当前位置: 仪器信息网 > 行业主题 > >

透射电子显微镜透射电镜

仪器信息网透射电子显微镜透射电镜专题为您提供2024年最新透射电子显微镜透射电镜价格报价、厂家品牌的相关信息, 包括透射电子显微镜透射电镜参数、型号等,不管是国产,还是进口品牌的透射电子显微镜透射电镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合透射电子显微镜透射电镜相关的耗材配件、试剂标物,还有透射电子显微镜透射电镜相关的最新资讯、资料,以及透射电子显微镜透射电镜相关的解决方案。

透射电子显微镜透射电镜相关的资讯

  • 一文看懂透射电子显微镜TEM
    p   透射电子显微镜(Transmission Electron Microscope, 简称TEM),是一种把经加速和聚集的电子束透射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度等相关,因此可以形成明暗不同的影像,影像在放大、聚焦后在成像器件(如荧光屏,胶片以及感光耦合组件)上显示出来的显微镜。 /p p   strong  1 背景知识 /strong /p p   在光学显微镜下无法看清小于0.2微米的细微结构,这些结构称为亚显微结构或超细结构。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1932年Ruska发明了以电子束为光源的透射电子显微镜,电子束的波长比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。目前TEM分辨力可达0.2纳米。 /p center p style=" text-align:center" img alt=" " src=" http://img.mp.itc.cn/upload/20170310/e4bcd2dc67574096b089e3a428a72210_th.jpeg" height=" 316" width=" 521" / /p /center p style=" text-align: center " strong 电子束与样品之间的相互作用图 /strong /p p & nbsp & nbsp & nbsp 来源:《Characterization Techniques of Nanomaterials》[书] /p p   透射的电子束包含有电子强度、相位以及周期性的信息,这些信息将被用于成像。 /p p    strong 2 TEM系统组件 /strong /p p   TEM系统由以下几部分组成: /p p   电子枪:发射电子。由阴极,栅极和阳极组成。阴极管发射的电子通过栅极上的小孔形成射线束,经阳极电压加速后射向聚光镜,起到对电子束加速和加压的作用。 /p p   聚光镜:将电子束聚集得到平行光源。 /p p   样品杆:装载需观察的样品。 /p p   物镜:聚焦成像,一次放大。 /p p   中间镜:二次放大,并控制成像模式(图像模式或者电子衍射模式)。 /p p   投影镜:三次放大。 /p p   荧光屏:将电子信号转化为可见光,供操作者观察。 /p p   CCD相机:电荷耦合元件,将光学影像转化为数字信号。 /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/077c0e70dca94509a9990ee4bf72b7c8_th.jpeg" height=" 359" width=" 358" / /center p style=" text-align: center " strong 透射电镜基本构造示意图 /strong /p p & nbsp & nbsp & nbsp 来源:中科院科普文章 /p p    strong 3 原 理 /strong /p p   透射电镜和光学显微镜的各透镜及光路图基本一致,都是光源经过聚光镜会聚之后照到样品,光束透过样品后进入物镜,由物镜会聚成像,之后物镜所成的一次放大像在光镜中再由物镜二次放大后进入观察者的眼睛,而在电镜中则是由中间镜和投影镜再进行两次接力放大后最终在荧光屏上形成投影供观察者观察。电镜物镜成像光路图也和光学凸透镜放大光路图一致。 /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/e9d4e63ae7de44bdb90ac7b937a15169_th.jpeg" height=" 333" width=" 422" / /center p style=" text-align: center " strong 电镜和光镜光路图及电镜物镜成像原理 /strong /p p & nbsp & nbsp & nbsp 来源:中科院科普文章 /p p    strong 4 样品制备 /strong /p p   由于透射电子显微镜收集透射过样品的电子束的信息,因而样品必须要足够薄,使电子束透过。 /p p   试样分类:复型样品,超显微颗粒样品,材料薄膜样品等。 /p p   制样设备:真空镀膜仪,超声清洗仪,切片机,磨片机,电解双喷仪,离子薄化仪,超薄切片机等。 /p p    /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/57ee42cd8391437292cd04cc7bd24694_th.jpeg" height=" 296" width=" 406" / /center p style=" text-align: center " strong 超细颗粒制备方法示意图 /strong /p p & nbsp & nbsp & nbsp 来源:公开资料 /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/2ddf2c80dbe34a069bc51a3595a55160_th.jpeg" height=" 325" width=" 404" / br/ strong 材料薄膜制备过程示意图 /strong /center p   来源:公开资料 /p p   strong  5 图像类别 /strong /p p    strong (1)明暗场衬度图像 /strong /p p   明场成像(Bright field image):在物镜的背焦面上,让透射束通过物镜光阑而把衍射束挡掉得到图像衬度的方法。 /p p   暗场成像(Dark field image):将入射束方向倾斜2θ角度,使衍射束通过物镜光阑而把透射束挡掉得到图像衬度的方法。 /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/c458ccf5fa5c4ffa9cb948e2d28b76b0.png" height=" 306" width=" 237" / br/ strong 明暗场光路示意图 /strong /center center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/701e2e4343ea4409b3afdd92e1717804.jpeg" height=" 318" width=" 294" / br/ strong 硅内部位错明暗场图 /strong /center p   来源:《Characterization Techniques of Nanomaterials》[书] /p p    strong (2)高分辨TEM(HRTEM)图像 /strong /p p   HRTEM可以获得晶格条纹像(反映晶面间距信息) 结构像及单个原子像(反映晶体结构中原子或原子团配置情况)等分辨率更高的图像信息。但是要求样品厚度小于1纳米。 /p p    /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/264c1d9b2f454ea9b8aa548033200a33.png" height=" 312" width=" 213" / /center p style=" text-align: center " strong HRTEM光路示意图 /strong /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/d53de1201a4e41948d4d095401c3dc3b.jpeg" height=" 234" width=" 321" / br/ strong 硅纳米线的HRTEM图像 /strong /center p   来源:《Characterization Techniques of Nanomaterials》[书] /p p    strong (3)电子衍射图像 /strong /p p   选区衍射(Selected area diffraction, SAD): 微米级微小区域结构特征。 /p p   会聚束衍射(Convergent beam electron diffraction, CBED): 纳米级微小区域结构特征。 /p p   微束衍射(Microbeam electron diffraction, MED): 纳米级微小区域结构特征。 br/ /p p    /p center p style=" text-align:center" img alt=" " src=" http://img.mp.itc.cn/upload/20170310/f6fc1e403ef74234af93d4f9979429cd.png" height=" 296" width=" 227" / /p p strong 电子衍射光路示意图 /strong /p /center p   来源:《Characterization Techniques of Nanomaterials》[书] /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/b0631c33d4b44f10bf9bdb0f908830c5.png" height=" 174" width=" 173" / /center p style=" text-align: center " strong 单晶氧化锌电子衍射图 /strong /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/2ac3b6fb7b03421096ee3af0790b9acb.png" height=" 174" width=" 175" / /center p style=" text-align: center " strong strong 无定形氮化硅电子衍射图 /strong /strong /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/02f2f6c3980a4450a36bc7bbc36f10e5.png" height=" 174" width=" 170" / br/ strong 锆镍铜合金电子衍射图 /strong /center p   来源:《Characterization Techniques of Nanomaterials》[书] /p p    strong 6 设备厂家 /strong /p p   世界上能生产透射电镜的厂家不多,主要是欧美日的大型电子公司,比如德国的蔡司(Zeiss),美国的FEI公司,日本的日立(Hitachi)等。 /p p    strong 7 疑难解答 /strong /p p    strong TEM和SEM的区别: /strong /p p   当一束高能的入射电子轰击物质表面时,被激发的区域将产生二次电子、背散射电子、俄歇电子、特征X射线、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。扫描电镜收集二次电子和背散射电子的信息,透射电镜收集透射电子的信息。 /p p   SEM制样对样品的厚度没有特殊要求,可以采用切、磨、抛光或解理等方法特定剖面呈现出来,从而转化为可观察的表面 TEM得到的显微图像的质量强烈依赖于样品的厚度,因此样品观测部位要非常的薄,一般为10到100纳米内,甚至更薄。 /p p    strong 简要说明多晶(纳米晶体),单晶及非晶衍射花样的特征及形成原理: /strong /p p   单晶花样是一个零层二维倒易截面,其倒易点规则排列,具有明显对称性,且处于二维网格的格点上。 /p p   多晶面的衍射花样为各衍射圆锥与垂直入射束方向的荧光屏或者照相底片的相交线,为一系列同心圆环。每一族衍射晶面对应的倒易点分布集合而成一半径为1/d的倒易球面,与Ewald球的相贯线为圆环,因此样品各晶粒{hkl}晶面族晶面的衍射线轨迹形成以入射电子束为轴,2θ为半锥角的衍射圆锥,不同晶面族衍射圆锥2θ不同,但各衍射圆锥共顶、共轴。 /p p   非晶的衍射花样为一个圆斑。 /p p   strong  什么是衍射衬度?它与质厚衬度有什么区别? /strong /p p   晶体试样在进行电镜观察时,由于各处晶体取向不同和(或)晶体结构不同,满足布拉格条件的程度不同,使得对应试样下表面处有不同的衍射效果,从而在下表面形成一个随位置而异的衍射振幅分布,这样形成的衬度称为衍射衬度。质厚衬度是由于样品不同微区间存在的原子序数或厚度的差异而形成的,适用于对复型膜试样电子图象做出解释。 /p p    strong 8 参考书籍 /strong /p p   《电子衍射图在晶体学中的应用》 郭可信,叶恒强,吴玉琨著 /p p   《电子衍射分析方法》 黄孝瑛著 /p p   《透射电子显微学进展》 叶恒强,王元明主编 /p p   《高空间分辨分析电子显微学》 朱静,叶恒强,王仁卉等编著 /p p   《材料评价的分析电子显微方法》 (日)进藤大辅,及川哲夫合著,刘安生译。 /p p   来源:中国科学院科普文章《透射电子显微镜基本知识介绍》 /p
  • 承鸿鹄之志,造大国电镜!首台国产商业场发射透射电子显微镜发布
    1月20日,广州慧炬科技有限公司成功举办“承鸿鹄之志,造大国电镜”新品发布会,正式发布首台国产商业场发射透射电子显微镜“太行”TH-F120。标志着我国已掌握透射电镜整机研制能力以及电子枪、高压电源、电子探测相机等核心技术。该产品将打破国内透射电镜100%依赖进口的局面,为我国在材料科学、生命科学、化学、物理等前沿科学以及半导体工业、锂电新能源材料等先进制造业领域的高质量发展提供有力支撑。  中国科学院院士饶子和、中国科学院院士隋森芳、中国科学院院士徐涛,以及来自全国学界、业界相关领域的60余位专家出席本次发布会。  院士大咖云集!共见首台国产商业场发射透射电子显微镜发布会议伊始,广州慧炬科技总经理曹峰向各位嘉宾的到来表示热烈欢迎,并感谢各位专家对国产透射电子显微镜的支持。广州开发区管委会二级巡视员、生物岛实验室主任助理杨寿桃致辞。国仪量子技术(合肥)股份有限公司董事长贺羽致辞。中国科学院隋森芳院士致辞。中国科学院物理研究所研究员、松山湖材料实验室研究员、中国电子显微学会副理事长、粤港澳大湾区电镜联盟理事长马秀良致辞。中国科学院生物物理研究所、生物岛实验室研究员、广州慧炬科技首席科学家孙飞分享了《生物医学电镜自主研制之路》报告。发布会上,饶子和院士与隋森芳院士共同为太行TH-F120揭幕。饶子和院士(左二)与隋森芳院士(左一)为太行TH-F120揭幕,徐涛院士(左三)等专家见证揭幕仪式合影  ▍破局之作!场发射透射电子显微镜“太行”TH-F120广州慧炬科技总经理曹峰向与会嘉宾详细介绍了太行TH-F120的产品特点与优势。TH-F120是慧炬120kV成像平台的首款产品,它的诞生意味着国产商业透射电镜向前迈进了一大步。其中文名称“太行”源自中华名山太行山,寓意TH-F120将如太行山一样,挺起中国透射电镜产业的脊梁。  TH-F120自主研制的高亮度场发射电子枪,相比于同级进口产品的热发射电子枪,亮度更高,发射稳定性和相干性更优,匹配自主研制的电磁透镜系统,针对120kV成像平台特别优化了电子光学设计,可为用户带来更佳的图像衬度和分辨率;自主研制的高稳定性的低纹波高压电源,实现了高压自动控制,保证电子枪稳定发射;标配自主研制的高像素CMOS相机,在低电子剂量的工况下仍可呈现丰富的样品细节;整机以人机分离为设计理念,匹配高度自动化的控制系统,使图像采集工作更加舒适高效;同时,TH-F120预设了充足的拓展接口和整机升级空间,满足用户迭代需求,有效延长整机使用年限。太行TH-F120产品参数太行TH-F120应用案例  ▍承鸿鹄之志,造大国电镜  透射电镜具有极高的技术门槛,国外品牌已形成了垄断局面。此前,我国透射电镜100%依赖进口,国产化尚属空白。2022年,我国进口透射电镜约300台,进口总额超30亿元,预计2022年至2028年期间,年复合增长率超5.8%。  2022年,生物岛实验室与国内领先的科学仪器公司国仪量子技术(合肥)股份有限公司联合成立广州慧炬科技有限公司,依托生物岛实验室徐涛院士、孙飞研究员团队在国产透射电镜领域的研发成果,与国仪量子成熟的产品工程化与市场开拓经验,进一步推动透射电镜的普及和应用。此前,国仪量子自主研制的场发射/钨灯丝扫描电镜、超高分辨场发射扫描电镜、镓离子束双束电镜、量子传感设备、电子顺磁共振波谱仪、气体吸附分析仪等产品获得了良好的市场反响,形成了国产高端科学仪器的示范应用。双方的合作,将充分整合人才与技术优势,加速推进透射电镜技术转化为商业化产品并进行批量生产。  广州慧炬科技首台国产商业场发射透射电子显微镜正式发布,填补了国内该领域的空白,实现了从“买”到“造”的重大突破。未来,广州慧炬科技将持续加强在透射电镜领域的自主创新能力,研发更高端的电镜产品,服务中国科研人,为实现科技自立自强贡献力量。与会嘉宾合影
  • 承鸿鹄之志,造大国电镜!首台国产商业场发射透射电子显微镜发布
    1月20日,广州慧炬科技有限公司成功举办“承鸿鹄之志,造大国电镜”新品发布会,正式发布首台国产商业场发射透射电子显微镜“太行”TH-F120。标志着我国已掌握透射电镜整机研制能力以及电子枪、高压电源、电子探测相机等核心技术。该产品将打破国内透射电镜100%依赖进口的局面,为我国在材料科学、生命科学、化学、物理等前沿科学以及半导体工业、锂电新能源材料等先进制造业领域的高质量发展提供有力支撑。中国科学院院士饶子和、中国科学院院士隋森芳、中国科学院院士徐涛,以及来自全国学界、业界相关领域的60余位专家出席本次发布会。点击观看发布会精彩回顾院士大咖云集!共见首台国产商业场发射透射电子显微镜发布会议伊始,广州慧炬科技总经理曹峰向各位嘉宾的到来表示热烈欢迎,并感谢各位专家对国产透射电子显微镜的支持。广州开发区管委会二级巡视员、生物岛实验室主任助理杨寿桃致辞。国仪量子技术(合肥)股份有限公司董事长贺羽致辞。中国科学院隋森芳院士致辞。中国科学院物理研究所研究员、松山湖材料实验室研究员、中国电子显微学会副理事长、粤港澳大湾区电镜联盟理事长马秀良致辞。中国科学院生物物理研究所、生物岛实验室研究员、广州慧炬科技首席科学家孙飞分享了《生物医学电镜自主研制之路》报告。发布会上,饶子和院士与隋森芳院士共同为太行TH-F120揭幕。饶子和院士(左二)与隋森芳院士(左一)为太行TH-F120揭幕,徐涛院士(左三)等专家见证揭幕仪式合影破局之作!场发射透射电子显微镜“太行”TH-F120广州慧炬科技总经理曹峰向与会嘉宾详细介绍了太行TH-F120的产品特点与优势。TH-F120是慧炬120kV成像平台的首款产品,它的诞生意味着国产商业透射电镜向前迈进了一大步。其中文名称“太行”源自中华名山太行山,寓意TH-F120将如太行山一样,挺起中国透射电镜产业的脊梁。TH-F120自主研制的高亮度场发射电子枪,相比于同级进口产品的热发射电子枪,亮度更高,发射稳定性和相干性更优,匹配自主研制的电磁透镜系统,针对120kV成像平台特别优化了电子光学设计,可为用户带来更佳的图像衬度和分辨率;自主研制的高稳定性的低纹波高压电源,实现了高压自动控制,保证电子枪稳定发射;标配自主研制的高像素CMOS相机,在低电子剂量的工况下仍可呈现丰富的样品细节;整机以人机分离为设计理念,匹配高度自动化的控制系统,使图像采集工作更加舒适高效;同时,TH-F120预设了充足的拓展接口和整机升级空间,满足用户迭代需求,有效延长整机使用年限。太行TH-F120产品参数太行TH-F120应用案例承鸿鹄之志,造大国电镜透射电镜具有极高的技术门槛,国外品牌已形成了垄断局面。此前,我国透射电镜100%依赖进口,国产化尚属空白。2022年,我国进口透射电镜约300台,进口总额超30亿元,预计2022年至2028年期间,年复合增长率超5.8%。2022年,生物岛实验室与国内领先的科学仪器公司国仪量子技术(合肥)股份有限公司联合成立广州慧炬科技有限公司,依托生物岛实验室徐涛院士、孙飞研究员团队在国产透射电镜领域的研发成果,与国仪量子成熟的产品工程化与市场开拓经验,进一步推动透射电镜的普及和应用。此前,国仪量子自主研制的场发射/钨灯丝扫描电镜、超高分辨场发射扫描电镜、镓离子束双束电镜、量子传感设备、电子顺磁共振波谱仪、气体吸附分析仪等产品获得了良好的市场反响,形成了国产高端科学仪器的示范应用。双方的合作,将充分整合人才与技术优势,加速推进透射电镜技术转化为商业化产品并进行批量生产。广州慧炬科技首台国产商业场发射透射电子显微镜正式发布,填补了国内该领域的空白,实现了从“买”到“造”的重大突破。未来,广州慧炬科技将持续加强在透射电镜领域的自主创新能力,研发更高端的电镜产品,服务中国科研人,为实现科技自立自强贡献力量。与会嘉宾合影
  • 专题推荐|低压透射电子显微镜LVEM在病毒学研究中的应用
    病毒作为一种病原体一直受到学术界的广泛关注。然而由于病毒通常尺寸较小,传统的光学显微镜往往难以满足其形态观测的需求,这使得高分辨率的透射电子显微镜成为了当前病毒学研究的一个重要手段(图1),可以用来研究病毒的结构和成分。目前使用的透射电子显微镜进行病毒颗粒的检测和识别仍面临着巨大的挑战。这是因为病毒的主要组成部分多为含碳的轻元素有机物,这类样品很容易被高能电子束穿过,造成其光学衬度较低,且由于共价键化合物的低稳定性使得其在传统电子显微镜的高加速电压 (一般为80-200 kV) 下非常不稳定,不适合直接进行观察。因此病毒的形态学观察一般采用负染色成像技术,需要在观测前对样品进行复杂的负染操作,占有大量的时间,且可能会掩盖掉一些病毒的形貌特征,造成使用透射电子显微镜观测病毒的门槛较高。图1. (A)80 kV 和 (B)5 kV加速电压下透射电子显微镜下观测到的SV40感染的小鼠胰腺切片(Microscopy Research and Technology, DOI:10.1002/jemt.20603)为了解决这一难题,低压透射电子显微镜(Low Voltage Electron Microscope, LVEM)应运而生。LVEM突破了传统透射电子显微镜的80 kV加速电压的低限,研究人员可在低压下观察轻质生物样品,无需染色,简化了样品制备流程;同时该设备可在保证高图像对比度的前提下,使用温和的加速电压进行病毒形态学的检测和识别,能够识别以往可能被污渍和负染的瑕疵所掩盖的病毒特征。Delong Instruments公司的LVEM 5&25是一类专门针对低电压设计研发出的透射电子显微镜。LVEM使用特殊设计的倒置式肖特基(Schottky)场发射电子枪,提供高亮度高相干性的电子束,这种低能电子束与样品的相互作用比传统透射电子显微镜中的高能电子要强得多,使得电子被轻质有机材料强烈散射,导致了特征的异常分化(Microscopy Research and Technology, DOI: 10.1002/jemt.22428)。在病毒学研究方面,该设备大放大倍数高于通常观测病毒所需要的大约50,000倍的放大率,且依然保持不错的分辨率(2 nm),可满足病毒形态和结构研究的需求。相比于高电压,5kV 的加速电压提供的电子束与样品的作用更强,对密度和原子序数有更高的灵敏度,对低至0.005 g/cm3的密度差别仍能得到很好的样品图像对比度,有效提高了轻元素样品的成像质量,适合针对病毒学的研究。需要指出的是,LVEM 25与LVEM 5建立在相同的平台之上,前者在一个稍高的加速电压下工作,在满足轻元素样品观测的要求下可进一步提高终的图像分辨率。图2. LVEM 5的结构示意图(A)和小鼠心脏超微结构成像 (B) 。(Microscopy Research and Technology, DOI:10.1002/jemt.22659)LVEM 5&25显微镜可用于检测腺病毒(图3A)、HIV(图3B)、轮状病毒(图3C)、球状病毒(图3F)、棒状病毒(图3 G-H)、星形病毒、杯状病毒、诺瓦克样病毒、疱疹病毒和乳头瘤病毒等。另外对于类病毒载体的研究,LVEM 5&25也是一项利器。它能够在不负染的情况下直接观测类病毒载体的形态,帮助研究者快速筛选载体,解决传统电镜制样难,机时紧张等问题(Journal of Nanobiotechnology, DOI: 10.1186/s12951-016-0241-6)。图3. (A-C) LVEM 5观察多种非负染的病毒样品 (D-E) LVEM 5&25 实物图 (F-H) LVEM 25观察多种负染后的病毒样品。 (图片来源于Delong Instruments官网)LVEM的高对比度成像技术匹配快速的时间-图像周期、高通量研究,可作为一种快速诊断方法,用于识别病毒感染源和辅助病理研究,是快速检测具有公共卫生重要性病原体的有力工具。LVEM 5&25 更是一台多种功能集成的电子显微镜,具有四种不同的成像模式——透射电镜(TEM)、扫描电镜(SEM)、扫描透射电镜(STEM)和电子衍射(ED),能够为病毒学研究工作者同时提供多种表征所需的成像模式,全面的对病毒样品的结构和成分进行分析(图4)。图4. 使用LVEM 5 对HIV膜蛋白结构同时进行(A)TEM和(B)ED分析。(Journal of Virology,DOI:10.1128/JVI.01526-19.)除了拥有高质量成像和多功能集成的特点外,LVEM 5&25的体积小 (无需专业实验室),维护费用低廉(无需冷却水和专用电源),在使用期间基本不会产生任何额外的费用,大大降低了研究所需的成本。另外它采用了真空自闭锁技术,换样仅需3分钟,降低了仪器操作难度,对广大的非专业用户变得更加友善。我们相信随着低压透射电镜的不断发展,LVEM 5&25将成为一个强有力的工具,使得病毒形态的观测变得越来越简单,更多以往被传统电镜所忽略的细节结构信息将被挖掘出来,大的提高研究人员对病毒结构和成分的认知,为人们的科研和生活服务。
  • 乌克兰的骄傲:透射电子显微镜TEM
    乌克兰打仗了,我这里也有点杞人忧天,要知道乌克兰的工业重要性和先进程度并不仅仅在军事领域,在精密仪器制造,特别是在我们熟悉的透射电子显微镜研发制造上,也是可圈可点的。您没有看错,乌克兰有自研的透射电镜TEM,它长的这个样子:一看上面的商标,这不是Zeiss的标志吗?您怎么说它是乌克兰的呀?故事的背景是:Zeiss电镜的并购历程之前有详细讲过,这里不再赘述。这台100kV的透射电镜研制生产于乌克兰,2005年底被Zeiss看中并完成收购,改标改软件重新喷漆,在2007年11月1号改名Centra100型号对外发布。这款透射别看只是100kV,技术上还是很有特色的:Zeiss同时还参与客户交付仪式,高调宣传这台透射:因为它填补了Zeiss没有100kV透射电镜的空白:为了留下历史印记,还给它起了一个别名叫“CRISP”,用以宣传他的高分辨率: 可惜好景不长,2008年Zeiss上层变动,新的领导觉得透射电镜不赚钱,赫然决定“自废武功”,将透射电镜这条任何电镜厂家和用户都公认的“皇冠”生产线砍掉!被砍得除了自己的Libra200和200FE,就是这台可怜的Centra100了-从被收购到发布后仅仅短短一年光景,便折戟沉沙。自此以后,这台乌克兰的骄傲便销声匿迹,再无踪迹。现今即使仔细Google搜索,也很难找到它的祖籍,出生年月和原始姓名了。2016年底,Centra100被Zeiss宣布停止服务(End of Support),所以它的剩余生命也就屈指可数了。至此乌克兰大战之日,回想起这台电镜的光辉岁月,岂不令人扼腕叹息。 上面提到的Libra200FE ,笔者维修过此型号在国内两台中的一台,令人印象深刻的是:除了严谨的绝缘油密封的电子枪,光大大小小的铅屏蔽板就有二百公斤重,桌面由超过四十层的板材压制而成,整体硬件给人以精工细致的观感。 透射电镜是公认的电子显微镜的鼻祖,电镜产品系列的标杆,业界皇冠上的钻石;它的地位是无可替代,是不可或缺的;它的存在与技术高低划分了一个电镜公司是一流的电镜公司,或是不入“电镜”流的。
  • 球差校正透射电子显微镜新技术及应用研讨会在陵水成功举办
    3月7日,“中国电子显微镜学会第十一届常务理事会”召开同期,由中国电子显微镜学会主办的“球差校正透射电子显微镜新技术及应用研讨会”在陵水举办,研讨会邀请数位青年专家代表以报告和座谈讨论的形式分享各自在球差校正透射电镜技术及应用方面的新应用进展。同时,出席本次研讨会的还包括中国电子显微镜学会常务理事代表、电镜类科学仪器公司代表等,大家在讨论环节,针对应用进展、仪器技术需求、更好合作等话题进行了深层次的交流探讨。研讨会现场中国科学院院士、浙江大学教授张泽致辞张泽院士在致辞中表示,电子显微学是一门涉及物理、化学等,且与电镜相关仪器设备紧密关联起来的交叉学科,交叉学科的发展,无论技术研究、方法学研究,还是仪器技术开发等,大家都需要互相支持、互相欣赏。其次,从电镜等设备引进时间分布来看,大家有先后,建议大家互通有无,共同发展。同时强调,仪器设备技术对于原创性、变革性成果至关重要,仪器设备的自主发展是学科将来更好发展的必经之路。最后表示,青年学者们的工作情况代表着中国电子显微学界发展的进展,希望大家在本次交流中收获进步,在进步中相互支持、共谋发展。报告人:浙江大学教授 田鹤报告题目:电荷与自旋相关局域有序特性的探索研究电荷与自旋相关局域有序特性对于进一步发现关联材料等的新奇物性具有重要意义,田鹤在报告中分享了团队十余年来,利用原子尺度电子显微技术方法研究电荷与自旋相关局域有序特性的一些探索。围绕电荷成像的瓶颈与关键问题、自旋成像的瓶颈与关键问题、涡旋电子探针问题、散射理论与实验设置问题等依次展开讨论。实现了电荷、自旋局域有序特性的一些探测,包括原子层面的电荷、轨道、自旋耦合,电荷、轨道、自旋等多自由度调控等。最后,田鹤表示,电子显微学方法的研究虽然周期较长,但是是值得付出一生的事业,这也呼应了那句古语“工欲善其事必先利其器”。报告人:中国科学院大学教授 周武报告题目:功能材料的单原子尺度谱学研究在催化剂中起到关键作用的可能是一些单个金属原子的原子尺度结构特征,所以除了看到这些单个金属原子,还需要分析这些金属原子的种类、这些单个金属原子跟周围其它非金属原子发生怎样的配位相互作用等。报告中,周武主要分享了团队近年来关于功能材料单原子尺度谱学的研究进展。研究主要基于独特的单色仪球差校正透射电镜开展,该电镜是国际上能量分辨率和空间分辨率最高的30kV低压电镜之一。报告首先介绍了孤立单金属原子谱学分析首要解决的孤立单金属原子成像问题,通过仪器方法的突破案例等分享了如何保证成像的质量。接着,讲解了进一步谱学分析的相关进展。并分享了利用这些方法应用于单原子催化剂等实际样品中的一些案例和取得的系列成果,说明了球差显微镜的重大意义。报告人:清华大学副研究员 陈震报告题目:Electron psychography for ultrahigh resolution imaging of atomic structure and spin texture陈震长期致力于开发新型电子显微学技术,尝试突破现有球差透射电子显微镜成像技术的极限,进一步提高球差透射电子显微镜的空间分辨率。报告主要分享了利用psychography(叠层技术)方法对原子结构和磁结构高分辨成像的研究。研究主要基于四维扫描透射电子显微术(4D-STEM)。陈震首先介绍了psychography方法的一系列优势,分辨率方面,基于球差校正高分辨的基础,进一步把球差透射电子显微镜的空间分辨率提高2.5倍,至0.3埃以下。他进一步介绍了psychography方法在电磁场成像方面的发展情况,并介绍了团队在超高分辨率的磁结构成像的最新进展:揭示复杂氧化物中最邻近的氧原子的分布细节,且精确测出铁原子间距。叠层球差透射电子显微技术在工程材料等领域有着广泛的应用潜力。报告人:北京工业大学 李志鹏报告题目:透射电镜原位原子尺度多场耦合研究平台开发及应用李志鹏博士长期致力于发展原子分辨的材料力学性能原位实验装置。他介绍了他参与发展的世界最先进(领先)的“球差透射电子显微镜力-热-电学实验装置”,可以实现原子分辨的单一(力、热、电)或耦合外场(力-热-电)原位实验。该类实验在原子尺度阐明先进材料结构-性能相关性,为高性能新材料开发提供关键实验数据和重要理论支撑。李志鹏博士介绍了多种球差电子显微镜原位原子尺度力-热-电单/多场耦合实验室的研发及其在金属、合金、半导体等多种材料领域和研究方向中的应用。其参与发展的多项成果在百实创(北京)科技有限公司转化,并推出INSTEMS系列球差透射电镜原位原子分辨力热电集成实验室系统。在高校与企业优势互补下,李志鹏博士进一步介绍了最近拓展的系列国际前沿新技术,例如原子级漂移校正技术等,这些项技术预计在今年成熟并推广应用。另外李志鹏博士也介绍了百实创发展的多个先进球差电镜功能化实验室(实验装置),如球差电镜霍尔样实验台、球差电镜多样品载具、透射电镜通用标准双倾样品杆等。报告人:浙江大学教授 余倩报告题目:金属力学性能和位错调控结构金属材料的应用广泛而重要,但长久以来,金属材料强度和塑形不可兼得的问题一直难以解决,这往往是由位错等缺陷导致的。余倩在报告中从三个方面介绍了其团队如何调控位错,进而改变材料的力学性能,以追求更高强度的前提下,保证足够的塑性变形能力。第一部分为加入微量合金元素,使得位错结构发生改变,产生一些新的交互作用;第二部分则通过大量的合金元素来制造无序结构,即利用近年国际前沿的复杂合金体系(高熵合金)去调控位错行为;第三部分是利用界面调控,即使用一种更强的显微结构界面进行位错形核与运动行为调控。报告人:南京理工大学副教授 周浩报告题目:原子尺度镁合金界面偏析及其形成机理研究金属纳米材料的概念已经被提出很久,但当前工程应用依旧困难,主要是剧烈塑性变形技术提出至今已35年,尚未解决;另外受限纳米晶体界面,界面稳定性低。周浩报告中针对以上问题,团队从镁合金入手,分享了工程材料提高界面稳定性相关的研究进展。研究以溶质元素的界面偏析调控界面结构,提高界面稳定性为金属材料纳米化提供了新的思路,具体结论包括孪晶界面的周期性导致偏析结构呈现显著周期性,具体晶格结构受元素类型、界面能等因素影响;晶界偏析也呈现显著周期性结构,偏析结构与热处理工艺无明显关系;Ag等低温固溶度低、扩散速率快的元素易于形成位错偏析等。仪器技术及应用交流环节,除了电子显微学前沿应用,大家也针对疫情下售后零部件供货周期问题、进口高端透射电镜功能附件的维修周期、高端电镜后台软硬件开放权限、国内产业化、人才培养、国内期刊发展、操作人员变动频繁等相关问题进行了广泛探讨。同时,中小国产科学仪器企业呼吁国家、高校、研究所等相关部门给予国产科学仪器企业与国际大公司在付款方式等方面同等的公平待遇。会后留影
  • 2900万!北京大学材料科学与工程学院双球差矫正透射电子显微镜和场发射透射电镜采购项目
    项目编号:0873-2201HW3L0547项目名称:北京大学材料科学与工程学院双球差矫正透射电子显微镜和场发射透射电镜采购项目预算金额:2900.0000000 万元(人民币)采购需求:1.本次招标共1包:包号名称数量预算金额(人民币万元)是否接受进口产品投标1双球差校正透射电子显微镜1台2900是场发射透射电子显微镜1台是 本次招标、投标、评标均以包为单位,投标人须以包为单位进行投标,如有多包,可投一包或多包,但不得拆包,不完整的投标将被拒绝。本项目为非专门面向中小企业采购。本项目所属行业为工业。2.招标内容及用途:用于教学科研以上货物及服务的供应、运输、安装调试、培训及售后服务具体招标内容和要求,以本招标文件中商务、技术和服务的相应规定为准。3.需要落实的政府采购政策:本项目落实节约能源、保护环境、促进中小企业发展、支持监狱企业发展、促进残疾人就业等政府采购政策。合同履行期限:合同签订之日起至质保期满结束。本项目( 不接受 )联合体投标。
  • 半年安装四台!生物型透射电子显微镜顺利落户国内多所知名院校
    2024年截止目前,我司已连续完成军事兽医研究院、复旦大学、香港城市大学、中国海洋大学共计4台LVEM5与LVEM25生物型透射电子显微镜的安装落户工作。同时,我司工程师对客户进行了生物型透射电子显微镜的专业操作培训,客户均可以独立操作使用设备。Delong Instrument公司推出的LVEM5&25生物型透射电子显微镜采用了5kV与25kV的低加速电压设计,对生物样品成像条件更加温和,摆脱了传统重金属染色在染色与负染过程本身可能对生物样品结构造成的损害,可以高效、高衬度地对生物与有机样品进行透射电镜成像。军事兽医研究院LVEM25生物型透射电子显微镜香港城市大学LVEM5生物型透射电子显微镜中国海洋大学LVEM5生物型透射电子显微镜复旦大学LVEM5生物型透射电子显微镜 LVEM5生物型透射电子显微镜对生物样品和有机纳米颗粒等轻质样品成像衬度高、操作便捷且无需负染等优势,将协助军事兽医研究院、复旦大学、香港城市大学、中国海洋大学等高校及科研院所提高其在生物、医学、药学、材料学等多个研究领域的科研观测水平,助力多学科、多领域的科研发展。工程师现场安装调试LVEM5生物型透射电子显微镜 工程师在香港城市大学给师生培训LVEM5生物型透射电子显微镜 产品简介Delong Instrument公司推出的LVEM生物型透射电子显微镜(LVEM5&25E)采用了5kV与25kV的低加速电压设计,为生物样品的电镜成像提供最为便捷高效的解决方案。高衬度:低能量电子对有机分子产生更强烈的散射,具有更高对比度。无需染色:突破以往生物/轻材料成像需要重金属染色的局限性。高分辨率:无染色条件下能够达到1.0 nm的图像分辨率。高效方便:真空准备只需要5分钟,空间小,环境需求低。易操作且成本低:友好智能化操作界面,低耗材,低维护费用,无需专业操作人员。LVEM生物型透射电子显微镜(LVEM5&25E)部分高分文献:[1] Babaei-Ghazvini A , Cudmore B , Dunlop M J , et al. Effect of magnetic field alignment of cellulose nanocrystals in starch nanocomposites: Physicochemical and mechanical properties[J]. Carbohydrate Polymers, 2020, 247:116688.[2] Process Pathway Controlled Evolution of Phase and Van‐der‐Waals Epitaxy in In/In2O3 on Graphene Heterostructures[J]. Advanced Functional Materials, 2020.[3] Sun C , Ma Q , Yin J , et al. WISP-1 induced by mechanical stress contributes to fibrosis and hypertrophy of the ligamentum flavum through Hedgehog-Gli1 signaling[J]. Experimental & Molecular Medicine.[4] Wang H , Maimaitiaili R , Yao J , et al. Percutaneous Intracoronary Delivery of Plasma Extracellular Vesicles Protects the Myocardium Against Ischemia-Reperfusion Injury in Canis[J]. Hypertension, 2021.[5] Weiss M , Fan J , Claudel M , et al. Density of surface charge is a more predictive factor of the toxicity of cationic carbon nanoparticles than zeta potential[J]. Journal of Nanobiotechnology, 2021, 19(1).[6] Wang H, Wang T, Rui W, et al. Extracellular vesicles enclosed‐miR‐421 suppresses air pollution (PM2. 5)‐induced cardiac dysfunction via ACE2 signalling[J]. Journal of Extracellular Vesicles, 2022, 11(5): e12222.[7] Su, Yu, et al. "Steam disinfection releases micro (nano) plastics from siliconerubber baby teats as examined by optical photothermal infrared microspectroscopy." Nature nanotechnology 17.1 (2022): 76-85.[8] Hrapovic S, Martinez-Farina C F, Sui J, et al. Design of chitosan nanocrystals decorated with amino acids and peptides[J]. Carbohydrate Polymers, 2022, 298: 120108.[9] Han, Dongni, et al. "Enhanced electrochemiluminescence at microgel-functionalized beads." Biosensors and Bioelectronics 216 (2022): 114640.[10] Chen, Rui, et al. "Delivery of engineered extracellular vesicles with miR-29b editing system for muscle atrophy therapy." Journal of Nanobiotechnology 20.1 (2022): 304.[11] Pizzi, Andrea, et al. "Emergence of Elastic Properties in a Minimalist Resilin‐Derived Heptapeptide upon Bromination." Small 18.32 (2022): 2200807.[12] Jiang J, Ni L, Zhang X, et al. Platelet Membrane‐Fused Circulating Extracellular Vesicles Protect the Heart from Ischemia/Reperfusion Injury[J]. Advanced Healthcare Materials, 2023, 12(21): 2300052.[13] de Medeiros T V, Macina A, Bicalho H A, et al. Engineering the surface chemistry and morphology of polymeric carbon nitrides towards greener heterogeneous catalysts for biodiesel synthesis[J]. Small, 2023, 19(31): 2300541. 部分用户单位:相关产品1、低电压台式透射电子显微镜-LVEM5(生物领域)
  • 800万!安徽工程大学透射电子显微镜(进口)采购项目
    项目编号:FSKY34000120225817号 项目名称:安徽工程大学透射电子显微镜(进口)采购项目 预算金额(元):8000000 最高限价(元)(如有):8000000 采购需求: 包名称:安徽工程大学透射电子显微镜(进口)采购项目预算金额(元):8000000 数量:1 简要规格描述或项目基本概况介绍、用途:采购透射电子显微镜(进口)1套,具体详见招标文件 合同履约期限:包别 1,12个月(透射电镜系统货期为合同签订后8个月内,臭氧清洗仪货期为合同签订后12个月内) 本项目(否)接受联合体。
  • 6630万!天津大学双球差校正透射电子显微镜等设备采购项目
    项目编号:0618-224TC229908R(TDZC2022J0045)项目名称:天津大学资产处学科交叉平台电镜中心双球差校正透射电子显微镜等设备采购预算金额:6630.0000000 万元(人民币)最高限价(如有):6630.0000000 万元(人民币)采购需求:序号设备名称数量1双球差校正透射电子显微镜1套2200KV透射电子显微镜1套3原位气/液-固材料表界面原子级超高分辨率表征系统1套4电子探针X射线显微分析仪1台合同履行期限:合同签订后360天内交货及到货后180天内完成安装调试并具备验收条件等;本项目( 不接受 )联合体投标。
  • 441万!广东工业大学透射电子显微镜与扫描电镜大面积SDD能谱仪等设备采购
    项目编号:1371-2241GDGH1149项目名称:透射电子显微镜与扫描电镜大面积SDD能谱仪等设备采购采购方式:公开招标预算金额:4,410,000.00元采购需求:合同包1(透射电子显微镜与扫描电镜大面积SDD能谱仪等设备采购):合同包预算金额:4,410,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他专用仪器仪表扫描电镜大面积SDD能谱仪1(套)详见采购文件890,000.00-1-2其他专用仪器仪表120KV透射电子显微镜1(套)详见采购文件3,520,000.00-本合同包不接受联合体投标合同履行期限:进口免税产品:扫描电镜大面积SDD能谱仪的合同签订后120天内交付使用;120kv透射电子显微镜的合同签订后300天内交付使用。
  • 国外将建造光透射电子显微镜实验室
    波兰弗罗茨瓦夫科技大学正在建造拥有光透射电子显微镜的实验室。光透射电子显微镜(LightTEM)将使光动力疗法或光催化发展相关研究成为可能。该设备将配备控制电子束的精确系统和更敏感的探测系统,使科学家能使用更小的能量束并增加观测时间。光透射过程分析有助于科学家们研究光催化、等离子体等。同时,新设备将可用于开发新光动力治疗方法、针对抗病毒方法的超微结构研究等。科研人员已在《光诊断和光动力疗法》和《超微镜》上发表了其研究结果。注:本文摘自国外相关研究报道,文章内容不代表本网站观点和立场,仅供参考。
  • 350万!嘉庚创新实验室透射电子显微镜货物类采购项目
    项目编号:[350200]WSCG[GK]2022009 项目名称:嘉庚创新实验室透射电子显微镜货物类采购项目 采购方式:公开招标 预算金额:3500000元 包1: 合同包预算金额:3500000元 投标保证金:0元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)1-1A02100301-显微镜透射电子显微镜1(套)是1、工作条件1.1 电力供应:220V(±10%),50Hz,1φ 380V(±10%),50Hz,3φ;1.2 工作温度:15℃-25℃;1.3 工作湿度:60%。2、透射电镜基本单元2.1 电子枪为LaB6或W灯丝,提供备用灯丝至少2根;2.2 TEM模式下分辨率:点分辨率: ≤0.30 nm,线分辨率: ≤0.15 nm;2.3 最高加速电压≥120 kV,提供最高加速电压下的合轴文件;2.4 TEM模式下的放大倍数范围至少满足x100–x650,000;2.5 照明系统束斑尺寸:对于W灯丝:80-4000 nm,对于LaB6灯丝:40-2000 nm,且照明系统束斑具有高的稳定度。2.6 具备高衬度成像模式以获得样品的更多细节和高分辨观测效果;2.7 具有合轴调整快速调用功能,透射/能谱分析/电子衍射分析三种模式仅需通过软件实现快速切换;2.8 具备会聚束电子衍射功能;2.9 配备全自动样品台:计算机控制,全对中,高稳定性,全自动马达样品台(至少4轴),支持单倾/双倾样品台,样品移动范围:X轴/Y轴≥2 mm;Z轴≥0.4 mm,样品台α倾斜角度:≥±30°;2.10 提供1根单倾样品杆,1根双倾样品杆;2.11 为保证不同用户的不同测试需求,电镜操作者可以根据需要,在透射、电子衍射等不同模式下设置一套或多套电镜状态参数,每套状态参数相互独立,可在使用过程中迅速切换调用。可设置任意多个用户,每个用户之间的参数设置相对独立,同时还可以相互调用。3、高速高分辨CMOS相机系统3.1 为保证成像质量,应配备一体化底装高灵敏度的CMOS相机;3.2 相机应具备高的像素数,其中最高像素数≥2048×2048,并可实现在不同像素数下的拍照和视频录制;3.3 相机的计算机平台应为Win10的64-bit,图像储存格式多样,如TIFF,BMP,JPEG,PNG等;3.4 相机具备直接拍摄电子衍射功能;3.5 相机具备自动对焦、自动对中、自动消像散等功能,提高样品拍摄的智能化和便捷化;3.6 相机应支持样品台导航功能,保证目标样品的快速定位和测试;3.7 支持DigitalMicrograph处理工具包进行数据处理,漂移校正,滤波,图像增强,图像裁切,可进行在线或后续的离线分析和数据处理。4、能谱仪系统4.1 探测器应具备高分辨、高信噪比和高稳定性且易于维护,SDD电子制冷探测器,无需其他辅助制冷手段,没有震动,探测器可自动伸缩,保护能谱仪免受高能电子辐照;4.2 能谱仪探测器应具有较大的有效面积,提高能谱仪计数率,保证有较强的接收信号,有效面积≥60 mm2;4.3 EDS系统应配备高的能量分辨率和大的元素分析范围;4.4 探测器具备防污染功能,减小样品对能谱仪的污染;4.5 能谱应用软件必须能够进行定性和定量分析。定性分析能够实现自动标识谱峰,也可手动选择元素标识谱峰,无禁止自动标定的元素;定量分析能够实现自动或手动对目标区域元素进行定量分析,可实现对测试样品任一区域、任一形状,任一面积的定量分析,获得原子百分比,元素质量比,元素重量比等多种形式的数据。能谱应用软件支持分屏显示及远程控制,支持中、英文等多种操作界面,可进行在线或后续的离线分析。5、系统配置5.1 具有高性能的硬件和软件配置,兼顾基本的原位实验。主机电脑内存RAM≥32G;显卡:显存≥8GB GDDR6,核心频率≥1845 MHz,显存位宽≥256 bit,视频输出支持DP/HDMI;CPU:主频≥3.7GHz,核心数量≥8核,线程数≥18线程,三级缓存≥20MB;固态硬盘容量≥3T,机械硬盘容量≥4T;数字化操作系统,Windows10的64-bit计算机控制系统,在用户图形界面上完成电镜的操作控制,支持包含高速相机软件、电子衍射分析软件、能谱软件等64位软件。5.2 提供足够的数量的数据处理软件拷贝(包含相机图片分析软件和能谱分析软件),方便后续对电镜测试数据进行处理,提供在线版license文件不少于1个,离线版license文件不少于6个。6、真空系统具有离子泵、扩散泵系统(前级机械泵)等,保证最优真空度,电子枪室≤1×10-7 Pa,样品室≤2×10-5 Pa。7、样品杆、存放架、套管、标样/标具、工具包7.1、提供原装单/双倾角样品杆,原装样品杆存放架,套管等至少一套;7.2、提供标样及耗材配件包,包含标样/标具,真空脂、密封圈、样品夹、样品杆固定螺丝等至少一套8、附件系统8.1 为保证透射电镜正常运行,必须配备相应的附件系统,包括稳定的电源供给,不间断电源设备(UPS),遇到断电,停电,主电源故障等不能供电情况,UPS立即切换工作,继续为透射电镜稳定供电至少2小时。此外,要求UPS设备对电压过高或电压过低都能提供保护;8.2 配备空气压缩装置;8.3 保证相机正常工作,配备空冷式循环冷却水装置;9、设备的场地动力条件要求9.1 提供设备的现场安装方案说明和图纸,主要包括设备占地面积、重量、动力要求(用电、用水、用气、尾排等);9.2 根据设备安装方案对场地进行必要的改造、装修,使其满足设备安装要求;9.3 在指定实验室除就位安装,并负责完成该设备相关的二次配工程,包括用气、用水、用电、尾排等,保证设备能够快速定位安装投入使用。另外要确保该二次工程符合国家相关标准,能够保证设备安全正常使用。3500000 合同履行期限: 合同签订后 (180) 天内交货 本合同包:不接受联合体投标
  • 921万!新疆大学场发射透射电子显微镜等采购项目
    项目编号:xsj20220710-4项目名称:新疆大学2022年度“双一流”建设项目(三期)理化测试中心进口仪器设备采购项目(含:大型仪器设备共享平台建设项目、电镜平台建设项目)采购方式:公开招标预算金额(元):9210000最高限价(元):1210000,8000000采购需求:标项一 标项名称:新疆大学2022年度“双一流”建设项目(三期)理化测试中心大型仪器设备共享平台建设项目进口仪器设备采购项目 数量:不限 预算金额(元):1210000 简要规格描述或项目基本概况介绍、用途:差示扫描量热仪(DSC)、透射电镜制样设备。具体采购要求详见招标文件 备注:本项目各标包允许兼投兼中标项二 标项名称:新疆大学2022年度“双一流”建设项目(三期)理化测试中心电镜平台建设项目进口仪器设备采购项目 数量:不限 预算金额(元):8000000 简要规格描述或项目基本概况介绍、用途:新一代多用途场发射透射电子显微镜。具体采购要求详见招标文件 备注:本项目各标包允许兼投兼中合同履约期限:标项 1、2,详见招标文件“第五章采购需求”本项目(否)接受联合体投标。
  • “中国好电镜”系列研讨会丨电子束敏感多孔材料的透射电子显微镜表征
    在材料显微结构表征方面,电子显微镜(包括SEM、FIB、TEM)有着无可比拟的优势,在科学研究,工业领域等作用日益增长。为了有效推动电子显微镜表征技术的发展,深入了解不同电子显微镜的性能特点,充分发挥仪器功效,提高广大用户的分析测试水平及解决实际使用中的难题,赛默飞将在2023年举办“中国好电镜”系列研讨会,特别邀请国内著名的专家学者和赛默飞资深电镜应用科学家与大家交流前沿电镜表征技术。 扫描/透射电子显微镜(S/TEM)可以对材料的结构进行直接成像,能在原子尺度上建立材料的性质与其局域结构之间的相关性。虽然高分辨率 TEM 和 STEM是大多数材料结构的常规表征手段,但由于电子束敏感材料(如典型的多孔材料分子筛、金属有机骨架(MOFs)、共价有机骨架(COFs)等)极端的不稳定性,以常规方式观察它们的局域结构仍然是一个极大的挑战。电子束敏感材料对电子束辐照极为敏感,在常规S/TEM成像模式下,其结构会被立即破坏变为非晶,从而无法得到其局域结构的原子排列信息。因此,如何在无损伤的条件下以高分辨率和高信噪比在实空间中对典型的电子束敏感材料的结构直接成像是TEM和STEM技术应用的难点。 本次研讨会特别邀请清华大学陈晓老师为大家从原子尺度解析多孔材料分子筛局域结构及主客体相互作用,分享其使用超低电子剂量高分辨电子显微技术在电子束敏感多孔材料结构表征中的成功案例。同时邀请赛默飞透射电镜应用科学家刘苏亚博士为大家直播演示如何在球差校正透射电子显微镜Spectra 300平台上对电子束敏感多孔材料进行超低电子剂量下原子尺度直接成像。 特 邀 报告 陈晓 清华大学化工系助理研究员 多孔材料局域结构及主客体相互作用原子尺度结构研究2023.04.20----14:30-15:30个人简介其研究方向主要是发展多孔材料低剂量原子尺度成像方法,致力于分子筛中单分子成像以及主客体相互作用的直接观测,以期从分子层面甚至是原子层面理解和探索这些化学反应过程中的分子进出机制以及客体分子与主体骨架间的作用行为。目前已发表文章50余篇,其中(共同)第一作者/通讯作者12篇,包括 Nature(3篇)、Science(1篇)、Nat. Commun.(4篇)、Adv. Mater.(1篇)、JACS(1篇)等。其中“A single molecule van der waals compass”(Nature. 592, 541(2021))的工作入选 2021 年度“中国高等学校十大科技进展”,获得第三届中国分子筛新秀奖、2022 年度清华大学优秀博士后,入选2022年度中国区“35岁以下科技创新35人”榜单。报告摘要多孔材料由于其特殊的孔道结构成为了催化、分离、医药等多个领域不可替代的原材料,分子筛作为典型的多孔材料在石油化工、煤化工裂解、异构化、芳构化及烷基化等反应中同样发挥着不可替代的作用。因此从分子层面甚至是原子层面理解和探索这些化学反应过程中的分子进出机制以及客体分子与主体骨架间的作用行为对于理解和认识这些工业化背后的微观行为尤为关键,尤其是工况服役状态下的催化剂的本征行为至关重要。该报告将以分子筛催化剂为研究对象,尤其是对工业化中应用最为广泛的ZSM-5进行了系统的研究。首先研究了在超低电子剂量的条件下研究分子筛亚纳米尺度局域结构解析和原位观察限域分子动态行为的方法,在常温甚至是高温的条件下“冷冻”分子,观测了单分子进出孔道的行为,研究限域小分子动态行为和主客体相互作用以及这类折形分子筛中单个芳烃分子的转动行为、加入氢键力作用后定量化了分子在孔道中的作用方式,在原位观测分子进出孔道的基础上解决了60年来困扰科研人员分子筛筛分比孔道稍大点的分子的微观机制。在不断对分子筛有深入理解的过程中希望能够为十万亿产值的工业化过程提供新的见解。扫描上方二维码报名线上网络研讨会Demo演示 刘苏亚 博士超低电子剂量下对电子束敏感多孔材料进行原子尺度直接成像2023.04.21----14:30-15:302019年毕业于浙江大学材料科学与工程专业,主攻非晶合金的结构表征及相关应用。同年入职赛默飞世尔科技,主要从事透射电镜的应用支持工作,拥有十余年的电镜使用经验。扫描上方二维码报名线上Demo演示
  • 1360万!广西医科大学场发射透射电子显微镜等采购项目
    项目编号:GXZC2022-G1-003612-GXGL 项目名称:场发射透射电子显微镜预算总金额(元):13600000 采购需求:标项名称:场发射透射电子显微镜数量:1预算金额(元):13600000简要规格描述或项目基本概况介绍、用途:场发射透射电子显微镜1套、核磁共振波谱仪1套。如需进一步了解详细内容,详见招标文件。最高限价(如有):13600000合同履约期限:交货时间:合同签订后12个月内。本标项(否)接受联合体投标备注:本项目为线上电子招标项目,有意向参与本项目的供应商应当做好参与全流程电子招投标交易的充分准备。
  • 955万!榆林学院场发射透射电子显微镜采购项目
    项目编号:ZMZB2022YLXY-384项目名称:场发射透射电子显微镜采购项目采购方式:竞争性谈判预算金额:9,550,000.00元采购需求:合同包1(场发射透射电子显微镜采购项目):合同包预算金额:9,550,000.00元合同包最高限价:9,550,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求1-1光学式分析仪器9550000.001(批)详见采购文件本合同包不接受联合体投标合同履行期限:自合同签订后到该项目服务期结束(具体服务起止日期可随合同签订时间相应顺延)场发射透射电子显微镜采购项目.docx
  • 见证历史!我国首台商业场发射透射电子显微镜在广州全球首发!
    仪器信息网讯 2024年1月20日上午,正值寓意“寒去春来”的大寒节气, 由生物岛实验室科研团队领衔研制,拥有自主知识产权的国产首台商业场发射透射电子显微镜太行 TH-F120在广州面向全球用户发布!发布会现场发布会邀请中国科学院饶子和院士、中国科学院隋森芳院士、中国科学院徐涛院士,广东省科学技术厅、广州市市场监督管理局、黄浦区科技局、黄浦区市场监管局、中国科学院生物物理研究所、中国科学院广州生物医药与健康研究院、生物岛实验室等相关领导,以及国内知名电镜专家等五十余位代表出席。仪器信息网作为受邀行业媒体,共同见证这一历史时刻。太行 TH F120历经三年研制成功, 由生物岛实验室与国仪量子共同成立的慧炬科技承接转化,目前已具备量产条件。TH F120的问世将打破国内透射电镜100%依赖进口的局面, 是中国电子显微技术的重大突破。作为极难攻克的“卡脖子”高端科学仪器代表,TH F120是生物岛实验室与国仪量子强强联合的成果,也呈现了尖端仪器技术从科学端研制、成果转化,到商业端产业化的典范。而本次发布会 “研发成果汇报”、“新品发布会”两个环节的设置,相得益彰,是相互尊重,更是传承。环节一: 生物岛实验室研发成果汇报生物岛实验室科研与成果转化部部长李中华主持会议中国科学院院士、广州实验室常务副主任、生物岛实验室主任徐涛开场致辞徐涛院士首先代表生物岛实验室向莅临本次活动的各位领导和专家们表示热烈欢迎,向一直关心支持生物岛实验室发展的各界朋友表示衷心感谢。他讲到,1933年,世界上第一台透射电镜诞生,如今,电镜已成为现代科学研究不可或缺的研究工具,在半导体、材料科学、生命科学等战略性领域的科研活动中起到至关重要的作用,被誉为高端科学仪器“皇冠上的明珠”。透射电镜技术跨越多个学科,工程技术复杂,攻关难度大,被列为我国受限制的35项关键技术之一。为解决卡脖子问题,在生物物理所的大力支持下,孙飞研究员带领团队早在2016年就启动了预研工作。之后在生物岛实验室组建了完整的研发团队体系,在国家自然科学基金委、广东省科技厅的大力支持下,经过三年多的不懈努力,先后成功研制120kV场发射电子枪、120kV低纹波高压电源、400万像素和1600万像素CMOS电子探测相机,以及100万杂合像素直接电子探测相机等透射电镜核心关键部件。在此基础上,才有了今天发布的国内首台100%自主知识产权的120kV场发射透射电镜,实现0.2纳米分辨率的成像能力,达到产品化水平。这对于我国摆脱进口依赖,实现高水平科技自立自强具有重大意义。作为团队的一员,徐涛院士见证了整个项目艰难的研发过程,借此发布会的机会,对实验室电镜研发团队不惧困难挑战、勇于投身科研实践的责任担当表达了崇高的敬意。最后,徐涛院士表示,科学仪器研制是一场马拉松,虽然目前取得了一些成绩,但仍然存在许多受制于人的短板弱项。未来,生物岛实验室将继续坚持四个面向,在省市科技部门的指导下,坚定不移的在科技创新的道路上大步迈进,为广东省大湾区的生物医药产业高质量发展、加快构建先进生产力贡献力量。实现科技自立自强,道阻且长,然行则将至;行而不叕,则未来可期!中国科学院院士、清华大学教授饶子和致辞饶子和院士表示,正如徐涛院士所言,透射电镜为推动科学技术进步做出了重要贡献,但核心技术一直被国外垄断,面临卡脖子风险,如今能与大家一同见证国内首台自主知识产权的场发射透射电镜成果发布会,可谓振奋人心。饶子和院士的研究方向长期聚焦在生物领域。推动生物领域向前发展,一个很关键的方面,便是新技术、新方法、新仪器、新手段的不断革新。生物结构学的发展随着蛋白晶体学技术、同步辐射技术、核磁共振技术、冷冻电镜技术、人工智能技术的突破而不断升华,仪器设备技术的发展对推动生命科学的发展至关重要。上世纪五六十年代以来,生物物理所一直是我国在生物电镜方面的研究基地之一,饶子和院士在担任所长期间也十分重视电镜中心的建设。饶子和院士回顾了孙飞研究员加盟生物物理所的往事,以及孙飞研究员在科研工作中展现出的优越的数理基础和对方法技术出众的敏感优势。最后,饶子和院士对在徐涛院士领导下,孙飞研究员带领团队能够取得这样的突破性成果表示祝贺,并对参与TH F120研制的科学家和工程师队伍给予最热烈的掌声,期待生物岛实验室的透射电镜能取得更加辉煌的成就,也期待在不久的将来,科学家能够用上我们自己研究的100kV、200kV、300kV冷冻电镜,促进我国生命科学和生物医学不断发展。生物岛实验室研发成果汇报:120kV场发射透射电子显微镜研制汇报人:广州生物岛实验室 /中国科学院生物物理研究所研究员孙飞冷冻电镜技术为生物分子结构研究带来革命性进展,主流厂商为赛默飞和日本电子,垄断全球市场。作为另一种专业化电镜,体电子显微镜技术是解析细胞谱系的重要工具。而透射电镜是冷冻电镜和体电子显微镜技术的基础,其由电子的发射、加速、成像和探测等基本单元系统构成,对应主要核心部件包括电子枪、电子探测相机等。同时,100kV场发射冷冻透射电镜是透射电镜发展的新方向,并将成为主流,用于大多数生物大分子结构解析。孙飞研究员分享了生物岛实验室基于以上背景开展的系列研究成果。其一,是120kV场发射冷冻透射电镜核心部件的研制。依托广东省重点领域研发计划项目,先后完成120kV场发射电子枪研制、120kV低纹波高压电源研制、电子探测相机研制,完成所有项目验收考核指标,并利用研制的核心部件完成对商业电镜Talos L 120C的关键部件替换,达到预期效果。其二,是100kV高通量高分辨率场发射冷冻透射电镜的研制。依托广东省重点领域研发计划项目,针对我国生命医学领域研究对冷冻电镜高度依赖进口的现状,突破100kV场发射电子枪、超高稳定高压发生器、平行光照明、恒定功率物镜、低加速电压下高性能高灵敏度探测相机等关键技术,研制场发射冷冻电子透射显微镜智能控制系统和高通量自动化数据收集软件,开展基于自主研发技术的工程化和产业化。电镜主机硬件搭建完成,已经能够进行成像,自研和国产部件比例高于90%。其三,是细胞图谱超微结构高通量分析系统研制,研发针对细胞谱系研究需求的高通量、超分辨、双模态 (光学+电镜) 显微成像系统,实现在1个月左右对1mm3尺度的生物组织样品的细胞超微结构图谱高通量分析的能力。研发成果转化便是本次发布的120kV场发射透射电镜。未来,团队将进一步开展100kV高通量高分辨率场发射冷冻电镜以及120kV高通量场发射体透射电镜的研制工作。突破“卡脖子”技术,国产首台场发射透射电镜发布仪式合影环节二:慧炬科技120kV场发射透射电镜产品发布会慧炬科技总经理曹峰致辞曹峰介绍道,慧炬科技成立于2022年11月,是由生物岛实验室和国仪量子共同出资成立,专注于透射电镜以及相关关键技术的研发与制造。融合了生物岛实验室透射电镜技术和国仪量子在科学仪器产业化方面的强大能力,慧炬科技有信心成为透射电镜研发领域的领导企业,让中国科学家用上国产的、世界领先的透射电镜。关于“慧炬”的释义,曹峰讲到,这源于透射电镜中电子束的“汇聚”,取其音义,“慧炬”又蕴含了“智慧聚集”、期待成为透射电镜领域的“火炬手”、带领电镜技术继续向前的寓意。曹峰表示,本次发布的透射电镜新品,凝聚了慧炬科技团队几年来的心血与汗水,承载着慧炬科技的梦想和理想,也寄托了慧炬科技“承鸿鹄之志,造大国电镜”的决心,相信在团队的努力下,在生物岛实验室以及广东省科技厅等各级政府的支持下,慧炬科技一定能够将透射电镜进行产业化,为我国科学和产业界的高质量发展提供强大助力。广州开发区管委会二级巡视员、生物岛实验室主任助理杨寿桃致辞杨寿桃主任表示,生物岛实验室与国仪量子合作共同成立慧炬科技,实现了场发射透射电镜科研成果的转化,推出商业化产品。TH F120完成了从科学研究到技术开发,再到市场推广的三级跳,为我国高端科学仪器市场注入新活力,是实验室发展历史上一个重要里程碑。生物岛实验室2021年完成了创建国家实验室的战略目标任务后,迅速响应政府号召,转型为专注成果转化和产业孵化,截至目前,已经孵化了12家创新型企业,其中4家企业估值过亿元。未来,生物岛实验室将继续紧盯成果转化与产业孵化,围绕产业链布局创新链,以满足重大产业化需求为己任,充分发挥国家战略科技力量的引领作用,协同推出更多原创性的科技成果,打通从科技强到产业强,再到经济强、国家强的通道,为广东省在生物医药领域提升科技自立自强能力贡献力量。国仪量子董事长贺羽致辞贺羽讲到,慧炬科技今天的发布成果源于徐涛院士、孙飞研究员等科学家不懈的努力和探索,在此谨代表国仪量子对徐涛院士团队致以崇高的敬意,对慧炬科技团队取得的成果表示热烈祝贺。本次慧炬科技发布国产首台量产场发射透射电镜,对中国电子显微事业与高端科学仪器国产化的发展而言都具有重要意义,相信慧炬科技一定能在透射电镜领域取得更加辉煌的成就,和国仪量子一起彻底打破高端电镜卡脖子的局面,为国家科技自立自强作出更大贡献。成立7年来,国仪量子陆续研制并发布了多款人无我有,人有我优的高端科学仪器,已经交付至全球数千家客户,并且在德国、美国、新加坡等发达国家完成了海外交付。截至目前,实现了量子精密测量仪器全球市占率领先,顺磁共振谱仪国内市占率第一,电子显微镜年成交量近200台等突出成绩。国仪量子很荣幸能够与生物岛实验室合作成立慧炬科技,共同研制填补国内空白的透射电镜。未来国仪量子将继续发挥自身在工程化、市场开拓等方面的优势,全力支持慧炬科技的产品研发和产业化,共同为客户提供更高品质的产品和服务。中国科学院院士、清华大学/南方科技大学教授隋森芳致辞隋森芳院士表示,很荣幸与大家一起见证我国首台场发射透射电子显微镜研制成功。当前,我国冷冻电镜技术应用研究在国际上已经具有领先地位,孙飞研究员这种新技术新方法研究在国际上也可圈可点。然而,由于冷冻电镜硬件装备不能自主研制,我国在冷冻电镜技术方法领域的创新受到了很大限制。很高兴看到生物岛实验室联合生物物理研究所在冷冻电镜研制方面的持续发力,多年成绩显著,抓住冷冻电镜技术领域国际前沿,率先选择100kV场发射冷冻电镜这一新赛道发力。首先成功研制了120kV场发射透射电镜,成像分辨率可以达到两个埃,并通过慧炬科技完成了工程化和产品化。这一重要时刻,是令我国冷冻电镜领域乃至整个电镜领域相关科技工作者兴奋的时刻,可以预见,该电镜设备成功投入市场将极大地推动我国冷冻电镜应用研究进步。相信在不久的将来,生物岛实验室和慧炬科技能够进一步完成专业化的100kV高通量场发射冷冻电镜,为我国高端科学仪器的自主研制事业作出重要贡献。此外,隋森芳院士强调,希望慧炬科技能够坚持下去,不断优化仪器的性能和稳定性,不断面向用户,提升仪器的易用性,虚心接受用户的反馈,不断实现仪器的迭代,最终在市场上赢得广大用户的认可和尊重。最后,隋森芳院士祝愿科研人员再接再厉,取得更大的成绩,祝愿我国高端电子显微镜自主研发事业蓬勃发展。中国科学院物理研究所/松山湖材料实验室研究员、中国电子显微镜学会副理事长、粤港澳大湾区电镜联盟理事长马秀良致辞马秀良研究员代表粤港澳大湾区显微科学技术联盟向由徐涛院士、孙飞研究员领衔的国产首台场发射透射电镜成功研发表示热烈祝贺。国际上透射电镜的研制始于上世纪30年代初的德国。上世纪50年代到70年代,我国科学家、工程技术人员也曾为研发透射电镜付出了不懈的努力,并在当时的条件下取得一定进展,只是由于复杂历史原因没有得到传承和延续。到改革开放初期,我国高考恢复以及国际上材料科学的广泛兴起,激发了国内青年学子对掌握知识的广泛渴望,对探索未知的热情空前高涨。时至今日,历经几代人,这种高涨的热情还在持续。以1980年成立的中国电子显微学会为例,每年一届的全国电子显微学学术年会,参会规模从当时的几十人,到现在已经达到3000多人。电镜已经成为科学家探索微观世界的重要手段,是材料科学、生命科学、半导体等领域不可或缺的高端科学仪器。从数量讲,我国已经成为透射电镜的最大市场,但过去四十多年里,我们对透射电镜几乎完全依赖进口,所以本次透射电镜成功研制的重大意义不言而喻。马秀良研究员表示,相信在120kV场发射透射电镜成功研制的基础上,在材料科学领域常用的200kV、300kV场发射透射电镜的成功研制也指日可待,这也势必会带动我国高端制造业的发展。学术报告:生物医学电镜自主研制之路报告人:中国科学院生物物理研究所/广州生物岛实验室研究员、广州慧炬科技首席科学家孙飞研究员孙飞研究员为大家分享了120kV透射电镜成功研制背后的心路历程。2016年8月,以生物物理研究所为主办单位,召集了国内各方有志于国产电镜装备研制事业的专家学者、企业家、政府领导,在西安交通大学召开了针对我国开展电镜装备研制必要性和可行性的研讨会议。至此,新时代下,我国电镜自主研制再出发。先后完成电镜相关研发项目和成果,包括光电融合超分辨生物显微成像系统、生物大分子跨尺度结构研究前沿技术、生物超快冷冻电子显微镜、冷冻电镜样品制备技术、冷冻聚焦离子束减薄技术、冷冻电镜图像处理技术等。在这些研发项目历程中也逐渐组建起以孙飞、曹峰、季刚、金亮、卢志钢、姚一帆等为代表的体系化工程技术队伍。随后电镜关键技术从装备研发的30kV开始,成功研制了针对病理组织切片样品的高通量扫描透射电子显微镜SmartView。接着再到120kV透射电镜关键部件的突破,最终实现向整机研制的进发。最后结合数年转化历程,针对我国高端科学仪器自主研制的战略出路分享了自己的几点看法。整机揭幕:饶子和院士、 隋森芳院士揭幕,专家代表共同见证广州慧炬科技产品发布讲解讲解人:广州慧炬科技有限公司总经理曹峰【命名】:作为慧炬科技首款透射电镜产品,同时也是我国国首台正式发布的商业场发射透射电镜,TH-F120取名源自中华名山“太行”(TH) ,寓意TH-F120将如太行山一样成为中国透射电镜产业的脊梁。产品参数如下:【设计理念】:越级体验(将场发射电子枪、高自动化模组等越级配置集成至120kV平台,入门即高配);高效操作(所有控制高度集成至PC端,全中文软件交互界面一目了然,提升操作效率);模块设计(每一个模块自成一体,可以独立升级或替换,为用户打造与众不同的科研利器提供便利);拓展丰富(预设充足的附件加装接口以及整机升级空间,满足用户使用新需求,有效应对多样的应用场)。现场展示产品:120kV场发射电子枪(左),120kV低纹波高压电源(右)【产品特点】:肖特基场发射电子枪;高像素CMOS相机;平行束/会聚束自适应切换照明系统;四轴高精度样品台;对称式极靴、恒功率物镜 (高衬度/高分辨模式可选);全中文软件交互界面。高稳定低纹波高压电源(HJ-HT120,新品):加速电压输出-10kV~-120kV;高压电源加速电压稳定性冷冻透射电镜系列: “珠穆朗玛”ZMLM-F300C“唐古拉”TGL-F200C,"玉龙”YL-F100C;热发射透射电镜系列: “秦岭”QL-T120,“丹霞”DX-LaB120。【慧炬科技透射电镜产品路线四年计划】:2024年(120kV 透射电镜、100kV 冷冻电镜);2025年(200kV 透射电镜、200kV 冷冻电镜);2026年(200kV 球差电镜、300kV 透射电镜);2027年(300kV 球差、新型透射电镜)。实验室参观、TH F120真机演示合影留念
  • 800万!北京科技大学场发射透射电子显微镜采购项目
    项目编号:0873-2201HW5L0357项目名称:北京科技大学场发射透射电子显微镜采购预算金额:800.0000000 万元(人民币)采购需求:采购场发射透射电子显微镜1套;用于科研。接受进口产品投标,具体采购要求详见附件合同履行期限:签订合同后12个月内到货本项目( 不接受 )联合体投标。
  • 日本电子株式会社推出最新场发射透射电子显微镜
    2006年4月17日,JEOL Ltd.总裁Yoshiyasu Harada宣布,日本电子在全世界同步推出最新型号的300kV场发射透射电子显微镜——JEM-3100F。 JEM-3100F分辨率达到0.17nm(300kV,UHR),是同档次世界上最先进的透射电子显微镜,尤其在纳米材料测试方面,具有非常高的效能。它的控制系统采用了最新的数字技术,使得操作更为简便。该款产品同样适合于过程测试,可以对由聚焦离子束切割的相对较厚的半导体器件进行高通量检测。
  • 2019扫描透射电子显微镜及相关分析技术研讨会开幕
    p    strong 仪器信息网讯 /strong 5月16日,由天津理工大学电子显微镜中心、天津理工大学新能源材料与低碳技术研究院、天津理工大学材料科学与工程学院主办的“2019年扫描透射电子显微镜及相关分析技术研讨会”在滨海之城天津顺利召开。 br/ /p p   本次研讨会共进行3天(5月16日-18日),有42位电子显微学及其应用专家应邀作特邀报告,同时有120余位相关领域的专家学者和学生参加本次会议。会议着重探讨了扫描透射电子显微学技术和方法的最新进展、电子显微镜学技术在物质科学领域的前沿成果、以及电镜相关软硬件和方法的最新发展与前沿思考,并促进国内外电子显微学实验室的设备共享、科研合作和学术交流。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 581px height: 371px " src=" https://img1.17img.cn/17img/images/201905/uepic/7ceb8980-aafb-4ca2-b0c6-e1cc13694738.jpg" title=" IMG_1696_meitu_2.jpg" alt=" IMG_1696_meitu_2.jpg" width=" 581" height=" 371" / /p p style=" text-align: center "    strong 2019扫描透射电子显微镜及相关分析技术研讨会顺利召开 /strong /p p   16日的研讨会由天津理工大学电子显微镜中心主任罗俊教授、天津大学/天津电镜学会姚琲教授、上海科技大学于奕博士、武汉理工大学胡执一博士联合主持,共有15个专家进行了报告。天津理工大学党委书记刘东志教授首先为大会作了开幕致辞:初夏时节,天津迎来了2019扫描透射电子显微镜及相关分析技术研讨会,刘教授代表天津理工大学对各位专家学者及学生的到来表示热烈的欢迎,感谢各位专家朋友多年来的支持与帮助。同时刘教授表示天津理工大学作为一个年轻的大学,今年将迎来它的40岁生日,理工大学一直以来秉承多学科发展模式,现今拥有本硕博学生20000余人,形成以院士、杰青、科技部引进人才、青千、优青、天津市特聘教授等一大批人才为核心的研究团队。借此研讨会,希望更多人才来到这里发展。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 450px height: 306px " src=" https://img1.17img.cn/17img/images/201905/uepic/e0ef9068-ed23-4606-81a9-d7657d4050f8.jpg" title=" 1_meitu_3.jpg" alt=" 1_meitu_3.jpg" width=" 450" height=" 306" border=" 0" vspace=" 0" / /p p style=" text-align: center "    strong 刘东志书记作大会开幕致辞 /strong /p p   中科院金属所固体原子像研究部主任、中国电子显微学会副理事长马秀良教授首先作了“异质界面及其物理特性”的主题报告。马教授详细介绍了周期性晶体及八面体结构单元,对PbTiO3、BiFeO3铁电材料的研究成果进行了电子显微学的讲解。他通过实施应变调控制备得到具有四方相的PbTiO3铁电结构,利用球差校正电子显微技术、观察到铁电极化的现象,并且在环形明场成像与高角环形暗场成像下看到了O和Ti的位移特征、证实了PbTiO3铁电极化的现象。在研究中,他还发现了铁电材料的通量全闭合畴结构,并且通过调控异质界面、成功构建具有巨大的线性应变梯度的氧化物纳米结构。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 450px height: 325px " src=" https://img1.17img.cn/17img/images/201905/uepic/17eaacb2-922d-4ee6-b963-652189a83e77.jpg" title=" 2_meitu_4.jpg" alt=" 2_meitu_4.jpg" width=" 450" height=" 325" border=" 0" vspace=" 0" / /p p style=" text-align: center "    strong 马秀良教授作会议特邀报告 /strong /p p   湖南大学陈江华教授作了题为“透射电镜先进定量化原子成像和分析系统及其在物理冶金方面的应用”的主题报告。陈教授主要介绍了在基金委资助下自主研制的定量化原子成像与分析平台及其应用,通过铝铜合金原位加热而发现的纳米析出及其成像、高锰TRIP/TWIP钢的原位拉伸等实验案例对平台进行了介绍。并从物镜像差测量系统、波函数重构与STEM三维重构、以及TEM和STEM衍射与成像精确模拟这三个方面对平台的主要功能和分系统完成情况进行详细讲解。该平台拥有三个物镜像差测量系统,自主设计的波函数重构与STEM三维重构可以在亚像素尺度上精确找回和校准所有图像的漂移,从而保证像平面波函数的精确重构,其GPU加速的三维重构算法也极大地提高了成像速度。该报告还结合自身研究成果介绍了定量电子显微技术的2维图像的3维重构。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 450px height: 304px " src=" https://img1.17img.cn/17img/images/201905/uepic/e4e62b49-571a-4ecd-bfb6-75904dd240ca.jpg" title=" 3_meitu_5.jpg" alt=" 3_meitu_5.jpg" width=" 450" height=" 304" border=" 0" vspace=" 0" / /p p style=" text-align: center "    strong 陈江华教授作会议特邀报告 /strong /p p   清华大学魏飞教授作了题为“分子筛限域下单分子成像及碳催化行为”的主题报告,将电子显微技术应用到化工生产中。我国每年的乙烯等化工产品的消费量在上千亿元,而我国的石油储量并不多,因此用煤来代替石油生产乙烯等化工产品成为必经之路,在此过程中比较关键的一环是用于催化的分子筛。魏教授从sp2碳性质与碳催化过程、STEM-iDPC对分子筛的表征、以及碳催化高效合成烯烃和芳烃这三个方面对近些年的工作进行介绍。其中,配有iDPC的双球差校正透射电镜对ZSM-5、SAPO34/18分子筛的轨道分布、动态变化、分子筛中有机小分子的成像、单分子指针下的限域反应、分子占位下分子筛的形变进行了全面的解析。并探讨了分子筛孔的取向与堵塞的选择性影响、定向控制的分子筛对丙烯酸的选择性影响,且实现了限域分子调控、得到高选择性的丙烯提纯。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 450px height: 316px " src=" https://img1.17img.cn/17img/images/201905/uepic/8f3cadcc-33f7-4de7-9e1b-358d06258d29.jpg" title=" 4_meitu_6.jpg" alt=" 4_meitu_6.jpg" width=" 450" height=" 316" border=" 0" vspace=" 0" / /p p style=" text-align: center "   strong  魏飞教授作会议特邀报告 /strong /p p   北京工业大学隋曼龄教授作了“功能金属氧化物原位电镜研究的电子计量率控制”的主题报告。隋教授认为目前功能氧化物材料的电子束损伤是原位电镜技术最大的问题。通过研究电子束辐照下CeO/Fe2O3/CuO金属氧化物在水中的溶解、利用电子束辐照控制绝缘金属体转变、TiO2的原位电镜现象阐释了金属氧化物的电子剂量率控制。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 450px height: 305px " src=" https://img1.17img.cn/17img/images/201905/uepic/63098b97-7019-4d53-a45b-0474707fb358.jpg" title=" 5_meitu_7.jpg" alt=" 5_meitu_7.jpg" width=" 450" height=" 305" border=" 0" vspace=" 0" / /p p style=" text-align: center "    strong 隋曼龄教授作会议特邀报告 /strong /p p   天津大学教授、天津电镜学会理事长姚琲老师作了“STEM功能扩展接口的开发”的主题报告。姚教授认为完整优良的STEM分析系统应该包括高亮度的电子枪、高汇聚能力的聚光镜、高灵敏度的TED、多探头EDS等部分。并从场发射电子源、EELS结构探讨未来STEM的发展方向。详细介绍了Ni1/3Co2/3(OH)2/RGO超级电容器复合材料、Ni1/3Co2/3(OH)2/CNT超级电容器复合材料、多孔硅与钯负载氧化钨纳米线复合材料-电阻型氨气传感器的STEM高分辨像、成分及化学分析。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 450px height: 330px " src=" https://img1.17img.cn/17img/images/201905/uepic/af8a3a4a-6202-4f4f-948d-c1c14c6c1465.jpg" title=" 6_meitu_8.jpg" alt=" 6_meitu_8.jpg" width=" 450" height=" 330" border=" 0" vspace=" 0" / /p p style=" text-align: center "    strong 姚琲教授作会议特邀报告 /strong /p p   中科院物理所白雪冬教授作了“原位TEM技术及其物理研究应用”的主题报告,并对光、电、力、温度等外场调控自由度耦合及新生物理特性的产生与测量、超快光谱技术、球差校正电镜技术进行了详细的介绍。通过以LaCoO3相变与氧空位序动力学行为、BiFeO3薄膜铁电的电转变、PbTiO3/ SrTiO3超晶格涡旋畴的机械转变为例介绍了原位电镜光电力对材料物性的调控。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 436px height: 330px " src=" https://img1.17img.cn/17img/images/201905/uepic/3fbe265a-dc6c-4c9e-9635-7ae2e0f7dcd7.jpg" title=" IMG_2168_meitu_19.jpg" alt=" IMG_2168_meitu_19.jpg" width=" 436" height=" 330" border=" 0" vspace=" 0" / /p p style=" text-align: center "    strong 白雪冬教授作会议特邀报告 /strong /p p   中科院金属所杜奎教授作了“亚稳beta型钛合金中的可逆相变”的主题报告,通过透射电镜、STEM技术来解析一些传统的结构材料的力学性能与内部结构转换之间的关系,并对钛合金Ti-24Nb-4Zr-8Sn表现出来的伪弹性及(110)β、(113)β的取向进行了电镜测量分析。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 450px height: 360px " src=" https://img1.17img.cn/17img/images/201905/uepic/a0370e6a-e8a8-4809-a1a5-732681f54c6e.jpg" title=" 8_meitu_10.jpg" alt=" 8_meitu_10.jpg" width=" 450" height=" 360" border=" 0" vspace=" 0" / /p p style=" text-align: center "    strong 杜奎教授作会议特邀报告 /strong /p p   南方科技大学何佳清教授作了“Advanced Electron Microscopy for Thermoeletric Materials”的主题报告,主要介绍了透射电镜在热电材料领域的应用。热电材料是将电和热进行相互转换,可以应用到发电、汽车尾气处理、智能材料等领域。何教授通过GeTe、Bi2Ti3- GeTe、Sb2Ti3-(GeTe)17三个热电材料分享了透射电镜在热电领域中的应用。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 450px height: 325px " src=" https://img1.17img.cn/17img/images/201905/uepic/194969e6-0d4f-490e-98c4-be59311db934.jpg" title=" 9_meitu_9.jpg" alt=" 9_meitu_9.jpg" width=" 450" height=" 325" border=" 0" vspace=" 0" / /p p style=" text-align: center "    strong 何佳清教授作会议特邀报告 /strong /p p   华东师范大学黄荣教授作了“原子分辨能谱在先进材料研究中的应用”的主题报告。报告指出在特定的成分下才能有效地得到具有特定形貌、缺陷、界面、化学键的材料。而扫描透射电子显微镜的优点之一是在提供结构信息的同时能提供成分信息。黄教授通过Zn掺杂Cu2SnS3陶瓷中的阳离子有序与热导率、STO-LAO薄膜的原子尺度成分梯度及其压电效应、Ge2Sb2Te5立方-六方相变中的离子迁移三个案例介绍了原子分辨能谱在其中的应用。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 450px height: 319px " src=" https://img1.17img.cn/17img/images/201905/uepic/5f28dd19-903b-45f8-acc0-67569e3b1552.jpg" title=" 10_meitu_11.jpg" alt=" 10_meitu_11.jpg" width=" 450" height=" 319" border=" 0" vspace=" 0" / /p p style=" text-align: center "    strong 黄荣教授作会议特邀报告 /strong /p p   天津大学凌涛教授作了“氧化物电催化剂表面原子结构调控和性能研究”的主题报告。报告中指出,发展新型的催化材料是解决目前面临的能源、环境问题的关键。纳米技术的发展、无论从理论计算角度还是实验角度都揭示了提高催化活性的关键点在于调控其原子结构,目前存在的一个挑战是非贵金属催化剂表面原子结构的精确调控。凌教授利用离子交换的方法调控氧化物催化剂表面原子结构,通过动力学控制得到具有表面缺陷及应力可控的新型材料,并对CoO、Ni/Zn掺杂CoO纳米线、Pt/ CoO催化材料的原子结构调控和性能研究进行了详细介绍。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 442px height: 325px " src=" https://img1.17img.cn/17img/images/201905/uepic/25b3a88e-2090-408a-ae97-4ededd0c0a41.jpg" title=" 11_meitu_12.jpg" alt=" 11_meitu_12.jpg" width=" 442" height=" 325" border=" 0" vspace=" 0" / /p p style=" text-align: center "    strong 凌涛教授作了会议特邀报告 /strong /p p   天津大学罗浪里教授作了“原子尺度气-固界面相互作用的环境透射电镜研究”的主题报告。报告中指出气体与固体表面的相互作用在气液催化、纳米材料生长、金属氧化腐蚀方面有着重要的影响,而一些传统手段在分析反应前后的表征时不能很好地发现其生长及反应的机制,利用环境透射电镜(ETEM)分析技术则能揭示反应的原子机理。罗教授通过在H2O及O2环境下表面氧化机理及生长机制的ETEM表征,展示了新一代ETEM的强大功能及前沿成果。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/201905/uepic/6b7e45ee-7128-45b5-88f4-23872d365587.jpg" title=" 12_meitu_13.jpg" alt=" 12_meitu_13.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center "    strong 罗浪里教授作会议特邀报告 /strong /p p   南方科技大学林君浩教授作了“结合透射电子显微镜与第一性原理计算探索二维材料的缺陷动态演变行为”的主题报告。林教授运用一种加盐的方法合成不同的单层材料,然后通过定量衬度分析技术确定化学成分,再建立原子模型进行运算,从而解释其新奇的物理特性。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/201905/uepic/f68bd5da-b087-47a6-b2f0-d73655df9342.jpg" title=" 13_meitu_14.jpg" alt=" 13_meitu_14.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center "    strong 林君浩教授作会议特邀报告 /strong /p p   兰州大学张宏老师代表其所在课题组作了“Atomic Observations of Crystal Structures of Low-Dimensional Magnetic Materials and Correlated Magnetism Origins”的主题报告。磁性材料已经广泛应用于日常生活、工业应用等领域,张宏老师所在课题组对CoFe2O4、Au-Fe3O4与La-doped SrFe12O19这三种磁性材料的磁性特征做了详细的电镜研究。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 450px height: 316px " src=" https://img1.17img.cn/17img/images/201905/uepic/962b43aa-55a4-4705-91cc-1defe69c38d1.jpg" title=" 14_meitu_15.jpg" alt=" 14_meitu_15.jpg" width=" 450" height=" 316" border=" 0" vspace=" 0" / /p p style=" text-align: center "    strong 张宏博士作会议特邀报告 /strong /p p   对于材料的显微研究,新技术的发展很重要,此次研讨会中赛默飞公司和Gatan公司分别对其产品进行了深入的介绍。其中,赛默飞对Monochromated STEM、iDPC及S-CORR技术进行了介绍,Gatan公司主要介绍了产品在硬件和软件方面的升级、以及升级带来的新应用和更高质量的数据。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 445px height: 340px " src=" https://img1.17img.cn/17img/images/201905/uepic/064ad8ec-34ef-4dc8-a59e-9b73d7288397.jpg" title=" 15_meitu_16.jpg" alt=" 15_meitu_16.jpg" width=" 445" height=" 340" border=" 0" vspace=" 0" / /p p style=" text-align: center "    strong 赛默飞杨光博士作会议报告 /strong /p p style=" text-align:center" strong img style=" max-width: 100% max-height: 100% width: 450px height: 333px " src=" https://img1.17img.cn/17img/images/201905/uepic/05650a71-d91f-4d96-b347-d7f0d6f40bbc.jpg" title=" 16_meitu_17.jpg" alt=" 16_meitu_17.jpg" width=" 450" height=" 333" border=" 0" vspace=" 0" / /strong /p p style=" text-align: center "    strong Gatan袁昊博士作会议报告 /strong /p p   以上是会议第一天的内容。在各特邀报告开始之前,各位专家和所有参会人员进行了合影留念。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 576px height: 295px " src=" https://img1.17img.cn/17img/images/201905/uepic/a724edef-6b42-43c2-905c-531d76bff6f5.jpg" title=" 17_meitu_18.jpg" alt=" 17_meitu_18.jpg" width=" 576" height=" 295" / /p p style=" text-align: center "    strong 参会人员合影留念 /strong /p p    strong 关于天津理工大学电镜中心 /strong /p p   天津理工大学电镜中心依托于天津理工大学材料科学与工程学院和新能源材料与低碳技术研究院而建,致力通过先进电子显微技术在原子分辨的水平上表征材料的原子结构和化学信息及其在服役期间的演变,以揭示材料性能的根源、为设计新型高性能的材料提供科学建议。自2016年10月15日正式成立以来,该中心立足于以高水平的科研能力提供高水平的科研测试服务,不仅自己进行高水平的科研工作,也先后为国内外的400多个课题组和企业提供优质的测试服务。这些工作已在国内外学术期刊上发表多篇论文,包括至少14篇发表在Nature/Science系列、至少20篇发表在Adv. Mater. / JACS / Angew. Chem. Int. Ed.上。 /p p br/ /p
  • 上海交大预算7000万元采购2套冷冻透射电子显微镜
    近日,上海交通大学发布冷冻透射电子显微镜系统(第一期)采购项目国际公开招标公告。该项目预算7000万元,采购1套300kv透射电子显微镜和1套120kv透射电子显微镜,主要用于蛋白质、蛋白质复合物和大分子机器(如病毒)的结构生物学研究。详情如下:一、项目基本情况项目编号:招设2022A00012(招标编号:1069-224Z20221161)项目名称:上海交通大学冷冻透射电子显微镜系统(第一期)采购项目预算金额:7000万元(人民币)最高限价(如有):7000万元(人民币)采购需求:产品名称数量简要技术规格300kv透射电子显微镜1套1. 电子光学系统1.1 电子枪:冷场场发射电子枪(Cold-FEG),亮度:≥ 7.5x107 A/m2srV.1.2 加速电压:最高加速电压为300kV,在80kV和300kV间可实现加速电压连续可调并正常稳定工作1.3 照明系统:三聚光镜完全平行光系统,可实现多模式照明,在TEM模式中对大视野和可变视野都能够平行照明120kv透射电子显微镜1套物镜1.1 TEM分辨率:线分辨率优于0.204 nm1.2 使用恒定功率物镜设计,高对比度模式设计,配置物镜高对比度极靴,无需切换可实现高分辨率和高对比度,适合于生命科学应用1.3 焦距≥ 3.4 mm二、获取招标文件时间:2022年5月23日至2022年5月30日,每天上午9:00至11:00,下午13:00至16:00。地点:上海市普陀区曹杨路528弄35号中世办公楼5楼或微信公众号报名方式:现场购买或微信公众号报名售价:¥500元,本公告包含的招标文件售价总和三、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年6月15日10点00分开标时间:2022年6月15日10点00分地点:上海市普陀区曹杨路528弄35号中世办公楼会议室(详见一楼大屏幕)四、其他补充事宜报名须提交的下述资料:1、单位负责人委托书2、被授权代表身份证注:①供应商携带上述报名资料,在上述时间段内至代理公司进行现场报名、领购招标文件,逾期不再办理。报名时提供的资料应与投标文件中的资格证明文件一致,如有不同,以投标文件为准。供应商领取文件后需自行登入“上海交通大学数字化采购平台(https://pboffice.sjtu.edu.cn)”进行供应商注册”及关注“中世建咨”微信公众号,主界面右下角点击“投标报名”完成微信报名登记。 ②投标人在投标前应在必联网(https://www.ebnew.com)或机电产品招标投标电子交易平台(https://www.chinabidding.com)完成注册及信息核验。评标结果将在必联网和中国国际招标网公示。③其余内容详见附件。五、对本次招标提出询问,请按以下方式联系1. 采购人信息名称:上海交通大学地址:上海市东川路800号联系方式:陆老师/021-54744366 ,技术联系人:伍老师/021-64370045转6107212. 采购代理机构信息名称:上海中世建设咨询有限公司地址:上海市普陀区曹杨路528弄35号中世办公楼联系方式:沈思骏、侯烨飞 86-021-525558173. 项目联系方式项目联系人:沈思骏、侯烨飞电话:86-021-52555817
  • 550万!上海应用技术大学场发射透射电子显微镜采购项目
    项目编号:SHXM-00-20220824-1149项目名称:上海应用技术大学场发射透射电子显微镜预算编号: 0022-28718 预算金额(元): 5500000(财政资金)最高限价(元): / 采购需求: 包名称:场发射透射电子显微镜 数量:1 预算金额(元):5500000 简要规格描述或项目基本概况介绍、用途:主要用于材料的高分辨形貌观察、微区的晶体结构分析和成分分析等 合同履约期限: 合同签订后12个月内到用户现场 本项目( 否 )接受联合体投标。
  • 550万!上海应用技术大学场发射透射电子显微镜采购项目
    项目编号:SHXM-00-20220824-1149项目名称:上海应用技术大学场发射透射电子显微镜预算编号: 0022-28718 预算金额(元): 5500000(财政资金)最高限价(元): / 采购需求: 包名称:场发射透射电子显微镜 数量:1 预算金额(元):5500000 简要规格描述或项目基本概况介绍、用途:主要用于材料的高分辨形貌观察、微区的晶体结构分析和成分分析 合同履约期限: 合同签订后12个月内到用户现场 本项目( 否 )接受联合体投标。
  • 700万!华东理工大学场发射透射电子显微镜采购项目
    项目编号:招标编号:1069-224Z20224803/2 项目编号:S2022122708项目名称:华东理工大学场发射透射电子显微镜采购项目预算金额:700.0000000 万元(人民币)最高限价(如有):690.0000000 万元(人民币)采购需求:场发射透射电子显微镜1套合同履行期限:合同签订后365天内交货(90天内完成安装调试并具备验收条件等)本项目( 不接受 )联合体投标。
  • 1300万!天津大学资产处场发射透射电子显微镜采购项目
    项目编号:1504-2242022J0001(TDZC2022J0002)项目名称:天津大学资产处场发射透射电子显微镜采购项目预算金额:1300.0000000 万元(人民币)最高限价(如有):1300.0000000 万元(人民币)采购需求:序号设备名称数量1场发射透射电子显微镜1套 合同履行期限:签订合同180天内交货,同时签订合同270天内完成安装调试并具备验收条件等(受不可抗力影响除外)。本项目( 不接受 )联合体投标。
  • 620万!上海大学热场发射透射电子显微镜采购项目
    项目编号:SHXM-00-20220805-1140项目名称:上海大学热场发射透射电子显微镜预算编号: 0022-W12442 预算金额(元): 6200000(/)最高限价(元): 无 采购需求: 包名称:热场发射透射电子显微镜 数量:1 预算金额(元):6200000 简要规格描述或项目基本概况介绍、用途: 合同履约期限: 合同签订后12个月内 本项目( 不允许 )接受联合体投标。
  • 680万!常州大学场发射透射电子显微镜采购项目
    1.项目编号:常润公2022-0019号2.项目名称:常州大学场发射透射电子显微镜采购3.预算金额:人民币680万元4.最高限价:人民币680万元5.采购需求:本项目采购内容为常州大学场发射透射电子显微镜采购,该设备主要用于材料的高分辨形貌观察、微区的晶体结构分析和成分分析。系统有电子光学系统、高压系统、真空系统、扫描透射单元(STEM)、单倾样品杆、低背景双倾样品杆、能谱仪、数字成像系统等部分组成。本项目包括设备的制造(采购)、运输、装卸、安装、调试、测试、售后服务、技术培训等,直至通过采购单位及其他相关部门的验收以及质量保修、免费维保等全部工作。具体技术参数详见项目需求。6.合同履行期限:合同签订后10个月内完成设备供货安装调试、培训,直至通过验收。7.本项目是否接受联合体:□是 ■否。8.本项目是否接受进口产品响应:■是 □否。
  • 强大的生物成像新工具!5kV低电压设计、无需染色的低电压台式透射电子显微镜
    在透射电子显微镜成像实验中,生物样品的成像操作为复杂,成像难度大。这主要是因为传统透射电子显微镜过高的加速电压引起的。上图为各种元素在传统透射电子显微镜的不同照射电压的反冲能量统计图。可以发现电子束加速电压在20kv就已经到达了碳碳单键的临界反冲能量,超过就很有可能使碳碳单键发生断裂,即使强的碳碳三键的临界反冲能量也仅仅在80 kV,这也是为何大多数生物样品在电镜观察的时候使用了透射电子显微镜的低电压80 kV。因此,传统透射电子显微镜在对由C/H/O/N等元素组成的生物样品进行成像时就需要使用重金属盐离子进行负染。负染是在使用传统透射电镜对生物样品成像时“不得不”采用的样品处理手段,负染的处理手段会带来诸多的问题。负染会导致生物样品制样复杂,样品容易产生收缩、膨胀、破碎以及内含物丢失等结构改变,重金属盐离子本身会对生物样品的形貌造成不可逆的损害,且负染液在电镜观察时容易产生“假象”。负染的操作对于制样者的要求较高,生物样品的种类多种多样,而每一种生物样品负染时佳的制样条件(重金属盐溶液的种类、浓度、染色的时间长短等)都不一样。这就需要制样人员根据各自实验室的条件,在长时间地摸索与多次地试错来获取佳的制样条件,大量宝贵的时间和样品就这样浪费在负染制样条件的摸索中了。Delong公司推出的LVEM5生物型透射电子显微镜,地解决了以上的问题。LVEM5生物型透射电镜采用的5kV低电压设计,对生物样品不会造成任何损伤,与传统高压电镜相比,低电压反而提高了生物样品成像的衬度/反差;无需重金属染液负染,对生物样品成像条件温和,摆脱了染液与负染过程本身可能对生物结构造成的损害,所得图像为“正像”,更加真实地展现生物样品的结构特征。 上图分布为传统电镜和LVEM5生物型透射电镜对未染色的小鼠心肌切片(上)和有机纳米颗粒(下)的成像实例。可以看到,传统高压透射电镜本身就会带来样品细节损失,在80-120kV下的透射电镜成像过程中,未染色的生物样品和大量十几纳米尺寸的颗粒会直接被“击穿”。而LVEM5生物型透射电镜采用的5kV低电压设计,不仅避免了传统高压透射电镜长时间照射对于生物样品的损害,还可以保留下更多地小有机颗粒图像,获得更多地细节。LVEM5生物型透射电镜可以对外泌体、脂质体、噬菌体、病毒、细胞切片等生物样品进行无负染成像,所得的图像衬度更高。如下图所示。 LVEM5技术特点:高衬度:低能量电子对有机分子产生更强烈的散射,具有更高对比度。无需染色:突破以往生物/轻材料成像需要重金属染色的局限性。高分辨率:无染色条件下能够达到1.5 nm的图像分辨率。多模式:LVEM5能够在TEM、SEM、STEM三种模式中自由切换。高效方便:真空准备只需要3分钟,空间小,环境需求低。易操作且成本低:友好智能化操作界面,低耗材,低维护费用,无需专业操作人员。
  • 1600万!福州大学透射电子显微镜系统采购项目
    一、项目基本情况项目编号:[350001]ZSZBGS[GK]2023019-2项目名称:福州大学透射电子显微镜系统采购项目采购方式:公开招标预算金额:16,000,000.00元采购包1(透射电子显微镜系统等):采购包预算金额:16,000,000.00元采购包最高限价: 16,000,000.00元投标保证金: 160,000.00元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业1-1A02109900-其他仪器仪表透射电子显微镜系统(120KV)1(套)是详见招标文件6,000,000.00工业1-2A02109900-其他仪器仪表场发射透射电子显微镜系统(200KV)1(套)是详见招标文件10,000,000.00工业本采购包不接受联合体投标合同履行期限:详见招标文件二、获取招标文件时间: 2023-06-21 至 2023-06-29 ,(提供期限自本公告发布之日起不得少于5个工作日),每天上午00:00:00至12:00:00,下午12:00:00至23:59:59(北京时间,法定节假日除外)地点:招标文件随同本项目招标公告一并发布;投标人应先在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目下载招标文件(请根据项目所在地,登录对应的(省本级/市级/区县))福建省政府采购网上公开信息系统操作),否则投标将被拒绝。方式:在线获取售价:免费三、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:福州大学地址:福建省福州市福州地区大学新区学园路2号联系方式:0591228659172.采购代理机构信息(如有)名称:福建中实招标有限公司地址:福建省福州市鼓楼区温泉街道华林路201号华林大厦10层02室联系方式:87767687-86203.项目联系方式项目联系人:叶烝、胡文姬、陈小芳电话:87767687-8620网址: zfcg.czt.fujian.gov.cn开户名:福建中实招标有限公司
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制