当前位置: 仪器信息网 > 行业主题 > >

电化学反应可视化共焦系统

仪器信息网电化学反应可视化共焦系统专题为您提供2024年最新电化学反应可视化共焦系统价格报价、厂家品牌的相关信息, 包括电化学反应可视化共焦系统参数、型号等,不管是国产,还是进口品牌的电化学反应可视化共焦系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电化学反应可视化共焦系统相关的耗材配件、试剂标物,还有电化学反应可视化共焦系统相关的最新资讯、资料,以及电化学反应可视化共焦系统相关的解决方案。

电化学反应可视化共焦系统相关的方案

  • 电解液中静电力分布的可视化阐明腐蚀和电池反应机理
    利用电池、IC芯片、内存等材料和物质电势的系统支撑着我们的日常生活。扫描探针显微镜(SPM/AFM)中经常采用开尔文探针(KPFM)法测定试样表面的电势,但无法在发生电化学反应的电解液中使用。在此报道中,作者在静电力显微镜(EFM)的基础上建立了新的EFM-Phase-ZXY测量方法,,成功实现电解液中静电力分布的可视化。
  • 【EmStat3Blue电化学应用】功能化黑磷纳米复合材料,用于芦丁超灵敏检测的便携式无线智能电化学传感器
    摘要:为了建立一种便携、灵敏的黄酮类化合物浓度监测方法,本文建立了一种新的电化学传感方法。通过使用氮掺杂碳化聚合物点(N- CPDs)锚定少层黑磷烯0D-2D异质结构(N-CPDs@FLBP)和金纳米颗粒(AuNPs)作为修饰剂,以碳离子液体电极和丝网印刷电极(SPE)作为基板电极,分别构建了传统的电化学传感器和便携式无线智能电化学传感器。详细地研究了芦丁在所制备的电化学传感器上的电化学行为与分析性能。由于芦丁的电活性基团,纳米复合材料与芦丁之间的π-π堆积和阳离子-π相互作用,芦丁在AuNPs/N-CPDs@FLBP修饰电极上的电化学反应明显增强。在最佳条件下,可实现芦丁的超灵敏检测AuNPs/N-CPDs@FLBP/SPE的检测范围为1.0 nmol L−1 至220.0 μmol L−1检测限为0.33 nmol L−1(S/N = 3)。最后,用两种传感器进行了实时性测试样品并得到了满意的结果。
  • 理想的化学反应釜温度控制系统
    药品研发和化学实验中的温度控制,以及小规模试验生产和工业生产过程中的温度控制,都需要高动态的温度控制系统。对反应釜进行控温时,须对化学反应中的吸放热进行快速补偿。在选择合适的温度控制系统时,需要综合考虑各种条件和影响因素。本文旨在提供壹定的标准和建议,以便用户在应用中选择好的温度控制方案。
  • 天津兰力科:综合电化学工作站系统结构的设计
    电池行业的发展对电池检测技术提出了更高的要求,迫切需要高效智能的检测设备。本课题目的是设计一种满足功能和精度要求的综合电化学工作站。综合电化学工作站在电池检测中占有重要地位,它将恒电位仪、恒电流仪和电化学交流阻抗分析仪有机地结合,既可以做三种基本功能的常规试验,也可以做基于这三种基本功能的程式化试验。在试验中,既能检测电池电压、电流、容量等基本参数,又能检测体现电池反应机理的交流阻抗参数,从而完成对多种状态下电池参数的跟踪和分析。本文从结构设计的角度,对综合电化学工作站进行了研究。根据恒电位测量、恒电流测量、交流阻抗测量三种功能的工作原理和相应的性能指标,提出以DSP处理器为控制核心的硬件结构体系。在该设计方案下,进行了大量的硬件设计调试工作和软件设计调试工作。本文的内容包括以下三点:(1)电化学工作站的系统分析。详细分析了电化学工作站三种基本功能的工作原理和性能指标,确定了电化学工作站的硬件系统结构—以DSP处理器为整个系统的控制核心,实现对六个通道的电池测量和控制,以及将数据送往PC机进行储存和处理。(2)系统硬件设计。硬件设计主要集中在DSP电路板、接口电路板、测量控制电路板的设计上。DSP电路负责发出控制信号和处理测量信号;测量电路直接与被测对象相连接,实现具体测量、控制;接口电路是DSP电路板与测量控制电路板之间的桥梁。从电路结构、芯片选型到最后布局,将各个功能电路进行细化,分步骤设计。(3)系统软件设计。结合系统工作特点和硬件结构,确定了软件总体架构。重点研究了过采样滤波软件算法和快速傅立叶变换(FFT)测算交流阻抗软件算法。
  • 电化学氧化改性对碳纤维功能材料性能的影响
    未经过表面处理的碳纤维表面能低,约为2.7×10-3N/m,表面呈现憎液性,缺乏有化学活性的官能团,限制了碳纤维作为电极材料的应用。70年代中期发展起来的化学修饰电极(Chemically Modified Electrode,简称CME),为碳纤维电极的制备提供了新的思路。它是通过在电极表面进行分子设计,将具有优良特性的分子、离子、聚合物固定在电极表面,改变电极和电解液界面的微结构,使电极具有良好的电催化性能。CME丰富了电极材料,为直接氧化处理有机物开辟出新的途径。本文通过实验发现:采用0.5mol L-1磷酸溶液,2.0A/g的电流密度,通电5min电化学氧化处理的碳纤维为最佳方案。氧化处理后碳纤维接触角下降了约16o,表面能增加了近9倍,与环氧树脂基体粘接性能提高了33%,电化学响应明显改善。这些实验说明了电化学氧化改性是有效的手段,它使得碳纤维表面接上了数量丰富的活性官能团。通过红外光谱确定碳纤维表面接上的活性官能团主要为内酯基、羧基和羟基。系统讨论了未处理碳纤维在无机酸、无机盐和碱溶液中的电化学性质,表明碳纤维在酸性溶液中氧化最剧烈,中性溶液中的氧化较弱,碱性溶液的变化几乎可以忽略,说明选取磷酸电化学氧化碳纤维是合理的途径。分析了处理后碳纤维的电化学行为,0.5V氧化峰反映出纤维表面一些化学键发生了断裂,表面活性碳原子增加,表面已有的一些官能团被进一步氧化;0.19V氧化峰是纤维表面活性碳原子和吸附的氢氧根离子发生电化学氧化所致。实验还发现,处理后的碳纤维对电极分析标准溶液K4Fe(CN)6加KCl混合溶液、FeSO4加HClO4混合溶液有良好的电化学响应,是适合作为电化学分析的电极。将处理后的碳纤维和碳纳米管电极应用于水溶液中低浓度苯酚(低于5m mol L-1)的检测和氧化处理,发现碳纤维和碳纳米管电极可以在较低的电位(1.0VvsSCE)实现连续氧化,能克服电极吸附。恒电位氧化显示,碳纤维在1200s内保持了电极活性,能有效降低水溶液中的苯酚含量;碳纳米管电极在6000s之后仍然能保持活性,能逐渐将苯酚氧化直到完全清除。分析苯酚的氧化路径显示,苯酚被直接氧化为CO2,避免了二次污染,这证明了碳纤维和碳纳米管作为电极材料,在对污水中苯酚处理方面有应用前景。
  • 天津兰力科:综合电化学工作站硬件设计与实现
    随着电池行业的迅猛发展,人们对电池检测技术提出了更高的要求,迫切需要一种高效,能测量体现电池反应过程参数的检测设备。本课题目的在于研发一种综合电化学工作站满足上述需求。综合电化学工作站是一套完整的、数字化的、电化学体系的检测分析设备。它把恒电位仪,恒电流仪和电化学交流阻抗分析仪有机地结合到一起,既可以做常规的基本测试如动电位扫描、动电流扫描试验和电化学交流阻抗测量,也可以做基于这三种基本试验的程式化试验,如恒电流充电-电化学交流阻抗测量,电池寿命循环试验-电化学交流阻抗测量试验,从而完成多种状态下电化学体系的参数跟踪和分析。它可以快捷、精确的检测电池的容量、测量体现电池反应机理的交流阻抗参数。本文以交流阻抗谱为理论依据,在既定电位范围、精度、分辨率和响应速度等性能指标的要求下构建出上下位机多层次硬件体系结构,有针对性地设计了下位机的接口电路板和测量电路板,并在此设计方案下进行了大量的硬件功能调试,达到了预期的性能指标。本文的主要内容可概括为以下三点:(1)电化学工作站的功能原理研究与硬件系统设计。介绍了电化学工作站的三种基本功能和性能指标,电化学交流阻抗测量的原理,并进而提出了电化学工作站的硬件系统结构,构建了电化学工作站的硬件结构设计;(2)下位机的接口电路板和测量电路板设计,在设计中力图提高系统精度、灵活性。实现对电池电压和电流的测量和控制功能,使工作站测量和控制功能达到了功能多样化精确化,为电化学交流阻抗测量等功能实现打下基础;(3)实验及误差分析。对电化学工作站的硬件测量和控制功能进行了实验验证,分析了误差产生得原因,对固有误差进行了补偿,对不同幅值直流信号和不同幅值、频率的交流信号进行测量,达到了精确测量的性能指标。
  • 电化学原位拉曼分析技术应用及解决方案
    拉曼光谱系统:共聚焦显微拉曼光谱系统、小型科研拉曼光谱仪多种型号可选。借助各类原位池或者探针台,我们可实现对原始反应状态的样品进行检测而避免将其暴露在空气中,电学可根据需求搭配客户的电化学工作中或源表等电学测量设备。
  • 天津兰力科:电化学氧化对碳纤维表面电化学性质的影响
    碳纤维表面呈现化学惰性,缺乏活性官能团,限制了碳纤维作为电化学分析电极的应用。目前,许多手段被用于碳纤维的表面改性处理。采用电化学氧化方法,在磷酸溶液中对碳纤维进行了处理,并进行了红外光谱和循环伏安试验。结果发现:处理后碳纤维的表面接上了活性官能团,大量活性碳原子被剥离出来。在K4 Fe (CN) 6 加KCl、FeSO4 加HClO4 两组混合溶液体系中的电化学响应明显改善,适合作为电化学分析电极。
  • 光谱电化学测量
    光谱电化学是一种将电化学测量与原位光谱测量相结合的实验方法。光谱测量可以透射或反射进行。光谱测量在电化学测量过程中提供有用的补充信息。它可用于在电化学测量过程中识别反应中间体或产物结构。本文着重介绍电化学工作站与光谱仪的联用,并进行了实例分析。
  • 低阻抗锂离子电池的电化学阻抗谱测试
    电化学阻抗谱(EIS)是获取电化学系统信息的一种强有力的测试方法。它常常被应用在测试新型的能源转换和存储类电化学器件(ECS),包括电池,燃料电池和超级电容器。EIS可以被用到新设备发展的各个阶段,一直从半电解池反应的机理和动力学初始评估到电池包的质量控制。
  • 使用 Agilent InfinityLab 在线液相色谱 系统实现对流动化学反应器中反应过 程的实时监测
    本应用简报介绍了 Agilent InfinityLab 在线液相色谱解决方案与流动化学反应器结合使用的能力。高度准确的直接进样和采样模式可实现不同反应参数对整体反应及其特性影响的测量。采样和分析由安捷伦在线液相色谱监测软件全面协调控制,该软件能够以安全、经济的方式实现实验监测的全自动化。
  • iMScopeTM QT对豆科植物种子萌发过程中谷氨酸脱羧酶活性定位的可视化
    检测体内酶促反应时,通常使基质和酶先发生反应,然后使反应产物进一步发生显色反应,并测量吸光度等。在传统方法中,需要基质和酶先进行一次反应,然后通过二次反应显色。在新方法中,通过在组织表面进行检测,可以实现酶活性的可视化。本报告介绍了能够进行高空间分辨率质谱成像的iMScope QT在酶组织化学中的应用1)。
  • 拉曼光谱技术在原位电化学研究中的应用
    用于研究电化学的方法包括循环伏安法、恒电流法、单电势阶跃法、交流阻抗法等,主要依赖电位、电流等函数的测量获得有关电极/溶液界面的结构、电极反应动力学参数和反应的机理。但是这些方法只是单纯的电化学测量,无法对反应产物或中间体的鉴定提供直接的化学信息,也不能从化学结构/分子水平上提供电极/溶液界面结构的直接证据。
  • iMScopeTM QT对豆科植物种子萌发过程中谷氨酸脱羧酶活性定位的可视化
    检测体内酶促反应时,通常使基质和酶先发生反应,然后使反应产物进一步发生显色反应,并测量吸光度等。在传统方法中,需要基质和酶先进行一次反应,然后通过二次反应显色。在新方法中,通过在组织表面进行检测,可以实现酶活性的可视化。本报告介绍了能够进行高空间分辨率质谱成像的iMScope QT在酶组织化学中的应用1)。
  • 天津兰力科:细胞色素c 在硒代胱氨酸修饰电极上的直接电化学
    采用电化学和接触角实验方法研究了硒代胱氨酸自组装膜修饰金电极(SeCys SAMs/Au)和十六烷基三甲基溴化铵(CTAB)-硒代胱氨酸自组装复合膜修饰金电极(CTAB-SeCys SAMs/Au)的特性. 探讨了细胞色素c(Cyt c)在SeCys SAMs/Au 电极和CTAB-SeCys SAMs/Au 电极上的电化学行为. 实验证明SeCys 可促进Cyt c 在电极上的氧化还原反应, 加入CTAB 后其与SeCys 之间的协同作用可在Cyt c 与电极之间形成一个开放的通道,促进作用更加明显, 且在一定浓度范围内, 随CTAB 浓度(1×10-5-1×10-4 molL-1)的增大, Cyt c 在CTAB-SeCysSAMs/Au 电极上的氧化还原电流增大, 在接近临界胶束浓度处出现极大值. 在CTAB-SeCys SAMs/Au 电极上Cyt c 产生一对氧化还原峰, 其峰电位分别为0.305 和0.235 V, 其电化学过程受扩散控制. 光谱实验证实SeCys对Cyt c 电化学过程的促进作用是由于SeCys 与Cyt c 中赖氨酸残基的结合.
  • 天津兰力科:硼氢化钠的电化学行为研究
    硼氢化钠直接燃料电池(DBFC)理论开路电压达到1.64V而引起人们的广泛关注,且其高能量密度可达到9.3Wh/g,高于甲醇燃料电池(6.1 Wh/g)。在硼氢化钠直接燃料电池的工作过程中,硼氢化钠在阳极进行直接氧化反应,但同时硼氢根的水解反应也在进行,而氢气的生成不仅会降低燃料的利用率,且会降低电池的性能。因此,在研究BH4-阳极氧化过程中,如何改善BH4-直接氧化反应,抑制BH4-水解反应具有重要的意义。论文首先采用循环伏安法研究了NaBH4碱性溶液在铂、微盘铂、金、铜、银、泡沫镍、玻碳等电极上的电化学行为。结果表明:在以金、铂电极作工作电极时,硼氢化钠直接氧化反应可以很好的发生;微盘铂电极不宜用于研究浓度较大的硼氢化钠溶液的电化学性能;银和铜电极活性高,但对硼氢化钠直接氧化的研究干扰较大;泡沫镍也显示了一定的活性,但稳定性不好;玻碳不宜作为研究硼氢化钠直接氧化的电极材料。论文进一步采用线性伏安法对铂电极和金电极上的氧化过程进行了详细研究。结果表明:当硼氢化钠浓度大于0.135mol/L且[NaOH]∕[NaBH4]比值在3~7内,铂电极能较好地抑制硼氢化钠水解反应;在金电极上,[NaOH]∕[NaBH4]比值在10~40内,增大氢氧化钠浓度能抑制水解反应,但同时直接氧化电流会随之下降。在硼氢化钠浓度相同,用金电极比用铂做工作电极时,氢氧化钠的需用量要大;铂电极上的硼氢化钠直接氧化过程为非氧化-还原催化,金电极上的硼氢化钠直接氧化过程为扩散控制。但硼氢化钠浓度一定而氢氧化钠量未到所需时,扫描速度增大,溶液对流对电极反应的响应影响减少,有利于电流峰的测定;在303K~353K范围,铂电极上的直接氧化反应电流随温度升高先增大后降低,而金电极上的直接氧化反应电流随温度的升高而升高;添加适量的硫酸钠和硝酸钠,都能使铂和金电极上的直接氧化反应电流增大,但硫酸钠的加入还能促进硼氢化钠的水解反应且过量时会导致氧化反应电流降低,硝酸钠能抑制硼氢化钠水解反应。
  • 【PalmSens4电化学应用】全自动肠道细菌快速富集和精确检测系统--磁性电化学阻抗测量
    本文中使用一次性抛弃式的碳丝印电极,避免电极交叉污染;利用磁性增强检测物质的富集能力,检测系统中嵌入PalmSens便携式电化学分析仪进行循环伏安法和交流阻抗的电化学测试。
  • 【EmStat3Blue电化学应用】基于靶向诱导AIE效应结合CRISPR/Cas12a系统的双信号生物传感,用于超灵敏检测胶霉毒素
    一种新型的快速、超灵敏的电化学生物传感器,用于靶向诱导激活AIE效应和Crispr Cas12a (LbCpf1)的无差别剪切功能,实现双信号检测胶霉毒素。构建的DNA传感单元包含适配体、ssDNA-Fc和Activator1。在本系统中,激活模式分为两个步骤。首先,当靶标与适配体相互作用时,DNA传感单元迅速分解启动链转移反应,释放出大量Ac1,通过AIE效应聚集ETTC-dsDNA产生荧光信号。其次,ETTC-dsDNA在聚集过程中释放Ac2,激活LbCpf1的无差别剪切功能,极大地提高了ssDNA-Fc的剪切效率,实现了体系的信号放大和对靶标的超灵敏检测。利用该方法检测胶霉毒素,电化学信号检测限低至2.4 fM,在50 fM~1 nM范围内具有良好的线性关系,检测时间缩短至55 min,解决了以往传感器电化学信号弱的缺点。同时将不溶于水的AIE材料与DNA偶联得到水溶性ETTC-dsDNA,并成功引入水介质传感系统,作为荧光响应信号,检测限低至5.6 fM。研究结果表明,通过结合手持式电化学工作站,该传感器成功应用于5种实际样品中的胶霉毒素的检测,检测范围可达到32.0~2.09×108 pM。该方法不仅为复杂食物基质中真菌毒素的检测提供了一种新颖有效的检测平台,而且为分子成像和疾病诊断领域开辟了一条有前景的途径。
  • 通过3D PTV进行表面压力可视化
    采用LaVision的同轴体视速度测量系统-机器人式体视PIV对风洞中的球体和假人的流场进行了测量,并通过流场数据获得了表面压力的可视化信息。
  • 天津兰力科:溶胶电泳法制备纳米TiO2膜的电化学行为研究
    利用有机钛制备TiO2溶胶,采用电泳法在铂金基底上镀膜,经室温晾干后,对TiO2膜进行电化学活性实验。实验中对影响TiO2薄膜电化学活性的因素进行了讨论,结果表明:胶体浓度、电泳时间、外加电压等因素对膜的电化学性能产生影响。该法制得的TiO2纳米薄膜膜层连续,具有一定的电催化活性,其在亚甲基蓝PBS溶液中的循环伏安图与空白铂片电极相比,有一对明显的可逆氧化还原峰。利用SEM、UV-vis 对膜进行表征。 关键词:溶胶-凝胶 电泳 TiO2薄膜 电催化 亚甲基蓝
  • 电化学法快速检测微生物的发展现状及趋势
    自1898 年 Stewart 提出利用电化学法检测微生物, 电化学法已发展成为一种微生物快速检测的方法 根据检测的参数不同, 电化学微生物检测法可以分为阻抗微生物法和介电常数法 阻抗法主要用于食品工业中微生物的快速检测), 尤其用于易腐食品的微生物快速检测, 以期实现在其发生明显腐败之前得到检测结果 而介电常数则用于生物发酵过程中的微生物数量的快速测定, 可以实现在线监测微生物数量及生物发酵过程的实时控制 电化学法由于其检测迅速 可以实现自动化检测, 在工业化生产中具有广阔的应用前景。
  • 矿物中的化学反应分析
    对于寄生在岩石中的细菌以及古生菌类单细胞微生物来说,氢气就是它们的能量来源,它们能够将氢与二氧化碳结合起来, 终转化为自身所需要的能量。通俗的来说,这些细菌及单细胞生物是以气体为食。当我们发现岩石的矿物中发生过这些化学反应,就意味着微生物很有可能存在过。“拉曼光谱能够告诉我们矿物中的化学成分和结构变化,并了解它们之间的相互关系,从而判断岩石中发生的化学反应,以及这一反应环境是否适合微生物的生存。”科罗拉多大学波尔得分校--显微拉曼光谱实验室的管理员和应用埃里克· 埃里森如是表示。
  • 电化学工作站EIS教程 – 新手入门
    电化学阻抗谱(EIS)是一个强大的技术,它使用一个小振幅交流电信号去探测电解池的阻抗特征。交流信号在大频率范围扫描以产生一个测试中电化学电解池的阻抗谱。EIS与直流电技术的区别在于它可以对发生在电化学电解池的电容性,电感性和扩散过程进行研究。EIS背后的理论比直流技术更加复杂,所以建议您在入门前先对基本原理有一个基础的了解。EIS有深远的应用包括涂层,电池,燃料电池,光伏,传感器和生物化学。这个指南将集中于EIS技术在涂覆铝面板腐蚀性能分析方面的应用。先知道一些关于被调查的电化学系统的知识也是很有帮助的。有了对系统的基本了解,就可以知道电化学工作站是否能够收集所需的信息且收集到的数据是否满足精度要求。
  • 天津兰力科:添加钙对氢氧化镍结构和电化学性能的影响
    通过XRD 和循环伏安法研究了添加钙对氢氧化镍结构和电化学性能的影响。其中钙是以离子的形式对氢氧化镍掺杂。结果表明:添加了钙的氢氧化镍的晶粒尺寸变小,比表面积增加,晶体缺陷和畸变增多,提高了质子的传递能力和活性物质的利用率,其中以共沉淀方式添加1%钙的氢氧化镍电极的电化学性能最佳。
  • 天津兰力科:聚2 ,2′2 二氨基二缩三乙二醇苯酚醚的电化学合成及其电化学性质
    用循环伏安法研究了2 ,2′2 二氨基二缩三乙二醇苯酚醚(DATGPE) 在ITO 电极上的聚合,讨论了实验条件对聚合过程的影响,初步探讨了聚2 ,2′2 二氨基二缩三乙二醇苯酚醚( PDATGPE) 的电化学性质。结果表明,在乙腈/ 水溶液中,DATGPE 与HCl 的浓度比为1/ 3 ,电位扫描20. 2~1. 0 V 时,能发生快速的电聚合反应。形成的导电膜具有良好的电化学稳定性,且对H+ 呈现很好的能斯特响应。
  • 化学反应的实时监测
    本文介绍了DPiMS-2020实时分析肽保护基的去保护反应的结果,其中肽保护基在样品板上生成。探针电喷雾电离(PESI)是一种直接电离技术,该技术以恒定频率采集样品,并向探针尖端施加高电压,利用探针电离采集到的目标成分。这种电离技术无需色谱仪即可快速监测样品变化。DPiMS-2020(图1)结合PESI和质谱仪,对要分析的成分实时监测分子量信息的变化,以此准确了解化学反应的进程。
  • 天津兰力科:酵母核糖核酸与中性红相互作用及电化学检测
    采用循环伏安法对酵母核糖核酸与中性红的相互作用进行了研究。NR在玻碳电极上有一对氧化还原峰, 加入yRNA后, 氧化还原峰电流降低, 但没有新的氧化还原峰出现, 表明NR与yRNA发生了较强的相互作用, 紫外光谱进一步证实该作用方式为静电作用。求得NR与yRNA的结合比为1 ∶2, 建立了一种间接检测酵母核糖核酸的电化学方法, 检测范围为510 ×10 - 3 ~0125 g/L, 检出限达110 ×10 - 5 g/L。
  • 热电化学电池性能测试中的TEC半导体可编程温度控制解决方案
    电化学热电池(electrochemical thermcells)作为用于低品质热源的热电转换技术,是目前可穿戴电子产品的研究热点之一,使用中要求具有一定的温差环境。电化学热电池相应的性能测试就对温度和温差形成提出很高要求,特别是要求温度控制仪器具有高控制精度、可编程控制、周期交变控制、通讯和随机软件功能。本文介绍了新型超高精度具有多功能的PID控制仪,并详细描述了电化学热电池特性测试中的温度控制系统结构。
  • 天津兰力科:双2[ 22吡咯( 乙氧基) ] 乙烷的合成及其电化学聚合
    以吡咯和二缩三乙二醇为原料合成了N 取代吡咯衍生物单体———双2[ 22吡咯(乙氧基) ]乙烷,并用循环扫描伏安技术研究了该单体的电化学聚合过程。结果表明:在乙腈/ 高氯酸锂溶液中,双2[ 22吡咯(乙氧基) ]乙烷在铟锡氧化物导电玻璃( ITO) 、Pt 、Au 、玻璃碳、石墨电极上均能顺利发生反应,形成一定厚度的聚合物膜。但聚合速率、膜的结构、膜的颜色有差异。溶剂水对聚合有明显影响。形成的聚合膜具有良好的电化学稳定性。
  • 天津兰力科:亚甲基蓝与酵母核糖核酸相互作用的电化学研究
    亚甲基蓝(methylene blue, MB )是一种具有平面结构(结构式见图1)的碱性生物染色剂,在医学临床诊断及化学分析中已有较长的应用历史,可用于亚硝酸盐、磺氨类、氰化物及一氧化碳等中毒的解毒药。电分析化学中常被用作氧化还原指示剂或电子媒介体,其在水溶液中的电化学行为曾被深入地研究[ 1 - 2 ] 。在水溶液中,MB的还原态为无色中性分子,而氧化态MB +为一价阳离子,由于分子中环平面和氮杂原子上甲基的存在而具有一定的疏水性。水溶液中MB容易形成二聚体,在电极上发生两个连续的1电子转移反应(EE mechanism) [ 1 ] ,其氧化还原电位的峰距ΔEp介于1电子转移反应( 59mV)和2电子转移反应(2815mV)之间。以MB 为分子探针来研究其他生物大分子已有很多报道[ 3 - 9 ] ,如近年来发现MB对DNA具有插入作用[ 8 - 9 ] ,可被用于抗癌药物的体外筛选,但对于RNA 的研究目前还没有文献报道。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制