等。即便使用数字图片,设备校准仍不能完全解决由外部环境引起的误差问题。另一方面,长久以来,依赖手工原型来沟通和审批外观虽然在颜色准确性上有优势,但其耗时且成本高昂,尤其在全球制造流程中,还会引入额外的运费和时间延误。因此,越来越多的品牌转向虚拟设计作为指定、设计和沟通外观的优选路径。这种方法不仅加快了决策过程,还降低了成本,并提高了效率和准确性。三、通过虚拟设计,时间从数月缩短至数分钟虚拟设计技术已将产品开发周期从数月缩短至数分钟,推动了生产效率和市场响应的加速。通过3D CAD和逼真渲染技术,企业能够节约成本并快速审批。然而,虚拟设计面临的一个关键挑战是如何精确模拟真实世界材料的外观,包括其物理和光学特性。尽管传统方法通过手动模拟这些特性,但这既耗时又难以达到完美精度,且难于在不同工具间共享。因此,行业正在探索更先进的解决方案,以更真实地反映材料的特性,提升虚拟设计的效果和实用性。在2016年,X-Rite推出了一种创新的供应商中立文件格式—Appearance Exchange Format (AxF),性地提供了一种存储和共享颜色及外观数据的精确方法。AxF使品牌所有者、设计师和制造商得以在整个设计到生产流程中,以数字形式准确共享和展现颜色与外观信息,从而保证数字原型、展示、电子商务和销售环境中的视觉一致性。AxF的应用范围远不止颜色,它允许创建包含特效涂层、皮革、塑料、织物、木材和拉丝金属等复杂材料的全面数字模型,真实反映材料的视觉效果。这一格式大幅简化了设计和审批流程,缩短了产品上市的时间,有效提升了工作效率和市场反应速度。AxF的另一突出优势在于其能够跨不同应用程序共享虚拟文件,实现了将庞大数据量的信息从千兆字节压缩到仅仅几兆字节。这种压缩技术产生的3D文件不仅可以轻松集成到产品生命周期管理(PLM)、计算机辅助设计(CAD)系统中,还适用于最先进的美术渲染应用程序。AxF的这一能力极大地促进了工作流程的高效性,确保了从设计到渲染的过程中信息的一致性和准确性,加速了产品从概念到市场的整个过程。四、外观解决方案作为X-Rite Total Appearance Capture (TAC&trade ) 生态系统的核心部分,AxF获得了广泛赞誉。TAC技术使得准确材料外观的整合成为可能,为真实感的数字材料捕捉和3D设计带来了提升。一个具体例子就是下方展示的,这不是一张照片,而是利用TAC生态系统生成的一双鞋的真实外观渲染图。之前提及的皮革、织物和纯色表面样本同样通过TAC技术的外观数据实现了精准渲染。AxF技术已在众多行业得到广泛应用,X-Rite正在与各大硬件和软件供应商以及研究机构合作,探索新的整合可能和功能增强。在涉及品牌所有者、设计师、供应商和制造商的复杂供应链中,沟通外观的复杂性远超颜色。在全球分布的制造过程中,确保颜色和尤其是材料的完整外观信息的准确传递,存在许多挑战。五、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 紫外线试验箱 模拟环境试验箱 紫外线耐气候试验箱
    Q8/UV紫外光加速老化试验机Q8/UV紫外光加速老化试验机主要用于模拟对阳光、潮湿和温度对材料的破坏作用;材料老化包括褪色、失光、强度降低、开裂、剥落、粉化和氧化等。紫外光加速老化试验机通过模拟阳光、冷凝、模仿自然潮湿,试样在模拟的环境中试验几天或几周的时间,可再现户外可能几个月或几年发生的损坏。Q8/UV紫外光加速老化试验机中,紫外灯的荧光紫外等可以再现阳光的影响,冷凝和水喷淋系统可以再现雨水和露水的影响。整个的测试循环中,温度都是可控的。典型的测试循环通常是高温下的紫外光照射和相对湿度在100%的黑暗潮湿冷凝周期;典型应用在油漆涂料、汽车工业、塑胶制品、木制品、胶水等。 模拟阳光阳光中的紫外线是造成大多数材料耐久性能破坏的主要因素。我们使用紫外灯来模拟阳光中的短波紫外部分,它产生很少的可见光或红外光谱能量。我们可以根据不同的测试要求选择不同波长的UV紫外灯,因为每种灯在总的紫外线辐照能量和波长都不一样。通常,UV灯管可分为UVA和UVB两种。Q8/UV灯管UVA-340灯管:UVA-340 灯管可极好地模拟太阳光中的短波紫外光,即从365 纳米到太阳光截止点 295 纳米的波长范围。UVB-313灯管:UVB-313 灯管发出的短波紫外光比通常照射在地球表面的太阳紫外线强烈,从而可以**程度的加速材料老化。然而,该灯管可能会对某些材料造成不符合实际的破坏。UVB-313 灯管主要用于质量控制和研究开发,或对耐候性极强的材料运行测试。UVA-351灯管:模拟透过窗玻璃的阳光紫外光,它对于测试室内材料的老化**为有效。潮湿冷凝环境在很多户外环境中,材料每天的潮湿时间可长达12小时。研究表明造成这种户外潮湿的主要因素是露水,而不是雨水。Q8/UV通过独特的冷凝功能来模拟户外的潮湿侵蚀。在试验过程中的冷凝循环中,测试室底部蓄水池中的水被加热以产生热蒸气,并充满整个测试室,热蒸汽使测试室内的相对湿度维持在100%,并保持一个相对高温。试样被固定在测试室的侧壁,从而试样的测试面曝露在测试室内的环境空气中。试样向外的一面暴露在自然环境中具有冷却效果,导致试样内外表面具备温差,这一温差的出现导致试样在整个冷凝循环过程中,其测试面始终有冷凝生成的液态水。由于户外曝晒接触潮湿的时间每天可以长达十几小时,因此典型的冷凝循环一般持续几个小时。Q8/UV提供两种潮湿模拟方法。应用**多的是冷凝方法,它是模拟户外潮湿侵蚀的**方法。所有的Q8/UV型号都可运行冷凝循环。因为有些应用条件也要求使用水喷淋以达到实际的效果,所以有些Q8/UV型号既可运行冷凝循环又可运行水喷淋循环。温度控制在每个循环中,温度都可控制在一个设定值。同时黑板温度计可以监控温度。温度的提高可以加速老化的进程,同时,温度的控制对于测试的可再现性也是很重要的。水喷淋系统对于某些应用而言,水喷淋能更好地模拟**终使用的环境条件。水喷淋在模拟由于温度剧变和由于雨水冲刷所造成的热冲击或机械侵蚀是非常有效的。在某些实际应用条件下,例如阳光下,聚集的热量由于突降的阵雨而迅速消散时,材料的温度就会发生急剧变化,产生热冲击,这种热冲击对于许多材料而言是一种考验。Q8/UV的水喷淋可以模拟热冲击和/或应力腐蚀。喷淋系统有12个喷嘴,在测试室的每一边各有6个;喷淋系统可运行几分钟然后关闭。这短时间的喷水可快速冷却样品,营造热冲击的条件。照射强度控制:可选选配照射强度控制选件可得到**型和重复性好的测试结果;光强控制系统允许用户根据不同的测试要求设置不同的光照强度。通过其反馈回路装置**控制照射强度;同时也可以延长荧光灯的使用寿命 Q8/UV紫外光加速老化试验机主要技术指标型号 ModelQ8/UV3Q8/UV2 Q8/UV1UV 照射 Exposure●●●冷凝 Condensation●●●光照控制 Irradiancs Control●● 可调光线 Adjustable irradiance●● 喷水 Water Spray● 热冲击 Thermal Shock● 自动侦路 Self-diagnostics●●●灯泡数量 Lamp Q' ty紫外线灯管 8 支,备品 4 支 Ultravloiet lamp 6pcs, spares 4 pcs (美国Q-LAB,Q-Panel,美国ATLAS,UVA340,UVB313,UVC351)记录器 Recorder选配 (Optional)辐射计 Q8-CR Calibration Radiometer选配 (Optional)机器辐射强度:1.0W/m2/340nm以内可调1.1W/m2/313nm以内可调UV 温度 Temp50 ℃ -75 ℃冷凝温度 Condensation Temp40 ℃ -60 ℃测试容量 Test Capacity48pcs 片/se spray( 75 x 150m m )50pcs片/basic ( 75 x 150m m )水凉及耗量 Water蒸馏水每分钟 蒸馏水每日 8 公升体积 Dimension(W x D x H)137 x 53 x 136cm重量 Weight136kg电源 Power1 &psi , 120V/60Hz,16A or 230V/50Hz, 9A,1800W(max)Q8/UV紫外光加速老化试验机测试方法通用&bull ISO 4892-1 Plastics- Methods of exposure to laboratory light sources-Part 1: General Guidance&bull ASTM G-151, Standard Practice for Exposing Nonmetallic Materials in Accelerated Test Devices that Use Laboratory Light Sources&bull ASTM G-154, Standard Practice for Operating Fluorescent Light Apparatus for UV Exposure of Non-Metallic Materials&bull British Standard BS 2782: Part 5, Method 540B (Methods of Exposure to Lab Light Sources)&bull SAE J2020, Accelerated Exp. of Automotive Exterior Materials Using a Fluorescent UV/Condensation Apparatus&bull JIS D 0205, Test Method of Weatherability for Automotive Parts (Japan)&bull GB/T 16422.1,塑料实验室光源暴露试验方法 第1部分:总则________________________________________涂料&bull ISO 11507, Paints & varnishes-Exposure of coatings to artificial weathering-Exposure to fluorescent UV and water&bull ISO 20340, Paints & varnishes &ndash Performance requirements for protective paint systems for offshore andrelated structures&bull ASTM D-3794, Standard Guide for Testing Coil Coatings&bull ASTM D-4587, Standard Practice for Light/Water Exposure of Paint&bull US Government, FED-STD-141B&bull US Govt., Federal Specification TT-E-489H, Enamel, Alkyd, Gloss, Low VOC Content&bull US Govt., Federal Specification TT-E-527D, Enamel, Alkyd, Lusterless, Low VOC Content&bull US Govt., Federal Specification TT-E-529G, Enamel, Alkyd, Semigloss, Low VOC Content&bull US Govt., Federal Specification TT-P-19D Paint, Latex, Acrylic Emulsion, Ext. Wood & Masonry&bull NACE Standard TM-01-84 Procedures for Screening Atmospheric Surfaced coatings&bull GM4367M Topcoat Materials - Exterior&bull GM 9125P Laboratory Accelerated Exposure of Automotive Material&bull Korean Standard M5982-1990, Test Method for Accelerated Weathering&bull Spanish Std, UNE 104-281-88 Accelerated Testing of Paints and Adhesives with Fluorescent UV Lamps&bull Israeli Standard No. 330, Steel Windows&bull Israeli Standard No. 385, Plastic Windows&bull Israeli Standard No. 935, Road Marking Paint&bull Israeli Standard No. 1086, Aluminum Windows&bull NISSAN M0007, Fluorescent UV/Condensation Test&bull JIS K 5600-7-8, Testing Methods for Paints&bull MS 133: Part F16, Methods of Test for Paints and Varnishes: Part F16: Exposure of Coatings to Artificial Weathering- Exposure to Fluorescent UV and Water (ISO 11507)&bull NBR-15.380 Paints for buildings&ndash Methods for performance evaluation of paints for non-industrial buildings &ndash Resistance to UV irradiation/water vapor condensation, by accelerated test&bull prEN 927-6 Paints & varnishes&ndash Coating materials and coating systems for exterior wood &ndash Pt. 6: Exposure of wood coatings to artificial weathering using fluorescent UV and water&bull GB/T 12967.4,铝及铝合金阳极氧化 着色阳极 氧化膜耐紫外光性能的测定________________________________________纺织品&bull AATCC Test Method 186, Weather Resistance: UV Light and Moisture Exposure&bull ACFFA Test Method for Colorfastness of Vinyl Coated Polyester Fabrics________________________________________印刷油墨&bull ASTM F1945, Lightfastness of Ink Jet Prints Exposed to Indoor Fluorescent Lighting ________________________________________橡胶&bull GB/T 16585,硫化橡胶人工气候老化(荧光紫外灯)试验方法________________________________________电工电子产品&bull GB/T 19394,光伏(PV)组件紫外试验type the link here________________________________________粘合剂和密封剂&bull ASTM C 1501, Standard Test Method For Color Stability of Building Construction Sealants as Determined byLaboratory Accelerated Weathering Procedures&bull ASTM C-1184, Specification for Structural Silicone Sealants&bull ASTM C-1442, Standard Practice for Conducting Tests on Sealants Using Artificial Weathering Apparatus&bull ASTM D-904, Standard Practice for Exposure of Adhesive Specimens to Artificial Light&bull ASTM D-5215, Standard Test Method for Instrumental Evaluation of Staining of Vinyl Flooring by Adhesives&bull American Plywood Assn., Approval Procedures for Synthetic Patching Materials, Section 6&bull Spanish Std, UNE 104-281-88 Accelerated Testing of Paints and Adhesives with Fluorescent UV Lamps________________________________________塑料&bull ISO 4892 Plastics - Methods of Exposure to Laboratory Light Sources-Part 3: Fluorescent UV Lamps&bull DIN 53 384, Testing of plastics, Artificial Weathering and Exposure to Artificial Light&bull Spanish Standard UNE 53.104 (Stability of Plastics Materials Exposed to Simulated Sunlight)&bull Israeli Standard No. 385, Plastic Windows&bull JIS K 7350, Plastics - Methods of Exposure to Laboratory Light Sources-Part 3: Fluorescent UV Lamps&bull ASTM D-1248, Standard Specification for Polyethylene Plastics Extrusion Materials for Wire and Cable&bull ASTM D-4329, Standard Practice for Light/Water Exposure of Plastics&bull ASTM D-4674, Test Method for Accelerated Testing for Color Stability of Plastics Exposed to IndoorFluorescent Lighting and Window-Filtered Daylight&bull ASTM D-5208, Standard Practice for Exposure of Photodegradable Plastics&bull ASTM D-6662, Standard Specification for Plastic Lumber Decking Boards&bull ANSI C57.12.28 Specification for Accelerated Weathering of Padmounted Equipment Enclosure Integrity&bull ANSI, A14.5 Specification for Accelerated Weathering of Portable Reinforced Plastic Ladders&bull Edison Electrical Inst. Specification for Accelerated Weathering of Padmounted Equip. Enclosure Integrity&bull Wisconsin Electric Power Specification for Polyethylene Signs&bull GB/T 18950,橡胶和塑料软管 静态下耐紫外线性能测定&bull GB/T 16422.3,塑料实验室光源暴露试验方法 第3部分:荧光紫外灯________________________________________屋顶材料&bull ASTM D-4799, Test Method for Accelerated Weathering of Bituminous Roofing Materials&bull ASTM D-4811, Standard Specification for Nonvulcanized Rubber Sheet Used as Roof Flashing&bull ASTM D-3105, List of Test Methods for Elastomeric and Plastomeric Roofing & Waterproofing&bull ASTM D-4434, Standard Specification for PVC Sheet Roofing&bull ASTM D-5019, Standard Specification for Reinforced Non-Vulcanized Polymeric Sheet Used in Roofing Membrane&bull ANSI/RMA IPR-1-1990 Req. for Non-Reinforced Black EPDM Sheet for Roofing Membrane&bull ANSI/RMA IPR-2-1990 Req. for Fabric-Reinforced Black EPDM Sheet for Roofing Membrane&bull ANSI/RMA IPR-5-1990 Req. for Non-Reinforced Non-Black EPDM Sheet for Roofing Membrane&bull ANSI/RMA IPR-6-1990 Req. for Fabric-Reinforced Non-Black EPDM Sheet for Roofing Membrane&bull British Standard BS 903: Part A54 Annex A & D, Methods of Testing Vulcanized Rubber&bull CGSB-37.54-M, Canadian General Standards Board Spec. for PVC Roofing & Waterproofing Membrane&bull DIN EN 534, Corrugated bitumen sheets&bull EOTA TR 010, Exposure procedure for artificial weathering&bull RMA Specification for Reinforced Non-Vulcanized Chlorosulfonated Polyethylene Sheet for Roofing Membrane________________________________________复合材料&bull Israeli Standard No. 385, Anodic Coatings on Aluminum________________________________________ 广东宏展科技有限公司Guangdong Hongzhan Technology Co.,Ltd.地址:广东省东莞市常平镇土塘长城聚怡工业园蹇小东 Jian Xiao DongPhone:13688992830Tel:0769-82204676 400-0000-217Fax:0769-83730860E-mail:jxd@oven.cc http://www.oven.cc-广东- -昆山- -北京- -重庆- -长沙- -香港- 您的产品能否适应万变的气候?模拟环境试验,宏展可以做到!Your Product to adapt to a changing climate?Simulation environment testing, hongzhan can be done!
  • 中国首发城市双碳模拟器,助力城市绿色低碳高质量发展
    记者8日从中国科学院大气物理研究所(中科院大气所)获悉,由该所主办、济南市科学技术局协办的“城市碳达峰碳中和高端战略研讨会”当天下午在山东济南举行,中国首个城市双碳模拟器在会上发布,将对城市绿色低碳高质量发展提供重要数值模拟技术平台,为政府碳排放动态调控和产业优化升级管理提供有力科学支撑,为中国众多城市实现碳达峰目标和碳中和愿景做出贡献。中科院大气所主办“城市碳达峰碳中和高端战略研讨会”并发布首个城市双碳模拟器。 当天首发的城市双碳模拟器,是由齐鲁中科碳中和研究院研究团队,基于中科院大气所牵头建立的地球系统数值模拟国家大科学装置——地球模拟器“寰”(EarthLab),以及配套的国际先进水平的地球模型系统研制而成,充分考虑到城市双碳功能定位和需求,对复杂系统进行顶层构建和精细化设计。“寰”是中国首个具有自主知识产权的专用地球系统数值模拟装置,它以地球系统各圈层数值模拟软件系统为核心,实现软、硬件最佳适配,具有建构数字“孪生”地球系统的能力,其综合技术水平位于世界前列。最新发布的城市双碳模拟器被称为1.0版系统,其主要功能包括天空地碳监测多源数据的预处理、碳源汇动态模拟反演、减污降碳协同模拟、碳达峰碳中和预测和路径优化、城市风光资源评估与模拟预测、双碳与气候效应以及跨界碳输送模拟和预测等功能板块。该模拟器的研发以济南市为应用目标,充分考虑通用性和易移植性,可推广至各级行政区域、河流流域、不同规模的各种类型园区、不同行业或领域,通过提供碳达峰与碳中和进程、碳源汇时空变化、碳污动态协同演进、未来双碳情景预测、双碳全景可视化等,可服务各级政府、各个行业部门等,使碳排放和碳汇监测、核算、预测预警、调度管理等实现数字化和智能化,实现数字双碳动态管理。据了解,目前,济南版城市双碳模拟器的大气二氧化碳模拟和同化反演子模块,已经顺利移植到国家超级计算济南中心服务器上并成功运行,开始为济南碳监测试点提供技术支持。城市碳达峰碳中和高端战略研讨会上,与会专家学者代表围绕城市尺度碳达峰碳中和科技支撑工作进行深入研讨,聚焦碳达峰碳中和最新科技进展,包括碳源汇宏观管理、城市和区域温室气体监测、碳模拟和同化反演技术方法等议题,针对城市碳达峰碳中和实施工作中的难点与挑战建言献策。
  • 阿泰可发布阿泰可 四立柱轮胎耦合道路模拟环境舱(带阳光模拟)新品
    ATEC阿泰可四立柱轮胎耦合道路模拟环境舱(带阳光模拟)该套整车试验舱为四通道轮胎耦合道路模拟系统,主要由气候模拟试验室主体、升降温装置、新风换气系统、电气控制系统构成。该系统对用于乘用车结构耐久性、驾驶平顺性测试,以及早期模型评估、车身疲劳、异响BSR、噪声振动NVH、乘坐舒适性等测试。可实施整车高低温静态存放试验、如整车除霜、除雾性能试验、整车冷起动性能试验、整车采暖及制冷性能试验、整车热平衡试验、零部件耐高低温试验等。车辆轮距及轴距调整范围大,且采用自动调节,方便快捷,提高设备运行效率盖板采用隔热材料,隔热效果更好,盖板移动采用自动装置,更加便捷 主要技术指标1 温度指标1. 温度范围:-40℃~+80℃;2. 温度均匀度:≤±2℃(空载);3. 温度偏差:≤±2℃(空载);4. 温度控制精度:≤±0.5℃(无热负荷,稳态)≤±2℃(有热负荷,稳态)5. 升温速度:≥1℃/min(全程平均,带车辆,无热负载,出风口测量);6. 降温速度:≥0.7℃/min(全程平均,带车辆,无热负载,出风口测量);7. 湿度范围:10 %R.H.~95%R.H.8. 阳光模拟:红外线光谱辐射灯9. 辐射强度:600~1200W/㎡(可调节)10. 辐射区域(长×宽)6000×2500mm11. 垂直移动距离:辐射灯下距离舱底表面2.5~4.2m可调依据标准GB/T 2423.1-2008 试验A:低温试验方法GB/T 2423.2-2008 试验B:高温试验方法GB/T 2423.3-2006 试验Ca:恒定湿热试验GB/T 2423.4-2008 试验Db:交变湿热试验方法1,2QC/T 413-2002、ISO 16750-4《道路车辆电气及电子设备的环境条件和试验》QC/T 413-2002中关于3.11产品耐温度/湿度循环变化性能的要求ISO 16750-4《道路车辆电气及电子设备的环境条件和试验 第4部分:气候负荷》中5.2温度梯度、5.3.1规定变化率的温度循环、5.6湿热循环、5.7稳态湿热对测试的要求GB /T 2423.24-1995太阳辐射试验IEC60068-2-1:2007 低温试验方法AbIEC60068-2-2:2007 高温试验方法BbIEC60068-2-30:2005 交变湿热试验方法DbIEC60068-2-78:2007 恒定湿热试验方法CabGJB 150.3A-2009 高温试验GJB 150.4A-2009 低温试验GJB 150.9A-2009 湿热试验的试验标准要求 创新点:该套整车试验舱为四通道轮胎耦合道路模拟系统,主要由气候模拟试验室主体、升降温装置、新风换气系统、电气控制系统构成。该系统对用于乘用车结构耐久性、驾驶平顺性测试,以及早期模型评估、车身疲劳、异响BSR、噪声振动NVH、乘坐舒适性等测试。可实施整车高低温静态存放试验、如整车除霜、除雾性能试验、整车冷起动性能试验、整车采暖及制冷性能试验、整车热平衡试验、零部件耐高低温试验等。车辆轮距及轴距调整范围大,且采用自动调节,方便快捷,提高设备运行效率盖板采用隔热材料,隔热效果更好,盖板移动采用自动装置,更加便捷
  • 2700亿!上海版“新基建”方案出台 建电镜中心等 打造综合大科学设施群
    p style="text-indent: 2em "strong style="text-indent: 2em "仪器信息网讯/strongspan style="text-indent: 2em " 2020年5月7日,上海市政府新闻办举行市政府新闻发布会,《上海市推进新型基础设施建设行动方案(2020-2022年)》(以下简称《行动方案》,全文见文末)正式发布。《行动方案》提出了上海版“新基建”35条,梳理了未来三年实施的第一批48个重大项目和工程包,预计总投资约2700亿元。/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/fb0b5217-b9a8-4000-9a9c-c6d7d90a7fdc.jpg" title="0.png" alt="0.png"//pp style="text-indent: 2em "会上,上海市市政府副秘书长、市发展改革委主任马春雷介绍了《行动方案》有关情况。市发展改革委副主任裘文进、市经济信息化委副主任张建明、市商务委副主任周岚、市交通委一级巡视员蔡军、上海自贸试验区临港新片区管委会副主任吴晓华出席发布会,共同回答记者提问。/pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong建设电镜中心、硬X射线等”新设施”/strong/span/pp style="text-indent: 2em "未来三年实施的第一批48个重大项目和工程包中,第二项为“新设施”建设行动,即立足科技创新中心和集成电路、人工智能、生物医药“三大高地”建设,持续提升科技和产业创新基础设施能级。主要包括:span style="color: rgb(0, 112, 192) "加快推进硬X射线等大设施建设/span,span style="color: rgb(0, 112, 192) "开展下一代光子科学设施预研/span;span style="color: rgb(0, 112, 192) "争取国家支持布局新一轮重大科技基础设施/span;span style="color: rgb(0, 112, 192) "建设电镜中心/span、先span style="color: rgb(0, 112, 192) "进医学影像集成创新中心/span、span style="color: rgb(0, 112, 192) "国家集成电路装备材料产业创新中心/span等若干先进产业创新基础设施;围绕前沿科学研究方向,布局建设重大创新平台。/pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong2022年上海将率先形成全球综合性“最大最全最强”大科学设施群雏形/strong/span/pp style="text-indent: 2em "《行动方案》提出,span style="color: rgb(0, 112, 192) "要打造全球综合性大科学设施群/span。/pp style="text-indent: 2em "上海市发改委副主任裘文进在新闻发布会上介绍,目前上海建成和在建的国家重大科技基础设施已达14个,设施数量、投资金额均领先全国。span style="color: rgb(0, 112, 192) "到2022年,上海将形成全球规模最大、种类最全、综合服务功能最强的大科学设施群雏形;构建以硬X射线自由电子激光装置为引领,上海光源等7个光子科学大设施为基础,其他领域设施为支撑的“1+7+X”集群;/span布局一批技术水平高、产业服务能力强的创新基础设施,建设若干助力重点产业发展的“攻关利器”,为新兴产业关键技术研发提供支撑。/pp style="text-indent: 2em "全力推进重大科技基础设施建设,下一步上海将重点做好两方面工作:/pp style="text-indent: 2em "一方面,span style="color: rgb(0, 112, 192) "持续推进光子科学设施群建设,/span加强前瞻性战略布局研究,建设光子科学实验室,面向下一代同步辐射光源、自由电子激光和超强超短激光等开展从原理到样机的预研,为上海光源跨代升级奠定技术基础。另一方面,积极争取国家部委支持,围绕生命科学、海洋科学、信息科学等领域,积极争取国家支持,推动系统生物学设施、无人系统多体协同设施、深远海驻留浮式研究设施、生物医学大数据设施等开展预研,争取纳入国家重大科技基础设施“十四五”规划。/pp style="text-indent: 2em "此外,上海还将span style="color: rgb(0, 112, 192) "主动布局产业创新基础设施建设,以及持续推进重大创新平台建设/span。在布局产业创新基础设施建设方面,将聚焦集成电路、人工智能、生物医药等重点领域,主动布局一批以企业投资为主、提供开放专业化服务的创新基础设施。比如,span style="color: rgb(0, 112, 192) "依托蛋白质中心,打破管理分割,组建开放共享的电镜中心;依托重点企业,建设先进医学影像集成创新中心、集成电路装备材料创新中心,/spanspan style="color: rgb(0, 0, 0) "为上海加快高质量发展、打造若干“千亿级”新兴产业形成有力支撑/span。/pp style="text-indent: 2em "在持续推进重大创新平台建设方面,上海将span style="color: rgb(0, 112, 192) "围绕量子物理、人类表型组、脑与类脑等前沿科学研究方向,加快推进建设李政道研究所、上海交通大学张江科学园、张江复旦国际创新中心等/span。上海将不断提升集成电路、智能制造、新能源汽车等方向的研发与转化功能型平台能力建设,优化新的功能型平台布局,通过关键共性技术和产业化应用研究,构建新兴产业技术创新发展的支撑体系。/pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong附:《上海市推进新型基础设施建设行动方案(2020-2022年)》主要内容/strong/span/pdiv class="DetailContent"div id="ivs_content"p style="text-indent: 2em "strong一、上海新型基础设施建设现状/strong/pp  近年来,上海围绕科技创新中心、综合性国家科学中心以及新型智慧城市、下一代互联网示范城市、新一代人工智能创新发展试验区等建设,加强网络基础设施、数据中心和计算平台、重大科技基础设施等布局,总体水平一直保持国内领先。一是网络基础设施建设水平“国内领先”。已实现全市16个区5G网络连续覆盖。建设了15个具有全国影响力的工业互联网行业平台,带动6万多家中小企业上云上平台。在静安、嘉定、杨浦、虹口、普陀等区率先开展新型城域物联网百万级规模部署。二是数据中心和计算平台规模“国内领先”。目前互联网数据中心已建机架数超过12万个,利用率、服务规模处于国内第一梯队。市大数据平台累计已汇集全市200多个单位340亿条数据,数据规模总体在国内领先。三是重大科技基础设施能级“国内领先”。上海已建和在建的国家重大科技基础设施共有14个,大设施的数量、投资金额和建设进度均领先全国。/pp  strong二、上海版“新基建”《行动方案》主要内容/strong/pp  《行动方案》立足于数字产业化、产业数字化、跨界融合化、品牌高端化,坚持新老一体、远近统筹、建用兼顾、政企协同,提出了指导思想、行动目标、4大建设行动25项建设任务、8项保障措施,形成了上海版“新基建”“35条”。/pp  一是明确了具有上海特色的“新基建”重点领域。聚焦新时代上海城市功能和核心竞争力提升,以及新经济发展要求,明确了推进上海特色“新基建”的4大重点领域:以新一代网络基础设施为主的“新网络”建设;以创新基础设施为主的“新设施”建设;以人工智能等一体化融合基础设施为主的“新平台”建设;以智能化终端基础设施为主的“新终端”建设。/pp  二是提出了符合上海城市功能和定位的具体行动目标。通过3年努力,率先在4个方面形成重要影响力:率先打造新一代信息基础设施标杆城市,率先形成全球综合性大科学设施群雏形,率先建成具有国际影响力的超大规模城市公共数字底座,率先构建一流的城市智能化终端设施网络。到2022年底,推动全市新型基础设施建设规模和创新能级迈向国际一流水平。/pp  三是全力实施上海版“新基建”4大建设行动。要对标一流水平,围绕新网络、新设施、新平台、新终端进行统筹布局,全力提升新型基础设施能级。初步梳理排摸了未来三年实施的第一批48个重大项目和工程包,预计总投资约2700亿元。/pp  1、“新网络”建设行动。把握全球新一轮信息技术变革和数字化发展趋势,率先构建全球领先的新一代网络基础设施布局。主要包括:高水平建设5G和固网“双千兆”宽带网络,加快布局全网赋能的工业互联网集群,建设100家以上无人工厂、无人生产线、无人车间,带动15万企业上云上平台;加快下一代互联网规模化部署;建设新型政务外网及网络安全设施;构建全球信息通信枢纽。/pp  2、“新设施”建设行动。立足科技创新中心和集成电路、人工智能、生物医药“三大高地”建设,持续提升科技和产业创新基础设施能级。主要包括:加快推进硬X射线等大设施建设,开展下一代光子科学设施预研;争取国家支持布局新一轮重大科技基础设施;建设电镜中心、先进医学影像集成创新中心、国家集成电路装备材料产业创新中心等若干先进产业创新基础设施;围绕前沿科学研究方向,布局建设重大创新平台。/pp  3、“新平台”建设行动。充分利用好超大规模城市海量数据资源,建设城市全要素数据资源体系,支撑城市治理全方位变革。主要包括:建设新一代高性能计算设施,打造超大规模人工智能计算与赋能平台。建设政务服务“一网通办”和社会治理“一网统管”基础支撑平台,探索建设数字孪生城市。构建医疗大数据训练设施,支持人工智能企业开展深度学习等多种算法训练试验。探索建设临港新片区互联设施体系和长三角一体化示范区智慧大脑工程。/pp  4、“新终端”建设行动。围绕培育新经济、壮大新消费等需求,加快推动商贸、交通、物流、医疗、教育等终端基础设施智能化改造。主要包括:规模化部署千万级社会治理神经元感知节点;新建10万个电动汽车智能充电桩;建设国内领先的车路协同车联网和智慧道路;建成市级公共停车信息平台;拓展智能末端配送设施,推动智能售货机、无人贩卖机、智慧微菜场、智能回收站等各类智慧零售终端加快布局;建设互联网+医疗基础设施;培育教育信息化应用标杆学校;打造智能化“海空”枢纽设施;完善城市智慧物流基础设施建设。/pp  四是推出8项上海版“新基建”重大政策措施。推进上海特色“新基建”,政府要引导、市场是主体、重大政策举措是保障。进一步加强市区协同,在创新支持方式、加强指标保障、推动资源开放、优化规划布局、完善规则标准、培育市场需求等方面加强引导,为社会资金加大“新基建”投入营造良好环境。/pp  下一步,上海将全力落实好“新基建”35条,抢抓新型基础设施建设为产业复苏升级带来的重要机遇,高水平推进5G等“新网络”建设,持续保持“新设施”国际竞争力,加快建设人工智能等“新平台”,完善社会治理和民生服务“新终端”布局,着力创造新供给、激发新需求、培育新动能,为上海加快构建现代化产业体系厚植新根基,打造经济高质量发展新引擎。/pp /ppbr//p/divpbr//p/div
  • 《自然》:量子计算机首次模拟全息虫洞
    国际著名学术期刊《自然》最新发表一篇量子物理学论文,首次报道了利用一台量子处理器对全息虫洞进行量子“模拟”。这一演示使用的是谷歌(Google)的悬铃木(Sycamore)处理器,标志着距离在实验室研究量子引力的可能性又进了一步。该论文介绍,广义相对论描述的是高能或高物质密度的物理世界,比如天体物理对象。量子力学描述的则是原子和亚原子水平上的物质。量子引力是一种假设的物理理论,描述的是与这两类情况都相关的对象,比如黑洞的内部。不过,量子力学与广义相对论在根本上是不相容的,因此对于量子引力的理论目前尚未达成共识。而全息原理是连接不同理论的一种方式,或有助于调和量子力学和广义相对论,它利用一个受限的物理系统将相对论解释为量子物理学的扩展。本次研究中,根据全息原理,论文通讯作者、美国加州理工学院玛丽亚斯皮罗普鲁(Maria Spiropulu)和同事与合作者设计了一个简单系统,用来模拟一个全息虫洞,其经过适当设计的量子系统的性质符合引力系统所该有的性质。该量子模拟利用一台量子计算机进行,有一个9量子比特的电路。量子比特在这台处理器上传输时的动力学特征与量子比特穿过可穿越虫洞时所该有的动力学特征相同。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制