高分辨率常压质谱成像系统

仪器信息网高分辨率常压质谱成像系统专题为您提供2024年最新高分辨率常压质谱成像系统价格报价、厂家品牌的相关信息, 包括高分辨率常压质谱成像系统参数、型号等,不管是国产,还是进口品牌的高分辨率常压质谱成像系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高分辨率常压质谱成像系统相关的耗材配件、试剂标物,还有高分辨率常压质谱成像系统相关的最新资讯、资料,以及高分辨率常压质谱成像系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

高分辨率常压质谱成像系统相关的厂商

  • 宜准科技以残余气体分析仪(RGA, Residual Gas Analyzer)为切入点,旨在中国实现系列高精度质谱分析仪器的产业化,以改变这类高端仪器全部依赖进口的局面。 质谱仪的应用范围非常广泛,涉及食品、环境、人类健康、药物、国家安全和其他与分析测试相关的领域,而中国的中高端质谱仪市场完全被国外品牌所垄断。宜准科技已经全面掌握这类小型化高分辨率四极质谱仪的技术和生产,正将产品全面推向国内外市场。
    留言咨询
  • 全国免费销售咨询热线:400-630-7761公司官网:https://www.leica-microsystems.com.cn/徕卡显微系统(Leica Microsystems)是德国著名的光学制造企业。具有160年显微镜制造历史,现主要生产显微镜, 用户遍布世界各地。早期的“Leitz”显微镜和照相机深受用户爱戴, 到1990年徕卡全部产品统一改为“Leica”商标。徕卡公司是目前同业中唯一的集显微镜、图像采集产品、图像分析软件三位一体的显微镜生产企业。公历史及荣誉产品1847年 成立光学研究所 1849年 生产出第一台工业用显微镜 1872年 发明并生产出第一台偏光显微镜 1876年 生产出第一台荧光显微镜 1881年 生产出第一台商用扫描电镜 1887年 生产出第10,000台 1907年 生产出第100,000台 1911年 世界上第一台135照相机 1921年 第一台光学经纬仪 1996年 第一台立体荧光组合 2003年 美国宇航局将徕卡的全自动显微镜随卫星送入太空,实现地面遥控 2005年推出创新的激光显微切割系统:卓越的宽带共聚焦系统。内置活细胞工作站: 2006年组织病理学网络解决方案:徕卡显微系统公司第三次获得“Innovationspreis”(德国商业创新奖): 2007年 徕卡 TCS STED 光学显微镜的超分辨率显微技术超越了极限。 徕卡显微系统公司新成立生物系统部门:推出电子显微镜样本制备的三种新产品 2008年徕卡显微系统公司成为总部设于德国海德堡的欧洲分子生物学实验室 (EMBL) 高级培训中心的创始合作伙伴。徕卡 TCS SP5 X 超连续谱共聚焦显微镜荣获2008年度《科学家》杂志十大创新奖。徕卡显微系统公司凭借 FusionOptics 融合光学技术赢得 PRODEX 奖项,该技术能够形成高分辨率、更大景深、3D效果更佳的图像。推出让神经外科医生看得更清楚、更详细的徕卡 M720 OH5 小巧的神经外科显微镜, 2009年新一代光学显微镜取得独家许可证:Max Planck Innovation 为徕卡显微系统的全新 GSDIM(紧随基态淬灭显微技术的单分子返回)超分辨率技术颁发独家许可证。 2010年远程医疗服务概念奖:徕卡显微系统公司在年度互联世界大会上获得 M2M 价值链金奖,Axeda Corporation 被誉为徕卡获得此奖项的一大助力。Kavo Dental 和徕卡显微系统在牙科显微镜领域开展合作。Frost & Sullivan 公司颁发组织诊断奖:徕卡生物系统公司获得研究和咨询公司 Frost & Sullivan 颁发的北美组织诊断产品战略奖。 2011年学习、分享、贡献。 科学实验室 (Science Lab) 正式上线:徕卡生物系统(努斯洛赫)公司荣获2011年度卓越制造 (MX) 奖:徕卡生物系统公司获得2011年度“客户导向”类别的卓越制造奖。 2012年徕卡显微系统公司总部荣获2012年度卓越制造奖:位于德国韦茨拉尔的徕卡显微系统运营部门由于采用看板管理体系而荣获“物流和运营管理”卓越制造奖。徕卡 GSD 超分辨率显微镜获得三项大奖:《R&D》杂志为卓越技术创新颁发的百大科技研发奖、相关的三项“编辑选择奖”之一、美国杂志《今日显微镜》(Microscopy Today) 颁发的2012度十大创新奖。 2013年徕卡 SR GSD 3D 超分辨率显微镜获奖徕卡生物系统公司和徕卡显微系统公司巩固在巴西的市场地位:收购合作超过25年的经销商 Aotec,推动公司在拉丁美洲的发展。 2014年超分辨率显微镜之父斯特凡黑尔 (Stefan Hell) 荣获诺贝尔奖:斯特凡黑尔因研制出超分辨率荧光显微镜而荣获诺贝尔化学奖。 他与徕卡显微系统公司合作,将该原理转化为第一款商用 STED 显微镜。徕卡 TCS SP8 STED 3X 荣获两大奖项:《科学家》杂志十大创新奖和《R&D》杂志百大科技研发奖均将超分辨率显微镜评定为改变生命科学家工作方式的创新成果之一。日本宇宙航空研究开发机构的宇航员若田光一 (Koichi Wakata) 使用徕卡 DMI6000 B 研究用倒置显微镜在国际空间站进行了活细胞实验。 2015年首台结合光刺激的高压冷冻仪是一项非常精确的技术徕卡显微系统公司收购光学相干断层扫描 (OCT) 公司 Bioptigen: 2016年徕卡显微系统公司独家获得了哥伦比亚大学 SCAPE 生命科学应用显微技术许可证,同时独家获得了伦敦帝国理工学院 (Imperial College) 的斜面显微镜 (OPM) 许可证。徕卡 EZ4 W 教育用体视显微镜获得世界教具联合会 (Worlddidac) 大奖:新的图像注入技术可引导外科医生进行手术:CaptiView 技术可将来自图像导航手术 (IGS) 软件的图像注入显微镜目镜。 2017年全新 SP8 DIVE 系统的推出,徕卡显微系统公司提供了世界上首个可调光谱解决方案,可实现多色、多光子深层组织成像。 徕卡的 DMi8 S 成像解决方案将速度提高了5倍,并将可视区域扩大了1万倍。为获得超分辨率和纳米显微成像而添加的 Infinity TIRF 模块能够以单分子分辨率同时进行多色成像, 由此开启宽视场成像的新篇章。 2018年LIGHTNING 从以前不可见或不可探测的精细结构和细节中提取有价值的图像信息,将传统共焦范围以内和衍射极限以外的成像能力扩展到120纳米。SP8 FALCON(快速寿命对比)系统的寿命对比记录速度比以前的解决方案快10倍。 细胞培养实验室的日常工作实现数字化PAULA(个人自动化实验室助手)有助于加快执行日常细胞培养工作并将结果标准化快速获取阵列断层扫描的高质量连续切片ARTOS 3D ,标志着超薄切片机切片质量和速度的新水平。随着 PROvido 多学科显微镜的推出,徕卡显微系统公司在广泛的外科应用中增强了术中成像能力。 2019年实现 3D 生物学相关样本宽视场成像THUNDER 成像系统使用户能够实时清晰地看到生物学相关模型(例如模式生物、组织切片和 3D 细胞培养物)厚样本内部深处的微小细节。 2020年STELLARIS是一个经彻底重新设计的共聚焦显微镜平台,可与所有徕卡模块(包括FLIM、STED、 DLS和CRS)结合使用。术中光学相干断层扫描(OCT)成像系统EnFocus 2021年Aivia以显微镜中的自动图像分析推动研究工作,强大的人工智能(AI)引导式图像分析与可视化解决方案相结合,助力数据驱动的科学探索。Cell DIVE超多标组织成像分析整体解决方案是基于抗体标记的超多标平台,适用于癌症研究。Emspira 3数码显微镜——启发灵感的简单检查方法该系统荣获2022年红点产品设计大奖, 不仅采用创新的模块化设计,而且提供广泛的配件和照明选项。2022年Mica——徕卡创新推出的多模态显微成像分析中枢,让所有生命科学研究人员都能理解空间环境LAS X Coral Cryo:基于插值的三维目标定位,沿着x轴和y轴对切片进行多层扫描(z-stack)。这些标记可在所有相关窗口中交互式移动具有高精度共聚焦三维目标定位功能的Coral Cryo工作流程解决方案 徕卡很自豪能成为丹纳赫的一员:丹纳赫是全球科学与技术的创新者,我们与丹纳赫在生物技术、诊断和生命科学领域的其他业务共同释放尖端科学和技术的变革潜力,每天改善数十亿人的生活。
    留言咨询
  • 400-860-5168转4664
    上海然哲设备有限公司专注于为科研/教学工作者提供专业的仪器设备与周边服务。我们希望让研究者的工作变得更高效,同时也关注人类健康事业,致力于为科研与临床应用或转化起到促进作用。 然哲仪器的产品与服务主要面向基础医学、药物研究以及转化医学等相关领域的研究,主要产品系列包括: 心脑血管研究: 1、KAHA小动物生理遥测系统; 2、MappingLab矩阵式心脏电生理标测系统;······神经科学与行为学研究: 1、Pinnacle小动物脑电肌电研究系统; 2、Noldus视频行为分析系统,Catwalk步态分析系统、各类行为学箱体等; 肿瘤、免疫与骨骼研究: 1、KubtecX射线生物辐照仪、高分辨率X射线成像系统; 2、安捷伦智能流式细胞仪、多功能实时无标记细胞分析系统(RTCA); ······欢迎关注上海然哲仪器微信公众号:RangerAPP
    留言咨询

高分辨率常压质谱成像系统相关的仪器

  • SYNAPT XS高分辨率质谱仪没有研究,就制定的决策,容易是盲目的在科研领域,研究进展缓慢和成本不断上升俨然已成为一项挑战。SYNAPT XS质谱仪具有极致灵活性,可提供更大的选择自由度,能够打破这些壁垒,支持任何应用的科学创新和技术成功。 • 创新技术作为基石,提供最优异的分析性能• SONAR和HDMSE提供一套独特的工具包,用于解析复杂混合物• 离子淌度功能大大增加了峰容量和分析选择性• CCS测量可提高化合物鉴定的准确性创新技术提供最优异的分析性能凭借沃特世高级质谱“SELECT SERIES”传承下来的技术基石,内置先进的创新技术,确保使用该平台的科学家处于质谱分析的最前沿,同时维持SYNAPT的易用性和成熟的客户端工作流程。StepWave XS重新设计的分段四极杆传输光学元件,提升棘手化合物的分析灵敏度,同时进一步提高分析稳定性。Extended ToF 针对最复杂的样品,提供兼容UPLC的质量分辨率、耐受各种基质的动态范围和定量分析结果,同时提供卓越的性能指标。更大的分析选择自由度为有效解决固有难题,分析人员对各种分析策略的需求不断增加,因此,SYNAPT XS将高性能与极致灵活性相结合。竞争对手的系统大多存在入口选项有限、扫描功能局限性或需要多个平台等问题。与之相比,只有沃特世能够提供全方位的高性能LC-MS解决方案,该方案经过专门设计,能够提供更大的分析选择自由度以支持科学研究。SONAR和HDMSE提供了一套独特的工具包,用于解析复杂混合物完整的分析策略需要结合适当的互补技术才能得到更全面的数据信息。借助SYNAPT XS上基于SONAR和IMS的非数据依赖型采集(DIA)操作模式,分析人员能够利用互补机制,以独一无二的方式解析复杂混合物。两种类型的采集均提高了分析峰容量,提供“清晰明了”的碎片数据,但它们基于不同的分子特性。这提供了一种真正独有的研究工具包,适用于深入解析复杂混合物。离子淌度和CCS测量传统质谱仪基于m/z分离组分。SYNAPT XS还支持在离子淌度实验中,使用分子大小、形状和电荷作为其碰撞截面(CCS)的函数,对分子进行分离。 除离子淌度能提供额外的分离维度、增加峰容量和分析选择性以外,CCS测量还可提供额外的分子标识。离子CCS的测量结果有助于确定离子名称或研究其结构。运用离子淌度技术,显著提高了科学家分析复杂混合物和复杂分子的范围和可信度。CID与ETD碎裂功能TriWave的双碰撞室结构可进行碰撞诱导解离(CID)和/或电子转移解离(ETD)碎裂,且分辨率高、质量测定准确,能够拓展MS/MS检测能力。 高解析度四极杆包括4 KDa、8 KDa或32 KDa质量数范围,适用于从小分子到大分子的MS/MS分析TAP碎裂时间校准平行(TAP)碎裂是T-Wave IMS设计所独有的采集模式。它使用户能够利用TriWave配置,允许将IMS前T-Wave和IMS后T-Wave作为两个单独的碰撞室运行。得到的CID-IMS-CID仪器操作有助于对组分进行超高可信度的结构表征。TAP碎裂与传统MSn或MS/MS技术相比,具备卓越的碎片离子覆盖率、灵敏度和准确性,在构建完整结构方面有着不容置疑的优势。
    留言咨询
  • Thermo ScientificTM Ultra高分辨率同位素比质谱仪彻底改变了特殊位点的测定和分子耦合同位素比的分析方法。在气候研究、生物化学过程、法医学、石油和天然气勘探等方面,Ultra 质谱仪能够提供很多新的科学发现。Ultra 高分辨率IRMS,通过不断地技术创新,开启了同位素测量的新的发展潜力。● 高质量分辨率双聚焦扇形磁场质量分析器,采用可切换入射狭缝,可根据方法设定自动选择高、中和低的分辨率,在高分辨模式下,能将甲烷中质量数为17的13CH4+、12CH3D+ 、14NH3+、12CH5+和13CH4+有效分开。● 可变的接收器阵列,可根据应用安装多个法拉第杯和离子计数器。●轴向二次电子倍增器(SEM) 配备了我们专有的RPQ 阻滞透镜,可达到终极的丰度灵敏度,因而可以分析极小的信号。
    留言咨询
  • 国内首推科学级制冷型高分辨率ICCD 相机,在像增强器与科研制冷型的CCD相机之间,采用高分辨率的镜头耦合方式耦合成像, 获得60lp/mm 空间高分辨率,实现对高分辨率成像或高分辨瞬态光谱采集。 ● 科学级制冷型ICCD● 18mm口径二代高效像增强器● 宽光谱响应范围:S20:200-850nm & S25R:400-1100nm● 光学快门: 3ns● 延迟与门控调节精度:10ps● 阴极门控*高外同步频率 300KHZ ● 内置时序控制器DDG● 高空间分辨率:Std 50lp/mm,Option :60lp/mm● CCD芯片: 高分辨2750*2200像素阵列● 位深: 16bit● 制冷温度: -10℃ @ 风冷● 配合高分辨光谱仪实现瞬态光谱采集● 专业化数据采集控制软件独特亮点制冷型ICCD-10度芯片制冷温度,有效减低芯片暗噪声,安静读出超快光学门宽3ns 阴极光学门宽,实现**测量内置DDG内置精度10ps 门控与延迟控制发射器,方便随心控制自动步进STEP延迟和门控自动Step 步进功能,一键完成时间分辨光谱采集高空间分辨率高空间分辨率像增强器及镜头耦合,获得60lp/mm 空间分辨IOC 模式300kHZ阴极快门外同步频率,IOC 芯片累积模式提升信噪比Binning and ROI实现芯片FVB Binning以及 多通道光谱同时采集专业化软件采集控制&光谱仪控制,数据处理专业化界面,简单快捷ICCD像增强型高分辨率相机技术参数 CCD相机像素阵列2750*2200阵面尺寸12.48*9.98mm (15.972 mm Diag.)像素大小4.54um*4.54um传感器类型CCD Sensor读出噪声5e-暗电流0.02e- / pixel / s @-10℃位深16bitBining& ROIFVB: 垂直方向全Binning光谱模式& 多通道 ROI及FVB数字接口UBS2.0像增强器MCP光阴极S20BS25R有效口径18mm18mm光谱范围200-850nm400-1100nm峰值量子效率20% @440nm22%@720nm等效噪声(EBI) 2 x 10-7 lux @ 20 °C ± 2 °C 5 x 10-7 Lux光子增益1*1041.4*104荧光屏P20 /P43P43空间分辨率标准:50lp/mm ; 高分辨率选项: 60lp/mm光学门控宽度3ns (Mesh)Fast10ns, Slow 100ns内部DDG 控制延迟和门宽调节范围0-10s延迟和门宽调节精度10ps同步接口外触发输入,触发输出,直接触发输入(Direct gate)触发信号触发阈值 1-5V, 阻抗50欧姆,抖动100ps触发固有延迟40ns @ Direct gate , 120ns@ Ext外触发*增强器光阴极量子效率曲线型号选择SIC: Scientific Intensified Camera● 18/25 18或25m 口径增强器● U/F/S Ultrfast gate =3ns , Fast gate 10ns, Slow gate: 100ns● UV/VN:UV-VIS 200-900nm;VIS-NIR : 400-1100nm● 6M/4M : 600万像素 CCD 2750*2200 400万像素sCMOS 2048*2048● L/F: L高分辨镜头耦合 F 高通量光纤面板耦合 ICCD像增强型高分辨率相机常见型号列表
    留言咨询

高分辨率常压质谱成像系统相关的资讯

  • 1100万!中国科学院海洋研究所高分辨率原位质谱成像系统等采购项目
    一、项目基本情况1.项目编号:OITC-G230661389项目名称:中国科学院海洋研究所海洋生物微区原位代谢组学研究平台(区域中心)高分辨率原位质谱成像系统采购项目预算金额:550.0000000 万元(人民币)最高限价(如有):550.0000000 万元(人民币)采购需求:包号设备名称数量预算简要要求交货期交货地点第1包高分辨率原位质谱成像系1套550万人民币拟购置的高分辨率原位质谱成像系统主要用于小分子代谢物、短肽或蛋白的鉴定、定量及成像分析功能。具体而言,可以针对各种海洋生物细胞或组织开展各类分子如脂类(磷脂:PC、PE、SM、SE)、多肽、代谢物、药物及代谢产物等数百种分子的同时成像;能实现物质筛选与鉴定同时进行,目标分子可进行多级质谱分析,准确鉴定其组成与结构;实现高空间分辨率、高质量精度、高质量分辨率的非靶向性快速检测,且无需任何标记。合同签订后8个月内交货海洋研究所(青岛)投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得转包、分包,评标、授标以包为单位。技术要求详见本文件第八部分。合同履行期限:合同签订后8个月内交货。本项目( 不接受 )联合体投标。2.项目编号:OITC-G230310496项目名称:中国科学院海洋研究所2023改善科研条件专项-深海岩芯原位分析测试平台微区X射线荧光光谱仪采购项目预算金额:300.0000000 万元(人民币)最高限价(如有):300.0000000 万元(人民币)采购需求:包号设备名称数量预算简要要求交货期交货地点第1包微区X射线荧光光谱仪1套300万人民币可以对岩心、矿石、沉积物等进行多元素分布成像,还可以自动识别2000多种矿物,进行矿物分布成像、矿物分类统计,突破了以往数字化测试的局限,通过成像的方式带给科研人员元素和矿物分布信息。采购的设备需满足元素分布成像、矿物分布成像功能合同签订后5个月内交货海洋研究所(青岛)投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得转包、分包,评标、授标以包为单位。技术要求详见本文件第八部分。合同履行期限:合同签订后5个月内交货。本项目( 不接受 )联合体投标。3.项目编号:OITC-G230610913项目名称:中国科学院海洋研究所2023改善科研条件专项-深海岩芯原位分析测试平台场发射扫描电镜及能谱系统采购项目预算金额:250.0000000 万元(人民币)最高限价(如有):250.0000000 万元(人民币)采购需求:包号设备名称数量预算简要要求交货期交货地点第1包场发射扫描电镜及能谱系统1套250万人民币场发射扫描电镜及能谱系统基于扫描电镜的微观形貌和能谱得到的元素分布扫描,全自动快速得到目标材料样品(包括矿物岩心、海底岩石、沉积物、废石废物、冶炼残渣、金属制品、陶瓷器等)的夹杂物(矿物)分布与组成、元素分布信息和夹杂物(矿物)的颗粒尺寸等,配合相关设备,可进行化学和成分分析。合同签订后12个月内交货海洋研究所(青岛)投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得转包、分包,评标、授标以包为单位。技术要求详见本文件第八部分。合同履行期限:合同签订后12个月内交货。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年07月04日 至 2023年07月11日,每天上午9:00至12:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:登录“东方招标”平台http://www.oitccas.com注册并购买。方式:登陆“东方招标平台”(http://www.oitccas.com/),点击“获取采购文件”链接图标,或直接输入访问地址(http://www.oitccas.com/pages/sign_in.html?page=mine)完成投标人注册手续(免费),然后登陆系统寻找有意向参与的项目,已注册的投标人无需重新注册。招标文件售价:每包人民币600 元。如决定购买招标文件,请完成标书款缴费及标书下载手续。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院海洋研究所     地址:青岛市市南区南海路7号         联系方式:王老师;0532-82898629       2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:李雯、王军、郭宇涵; 010-68290530;010-68290508            3.项目联系方式项目联系人:王老师电 话:  0532-82898629
  • 德国 TransMIT AP-SMALDI 10超高分辨率质谱成像在生物学研究中的应用
    p & nbsp & nbsp & nbsp 作为质谱领域最具前景的技术之一,质谱成像技术现已经成为仪器厂商、科研院所的重要关注焦点,预测未来市场争夺也将日益激烈。为提升用户对质谱成像技术、应用的了解,促进质谱成像技术的推广应用,仪器信息网邀请科瑞恩特公司对其质谱成像技术、应用等方面进行了讲解。 /p p span style=" color: rgb(0, 112, 192) " strong   1、请介绍一下贵公司的质谱成像系统研发过程,该系统有哪些特点? /strong /span /p p   TransMIT AP-SMALDI 10超高分辨率质谱成像系统由德国吉森大学世界知名质谱学家Bernhard Spengler教授研制开发。Spengler教授于1994年在芝加哥举行的第42届美国质谱年会(ASMS)上提出了MALDI Ion Imaging和Biological Ion Imaging的概念,即“质谱成像(Mass Spectrometry Imaging)”,并首次把MALDI成像方法用于分析多肽类化合物。 /p p   TransMIT AP-SMALDI 10质谱成像系统搭载Thermo Scientific& #8482 Q Exactive& #8482 系列质谱仪,实现了超高空间分辨率和超高质量分辨率的完美结合,是一款高端的质谱成像系统。该系统目前能够实现细胞水平的空间成像分辨率,并且集高质量分辨率、高质量精度及串联质谱于一身,为准确、全面的分析质谱成像数据提供了可靠保证。其具体优势如下: /p p   1)常压到中压的操作环境,极大简化了样品制备的方法,无需昂贵的导电靶板(如ITO导电玻璃),极大的节约了成本; /p p   2)能够获得& lt 5 μm的高空间分辨率,全景呈现了分析物在组织中的分布和细微差别,可用于单细胞质谱成像分析; /p p   3)激光束和离子流的同轴设计解决了高空间分辨率和低采样量之间的矛盾; /p p   4)具有独立开发的用于高分辨质谱成像的数据分析处理软件; /p p   5)与Thermo Scientific& #8482 Q Exactive& #8482 系列质谱仪兼容,实现未知化合物的准确鉴定。 /p p style=" text-align: center " img title=" 001.jpg" src=" http://img1.17img.cn/17img/images/201801/noimg/34a40d28-94da-4d5c-963a-bdc9ddb678cf.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 图1 TransMIT AP-SMALDI 10质谱成像系统 /strong /span /p p span style=" color: rgb(0, 112, 192) " strong   2、目前,贵公司质谱成像系统主要应用在哪些方面?应用情况如何?请举例说明。 /strong /span /p p   超高分辨率TransMIT AP-SMALDI 10质谱成像系统问世后,在生命科学领域展示了绝对优势,已经应用于不同组织中多种内源性物质的可视化检测,如脂类、多肽、蛋白质、核酸和糖类等,以及外源性物质检测,如药物及其代谢产物。多项研究成果发表于Nature Methods、Angewandte Chemie International Edition,The Plant Journal, Analytical Chemistry,Analytical and Bioanalytical Chemistry等国际知名期刊上。 /p p span style=" color: rgb(0, 112, 192) "   2.1 应用 TransMIT AP-SMALDI 10研究脂类分子的组织空间特异性分布 /span /p p   脂类代谢异常是引发多种疾病的重要原因,研究脂类分子的组织空间特异性分布对于阐明脂代谢异常疾病的机制具有重要意义。下图2中所示为小鼠膀胱组织内磷脂分子的分布特征。采用高空间分辨率成像能够实现离子成像(图2a)和组织染色(图2b)的完美对接,精准定位不同磷脂分子在组织中的特异性分布。当空间分辨率提升到3μm时,细微的差异得以揭示,如图2d中的膀胱组织肌层(绿色)和上皮层(红色)可明显区分开来。因此同传统染色方法相比,TransMIT AP-SMALDI 10系统可以提供高度特异磷脂分子在不同类型细胞中的分布,获得更为详尽的组织化学信息。 /p p style=" text-align: center " img title=" 002.jpg" src=" http://img1.17img.cn/17img/images/201801/noimg/e815aafc-dd5e-4c1c-ab7c-9b22673e5df8.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 图2 应用 TransMIT AP-SMALDI 10研究脂类分子在小鼠膀胱组织中的空间特异性分布 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong (引自:Angewandte chemie international edition, 2010, 49(22): 3834-3838) /strong /span /p p    span style=" color: rgb(0, 112, 192) " 2.2 应用TransMIT AP-SMALDI 10研究肿瘤相关生物标记物的组织空间特异性分布 /span /p p   在肿瘤学领域,生物标志物一直是研究热点。作为个体化医疗的“关键词” 之一,其相关研究方兴未艾。质谱成像技术的诞生,为发现肿瘤标志物的组织特异性提供了不可替代的技术手段。TransMIT AP-SMALDI 10系统可以同时提供高空间分辨率和高质量分辨率,为准确捕捉标记物提供了双重保障。以人非小细胞肺癌诱导重症联合免疫缺陷小鼠模型为例,在肿瘤组织的坏死部位发现了少量LPC存在(图3c绿色),而坏死部位的细胞开始退化,同时出现了脂类的降解产物。因此,可以通过发现未知分子的分布情况,获取肿瘤发生过程中的分子变化特征,以判断肿瘤所处的不同阶段,为肿瘤研究提供更为详尽、精准的判断依据。 /p p   此外,TransMIT AP-SMALDI 10的高质量精度和分辨率为脂类的精确分析提供了保证。当质量窗口为Δm/z=0.1时,健康组织和肿瘤组织无法区分开(图3d),而当质量窗口为Δm/z=0.01时(图3 e、g、f),则能把两种组织明确的区分开,获得更为可靠、准确的成像结果。 /p p style=" text-align: center " img title=" 003.png" src=" http://img1.17img.cn/17img/images/201801/noimg/377a9cfb-03af-494f-acf2-eefabe5490e1.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 图3 脑苷脂类和溶血卵磷脂酰胆碱类在小鼠脑组织中的分布,空间分辨率10μm /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong (引自:Histochemistry and cell biology, 2013, 139(6): 759-783) /strong /span /p p    span style=" color: rgb(0, 112, 192) " 2.3 应用TransMIT AP-SMALDI 10研究药物分子的组织空间特异性分布 /span /p p   研究药物分子及其代谢产物在动物组织中的空间分布是质谱成像技术的主要应用方向之一。与传统放射自显影方法相比,质谱成像技术的主要优势是能够实现无标记检测和准确区分药物及其代谢产物。以往用于药物成像分析的分辨率普遍较低,不足以检测药物分子在组织中的空间分布。图4所示为应用TransMIT AP-SMALDI 10系统可视化抗肿瘤药物伊马替尼(图4-Ⅰ、4-Ⅱ)和异环磷酰胺(图4-Ⅲ)在小鼠肾脏组织中的分布,获得特异药物分子在组织中的精确定位,为肿瘤的靶向研究提供更为精准的信息。 /p p img title=" 004.png" src=" http://img1.17img.cn/17img/images/201801/noimg/173df3ae-6f58-40a8-bc67-a132a8468662.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 图4 Ⅰ 伊马替尼在肾脏组织中的分布,空间分辨率35μm;Ⅱ 伊马替尼在肾脏组织局部分布,空间分辨率10μm;Ⅲ & nbsp 异环磷酰胺在肾脏组织局部分布,空间分辨率25μm(引自:Analytical and bioanalytical chemistry, 2011, & nbsp 401(1): 65-73) /strong /span /p p span style=" color: rgb(0, 112, 192) "   2.4 应用TransMIT AP-SMALDI 10研究植物次生代谢物组织空间特异性分布 /span /p p   毫无疑问天然产物是人类药物开发的宝库。质谱成像技术为天然产物化学家和植物学家提供了新的研究思路和手段。以“国老”甘草为例,其根茎中的黄酮类和皂苷类成分得到了精确的定位。如图5所示,TransMIT AP-SMALDI 10系统的高质量分辨率和质量精度确保了具有相同平均质量、紧密相邻的两个峰能够被分离出合适的选择性离子图像。图5b所示m/z相差0.02098的两个离子呈现出差异性,在甘草根茎中的数量和空间分布截然不同。如采用低质量分辨率质谱成像,甘草酸(m/z 861.36676)和甘草皂苷G2(m/z 861.38721)无法区分开,因此高空间分辨率和高质量分辨率是准确可视化平均质量相同的化合物的可靠保证。 /p p img title=" 006.jpg" src=" http://img1.17img.cn/17img/images/201801/noimg/0384c690-695d-45d6-8363-990e9cc445b5.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 图5 a 甘草根茎横切面光学成像 b 甘草酸(m/z 861.36676)和甘草皂苷G2(m/z 861.38721)的单像素质谱图及其质谱成像图,空间分辨率30μm c 低分辨率质谱图(引自:The Plant Journal, 2014, 80(1): 161-171) /strong /span /p p span style=" color: rgb(0, 112, 192) "   2.5 应用TransMIT AP-SMALDI 10研究昆虫内源性代谢物的空间分布 /span /p p   昆虫在“生物圈”扮演着很重要的角色,在很多方面起到传播媒介的作用,但有些昆虫也会对人类产生威胁,能够通过释放毒液或叮咬对人类造成伤害,比如斯氏按蚊能够携带疟原虫引发疟疾的传播。TransMIT AP-SMALDI 10高空间分辨率的特性为体积极小的生物体成像提供了完美的解决方案。如下图6所示,该系统清晰地呈现了脂类物质在斯氏按蚊头部、胸部、腹部的空间分布,为昆虫研究提供了一个全新的技术手段。 /p p style=" text-align: center " img title=" 001.jpg" src=" http://img1.17img.cn/17img/images/201801/noimg/b1d2fe78-0b77-491b-b6ec-8c1c76726df6.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 图6 TransMIT AP-SMALDI 10斯氏按蚊质谱成像,空间分辨率 5 μm /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong (引自:Analytical chemistry, 2015, 87(22): 11309-11316 ) /strong /span /p p span style=" color: rgb(0, 112, 192) "   2.6 TransMIT AP-SMALDI 10在单细胞研究中的应用 /span /p p   细胞是组成生命体的基本单元,了解一个细胞中发生的事件对于我们认识生命过程有重要意义。由于细胞的异质性,在群体细胞乃至组织水平上的采样可能已经使得一些重要的分子信息淹没在大量正常细胞中而被遗漏掉了。TransMIT AP-SMALDI 10系统为客户提供了单细胞质谱成像分析方案,能够可视化单细胞中的重要代谢物。如下图7所示,首次实现了单个Hela细胞中多种物质的精确区分和精准定位,为单细胞内研究提供了坚实的技术支撑。 /p p img title=" 009.png" src=" http://img1.17img.cn/17img/images/201801/noimg/0e758951-5515-4020-ba00-8ed803256d4f.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 图7 TransMIT AP-SMALDI 10 Hela细胞质谱成像,空间分辨率7μm /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong (引自:Analytical chemistry, 2012, 84(15): 6293-6297) /strong /span /p p span style=" color: rgb(0, 112, 192) "   strong  3、贵公司如何看待质谱成像仪器的技术及市场发展现状,目前有哪些问题亟待解决? /strong /span /p p   在国际上,质谱成像技术是分析化学领域的一支新生力量,是目前最前沿的表面分析技术之一。因其独特的分析方式,为科研工作者带来了全新的研究视角。近五年,在各大领域将继续大显身手,获得越来越多的青睐和认可。TransMIT AP-SMALDI 10离子源与Obitrap高分辨率质谱仪结合独具特色,兼具高空间分辨率、高质量分辨率和质量精度,以及串联质谱功能,将成为医学研究、药物开发、植物生物学、昆虫学、微生物等领域的重要研究工具。 /p p   未来质谱成像仪的各项性能都会继续得到提升,最受关注的依然是空间分辨率的提升,定量方法的开发以及便捷准确的数据处理方法。 /p p   span style=" color: rgb(0, 112, 192) " strong  4、质谱成像仪器需求情况如何?贵公司质谱成像仪器推广做了哪些工作? /strong /span /p p   预测质谱成像仪在我国的需求量将呈现快速增长的态势,成为各大科研院所的必备科研设备。我公司在产品推广上主要以参加学术会议和讲座为主,比如中国质谱学会学术年会和生物学术年会。到目前为止,我们先后在中科院微生物所、中科院高能物理所、第二军医大学、中科院上海植物生理生态所开展了系列学术讲座,向科研工作者介绍TransMIT AP-SMALDI 10质谱成像仪的原理和应用,收到了很多的关注和好评。 /p p   未来,我公司会逐步加大推广力度,为科研工作者提供切实可靠的质谱成像整体解决方案,相信TransMIT AP-SMALDI 10能够为我国研究人员带来意想不到的效果。 /p p   本文由TransMIT国内授权代理商科瑞恩特(北京)科技有限公司(Create (Beijing) Technology Co., Limited)提供。 /p p span style=" color: rgb(0, 112, 192) " strong   参考文献: /strong /span /p p   1、Kompauer M, Heiles S, Spengler B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-[mu] m lateral resolution[J]. Nature methods, 2017, 14(1): 90-96. /p p   2、Kompauer M, Heiles S, Spengler B. Autofocusing MALDI mass spectrometry imaging of tissue sections and 3D chemical topography of nonflat surfaces[J].Nature methods, 2017, 14(12): 1156. /p p   3、Khalil S M, Rompp A, Pretzel J, et al. Phospholipid topography of whole-body sections of the anopheles stephensi mosquito, characterized by high-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging[J]. Analytical chemistry, 2015, 87(22): 11309-11316. /p p   4、Li B, Bhandari D R, Janfelt C, et al. Natural products in Glycyrrhiza glabra (licorice) rhizome imaged at the cellular level by atmospheric pressure matrix‐assisted laser desorption/ionization tandem mass spectrometry imaging[J]. The Plant Journal, 2014, 80(1): 161-171. /p p   5、Rompp A, Spengler B. Mass spectrometry imaging with high resolution in mass and space[J]. Histochemistry and cell biology, 2013, 139(6): 759-783. /p p   6、Schober Y, Guenther S, Spengler B, et al. Single cell matrix-assisted laser desorption/ionization mass spectrometry imaging[J]. Analytical chemistry, 2012, 84(15): 6293-6297. /p p   7、Rompp A, Guenther S, Takats Z, et al. Mass spectrometry imaging with high resolution in mass and space (HR2 MSI) for reliable investigation of drug compound distributions on the cellular level[J]. Analytical and bioanalytical chemistry, 2011, 401(1): 65-73. /p p   8、Rompp A, Guenther S, Schober Y, et al. Histology by mass spectrometry: label‐free tissue characterization obtained from high‐accuracy bioanalytical imaging[J]. Angewandte chemie international edition, 2010, 49(22): 3834-3838. /p
  • 长春光机所突破航天高分辨率高光谱成像关键技术
    日前,中国科学院长春光学精密机械与物理研究所突破了航天高分辨率高光谱成像关键技术。该技术利用离轴三反非球面光学系统、复合棱镜分光、推扫成像 和指向镜运动补偿技术,有效解决了航天高光谱遥感中高空间分辨率、高光谱分辨率与图像高信噪比之间的矛盾,突破了视场分离、光谱分光、在轨光谱辐射定标等 关键技术瓶颈,为我国航天高分辨率高光谱成像技术的工程化奠定了技术基础。   长春光机所研究员颜昌翔及其研究团队针对航天高光谱遥感领域的视场分离、光谱分光、图像信噪比、在轨光谱辐射定标等关键技术瓶颈提出了一系 列创新性的解决方法。研究团队采用离轴三反非球面光学系统、单晶硅无基底狭缝的视场分离器和复合棱镜分光加非球面准直成像光谱仪的技术方案,实现了全色、 可见近红外和短波红外三光路准确分离,保证了系统宽波长覆盖,并实现了高光谱和高空间分辨率、高信噪比,保证了光谱成像质量。该团队采用指向镜运动补偿方 案,建立了在轨实时计算指向镜运动补偿曲线的数学模型,实现了实时计算和控制,使探测器接收的光能量增加到4-6倍,显著提高了系统信噪比,解决了高光谱 和高空间分辨率成像的矛盾。同时,该研究团队还采用镀膜的钕镨玻璃加积分球的在轨定标技术,利用指向反射镜自准,实现了全光路光谱和辐射定标。该团队共发 表学术论文85篇,其中EI、SCI收录36篇,并有6项已授权国家发明专利。目前,该技术已获吉林省2013年度科技进步一等奖。   利用此项技术成果研制的天宫一号高光谱成像仪,为我国首次自主获取航天高分辨率高光谱图像数据提供了技术支撑,填补了国内空白。天宫一号高 光谱成像仪已在轨稳定运行两年半,获取了大量高光谱图像数据,并已应用于油气勘探、矿物探测、林业调查、土地利用/覆盖变化、海岸带资源调查等领域,为国 民经济可持续健康发展规划提供了科学决策依据。   据悉,此项技术已经在更高性能航天高光谱成像仪的研制工作中得到应用,必将在持续推进我国航天高光谱遥感技术的发展中起到其应有的作用。

高分辨率常压质谱成像系统相关的方案

高分辨率常压质谱成像系统相关的资料

高分辨率常压质谱成像系统相关的试剂

高分辨率常压质谱成像系统相关的论坛

  • 高分辨率质谱到拉

    [em02] 由国家环境分析测试中心承建的二垩英实验室的主要设备,高分辨率质谱已经吊装完毕拉!一台将近1.4吨重的东西被顺利的吊上了三楼的实验室,真是不容易呀![em02]

  • 中国科大实现世界最高分辨率单分子拉曼成像

    《自然》审稿人:“该领域迄今质量最高的顶级工作”2013年06月06日 来源: 科技日报 作者: 吴长锋 最新发现与创新 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130606/011370453619890_change_hzp3622_b.jpg 在绿色入射激光的激发下,处于STM纳腔中的卟啉分子受到高度局域且增强的等离激元光的强烈影响,使得分子的振动指纹信息可以通过拉曼散射光进行高分辨成像。 科技日报合肥6月5日电 (记者吴长锋)记者从中国科学技术大学了解到,该校的科学家们在国际上首次实现亚纳米分辨的单分子光学拉曼成像,将具有化学识别能力的空间成像分辨率提高到前所未有的0.5纳米。国际权威学术期刊《自然》杂志于6月6日在线发表了这项成果。世界著名纳米光子学专家Atkin教授和Raschke教授在同期杂志的《新闻与观点》栏目以《光学光谱探测挺进分子内部》为题撰文评述了这一研究成果。《自然》三位审稿人盛赞这项工作“打破了所有的纪录,是该领域创建以来的最大进展”,“是该领域迄今质量最高的顶级工作,开辟了该领域的一片新天地”,“是一项设计精妙的实验观测与理论模拟相结合的意义重大的工作”。 这一成果是由该校微尺度物质科学国家实验室侯建国院士领衔的单分子科学团队董振超研究小组完成的,博士生张瑞、张尧为论文共同第一作者。 光的频率在散射后会发生变化,而频率的变化情况取决于散射物质的特性,这是物理学上获得诺贝尔奖的著名的“拉曼散射”。“拉曼散射光中包含了丰富的分子振动结构的信息,不同分子的拉曼光谱的谱形特征各不相同,因此,正如通过人的指纹可以识别人的身份一样,拉曼光谱的谱形也就成为科技工作者识别不同分子的‘指纹’光谱。”论文通讯作者之一的董振超教授介绍说,拉曼光谱已经成为物理、化学、材料、生物等领域研究分子结构的重要手段。 上世纪70年代以来,随着表面增强拉曼散射技术,特别是针尖增强拉曼散射(TERS)技术的发展,光谱探测的灵敏度以及拉曼成像的分辨率都有了极大提高。“迄今,科学家们已将TERS测量的最佳空间成像分辨率发展到几个纳米的水平,但这显然还不适合于对单个分子进行化学识别成像。”董振超说。 微尺度实验室单分子科学团队多年来一直致力于自主研制科研装备,发展了将高分辨扫描隧道显微技术与高灵敏光学检测技术融为一体的联用系统。他们利用针尖与衬底之间形成的纳腔等离激元“天线”的宽频、局域与增强特性,通过与入射光激发和分子拉曼光子发射发生双重共振的频谱匹配调控,实现了亚纳米分辨的单个卟啉分子的拉曼光谱成像,使化学识别的分辨率达到前所未有的0.5纳米,可识别分子内部的结构和分子在表面上的吸附构型。 “可以说,在任何需要在分子尺度上对材料的成分和结构进行识别的领域,该项研究成果都有很大的用途。”董振超说,这项研究对了解微观世界,特别是微观催化反应机制、分子纳米器件的微观构造和包括DNA测序在内的高分辨生物分子成像,具有极其重要的科学意义和实用价值,也为研究单分子非线性光学和光化学过程开辟了新的途径。 《科技日报》(2013-06-06 二版)

  • 高分辨率光镊系统特点及应用

    [url=http://www.f-lab.cn/microscopes-system/picotweezers.html][b]高分辨率光镊系统[/b][/url]采用了德国picotweezers技术的细胞单分子力学捕获系统,是全球领先的超高分辨率激光光镊系统,是进口光镊品牌中具有超低光镊价格Optical Tweezers产品.[b]高分辨率光镊系统[/b]不仅具有光镊功能,还提供微视图像计算能力,非常方便单细胞生物力学分析.[b]高分辨率光镊系统通[/b]常与德国蔡司Axiovert、AxioA1或D1型显微镜配套使用,配备1W或5W的红外光纤激光器,提供激光捕获力高达400pN~2nN范围。高分辨率光镊系统配备压电定位位移台,在XYZ三轴三个方向具有200μm分辨率的扫描能力.[b]高分辨率光镊系统[/b]还具有视频分析功能,至少2.5nm的横向和轴向分辨率,其图像拍摄速率为200帧/秒,X、Y、Z互相成像速度为400赫兹,可对生物大分子进行0.1PN作用力分辨率的实时分析。[img=高分辨率光镊系统]http://www.f-lab.cn/Upload/ionovation-explorer.jpg[/img] [b]高分辨率光镊系统特色[/b]定量分析,在三维方向实现0.1 PN分辨率的生物为微力分析最大光阱捕获力可在1 W光纤激光器下达到400 PN通过光镊实现对捕获对象精度为纳米级别的操控 [b][b]高分辨率光镊系统[/b]应用[/b]单分子与活细胞的操控和分析 弹性模量分析、微流控分析 分子相互作用、纳米孔分析 [color=#666666][color=#000000]高分辨率光镊系统:[url]http://www.f-lab.cn/microscopes-system/picotweezers.html[/url][/color][/color]

高分辨率常压质谱成像系统相关的耗材

  • Nano高分辨率低反压层析介质
    高分辨率精细纯化首选Nano系列层析介质以高交联的多孔PS/DVB微球为基质,提供Nano系列离子交换、疏水层析和ProteinA亲和介质,该基质表面键合了化学稳定性极高的亲水层,消除了基质对生物分子的非特异性吸附,保证了其良好的分离效率和生物样品回收率,并且具有远大于其他基质类型层析介质的化学和物理稳定性。Nano层析介质的优势极高的分辨率和高流速下的低反压极高的化学物理稳定性,使用寿命更长提供粒径30μm、15μm和10μm,高分辨率可用于中度纯化到超精细纯化低非特异性吸附,高回收率,良好的重复性
  • HR4000高分辨率光谱仪
    HR4000高分辨率光谱仪我们的新一代的高分辨率光谱仪,是全新的光学和电子学器件组合。适合应用于激光特征分析,气体吸光度测量和确定原子散射线等领域。HR4000配有全新的Toshiba3648像素CCD阵列探测器,光学分辨率可达0.2 nm(FWHM)。特点: 高分辨率,最高分辨率可达0.02nm(FWHM) 电子快门避免饱和度问题 板载微控制器 即插即用USB接口 光学平台 采样附件光谱分辨率(FWFM)可达0.02nmHR4000是我们新一代高分辨率的光谱仪,它采用了Toshiba的3648像元的线阵CCD,光学分辨率可达0.02nm(FWHM)。HR4000光谱范围为200-1100nm,具体的光谱范围和分辨率配置取决于实际光栅和狭缝的选择。HR4000适用于激光测量、气体吸收测量以及原子辐射线的测量等领域。电子快门避免饱和度问题软件中积分时间的可由用户设定,它类似于一个照相机的快门速度:积分时间值即是探测器“察看”所进入光子的总体时间。因为,Toshiba探测器有一个电子快门,你可通过软件设定最小积分时间到3.8毫秒,这样就允许你可以测量像激光脉冲如此短暂的事件。使光谱仪的积分时间缩短的能力也消除了在高光水平应用领域如激光分析的饱和度问题。 板载微控制器 HR4000的板载微控制器使得对光谱仪的控制非常方便。通过一个30针的连接器,您可以在软件中设置所有的光谱仪操作参数:控制光源、操作进程以及从外部对象获取信息等。配备有10个用于外部设备接口的用户可编程I/O端口、一个模拟输入和一个模拟输出接口,以及一个用于触发其它设备的脉冲发生器。 即插即用USB HR4000通过USB2.0或RS-232串口和PC、PLC或其它嵌入式系统相连。在串口模式下,HR4000需要额外的5伏供电电源(不包含在产品中)。每台光谱仪特有的参数被编程存储在系统的内存芯片中,可以非常方便地被光谱仪操作软件读取。光学平台 用户通常要求光谱仪可以适合他们的特殊需要,所以HR4000光谱仪可以根据您的应用需要配置光学平台。您可以选择狭缝尺寸,探测器,滤光片和光栅等。 采样附件 HR4-BREAKOUT 是一个被动模块,提供HR2000+不同功能的接口。BREAKOUT盒可与多种与光谱仪的连接如:外触发器、GPIO、光源、RS-232和模拟输入/输出。 Specifications
  • ENrich Q 高分辨率离子交换柱|7800001
    ENrich Q 高分辨率离子交换柱 ENrich 离子交换层析柱专用于较高流速下,对蛋白质和其他生物分子进行高分辨率分离。柱内预装有不同类型的树脂,其中Q柱可用于阴离子交换层析,S柱可用于阳离子交换层析这两种树脂的颗粒大小均为 10 μm。1 ml ENrich 柱可在约 20 分钟内完成一次样品的高分辨率分离 — Q 树脂 (780-0001) 和 S 树脂 (780-0021)。ENrich 柱还提供 8 ml 规格的预装柱,可用于大量样品的上样或纯化的规模放大 — Q 树脂 (780-0003) 和 S 树脂 (780-0023)。ENrich 高分辨率离子交换层析柱的特性和优点灵活的流速可适应不同的样品黏度和温度提供高质量的可重复分离高流速、高载量在 2–12 的 PH 值范围内稳定ENrich 高分辨率离子交换层析柱的应用用于各种工作流程中生物分子的纯化:对抗体的最后精纯亲和/标签纯化后的二次精纯高分辨率分离生物分子去除杂质可兼容有机酸(1 M 乙酸)、8 M 尿素、6 M 盐酸胍、离液剂、清洁剂、盐和 1 M NaOH20% (v) 的乙醇溶液可增强核苷酸和肽的溶解度。该介质可与所有常用的缓冲溶液相兼容。相关产品ENrich 柱还可用于凝胶过滤预装柱。Bio-Rad 还提供其他离子交换层析柱,以及可选册合适的离子交换层析介质装填您自己的层析空柱。更多信息ENrich 柱非常适合 NGC™ 层析系统或任何其他中压和高压层析系统上使用。订货信息:ENrich Q 高分辨率离子交换柱描述货号ENrich™ Q 5 x 50 Column7800001 ENrich™ Q 10 x 100 Column7800003 ENrich™ S 5 x 50 Column7800021ENrich™ S 10 x 100 Column 7800023配件Fitting Adapters 1/4"-28F to 10-32M7500564UNO® 10-32 Fittings Kit7500568
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制