当前位置: 仪器信息网 > 行业主题 > >

可见近红外宽谱调谐激光源

仪器信息网可见近红外宽谱调谐激光源专题为您提供2024年最新可见近红外宽谱调谐激光源价格报价、厂家品牌的相关信息, 包括可见近红外宽谱调谐激光源参数、型号等,不管是国产,还是进口品牌的可见近红外宽谱调谐激光源您都可以在这里找到。 除此之外,仪器信息网还免费为您整合可见近红外宽谱调谐激光源相关的耗材配件、试剂标物,还有可见近红外宽谱调谐激光源相关的最新资讯、资料,以及可见近红外宽谱调谐激光源相关的解决方案。

可见近红外宽谱调谐激光源相关的资讯

  • 空天院实现超快波长切换的宽调谐范围长波固体激光光源
    近日,在中国科学院科研仪器设备研制项目的支持下,中科院空天信息创新研究院激光工程技术研究中心基于声光偏转器(AOD)调谐技术和光参量振荡技术(OPO)实现了8.0-8.7μm长波激光的可调谐超快波长切换,波长切换时间优于100μs,波长个数≥70个,单个波长谱宽≤30nm。该激光器能够在长波波段快速扫频且具有极高的峰值功率,将为我国复杂环境中的毒性气体遥测、光电对抗等提供优质的激光光源。光参量振荡技术(OPO)是非线性光学频率变换技术。随着非线性红外晶体制备技术的提升,基于OPO产生高峰值功率高重复频率长波激光成为目前激光技术研究领域的热点。然而,OPO技术通常基于温度、晶体转动、泵浦源波长调节等方式实现激光波长的调谐。项目团队提出基于声光偏转器调节参量光角度和相位匹配条件,进而实现输出波长的快速调节。历时3年,该团队先后突破了2μm激光源、红外晶体及谐振腔镜损伤特性表征、行波腔调谐补偿等关键技术,完成了超快波长切换的宽调谐范围长波固体激光光源的技术验证。后续,项目团队将按照中科院科研仪器设备研制项目的既定目标,开展工程样机研制和应用示范工作。AOD驱动频率与输出的长波激光波长
  • 高功率高重频可调谐长波飞秒中红外光源
    波长调谐范围覆盖6-20μm的高重复频率(10 MHz)、高平均功率(10 mW)飞秒激光源具有重要的应用,由于大量分子在这个波段具有振动跃迁,因此有望用于痕量气体检测以及对由气体、液体或固体组成的复合系统进行与物理、化学或生物学相关的非侵入性诊断。但由于增益介质的缺乏,这些中红外源通常利用高功率近红外飞秒激光器驱动光学差频产生(DFG)来实现:近红外激光脉冲的一部分用作泵浦脉冲,另一部分采用非线性波长转换产生波长可调的信号脉冲,泵浦脉冲和信号脉冲之间的DFG产生可调谐的中红外脉冲。利用传统非线性光学手段产生的信号光脉冲能量较低,限制了中红外光源的功率,导致长波中红外飞秒光源无法广泛应用。针对该难点,中国科学院物理研究所/北京凝聚态物理国家研究中心L07组在长期开展基于超快激光脉冲产生及波长转换的基础上,利用自相位调制的光谱旁瓣滤波(SPM-enabled spectral selection,SESS)技术,基于高功率掺铒光纤激光器在高非线性光纤中得到了波长范围覆盖1.6-1.94μm、功率高达300mW(~10nJ)的信号脉冲,再与1.55μm的泵浦脉冲在GaSe晶体中差频得到了波长覆盖7.7-17.3μm的中红外激光脉冲,最大平均功率可达58.3mW。图1. 实验装置图实验装置如图1所示,前端为自制的高功率掺铒光纤激光器系统,重复频率为32MHz,经过啁啾脉冲放大后得到平均功率为4W、脉冲能量为125nJ、宽度为 290fs的脉冲。将激光脉冲分成两份,一份作为泵浦脉冲,另一份耦合到SESS光纤中进行光谱展宽。光纤输出处的展宽光谱由二向色镜分离,长通滤波器(图中的LPF1)将最右边的光谱旁瓣过滤出来作为信号脉冲。泵浦脉冲经过时间延迟线与信号脉冲在时间上重合后聚焦到GaSe晶体上,光斑大小约为50μm。再通过另一个截止波长为4.5μm的长通滤波器,生成的中红外光束经焦距为75mm的90°离轴抛物面镜准直。利用校准的热敏功率计测量中红外脉冲的平均功率,傅里叶变换红外(FTIR)光谱仪来测量输出光谱。图2(a)为1mm-GaSe后输出光谱和功率,光谱范围为7.7-17.3μm,最大平均功率为30.4 mW。为了进一步提高输出功率,我们采用2mm厚的GaSe晶体,结果如图2(b)所示,整个光谱调谐范围内脉冲功率均大于10mW,最大平均功率达58.3mW。相比于以往基于掺镱光纤的中红外光源,本研究成果将DFG平均功率提高了一个数量级,并首次实验上观测到了工作在光参量放大机制下的高重频DFG过程。该高功率长波中红外光源基于结构紧凑的光纤激光器,可以用于实现中红外双光梳,从而推动中红外光梳在精密光谱学中的前沿应用。相关结果发表在最近的Optics Letters上(https://doi.org/10.1364/OL.482461),被选为Editor's Pick并成为当天下载量最多的5篇论文之一。图2. 在不同厚度GaSe后测量到的中红外光谱和功率:(a) 1mm-GaSe(b)2mm-GaSe。该工作得到了国家自然科学基金(批准号:No.62227822和62175255)、中国科学院国际交流项目(批准号:No. GJHZ1826)和国家重点研发计划(批准号:No. 2021YFB3602602)的支持。论文第一作者为物理所博士生刘洋,常国庆特聘研究员为通讯作者,赵继民、魏志义研究员也参与了该工作的设计和讨论。
  • 中科院宽调谐、窄谱宽中红外光参量研究获进展
    p   近日,中国科学院合肥物质科学研究院医学物理与技术中心研究员江海河课题组在宽调谐、窄谱宽中红外光参量研究方面取得进展。 /p p   3-5μm中红外激光在大气环境监测、目标特征探测以及高分辨率光谱学等领域具有广泛的应用,窄线宽可调谐激光是满足这类应用的理想光源。光参量振荡技术(OPO)是实现宽调谐中红外相干激光输出的有效技术。但是,在一般情况下,自由振荡OPO输出的脉冲中红外激光的谱宽较宽,一般高达数十纳米乃至几百纳米,严重限制OPO中红外光源的广泛应用。为了压缩OPO的输出谱宽,通常采用腔内插入标准具或VBG等选频元件。但该方法引入了较大的额外损耗,不仅导致OPO振荡阈值增大,还降低中红外激光的转换效率 采用VBG选频元件还会严重限制OPO的波长调谐范围。因此,宽调谐、窄谱宽高效OPO激光已成为中红外激光技术研究的热点。 /p p   据此,江海河课题组首先通过单纵模脉冲光纤激光器泵浦PPMgLN-OPO,获取了高效率的中红外激光输出 将标准具设计作为OPO的腔镜,有效地对振荡信号光的增益谱宽进行调制和控制;同时,采用种子自注入技术和双固体标准具耦合腔,使振荡信号光微弱边带得到了进行进一步抑制,实现了窄谱宽的信号光振荡,并与腔内的单纵模泵浦光进行有效的相互作用,获得了窄谱宽OPO中红外激光的输出。在本实验研究结果中,闲频光的谱宽压窄至0.36nm,相对于自由振荡谱宽抑制比改善了约2个数量级,同时其波长调谐范围达到200nm,其最大输出功率为2.6W,对应光光转换效率为17.4%,成为该波段窄线宽最有效的技术方法。该研究中采用的准相位匹配技术的周期极化晶体MgO:PPLN具有高增益、宽调谐等优点,泵浦源1μm光纤激光器具有高稳定性和紧凑性,研制的OPO中红外激光输出具有高峰值功率、低阈值,为宽调谐、窄谱宽高效OPO中红外激光应用奠定了基础。 /p p   相关研究成果发表在光学期刊Optics Express上。该研究得到了国家自然科学基金、中科院战略性先导科技专项等项目的资助。 /p p   相关链接: /p p   Widely tunable and narrow-bandwidth pulsed mid-IR PPMgLN-OPO by self-seeding dual etalon-coupled cavities /p p /p p /p
  • 德力仪器推出国产高性能可调谐激光源
    ICC讯 随着科技的飞速发展,高性能无源器件、相干激光技术、OFDR研发与装置、计量与校准技术以及高等级实验室在科研中扮演着越来越重要的角色。  近日,国内权威科研机构与德力光电科技(天津)有限公司合作,首推一款超高性能的仪器设备——高性能可调谐激光源 TLS1056,具有160nm精准扫描范围、15dBm超高峰值功率、200nm/s高扫速、百万次连续扫描维稳机制、全波段波长调谐精度小于3pm的超高性能。经权威机构使用验证,实现了对国外产品的原位替代。高性能可调谐激光源TLS1056的上市,标志着国产高端仪器领域取得了重大进展。  稳  160nm扫描范围无跳模。得益于其先进的扫描算法和精密的控制系统,在大范围扫描的同时,避免了跳模现象的发生,保证了扫描的稳定性和准确性。  准  波长精度对于光谱分析等实验至关重要,从而保证实验结果的精确性和可靠性。TLS1056在全波段范围内,波长调谐精度小于3pm。其高精度调谐能力在国内尚属首次出现,达到了国际领先水平。  快  具有超过15 dBm的峰值功率,可在短时间内进行高强度的扫描实验,提高了工作效率 同时,200nm/s的高扫速使得该仪器在短时间内完成大量的数据采集,极大地缩短了实验时间。  绝  TLS1056在连续百万次扫描后,仍然保持高稳定的调谐精度。使此设备兼备了可靠的实验结果和超长的使用寿命。完美性价比,解决了科研经费不足等问题。  德力光电高性能可调谐激光源TLS1056的推出,满足了不同领域(如:物理、化学、生物医学等)的同时,也带动了国内相关上下游产业的发展,填补了国内高端仪器市场的空白,并打破了国外产品的垄断地位。  综上,TLS1056可调谐激光源实现了自主研发、中国制造,对国外同类产品实现了国内市场的原位替代,标志着中国在高端仪器设备制造领域取得又一重大突破,为广大科研人员提供了更加可靠的实验设备,为推动中国科技的不断进步和国际竞争力的持续提升助力!
  • “基于可调谐红外激光的能源化学研究大型实验装置”通过验收
    3月8日至9日,国家自然科学基金委员会(以下简称“基金委”)组织专家,在中国科学技术大学对国家重大科研仪器研制专项(教育部推荐)“基于可调谐红外激光的能源化学研究大型实验装置”进行验收。基金委副主任谢心澄、化学科学部主任杨学明线上参会,基金委化学科学部常务副主任杨俊林、教育部科学技术与信息化司相关人员、项目验收组专家、项目四个承担单位负责人、项目组成员等50人参加了会议。会议分别由杨俊林和验收专家组组长主持。   谢心澄指出,国家重大科研仪器研制项目的定位是面向科学前沿和国家需求,以科学目标为导向,资助对促进科学发展、探索自然规律和开拓研究领域具有重要作用的原创性科研仪器与核心部件的研制,以提升我国的原始创新能力;建议专家在验收时重点考察仪器的原创性、研究目标的实现情况、仪器技术指标完成情况和指标的先进性,以及对解决重大科学问题、开拓新的研究领域,促进人才培养和推动学科发展所取得的作用。他强调,部门推荐项目验收通过后,基金委适时组织专家对项目进行后评估。因此,希望项目负责人加强后期管理,注重仪器的运行使用与开放共享,提高科研仪器的使用效率和水平,推动项目成果转化,为探索前沿和服务国家需求夯实技术基础。杨学明指出,过去5至10年,我国在化学领域批准建设的比较重大的科学装置对推动化学学科的发展非常重要,证明化学领域和物理领域的研究人员通过合作可以把一件比较困难的事情做好,证明我国在高端科学仪器研制方面具有很大的实力。厦门大学副校长江云宝代表项目四个承担单位发言。   专家组认真审阅了验收材料,听取了项目负责人厦门大学孙世刚院士作的项目工作报告,以及监理组相关人员作的监理情况报告,并进行了质询和现场考察,听取了仪器测试组报告、财务组验收意见及档案组审核情况报告。经过讨论,专家组认为:项目达到了预期研制目标,符合验收要求,同意通过验收。   “基于可调谐红外激光的能源化学研究大型实验装置”项目集厦门大学、中国科学技术大学、复旦大学和大连化物所的相关优势,建设了一套具有先进水平的波长连续可调、覆盖中红外到远红外波段的可调谐红外自由电子激光光源,以及基于红外自由电子激光为光源的固/气和固/液表界面反射吸收红外光谱实验线站、原子力显微红外光谱实验线站、和频光谱实验线站、光解离光谱实验线站和光激发光谱实验线站五条实验线站。各实验线站分别在四个参研单位研制,最终搬迁到中国科学技术大学与红外自由电子激光光源集成,经调试、验收后开放运行,为化学、物理、材料以及生物医学等相关领域提供了一个有力的工具和研发平台。   该项目的仪器研制历经8年,在项目团队全体成员的不懈努力下,克服各种困难,建成了我国第一个覆盖中、远红外波段的红外自由电子激光用户装置,具体包括:开发了包含光波导效应的光场数值计算方法和程序,实现了加波导的自由电子激光振荡器的模拟;研发了2856MHz次谐波可调、高重频电子枪,实现了基于同一台电子加速器的中红外和远红外两套振荡器的运行;建成了红外自由电子激光反射吸收光谱实验线站、上/下入射激发模式的红外自由电子激光—原子力显微镜实验线站和红外自由电子激光分子反应散射实验线站。   该项目中,大连化物所江凌研究员团队负责研制了一套基于红外自由电子激光的光解离光谱实验站,实现了金属化合物团簇的高灵敏红外光谱探测及结构表征,对诠释催化反应机制具有重要作用。
  • 【激光成像】AM:从蓝色至近红外的碳点激光用于彩色无散斑激光成像与动态全息显示
    背景介绍随着可溶液加工激光增益材料的不断发展与改进,该类型的激光器在生物医学治疗、柔性可穿戴设备、通信及军事设备等领域的应用也在不断突破。然而,增益材料的毒性、成本和稳定性问题日益显著,这些问题是增益材料在微/纳激光领域可持续发展的主要障碍。因此,寻找低毒、低成本、高稳定性的激光材料成为该领域内的重要的任务。研究出发点碳点(CDs)作为一种环境友好、稳定性优良、制备成本低及荧光性能优异的碳基纳米材料,近年来引起了人们广泛的研究兴趣。基于CDs激光增益介质的研究不断被报道,并且逐渐走向实际应用。虽然这些早期的研究促进了CDs激光的发展,并证明了CDs是一种优异的激光增益介质。然而,跨度广的全彩色激光,尤其是近红外激光器,一直难以实现。考虑到近红外激光器在空间光通信、激光雷达、夜视,特别是临床成像和治疗等方面的广阔应用前景,开发高性能的近红外CDs激光具有重要意义。此外,CDs激光缺乏系统性的研究,这些研究可以指导CD激光材料的开发,并有助于推动其实际应用的发展。全文速览在此背景下,郑州大学卢思宇课题组合成了具有明亮蓝色、绿色、黄色、红色、深红色和近红外荧光(分别标记为B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs)的全色CDs(FC-CDs)的制备,其PL峰值波长范围为431至714 nm。CDs的低含量sp3杂化碳、高PLQY和短荧光寿命是影响其激光性能的重要因素。结果表明,这些FC-CDs的半高宽明显较窄,在44 ~ 76 nm之间;同时,辐射跃迁速率KR为0.54 ~ 1.74 × 108 s−1,与普通有机激光材料相当,表明FC-CDs具有良好的增益潜力。激光泵浦实验证实了这一点,成功实现了从467.3到705.1 nm宽范围(238 nm)可调的CDs激光出射,覆盖了国家电视标准委员会(NTSC)色域面积的140%。结果表明,CDs具有较高的Q因子、可观的增益系数和较好的稳定性。最后,利用这些FC-CDs激光作为光源,实现了高质量的彩色无散斑激光成像和动态全息显示。此项工作不仅扩大了CDs激光的发射范围,而且为实现多色激光显示和成像提供了有益的参考,是推动CDs激光发展和实际应用的重要一步。文章以“Carbon Dots with Blue-to-Near-Infrared Lasing for Colorful Speckle-Free Laser Imaging and Dynamical Holographic Display”为题发表在Advanced Materials上,第一作者为张永强博士。图文解析图1a-f为其透射电子显微镜照片,显示出B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs为球形或准球形颗粒,平均粒径分别为3.09、3.24、3.76、3.25、4.25和5.98 nm。高分辨率透射电镜(HRTEM)显示,所有CDs的面内晶格间距为0.21 nm,这可归因于石墨烯的(100)面。值得注意的是,NIR-CDs是由单分散CD聚集而成的。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的X射线衍射(XRD)峰分别位于20°、22°、22.8°、27°、23°和23.5°。这些值近似于石墨(002)平面25°和层间距(0.34 nm)处的衍射峰。通常,对于脂肪族前驱体,制备的CDs的XRD峰在21°左右,晶格间距比0.34 nm更宽这是因为脂肪族前体在炭化过程中更容易将含氧和含氮杂原子基团引入共轭面,从而扩大了面内间距。R-CDs在27°处有一个清晰的尖锐衍射峰,表明两步溶剂热处理产生了良好的结晶度。此外,NIR-CDs在31.7°和45.5°处有两个尖峰,这两个峰属于NIR-CDs中残留的离子液体(IL),IL具有聚集单分散CDs的功能,有助于形成聚集的颗粒。傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)进一步收集了的结构成分信息(图1h和i)。光谱在3425和3230 cm−1附近显示出广泛的吸收特征,证实了-OH和-NH2的存在。1710和1630 cm−1附近的强信号与C=O拉伸振动有关,1570、1386、1215和1145 cm−1处的峰是由C=C、C-N和C-O- C拉伸振动引起的。这些结果表明,所有的FC-CDs都是由sp2/sp3杂化芳香结构形成的,这些杂化芳香结构在表面被含有杂原子(O和N)的极性基团修饰,这些基团使CDs在极性溶剂中具有良好的溶解性。图1中完整的XPS扫描显示,FC-CDs主要含有碳、氮和氧。高分辨率C 1s在C=C、C-N/C-O/(C-S)和C=O分别为284.6、286.6和288.3 eV处呈现出三个峰。N 1s分别在399.0、399.9和401.4 eV处显示吡啶、吡啶和石墨的N掺杂。O 1s光谱中C=O和C-O基团的峰分别位于531.4 eV和533 eV左右。这些XPS结果与FTIR分析一致。图1 形貌与化学成分表征。(a)B-CDs,(b)G-CDs,(c)Y-CDs, (d)R-CDs,(e)DR-CDs和(f)NIR-CDs;右上方的插图是相应的粒径分布,右下方的插图是单个颗粒的高分辨率TEM(HRTEM)图像。(g)XRD图谱,(h)FTIR谱,(i)XPS全扫描谱图。图2a-f显示了紫外照射下FC-CDs的亮蓝色、绿色、黄色、红色、深红色和近红外荧光,其发射峰分别位于431、526、572、605、665和714 nm。这些PL谱都表现出独立于激发波长的行为。它们的PLQY分别为64.9%、91.2%、41.2%、51.6%、28.3%和37.9%。此外,对于B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs,其PL光谱的半高全宽(FWHM)分别为0.46、0.19、0.18、0.24、0.20和0.14 eV。XPS分析sp3杂化碳含量分别为17.09%、9.01%、11.78%、16.78%、6.26%和11.41%。Yan等人的第一性原理计算表明,C-N、C-O和C-S基团可以导致局域化电子态,并在n -π*间隙中产生许多新的能级。这些sp3杂化碳相关激发能级的密度与C-N、C-O和C-S基团的含量呈正相关,决定了PL光谱的FWHMs。因此,CDs的PL光谱FWHMs可以通过sp3杂化碳的含量来控制。这些CDs的紫外-可见吸收峰存在于高、低两个不同的能带区,分别归因于芳香sp2结构域C=C的π -π*跃迁和CDs表面与C=O相关的不同表面态的n -π*跃迁。图2g显示了FC-CDs溶液的PL光谱的CIE坐标覆盖了NTSC标准色域面积的97.2%,意味着FC-CDs在显示中的具有良好的应用潜力。FC-CDs的时间分辨PL(TRPL)谱显示其荧光寿命分别为12.09、5.24、3.60、3.87、2.43和2.44 ns(图2h)。这些高PLQY、窄发射带和快速的PL衰减寿命的特性都有利于受激辐射(SE)。为了评估CDs的激光增益能力,结合公式(1)和(2)计算了ASE的相关参数。ASE阈值与爱因斯坦系数B和SE截面(σem)成反比:KR = φ / τ, (1) σem(λ)= λ4g(λ)/ 8πn2cτ, (2)B ∝ (c3/8πhν03)KR, (3)其中φ为PLQY,τ为平均荧光寿命,λ为发射波长,n为折射率,c为光速,g(λ)是自发辐射的线性函数,表示为g(λ)dλ = φ,h 为普朗克常数,ν0 为光频率,c 为光速。因此,KR值分别为0.54、1.74、1.14、1.33、1.16和1.55 × 108 s−1(图2i)。计算得到的最大的σem分别为1.46、16.59、13.38、15.45、19.51和38.66 × 10−17 cm2(图2i)。这些值与普通有机激光材料的值相似,表明这些CDs具有优良的增益潜力。基于上述分析,我们认为实现CDs激光有两个重要的因素。首先,需要集中的激发态能级来收集大量的具有相同能量的激发态电子,这有利于粒子数反转。其次,处于激发态能级的电子需要在高KR下跃迁回基态,这样统一的快速过程有利于光放大。这两个因素都可以通过精准的合成来控制:通过减少CDs中sp3杂化碳的含量来获得集中的激发能级,通过增加CDs的PLQY同时降低荧光寿命来获得高KR。 图2 光学表征。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs的吸收光谱和PL发射光谱,插图为对应CDs溶液在紫外灯照射下的光学图片,,线标签表示激发波长,单位为nm。(g)CDs发光光谱的CIE色坐标。(h)FC-CDs的TRPL光谱和(i)KR和最大σem。采用激光泵浦对FC-CDs的激光性能进行了表征。图3a、c、e、g、i和k分别为不同泵浦强度下的B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的发射光谱,显示出在467.3、533.5、577.4、616.3、653.5和705.1 nm处的出现尖峰;输出在可见光区域的跨度为238 nm(图3m)。在垂直于泵浦激光器和比色皿端面的方向上观察到这些FC-CDs产生的远场激光光斑(图4a、c、e、g、i和k的插图),表明激光发射的产生。随着泵浦影响的增加,FWHMs从大约60 nm急剧下降到~5 nm。这些发射光谱表明,泵浦强度的增加使发射强度急剧增加,峰的FWHM迅速窄化。为了明确发射峰强度、FWHMs和泵浦强度之间的量化关系,图3b、d、f、h、j和l绘制了相关曲线。它们都表现出明显的拐点:对于拐点以下的泵浦强度,FWHMs和输出发射强度的强度变化不明显,但在拐点以上增加泵浦能量,FWHMs急剧窄化,发射峰值强度急剧增加,其斜率与拐点以下大不相同。拐点表示激光的阈值,B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的激光阈值分别为319.84、35.89、53.31、11.10、43.90和17.88 mJ cm−2。考虑到这种激光泵浦中无反光镜体系,这些阈值也是合理的。为了评估FC-CDs的激光阈值水平,我们还使用相同的激光泵浦设置测量了罗丹明6G (Rh6G),其激光阈值为32 mJ cm−2,表明FC-CDs具有与常用激光染料相近的激光阈值。为了评估全色激光器的性能和商业化潜力,研究了其CIE颜色坐标、Q因子、增益系数(g)和稳定性。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的激光光谱对应的CIE色坐标分别为(0.131,0.047)、(0.178,0.822)、(0.494,0.505)、(0.684,0.315)、(0.728,0.272)和(0.735,0.265)(图3n)。所形成的封闭区域可以达到NTSC色域面积的140%,表明FC-CDs在全彩色激光显示中的巨大潜力。对于B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs,各自的激光线宽分别为0.17、0.13、0.11、0.21、0.21和0.34 nm,相应的Q因子(Q = λp/∆λp,其中λp为激光峰波长,∆λp为激光线宽)分别为2748.8、4103.8、5249.1、2920.5、3111.9和2073.8,这些值目前位于可溶液加工激光器中的前列。这些发现表明,我们的FC-CDs的激光器在激光质量上具有相当大的优势,这有利于其实际应用。光学增益系数量化了荧光材料实现激光发射的能力,可以用变条纹长度法来计算光学增益系数。激光输出强度可表示为:I(l) = (IsA/g) [exp(gl)-1], (4)其中I(l)为从样品边缘监测到的发射强度,IsA描述了与泵浦能量成正比的自发发射,在固定的泵浦能量下为常数,l为泵浦条纹的长度,g为净增益系数。图3p显示了在2倍激光阈值下,输出发射强度与激发条纹长度的关系。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的增益系数分别为8.9、24.7、17.1、16.0、13.5和21.5 cm−1。这些结果与大多数有机激光材料相当甚至更优,表明这些FC-CDs具有良好的增益特性。稳定性也是评估激光器时的一个重要考虑因素。在2倍激光阈值下连续泵浦FC-CDs激光,G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs连续工作7、7、5.5、5.5和4 h后,激光强度分别为初始激光强度的0.97、0.97、1、0.98、1.03倍(图4)。在CDs的2倍激光阈值下,将相近激光波长的常用商用激光染料与相应的CDs进行了稳定性比较。香豆素153 (541 nm)、Rh6G (568 nm)、RhB (610 nm)、Rh640 (652 nm)和尼罗蓝690 (695 nm)的激光强度分别下降到初始强度的0.60、0.84、0.89、0.76和0.73倍。对于B-CDs,激光阈值大约比其他CDs高一个数量级;在泵浦的0.6 h时,激光输出逐渐降至零。相比之下,香豆素461 (465 nm)的激光在0.2 h的操作时间内消失。与以往的文献相比,本工作对CDs激光进行了更全面的研究,该激光器具有从蓝色覆盖到近红外区域的宽可调激光范围、高增益系数、高Q因子、良好的辐射跃迁率、可观的增益系数和优异的稳定性。这些参数都处于CDs激光的前沿。图3 激光稳定性。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs与具有相近激光波长的商用有机激光染料在相应CDs的两倍激光阈值下的稳定性对比。FC-CDs的上述独特激光特性使其能够实现比传统热光源更亮的照明和色域更宽的全色激光成像。图4a-f分别为以B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs激光为光源对分辨率板(1951USAF)照射后的光学成像。利用互补金属氧化物半导体(CMOS)相机观测到的图像强度分布均匀、清晰、无散斑。作为对比,我们也使用商用激光器作为成像光源,使用波长为532 nm的连续波激光器和脉冲(7 ns, 10 Hz)激光器分别产生如图4g和h所示的光学图像,具有明显的激光散斑。从根本上说,这是由于图像质量受到激光高相干性带来的斑点的限制。我们进一步展示了这些CDs激光在全息显示中的潜在适用性,全息显示被认为是在3D空间中重建光学图像的最现实的方法之一,并且作为下一代显示平台为用户提供更深入的沉浸式体验而受到广泛关注。图4i为其实验设置。将CDs激光作为照明源照射到空间光调制器(SLM)上,在SLM上加载不同相位掩模(全息图)以重建全息显示所需的图案,在本例中为郑州大学的徽标。徽标分为三个部分,每个部分都可以使用B-CDs、G-CDs、和R-CDs出射的激光进行全息成像(图4j)。第一行是设计好相位掩模并输入SLM的原始图像。第二到第四行分别是CMOS相机在B-CDs、G-CDs、和R-CDs激光照射下拍摄的光学图像。第一列显示了会徽作为一个整体,并被分成几个部分。不同的组件可以简单地组合起来,以获得完整的彩色徽标(图4k)。这些静态图像具有高分辨率和高对比度,为了更接近实际应用,我们制作了一系列不同运动姿势的人物彩色全息图像,以获得彩色动态人物视频。图4l中的第一行给出了这些运动姿势的原始图片。第二至第四行分别显示了在B-CDs、G-CDs、和R-CDs激光照射下每个运动姿势不同部位的独立全息图像。然后将每个运动姿势的不同颜色部分合并到图41的第五行中。然后以每秒3帧的速度将从左到右依次输出,从而实现动态全息显示。虽然成像质量和显示方案还需改进,但我们的实验证明了未来基于CDs的激光成像的可行性。图4 基于FC-CDs激光的无散斑全彩色激光成像和彩色全息显示。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs激光,以及(g)连续波激光器(532 nm)和(h)脉冲激光器(7 ns, 10 Hz,532 nm)的商用激光源下的1951USAF的光学图像,标尺均为100 μm。(i)以CDs激光为光源的全息显示器实验装置(S1、S2、A、P分别为狭缝1、狭缝2、衰减器和偏振器;L1-L4分别为焦距40、100、100、50 mm的镜头 圆柱透镜的焦距为100 mm)。(j)郑州大学校徽全息静态展示。(k)为(j)中部分成像合并后的彩色徽标。(l)运动角色的全息动态显示。全息显示器中的比例尺都是1 mm。总结与展望综上所述,在无反光镜体系的光泵浦中,FC-CDs实现了467.3、533.5、577.4、616.3、653.5和705.1 nm的波长可调谐随机激光发射,从蓝色到近红外区跨越238 nm,覆盖了NTSC色域的140%。sp3杂化碳的低含量在n -π*隙中引入了集中的激发态能级,从而实现了较窄的FWHMs和粒子数反转,高KR(高PLQY和小寿命)有利于光放大。这两个因素决定了FC-CDs的激光增益特性,在CDs激光阈值的2倍能量泵浦下,FC-CDs也表现出高Q因子、可观的增益系数和比普通商业有机染料更好的稳定性。最后,我们成功地演示了使用这些FC-CDs激光作为光源的彩色无散斑激光成像和高质量的动态全息显示。我们的研究结果扩展了CDs激光的波长范围,提供了对其激光性能的全面评估,并为全彩色激光成像和显示应用打开了大门,从而显著促进了可溶液加工的CDs基激光器的实际应用和发展。文献链接:https://doi.org/10.1002/adma.202302536
  • 国家重大科研仪器研制专项(部委推荐)“基于可调谐红外激光的能源化学研究大型实验装置”顺利通过验收
    3月8-9日,国家自然科学基金委员会(以下简称基金委)组织专家在中国科学技术大学对厦门大学孙世刚教授主持的国家重大科研仪器研制专项(教育部推荐)“基于可调谐红外激光的能源化学研究大型实验装置(项目批准号:21327901)”进行验收。会议期间,专家组认真审阅了验收材料,听取了项目负责人孙世刚教授的项目工作报告和监理组的监理情况报告,并进行质询和现场考察。在听取仪器测试组报告、财务组验收意见及档案组审核情况报告并经过充分讨论后,专家组认为项目达到预期研制目标,符合验收要求,同意通过验收。“基于可调谐红外激光的能源化学研究大型实验装置”项目由厦门大学、中国科学技术大学、复旦大学和中国科学院大连化学物理研究所共同承担,并由我校孙世刚院士主持。四家承担单位集中优势建设了一套具有国际先进水平的波长连续可调、覆盖中红外到远红外波段的可调谐红外自由电子激光光源,和以红外自由电子激光为光源的固/气和固/液表界面反射吸收红外光谱实验线站、原子力显微红外光谱实验线站、和频光谱实验线站、光解离光谱实验线站和光激发光谱实验线站五条实验线站。历时8年攻关,我校参研人员在孙世刚院士带领下建成了国际上首个红外自由电子激光反射吸收光谱实验线站,首次实现了低至200波数的宽波段电化学原位红外检测,建成的和频光谱实验线站实现了低波数皮秒级时间分辨和频光谱检测。该装置的研制为化学、物理、材料以及生物医学等相关领域提供了一个有力的工具和研发平台。
  • 物理所精密可调谐窄线宽深紫外激光研究获进展
    具有极窄线宽的单纵模深紫外可调谐激光由于其高的光谱分辨率及光子能量,是精密光谱学、紫外光刻、激光同位素分离、高分辨成像等诸多领域具有重要需求的光源,但因其涉及到线宽压窄技术、频率稳定技术、精确调谐技术及波长变换技术等一系列复杂的难题,该激光研究工作极具挑战性。为了获得紫外波短的波长,通常需要借助非线性晶体混频已有成熟激光器件的方案,从而获得该波段的相干辐射。我国科学家在非线性激光晶体研究方面成果显著,以BBO、LBO、KBBF等晶体为代表的紫外及深紫外波段非线性晶体蜚声国际。但是由于不同晶体在通光波段、相位匹配范围、有效非线性系数及光学质量、生长工艺、使用寿命等方面的不同表现,很难有可完全取代其他晶体的&ldquo 全能&rdquo 非线性晶体,不断挖掘新的非线性晶体并结合实用激光器件获得技术指标先进的紫外及深紫外激光,是激光材料及激光技术人员追求的重要内容之一。   针对极窄线宽可调谐深紫外激光的应用研究任务,中国科学院物理研究所/北京凝聚态物理国家实验室(筹)光物理重点实验室魏志义研究组基于他们掺钛蓝宝石激光研究的经验,近年来通过深入系统的研究工作,相继克服了压缩线宽、稳定频率、精调波长、提高增益等技术难题,部分工作已发表于Applied Optics等杂志上【Appl. Opt., 51: 1905(2012)及Appl. Opt., 51:5527 (2012)】。最近,魏志义研究员、滕浩副研究员及博士研究生王睿在进一步成功获得平均功率6.5W、线宽小于0.4pm的可调谐窄线宽纳秒钛宝石激光的基础上,通过与福建物质结构研究所洪茂椿、陈长章、林文雄研究员合作,利用他们最新研制成功的BBSAG (Ba1-xB2-y-zO4SixAlyGaz)晶体四倍频该激光,在195~205nm的深紫外波长范围内获得了线宽小于200MHz、单频稳定性优于50MHz、调谐步长小于50MHz的可调谐窄线宽稳频激光输出,最高输出功率达130mW。图1为波长计测量到的基频光典型线宽结果,图2依次为各阶谐波的调谐曲线,对比BBO晶体,BBSAG在紫外波段不仅倍频效率提高了25%,而且由于近两倍高的光学破坏阈值、更高的硬度及完全不潮解的特性,表现出更加优良的连续稳定运行时间及可靠的线宽稳定性、精确的波长调谐能力,可望作为一种新的紫外非线性晶体,在激光科学技术中发挥重要作用。目前该激光器已在合作单位取得成功应用。   相关结果已发表在Optics Letters 39,2105(2014)上,此项工作得到了中科院知识创性工程方向性项目和国家自然科学基金委重大研究计划项目的资助。  图1 基频光的线宽测量结果   图2 各次谐波的光谱调谐范围,采用BBSAG的四倍频激光的调谐范围约从193~210nm。最高平均功率135mW。
  • 上海光机所在自注入锁定窄线宽可调谐片上光源方面取得进展
    近期,中国科学院上海光机所空间激光信息传输与探测技术重点实验室研究团队联合张江实验室提出光反馈强度可调的自注入锁定窄线宽可调谐片上激光器,理论及实验研究了不同光反馈强度下激光器动态演变过程,表明优化光反馈强度可以有效提升自注入锁定的稳定性、优化噪声抑制效果、扩展锁定调谐范围。相关研究成果以“A Self-Injection Locked Laser Based on High-Q Micro-Ring Resonator with Adjustable Feedback”为题发表于Journal of Lightwave Technology。目前,硅基光电子芯片系统级集成迅速发展,在相干激光通信、相干探测激光雷达、精密计量传感、光计算等应用场景中扮演着重要角色,芯片系统级集成对前端低噪声激光光源的体积、重量、功耗同样提出了严格要求。高品质因子氮化硅微环谐振腔可提供积累的背向瑞利散射光反馈,将其与分布式反馈半导体激光器进行混合集成可获得高集成度的自注入锁定片上窄线宽光源。但由于反馈回激光器的背向瑞利散射强度与微环谐振腔波导加工工艺以及芯片间耦合封装损耗相关,通常强度较低且难以精确调控,自注入锁定片上激光器存在稳定性不高、调谐范围受限的问题。   研究团队提出一种基于高Q值微环谐振腔的光反馈强度可调片上自注入锁定窄线宽激光器(如图1所示),通过引入由马赫曾德尔干涉仪和萨格纳克环形镜构成的反射率可调后腔镜,通过调节MZI两臂相位差调整反馈光强,在保证输出激光频率处于微环谐振腔谐振中心的同时,解决了微环谐振腔光反馈强度不可控的难题。反馈光强度经过优化的自注入锁定激光器具有更低的频率噪声和更大的锁定带宽,本征线宽压低至60 Hz,锁定调谐范围拓展到6.3 GHz(如图2、图3所示)。相关工作在FMCW激光雷达、高精度光纤传感等相干探测和精密计量领域具有重要的应用价值。图 1. 混合集成自注入锁定窄线宽激光器结构示意图、封装成品图 2. 不同光反馈强度下激光器频率噪声、线宽测试结果。(a)激光器频率噪声功率谱密度;(b) 激光器本征线宽、1ms 积分线宽图 3. 优化光反馈强度前后激光器调谐范围对比。(a) 后反射腔镜反射率为 0% 时调频结果;(c) 后反射腔镜反射率为 32% 时调频结果
  • 我国首台可调谐相干太赫兹光源建成出光
    2005年4月11日,中国工程物理研究院在国家863计划强辐射重点实验室学术年会上宣布,该院基于射频直线加速器技术的远红外自由电子激光实验日前取得突破性进展,我国首台可调谐相干太赫兹(THz)光源建成出光,填补了国内空白。   该成果是中国工程物理研究院基于射频直线加速器技术的远红外自由电子激光实验所取得的突破性进展。此次发光中心波长115μm,谱宽1H。太赫兹辐射通常指频率在1—10太赫兹区间的电磁辐射,其波段位于微波和红外光之间,是人类尚未完全认识和利用的最后一个波(光)谱区间。   中物院有关专家介绍说,中物院下一步将进行结果优化和稳定性改进,并将实验装置做成研究和应用平台,力争使我国太赫兹光源技术及应用研究在国际上占有一席之地。
  • 可调谐红外双波段光电探测器,助力多光谱探测发展
    红外双波段光电探测器是重要的多光谱探测器件,特别是近红外/短波红外区域,相较于可见光有更强的穿透能力,相较于中波红外可以以较低的损耗识别冷背景的物体,因此广泛应用于民用和军事领域。当前红外双波段探测器主要面临光谱不可调谐,器件结构复杂而不易与读出集成电路相结合的挑战。据麦姆斯咨询报道,近日,合肥工业大学先进半导体器件与光电集成团队在光电子器件领域取得重要进展,研究团队研发了一种光谱可调谐的近红外/短波红外双波段探测器,相关研究成果以“Bias-Selectable Si Nanowires/PbS Nanocrystalline Film n–n Heterojunction for NIR/SWIR Dual-Band Photodetection”为题,发表于《先进功能材料》(Advanced Functional Materials, 2023: 2214996.)。第一作者为许晨镐,通讯作者为罗林保教授,主要从事新型高性能半导体光电子器件及相关光电集成技术方面的研究工作。该研究使用溶液法制备了硅纳米线/硫化铅异质结光电探测器(如图1(a)),工艺简单,成功将硅基探测器的光谱响应拓宽到2000 nm。基于有限元分析法的COMSOL软件分析表明,一方面,有序的硅纳米线阵列具有较大的器件面积,提升了载流子的输运能力,且纳米线阵列具有较好的周期性,入射光可以在纳米线结构之间连续反射,产生典型的陷光效应。另一方面,小尺寸的纳米线阵列可以看作是微型谐振器,可以形成HE₁ₘ谐振模式,增强特定入射光的光吸收。通过调制外加偏压的极性,器件可以实现近红外/短波红外双波段探测、近红外单波段探测、短波红外单波段探测三种探测模式的切换。器件还具有较高的灵敏度,在2000 nm光照下的探测率高达2.4 × 10¹⁰ Jones,高于多数短波红外探测器。图1 双波段红外探测器结构图及相关仿真和实验结果图2 偏压可调的近红外/短波红外双波段探测及探测率随光强的变化曲线此外,该研究还搭建了单像素光电成像系统(如图3(a)),在2000 nm光照下,当施加-0.15 V和0.15 V偏压时,该器件能对一个简单的英文字母实现成像。但是不施加偏压时,缺无法清晰成像。这表明只需要对器件施加一个小的偏置电压时,就可以将成像系统的工作区域从近红外调整到短波红外,具有较高的灵活性。图3 光电成像系统及成像结果这项研究得到了国家自然科学基金、安徽省重点研发计划、中央高校基本科研业务费专项资金等项目的资助。
  • 科学家造出全谱段白光激光器,或催生新型光谱学检测手段
    近日,华南理工大学教授李志远团队成功造出一台全谱段白光激光器,其具备光斑明亮、光谱光滑且平坦、大脉冲能量的特点,能覆盖 300-5000nm 的紫外-可见-红外全光谱,单脉冲能量达到 0.54mJ。这样一台全谱段白光激光器的面世,可用于构建全谱段的超快光谱学探测技术,有望将激光技术推至世界领先水平,从而更好地服务于前沿研究。图 | 李志远(来源:李志远)基于本次成果,课题组将进一步构建全谱段的超快光谱学探测设备,届时有望对物质内部多个波段中的物理、化学和生命过程开展超快的精密探测,从而实现高速摄谱的技术能力,进而用于开展二维材料、锂离子电池、化学催化等领域的研究。本次研究中所涉及的光谱学技术,可以覆盖深紫外-可见波段的原子以及分子的电子跃迁吸收谱,也能覆盖近红外波段的半导体带间电子跃迁吸收谱、以及中红外波段的分子振动等。借此可以打造一种崭新的光谱学检测手段,对于那些使用传统手段所无法揭示的新现象和新规律,本次新手段很有希望填补相关空白。(来源:Light: Science & Applications)鉴于光学波段的光子和物质的电磁相互作用强度以及灵敏度,远远超过 X 射线光子与物质原子核、以及内壳层电子的电磁相互作用。而且,即便是 1mJ 量级的全谱段白光飞秒脉冲激光的光子亮度,也远远超过目前同步辐射 X 射线光源的亮度。“因此,全谱段白光激光器在物质科学和生命科学中所发挥的作用,也有望超过传统的同步辐射 X 射线光源。”李志远表示。日前,相关论文以《强紫外-可见-红外全谱段激光器》 (Intense ultraviolet–visible–infrared full-spectrum laser)为题发在 Light: Science & Applications,华南理工大学博士生洪丽红是第一作者,华南理工大学李志远教授、中国科学院上海光学精密机械研究所(上海光机所)李儒新院士担任共同通讯 [7]。图 | 相关论文(来源:Light: Science & Applications)助力解决 Science 125 个待解难题之一据介绍,作为一种崭新的激光光源,超宽带白光激光具有极宽带宽、高光谱平坦度、大脉冲能量、高峰值功率、高时空相干性等五大优点,能极大拓展激光技术的发展和应用范围。而如何构建一台覆盖紫外-可见-红外波段的全谱段白光激光器,同时拥有高峰值功率和高脉冲能量,是一个极具挑战的宏大目标。2020 年,Science 杂志将其列为 125 个前沿重大科学问题之一。主要原因在于,基于目前纯粹单一的激光器技术、二阶非线性变频技术、以及三阶非线性频率展宽技术,远不足以解决这一问题。过去十年,李志远团队基于自主开发的啁啾结构非线性铌酸锂晶体,结合大脉冲能量、高峰值功率的飞秒脉冲激光泵浦,利用二阶和三阶非线性协同作用的原创性物理机制,提升了白光飞秒激光的转换效率、频谱带宽、脉冲能量、光谱平坦度等指标。要想产生全谱段白光飞秒激光,需要达到两个先决条件:带宽超过一个光学倍频程的强泵浦飞秒激光光源,以及具有极大非线性频率上转换带宽的非线性晶体。不过,要想同时满足上述两个条件并非易事。为此,课题组使用光学参量啁啾脉冲放大技术,以及使用由充气空心光纤、纯铌酸锂晶体材料和啁啾极化铌酸锂晶体组成的极宽带非线性变频模块,将飞秒激光技术、二阶非线性变频技术、三阶非线性频率展宽技术加以综合,研制了这款全谱段白光激光器。其中,二阶和三阶非线性效应协同作用的原创性物理机制,是打造本次全谱段白光激光器的秘密。上述机制的好处在于,能够清除二阶非线性或三阶非线性方案中所存在的输出光谱性能不佳的限制。李志远表示:“全谱段白光激光有望成为激光技术发展历史上的一个里程碑,并能很好地回答 Science 杂志 2020 年的 125 个最前沿的科学问题,即人类能否造出与太阳光相似的非相干强激光。”(来源:Light: Science & Applications)让中国学界真正拥有属于自己的实验设备多年来,学界一直渴望产生像太阳光一样的白光激光。紫外-可见-红外全谱段白光激光的产生,则一直是激光技术等待攻克的堡垒,也是李志远团队努力追求的目标。十年来,该课题组历经 8 次阶段性成果的积累,才造出了上述全谱段白光激光器。2014 年,该团队将啁啾调制的概念引入一维铌酸锂晶体的周期设计中。在可调谐近红外光源的帮助之下,设计出多个不同啁啾度的准相位匹配晶体,让二次、三次谐波产生的非线性过程的相位失配,能够在单个晶体中得到补偿,借此实现宽带可调谐三基色光源的同时输出,也拉开了课题组“白光激光”之梦的序幕。2015 年,李志远让学生陈宝琴开展啁啾结构铌酸锂晶体中六次谐波产生的研究。在实验的关键阶段,李志远去现场看学生做实验,结果发现了又圆又白的激光束产生,这完全出乎意料之外。李志远觉察到这是一个“好东西”。仔细分析之后,确定啁啾结构铌酸锂晶体产生了二到八次谐波。在一个固体材料中产生高次谐波,这是一个前所未有的科学发现,也让课题组开始树立“白光激光”的梦想。随后,他们设计了啁啾结构非线性光子晶体,以中红外飞秒脉冲激光为泵浦源,在单块晶体中同时产生了超宽带二到八次谐波。其中,四到八次谐波形成 400-900nm 超宽带可见白光激光,其转换效率达到 18%。2014 年和 2015 年的这两项工作表明:该团队自主研发的铌酸锂晶体二阶非线性方案,可以支持宽带二次谐波产生。同时,也能支持宽带二次谐波和三次谐波产生,甚至支持基于级联三波混频的高次谐波产生,最终可以实现超宽带可见白光激光的产生。而要想产生全谱段白光飞秒激光,就需要继续深挖上述方案的潜能,以便满足产生全谱段激光所需要的苛刻条件:即泵浦激光脉冲带宽要足够宽,非线性晶体材料的准相位匹配带宽要足够大。2018 年,课题组选用更高能量的近红外飞秒脉冲激光作为泵浦源,针对相关泵浦条件设计出一款啁啾结构铌酸锂晶体,这块晶体在不同偏振状态之下,均能同时产生二次谐波和三次谐波。通过此他们首次发现了二阶和三阶非线性协同作用的新物理机制,并证明这一机制能够显著提升相关性能的指标。利用级联二次谐波和三次谐波方案,他们生成了 400-900nm 可见-近红外波段的可调谐白光激光,转换效率达到 30%。这一发现,也促使他们去发现产生白光激光的更优路线,即基于二阶和三阶非线性协同作用产生超连续白光激光的方案。在新路线的指导之下,他们设计出一块能同时产生二到十次谐波的宽带白光非线性晶体材料。针对这款白光非线性晶体材料,他们又采取 45μJ 脉冲能量的 3.6μm 中红外飞秒脉冲激光泵浦的设计方案,借此产生 25dB 带宽、覆盖 350-2500nm 的紫外-可见-红外超连续白光飞秒激光,单脉冲能量为 17μJ,转换效率为 37%。在此基础之上,他们继续优化二阶非线性和三阶非线性协同效应。期间,该团队发现石英玻璃的三阶非线性效应远远优于铌酸锂晶体,而特殊设计的铌酸锂啁啾非线性光子晶体可以同时使用高达十二阶次的准相位匹配。后来,他们利用 0.5mJ 的钛宝石飞秒脉冲激光器泵浦,来对熔融石英-啁啾极化铌酸锂晶体进行泵浦,最终实现 10dB 带宽覆盖 375-1200nm、20dB 带宽覆盖 350-1500nm 的超连续激光,单脉冲能量为 0.17mJ,转换效率为 34%。前面提到,课题组期望实现的白光飞秒激光具有五个高指标。因此,在追求极宽带宽范围的同时,他们还得实现更大的脉冲能量、更高的光谱平坦度。于是,该团队以高能量钛宝石主激光作为泵浦源,针对由熔融石英和啁啾极化铌酸锂晶体组成的级联光模块,对其整体非线性响应进行进一步的操纵,从而显著提高了白光飞秒激光的综合性能。期间,他们利用 3mJ 脉冲能量的钛宝石飞秒激光泵浦,对石英-超宽带白光非线性晶体级联模块进行熔融,基于二阶和三阶非线性协同作用的高效超宽带二次谐波产生方案,实现了 mJ 量级、3dB 带宽覆盖 385-1080nm 的超宽带白光飞秒激光。此外,自 2018 年起课题组联合一家外部公司研制了 3mJ/50 fs/1 kHz 钛宝石飞秒激光器,实现了相关仪器的国产替代。并以此作为泵浦源,和白光非线性变频模块加以结合,从而形成了成熟高效的白光飞秒激光生成方案,借此造出一款白光飞秒激光整机设备。以上成果也促使他们进一步思考:如何产生覆盖一到十次谐波的全谱段白光激光?为此,他们与上海光机所李儒新院士团队合作,提出一款非线性级联装置。这种装置可以满足以下两个条件:一个较强的带宽达到光学倍频的中红外泵浦激光光源;以及一个具有极大非线性频率上转换带宽的非线性晶体。随后,他们基于光学参量啁啾脉冲放大技术,研制出一种中红外飞秒脉冲激光器,它具有 3.5mJ、3.9μm 中心波长,可以起到泵浦激光光源的作用。接着,基于宽带二阶和三阶非线性变频模块,他们获得了光谱范围 25dB 带宽、覆盖 300-5000nm 的全谱段超连续白光飞秒激光。“至此,我们欣喜地发现借助强中红外飞秒激光作为泵浦源已经成功走通了全谱段白光激光产生的道路。”李志远表示。(来源:Light: Science & Applications)总的来说,课题组已经实现了“三高”型白光飞秒激光:大单脉冲能量(第一高)、300-5000nm 的频谱宽度(第二高)、高光谱的平坦度(第三高),基本涵盖了铌酸锂晶体的全部透光范围。接下来,他们将继续与李儒新院士团队合作,朝向更高目标前进,力争实现深紫外-紫外-可见-近红外-中红外-远红外的“三高”全谱段白光飞秒激光。假如可以实现,就能建造比拟同步辐射光源、以及自由电子激光光学波段的全谱段超连续激光光源。“届时,相信我们中国科学界将拥有属于真正自己的研究物质科学和生命科学的实验设备。”李志远最后表示。
  • 200万!华南理工大学大功率激光白光与近红外光源测试系统采购项目
    项目编号:0809-2341HGG14028项目名称:华南理工大学大功率激光白光与近红外光源测试系统采购项目预算金额:200.0000000 万元(人民币)最高限价(如有):200.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)1大功率激光白光与近红外光源测试系统1套具体详见采购需求200.00本项目(大功率激光白光与近红外光源测试系统)只允许采购本国产品,具体详见采购需求。本项目采购标的所属行业为: 工业 合同履行期限:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用。交付地点:华南理工大学五山校区。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:华南理工大学地址:广州市天河区五山路381号联系方式:文老师020-871129622.采购代理机构信息名称:广东华伦招标有限公司地址:广州市越秀区广仁路1号广仁大厦7楼联系方式:何工020-83172166-823(电邮:hualunsibu@163.com)3.项目联系方式项目联系人:何工电话:020-83172166-823
  • 160万!清华大学超宽调谐飞秒激光器(高速双光子共聚焦显微镜)购置项目
    项目编号:BIECC-22ZB1133/清设招第20221251号项目名称:清华大学超宽调谐飞秒激光器(高速双光子共聚焦显微镜)购置项目预算金额:160.0000000 万元(人民币)最高限价(如有):160.0000000 万元(人民币)采购需求:该设备用于为生物样本研究的多光子显微镜系统提供激光光源,针对多光子显微成像, 提供(680 nm - 1300 nm)宽的波长调谐范围,全波长全自动调谐,适宜于各种生物活体成像,广泛应用于神经科学/光遗传学,胚胎学,免疫学等多个生物领域研究。具体要求详见第四章。包号名称数量01超宽调谐飞秒激光器1套合同履行期限:合同签订后120日内交货。本项目( 不接受 )联合体投标。
  • 应用案例 | Ppb级中红外石英增强光声传感器,用于使用T型音叉调谐探测DMMP
    近日,来自山西大学激光光谱研究所、光学协同创新中心,-巴里大学和巴里理工大学跨校物理系波利森斯实验室的联合研究团队发表了《Ppb级中红外石英增强光声传感器,用于使用T型音叉调谐探测DMMP》论文。二甲基甲基膦酸酯(DMMP)被广泛认为是最具代表性的模拟物,已开发并广泛用于DMMP检测的各种气体分析技术。气相色谱(GC)和质谱(MS)分析可以高敏感地鉴定不同的有机磷化合物,但它们在原位监测方面具有几个缺点,包括昂贵和耗时。此外,色谱分析必须由熟练的人员在专门的实验室中进行,不适合小型化。相比,光声光谱(PAS)是DMMP气体水平监测最有前景的技术之一,因为它具有高灵敏度、选择性和快速响应的优势。作为PAS的一种变体,石英增强光声光谱(QEPAS)技术自2002年首次报道以来迅速发展,其中超窄带石英调谐叉(QTF)与两个作为锐利共振声学换能器的声学微共振器(AmRs)在声学上耦合,用于检测声音信号,而不是传统的宽带麦克风。与体积超过10 cm3的传统光声池相比,小体积的QTF更有利于DMMP检测设备的小型化和快速响应。此外,QEPAS技术的显著特点是激发波长的独立性,这意味着可以使用相同的光谱声学器测量具有不同特征吸收光谱的痕量气体。DMMP在9–11.5 µ m的中红外区域显示出强烈的光吸收特征,因此使用高性能中红外量子级联激光器(QCLs)可以在理论上实现高灵敏度的检测。然而,中红外QCL输出光束通常具有较大的发散角,这使得将中红外激光束耦合到具有300微米叉间距的QTF中成为巨大的挑战,因为任何误散射光束击中QTF都会产生大的背景信号。在本研究中,我们展示了种基于定制T型QTF和中红外量子级联激光器(QCL)的小型化集成QEPAS DMMP传感器。T型QTF的叉间距为0.8毫米,具有约15,000的高品质因数,避免了由误散射光引起的背景信号,从而在ppb水平上获得最佳检测限。通过使用掺入DMMP的真实室外空气对传感器进行测试,以验证其有效性。实验部分:检测波长和光学激发源的选择强有力的靶向吸收带对于DMMP检测至关重要,因为实际应用需要具有亚百万分之一灵敏度的传感装置。由于其高输出功率、紧凑性和窄的光谱线宽,QCLs在中红外光谱区域已成为最多功能的半导体激发源。考虑到激发波长和激光源的大小,宁波海尔欣光电科技有限公司为该实验提供了一个发射波长为9.5 µ m,线宽为2 MHz的QCL激光器(QC-Qube 200831-AC712)作为DMMP-QEPAS传感器的激发源,其输出功率稳定性Fig. 2. QCL emission wavelength and output optical power as a function of driving current in amplitude modulation operating mode with a duty cycle of 50 %. QCL laser: HealthyPhoton, QC-QubeQCL laser driving circuit:: Healthy Photon, QC750-Touch&trade 结论基于QEPAS的传感器由于其波长独立性具有很高的多功能性,这使得通过替换激光源可以检测各种神经毒剂。在本研究中,首次开发了一种紧凑尺寸和可靠性能的ppb级QEPAS DMMP传感器。选择了9.56 µ m的激发波长,这是最强的DMMP吸收带,不受H2O和CO2的干扰。优化了主要系统参数,包括激光激发功率、气体压力和调制频率。最终,在0至1.5 ppm范围内验证了传感器的线性,并在300毫秒的积分时间下实现了6 ppb的最低检测限。我们使用真实室外空气作为载气检测了500 ppb的DMMP,并获得了与以零气作为载气时相同的信号幅度,从而验证了传感器的高选择性。参考Ppb-level mid-IR quartz-enhanced photoacoustic sensor for sarin simulant detection using a T-shaped tuning fork, Sensors & Actuators: B. Chemical 390 (2023) 133937, https://doi.org/10.1016/j.snb.2023.133937
  • 华南理工大学在大功率近红外光源研究方面取得新进展
    近日,华南理工大学发光材料与器件国家重点实验室夏志国教授团队在Nature Photonics期刊上在线发表了题为“Laser-Driven BroadbandNear-Infrared Light Source with Watt-Level Output”的研究论文。该论文报道了一种组成极为简单的MgO:Cr³⁺近红外荧光透明陶瓷,所制作的蓝光激光驱动近红外光源器件输出功率达到目前最高纪录的6 W,并展示了其在远距离夜视补光和无损检测成像等领域的应用。晶圆级MgO:Cr³⁺半透明陶瓷蓝光发光二极管(LED)催生了第四代半导体照明技术,新应用需求对光源器件提出了更高的要求,蓝光激光二极管(LD)结合荧光转换材料成为一个重要的发展方向。它由极亮的蓝光LD泵浦荧光转换材料制作,并在航空航海照明、水下照明、激光荧光显示投影仪以及大功率近红外光源器件等应用中具有巨大潜力。该项研究发明了一种接近“性能完美”的高稳定性MgO:Cr³⁺荧光透明陶瓷(中国发明专利,ZL202211147958.4),其宽带近红外发光发射峰值810 nm,取得了迄今为止的最高外量子效率(81%)。通过掺杂引入的Cr³⁺离子在Mg²⁺格位异价取代,使得结构中存在丰富的阳离子空位缺陷,形成了不同局域环境的Cr³⁺发光中心。与此同时,发光中心之间的声子辅助激发态能量传递过程,弥补了长波长发射的非辐射弛豫,克服了能隙率的影响,提升了发光效率。进一步得益于MgO荧光透明陶瓷所具有的超高导热率,在22 W/mm²蓝光LD泵浦下获得了超过6 W的宽带近红外输出功率,光转换效率达29%。MgO:Cr³⁺荧光半透明陶瓷的荧光光谱及辐射机理采用该项技术搭建的原型器件可穿透3 cm厚的不透光硬纸板,实现剪刀模型成像,其成像分辨率为6l p/mm。这种全新的激光驱动大功率近红外光源在夜视补光、工业探伤设备及医疗器械的无损检测成像等领域具有广泛应用前景。激光驱动的近红外光源及其应用华南理工大学材料科学与工程学院/发光材料与器件国家重点实验室博士研究生刘高超为该论文的第一作者,夏志国教授为通讯作者。这项研究工作得到了国家自然科学基金、国家重点研发计划和广东省珠江人才计划资助。论文链接:https://doi.org/10.10 38/s41566-024-01400-7
  • 三项激光器/激光相关设备国标征求意见 涉及紫外、可见、红外光谱范围元件
    p   日前,全国光学和光子学标准技术委员会电子光学系统分技术委员会(SAC/TC103/SC6)秘书处发布关于征求《激光器和激光相关设备 光腔衰荡高反射率测量方法》等3项国家标准(征求意见稿)意见的通知。 /p p   根据通知内容,由全国光学和光子学标准技术委员会、电子光学系统分技术委员会(SAC/TC103/SC6)负责归口的《激光器和激光相关设备光腔衰荡高反射率测量方法》、《激光器和激光相关设备-标准光学元件-第1部分:紫外、可见和近红外光谱范围内的元件》、《激光器和激光相关设备-标准光学元件-第2部分:红外光谱范围内的元件》等3项国家标准已完成,现公开征求意见,截止日期11月17日。 /p p    span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" 近年来随着薄膜沉积技术的发展,光学薄膜,尤其是广泛应用于大型高功率激光装置、干涉引力波探测、激光陀螺、腔增强和腔衰荡光谱测量中的高反射薄膜的性能获得了极大的提高。激光光学系统中需要用到一些反射率很高(高于99.9%甚至99.99%)的反射元件,必须精确测量其反射率(测量重复性精度达到0.001%甚至更低)。 /span /p p span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai"   strong   /strong a title=" " href=" http://www.sac.gov.cn/gzfw/zqyj/201710/P020171023319778323438.rar" target=" _blank" strong 1.《激光器和激光相关设备 光腔衰荡高反射率测量方法》(征求意见稿)及编制说明 /strong /a /span /p p   本标准规定了激光光学元件反射率的测量方法,适用于激光光学元件高于99%的反射率的精确测量。 /p p   基于光腔衰荡技术,本标准的测试方法和流程可实现激光光学元件的高反射率(大于99%,理论上可达100%)测量,且精度高、重复性和再现性好、可靠性高。特别是大于99.9%的反射率的准确测量对发展高性能反射激光元件具有重要意义。 /p p    span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" 目前,激光应用领域越来越多,包括医疗、材料处理、信息技术和计量等等。激光器及激光系统一般要用到光学窗口、反射镜、分光镜和透镜等光学元件,为防止激光损伤,这些光学元件要禁得起激光系统高峰值功率/能量密度的技术要求,这对光学元件提出了更高的制造要求。另外,随着我国光学与光电子产业的迅猛发展,光学元件加工制造形成了相当的产业规模,在满足国内要求的同时,产品正在走向国际化。因此对此类光学元件标准化的要求越来越高。 /span /p p    a title=" " href=" http://www.sac.gov.cn/gzfw/zqyj/201710/P020171023319792051186.rar" target=" _blank" strong 2.《激光器和激光相关设备-标准光学元件-第1部分:紫外、可见和近红外光谱范围内的元件》(征求意见稿)及编制说明 /strong /a /p p   本部分规定了紫外、可见和近红外波段,波长从170nm至2100nm光谱范围内的激光光学元件的要求。适用于激光器和激光相关设备使用的标准光学元件,包括平面、平面球面和球面基片不包括镀膜后的光学元件,透镜和按规定设计由供应商提供的其它标准光学元件。 /p p   本部分的发布可以填补我国用于紫外、可见和近红外光谱范围标准激光光学元件要求的空白 同时,通过规定优先的尺寸和公差,来减少元件的种类,通过标准化的规定,去除贸易壁垒,并通过建立一致的订单标识使备件的供应更加便利。 /p p    a title=" " href=" http://www.sac.gov.cn/gzfw/zqyj/201710/P020171023319805778591.rar" target=" _blank" strong 3.《激光器和激光相关设备-标准光学元件-第2部分:红外光谱范围内的元件》(征求意见稿)及编制说明 /strong /a /p p   本部分规定了近红外到中红外波段,波长从2.1mm至15mm光谱范围内的激光光学元件的要求。适用于激光器和激光相关设备使用的标准光学元件,包括平面、平面球面和球面基片不包括镀膜后的光学元件,透镜和按规定设计由供应商提供的其它标准光学元件。 /p p   本部分的发布可以填补我国用于红外光谱范围标准激光光学元件要求的空白 同时,通过规定优先的尺寸和公差,来减少元件的种类,通过标准化的规定,去除贸易壁垒,并通过建立一致的订单标识使备件的供应更加便利。 /p p   联系地址:北京市海淀区车道沟十号院科技一号楼 兵器标准化所 电光系统分标委秘书处 010-68962373 /p p   邮编:100089 /p p   联系电话:010-6896 2373 /p p   传 真:010-6896 3156 /p p   邮件地址: a href=" mailto:bzsbjw@126.com" bzsbjw@126.com /a /p
  • 激光驱动白光光源|每天使用3小时,至少可用8年的高亮度光源
    众所周知,传统的辐射校准光源,如氘灯、石英窗卤素钨灯、长弧氙灯等无法在200 nm-800 nm范围内保持较高的输出,并且在使用100小时或更短时间后需要进行重新校准,在使用500小时后还需要更换灯泡。图1 LDLS与其他传统光源的性能对比基于此,Hamamatsu集团旗下的Energetiq公司研发出单点激光驱动光源技术,并将其命名为激光驱动白光光源(Laser Driven Light Source, LDLS),该类光源不仅可以在170nm-2500nm的光谱范围内提供超高发光亮度,而且整个光源的发光寿命相比较于传统光源也高出了整整一个数量级。激光驱动白光光源(LDLS)激光驱动白光光源(以下简称,LDLS)由一个特殊设计的灯室、驱动激光光源、激光聚焦光路、光源输出光路、光源控制器等主要部分组成。图2 LDLS发光原理其原理是采用无电极结构,将外置1000 nm左右波长的激光汇聚到光源灯室中,加热氙等离子体至足够高温时发光,灯室发光后系统会自动给灯室断电,发光等离子体的状态就一直由外部激光器所保持。图3 LDLS产品参数与常见的有氘灯、钨灯、氙灯等传统光源相比,LDLS在亮度、稳定性、UV波长覆盖、寿命上都有很大突破。LDLS性能优势1、高亮度LDLS是高亮度光源,可以将光源压缩成一个极小的点,拥有极高的功率密度,超小光点成像(~0.1 mm)变得更容易,也更容易耦合进光纤、光谱仪等各种光学设备。适用于成像应用和测量诸如微芯片、生物细胞等精密测量样本的应用。图3 氙灯光源灯焰与LDLS灯焰比较2. 宽光谱范围LDLS光谱分布涵盖了深紫外—可见光—近红外的光谱范围(170nm-2500nm),光谱分布平坦相比于传统光源在深紫外波段光谱有极高光谱强度(10X)。图4 EQ-99X和卤钨灯光谱分布对比图5 LDLS系列光源光谱强度分布和传统光源对比3. 长寿命LDLS具有超长灯室寿命,超9000小时典型时长(低耗材成本),与传统光源(氙灯、氘灯、卤钨灯)相比校准时间间隔更长、漂移更低。图6 LDLS光源寿命4. 高稳定性LDLS 以每秒200帧的速度收集和存储2500张图像 ,使用ImageJ(图像分析软件)计算每张图像的质心; 发光等离子体质心位置标准差: 水平方向—0.145 µ m;垂直方向—0.094 µ m。产品应用紫外-可见光光谱分析单色仪光源薄膜检测 滤光片/光学元件测试原子吸收光谱材料特征检测环境分析高光谱成像气相分析测量光学传感器检测生命科学与生物成像
  • 近红外光谱仪相关企业走访调研
    仪器信息网讯 作为“科学仪器自主创新政策保障体系研究”专项课题调研活动的一部分,2012年4月9日-11日,该课题调研组走访了江苏、上海两地的国内外近红外相关仪器厂商。   调研组成员包括了中国仪器仪表学会、近红外专业技术委员会的相关负责人,近红外光谱仪器研发专家以及应用方法开发的专家,北京科学学研究中心该课题具体负责人,业内专家等,如中国仪器仪表学会的科学仪器学术工作委员会执行副主任燕泽程、总后油料研究所刘慧颖研究员、浙江大学的戴连奎教授、江苏大学食品学院陈斌教授、华东理工学院倪力军教授、中石化石油化工科学研究院褚小立博士、业内资深人士李云济博士、北京科学学研究中心杨丽及常静 同时仪器信息网亦参加了此次调研活动。 调研组部分成员 (上排从左至右分别是:燕泽程、刘慧颖、戴连奎; 下排从左至右分别是:陈斌、倪力军、褚小立)   “科学仪器自主创新政策保障体系研究”专项课题此次选择的调研对象包括:近红外光谱关键零部件生产企业、即将进入或正在进入近红外光谱仪器领域的企业,以及国内外知名的近红外光谱仪器生产企业等。   在调研过程中,中国仪器仪表学会的科学仪器学术工作委员会执行副主任燕泽程向各企业介绍了中国仪器仪表学会的基本情况,并指出,“作为一个立体式的服务平台,学会希望在人才流、资金流、信息流等方面为企业提供全方位的支持。”   北京科学学研究中心的杨丽、常静向各企业介绍了专项课题的设立背景和目的,“科学仪器自主创新政策保障体系研究”专项课题由科技部设立,北京科学学研究中心、中国仪器仪表学会联合开展研究。为了推动2011年科技部、财政部首次设立的国家重大科学仪器设备开发专项的有效实施,此专项课题构建了相关政策保障体系,确保能够促进我国科学仪器设备自主创新能力的有效提升。   江苏飞格光电:半导体激光器生产企业 人均产值高达200多万   江苏飞格光电有限公司成立于2009年,坐落于江苏镇江科技新城。江苏飞格光电拥有最先进的激光器技术和封装技术,主要经营光通信用半导体激光器组件、光发射/接收模块、光收发一体模块等,具备光器件、光模块的全系列产品的研究开发和生产加工能力。经过3年的发展,目前江苏飞格光电年产值已达9000万,而其员工则不到40人,其人均产值高达200多万,是一家具有潜力的企业。 江苏飞格光电有限公司总经理 詹敦平先生   江苏飞格光电主要产品之一的半导体激光器,可作为近红外光谱仪的光源。半导体激光器应用在光纤通信领域的波段是从760nm—2900nm,而近红外光谱(780—2526nm)区域与光通信用的光谱波段有很大的交集面,因此,半导体激光器在激光光谱学中具有广泛的应用,包括从分子光谱、等离子物理、高阶谐波产生的应用到大气污染的监测及癌症的诊断等。半导体激光器在光谱仪器中优势主要有可调谐性、高灵敏度、高选择性、波长易调制性、高单色性、价格低且寿命长及高可靠性。780nm、850nm、980nm、1270—1610(20nm间隔)波长范围的半导体激光器可以直接应用到近红外光谱仪器上。   江苏惠通:国产基于MEMS技术近红外光谱仪将产业化   江苏惠通集团主要产品为遥控器、显像管插座、连接器、控制系统装置、其它电子产品五大类,专业开发生产遥控器已有十余年,拥有40条遥控器专业生产线,年生产能力达4500万只。为飞利浦、东芝、夏普等国际知名公司及国内名牌厂家配套。 江苏惠通集团工程技术中心主任 龙涛先生   江苏惠通集团工程技术中心龙涛主任热情接待了前来调研的专家们,并介绍了公司研发中心的情况以及近红外光谱仪研发过程中的问题等。惠通几年前就开始研发近红外光谱仪技术,于2010年3月,该公司的《MEMS内嵌式、便携式智能红外光谱探测器研发》项目通过了验收。但是,该仪器的一致性、光学效率等性能的提高还需要时间解决。目前,该仪器正在多个应用单位使用,通过用户的反馈不断完善仪器技术,相信不久该产品将实现产业化。   集团拥有60多人的省级技术开发中心,用于生产的技术支持 同时又内建由30多人组成的电子产品研究中心,专门致力于尖端领先产品的研究开发,具有较强的自主研发RF产品及其它各类智能化产品的能力,包括近红外光谱仪、压电陶瓷触摸按键等的研发。   福斯:为客户提供世界上最好的专业的分析解决方案   1956年,Nils Foss先生在丹麦成立福斯公司。目前,公司在世界各地约有1155名员工,在四个国家建立了研究和开发中心、在四个国家设立了制造工厂、在20多个国家成立了销售和服务公司、世界各地拥有超过75个专用经销商。2011年福斯公司销售额约1.9亿欧元,98%的业务产生在丹麦以外。 福斯赛诺分析仪器(苏州)有限公司总经理 Rikard先生 福斯赛诺分析仪器(苏州)有限公司商务经理 田毅先生   在全球范围内,福斯公司有40000多个用户,几乎包括了所有食品和农业方面的前100强的跨国公司,和一些中小型的企业。全世界85%的牛奶生产、80%的粮食交易和75%的啤酒生产都是使用福斯的解决方案进行测试。   福斯公司是一家致力于技术创新的企业,拥有超过200名的高级工程师和科学家组成的研发部门,每年将销售额的11%投资于产品创新和开发。在福斯公司研发部门中,有一个专门进行“概念设计”的团队——研发未来10年用户会用的技术 而且福斯公司新产品研发的流程控制严格,有效规避了研发风险 同时在整个开发过程中,还积极邀请了客户参与,保证了所开发的新产品能够满足客户需求。   上海棱光:步履艰难的国产近红外厂商   上海棱光技术有限公司成立于1993年,是由上海分析仪器总厂研究所的一部分改制而成,至今已有近半个世纪研制光谱及其他分析仪器的历史。目前,公司共有员工60多人,年销售收入1000多万元,其中出口量达18%。 上海棱光原总经理 吴树恩先生 上海棱光总经理 李兵先生   吴树恩先生介绍了一些上海棱光技术创新的例子,和专家一起分析探讨了其中成功、失败的原因。李兵先生介绍了上海棱光的发展概况。   上海棱光以勇于创新为企业精神,公司技术人员比例达70%,大学以上学历达到95%,技术开发人员在分光光度计领域都有着数十年的开发经验,研发力量雄厚,并与中国农大、复旦大学等多所高校建立长期合作与开发关系。上海棱光还承担了上海科技发展基金项目、国家级火炬计划、国家创新基金、国家科技部攻关项目及上海市高新技术成果转化项目。   上海棱光主要产品有分子光谱仪器、物理光学仪器、生命科学仪器等,公司产品全部为拥有自主产权的新型仪器。目前,上海棱光根据国内行业及市场的需要,将主要精力集中于中高端荧光分光光度计的开发与应用。其中,F97系列荧光分光光度计代表了国内一流水平。近红外系列仪器是国家科技部“九五”攻关项目,已于2002年通过部级专家验收,自主开发研制,包括两项专利,其中S400为农产品品质快速测定仪,是针对农产品、种子、饲料工程等行业收购检测分析所用。   赛默飞:提供实验室、在线、手持式近红外光谱仪全线产品   赛默飞世尔科技年销售额120亿美元,员工约39000人。借助于Thermo Scientific、Fisher Scientific和Unity™ Lab Services三个首要品牌,赛默飞将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。   1982年,赛默飞在中国建立第一个销售办公室。经过三十年的发展,目前赛默飞在中国拥有1900名员工,服务于第一线的专业人员超过1000名 6家生产工厂,苏州在建的大规模工厂2012年也将投产 在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务 位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品 在北京、上海、广州、成都、沈阳等多个城市设有分公司或销售办公室,2012年还将在武汉、西安成立分公司。 赛默飞中国区市场传播总监 毛君玲女士 赛默飞中国区市场便携式光学分析销售经理 徐征宇先生   赛默飞近红外光谱仪产品和技术包括来自尼高力的研究型、在线型傅里叶变换近红外光谱仪产品,以及来自于Polychromix公司的手持式近红外光谱仪。Polychromix公司利用提供给NASA(美国宇航局)的MEMS技术,开发出了首款实现真正意义上的手持式近红外分析仪,应用于医药、海关、食品安全、农业、饲料、塑料回收、织物回收、以及烟草等行业,为使用者带来了方便快捷的检测方式。   海洋光学:创新20年 定位于Key Components Provider   1989年,Michael J.Morris博士获得了美国能源部资助项目——测量海水中酸度、颜色的变化。1992年Morris博士发明了世界上第一台微型光纤光谱仪,创立了海洋光学公司。2004年海洋光学被豪迈集团收购。海洋光学加入豪迈集团后,制定了正确的市场战略和定位、完善了产品线、获得了充裕的资金和经验丰富的职业经理人等,市场快速扩张,保持了市场份额第一。海洋光学涉及到的技术和产品线包括光谱仪、化学传感器、度量仪器、光纤、薄膜及光学元件。至2011年,海洋光学在全球累积售出了180000套光纤光谱仪。 海洋光学亚洲分公司首席顾问 龚雅谦先生   2006年,海洋光学在上海成立亚洲分公司 2009年,成立了蔚海光学仪器公司,开始中国本地化生产和研发 2010年,部分产品线从美国转移到中国 2011年,海洋光学亚洲销售额比2006年增长了20倍,占全球的四分之一。海洋光学在上海主要生产组装光纤和部分光谱仪产品,并且已经开始为中国客户量身定做一系列解决方案。   海洋光学的愿景——Powered byOcean Optics,即公司主要发展方向是提供微型光纤光谱仪这个“心脏”。其大部分产品都隐藏在合作伙伴的环保仪器里面,因此大家很少能直接在市面上看到海洋光学的产品,就好像Intel的CPU一样。而其中也包括多款用于近红外光谱中的光学器件和可独立使用的近红外光谱仪。   在技术创新方面,近期,海洋光学投入10000美金设立创新奖“Blue Ocean”,“Blue Ocean”的设置旨在积聚创造性的创意和技术,激发有志之士发掘潜能改造世界,实现最终的市场商品化。Blue Ocean 奖项分为两阶段,第一阶段的奖项发布旨在为新创意新技术的评估及开发提供资金,进行概念的考证。   瑞士步琪:推动近红外光谱技术的专业性与应用性   1939年,瑞士步琪公司创始人Walter Buchi先生创立了一间玻璃工厂,即瑞士步琪公司前身 1957年,瑞士步琪公司推出世界上首台旋转蒸发仪,有效地解决了化学实验室中有机溶液的快速回收问题,至今已经成为全球旋转蒸发技术的市场领导者 1961年,瑞士步琪公司推出凯氏定氮仪、熔点仪 1999年,瑞士步琪公司收购了瑞士布勒集团的分析技术部门,主要引入了近红外光谱仪产品线和整个技术团队。   2005年,瑞士步琪公司在中国成立子公司——步琦实验室设备贸易(上海)有限公司,全面负责瑞士步琪公司在中国(含香港、澳门)的市场、销售及售后服务在内的一切业务。 步琦实验室设备贸易(上海)有限公司总经理 邱世章先生   目前,瑞士步琦近红外光谱仪主要有两款,如,2005年上市的NIRFlex N-500,2010年上市的IP 54防尘防水NIRMaster近红外以及2012年推出的IP65防尘防水的NIRMaster近红外。瑞士步琦近红外技术采用了专利的偏振干涉仪,将傅里叶变换近红外的抗震性提高了40倍 其NIRCal化学计量软件,可自动建模、评估模型优劣。   国产近红外光谱仪器发展探讨   在此次近红外光谱仪器相关厂商走访活动中,专家与厂商负责人通过深入交流,探讨了近红外光谱仪器发展所面临的问题:   近红外光谱仪器的光源、探测器等工艺需要保障其稳定性、一致性、可靠性等 稳定且具有一致性的近红外光谱仪是标准化所要求的基础,同时模型传递方法的应用是以重复性极好的仪器设备为前提的   小型化、便携式、单一性专用仪器与通用性共同发展,未来可与环境保护、食品安全相结合,发展专用仪器   近红外光谱技术对软件的维护较其他分析仪器的要求更多一些,所以,近红外光谱要发展,最终需要有用户企业组建应用团队   专注1~2个具体的应用领域,面不要太广,即选好用户   近红外光谱市场前景很好,但是需要培育,以及思想观念的转变   国产近红外光谱仪新产品开发中缺乏快捷的科技信息沟通、最新的元器件等   近红外光谱原理创新的难度大,其新产品技术的研发需要人力、技术的积累   应将更多的、有一定规模的国内仪器公司拉入近红外光谱领域   “做”仪器是一个非常复杂的事情,对市场需求、国家政策、标准、上下游企业、知识产权等需要深入了解、并且要与之相符合。
  • 科学家刷新纳米线激光器波长调谐纪录
    在国家自然科学基金纳米科技重大研究计划的重点项目等支持下,湖南大学教授邹炳锁领导的纳米光子学小组与美国亚利桑那州立大学教授宁存政领导的纳米光子学小组合作,成功演示了调谐范围从500到700纳米范围调谐的半导体激光芯片,创下了一个新的纳米线激光器调谐范围的世界纪录。相关文章发表在最近一期的《美国化学会杂志》上。   宽调谐的半导体激光器拥有许多从光谱技术、光通讯,到芯片原位的生物或分子检测的用途。但实现这样的激光器一直很困难,主要是外延生长的半导体微结构的晶格失配有限,不能大幅度成分调节,因而对半导体带边影响有限,而发光受制于半导体的带边,因此无法实现大范围调谐。邹炳锁领导的纳米光子学小组成员潘安练采用一维纳米结构生长技术,可以将晶格失配大部分驰豫掉或全部消除,这样,可能得到大范围成分调节的半导体纳米线或带。   纳米线沿一个方向布满整个基片,成分均匀变化,可以看到一个连续颜色可变的激光发射带。除了激射外,这样的合金半导体还可能在光伏太阳能电池、分子和生物检测等方面得到很大应用。   邹炳锁领导的团队近年一直致力于一维半导体纳米结构光子学研究,并在国内率先开展纳米线光波导和纳米激光器等方面的研究,处于国内领先和国际先进水平,在多功能半导体纳米结构光子学的研究上取得了多项重要的研究成果。如潘安练、邹炳锁等教授首次合成发光颜色可以在可见光波段可调的半导体合金纳米带和纳米线,率先实现光在纳米线内长程(百微米量级)光波导,实现了硫化镉纳米线常温下的受激发射现象等。小组成员陈克求教授、王玲玲教授等对一维波导理论的研究也取得了重要成果。该小组已有多篇论文在国际著名学术期刊上发表。
  • 天津能谱全新推出大样品无损检测专用紫外可见分光近红外光度计
    为满足不同样品检测的要求,天津能谱成功研发出大样品无损检测专用紫外可见分光近红外光度计,该产品的研发具有重要的科学意义和实际应用价值:1. 拓宽应用领域:传统紫外可见近红外分光光度计通常适用于小样品或液体样品的检测,而大样品无损检测设备能够处理更大尺寸的固体样品,如建筑材料(如玻璃幕墙)等,常规最大尺寸一般控制在110mm以内,样品再大样品仓等放不进去,天津能谱成功研发出的大样品无损检测从而拓宽了该技术的应用领域。特别反射附件测试不在局限于样品大小的限制。2. 提高检测效率与准确性:这类仪器设计用于大尺寸样品,通常配备有专门的光学系统和大样品室,可以在不破坏样品的前提下,快速准确地获取样品的光谱信息,这对于需要保持样品完整性的应用尤为重要。3. 促进材料科学研究:在材料科学领域,这种设备可以用于研究材料的光学性质,如透过率、反射率和吸收特性,对于新材料的开发、质量控制及性能评估极为关键。4. 建筑材料:建筑材料的能效特性(如玻璃的透光性和隔热性),有助于环境保护和公共安全。5. 文物保护与鉴定:对于文物和艺术品的鉴定与保护,无损检测技术可以提供宝贵的信息,帮助专家了解材质老化、修复历史等,而不会对珍贵文物造成任何伤害。6. 光学质量控制:在光学制造行业,大样品镜片等的无损检测对于确保产品质量、优化生产工艺、减少浪费具有重要意义。 iCAN 3000G建筑玻璃可见光透射比/遮阳系数检测仪是iCAN 3000 紫外可见近红外分光光度计的基础上升级专门用于测定各种建筑玻璃可见光透射(反射)比、太阳光直接透射比、太阳能总透射比、紫外线透射(反射)比及有关玻璃等参数。根据所记录的图谱对被测物质进行定性或定量分析,是检测建筑玻璃参数的一个重要工具。可检测的样品有:普通平板玻璃、电浮法玻璃、夹层玻璃、离子镀膜玻璃、溅射镀膜玻璃、LOW-E玻璃、汽车安全膜等;用于建筑幕墙玻璃节能参数的测定、玻璃镀膜材料研和分析; Ø 设备可满足以下测试:紫外光透射比 Tuv可见光透射比 TV室外侧可见光反射比 pvo室内侧可见光反射比 pvi太阳光直接透射比 Te太阳光直接反射比 pe太阳红外直接透射比 TIR太阳能总透射比 g遍阳系数 SC光热比 LSG太阳红外热能总透射比 glR向室内侧二次热传递系数 qi向室内侧太阳红外二次热传递系数 qin传热系数U
  • 徐可欣:埋头近红外技术25年
    近红外光谱分会汇集了众多来自不同学科,具有不同应用诉求的会员,对近红外技术有着各自的理解和期待。大家就一些共同关注的问题从不同角度进行交流是很好的事情。搞理论研究的一些朋友认为它是应用技术,原创少、难写出高水平论文、不适合大学做。一些搞技术的朋友则认为近红外技术的成功应用并不容易,有硬件问题、不受重视导致的缺乏资源、行业壁垒等。对这些问题我也有一些思考。  科学是发现,要认识世界,技术是发明,要改造世界。我认为近红外技术是多学科融合的领域,以物理学为基础,略偏于技术开发。而我们的近红外光谱分会应自成一学派,和而不同,有独创也要有包容。特别是在近红外技术应用领域,需要不同学科的协同合作。但是作为科技工作者首先要自己有一定的学识基础,概念清楚。近红外技术的内涵是什么?它的理论基础与应用开发的难点在哪里?这些话题应该是我们聚首讨论的重点。我非常支持学会发起的这次回顾和交流活动,愿将我个人的片面体会与大家分享。天津大学 精密仪器与光电子工程学院 徐可欣  一、我的近红外经历  我搞近红外不是科班出身,与近红外一脉相承的学科,理科有分子物理、工科有分析仪器,很多专家从博士课题就开始研究、接触近红外的问题了。我的硕士、博士研究方向属于几何量计量专业,1988年8月从天津大学精密仪器工程系博士毕业,课题是用光学方法测量热轧生产线上的棒钢直径,内容包括圆柱体周围高温温度场的干涉测量,光线在该温度场中传播路径的研究等,用的是可见光。毕业后除了1990年开始在日本搞了一年半温度控制的工作,近几年又做了些药械结合的发光免疫测量工作以外,其余25年间的主要工作是围绕近红外光谱测量方法及仪器展开的。从1992年4月起,我在日本开始了应用近红外光进行人体血糖浓度测量的研究工作。当初选择近红外作为手段,一是它有明显的不可或缺的优势,二是当时我们的研究合作伙伴持有近红外无创血糖测量方法的原始专利。当初感觉到光谱测量比起工件的几何量测量要复杂得多,要考虑到被测对象本身,测量人体性状的实时指标靠近前沿。但光谱信息有分子振动的理论支持,近红外光谱测量及化学计量学的方法都便于数学描述。我对于物理依据坚实且数学上可描述的工作有兴趣,同时感到开创性的研发正是我们搞测量及仪器的人施展的时候。也许我们那个年代读大学的人不太计较功利,更看重专业理想与使命感,就这么干下来,至今还持续着这方面的努力,属于屡败屡战吧。  当时日本的科研条件很好,比起国内来不可同日而语。我一头扎进项目 8年没动地儿、有些乐此不疲地沉浸在近红外技术研发的世界中。我的课题组先后购置了Perkin Elmar公司傅立叶变换原理的高性能研究型中近红外光谱仪(我认为目前也是科研级最好的),Brimrose公司的声光可调谐滤波器(AOTF)原理的近红外光谱仪(销售到日本的第一台)、BRAN-UEBBE的光栅型可见-近红外光谱仪(配有全自动进样设备)等。通过对各种分光原理的仪器的性能评价、适合各种测量方式(透射、扩散反射、ATR、积分球、光纤等)的系统构筑,对于光谱测量系统及其适应于各种测量需求的硬件准备上积累了多方面的经验。我在近红外领域从糖的单一成分水溶液到多成分混合样品在不同温度、浓度、光程下的基础光谱特性的研究,从脂肪乳、牛奶等模拟样品到血液样品,从动物到人体的光谱实际测量的一系列的实验研究,对于利用近红外光谱进行浓度测量、特别是测量在日常生活状态下的人体时,探索到了测量条件对于测量结果的影响和单一光谱技术的能力极限。从1996年开始,为了达到更高的光谱测量精度,我们开始自行开发出高精度AOTF光谱测量系统,达到了可以满足人体微量成分测量分辨率的水平。2000年我回到天津大学,至今的主要工作还是持续上述科研内容。由于我对于傅立叶分光方式相当肯定,也觉得一款精度高成本合理的傅立叶光谱仪具有广大的市场,而国内也具备开发这款仪器的条件了,两年前又启动了这个仪器的开发工作。这些年我从仪器用户到仪器产品开发、测量方法研发到高校的科研教学等几个不同角度实践了近红外技术的种种过程,体会了近红外技术的甜酸苦辣。在本领域搞研发这么长时间是因为至今在我要完成的任务中近红外光仍是不可或缺的手段。  我2000年回国后才接触到国内近红外科技圈的许多前辈,比如较早接触到了周学秋博士,后来在展览会见到了德高望重的陆婉珍院士和严衍录教授并得到了他们的鼓励,参与学会工作结识了袁洪福、梁逸曾等教授,还有一心扑在学会工作上的刘慧颖老师和现在为我们群主的年轻的褚小立博士等,他们的专家意识和一心为公的工作热情让我非常敬佩。近红外这一不可见的光线将学会和近红外群中的几百名成员连在了一起,说明了这一领域研发的广阔前景与日臻成熟的研发条件和经验得到了越来越广泛的认同。  二、一些体会  体会1:近红外光谱是关键技术,但也仅是必要条件之一。  近红外技术的开发优越性在哪里?大家知道光的最主要作用之一是作为信息的载体,首先近红外光携带了物质分子振动的信息,但最关键的是它能进入被测物质的内部并将信息携带出来,而其他波段的光或者因信息不足(如分子振动在可见),或者因被测物中多种物质(如水)的存在使得光无法进入其内部(如中红外光子没走几步就都被吸收了)。近红外光能进入样品内部并能携带够用的信息出来,在这一点是独具魅力的,这使得实现样品内部多成分浓度等信息的无损及快速检测成为可能。  为什么说近红外只是实现物质测量的有效手段之一,掌握它还不能满足实现目标的充分条件呢?我认为完成光谱应用至少还有以下几个必要条件:第一个是测量条件。光谱测量物质的浓度为间接测量的方法,需将测得的光谱值依照物理法则通过公式计算得到浓度,但物理法则的成立都是有条件的,如温度、光程、表面反射状态等。测量条件变化了公式成立的前提就得不到满足,它的保证往往不比近红外光谱测量本身容易。第二个是相关基础知识的把握。合理的光谱测量方法的设计和测量条件的保证往往建立在是否全面把握被测样品本身的物理性质,光与物质相互作用的实际行为之上。即包括吸收、散射、折射率变化等的规律。从简单的样品沉淀、分布不均、需均质等措施,到散射样品中光路的分布、散射的影响、及合理的测量光路的选择,往往需要振动光谱以外的综合知识与手段,也会涉及到深入的基础研究。第三是要具有充足可靠的建模用样品。光谱测量需要建立模型,通用可靠的模型往往需要大量有代表性、浓度经更高精度方法标定了的样品,这样的样品积累成本高,行业专门检测机构以外的人不易拿到。  体会2:近红外核心技术需要学问,其应用更具创新空间  我认为近红外自身的核心技术有三项。第一是可对近红外光谱的归属及性质进行解释的分子振动理论,第二是以化学计量学为基础的建模方法,第三是近红外光谱仪器。各领域的应用研究都是以此为基础展开的。即便分子振动理论比较成熟,但被测物质种类繁多,其振动光谱特性如何?除了基本振动外、近红外光谱常常观测的其倍频及合频振动如何?谱线被展宽、随温度等条件变化、其他共存物质间的影响等研究还有空间。光谱仪朝着小微型的方向发展更需要基础研究的支撑,即便成熟的傅立叶变换的光谱获得方式,其扫描干涉方法也不断创新。举一个例子,1996年我们在评价声光可调谐滤波器(AOTF)分光特性时发现+1级和-1级具有正交偏振的衍射光波长并不相同,其偏差随波长变化。经理论分析我们发现只有在入射光与晶体光轴成56度角时可使两者一致,进而提出了AOTF的等值点设计理论,很快就在创刊不久的OE杂志上发表了两篇文章。虽然我们并不知道在宽广的波段中能抽出两个波长相同但正交的光今后有什么实际需求,但这一情节说明做仪器时也能发现新知识。  应用中更需要创新。我们在用近红外光做人体血糖浓度测量研究时,希望在人体上找到没有糖浓度变化的部位来实现参考测量,当然不存在这样的部位。但是我们通过研究光在散射介质中的传播特性时先是发现了相距光源一特定出射距离的光不随被测部位介质中糖浓度变化的现象,进而认为这是由于吸收和散射的综合作用的结果,也就自然地提出了利用其作为参考测量的浮动基准的概念。组内其他老师又发现了存在不受样品散射系数变化的散射不敏感点,这有可能在散射样品上实现满足Lambert-Beer法则的测量,有可能使得透射测量的模型容易向散射样品测量中转换。这些测量方法的创新都是从应用近红外解决实际问题中挖掘出来的。近红外技术开发不但大有可为,也可以收获新发现。  三、入门近红外需要留意的  留意点1:首先要搞清光谱变化的物理原因  被测物质中的目标信息通过近红外技术是否足以被检测出来?有时光谱虽然随着被测物质的不同会有变化,但这个光谱上的变化并不一定是你感兴趣的物质成分的变化所引起的,也有可能来自其他成分或温度等测量条件的变化。有的痕量物质对近红外光线虽有吸收但引起的变化因光谱仪测量能力不够不足以被检测出,有的物质在这个领域就没有吸收,即便光谱表观随着不同的样品有了变化那也是一种伪相关,要特别注意。  留意点2:尽量尝试用定量的方法研究问题  最简单地,根据被测物质的吸收强弱和光谱仪的能力,可以估算出有可能实现的测量精度,反之根据目标可以提出对于仪器能力的要求。为了实现测量精度,往往需要根据掌握的散射介质中的路径、干扰成分、温度等的影响等来设计合适的测量光路以及参考测量的方案,而这些方法的优化和创新都离不开定量计算,大多也就是简单的数学分析手段,所以一开始就养成定量分析研究问题的习惯很重要。2005年课题组部分成员合影于天津大学
  • 滨松发布滨松波长可调谐量子级联激光器(QCL)模块L14890-09新品
    滨松波长可调谐量子级联激光器(QCL)模块L14890-09是一种利用外腔结构实现宽波长扫描的脉冲量子级联激光器。相比较于传统的FT-IR方法,该产品充分利用激光的特性,可实现中红外光谱的远程、非接触式、高通量测量。本产品不可以销往美国。如果该产品在美国地区,跟客户的设备出现任何不适配的问题,滨松不承担任何责任。详细参数产品型号L14890-09脉冲输出功率(最大值)900 mW光脉冲重复频率(典型值)180 kHz准直透镜Included尺寸(W × H × D)82 mm × 88 mm × 112 mm重量1.2 kg中心波数(典型值)1075 cm-1波数扫描宽度(典型值)200 cm-1产品特点● 内置MEMS光栅● 实现宽波长范围高速扫描● 内置准直透镜● DAU结构基础上的宽带QCL外形尺寸(单位:mm)创新点:滨松波长可调谐量子级联激光器(QCL)模块L14890-09是一种利用外腔结构实现宽波长扫描的脉冲量子级联激光器。相比较于传统的FT-IR方法,该产品充分利用激光的特性,可实现中红外光谱的远程、非接触式、高通量测量。波长调谐范围在7.84um~11.14um,峰值功率为600mW(typ.),往返频扫(全范围调谐)频率达1.8KHz。QCL模块L14890-09也获得了2018日本文部科学省纳米技术平台事业部授予的“最佳成果奖”。 利用了滨松独特的量子结构设计技术,这个QCL小模块内的QCL芯片采用了一种反交叉双重高能态结构(AnticrossDAUTM)。而在QCL芯片的发射截面上,则制成了多层增透膜,它可以保证从截面发出的激光,在到达光栅前零损耗。芯片产生的宽带光再通过MEMS衍射光栅的倾斜来选频,实现了特定波长的完全反射和谐振。模块在工作的时候,电控MEMS衍射光栅可高速摆动以改变其倾角,进而周期性地改变衍射角度、即改变谐振光的波长,最终使模块实现中红外激光的波长扫描。相对于已有的利用电机使镜面机械式运动来改变波长的QCL模块,电控MEMS衍射光栅可以达到更快的波长调谐,且衍射器件的微型化也使得模块更加的紧凑(8.2× 8.8× 11.2 cm),易于装配。 滨松波长可调谐量子级联激光器(QCL)模块L14890-09
  • NKT Photonics A/S公司推出新一代SuperK EXTREM超连续谱光纤激光光源
    Birkerod,丹麦,2011年1月17日—超连续谱光纤激光技术的先行者和商业制造商NKTPhotonics公司宣布将在Photonics West 2011展会上推出下一代SuperK EXTREM超连续谱系列产品以及全面提升的配套选件,以SuperK EXTREM eco-system (系统解决方案)的方式推出。   SuperKExtrem“系统产品解决方案”现在提供了更加丰富的超连续谱光源产品线,涵盖不同的光谱范围和输出功率水平,配合广泛并且智能的附件产品组合,用户能够快速(on-the-fly)调整输出光重复频率,更加灵活地进行波长调谐,以及选择优化的光谱整形选项。应用领域包括荧光光谱学(fluorescence microscopy),流式细胞仪(flow cytometry),荧光寿命成像显微(fluorescence lifetime imaging microscopy: FLIM), 荧光共振能量转移(fluorescence resonance energy transfer: FRET),光学相干断层扫描(optical coherence tomography: OCT),非接触检测(non-contact inspection)等,以及任何其他需要使用宽光谱并且高亮度光的领域,SuperK Extrem能够提供“像灯光一样宽的光谱,像激光一样高的亮度”的输出。   完全重新设计的软件套件,SuperKontrol,能够让用户通过简单的图形界面对新一代SuperKEXTREM系统进行全面的计算机控制。此外,NKTPhotonics额外提供的软件开发组件进一步扩展了SuperKEXTREM系统的灵活性,用户可以通过二次开发满足更为苛刻的控制需求,例如需要严格的关键时钟序列或者触发条件等。   一如既往,SuperKExtrem系统的核心基于NKTPhotonics公司世界驰名的光子晶体光纤技术,该技术被用于产生和传输高性能、高可靠性的超连续谱光源解决方案的历史已经超过了十年。   “下一代SuperKEXTREM超连续谱光源是我们新的智能型SuperK系统产品解决方案(eco-system)的一部分,我们关注的是产品的灵活性和可靠性,以及操作的简便性。我们的目标是开发革命性的超连续谱白光激光器系统应对我们工业型客户以及学术研究客户现在和将来所面临的挑战,新一代产品的推出意味着我们实现了这样的目标。”NKTPhotonics的营销副总裁说到。   新一代的SuperKEXTREM和配件带有设计独特“面板智能化”性能,提供真正的“即插即用(plug&play)的操作,用户只需要把各种模块简单连接起来,而不需要特殊的设置和配置,SuperKEXTREM系统将自动处理系统的安装和控制。此外,这种“智能化”还能够允许用户在现场(on-site)升级SuperKEXTREM系统,例如另一个功率水平,不同光谱范围的输出,而不需要返回NKT Photonics的工厂。因此,用户可以逐渐建立和扩展自己的SuperK系统用来满足不断出现的新的应用需求。   “SuperKEXTREM系统总输出功率超过8W,超过2W的可见光功率输出已经实现,这些表现证明了SuperKEXTREM系列的高可靠性和高性能表现。我们重视系统的长期可靠性,系统的记录寿命测试已经超过了15000小时,这些结果能证明SuperKEXTREM系统是一款真正的免维护的超连续谱激光光源,满足OEM和工业应用的要求。我们对自己能够为客户提供新型的,性能提升的新一代超连续谱激光光源产品感到很兴奋,它集合了众多的有点,例如最高的输出功率水平,工业级的可靠性,最容易使用,这得益于我们自己拥有的领先的光子晶体光纤技术。”Chuong Tran进一步补充说到。
  • 广东省农业标准化协会立项《柚果内部品质无损检测可见/近红外光谱法》团体标准
    各相关单位:根据《广东省农业标准化协会团体标准管理办法》的相关要求,2023年7月26日-8月2日,广东省农业标准化协会对《柚果内部品质无损检测可见/近红外光谱法》团体标准进行了立项审查,经协会技术专家认真研究与审核,上述所申报的团体标准符合立项条件,现批准立项。请制标单位严格按照相关要求抓紧组织实施,严把标准质量关,切实提高标准编制的质量和水平,增强标准的适用性和有效性。同时欢迎与立项标准有关的高校、科研机构、相关企业、使用单位等加入该标准的起草编制工作。有意参与标准起草工作的请与协会秘书处联系。特此公告。 联系人:钱波 电 话:020-85161829 电子邮箱:gdnybzh@163.com 广东省农业标准化协会2023年8月2日粤农标协字〔2023〕29号广东省农业标准化协会关于《柚果内部品质无损检测可见近红外光谱法》团体标准立项的公告.pdf
  • 深紫外激光源研究:推倒200nm上的一堵墙
    激光技术的发展让人类的视野不断拓宽。但多少年来,波长小于200nm的深紫外波段,一直是个神秘又难以逾越的坎。   200nm上的这堵“墙”把人类挡在了外面。由于深紫外激光源的缺席,许多重要的科学研究只得搁置。   但中科院的一群科学家不能接受这样的现实。30年来,他们不但找到了深紫外光学材料和激光源,还研制出8台深紫外固态激光源装备。自2008年启动以来,“深紫外固态激光源前沿装备研制项目”进展顺利,多台仪器已初步用于前沿科学研究。   正如项目首席科学家、中国工程院院士许祖彦所说:“上帝没有给我们一个这么好的光源,我们就要自己去找。”   突破200nm   上世纪90年代初,非线性光学晶体接连将Nd:YAG激光波长从近红外拓展到可见光,甚至近紫外波长区。这带给人们一种隐约的希望:如果能找到一种晶体,使激光波长拓展到深紫外光谱区,人类将有望认识一个前所未有的世界。   在这样的背景下,中国科学家介入了这一课题。   “80年代我们获得了第一批国家科研基金,15万元。”项目首席科学家、中科院院士陈创天告诉《科学时报》记者,虽然现在看来这笔钱并不多,但当时已是很了不起的事了。   在这笔经费的资助下,陈创天的研究如虎添翼。1991年,他在发现硼酸盐系列非线性光学晶体后,运用分子设计工程学方法发现了KBBF晶体。5年后,他证实了此晶体可实现深紫外相干光输出,最短波长达到184.7nm。   从此,深紫外的时代开启了。在此基础上,陈创天研究组于2005年陆续发现了RBBF、CBBF等非线性光学晶体,从而拿到了完整的KBBF族非线性光学系列晶体。   许祖彦则形容自己的工作是“二传手”。深紫外非线性光学晶体问世后,如何将其研制成实用的精密化激光源,并配合后续的仪器研制,是他面临的最大难题。   但20多年前,中国大陆还没有这方面的实验装置,陈创天和许祖彦不得不跑到香港科技大学,借用了他们的实验室。两个人窝在实验室里,每天工作到深夜一两点,终于搞出了KBBF晶体棱镜耦合装置。目前,该装置仍是该晶体唯一的实用化技术。   之后两人密切配合,在国际上首次实现KBBF晶体倍频输出深紫外激光,并最终发展出实用化的深紫外固态激光源。   2009年,英国《自然》杂志发表评论文章称,KBBF晶体“真是一块完美的晶体,它确实可促使某些领域向前发展”。   “看到图像的那一刻,什么都值了”   深紫外光源的问世尽管已经震惊世界,但对许祖彦来说,他的工作才只做了一半。   “科技发展如此之快,为保证我们的仪器始终保持领先,科研人员必须不断调整技术方案。”项目工程总体部总经理、中科院理化所研究员詹文山说。为此总体部还设立了一个工程监理部,这在国内的科研项目中都很少见。   对这种经常要推翻重来的工作方式,许祖彦表示“很理解”。在3年多的时间里,他的团队满足了仪器研制人员变更技术方案的多项技术要求,解决了光源与8台仪器对接的工程问题。   中科院大连化学物理研究所研究员傅强是“深紫外激光光发射电子显微镜(PEEM)”子项目的负责人。“PEEM就像一条美人鱼,‘头’是电子发射技术,‘尾’是电子显微镜技术。这种技术可对物质表面结构、电子态、化学反应等进行原位、动态研究,在化学、物理、材料等领域有着重要应用。”   但是,现有的PEEM激发光源为气体放电光源或者同步辐射光源,这些光源亮度较低,空间分辨能力一般只能达到20~50nm,限制了PEEM的广泛应用。   2007~2009年,傅强等人利用深紫外激光高能量、高光束流强度、相干性等优点,研制出一套性能优越的深紫外激光PEEM系统。利用这台仪器,大连化物所已在石墨烯原位生长、界面限域化学反应等领域取得了一些初步成果。   “我们第一次做这种仪器,中间遇到很多困难,有半年多的时间情绪也很低落。”傅强坦陈,“不过2009年夏天,我们第一次看到了显微镜成像图,那一刻觉得什么都值了。”   与深紫外光电子发射显微镜类似,深紫外拉曼光谱仪、深紫外激光光化学反应仪、深紫外激光光致发光光谱仪、深紫外激光自旋分辨角分辨光电子能谱仪、深紫外激光原位时空分辨隧道电子谱仪、基于飞行时间能量分析器的深紫外激光角分辨光电子能谱仪均达到国际领先水平。另一台光子能量可调深紫外激光光电子能谱仪也基本研制完成,正在调试当中。   不过,对更多的中国科研工作者和社会公众来说,这个总投资1.8亿元人民币的项目,究竟有着怎样的应用前景?   以“短”见长的深紫外   目前已有的深紫外光源一类是准分子激光器,另一类是同步辐射光源。准分子激光器脉宽宽,难以满足激发态快速动力学过程的研究 而同步辐射光源虽具有较快的时间分辨,但装置体积巨大,科研人员只能把实验搬过去做,带来许多不便。   深紫外固态激光源在时间、空间和能量分辨率上,都有着绝对优势。“更重要的是,这些仪器装备将来有望小型化,甚至可以进行市场化推广。”中科院院士李灿介绍。   李灿负责研制的深紫外拉曼光谱仪就是一个例子。目前这台仪器已初步应用于催化、材料、能源、生物、环境等领域。在水污染检测中,仪器灵敏度达到了环境水污染国际最低检测限。“只要一滴水就能检测水污染。”   詹文山透露,目前2mm以下的KBBF晶体已可小批量生产,满足国内市场需求。受国家工业水平限制,8台仪器还不能全部实现商业化,但中科院已在考虑选取其中的1至2个,逐步进行产业化的尝试。   2006年,时任中科院院长路甬祥在中科院物理所考察时曾说:“如果没有仪器设备的自主创新,也很难有新的理论上的突破。一种新仪器新装备的诞生,往往是打开一个新方向新领域的关键桥梁。”   这句话,许祖彦一直记得,项目团队的每一个成员也记得:“这些年来,我们证明了‘材料—器件—装备—科研—产业’的自主创新链是可行的,也证明了中科院此类研究性和工程性均很强的科研项目是可行的。”
  • 创新应用 | 中红外激光排放控制新应用
    可调谐激光吸收光谱(TDLAS)具有测量不受背景气体干扰、测量准确性好、可靠性高等技术优势,已被公认为工业应用的首选测量技术,特别是其具有非侵入特性,从而在原位应用方面备受关注。随着近年激光吸收谱技术的发展,尤其是量子级联激光器(QCL)、带间级联激光器(ICL)等小型激光器技术不断成熟,激光吸收光谱的输出波段从近红外到中远红外不断拓展。气体检测由传统的工业过程优化控制、废气源排放、燃烧诊断等领域扩展到环境微量气体检测。中红外光一般指波长从2.5um到25um的光谱区域,中红外基频指纹吸收谱具有吸收强、谱线宽且密集的特点。分子在中红外波段的吸收一般比近红外吸收高约2个数量级(或以上),所以在中红外光谱气体探测灵敏度比近红外光谱探测的灵敏度高很多。同时特殊气体,如有机分子、氮氧化物、烯烃类气体在中红外的吸收比近红外特征更强,下图为HITRAN数据库的空气常见气体吸收谱线;中红外基频指纹吸收强有利于痕量气体的高灵敏检测。LGT-3000激光气体分析仪LGT-3000激光气体分析仪是基于TDLAS技术开发的一款原位对穿正压防爆型仪表,可以原位测量O2、CO、CO2、NH3等气体含量。此外,LGT-3000可配置ICL激光模块,采用中红外光谱,达到更低的检测限,并且能检测在近红外没有吸收光谱的一些常见气体SO2、NO、NO2等。产品特点: ◆响应时间低至1s◆双屏显示,方便光路调节观察透过率信息◆正压防爆设计,可以在爆炸性场合1区和2区使用◆采用“单线光谱”技术,测量不受背景气体交叉干扰◆一体化结构方式,无运动部件,可靠性高,稳定性好◆原位测量,无需预处理系统,避免预处理采样吸附、堵塞和器件损坏等问题,降低运行成本应用领域:该系统广泛应用于硫磺回收、烟气脱硝、燃烧控制、合成氨等领域中。
  • 远普光学将打破国外可调谐激光器制造垄断
    1月11日,由山东远普光学股份有限公司主导的“连续无跳模快速光谱可调谐激光器”项目成果鉴定会举行,北京有色金属研究总院张国成、中国科学院光电研究所周维虎等专家参加鉴定会,潍坊市副市长陈白峰出席。   此项目是为了响应国家激光器产业化政策、突破国外可调谐激光器制造的垄断地位、建立良好的产业发展基础而提出的。该项目所创造的产品可广泛应用于天然气安全监测、石油能源探测、激光信息通讯设备测试、温室效应监控、激光医学诊断设备等新能源、能源综合利用、绿色环保和重大光电子信息检测设备中。该项目完成之后,将打破国外对可调谐激光器制造的垄断地位,建立中国可调谐激光器产业基础。   山东远普光学股份有限公司已按照立项时所制定的发展计划和战略,利用自筹资金和高新区高新扶持资金,圆满完成了公司的项目发展规划和工作目标。第一项新产品“FTL快速可调谐激光器”已于2010年底中试,每条生产线年产能力达到500台。
  • 日立发布紫外可见近红外分光光度计UH5700新品
    从1962年推出首台商品化紫外分光光度计以来,日立凭借全球先进的光栅技术和持续创新能力,不断推出各种类型紫外分光光度计,满足用户的科研和检测需求。这次推出的台式紫外可见近红外分光光度计UH5700,融合了日立精密的光栅技术,使用了新研发的蚀刻衍射光栅,既可测定液体样品的吸收光谱,也可测定固体样品的反射和透过光谱,另外丰富的附件满足您多方面的测定需求!主要特点如下:1. 宽波长范围190-3300nm,满足所有测定需求。2. 低噪音采用连续可变狭缝,在近红外波长区测定低光量时,自动加宽狭缝;测定高光量时,自动减小狭缝宽度。支持低噪音测定超大范围波长区域3. 高速扫描采用齿轮驱动,实现了紫外-可见-近红外区域的快速扫描。4. 低杂散光、超大测光范围标配新研发的蚀刻衍射光栅和高光量单色器。5. 采用全新控制软件,操作更加便捷采用UV Solutions Plus,新增数据表和数据处理结果的列表显示功能、报告格式的自定义功能、仪器性能检查功能。6. 提供丰富的配件,支持液体到固体样品的测定各种配件一应俱全,满足分光光度计的多种测定需求,如溶液中微量样品的测定和片状样品、薄膜样品的测定等。更详细的资料请参考日立高新技术官网https://www.hitachi-hightech.com/cn/product_detail/?pn=ana-uh5700&version=创新点: 1.190~3300nm的宽波长,支持紫外-可见-近红外区,满足更多测定需求。 2.秉承日立优异的光栅制造技术,使用具有日立专利的蚀刻衍射光栅,衍射效率高,散射光量低,极大提高测光范围。 3.自动可变狭缝设计,根据样品在不同波长处的光量自动设定狭缝,实现紫外-可见-近红外宽波长内的低噪音测定。 紫外可见近红外分光光度计UH5700
  • 超宽谱近红外LED实现快速无损结构检测
    香港城市大学王锋教授团队通过调控过渡金属-稀土离子间能量传递过程,首次报道了一种具有高量子效率、超大半峰宽以及高热稳定性的新型双钙钛矿近红外荧光粉La2MgHfO6:Cr3+/Yb3+,其在快速无损结构检测方面表现出优越的性能。近红外荧光转换型发光二极管(NIR pc-LED)凭借其发光效率高、宽谱输出、结构紧凑、寿命长、电能消耗低等优势,在安全监测、食品安全、现代农业、夜视、医疗诊断等领域展现出了巨大的应用潜力。NIR pc-LED的器件性能直接由近红外荧光粉决定,因此开发与蓝色LED芯片匹配良好的高效近红外宽谱发光材料至关重要。然而,目前报道的近红外发光荧光粉仍然存在发光效率低、半峰宽窄、热稳定性差等不足,同时其发射光谱在950 nm以后存在明显缺失,一定程度上限制了其在市场中的商业化。针对上述问题,香港城市大学王锋课题组和河北大学索浩博士首次报道了一种新型双钙钛矿荧光粉La2MgHfO6:Cr3+/Yb3+,其展现出了热稳定性优异的高效近红外宽谱发射。相关结在线果发表在Laser & Photonics Reviews上。该研究团队采用传统高温固相设计合成了双钙钛矿荧光粉La2MgHfO6,它具有两个八面体格位(Mg和Hf)和一个十二面体格位(La)供Cr3+和Yb3+占据。基于Rietveld结构精修和第一性原理计算,研究人员证明Cr3+离子倾向于同时取代具有较低晶体场强度的[MgO6]和[HfO6]六面体,这种多格位发光有利于实现超宽谱近红外发射。通过调控Cr3+→Yb3+间能量传递过程大幅度提高了近红外发光的内/外量子效率、半峰宽以及热稳定性,分别达到69%/18.4%,333 nm以及81.6%@423K。研究人员进一步将该荧光粉与蓝光LED芯片结合制备成小型近红外发光二极管,展示了优异的光电转换特性。该器件可以作为近红外光源可以用于夜视照明和生物穿透成像,同时它在在快速无损结构检测方面也表现出优越的性能。该工作为设计宽带近红外发射荧光粉提供了一种新颖的切入点,在工业检测和医疗诊断等实际应用方面具有指导意义。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制