当前位置: 仪器信息网 > 行业主题 > >

空气污染物痕量气体分析仪

仪器信息网空气污染物痕量气体分析仪专题为您提供2024年最新空气污染物痕量气体分析仪价格报价、厂家品牌的相关信息, 包括空气污染物痕量气体分析仪参数、型号等,不管是国产,还是进口品牌的空气污染物痕量气体分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合空气污染物痕量气体分析仪相关的耗材配件、试剂标物,还有空气污染物痕量气体分析仪相关的最新资讯、资料,以及空气污染物痕量气体分析仪相关的解决方案。

空气污染物痕量气体分析仪相关的资讯

  • 130万!中国计量科学研究院高端AEI源痕量污染物确证分析仪采购项目
    项目编号:OITC-G220271146项目名称:中国计量科学研究院高端AEI源痕量污染物确证分析仪采购项目预算金额:130.0000000 万元(人民币)最高限价(如有):127.6600000 万元(人民币)采购需求:1. 项目用途:科研2. 资金来源:财政资金3. 最高投标限价:127.66万元,超过最高限价的投标报价将被拒绝。4. 本次招标货物如下表所示,评标、授标以包为单位。序号货物名称数量(套)简要技术要求是否接受进口产品1高端AEI源痕量污染物确证分析仪 1详见采购需求是 合同履行期限:详见采购需求本项目( 不接受 )联合体投标。
  • 广东发布《车室内空气痕量组分在线快速检测方法》团标
    人们若感觉所驾乘的汽车室内有异味,考虑需对车室内空气质量快速进行检测筛查,广东省标准化协会2022年11月28日发布团体标准《车室内空气痕量组分在线快速检测方法》,将可以帮上一忙。该标准由广物汽贸股份有限公司、广州禾信仪器股份有限公司、暨南大学、广东省广州生态环境监测中心站、生态环境部华南环境科学研究所、广东省麦思科学仪器创新研究院、广东智检检测技术有限公司、广东省标准化协会共同起草。据起草组负责人介绍称,该标准是为满足市场和消费者需求而制定的。我国随着现代化进程加快,汽车已成为寻常百姓家的代步工具,据报道,目前全国汽车保有量已达3.02亿辆,驾乘人员在车内的时间大大增加,近年来汽车室内空气污染投诉随之大量增加。据有关机构统计,2021年全国投诉汽车室内空气质量的达29213宗,其中超过半数诉称出现“头晕、头痛”、“咳嗽、咽喉不适”以及“恶心、呕吐”等症状,对车内空气质量进行检测的诉求呈急剧上升之势。我国对汽车室内空气检测现行标准是环保行业标准《车内挥发性有机物和酫酮类物质采样测定方法》(HJ/T 400—2007)。据介绍,该标准检测准确率达国际先进水平,但主要适用于新车出厂检测,因其检测耗时起码24小时,且操作较繁琐、技术要求高,费用不菲,目前一般市价每车次检测收费达2000至3000元。这与市场大量存在的要求快速、低费用的检测诉求不相适应。于是,适应市场诉求的《车室内空气痕量组分在线快速检测方法》应运而生。该项团标发布的新的检测方法的突出特点是快速和低成本费用。检测时间在1小时内,成本费用更是大幅度降低。其技术创新之处在两方面,一是以“置换平衡”和“释放亚平衡”方法缩短样品采集时间。采集车室内空气样品是检测的重要环节。HJ/T 400—2007规定的采样程序是先将受检车辆放入符合要求的采样环境舱中,打开受检车辆全部可以开启的车窗、门,静态放置不少于6小时,完成准备阶段后进入封闭阶段,完全关闭受检车辆的门、窗,保持密封状态16小时以上,之后开始样品采集。团标则规定把受检车辆放入采样环境舱后,在让车辆保持密闭静止状态下,利用置换装置将洁净空气置换车室内空气,空气中痕量气体组分(主要指各类VOCs)浓度快速降低,经过15分钟,车室内空气被洁净空气置换达平衡状态,即停止供气,使车室内各类VOCs污染物开始释放,空气中污染物浓度开始上升,过15分钟左右达到释放亚平衡状态,最终释放速率趋向于零达到释放平衡状态,即开始样品采集。这样把采用行标检测的样品采集准备和密封阶段所需22小时缩短为30分钟。二是相对于行标规定采集样品后要妥善保管、运输、送实验室检验,团标则用在线质谱仪快速检测,实时自动观测,减少了流程环节和手工操作。检测组分包括苯、甲苯、乙苯、二甲苯、甲醛、成苯乙烯等18种常见有机化合物(包括联用在线高精度甲醛分析仪快速检测甲醛的释放速率和释放浓度)。为保证检测质量,团标除对在线快速检测方法相关的术语和定义、检测原理、检测流程、检测系统设置、要求及操作规程等作出规定外,还专门规定了检测质量保证和控制措施。专家组评审认为,该团标的在线快速检测方法,相比行业其他方法具有操作简单、快捷便宜的特点,有助于消费者了解车内空气状况,对治理车内空气,减少车内VOCs对人体的危害有一定的促进作用。
  • 环保部:大规模启动空气污染物来源解析
    3月25日,环保部发布《2013年京津冀、长三角、珠三角等重点区域及直辖市和省会城市空气质量报告》(以下简称《报告》)。   《报告》首次对我国自2013年实施环境空气质量新标准的74个城市进行评价。 结果表明,2013年74个城市中,只有海口、舟山、拉萨3个城市各项污染指标年均浓度均达到二级标准,其他71个城市存在不同程度超标现象。   重污染区域的首要污染物为PM2.5。对此,环保部官员表示,2014年要大规模、规范化启动污染物来源解析研究工作,北京等重点城市要在今年上半年提交初步成果。   京津冀区域污染最重   根据《报告》,京津冀、长三角、珠三角区域是空气污染相对较重的区域,尤以京津冀区域污染最重。京津冀13个城市中,有11个城市排在污染最重的前20位,其中有7个城市排在前10位,部分城市空气重度及以上污染天数占全年天数40%左右。   此外,该地区共13个城市,空气质量平均达标天数比例为37.5%,比74个城市低23个百分点,有10个城市达标天数比例甚至低于50%。其中,北京市达标天数比例为48%,重度及以上污染天数比例为16%。   该区域首要污染物为PM2.5,其次是PM10和O3(臭氧)。区域内所有城市PM2.5和PM10年平均浓度超标,PM2.5年平均浓度为106微克/立方米,PM10年平均浓度为181微克/立方米。   &ldquo 在空气质量最差的城市中,河北占了7个,可见河北仍然是重灾区,需要加大治霾力度。&rdquo 中国环科院副院长柴发合对21世纪经济报道分析,希望随着京津冀一体化进程的加快,通过体制与机制创新,河北的空气质量能够有所改善。   从74个城市空气质量状况看,我国大气污染形势非常严峻。环保部监测司有关负责人认为,主要有四个原因:高耗能、高污染的重工业发展过快、比重过大、集中度高 大气污染物长期超环境容量排放 城市化加快以及不利的气象条件。   对第二个原因,该负责人解释称,京津冀、长三角、珠三角区域占全国面积的8%,消费了全国43%的煤炭,生产了55%的钢铁、40%的水泥、52%的汽柴油,二氧化硫、氮氧化物、工业粉尘排放量占全国的30%,单位面积主要大气污染物排放量远远高于全国平均水平。   第四个原因也同样值得关注。该负责人解释,2013年华北平原和山东半岛的大部分区域年均风速同比减少0.1~0.3 m/s,静风、逆温现象增多,空气流动性差,不利于污染物的扩散。同时,这些地区的降水较常年同期偏少,其中河南、天津分别较2012年偏少24%、21%,弱化了对空气污染物的清除,加剧空气污染。   此外,报告显示,2013年空气质量相对较好的前10位城市是海口、舟山、拉萨、福州、惠州、珠海、深圳、厦门、丽水和贵阳。   大规模启动污染物来源研究解析   环保部也在报告中明确了2014年大气环境质量的任务。   根据部署,今年环保部将推动第三阶段空气质量新标准监测能力建设,力争早日完成全国地级以上城市新标准监测能力全覆盖。   环保部监测司副司长朱建平对21世纪经济报道介绍,2014年全国各直辖市、省会城市和计划单列市要启动污染物来源解析研究工作。其中北京、天津和石家庄要在上半年前提交初步成果 其他直辖市、省会城市和计划单列市要在年底前提交阶段性研究成果。   &ldquo 以前各个城市自发地做过,但这是第一次全国大规模地、规范地做源解析,我们将根据这次源解析的结果决定以后多长时间做一次,是不是每年都做。&rdquo 朱建平介绍。   朱建平还介绍,去年环保部开展了监测数据质量督查,&ldquo 还没有发现地方在监测数据上造假的问题&rdquo 。今年,环保部还将重点选择京津冀、长三角、珠三角等重点地区开展监测数据监督监测。   根据环保部的要求,对检查中发现的数据质量问题及时督促整改,对存在行政干预、数据造假等严重问题的单位约谈负责人和相关责任人并给予严肃处理,进一步提高自动监测数据质量,不断增强自动监测数据的公信力和权威性。
  • 有效监测才能严格治理,看多组分气体监测仪如何应对环境空气污染!
    有效监测才能严格治理,看多组分气体监测仪如何应对环境空气污染! 2020 China 挥发性有机物污染防治科技大会现场精彩回顾 挥发性有机物(VOCs)种类繁多,对人体健康和生态环境危害巨大,是较为复杂的一类污染物。VOCs China 2020是我国专注于VOCs污染防治领域的全产业链、供应链的专业展览会,最大范围荟萃国内外VOCs污染综合整治产业链上下游的先进技术、工艺、材料和装备等进行展示与合作。 天津润泽环保惊艳亮相展会现场,所携产品与解决方案备受瞩目,实现了信息技术与环保产业的深度融合。 01 监控污染明星产品 面对日益严重的环境空气污染问题,只有及时有效的实时监测污染情况,获得真实可信的数据,才可以为环境管理者提供制订管理措施的依据。 多组分气体监测仪:一款用于检测工业有毒有害气体的仪器,检测气体种类选择范围包括硫化氢、氨气、甲硫醚、甲硫醇、二甲二硫、二硫化碳、苯乙烯、氮氧化物、臭氧、二氧化硫、氯化氢、氯气、TVOC等工业气体,可以基于这些污染气体浓度分析出臭气浓度OU值。 用户也可根据实际应用需求定制气体种类、数量及检测范围等。相比较传统的化学法气体检测系统,本仪器具有检测速度快、检测灵敏度高、检测参数多并种类选择灵活、操作简便、系统维护量少等特点,逐步成为环境检测站、工业园区、大型化工制药企业等应对环境空气污染监测的必要的气体检测设备。 02 天津润泽环保技术团队 天津润泽环保科技有限公司依托总部雄厚的研发实力、注重科技投入、超前的思维、完善的管理机制, 以其从容、自信的姿态在行业中勇往前行。倾力打造国家信任、客户满意的企业形象。 通过本次展会,天津润泽环保迎来了很多老伙伴,更结识了很多新朋友,我们希望能把这份缘分持续下去,一起为中国环保产业做出贡献。感谢大家的关注!
  • 室内空气污染:一个亟待重视的研究领域 ——访清华大学张彭义教授
    p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " strong 前言: /strong 谈到空气污染,大家通常关注的是室外大气污染。事实上,室内环境对人们健康的影响远比室外要大得多。调查显示,成年人有70-80%的时间在室内度过,老年人和婴幼儿待在室内的时间超过90%。世界卫生组织WHO发布的《室内空气污染与健康》指出,目前室内空气污染的程度已经高出室外污染5-10倍,全球4%的疾病与室内空气质量相关,每年大约有200多万人因室内空气污染所致疾病而过早死亡,室内空气污染已成为人类健康十大威胁之一。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   与大气污染相比,室内空气污染物种类众多,成分复杂,使用的建筑材料、装饰材料、办公设施、生活用品,以及室内的通风状况和人类自身活动等均可能对污染物种类和浓度产生影响,从而使相应的监测和控制工作变得极具挑战性。为更好地了解室内空气污染现状及研究进展,仪器信息网的工作人员(以下简称Instrument)特别采访了清华大学环境学院张彭义教授,请他就室内空气污染物的主要来源、危害、最新的净化技术手段、相应的检测方法和仪器、以及所面临的难题和挑战等大家所关心的话题进行了深入阐述。 /span /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 400px height: 600px " src=" https://img1.17img.cn/17img/images/201908/uepic/90163c22-06eb-4cd7-bf05-cb3818debf89.jpg" title=" 图片 1.png" alt=" 图片 1.png" width=" 400" height=" 600" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 清华大学 张彭义教授 /strong /p p    span style=" color: rgb(255, 0, 0) font-size: 18px " strong 室内空气污染:研究对象多,研究投入不足 /strong /span /p p    span style=" color: rgb(0, 112, 192) " strong Instrument:我国室内空气污染的来源主要有哪些?会对人体造成哪些危害? /strong /span /p p    strong 张彭义: /strong 室内空气污染主要有两大来源,室外源和室内源。室外源包含来源于室外的颗粒物、臭氧和工业点源污染等。当前最受关注的是细颗粒(PM2.5)污染,世界卫生组织规定的空气质量准则值中PM2.5的年均值为10μg/m3,而中国很多城市的PM2.5年均值仍在50μg/m3以上。除颗粒物之外,臭氧污染也应当引起广泛重视。室内源主要分为室内装修装饰材料所引起的污染,如甲醛、VOCs、放射性污染物等,以及人体本身活动所排放出来的污染物,如二氧化碳、水蒸气和VOCs等。人体污染一般不被提起,但实际上新风系统就是为了解决人体污染物释放而发展的。 /p p   室内空气污染物种类很多,主要可分为颗粒物(以悬浮颗粒物为主)、气态污染物(如甲醛、VOCs、臭氧等)、微生物、及放射性物质(如氡)等。这些污染物无论在种类或数量上的增加,都会引起人的一系列不适症状的现象,被统称为“病态建筑物综合症“,症状包含头晕、头疼、咳嗽、打喷嚏、眼睛流泪、精神不振等,严重的还会引起癌症,如高浓度甲醛、苯可能会导致白血病。 /p p    span style=" color: rgb(0, 112, 192) " strong Instrument:现阶段室内空气污染研究包含哪些方面?我国在这一领域的研究进展从全球来看处于一个什么样的位置?亟待解决的问题有哪些? /strong /span /p p & nbsp & nbsp & nbsp & nbsp strong 张彭义: /strong 室内空气污染研究主要包含污染状况、健康影响、检测方法、污染控制四个方面。具体来说,污染状况是要了解可能的污染物种类、污染水平、释放规律以及二次反应、迁移等。健康影响则是要搞清楚这些污染物单独、复合暴露对人体健康的影响,作用的机制等。检测方法,就是对各种室内微痕量污染物的检测分析手段。污染控制包括从源头上削减、末端的净化手段等。 /p p   室内空气污染研究的研究内容从污染物的角度来看,从最开始的室外大气污染所带来的二氧化硫、颗粒物、以及氡、环境烟气等,扩展到现在的挥发性有机物(VOCs)、半挥发性有机物(SVOCs)、PM2.5、臭氧、二氧化碳等。从需要解决问题的角度来看,一是解决室外大气带来的颗粒物、臭氧污染等,二是解决室内装修污染,三是解决建筑节能换风次数降低背景下人体及室内材料的污染问题,这三个问题分别是不同层次的需求。当前,发达国家更多的是面临第三个问题,而我国则主要还是需要解决前面两个问题。 /p p   随着我国城市化进程的加速,近二十多年来相继出现装修污染、颗粒物污染等问题,我们国家在这两个方面的研究相对较为活跃,也有不少研究人员在国际上有较大的影响力,已经从学习跟跑阶段提升到并跑阶段甚至领跑,但是在新问题的发现能力、新研究方向的开拓能力方面还有待提高。 /p p   室内空气污染是一个交叉性的研究领域,这个领域现有的主要力量来自建筑暖通学科,很少一部分来自环境学科。全球范围内这个领域的研究人员不多,科研经费投入也少,没有得到其应有的重视,与室内空气对人体健康有直接影响的重要性不匹配,很多问题也没有得到深入的研究,譬如不明的有害物质,痕量臭氧、自由基的反应,微量甲醛/VOCs的快速检测,室内新兴污染物的健康风险及其作用机制,嗅味物质的致嗅机制,各种污染物尤其是VOCs和气味物质的有效去除手段等。 /p p    span style=" color: rgb(255, 0, 0) font-size: 18px " strong 室内空气净化技术:不断探索,从挑战走向成功! /strong /span /p p   span style=" color: rgb(0, 112, 192) " strong  Instrument:针对一些主要的室内空气污染物,如甲醛、VOCs、臭氧等,当前的控制和净化技术有哪些?效果分别如何? /strong /span /p p    strong 张彭义: /strong 针对室内空气污染物控制的三大原则为:源头控制、通风和末端净化处理。源头控制是通过原材料控制、制造流程优化、热处理(加速释放,降低后期释放速率)和喷剂(反应、渗入/覆盖,延缓释放)等方式,达到减少源头污染物的种类及降低污染物的释放速率的目的。通风则是通过自然通风、机械通风和新风净化的方式稀释室内污染物。而末端的净化处理手段主要包括:吸附(物理吸附和化学吸附)、化学反应(氧化:臭氧和二氧化氯)、催化氧化(光催化、等离子体催化、热催化和室温催化)三种方式。 /p p   从污染物角度分析,针对甲醛的去除手段研究较多,目前比较有效的手段主要有三种:一是化学吸附,譬如对活性炭表面的官能团进行改性或接氨基官能团,利用氨基和甲醛发生配位吸附;二是室温热催化分解甲醛,一类采用贵金属,如铂、金等,价格昂贵,另一类就是我们课题组近几年来研究比较多的活性锰,采用二氧化锰分解片分解甲醛为二氧化碳;三是利用反应性的喷剂,譬如含氨基或胺基的化学试剂。其他还有采用气态试剂来去除甲醛的,譬如氧化性的二氧化氯、氯气、臭氧,以及氨气等,但这些气体本身也是有毒气体,所以并不提倡。 /p p   臭氧的去除主要采用室温催化分解手段,基础的催化剂是锰氧化物。臭氧去除面临最大的挑战是空气里的水分对催化剂催化性能的影响,这方面我们研究了近十年,近两年获得了两个比较好的催化剂,可以在相对湿度较高的情况下依然保持较好的催化性能。这些材料的性能虽然能够满足实际应用需求,但由于大众对臭氧污染的危害性认识不足,目前这些产品还没有得到大规模应用。 /p p   室内VOCs种类多、浓度低、释放速率变化大,除传统的活性炭吸附外,尚需开发更经济有效的技术和材料。 /p p    span style=" color: rgb(0, 112, 192) " strong Instrument:室内空气净化技术当前面临的困难和挑战主要有哪些?未来的发展方向如何? /strong /span /p p   strong  张彭义: /strong 当前面临的挑战主要有装修材料VOCs和人体污染物的有效去除。装修材料所释放的VOCs种类繁多,浓度较低,且不少类别污染物化学性质比较稳定,在室温下快速分解在理论上几乎行不通;同时,室内空间有限,净化装置的体积不能太大,而室内空气的总体积大,这就使得单次通过净化装置的时间在毫秒量级,在这样的短时间内要使污染物高效去除,采用分解的手段几乎不可能。人体污染物的种类也很多,包含各种VOC、氨气、硫化氢、一氧化碳,以及大量的二氧化碳和水蒸气,传统上这些污染物是通过输入室外空气换气/稀释解决的。但现在建筑物密闭性增加,要求进一步节能,降低新风量,这样既带来了挑战也带来了机遇。有没有可能开发新的技术、新的材料来解决低换气次数条件下的人体污染问题,而且新技术、新材料的使用成本/能耗不能高于建筑物所节省的能耗。 /p p   对于以上挑战,我们团队经过多年的实践和思考,提出的技术发展方向如下:开发易低温热再生的吸附材料和高效的低温催化分解材料,并在此基础上发展灵巧的净化设备。易低温热再生吸附材料在室温下快速吸附污染物,再在室温稍高的温度(如50-60℃)下能快速脱附完全,用较低的能耗实现污染物的持续、安全去除。高效的低温催化分解材料是在比室温稍高的温度下对脱附出来的有机污染物有着持续、高效的催化分解能力。 /p p   span style=" font-size: 18px "   span style=" color: rgb(255, 0, 0) " strong 科研与产业化同行 /strong /span /span /p p   span style=" color: rgb(0, 112, 192) " strong  Instrument:您从何时开始关注室内空气污染这一问题?对此做了哪些方面的研究?取得的研究成果主要有哪些? /strong /span /p p    strong 张彭义: /strong 我在1998年底博士毕业时就开始关注室内空气污染这一问题,2000年得到了国家自然科学基金资助,开展室内挥发性有机物(VOCs)的吸附光催化降解研究,后面陆续得到清华大学基础研究基金、国家自然科学基金、国家863计划、973计划等的资助,并陆续开展了室内VOCs、甲醛、臭氧催化分解方面的研究,研究的方法主要有光催化、臭氧辅助光催化、185nm紫外光催化、活性锰甲醛分解材料、锰氧化物臭氧分解材料等。 /p p   我们的研究成果中比较成功的是室温分解甲醛的活性锰材料,可以将甲醛在室温条件下催化分解为二氧化碳,单位质量的材料对甲醛的去除能力超过600mg/g,对于室内浓度水平的甲醛的去除能力是改性活性炭化学吸附容量的20倍以上,在长达1700多小时的长时间试验中保持活性稳定。基于此材料先后开发出甲醛分解毡、活性锰折叠滤芯和空气净化器等产品。通过多次技术改进,从2016年起实现了规模化的销售,累计销售产品20多万套。近年来,我们还开发了去除甲醛的喷剂,从2019年开始销售,已实现销售近万套。 /p p   除此之外,我们所研究的室温臭氧分解材料在性能方面得到了很大的提升,能够进行小批量的催化剂生产,基本完成了在多种基材上的涂覆试验,并且开展了几个月的寿命试验,已经能够满足室内外源低浓度臭氧的长期连续去除要求。同时,适合入住前室内装修污染净化处理用的185nm紫外光催化净化器已经完成了小风量样机的实测工作,目前正在开展600m3/h风量净化机的研制工作。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 297px " src=" https://img1.17img.cn/17img/images/201908/uepic/1336dec1-87a4-4724-ac51-994d56eabfd1.jpg" title=" 2.png" alt=" 2.png" width=" 600" height=" 297" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图左:甲醛分解毡、图中:活性锰折叠滤芯、图右:带有活性锰去除甲醛滤芯的空气净化器 /strong /p p    span style=" color: rgb(0, 112, 192) " strong Instrument:请问您的研究成果的产业化是如何顺利实现的?是否有和相关企业开展一些合作? /strong /span /p p    strong 张彭义: /strong 首先,这些产品的研发和关键材料的生产基本都是我们团队自己做的。在“南京领军型科技创业人才“的支持下,我们在2013年成立了南京宇杰环境科技公司并开始产品的批量化生产。一开始也没什么公司感兴趣,我们只好自己尝试做销售推广,但效果不好;后来慢慢有了一些知名度,不少公司跟我们来洽谈,我们就开始跟其他公司合作,将市场推广和销售交给他们,很快实现了规模化的销售。像甲醛分解毡、活性锰分解滤芯和甲醛去除喷剂等小型产品都是团队自主生产,而像空气净化器这种生产成本比较高的产品,我们将机壳和外部结构交给专业公司来做。 /p p   为了更好地进行产品测试,弥补校内实验室空间的不足,我们今年开始在浙江建设实验室,这样就有条件更好的开展产品的研发工作,譬如在模拟室内环境条件下对产品性能进行长时间的测试,以得到更可靠的数据来支持我们的产品。可以说,销售推广都是合作伙伴在做,我们只负责做产品和技术支持。我们的课题组是“两条腿走路“,一个是由研究生、博士后组成的研究小组,主要做应用基础研究,就新材料开发、材料性能机理及材料表征等展开研究;另一个是由科研助理等技术人员组成的研究小组,主要任务是进一步完善前期的研究成果,以及针对产品销售过程中出现的问题进行改进。 /p p    strong span style=" color: rgb(0, 112, 192) " Instrument:您的课题组目前正在进行的相关项目有哪些?下一步的研究计划是什么? /span /strong /p p    strong 张彭义: /strong 目前正在开展的研究主要有甲醛和臭氧的室温催化材料、VOCs的吸附材料,这些研究得到了苏州-清华创新引领行动专项、国家自然科学基金的资助。下一步的研究重点是VOCs易热再生吸附材料、低温催化氧化材料,还将开始布局开展人体污染物的释放和去除研究。 /p p    span style=" color: rgb(255, 0, 0) font-size: 18px " strong “治检产品”的身影在室内空气污染领域随处闪现 /strong /span /p p   span style=" color: rgb(0, 112, 192) " strong  Instrument:在您的研究中主要会用到哪些仪器设备?从您的实践看,相关仪器还有哪些方面需要提高和改进? /strong /span /p p   strong  张彭义: /strong 在我们的研究中会用到很多仪器设备,主要可分为两类,一是用于气态污染物的检测分析,例如臭氧分析仪、气相色谱、热脱附-气相色谱质谱仪、颗粒物检测仪等;二是用于材料的表征,例如物理吸附仪、化学吸附仪、XRD、SEM、HRTEM、球差电镜、XPS、顺磁共振等。 /p p   在气态污染物检测方面主要是检测限的问题,室内空气污染物的浓度很低,通常在ppb级别,我们希望能够测定到ppb级别的二氧化碳,同时也能实时地测定ppb级别的VOCs。而在材料表征方面主要对高分辨的球差电镜、STM有需求,可以帮助我们更加深入地了解催化剂的结构、形貌以及污染物的降解机制。 /p p   span style=" color: rgb(0, 112, 192) " strong  Instrument:目前市场上有很多针对室内空气质量检测及室内装修污染治理的产品,如何进行快速分辨? /strong /span /p p    strong 张彭义: /strong 总体来说,现有的室内装修污染治理的产品仍不能很好地满足实际需求。目前的产品形式主要有喷剂、被动式产品、净化器三类。喷剂主要有光触媒、生物酶等类型,其原理一般是掩盖/封闭或反应,对快速去除空气中的甲醛有较好的效果,也可以在一定期限内起到降低污染物释放量的作用,但是效果不持久,污染物以后还会不时地释放出来。被动式产品包括活性炭包、甲醛分解片等,在小空间内比较有效,应该组合使用,但还是缺少较好的除味产品。净化器具有快速去除大空间污染物的优点,但是要匹配适当风量的净化器,比如一个十几平米的卧室,一般选择风量至少在300m3/h以上的净化器,风量越大效果越好,同时还要考虑滤网的配置,应该选用配置有活性炭、活性锰滤网的净化器,并且要经常更换活性炭滤网。如果是着重于防止室外颗粒物污染,那么应该选用HEPA滤网。 /p p   在室内空气检测产品方面,有众多的便携式甲醛、TVOC检测器,这些设备的可靠性较差,不建议选购几百元的检测仪,可以找专业的检测机构,甲醛检测盒作为参考。便携式颗粒物检测仪可靠性相对较好。& nbsp /p p   span style=" font-family: 楷体, 楷体_GB2312, SimKai "   strong 后记: /strong 张彭义教授认为,环境学科是一门应用型学科,对应用型学科的人来说,所追逐的梦想不应该只是发表高影响力的论文,也要做一些真正实用的产品出来。张教授在采访过程中也强调,一种新材料或新试剂研发出来,除了考虑技术指标之外,还要考虑制备成本的经济性、制作过程的环保性等一些实际情况,否则一个技术即使成功卖给企业了,企业也不一定能做出合格的产品,勉强做出来可能也没法用。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   在和张彭义教授的交谈中,让笔者深刻感受到,做产品有时候可能需要比搞科研更加全面的考虑。一个成功的产品也许要为之付出更多的汗水和努力! /span /p p style=" text-align: right " 采访编辑:李学雷 /p p style=" text-align: right " 撰稿编辑:陈星羽 /p
  • 岛津应对PM2.5 空气污染物检测解决方案
    根据美国国家航空航天局(NASA)发布的2001-2006 年平均全球空气污染形势图,全球PM2.5最高的地区在北非和我国的华北、华东和华中地区。世界卫生组织(WHO)认为,PM2.5 小于10 是安全值,而我国的这部分地区全都高于50,接近80,污染形势极其严峻。 PM,英文全称为Particulate matter(颗粒物)。直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,它的直径不到人的头发丝粗细的1/20,被称为PM2.5。质量大于2.5微米、等于或小于10微米,可以进入人的呼吸系统的颗粒物,被称为PM10。PM2.5 的数值表示每立方米空气中这种颗粒的含量,这个值越高,就代表空气污染越严重。与较粗的大气颗粒物相比,PM2.5 粒径小,富含大量的有毒、有害物质且在大气中的停留时间长、输送距离远,因而对人体健康和大气环境质量的影响更大。2012年3月,环境保护部与国家质量监督检验检疫总局联合发布国家环境质量标准《环境空气质量标准》(GB3095-2012),增加了细颗粒物PM2.5和臭氧8小时浓度限值监测指标,该标准于2016年1月1日起在全国实施。 PM2.5 颗粒物的成分非常复杂,来源多样,且随着季节、气候、地点的变化而变化,检测PM2.5中的有机和无机成分涉及多种检测仪器。岛津公司作为全球著名的分析仪器厂商,长期以来,一直秉承&ldquo 为了人类和地球的健康&rdquo 的经营理念,积极应对一系列公众关注的环境问题,及时提供完善的产品和解决方案,致力于中国环境保护事业的进步与发展。此次,针对国家环境质量标准《环境空气质量标准》(GB3095-2012)的出台和环保监测的新动向和新热点,岛津公司最新推出了《岛津应对PM2.5 空气污染物检测解决方案》。 有关详情,请您向&ldquo 岛津全球应用技术开发支持中心&rdquo 咨询。咨询电话:021-22013542 期待我们的工作会给您带来有益的帮助! 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 从光到声音:痕量气体的光声分析
    概述通过廉价的移动设备将气体测量降至万亿分之一(ppt)范围——这在几年前是不可想象的,但由于创新的研发,这种测量越来越明显。可靠的、全区域的温室气体测量、城市中的移动NOx测量,甚至通过分析呼出气体进行的医学诊断,都只是光声光谱(PAS)的少数应用。光声光谱学光声光谱(PAS)结合了高选择性、低检测限、快速响应时间、宽测量带宽(ppt–permille)和巨大的小型化潜力。此外,通过使用3D打印部件或手机麦克风等廉价组件,PAS传感器也可以以低成本进入消费者市场。在此基础上,可以开发出适合特定要求的测量设备。本文介绍了环境诊断和呼吸分析领域的应用实例,这些应用正由奥赫雷根斯堡传感器技术应用中心(SappZ)与德国雷根斯堡大学合作进行研究和开发。PAS的功能原理(图1)基于分子的周期性和光学激发。光子的吸收增加了分析物分子的振动能量,从而将其转换为激发态。如果这些分子现在与周围的分子碰撞,振动能可以以动能的形式释放到样品气体中。图1:光声测量池的示意图:调制光源激发分析物分子,分析物分子通过与其他分子的碰撞将其振动能释放到样品气体中(见放大镜,右侧)。产生的声波由声学谐振器放大,并由麦克风检测。这种效应被称为“非辐射弛豫”。因此,样品气体的加热最小,然后返回到其平衡温度。由于光学激励是周期性的,因此热输入也以相同的频率重复。这种循环加热或冷却伴随着压力波动,该压力波动可以被麦克风检测为声波。共振放大,即将光路设计为声谐振器,将产生的声波放大多次,甚至可以检测到最小的浓度。环境中的污染物测量《京都议定书》将甲烷(CH4)指定为除二氧化碳(CO2)、一氧化二氮(N2O)和含氢氢氟碳化合物(HFCs)外的温室气体[1]。除了湿地等自然甲烷来源外,能源部门、垃圾填埋场和农业等人为来源也有助于全球甲烷排放。尽管大部分排放的甲烷通过与羟基自由基(•OH)的反应而降解,但大气中的甲烷浓度仍在稳步增加。由于在这种情况下,即使是浓度的微小变化也可能是显著的,因此对合适的测量系统的要求很高。例如,祖格斯皮茨的一个测量站记录到,1995年至2021期间,大气中甲烷含量增加了0.2 ppm,同时几乎增加了2 ppmV[2]。我们开发了一种检测极限为7 ppb的紧凑型光声CH4传感器,并针对环境条件进行了广泛的表征[3]。Read the full article on page 26 in Wiley Analytical Science Magazine Volume 2 - April/22. References[1] Vereinte Nationen. Das Protokoll von Kyoto zum Rahmenübereinkommen der Vereinten Nationen über Klimaänderungen Einleitung.[2] Umweltbundesamt. Atmosphärische Treibhausgas-Konzentrationen | Umweltbundesamt. https://www.umweltbundesamt.de/daten/klima/atmosphaerisch e-treibhausgas-konzentrationen#beitrag-langlebiger-treibhausgase-zum-treibhauseffekt [3] Pangerl, J. et al. (2022). Characterizing a sensitive compact mid-infrared photoacoustic sensor for methane, ethane and acetylene detection considering changing ambient parameters and bulk composition (N2, O2 and H2O). Sens Actuators B Chem. DOI: 10.1016/J.SNB.2021.130962 .作者简介Jonas PangerlOstbayerische Technische Hochschule (OTH) University of Regensburg, Regensburg, GermanyJonas Pangerl毕业于应用研究项目,于2020年在德国雷根斯堡的Ostbayerische Technische Hochschule(OTH)获得理学硕士学位。目前,他正在与德国雷根斯堡大学分析化学、化学和生物传感器研究所合作,攻读通过光声光谱进行人类呼气分析领域的自然科学博士学位。Max MüllerSensor Application Center East Bavarian Technical University (OTH) University of Regensburg, Regensburg, GermanyMax Müller于2020年在德国雷根斯堡的Ostbayerische Technische Hochschule(OTH)获得了电气和微系统工程硕士学位。目前,他正在与雷根斯堡大学分析化学、化学和生物传感器研究所和德国Sensorik ApplikationsZentrum(SappZ)合作攻读自然科学博士学位。自2018年以来,他一直在光声痕量气体传感领域进行研究,并专注于振动能量传递和经典声学现象。供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 冬季车内空气污染需警惕
    车内空气污染物的成分较为复杂,存在的挥发性有机物有几百种之多,常见的有烃类、醛、酮类等物质,危害较大的几种污染物是苯、甲苯、二甲苯、乙苯、苯乙烯、甲醛、乙醛及丙烯醛。当达到一定浓度时,短时间内人们在会出现头痛、恶心、呕吐等症状,严重时会损伤人的肝脏、肾脏、大脑和神经系统。01新车本身汽车下生产线就直接进入市场,各种配件和材料的有害气体和气味没有释放期。如果安装在车内的塑料件、地毯、车顶毡、沙发材料达不到环保要求,会直接造成车内的空气污染。02车内装饰大多数消费者买车以后都要进行车内装饰,有的车开了一段时间也要重新进行装饰,还有的经销商也以买车送装饰为优惠条件,一些含有有害物质的地胶、座套垫、胶粘剂进入到车内,这些装饰材料会散发有毒气体,主要包括苯、甲醛、丙酮、二甲苯等,必然会造成车内的空气污染。03空调蒸发器若车用空调蒸发器长时间不进行清洗护理,就会在其内部附着大量污垢,所产生的胺、烟碱、细菌等有害物质弥漫在车内空间里,导致车内空气质量差。04车内吸烟如果司机或乘客吸烟,不仅会大大增加挥发性有机化合物、一氧化碳和尘埃之类的空气污染物水平,所散发出的气味也可能会长期停留在车厢内。如何确定车内空气有害物质是否超标?国家标准GB/T27630-2011《乘用车内空气质量评价指南》于2012年正式实施,并于2017年进行了修订,对车内空气中的苯、甲苯、二甲苯和乙苯等有害物质制定了更严苛的限量值。试验过程要求将待检测车辆放置于标准环境中(环境温度25℃,相对湿度50%RH),按照标准规定要求执行程序(准备阶段→密封阶段→采样阶段)。在采样阶段, TENAX管采集苯系物类物质,采用热脱附气质联用系统(TD-GC/MS)分析;DNPH管采集醛酮类物质,采用液相色谱系统(LC-PDA)分析。保持车内空气的清新、健康,应该注意以下五方面:01车内原始包装必须拆除新车通常会有一些塑料包装,车主在开始用车后应尽早去除这些多余的包装,以免原本可以解决的污染闷在车内“发酵”,从而产生空气污染。02六个月内应少使用空调新车在六个月内,应尽量少使用空调,并经常开窗通风换气,从而保持车里空气的自然流通。如确实不能开窗,应将通风系统设置为外循环模式。03慎重选择购买车内装饰防止把含有有害物质的地胶、座套垫装饰放到车内。新购买的车内座套等纺织品,应先用清水漂洗以后再使用。04慎用化学合成车香水目前许多车香水是化学合成品,本身就具有一定的污染,在选择购买时应更谨慎,尽量选择天然材料制作的。慎用车内空气净化器和其他净化剂。05避免长时间驾驶乘坐特别是体质较弱者、妇女、儿童和有过敏性体质的人,要尽量避免长时间驾驶和乘坐新车。
  • 根治车内空气污染,赛默飞雾化仪助您一臂之力
    2012年03月09日 08:54:41 浙江在线环保新闻网 --   3月1日,一部与汽车有关的行业标准文件,即《乘用车内空气质量评价指南》(简称《指南》)开始执行。一时间,从&ldquo 看&rdquo 车到&ldquo 闻&rdquo 车的探讨好不热闹。这部《指南》的颁布,填补了我国车内空气质量标准的空白,使得车内空气检测终于有标可依。虽然《指南》并非强制性国标,目前只是一个推荐性的国家标准,但根治车内空气污染,终现一线曙光。面对终于出台的相关标准和如何有效参照并改善的爱车空气这一问题,我们不妨一同解读《指南》背后的故事,谈一谈如何处理车内异味这一实际问题。   八年,为何姗姗来迟?   其实,自从汽车走入我们的生活,便与我们息息相关。我们和它一同行驶,一同&ldquo 呼吸&rdquo 。近两年,中国汽车业的蓬勃发展,也让我们饱受了汽车尾气的困扰。然而,车内空气质量不该被忽略。尽管我国对这方面的关注由来已久,但是《指南》的现身却迟了八年。   2004年,我国着手制订车内污染控制标准,但因种种原因难产。2004年6月,我国《汽车内环境质量标准》起草专家小组成立,但因检测技术存在难点等原因,标准搁浅。   2008年3月,《车内挥发性有机物和醛酮类物质采样测定方法》实施。虽然该&ldquo 方法&rdquo 明确了车内存在的一些污染物种类,但并未包含如何判定车内空气污染物超标等问题,使消费者维权面临无据可依。   2009年年底,针对由环保部牵头制定的《车内空气中挥发性有机物浓度要求》,中国汽车工业协会提议,该文件应采用推荐性国家标准&ldquo GB/T&rdquo ,而非强制性的&ldquo GB&rdquo 代号。   2011年,国家环保部与国家质检总局联合发布GB/T27630-2011《乘用车内空气质量评价指南》。该《指南》于2012年3月1日起正式实施,对新车内的苯甲醛等八种常见挥发性有机物设定限值。参与标准制定的除北京市劳动保护科学研究所、北京市环境保护监测中心等机构外,还包括大众、日产、通用三大汽车公司。该指南的实施可以为汽车内空气质量监督检测提供科学的标准和依据,主要适用于销售的新车,使用中的车辆也可参照使用。   车内空气缘何不够清新?  许多新车的车主都有过这样的经历:打开车门,多少有些刺鼻的气味马上扑面而来,无奈,只能期待时间长了难闻的气味终会挥发干净。除了忍受,似乎没有更好的办法。可是,为什么车内空气会这样,到底是哪里出了问题呢?   我们先看看《指南》。《指南》中明确规定了车内空气中有关苯、甲苯、二甲苯、乙苯、苯乙烯、甲醛、乙醛、丙烯醛等八种常见的车内挥发性有机物浓度的限值。这也就是说,这八种常见的车内挥发性有机物来自哪里,哪里就有可能成为空气污染源。作为该标准的起草人之一,北京理工大学机械与车辆学院教授、汽车动力性及排放测试国家专业实验室主任葛蕴珊说:&ldquo 这些污染大多来自车辆的内饰,如座椅、仪表盘、地胶、密封条等,或来自车辆生产所需的稀释剂、胶水油漆及涂料。&rdquo   据了解,车内空气污染的三大来源是:一、新车的车内各种配件;二、汽车内饰件材料,主要有塑料类、纤维纺织类、皮革类、橡胶类等四大类材料;三、生产中使用的溶剂型油漆、稀释剂和黏合用的胶水油漆和涂料。   这些必不可缺的零配件在为我们打造爱车的同时,也成为我们难与爱车亲近的隐患。因为车内空间狭窄、密闭,污染物不容易挥发,尤其是夏天阳光照射和冬季开暖气时,污染物很容易大量聚集。新车从出厂到库存、运输,交到客户手上,一直处于密闭状态,污染性气体很难挥发。所以,当新车交付时,车内污染物浓度往往会达到较高水平,对车主健康造成较大伤害。   怎样才能帮爱车去味?   有什么办法,可以标本兼治?那只能先从源头说起。要提高车内空气质量,离不开生产厂家的努力。一是原材料,二是加工工艺。首先,汽车生产厂商应尽量选用挥发性少的原材料,保证车辆使用材料的环保性,从根本上减少车内空气污染来源。再者,不同的加工工艺也会影响车内空气质量。比如说,有些车内材料是用胶粘的,在加工过程中没有经过烘烤和通风,就会导致挥发性有机物浓度较高。与胶粘相比,焊接工艺能有效减少挥发性有机化合物的挥发。而在粘胶过程中增加烘烤和通风环节,也能使有害气体在整车装车前尽量挥发。   撇开生产环节不谈,新车到手,有哪些招可以散散这难闻的气味呢?   温馨提示一:新车在行驶的前六个月内,应尽量少用空调,时常开窗以加强车内通风换气。   温馨提示二:如要进行车内装饰,饰品须严格选择,防止把含有害物质的地胶、座套垫装饰放到车内。   温馨提示三:对于新购买的车内座套等纺织品,应先用清水漂洗以后再使用。慎用香水,目前许多香水是化学合成品,本身就具有一定的污染,在购买时应注意选择由天然材料制成的。   温馨提示四:新车出厂时通常会有一些塑料包装,车主在开始用车后应尽早去除这些包装,以免污染闷在车内,从而产生空气污染。   《指南》能帮您维权   在该《指南》出台前,车主能够参考的空气质量评定标准是《室内空气质量标准》,两者相对比,《指南》涉及的部分指标浓度均比室内空气标准略为宽松。就如对于甲苯的浓度,室内标准是不超过0.2毫克/立方米,车内标准是不超过1.1毫克/立方米。但是《指南》的发布,无疑增强了消费者向&ldquo 空气&rdquo 开战的信心和提供了依据。   虽然目前《乘用车内空气质量评价指南》只是一个推荐性的国家标准,但按照国家标准的要求,推荐性标准一经接受并采用,或各方商定同意纳入经济合同中或在法律法规引用,就成为各方必须共同遵守的技术依据,具有法律上的约束性。在经济合同中引用的推荐性标准,在合同约定的范围内必须执行。这或许意味着,如果消费者发现购买的乘用车内相关指标无法达到《指南》标准,则说明产品存在问题,不合格。消费者可以据《指南》进行维权,要求更换或维修汽车。
  • 天气转暖 臭氧取代PM10再次成首要空气污染物
    昨日,在蓝天白云下,从上午8时起,上海空气中的臭氧含量直线上升,到下午2时取代PM10成为首要空气污染物。   近期,随着气温上升,臭氧已不是第一次成为申城首要空气污染物。市环境监测中心的专家表示,一般情况下温度高、光照强、臭氧生成条件充足,同时,PM10、PM2.5浓度相对较低的情况下,臭氧的浓度指数明显较高,在一天中,下午2-3点臭氧浓度最高。   根据上海市空气质量实时发布系统显示,在昨日上午8点至下午2点,臭氧浓度出现了直线上升,从78微克/立方米上升至138.2微克/立方米,尚未超过160微克/立方米的8小时浓度限值。受24小时累积影响,到昨晚8时,臭氧8小时仍是首要污染物。在前天,臭氧8小时作为首要污染物持续了4个小时。虽然近两天上海的空气质量都是良,但臭氧的污染趋势却日渐明显。   市环境监测中心的专家称,随着夏季的到来,这种情况还会经常出现,因为臭氧污染的生成与气温密切相关,主要是由大气中的氮氧化物、碳氢化合物在特殊的气象条件下,如强烈日光、无风或微风等,经过一系列复杂的光化学反应生成的。上海环境空气质量的臭氧浓度的高峰值一般出现在夏季至秋初,高值往往存在于每日中午时分,这是由于夏季日光强、光化学反应的结果。   由于臭氧主要涉及短期急性健康效应,所以在去年公布的新《环境空气质量标准》中,只规定了臭氧的8小时平均浓度限值和1小时平均浓度限值。臭氧对人体健康的危害主要是强烈刺激呼吸道,引起气道反应和气道炎症增加、哮喘加重等。
  • 美国TraceDetect痕量金属分析仪登陆德祥
    美国TraceDetect(微检)公司以化学传感器的微处理技术而著称,目前是世界上最专业的重金属分析仪表制造商。 公司具有Nano-Band电极*技术并研制出系列重金属分析仪,可对水样中的金属含量快速测定,灵敏度为全球最高,可达ppt级。 三大产品线 便携式: Nano-Band Explorer II-------------------专门用于分析现场水样中的痕量金属浓度 ◆ *的Tri-TrodeTM电极技术,集Nano- Band的工作电极、参比电极和辅助电极于一身 ◆ 测试金属种类:铅、铜、镉、锌、砷、汞 ◆ 测试过程简单快速 ◆ 与ICP-MS具有极好的相关性(+/-10%) ◆ 支持多种测量及技术(溶出伏安法、循环伏安法、安培测量法、氧化还原电位、离子电极等) ◆ 自动生成报告 全自动: SafeGuard------------全自动痕量分析技术,操作简单且功能强大 当把样品放入仪器后,只需轻轻一按&ldquo 开始测量&rdquo 按钮,就可在30分钟内给出1ppb精度的数据 ◆ 全自动化操作,自动传输,确保操作者的安全 ◆ 采用Nano- Band*技术 ◆ 测量种类:砷、铅、镉、汞、铜、锌 ◆ 与ICP/MS有极好的相关性 ◆ 内置数据存储器可自动生成报告并将结果存档 现推出最新的SafeGuard II& III: 可应用于更多金属的监测---------铜、铅、镉、锌、镍、钴、铬、钒、锑、铁 在线式: Arsenic Guard--------------在线总砷分析仪,对砷监测提供了完整的过程控制 *台完全自动化,监测饮用水中砷含量在线分析仪。 ◆ 全自动在线操作 ◆ 消除操作误差,精度达1ppb ◆ 与ICP-MS具有极好的相关性(+/-10%) ◆ 最多可支持四个样品流 ◆ 全自动数据采集和自动化信息数据管理系统界面 ◆ 低操作成本,易于维护和保养 还根据客户的不同需求推出Metal Guard----------------在线金属分析仪 可分别用于铜、铅、镉、锌、镍、钴、铬、硒、钒、锑、铁的在线监测 应用: 饮用水------------- TraceDetect提供适用于各种市场和应用的产品类型 废水---------------- 通过自动化与在线监测控制砷处理费用和步骤的完整性 食品饮料---------- 可视配料、工艺路线和产品的污染物检测 工业---------------- 在你的控制下进行现场产品污染物和过程残留污染物的识别 学术研究------------即时、准确、低成本进行实验室或现场金属测量 半导体---------------金属污染物的在线检测,防止灾难性的产量损失,降低废物处理成本 矿产业---------------在确保员工和社会健康与安全的同时,降低运营成本 更多产品请登陆德祥官网:www.tegent.com.cn 德祥热线:4008 822 822 邮箱:info@tegent.com.cn
  • 打破国外垄断 国产微痕量多组分气体标物的创新之路 ——访中国测试技术研究院化学研究所副所长潘义
    由中国测试技术研究院化学研究所与四川中测标物科技有限公司共同完成的科技创新项目——《微痕量多组分气体标准物质制备新技术研究及应用》荣获了2019年度中国计量测试学会科学技术进步一等奖。据了解,该项目不仅实现了高活性、易腐蚀微痕量多组分气体标准物质及其制备技术的自主可控,还实现了多种产品的进口替代,并创造间接经济效益近千亿元,具有十分重要的经济社会效益。那么,什么是“微痕量多组分气体标准物质”?该项目有哪些创新?为何能取得如此大的经济效益?我国微痕量多组分气体标准物质的研发情况是怎样的?仪器信息网近期采访了中国测试技术研究院化学研究所副所长潘义,请他就以上问题进行了解答。 中国测试技术研究院化学研究所副所长 潘义仪器信息网:您能具体介绍下“标准物质”的概念以及何为“微痕量多组分气体标准物质”么?潘义:标准物质是具有准确量值的测量标准,具有足够均匀和稳定的特性,可以用来定性或定量。标准物质可以是单一的或混合的气体、液体和固体,气体标准物质是标准物质的重要组成部分。作为测量参考标准,标准物质是用于测量过程控制和测量结果评价不可缺少的工具,是建立一致可比的全球测量互认体系的物质基础和保障。在公平贸易、医疗卫生、环境监测、能源化工、先进制造,航空航天、安全防护、应急救灾和科学研究等国民经济的众多领域,每天都要进行千千万万次测量活动,这些测量活动中有80%都需使用标准物质以确保检测数据准确可靠。标准物质的技术水平直接影响到检测数据的质量,是确保检测数据准确可靠的“标尺”与“砝码”,是产品质量保证的源头,是确保测量结果可靠与国际互认的核心与关键。微痕量多组分气体标准物质是指量值在10-9至10-6数量级、组分数较多的一类气体标准物质。微痕量多组分气体标准物质的研制及其应用,对于统一我国气体分析量值体系,推动新的检测技术进步和确保产业的高质量发展,都具有十分重要的意义。仪器信息网:您能介绍下“微痕量多组分气体标准物质制备新技术研究及应用”这一项目的研究背景么?潘义:随着科学技术的迅猛发展,应用技术研究也有了长足进步,这也给全球标准物质研究带来挑战,即标准物质的定值特性已经由单一组分向多组分,常量、微量向痕量、超痕量转变,以满足越来越多样的应用需求。挥发性有机物、硫化物、氮氧化物、氨气、氯气、氯化氢、氟化氢等气体成分是环境监测、能源化工、医疗卫生、汽车制造、集成电路等国民经济领域重点监测的物质,具有含量低、组分多、易吸附、易腐蚀等特点。标准物质是确保这些气体组分监测数据准确可靠的“标尺”与“砝码”,但高精确度、高稳定性微痕量多组分气体标准物质的制备一直是我国的技术瓶颈,长期以来该类产品大部分依赖进口,受制于人。作为专业的国家级气体计量技术机构,我们有责任和义务开展科技攻关,解决这个“卡脖子”问题。本项目主要目标就是攻克微痕量多组分气体标准物质制备关键技术难题,研制出高质量的气体标准物质产品,替代进口,建立批量化生产线,并进行推广应用。仪器信息网:请问该项目主要取得了哪方面的创新?潘义:项目的突出技术创新体现在以下两个方面:首先是在宽沸点多组分精确制备技术方面取得了创新。我们克服了传统制备技术在转移过程中原料残留不均匀引起称量定值不准确的技术难题,在国内首次实现单个液体原料按照饱和蒸气压由低到高依次转移,大大提高了制备精度,降低了称量不确定度。其次是解决了铝合金气瓶内壁惰性化处理技术。项目组突破了高分子材料涂覆和金属镀层铝合金气瓶内壁处理技术,在国内首次攻克了微痕量多组分高活性组分(挥发性有机物、硫化物、氮氧化物、氯气、氯化氢、氟化氢等类)在气瓶中吸附严重和无法长期稳定存储难题,与普通气瓶相比,显著提升痕量活性气体的存储稳定性。此外,我们还在全惰性无死体积进样分析技术方面进行了集成创新,显著缩短了痕量吸附性、腐蚀性气体分析的系统吹扫稳定时间,降低了分析过程引入的不确定度;我们在产业化方面也进行了集成创新,项目组率先开发了气体标准物质智能化配气管理系统,实现条码管理生产流程,避免人为查找,进度可控;单组分标气制备效率可达到人均每天60瓶;还可自动生成原始记录和证书报告,自动计算定值,形成完整的产品质量追溯体系。这些产业化创新工作都是围绕提高产品质量和生产效率进行的。 仪器信息网:目前该项目取得了哪些研究成果?主要有哪些应用?该项目的完成具有哪些重要意义?潘义:项目取得国家一级标准物质2种,国家二级标准物质24种;制修订国家标准5项;取得授权发明专利和实用新型专利各1项;发表科技论文10篇;项目成果总体达到国内领先,部分成果填补国内空白,达到国际先进水平。项目的标准物质成果在计量校准、环境监测、能源化工、仪器研发和科学研究等行业得到了广泛应用,主要用于量值传递、生产过程质量控制、产品质量检测、仪器研发以及支撑标准制修订等方面。具体来讲,主要体现在以下几个方面:首先,项目的研究成果大大完善了我国微痕量多组分气体成分检测量值溯源体系,研究工作及成果得到气体计量测试领域国内外同行广泛关注和认可;项目发展的技术及研究成果,在服务国家重大专项,支撑国家工程实验室建设方面提供了技术支撑;多组分微痕量的VOCs气体标准物质研究成果推动了我国环境空气VOCs在线监测体系的加快建立;天然气全组分气体标准物质为天然气“提质增效”,促进天然气行业高质量发展做出了积极贡献;项目的微痕量硫化物气体标准物质研究成果还解决了长期制约我国氢能领域10-9量级硫化物杂质准确计量问题,确保氢能相关气体成分量检测数据的准确可靠。该项目的完成意味着我国实现了高活性、易腐蚀微痕量多组分气体标准物质及其制备技术的自主可控,满足了我国环境监测、能源化工等重点行业的需求,确保了国家检测数据的量值安全。我们的标准物质产品打破了国外垄断,价格已降至进口产品的2/3以下,供货周期缩短至进口产品的1/3以内,产品已经远销国(境)外。近年来我国生态环境部所重点关注的39种、57种、65种、117种等系列环境VOCs气态污染物检测,以前大部分使用的是美国Linde、法国液空等国外气体公司的产品,造成我国VOCs检测数据的量值溯源性受制于人。很高兴的是我们在微痕量多组分VOCs系列气体标准物质方面已经完全替代进口,氮气中42组分挥发性有机物混合气体标准物质(GBW 08196)、氮气中57组分挥发性有机物混合气体标准物质(PAMS臭氧前体物,GBW 08808)等系列VOCs气体标准物质现在也已经相继取得国家一级标准物质定级证书,确保了我国环境监测相关数据的溯源性实现自主可控。多家知名跨国分析仪器公司的解决方案都转而使用本项目研发的标准物质产品,项目团队的标准物质成果已经得到了国际认可。仪器信息网:您能否谈一谈本项目团队在标准物质国际互认方面所做的工作?潘义:作为建立化学测量最有效的工具,标准物质可以保证检测结果的准确性和溯源性。同时,标准物质也是全球测量互认体系的支撑。英国国家物理实验室(NPL)在微痕量多组分气体标准物质研究领域处于世界领先水平,其研发的30组分臭氧前体物VOCs气体标准物质被选择作为世界气象组织(WMO,World Meteorological Organization)的基准气体标准物质。项目团队分别于2016年和2018年与NPL进行了两次标准物质计量比对(制备比对),分别是1×10-6 mol/mol氮中42组分VOCs气体标准物质和0.1×10-6 mol/mol氮中30组分VOCs气体标准物质,两次比对结果En值均小于1,取得很好的国际等效度。正是通过积极参与国际比对,确保了多组分微痕量VOCs气体标准物质的国际等效,继而为社会提供更加准确可靠的测量结果溯源共享服务,实现“更准确、更高效、更广泛”的测量。在标准物质计量比对方面,下一步我们将按照国家市场监管总局关于加强计量比对的指导意见要求,加大力度持续开展环境保护、产品质量安全、医疗卫生、安全生产、食品安全等领域密切相关的重点气体标准物质的国际国内计量比对,为服务国家产业高质量发展做出积极贡献。仪器信息网:请问贵团队下一步的研究重点是什么?潘义:我们团队一直以来都是围绕气体成分量的测试计量技术与标准化开展研究工作,建立和完善相应的气体成分检测量值溯源体系。项目组下一步主要工作是加快完善环境监测、能源化工等重点领域所需要的气体标准物质体系,以满足行业高质量发展的要求;同时紧跟国际前沿气体计量研究方向,建立超低含量(10-12数量级)气体成分量检测溯源体系,开发超低含量气体成分量的测试计量技术完整解决方案,满足氢能与燃料电池、航空航天等行业的超精密测量需求。
  • 新品推荐—飞瑞特F950系列傅立叶变换红外气体分析仪
    新品推荐——飞瑞特F950系列傅立叶变换红外气体分析仪F950系列分析仪使用傅立叶变换红外光谱技术(FTIR),使其多功能性成为优势。每种化合物在红外光谱内都具有特定的吸收频率,红外光谱分析使用算法和数学公式揭示了化合物的浓度。 F950系列傅立叶变换红外气体分析仪具有以下特点和优势:1.高度订制检测模式订制:根据具体的应用场景可以分为壁挂式、19英寸机架式以及便携式三种模式;仪器的检测成分订制:用户可以自由选择具体的检测成分,该仪器可以检测几乎所有气体成分;量程订制:具体检测成分的量程可以实现从ppb级别到百分比级别的订制。2. 全谱范围检测:我们的FTIR气体分析仪可以检测几乎所有气体成分。它能够覆盖广泛的波数范围,从红外到远红外,使您能够分析多种气体成分,包括有机气体、无机气体、挥发性有机化合物等。无论是常见的气体还是稀有的气体,我们的仪器都能够准确、可靠地进行分析。3. 高灵敏度和检测限:我们的FTIR仪器具有5米长的光路以及0.5cm-1超高光谱分辨率,这使得仪器具备出色的灵敏度和低检测限,同时具备高选择性和低干扰。它可以检测到非常低浓度的气体,甚至在ppb级别下进行精确测量,在环境监测、空气质量评估、工业安全和卫生监测等应用场景中发挥重要作用。4. 宽量程和高精度:我们的FTIR气体分析仪具有宽广的检测量程,从10ppb到100%。这意味着它可以适应不同浓度范围的气体分析需求,从极低浓度的痕量气体到高浓度的纯气体。同时,仪器具有高精度和稳定性,确保您获得准确可靠的分析结果。5. 实时监测和快速响应:我们的仪器具有快速的响应时间和实时监测能力。它能够实时获取气体成分的数据,并提供即时的监测结果。这使得我们的仪器非常适用于环境监测、工业过程控制、事故应急响应等需要迅速反应的应用场景。6.应用灵活:气体检测成分配置可以随时远程更改,无需在分析电脑中存储大量光谱数据库。仪器可以实现多量程测量,并对可能存在的交叉干扰进行补偿。对于新增气体,只需要在软件中增加校准文件即可,不需要对硬件做出任何改动。除此以外,设备还具备自动校准功能,实现零维护。更重要的是主机重量仅有14KG,作为便携式设备使用时非常易于携带。根据这些特点和优势,我们的FTIR气体分析仪可以应用于多种领域:1. 环境监测:便携式固定污染源检测、连续在线监测(CEMS)、环境空气污染物、汽车尾气检测等。它可以帮助您了解和评估环境中的气体污染情况,制定相应的环境保护措施。2. 工业安全与控制:食品加工、医疗设备、石油化工、职业安全、矿业、沼气/合成气分析、工业过程监测、气体泄漏检测、麻醉气体检测、爆炸危险物质检测等。它可以及时发现和识别潜在的危险气体,保障工作场所的安全和员工的健康。3. 科学研究与分析:用于材料研究、化学反应分析、生物医学研究等。它可以提供关键的气体成分分析数据,帮助研究人员深入了解材料性质、反应过程和生物体内的气体代谢等。我们的FTIR气体分析仪具有卓越的性能和广泛的应用范围,无论是在实验室还是工业现场,都能为您提供准确、可靠的气体分析解决方案。
  • PM2.5伤大脑?空气污染物增加患老年痴呆症风险
    墨西哥蒙大拿大学(Universities of Montana)研究人员联合其他研究所的学者在最近一期的Journal of Alzheimer' s Disease发表了一篇研究结果。他们发现携带载脂蛋白E(apolipoprotein E,APOE) &epsilon 4等位基因的儿童如果暴露在空气污染物之下(包括PM2.5),出现认知记忆方面的减退,患老年痴呆的风险会有所增加。   APOE&epsilon 4等位基因是最常见的阿兹海默症遗传风险基因。不过空气污染物与阿兹海默症之间的关系的却很少有人注意。而墨西哥城是一个快速发展伴随严重环境污染的城市,800万城市生活的儿童都不得不每天暴露在PM2.5超标的环境中。为了评估APOE&epsilon 4健康儿童在认知,嗅觉和代谢性脑指数方面是否受到空气污染物影响,研究人员对50个生活在墨西哥城市的13.4± 4.8岁携带APOE&epsilon 3或者APOE&epsilon 4的孩子进行了韦氏儿童智力量表(WISC-R)评分和气味鉴别实验,同时用质子磁共振测量海马,脑桥,额叶顶叶白质的脑代谢产物。如预测一样,携带APOE&epsilon 4的孩子右额叶白质的关键代谢产物比例比APOE&epsilon 3的儿童要少,对肥皂的臭味鉴别困难,言语和智商平分低于平均分,并且显现出短期记忆和对关注的显著递减。   研究人员认为是持续暴露于城市空气污染造成的认知不佳,胶质细胞和神经元代谢的改变。居住在严重污染的城市,APOE&epsilon 4的综合影响可能导致神经退行性变化的加速。空气污染是一个严重的公共卫生问题,暴露于空气中污染物的浓度达到或超过现行标准已经被证实与神经炎症和神经病理学相关。在美国,有2亿人居住在臭氧和细颗粒物污染物超标的环境中。而且已经有证据显示颗粒污染物与因中风,心血管和呼吸系统疾病的死亡率增加有明显关系。而生活在像墨西哥大城市儿童的相关的健康问题更多。   目前迫切需要有一个更深入的研究证明APOE&epsilon 4和空气污染的相互作用能影响儿童的大脑,或许将来能提供对阿尔茨海默氏病的预防前所未有的新提示。
  • 臭氧再成长三角珠三角首要空气污染物
    (见习记者 张嫣)环保部发布4月份重点区域和74个城市空气质量状况报告。长三角、珠三角区域空气中,臭氧污染相比去年同期继续恶化,并再次取代PM2.5,成为区域首要空气污染物。  5月25日发布的报告称,长三角和珠三角区域空气质量超标天数中,以臭氧为首要污染物的天数最多,其次是PM2.5。长三角臭氧8小时值与上年同比上升10.1个百分点,珠三角亦见3.7个百分点的增长。而三大区域PM2.5月均浓度均有较大幅度的同比下降,珠三角地区降幅达22%。  总体来看,虽然京津冀区域空气质量达标天数比例(24.1%-76.7%)仍在长三角(51.7%-96.7%)和珠三角区域(80%-100%)之下,但与本区域上年同比和上月环比均有所改善,而长三角和珠三角区域空气质量则出现同比、环比均下降的趋势。  公众与环境研究中心主任马军告诉财新记者,臭氧污染持续加重会成为未来的一个长期趋势,提高光化学烟雾的风险,并对人体造成更大危害。虽然平流层上的臭氧层阻挡了来自太阳的大部分紫外线,保护了地球上的生命,但是近地面由于人类活动产生的臭氧,却是看不见的健康危害。臭氧的强氧化作用,不仅会危害人体的呼吸系统,而且会危害神经甚至生殖系统。  马军表示,臭氧污染作为氮氧化物与挥发性有机物VOC光照后形成的二次污染,一次污染物的排放量以及当年的天气日照情况都会影响该年臭氧污染量的波动。因此,某种程度来讲,臭氧污染与PM2.5的污染会呈现跷跷板的关系。当PM2.5得到控制时,大气透明度好,光照便加强,就会有利于氮氧化物与VOC进行反应。  据悉,上海、北京等地方政府正在讨论制定相关地方标准,其中包括VOC控制指标。环保专家呼吁,中国“十三五”规划中,应当进一步对污染物进行综合治理控制,以防止二次污染物的爆发。
  • 有害痕量元素排放清单:为控污治污提供科学依据
    10月8日,国际烟草控制政策评估项目(ITC)组织公布的科研报告显示,我国13个卷烟品牌被检测出含有重金属(砷、镉、铅等),其含量与加拿大产香烟相比,最高超出三倍以上。   据《重庆商报》报道:香烟中的重金属可能来自烟草产区土壤中。相关研究表明:生物从环境中摄取重金属,可以经过食物链的生物放大作用逐级富集,并通过食物等形式进入人体,引发人体某些器官和组织产生病变。   有害痕量元素及其化合物排放已成为大气污染控制的一个新兴而前沿的研究领域。在国家自然科学基金的资助下,北京师范大学副教授田贺忠带领的研究小组对我国2005~2020年能源利用及有害痕量元素排放发展趋势进行了研究,为我国掌握典型有害痕量元素污染排放现状及空间、行业分布特征提供了基础数据,并为国家和地方政府制定相关痕量元素污染排放法规、标准及技术与经济政策等提供了科学依据。   痕量元素引关注   上世纪50年代,日本熊本县水俣湾附近发现了一种奇怪的病,这种病最初出现在猫身上,被称为“猫舞蹈症”。病猫步态不稳,抽搐、麻痹,甚至跳海死去,被称为“自杀猫”。随后不久,发现也有人患有这种病。患者由于脑中枢神经和末梢神经被侵害,口齿不清、步履蹒跚、面部痴呆、手足麻痹或变形、视觉丧失,严重者精神失常,或酣睡,或兴奋,身体弯弓高叫直至死亡。这种怪病就是日后轰动世界的“水俣病”。   “日本发生的水俣病(汞污染)和骨痛病(镉污染)等都和有害痕量元素污染有关。”田贺忠说,“尽管痕量元素在空气中含量很小,但它的浓度超过一定范围就会显示出极大的毒性。许多痕量元素毒性极大,而且化学稳定性好,具有迁徙性、沉积性。它们不仅会引发人体呼吸系统的严重疾病,而且会污染水资源、土壤,造成生态环境的破坏。”   1990年,美国在《清洁空气法(修正案)》中列出了189种有害空气污染物,其中包括11种痕量元素(空气中含量很少的元素,如锑、砷、铍、铬、铅、锰、汞、镍、硒等)。在这11种痕量元素中,汞、砷、硒三种挥发性有害痕量元素的排放污染尤其引人关注。   有研究者发现,近10年来北欧、北美内陆偏远地区无明显工业污染源的湖泊中,鱼体内汞浓度的升高是由于大气汞沉降造成的。   美国环境保护署的报告称:燃烧装置排放的大气污染物中主要是有害的有机成分如苯并芘(BaP)、硫化物、氮氧化物、未燃烬可燃物以及重金属元素,它们几乎是造成所有癌症的原因,其中尤其以亚微米级颗粒形式存在的重金属排放物具有最大的威胁性。   汞、砷、硒等属于挥发性有害痕量元素,在高温燃烧或热解过程中不会被分解,而是挥发成蒸气,进而在烟道下游温度降低时通过结核、凝结、冷凝等过程形成许多亚微米颗粒。研究表明,尽管亚微米颗粒仅占燃煤总飞灰质量的5%左右,却富集了总痕量元素质量的13%~61%。汞、砷、硒等痕量元素主要富集在这些亚微米颗粒表面,这些亚微米颗粒很难被各种常规的污染控制装置有效捕获。它们大部分会随同亚微米颗粒排放到大气中,而这些亚微米粒子在大气中主要以气溶胶形式存在,不易沉降,而且上面富集的大部分有毒痕量元素也难于被微生物降解,可长时间停留在大气中,不仅影响大气能见度,而且通过呼吸系统进入动植物和人体内并不断蓄积,并可转化为毒性很强的金属有机化合物,还会通过干湿沉降过程进入水体和土壤,从而对水和土壤生态环境产生污染危害。   因此,大气汞、砷、硒等挥发性有毒痕量元素污染排放、迁移、沉降及控制等,也成为国际学术界关心的大气污染防治新兴研究热点之一。   燃煤:排放痕量元素祸首   美国环保局(USEPA)科学家Linak曾指出:元素周期表中几乎没有什么元素不存在于煤中,它们都是煤的重要组分,根据其含量不同,通常可将煤的元素组分划分为主量元素、次量元素和痕量元素三大类。其中,包括多种有毒痕量元素,如硼、铍、锗、镉、钴、铜、锰、铅、镍、汞、铬等。其中,汞、砷、硒、铅、镉、铬等元素对环境的危害最大。   化石燃料和矿物中的痕量元素在高温燃烧或熔炼过程中因各痕量元素的浓度、赋存状态以及操作工况的差异所表现的热行为不同,其挥发性也表现不一。但在所有条件下,汞、砷、硒都具有挥发性。   “由于汞极易挥发, 在燃烧过程中极难控制,燃煤排放被认为是最大的人为大气汞污染源。大气中颗粒汞主要结合在细颗粒物上, 对人体的危害更大。特别是环境中任何形式的汞均可在一定条件下转化为剧毒的甲基汞。进入环境中的汞会产生长期的危害, 所以汞是煤中最主要的有害微量元素之一。”田贺忠说。   砷是一种蓄积性元素,是当前环境中使人致癌的最普遍、危害性最大的物质之一。砷可通过呼吸道、消化道和皮肤接触等进入人体,随血流分布于肝、肾、肺、脾、骨骼、肌肉等部位,特别易于在毛发、指甲中蓄积,从而引起慢性中毒。尽管砷在煤中的含量很低,但由于煤消耗量巨大,煤中砷长期排放的积累不仅对燃煤电厂附近产生污染,而且可通过远距离的传输对比较遥远的生物产生负面影响。   “我们的研究发现,抚顺、沈阳、兰州、贵阳、成都、重庆等城市的大气中砷含量高于其他地方就和燃煤有关。西南地区由于高砷煤的使用,曾造成3000多例砷中毒事件。”田贺忠说。   燃煤是大气中硒的主要来源。据估算,全球发电用煤所排放的硒量占人为硒排放量的50%以上。燃煤也是造成一些地区土壤、水、植物中硒含量过高的原因。硒对于动植物和人类来说是一种必需的微量元素,但硒含量过高同样会危害人体健康。在我国陕西安康、湖北恩施等地发生的人、畜硒中毒事件,就是由于开采和使用当地的富硒石煤所造成的。   弄清排放总量及时空分布   目前,我国正处于工业化社会的初期阶段,国民经济的快速发展和大规模基础设施建设,需要大量的电力、钢铁、水泥以及有色金属等材料,这就需要消耗大量的化石能源和矿物资源。   2008年我国用于直接燃烧的煤炭约27.4亿吨。另外,钢铁冶炼、有色金属冶炼、水泥生产、化工等行业对金属和非金属矿物的烧结熔炼过程也会使矿物中的有害痕量元素挥发,并富集在微细颗粒物上释放到大气中,从而对人体健康和生态环境产生危害。   “国外曾有学者指责中国燃煤对大气的影响。然而,由于种种原因,目前我国还缺乏对这些典型有害元素污染现状的全面认识,燃烧和工艺生产设施上缺少专门的污染控制措施,使得国家制定相关的法规、标准及污染控制对策缺乏有效依据。另外,有害痕量元素在大气中的传输扩散不仅与物理过程有关,还涉及更复杂的化学反应和二次污染,对有害痕量元素污染排放清单的研究是进一步开展有害痕量元素污染物传输、沉降、污染源排放标准、控制技术研究开发重点,也是制订控制对策的基础。因此,非常有必要开展我国有害痕量元素污染排放清单的研究。”田贺忠说。   据介绍,排放清单研究能定量得到各种源排放总量及其时空分布,是描述污染物排放特征的有效方法。田贺忠等人针对目前我国缺乏对汞、砷、硒等典型有害元素大气污染排放状况认识的现状,采用排放因子法,通过现场测试调查、文献调研、专家咨询等手段,进而根据国民经济活动水平、能源生产消费状况、有色冶金等各部门生产活动水平等,以及各种装置或工艺过程污染控制水平等因素,在国内首次比较全面系统地建立了1980~2007年我国典型有害痕量元素汞、砷、硒大气排放清单及历史趋势。   该小组以2005 年为基准年,利用部门分析法对2005年至2020年能源利用及有害元素排放发展趋势开展了情景分析。重点研究了各省区燃煤大气典型有害痕量元素(汞、砷、硒等)排放量。按经济部门、燃料类型、燃烧方式和污染控制技术对排放源进行分类,确定各类排放源的排放因子和能源消费量。研究各省区生产原煤、洗精煤、焦炭和型煤的痕量元素含量,建立各省区间原煤、洗精煤、焦炭和型煤的传输矩阵,从而确定各省区消费原煤、洗精煤、焦炭和型煤的有害元素含量。研究人员结合各省区内各类排放源的排放因子、燃料消费量和燃料中痕量元素含量,计算出其排放量,进而给出各省区和全国燃煤大气典型有害痕量元素污染排放清单。   此外,该小组还将对各地区的有色金属冶炼、钢铁、水泥生产、废物处置、生物质燃烧等非燃煤源导致的典型有害痕量元素排放情况进行估算,进而与燃煤源排放清单相加,即可获得中国人为源导致的大气典型有害痕量元素污染物排放清单,并进一步通过网格化处理,利用GIS技术得到中国有害痕量元素的空间分布特征。   该研究有助于了解和掌握我国典型有害元素排放现状、趋势、时空分布特征等,可作为进一步开展有害元素的环境空气质量模拟和生态环境及人体健康影响的基础,并可为国家和地方政府制定相关法律、法规及技术经济政策提供科学依据。
  • 室内空气污染源解析:当前挑战与未来方向
    第一作者/通讯作者:Dikaia Ε. Saraga通讯单位:Atmospheric Chemistry & Innovative Technologies Laboratory, INRASTES, NCSR Demokritos, Aghia Paraskevi, Athens 15310, Greece论文DOI:10.1016/J.SCITOTENV.2023.165744成果简介由于室内污染来源的多样性和高度可变性,室内空气污染的源解析(SA)具有挑战。近日,环境领域国际期刊Science of the Total Environment发表的题为“Source apportionment for indoor air pollution: Current challenges and future directions”的综述文章,回顾了目前使用的SA技术的相关信息,以及该领域的研究空白和局限性。引言过去二十年里,越来越多的科学证据表明,室内空气污染可能比室外严重得多。直接或间接来源都可能导致室内环境污染。考虑到人们大部分时间都在住宅、办公室或其他公共建筑中度过,人类的空气污染暴露主要发生在室内。然而,空气质量标准和指南主要是针对室外空气制定的。考虑到在不同室内微环境中的暴露时间较长,室内和室外空气污染对健康的影响非常相关,特别是在弱势群体中。因此,了解室内污染物的行为和来源,并将其与室外污染物区分开,对于健康风险评估、制定室内空气质量监管准则以及设计和实施旨在减少人类暴露于污染空气中的缓解战略都至关重要。源解析包括用于获取有关一个或多个源在特定时间内对特定区域的影响的信息的各种技术。室内污染物浓度水平,受室内和室外源以及影响其物理化学特性的物理参数(如:通风、光照、温度、相对湿度、室外条件等)的控制,在空间和时间尺度上与室外有显著不同。虽然主要的室内来源已经被确认,但仍需要了解室外产生的污染物穿透室内对室内污染物浓度的贡献,以及上述参数对SA的作用。本文对2009年1月至2022年12月期间有关室内空气SA研究的科学文献进行综述,以便对未来室内空气SA研究提供指导。图文导读1、统计概述Fig. 1. a–c. Distribution of source apportionment studies (January 2009–December 2022) for indoor air by a) number of studies per country b) targeted pollutants c) SA method used.根据地理位置,有47%的研究在亚洲进行,34%在欧洲,15%在美国、加拿大和南美洲,2%在非洲,2%在澳大利亚和新西兰。在室内环境方面,48%的研究在住宅建筑中进行,29%在学校和大学建筑中进行,11%在办公楼中进行。此外,2%的研究集中在养老院,2%的研究集中在餐馆和酒吧,1%的研究集中在医院。7%的研究考察了具有特殊特征的室内环境(酒店、游戏中心、工业设施、教堂和购物中心)。36%的研究包括在两个或两个以上的季节取样。48%的研究包括室内和室外测量,52%的研究只包括室内测量。2、室内源解析方法PMF、PCA和CMB用于64%的室内SA研究。CMB模型的优点是,不需要输入大量数据,例如,不需要在采样位置重复测量。此外,CMB输出不需要额外识别贡献源/影响因素。该模型求解了源贡献,同时明确地考虑了每个物质同时存在的室内和室外源。但缺乏特定来源的化学特征的变化限制了该模型的应用。利用PMF和PCA方法对室内SA的研究较为丰富。它们已被应用于PM和VOCs的来源分配。主要优点是不需要来源的特定化学特征,通过对受体处获得的化学数据集的多变量分析来识别相关来源。所有的观测结果都可以放入一个大模型中。缺乏非负性约束是PCA和CMB的重要限制。3、目标污染物室内SA研究中最常用的PM组分是细颗粒物PM2.5,其次是PM10、PM1和超细颗粒物(UFP)。很少有研究关注总悬浮颗粒(TSP)、室内表面沉降尘埃和可吸入的PM或PM4。超过20%的研究对VOC、羰基和醛类进行了室内SA。确定这些有机化合物的室内来源具有挑战性,因为其中许多物质在室内和室外环境中有多种来源,其强度可能因温度、相对湿度和其他因素而有所差异。4、已知来源和贡献在每个室内SA研究中确定的源数量在2到13之间。绝大多数研究强调了室外源的作用。鉴定来源的数量和类型在很大程度上取决于SA方法中用作示踪剂的化学物质的选择。SA文献中考虑的室内污染源可分为以下几种:建材和家具、室内燃烧、烹饪、再悬浮、清洁和消费品、室内产生的二次污染物以及其他产品和活动。大约三分之一的研究中,两个或两个以上的来源作为组合或混合来源呈现。总结与展望各项研究中室外环境对室内空气污染物浓度的影响差异很大。典型的室外源对室内水平有不同程度的影响,其贡献大小可能因当地条件以及所选的 SA 技术而有所不同。由于室内发生的物理化学过程,室外污染物的化学特征在进入室内环境时会发生变化。相反,室内 VOC 排放的影响越来越被认为是室外 VOC 浓度的重要影响因素。这项工作强调了室内空气污染SA的一些研究空白,包括室内空气质量监测和数据选择的优化,以及将室内空气物理化学过程纳入已经制定的SA方法中。
  • 暨南大学胡斌团队新成果:无人机载固相微萃取采样器耦合便携气质用于空气污染物监测
    近日,暨南大学、广州禾信仪器股份有限公司、广东省麦思科学仪器创新研究院以及华南理工大学的合作研究团队在环境分析化学领域知名期刊Environmental Science & Technology上在线发表了题为 “Onsite identification and spatial distribution of air pollutants using drone-based solid-phase microextraction array coupled with portable gas chromatography-mass spectrometry via continuous-airflow sampling” 的研究论文。本工作基于前期工作提出的连续气流吸附微萃取的机理,设计了一种通过无人机产生的旋翼气流实现空气污染物的固相微萃取采样的方式,发展了遥控自动采样的无人机载固相微萃取采样阵列,并耦合便捷式气相色谱质谱(广州禾信)用于危化环境的现场分析。研究表明,无人机载固相微萃取装置可以遥控快速飞抵人员难以进入的危化环境,进行现场快速采样,并在一分钟内完成往返飞行和采样,耦合便携式气相色谱质谱在数分钟内对有毒有害挥发性有机物进行成分鉴定。   有毒有害空气污染通常涉及危化品的释放作业或突发事件,如危险化学品的泄漏、石油化工品的燃烧或爆炸、工业废气的排放、以及军用化学战剂的作业等场点。这些危险污染物可以从源头迅速地扩散到周围环境和大气,给人体生命健康和生态环境带来高危风险。然而,常规的实验室分析策略通常难以满足应急环境分析的需求,亟需发展现场环境分析方法。与实验室分析相比,现场环境分析具有原位现场及时采样分析的特点,时效性极强,为现场处置和应急管理提供精准科学依据。然而,在危化环境下,尤其人员不宜进入的具有不明毒害或易燃易爆危化品的场点,如何安全、快速、精准地检测空气中有毒有害污染物的分子组成及其空间分布是环境分析领域的难题。  无人机载固相微萃取采样器耦合便携式气相色谱质谱分析装置  本研究面向危化环境现场分析的需求,在前期发展的一系列微萃取吸附质谱技术基础上,采用无人机和遥控马达装置进一步发展了无人机载固相微萃取装置并组成采样器阵列(图1)。通过无人机携带遥控固相微萃取装置进入现场上空采样,采样时,通过遥控马达推出探针活化后的萃取相暴露于旋翼气流并亮蓝色采样指示灯,通过吸附萃取富集气流中的挥发性有机物,采样时间为30秒 当采样完毕时,遥控马达将探针萃取相收纳于针管内并密封管口,此时亮红色指示灯并返航(见本文支撑材料所附视频)。返航后,取出探针直接插入便携式气相色谱质谱进样口对采集的污染物进行热解吸与分离分析,在数分钟内完成复杂样品的分析鉴定,其中大部分有毒有害挥发性有机物的分离分析时间在3分钟内。本研究通过对20余种典型挥发性有机污染物的分析鉴定,获得了相应的标准质谱图(见本文支撑材料)。  图1. 无人机载固相微萃取耦合气相色谱质谱分析装置示意图:(a)无人机采样器阵列,(b)无人机载固相微萃取装置,(c)空气气流连续吸附微萃取过程,(d) 便携式气相色谱质谱分析。  图2. 部分无人机载固相微萃取耦合气相色谱质谱现场采样分析照片:(a)现场采样分析,(b)燃烧污染物采样,(c)废气排放采样,(d)无人机阵列采样。  连续气流微萃取吸附机理与现场环境分析性能  为阐明无人机载固相微萃取装置对空气污染物富集的性能,本研究设计了在同一密闭环境下的三种典型空气挥发性有机污染物的采样和检测,对比了直接进样(10 µL空气样品)、静态顶空固相微萃取(采样时间0.5 min)和无人机载固相微萃取(采样时间0.5 min)三种采样方式,结果表明无人机载固相微萃取获得了最高的信号响应,比空气直接进样信号提高了数百倍,比静态顶空采样也提高了数十倍(图3a)。结果显示了无人机旋翼产生的气流速度提高了富集效率。考虑到无人机载固相微萃取装置采样后飞回途中,富集在探针萃取相的分析物直接暴露在气流中而可能丢失。因此,研究设计了采样后遥控收纳探针回针管并密封的装置,结果显示收纳密封装置具有良好的样品存储性能(图3b)。研究还对比了无人机产生的不同气流速度下分析物的信号响应,结果表明,旋翼从静态到产生高速气流,分析物信号响应随着气流流速的提升而增强(图3c),符合作者前期工作中提出的连续气流吸附微萃取的机制[2]。根据该机制总结的经验方程:n=kAtumdm-1C0,其中:n为萃取量,A为萃取相表面积,d为萃取相长度,t为萃取时间,u为气流速度,C0为初始浓度,d和m为常数)。研究发现不同大小翼展的无人机对分析物的采集没有显著性差异(图3d),可能是由于采样萃取相截面( 100 cm2)。研究还发现挥发性有机污染物的富集时间在30 sec时已趋近于平衡状态(图3e),表明无人机采样具有很高的富集效率。本研究还设计了与大气环境同温同压条件的密闭容器,发现容器中不同浓度挥发性污染物与信号响应具有良好的线性关系(R2 = 0.9993),为空气中挥发性污染物的现场分析提供了定量检测方法(图3f)。此外,研究还通过测定19种挥发性有机物(见本文支撑材料)展示了本方法具有良好的稳定性(RSD   研究考察了本方法应用于现场环境快速分析鉴定各种典型有毒有害空气污染物。例如,图4a展示了空气中泄露戊烷的现场分析鉴定谱图,色谱图中戊烷出峰时间仅为0.3 min,显示了高效快速的分离性能 质谱图显示了戊烷的分子离子及其特征碎片离子,并与标准谱图高度一致,显示了仪器精准鉴定的性能。研究还对复杂混合有机污染物进行了现场鉴定,如图4b所示为汽油挥发物的现场分析色谱图,显示了汽油中丰富的化学组分,如甲苯(1.13分钟)、对二甲苯(1.67分钟)、间二甲苯(1.71分钟)、邻二甲苯(1.86分钟)、3-乙基甲苯(2.28分钟)、三甲苯(2.49分钟)以及其他有机挥发物,显示了汽油挥发物中含有大量对人体有毒有害的组分。  此外,采用本方法还对燃烧挥发物进行了分离分析鉴定。例如,在丙酮燃烧污染物中快速精准获得未燃烧蒸发的丙酮(图4c)。本方法还可以快速分离和鉴定混杂成分的燃烧污染物。如图4d所示汽油燃烧的气相色谱图,在1.13、1.67和1.71分钟的色谱峰鉴定出甲苯、对二甲苯和间二甲苯,这些挥发物与汽油的主要组分相同,为燃烧物的鉴定提供了参考依据。  结果表明,本方法能用于易挥发有毒有害的危化环境和燃烧现场中有机污染物的快速分析与鉴定(更多应用案例见本文支持材料),有望为涉及有毒、有害、爆燃等应急危化场点的环境分析与管理提供新方法。  图4. 有毒有害空气污染物的现场分析示例:(a)戊烷挥发物,(b)汽油挥发物,(c)丙酮燃烧物,(d)汽油燃烧物。  大气污染物的现场定量检测及其空间分布  本研究进一步地采用无人机阵列对某废气排放口进行空间立体采样分析,采样点之间的水平距离和垂直距离均为5米,本研究监测了范围为30 × 40 × 20 m3 (L × W × H) 的空间分布。图5a显示了在排放口检测的多种挥发性有机污染物,例如,在排放口检测到具有健康危害的氯苯(图5b),并利用建立的氯苯定量曲线(图3f)获得大气环境中氯苯浓度的空间分布,如图5c展示了氯苯在半个监测范围的水平分布和垂直分布。由于氯苯是从排气口扩散到周围空气,氯苯浓度分布随着采样点与排气口距离的增加而呈指数下降(图5d)。因此,氯苯在大气的扩散可以很好地应用Fick 扩散定律来描述梯度变化 (更多梯度变化见本文支撑材料)。这些结果表明,通过阵列采样可用于大气污染物空间分布的测定,为空气污染物的排放扩散与安全评估提供新思路。  图5. 大气污染物的空间分布分析:(a)大气中挥发性污染物的色谱图,(b)氯苯的质谱图,(c)氯苯的水平和垂直分布,(d)氯苯的水平扩散定量分布。  小结  本研究展示了一种基于无人机和便携式质谱仪器的环境分析新策略,本方法结合了便携式气相色谱质谱仪器的外场便携性好、现场适用性好、灵敏度高、准确度好、稳定性好和分析速度快等优点,以及无人机载固相微萃取装置的小巧轻便、操作智能简便、富集效率高、能组成阵列自动采样等优点,适用于环境现场鉴定空气中有毒有害污染物的分子组成和浓度,以及组成阵列测定污染物在大气中的扩散和分布。此外,本研究结果还进一步验证了萃取连续气流吸附微萃取机制。本方法将有望应用在环境应急、危化管理、消防防化、军工国防等领域。  本工作部分受国家自然科学基金、暨南大学双百英才计划、以及暨南大学启动基金资助。  (胡斌教授将出席第十三届质谱网络会议并做报告,欢迎报名会议)作者简介  通讯作者:胡斌,暨南大学质谱仪器与大气环境研究所,副研究员,入选暨南大学双百英才计划“暨南杰青”。主要从事环境与生命健康质谱分析研究,在复杂环境与生物样品的前处理与质谱分析方面取得创新成果。以第一或通讯作者在Environmental Science & Technology,Analytical Chemistry,Trends in Analytical Chemistry和Nature Protocols等期刊发表SCI论文50余篇 论文总被引2800余次,个人H指数28。担任Journal of Analysis Testing等期刊青年编委。主持结题国家自然科学基金-青年基金1项,参与其他科研项目若干项。
  • 仕富梅推出全新SERVOPRO NanoChrome超痕量气体分析仪
    仕富梅全新的SERVOPRO NanoChrome 超痕量气体分析仪 彻底改变了半导体行业中的超高纯气体分析   通过引进最先进的气体传感技术和信号处理方法, 仕富梅新的SERVOPRO NanoChrome彻底改变了超高纯气体的超痕量纯度测量。   专为半导体生产中处于超痕量水平的杂质气体和烃类测量而设计,NanoChrome在一定范围的常见背景气体包括氦气,氢气,氮气,氩气和氧气的存在下,可以对氢气,甲烷,一氧化碳,二氧化碳和非甲烷烃类提供良好稳定的sub-ppb级测量。其结果是分析仪不仅提供优于传统火焰点火检测器(FID)和还原气体检测(RGD)技术的众多测量和性能优势,而且提供实际性的成本和安全效益,是依靠气体最高纯度维持产品质量的客户先前无法达到的。   卓越的NanoChrome采用由仕富梅特别开发的一种创新高灵敏度的等离子体发射探测器(PED)从而能够提供超低检测限度。已通过氩气和氮气的超痕量测量测试,扩展的测量波长使测量H2, CH4, CO 以及CO2以及直链烃的测量无需甲烷转化器。由于无需可燃气体,仕富梅PED传感器增加了安全性,同时降低了运营成本。   NanoChrome利用先进的信号复苏技术增强了分析灵敏度和可靠性,采用专门研制的可调色谱滤波方法和ProPeak色谱峰检测技术,来进行比先前超高纯气体更敏感的和更具有选择性的测量。仕富梅的直接分析方法,使得对FID和RGD测量特殊精度的疑虑烟消云散。   结合ServomexDF - 500超痕量分析仪系列和DF- 700微量水分析仪系列,仕富梅现在能为半导体行业提供单一、完整的可靠超高纯气体分析解决方案, 支持全球网络销售、服务和维护,仕富梅是目前唯一为所有超高纯气体纯度测量提供完整解决方案的气体分析制造商。   仕富梅集团有限公司董事Chuck Hurley指出,&ldquo SERVOPRO NanoChrome是对超高纯气体杂质测量的重大突破,因为仕富梅运用全新的方法应对超高纯气体客户的需求:通过单一分析仪提供更灵活、准确、可靠的测量,从而提供即时的性能、成本和安全效益,&rdquo 。   &ldquo 一旦了解用户的真正需求,仕富梅研发团队就采用了一种全新的方法开发超高纯气体传感技术。他们不仅彻底改进了PED传感技术,而且在创新ProPeak处理技术过程中,我们开发了新方法来解释和处理数据。使超高纯气体分析有了真正的飞跃&mdash 我们确定这将对半导体行业产生积极的影响。&rdquo
  • 国产化率95%以上!力合科技“环境空气污染物多参数智能监测成套仪器装备及系统应用”成果鉴定会在长沙召开
    仪器信息网讯 2024年4月23日,力合科技(湖南)股份有限公司(简称:力合科技)在长沙组织召开了“环境空气污染物多参数智能监测成套仪器装备及系统应用”成果鉴定会。此次鉴定会不仅是对力合科技创新研发成果的一次集中展示和权威评估,也彰显了力合科技在大气监测领域的技术实力。会议现场鉴定会共邀请了来自中国科学院合肥物质科学研究院、中国人民解放军国防科技大学、北京大学、湖南大学、中国科学院大气物理研究所、中国环境科学研究院、中国气象科学研究院、暨南大学等科研院所,以及生态环境保护部生态环境监测司、中国环境监测总站、湖南省气候中心、各省市环境监测中心等的11位鉴定专家与13位特邀专家到场。特别值得一提的是,中国科学院合肥物质科学研究院刘文清院士、中国人民解放军国防科技大学宋君强院士、北京大学张远航院士亲自莅临现场,为力合科技环境空气污染物的监测技术和装备的应用提供有力的技术支持和指导。此次会议采取线上与线下相结合的方式进行,中国环境科学学会王国清主任介绍与会专家和鉴定事项,中国科学院合肥物质科学研究院刘文清院士主持鉴定流程。力合科技(湖南)股份有限公司 研发中心副总经理 刘德华会议伊始,力合科技研发中心副总经理刘德华向大家做《环境空气污染物多参数智能监测成套仪器装备及系统应用》项目汇报,详细介绍了此项目的研发背景、创新成果、技术优势及应用推广等。据介绍,该项目针对我国新时期大气污染精准防治对国产化空气污染组分监测装备的需求,开展了“部件-仪器-集成-平台”全链条软-硬自主化研发攻关,整体国产化率达到95%以上!此系统可以满足常规、组分、交通站、走航监测以及应急保障监测等多场景智能监测与智慧运维管理的需求。”据介绍,项目团队十年来不断进行创新突破,一是实现了核心技术自主掌控,成功自主研发了10余种核心传感器,创新设计超长光程多次反射池、臭氧高效分解装置等核心模块,研发了覆盖常规、光化学组分、颗粒物组分等国产化多参数智能监测系列仪器,自动监测指标可达150多项;二是通过一体化智能融合设计,研发了标准化、高集成度、智能化的环境空气多参数同步监测的系统,突破国产化仪器-集成-平台软件技术体系,提升了数据传输与共享的安全性;三是构建了“精准诊断-智能审核-精细运维-在线解析”全链条的大气污染监测智能化应用体系,实现远程诊断、智慧运维,提升了大气监测的数字化水平。据悉,截至目前,该成套系统成果已在湖南、云南、四川、福建等全国20余个省份大气污染组分监测网络建设和运行中得到广泛的应用,逐步形成了以快速、精准监测为基础的城市化服务模式。不仅如此,刘德华还表示,“该系统有望大幅减少建设和运维投入,以常规监测为例,采用本项目成果,建设费用及单站运维成本大幅降低。”现场考察项目汇报后,与会专家亲临现场考察项目成果,进行深入调研,近距离观察仪器设备构造,细致入微地审视每一处设计细节,直观感受技术成果的创新之处。在现场考察过程中,专家们针对设备性能、操作使用等提出了一系列实用与适用的问题,并基于各自丰富的经验和独到的视角,给予了宝贵的指导性意见。通过详尽项目汇报和全面的现场考察,鉴定团队展开了深入讨论与严谨评估,每位专家均对该创新成果给予了高度评价,并从基础原理、技术创新及市场应用等多个维度出发,提出了许多富有建设性和实操性的建议。鉴定专家评审鉴定委员会专家认为,该监测系统的设计理念先进,智能化与国产化水平高,尤其是在元器件与仪器设备自主研发方面实现了重要进展,能够提供从监测实施、数据分析到结果输出的全流程解决方案,其整体性能指标达到国际领先水平,充分体现了国产化与产业化的双重能力,并精准对接了当前国家对于高端、智慧化环保监测技术的迫切需求。同时,专家们也提出了中肯的建议,鼓励力合科技在未来发展中应进一步深入挖掘项目在研发理论、科学测量方法、核心技术攻克、数智化升级转型以及绿色低碳实践等方面的原创性贡献,特别是希望能够详细梳理关键部件自主研发的具体方法及其对社会带来的积极影响,从而为后续的科研创新与市场拓展奠定更加坚实的基础。特邀嘉宾评审除此之外,与会的特邀专家也纷纷表示,大气监测仪器市场历来由国际品牌主导,用户对于本土产品的性能稳定性与测量精确性常持保留态度。力合科技所做的工作为推动这一行业加快掌握核心技术及关键部件的自主研发具有很重要的意义。鉴于此,专家们期望力合科技能乘势而上,持续优化智慧化数据管理平台,进一步优化质量控制体系与智能化审核流程,通过技术创新实现成本控制与效率提升的双赢。此外,专家们鼓励力合科技可以前瞻性地分析市场趋势,促进企业和仪器设备的可持续发展。最终,经过与会专家和项目团队的充分讨论,鉴定专家一致表示此项成果在环境空气污染物多参数智能化监测与远程监管方面达到国际领先水平,具有广阔市场前景,建议加强推广应用。力合科技(湖南)股份有限公司 董事长 邹雄伟会议最后,力合科技董事长邹雄伟向所有与会专家表达了诚挚的谢意。他表示,环境空气污染物多参数智能监测成套仪器装备系统的推出是力合科技气体监测自主研发道路的关键里程碑成果,鉴定会中各位专家的肯定和提出的宝贵意见是对力合科技莫大的鼓舞与支持,这些真知灼见为公司的发展路径点亮了明灯。邹雄伟董事长承诺,力合科技将认真研究并积极采纳各位专家的建议,将其转化为后续研发与改进工作的实际行动。为了更深入的了解力合科技成果背后的故事,鉴定会期间,仪器信息网也就大家关心的问题采访了力合科技研发中心副总经理刘德华。对于“水质监测仪器”的标签问题,刘德华介绍说,“之前行业对力合科技的印象大多是水质监测仪器装备研发制造企业,实际上,力合科技从十几年前就成立了专门的气体产品研发部门,定位自主研发差异化、全参数、成套的气体监测产品。长期以来,虽然在研发过程遇到过各种各样困难,过程很艰辛、很漫长,但是收获满满。”谈到本次系统的亮点——核心部件国产化,刘德华表示,“仪器仪表核心技术‘空心化’是我国仪器仪表制造中难题。要实现核心传感器自主研发,需要将原理、设计、工艺、算法、电路等多方面持续研发与改进。”他特别强调,“核心部件国产化不是一家企业或几家企业就能做到,必须从产业链整体提升。目前我国的精密加工和元器件基础亟需提升,加快突破围绕仪器仪表产业的专业化配套的技术瓶颈,对我们仪器仪表整体技术水平提升至关重要。”对于该套系统的市场前景及公司的下一步研发目标,刘德华谈到,这套系统是一套国产化、智能化大气监测成套仪器及系统,定制开发了很多支撑我国大气污染物精细管理的高效实用功能,能够集当前智慧管理所需,同时,在目前大环境能力建设资金投入缩减、大力发展新质生产力的背景下,国产化产品拥有更大的发展空间,市场前景非常广阔。下一步,力合科技会继续坚持自主创新研发:一方面,在系统智能化方面将会持续发力,将AI等先进技术深度应用到仪器智能化质控、智能化运维、智慧应用、智能预测等方面;另一方面,将深入开展光学检测核心部件及相关仪器的自主研发,同时持续优化零部件和仪器性能,打造更全面、更完善的大气污染智能监测技术装备。
  • 激光痕量气体监测仪的新进展:性能和噪音分析
    激光痕量气体监测仪的新进展:性能和噪音分析(Recent progress in laser?based trace gas instruments: performance and noise analysis ,J. B. McManus M. S. Zahniser D. D. Nelson J. H. Shorter S. C. Herndon D. Jervis M. Agnese R. McGovern T. I. Yacovitch J. R. Roscioli, Appl. Phys. B (2015) 119:203–218)摘要我们用一些近来的数据回顾了使用中红外量子级联激光器,带间级联激光器和锑化二极管激光器的发展。这种监测仪主要用于高精度和高灵敏度测量大气中的痕量气体。在高性能软件的控制下,利用吸收光谱进行快速扫描,集成和高精度拟合。通过中红外波段,实现了出色的灵敏度。Aerodyne监测仪证明了在自然情况下痕量气体的测量精度达到1012级别,可实时测量CO2,CO,CH4,N2O和H2O的同位素。我们还描述信号处理方法,以识别和降低测量噪音。光谱信息分析的原理是将光谱加载到数组中并利用滤波片,傅立叶分析,多元拟合和成分分析进行处理。我们提供一个仪器噪音分析的实例,噪音是由电子信号与光干涉条纹混合形成。引言随着各种中红外单片固态激光器的问世,使用基于中红外激光仪器,对大气痕量气体的高精度测量已经成为常规,包括量子级联激光器(QCL),带间级联激光器(ICL)和基于锑化物的二极管激光器(TDL)。在3μm附近的波长范围内有缺口,但现在,设计人员有更多选择,在3μm附近的波长区域频率使用混合技术。在本文中,我们回顾Aerodyne Research,Inc.(下称ARI)公司使用中红外激光监测仪测量不同的痕量气体,并达到高灵敏度和/或高精度水平。这些仪器基于快速扫描和精确光谱拟合的直接吸收光谱,在高性能软件的控制下,在中红外波段,利用长光程,在减压情况下,通过热电冷却的激光和探测器实现出色的灵敏度。这里介绍了两种仪器:单激光仪器,光程长度最大为76 米;双激光仪器,光程长度最大为210 米。通过仔细选择波长,我们可以用单激光器同时测量多种气体。根据吸收率来说,仪器噪音在1 s的平均值为?5×106,可以测量1012级别大气中的气体]。这些仪器可以在多种环境中使用,包括实验室,偏远现场和移动平台(如卡车,轮船和飞机)。ARI公司仪器介绍及其性能一般来说,对于高浓度气体,几毫米的测量光程可能就足够了;但对于痕量气体来说,则需要数百米光程。Aerodyne气体监测仪仪器使用中红外快速频率扫描,直接吸收光谱并进行精确光谱拟合。仪器在减压池中利用较长吸收光程的新型红外激光源,对多种气态分子提供灵活而直接的高精度测量。光谱仪的基本配置比较简单:首先是激光源,然后是多反腔,最后是探测器。图1显示了这种装置。多反腔有确定的路径长度,符合标准的激光可以传输到检测器,对样品气体的测量基于比尔-兰伯特定律。在许多情况下,激光扫描气体出现多个吸收峰,从而测量多个不同气体。让两道或更多激光通过吸收室,或者使用单个检测器时分复用,可以测量更多的气体。Aerodyne监测仪尽可能使用反射光学元件,光学系统几乎没有色散。通过选择不同波段激光和激光驱动,选择峰值灵敏度不同的检测器来匹配,测量给定单一气体或一组气体。对于不同的测量目的,选择不同的吸收光程。一般多反腔的光程为7–76 米,一般使用宽带透镜;对于浓度非常低的气体,210米光程的窄带高反射率透镜可以提高灵敏度。仪器的优化在过去的几年中,我们持续对仪器进行了改进,比如使用了新型的电流驱动器,它提供了QCL高顺从电压情况下的低噪音电流。我们还设计了低噪音激光驱动和其他电子设备,降低整个系统的噪音。使得平均1s采样情况下,吸收噪音为?5×106,在均时100 s具有更高的精度,这相当于约5×10-7的最终吸收噪音。很多因素使得噪音超过检测器限度,特别是窄带电子噪音和光学干涉条纹。中红外激光微量气体仪器由Aerodyne Research,Inc.生产的操作软件“ TDLWintel”控制,让每条激光可以设置为时分复用。TDLWintel可控制监测仪的操作并实时处理数据。两种激光电流斜率由TDLWintel定义,然后对检测到的信号采样(16位A / D在?1-1.5 MHz下运行),同步求平均,基于HITRAN参数以及测得的温度和压力的曲线,与计算出的吸收值拟合,可以对多达16种气体混合比实时记录。数据可以以10Hz采样频率记录,最大有效数据率由泵抽速和吸收池的大小决定。实验过程中一些情况,比如阀门开关或背景消减,也可由TDLWintel软件控制。我们展示了单激光(76米光程)和双激光监测仪(76米或者210米光程)的气体测量噪音结果(平均1s),分别在表1和表2中,测量噪音为以空气中的混合比表示,同时提供了噪音的不确定性。根据不同的吸收路径和测量情况,吸收噪音最佳的结果在1s内约为?5×106。仪器适用在各种环境中,无论是在实验室还是在野外实验中。野外现场包括偏远位置或在移动平台(例如轮船,卡车和飞机)上。我们在最近20年在许多野外现场使用过这些仪器。在过去的几年中,Aerodyne “移动实验室”已配备了多种气相仪器(单激光和双激光监测仪)以及测量颗粒物和较重的有机化合物配套仪器。如测量天然气中的甲烷排放,或者测量两种气体示踪物(例如,亚硝酸盐氧化物和乙炔),移动实验室可以直接开到附近,测量示踪气体以及甲烷。另外,通过测量乙烷(常见天然气的成分),我们可以区分来自天然气设施的甲烷和来自生物来源的甲烷。仪器的噪音分析 了解测量噪音源对于保持仪器性能水平至关重要,通常将重点放在最终的噪音源分析和讨论上,例如探测器噪音,激光噪音或散射噪音。其他噪音源,统称为“技术噪音”,可能来自光学和电子方面,并可能是噪音的主要来源。而在在短时间尺度上的噪音可能是更长的时间范围的漂移。不同的噪音源可能表现出不同的功率谱密度(PSD),例如检测器噪音,而Johnson噪音通常具有平坦的PSD(即白噪音),而激光噪音会表现出闪烁噪音(1 / f PSD)。噪音可能会在频谱中产生随机波动,或者它可能具有窄带频率。另一个复杂因素是信号处理算法对噪音信号的响应。对于Aerodyne,混合比噪音是对噪音信号,以及压力和温度变量中多元拟合的结果。了解和减少噪音的第一步是使用Allan–Werle方差工具分析混合比噪音图(方差作为平均时间的函数)以及功率谱,并将噪音划分类型。Allan-Werle方差工具是一种通用工具,可以评估短时噪音和平均时间极限。按类型划分噪音有助于指示其来源。三种常用噪音包括是暗噪音,轻噪音和成比例噪音。 “暗噪音”(即,在检测器被堵塞的情况下报告的混合比)包括检测器噪音,基本电子(Johnson)噪音以及其他多余的电子噪音。“轻噪音”(正常光照水平但吸收深度很小)包括所有暗噪音加激光噪音(1/f,即闪烁噪音和散射噪音),激光驱动电流噪音(产生幅度波动)和干涉条纹的变化。 “比例噪音”(吸收深度较大时看到的多余噪音)包括激光驱动电流噪音,压力和温度噪音以及峰值位置运动结合调谐率误差。频谱数组处理将频谱分解为许多部分,并显示出较多变量。通常应用于频谱数组的处理工具包括减去偏移量,平均值,拟合度,统计量度,变量[p],[q]或这两者的傅立叶变换,相关性,和主成分分析。尽管有很多处理的实例,但是很难提出一个通用的分析方法,帮助我们了解所看到的一切。即使我们“解剖”光谱并找到大的干涉条纹,这不一定意味着干涉条纹是多余噪音的来源,比如干涉条纹不动或它们的频率太高而无法影响拟合。为了确定,我们需要确定导致多余的噪音因素,该因素的短期波动应与混合比的波动匹配。我们通过一个噪音分析的例子说明了分析过程。结果表明,多余噪音是由两种波的混合,即光学干涉条纹和电子信号混合导致的,产生的低频成分,明显影响混合比的测定,而任一单一波则对结果几乎没有影响。结论 我们对当前Aerodyne Research,Inc.生产的微量气体激光测量仪器进行了综述。提供了一组气体,以及同位素比的测量结果。仪器在性能上的改进包括降低了电源和激光驱动噪音。另外,制造工序变得更加精简。目前吸收噪音在1s内达到?5×106。然而,为获得最佳性能,仍然需要对噪音做进一步的探索。本文中的实例显示,多余噪音是由两种波的混合,由光学干涉条纹和电子信号混合导致。仪器的相关优势1. 持续对仪器的改进及噪音的分析,测量痕量气体的精度更高,测量气体达到ppt级别,甚至在10Hz的频率仍然保持极高的精度;2. 一次同时测量多种气体,消除了多台仪器测量时气体产生的系统误差并大大提高效率;3. 仪器适用于多种环境,满足实验室测量,野外远程测量和移动测量需求。 欲了解该产品的更多特点,欢迎咨询联系澳作生态仪器有限公司
  • 新型污染物将纳入空气质量监控体系
    中国修订法规 新型污染物将纳入空气质量监控体系   城市灰霾:温柔地杀你   中国大城市的灰霾天气越来越成为一种常态 大气污染问题逐渐由单个城市向区域复合型污染转变。现行《大气污染防治法》正在修订当中,一些新型污染物将被纳入空气质量监控体系。   “公布的空气质量监测结果达标了,为什么还是灰蒙蒙的,看不见蓝天?”在很多城市,公众对空气状况的直观感觉,往往与环保部门公布的结果并不一致。   对此,中国环境科学院副院长柴发合解释说,当前造成城市灰霾天气的,主要是一种不被大家所熟悉的污染物——“细微颗粒物”,而这种大气污染物并不在法定的监测范围之内。依据现行的《大气污染防治法》(下称《大气法》),大气污染物监测只包括二氧化硫、二氧化氮和可吸入颗粒物三项指标。   现行的《大气法》颁布于1987年,至今已有20多年。其间经历过1995年和2000年的两次修订。柴发合在NGO组织“北京地球村”近日召开的对“大气污染记者论坛”上透露,现行的《大气法》正在修订当中,新法律将完善空气质量评价标准体系,增加细微颗粒物、臭氧等指标,更加客观地反映空气质量,并在此基础上,协同控制多种大气污染物。   目前,灰霾天气已成为中国大城市空气污染的突出问题。监测数据显示,上海、广州、天津、深圳等大城市的灰霾天数,已占全年总天数的30%〜 50%。灰霾不仅造成大气能见度下降,看不见蓝天,而且直接危害人体健康。   “紧盯”细微颗粒和臭氧   据柴发合解释,与直径小于10微米的“可吸入颗粒物”不同,“细微颗粒物”是一类更小的污染物,“它们的直径一般不超过2.5微米,因此对光的散射作用更强,在不利的气象条件下很容易导致灰霾的形成”。   根据世界卫生组织的《空气质量准则》,细微颗粒污染物的年均浓度限值为每立方米10微克,如果年均浓度达到每立方米35微克,人的死亡风险就会增加15%左右。   据中国环境监测总站原总工程师魏复盛介绍,直径10微米以上的颗粒物,会被挡在人的鼻腔外面 直径在2.5〜 10微米之间的颗粒物,能够进入上呼吸道 而直径在2.5微米以下的细微颗粒物,则可以通过支气管和肺泡进入血液。   由于细微颗粒物可以进入肺部,所以也被称为“可吸入颗粒物”。一方面,这些颗粒物本身很可能就是有害气体或重金属,对人体造成伤害 另一方面,它们还可成为病毒和细菌的载体,为呼吸道传染病的传播推波助澜。   科学研究发现,和直径2.5〜 10微米的可吸入颗粒物主要来自道路扬尘不同,细微颗粒物则来源于燃料的燃烧(如机动车尾气、燃煤)和挥发性有机物。   柴发合说,细微颗粒物的产生过程非常复杂。它是燃烧废气中的氮氧化物、挥发性有机物等污染物在大气中相互反应后形成的。“因此,治理细微颗粒物不能只关注单一的污染物,而应该对多种污染物进行协同控制。”   除了细微颗粒物之外,臭氧是另一种新的大气污染物。   自然界中的臭氧,绝大部分存在于距离地面15〜 5公里的平流层中,是氧气经太阳紫外线照射形成的。这些臭氧可以吸收紫外线的辐射,对人类是有益的。但在贴近地面的低空中,臭氧则对人体极为有害。   低空中的臭氧,不仅对眼睛和呼吸道有刺激作用,而且可以与细微颗粒物、挥发性有机物等污染物相互耦合,经过二次反应后形成高浓度细粒子污染,造成空气能见度降低、地面臭氧浓度升高、大气氧化性增强,是产生灰霾、光化学烟雾的主要原因。   柴发合说,与二氧化硫、二氧化氮和可吸入颗粒物三种传统大气污染物直接来源于工业生产、居民生活和机动车尾气排放不同,低空中的臭氧主要是排入大气中的一次污染物氮氧化物和挥发性有机物在太阳光和热的作用下,经过化学反应形成的二次污染物。生成臭氧的氮氧化物和挥发性有机物,目前主要来源于火电、钢铁和水泥等行业以及机动车尾气、加油站等。   环境保护部环境规划院副总工程师杨金田说,电力行业排放的氮氧化物约占全国排放总量的45.5%。有统计显示,仅2003〜 2007年,中国火电厂的氮氧化物排放量就增加了四成多,导致中国的酸雨类型已开始从硫酸型向硫酸、硝酸复合型转变。   “如果不解决氮氧化物的问题,要想解决灰霾、酸雨以及其他大气污染问题,几乎不可能。”杨金田说。   由“城市污染”转向“区域复合型污染”   在此次“大气污染记者论坛”上,杨金田提出,当前中国区域性大气污染问题已日趋明显。“大气污染问题逐渐由单个城市向区域复合型污染转变。比如珠三角地区的烟尘、粉尘和二氧化硫等城市大气污染物指标,出现同时上升或降低的现象,联动特点明显。”   “由于细微颗粒物、臭氧及形成臭氧的物质容易在大气中的输送、扩散,使得光化学烟雾往往成为一个区域性问题,其覆盖范围可达几十甚至数百公里以上。”柴发合说,近年来,全国特别是珠三角、长三角和京津冀地区的灰霾天气有所增加,尤其是珠三角地区,灰霾天气已占到了全年天数的一半或一半以上。   统计显示,长三角、珠三角和京津冀三大城市群虽然仅占全国6.3%的国土面积,但消耗了全国40%的煤炭,生产了50%的钢铁,大气污染物排放集中,已经出现了严重的区域复合型大气污染问题,并呈现出煤烟型污染和机动车污染相结合的特征。这些地区大气污染物在不同城市间的传输扩散和相互影响十分严重。   与此同时,在辽宁中部城市群、湖南长株潭地区以及成渝地区等城市密度大、能源消费集中的区域也出现了类似的区域性大气污染问题。   “区域性的大气污染,单纯依靠单个城市是不可能解决的,任何城市也都无法独善其身。”杨金田说,但目前城市大气污染治理“各自为战”,尚未建立有效的区域空气联防联控机制,难以从根本上解决区域和城市的大气环境问题。   据悉,修订后的《大气法》将强调大气治污的区域联防联控机制,协调解决区域和城市大气污染防治的重大问题。“区域联防联控还要求成立专门机构来进行协调管理,做到统一规划、统一管理、统一标准、统一监控、统一评估。”杨金田说。   据柴发合透露,新修订的《大气法(修订草案)》,2009年12月30日已经通过了环保部的审议,现在正在进一步修改,之后将提交国务院法制办和全国人大环境与资源保护委员会。
  • 车内空气污染检测的解决之道---访北京联大文理学院环境系主任陈双基教授
    我国的大城市已进入汽车增长的高峰时期,有车族在自己的车内度过越来越多的时间。对于汽车尾气造成的城市空气的污染和治理,得到了政府和市民的高度重视,但是对于汽车内部空气质量的问题,还远没有受到普遍的关注。近年来,人们已经开始意识到自己居室内的空气质量问题,检测部门和研究机构也做了很多工作,而对于汽车内的空气污染检测则刚刚起步。日前,中国国家环保总局正式启动了国家环保标准《车内空气污染物浓度限值及测量方法》的制定工作,这标志着我国车内空气污染检测将逐渐步入正轨。那么,为何我国以前一直没有关于车内空气质量的标准呢?是车内空气污染问题在我国并不严重?还是在制定标准过程中存在着某些技术上的难题?带着这些疑惑,本网(以下简称“Instrument”)近日专程走访了北京联合大学应用文理学院环境系主任、室内环境检测与评价中心主任陈双基教授(以下简称“陈”)。  Instrument:陈教授,您好!目前,我国在车内空气污染问题方面究竟是一个什么状况,能否先请您在这方面作一个简单的介绍?  陈:好的。关于这个问题,我可以列举几个具体的事例来说明。2003年3月,国内首例车内环境污染案件在北京市朝阳区人民法院宣判,这也是国内首例汽车消费者状告汽车经销商胜诉的民事案件。2003年8月,深圳市计量质量检测研究院的检测显示,新车甲醛超标严重,可达10倍以上。2003年,中科国环环境技术研究中心广州分中心对2000辆车进行检测,92.5%的车辆都存在空气质量问题。北京联大文理学院室内环境检测中心在通过计量认证,取得CMA标志后,随即开始了汽车污染的相关研究。2004年2月北京劳动保护研究所室内环境检测中心,对52辆新车和54辆旧车的甲醛、苯系物和其它可挥发有机物进行了检测。汽车内空气污染严重,检测的106辆车中,甲醛、苯、甲苯和二甲苯都不超标的车辆仅有30辆,超标的车辆占72%。从以上这些数据可以看出,目前我国的车内空气污染问题还是相当严重的,尤其是一些国产轿车的生产厂家,为了压低生产成本,采用了一些劣质的汽车装饰材料,而这些材料多含有苯、甲醛、丙酮、二甲苯等有害气体,从而不同程度地造成车内的空气污染,威胁到人体健康。  Instrument:那么国外的情况如何呢?是否已有相关的检测标准出台?  陈:据我了解,美国、加拿大、欧洲、日本等地区目前也没有关于车内空气质量的标准。当然,没有标准并不表示问题就不存在。其实,国外的研究者对于车内空气质量问题,很早就给予了关注。美国、英国、加拿大、韩国等国家都有汽车内空气污染造成的危害的相关报道,政府机构、科研部门作了很大的投入,对于汽车内的污染,从不同角度和层次发表了为数不少的研究成果。当然,在西方国家,汽车行业是个成熟行业,几乎每个采购、生产和销售环节都有规范,甚至有成熟的召回办法。此外,像沃尔沃、大众等公司在欧洲采购车内装饰物和零部件的时候,公司内部也都有比较严格的关于环保的规定,但是车内空气污染问题依然是存在的。  Instrument:车内空气污染物主要有哪些种类?它们的来源主要有哪些渠道?  陈:车内污染物主要包括可吸入颗粒物、数目繁多的有害气体(像苯、甲苯、二甲苯、甲醛等)和霉菌等,它们来源主要有两个:一个是车内,包括新的仪表盘、密封胶、地毯、泡沫软垫、人造皮革等,材料老化或在加热时也会有气体释出,除臭剂、清洁剂等也可能造成污染;另一个则是来自车外,像燃料的泄漏和来自引擎排放的气体和颗粒物等。由于汽车污染化合物的品种太多了,所以不得不进行适当的筛选,像澳大利亚和新西兰环境保护会议(ANZECC)就选择了28种化合物作为优先考虑的监测化合物。  Instrument:既然车内空气污染问题已经是一个普遍存在的客观事实,可到目前为止,还没有相关的检测标准出台,国内国外都是如此,其根本原因何在呢?  陈:除了上面已经提到的国外的环保意识和法规的作用,使得汽车生产和装饰存在的污染程度可能小一些,我认为在制订车内空气质量标准的过程中还存在着一定的技术难题。 当然,车内的污染和室内的污染有差异,但是室内空气标准至少可以作为一个参照,所以从污染物种类和限量来讲,不是太大的问题,但是测试条件就复杂得多.举个简单的例子:在烈日下暴晒后,与在阴凉的地下车库存放后的汽车,测试出的结果肯定大不一样,因为高温会导致更多的污染物释放。所以,要想测试,首先要有统一的测试条件。而这样的条件必须非常细化,除了测试温度因素之外,测试时发动机是启动还是不启动?把测试仪器放进车内以后,关闭车窗门多少时间开始检测? 监测人员在车内还是在车外?  Instrument:那么目前我国相关检测机构进行汽车内空气质量检测采用的是何种方法呢?能否客观的评价车内空气的污染程度?  陈:据我了解,包括我们中心在内,目前国内进行车内空气质量检测时,都借用的是室内空气质量标准,譬如:GB/T 18883等。从实际效果来看,由于车内面积要远远小于居室面积,因此一些外界因素(像:车内、车外温度的变化,不同年限的车辆,是否使用车内循环或是车外循环,道路空气状况,不同乘坐人数等)的影响就必须要考虑在内,否则就有可能产生很大的误差,我们中心在这方面已经开始着手进行了一些研究,得出了一些结论,也欢迎广大同行和我们进行交流,彼此互相促进,将这一工作不断完善。  Instrument:从仪器的角度来看,车内空气质量检测和室内空气质量检测所用的仪器有差别吗?  陈:基本上差别不大。像我们中心在进行检测过程中,氨、二氧化氮测定使用的是紫外分光光度计;苯、甲苯、二甲苯和总挥发有机物测定使用的是气相色谱仪;一氧化碳、二氧化碳测定使用的是便携式红外气体分析仪;气体采样使用的是气体采样器等。这些仪器在进行室内空气检测时也都要用到。当然,如果在汽车检测中使用准确可靠的便携式仪器,或许效率更高.  Instrument:如何避免在汽车内受到有害气体的危害,作为专家,您能否为我们的广大读者提供一些参考建议吗?虽然这个话题已经超出了分析测试的范畴,但由于车内环境的好坏直接关系到每一个老百姓的切身利益,所以还是希望您能简单地谈几句。  陈:好的。那我就抛砖引玉,谈几点,谨供大家参考。首先、购买新车时,除了通常的性能考虑外,对于出厂汽车的环保指标同样不可掉以轻心;其次、自己进行汽车的后装饰时,注意选择无污染材料;第三、新车或新装饰后的汽车,特别是在头半年内要注意通风换气,尽快使车内可挥发气体释放干净。必要时,到检测部门进行检查;第四、人在进入汽车后的短时间内,就应该打开车窗或开启外循环通风设施,引进新鲜空气,避免二氧化碳超标。严忌在封闭车窗、车门状况下,长时间行车,更不能在封闭的车内睡眠或长时间休息。牢记在车外空气质量好的时间和道路,保持车内外的通风;还有一点就是合理地减少空调的使用,在开启空调和暖风时,使用车内外空气交流模式。尽量避免长时间使用车内自循环模式。  采访结束了,自己独自一人走在归途,望着身边川流不息的车辆,望着车内从容不迫的人们,所有的一切都显得那么自然,那么协调,很少有人会意识到威胁的存在,大家都在享受着科技进步所带来的生活的便利。汽车,曾经是一个人身份的象征,现在正在逐渐走入普通百姓的家庭,而与此同时,如何消除车内的“隐形杀手”,如何使我们的检测人员有法可依,也已迫在眉睫,值得庆幸的是国家已经开始采取行动,新标准的出台应该为时不远了。  联系电话:010-62004523  Email:chenshuangjiwl@163.com  单位地址:北京市海淀区北土城西路197号 100083
  • 车内空气污染案例频发暴露标准缺位
    由于甲醛兴风作浪,我国消费者对于室内空气污染有了相对足够的重视,但是在车厢这一狭小的空间内,同样存在大量有害气体。由汽车内空气质量引发的健康问题屡见不鲜,而系列车内空气检测的数据更是触目惊心,频发的车内污染案例彰显出国家标准的明显缺位。   车内空气检测数据触目惊心   记者日前从内蒙古自治区消费者协会获悉,该协会2009年底公布的一份“汽车空气检验情况报告”显示,在抽查的29辆汽车中只有奥迪A4\A6等八个品牌汽车的室内空气符合标准,其余21辆不同品牌的汽车室内空气均存在甲醛超标和总挥发性有机化合物(TVOC)含量不符合要求的问题。   据了解,这项针对呼和浩特市市场上销售的不同品牌汽车车内空气质量的检测活动,由内蒙古自治区石油化学工业检验测试所实施,检测项目为甲醛、苯、氨、TVOC等四个,检测的标准参照GB/T18883-2002《室内空气质量标准》检测结果表明:72%以上的新汽车存在不同程度的超标问题,其中以甲醛的超标现象最为严重,大多数被测新车车内空气中所含的甲醛含量都超过室内甲醛国标限量值。   实际上,随着我国经济的发展和人民生活水平的不断提高,在汽车增加和高档装饰盛行的同时,车内空气质量问题并未受到足够的重视,但这一问题却逐渐显露出来。   类似的检测数据已经多次显示出近似的结果。相关资料显示,2009年1月,广东参照室内空气质量标准检测的60款车型中,有50款存在不同程度的污染。而上海有关机构抽查的100辆轿车中只有17辆达到国家室内标准,八成以上的轿车内可吸入颗粒物超标,最严重的超过国家室内标准七倍。   污染源主要来自内饰材料   据专业机构的调查显示,车内空气中挥发性有机物的成分较为复杂,有几百种之多,包括烃类、醛类、酮类物质等。主要受到关注的是甲醛、苯、甲苯、二甲苯、乙苯等几种。   “特别是甲醛对婴幼儿和妇女特别敏感。由于很多消费者买新车是因为结婚,然后生小孩,因此车内空气很大一部分是针对敏感性人群,这样的社会危害就相对更大。”国内知名汽车行业分析师贾新光在接受记者采访时表示。   贾新光表示,室内空气污染主要是装修污染,原因之一是使用劣质装修材料,污染的主要特点就是甲醛含量高,与此相类似,车内空气的污染源也源于类似的因素。   专家表示,车内空气污染问题成因比较简单,主要是汽车内饰材料释放的挥发性有机物。车内空气质量状况与车辆制造工艺和零部件种类有直接关系,影响较大的主要为汽车仪表台板、门内饰板、地毯、顶棚、汽车线束、座椅总成等。   仅以汽车的内饰构造而言,主要以皮质、纤维和各种工程塑料(12085,-25.00,-0.21%)组成,而这些材料在生产时便需要使用到甲醛、苯等有害物质。有着完善质量管理系统的企业会在内饰组件出厂前进行一轮“消毒”处理,但碍于成本,并不是所有零件配套企业都会做足“消毒”的功夫。同时,车内装饰物如毛绒玩具、塑料地毯等是造成二次污染的主要来源。   车内污染案例频发   “有关标准得到重视的起因,是有车主得了白血病,但最终官司却没有打赢,法院不支持的理由是没有证据。”贾新光向记者表示。   记者了解到,2002年8月,北京朱女士购买了一辆国产奥拓轿车,同年9月底发现身上有大量出血点,被医院确诊为重症再生障碍性贫血急性发作并接受治疗。2003年3月,朱女士因医治无效病逝。2004年4月,北京丰台区法院审理认为,原告认为再生障碍性贫血死亡为苯中毒所致证据不足,因此驳回了原告的诉讼请示。   自2003年以来,因车内空气污染引起的法律纠纷开始增多,除了“奥拓车苯超标引发死亡赔偿纠纷案”外,还包括“道奇公羊车甲醛超标案”、“奇瑞QQ疑致儿童白血病案”、“ 新甲壳虫甲醛超标三倍”、“中华轿车六年后甲醛仍超标4.4倍”等事件。   记者了解到,由于国内外没有适用的车内空气污染物控制标准,一些企业对车内空气污染没有引起足够的重视,且并未采取相应的措施。在发生相关诉讼案件时,司法机关和有关部门由于没有车内污染物判定标准,无法对消费者权益实施有效的保护,也无法约束企业的生产活动。   发生在2003年的那场命案中,虽然法院认为,原告的再生障碍性贫血死亡为苯中毒所致的证据不足,但由于存在没有车内空气质量标准的问题,法院为此向国家质监总局发出了司法建议书,建议尽早制定车内空气质量标准,同时建议将车内空气质量标准作为汽车制造业的强制性规定。   相关标准制定迫在眉睫   据中国汽车工业协会最新统计表明,2009年,我国汽车产销达1379.10万辆和1364.48万辆,同比增长48.30%和46.15%。其中乘用车产销1038.38万辆和1033.13万辆,同比增长54.11%和52.93% 商用车产销340.72万辆和331.35万辆,同比增长33.02%和28.39%。2009年,我国成为全球主要的汽车消费市场。中国汽车工业协会预计,2010年,我国全年汽车产量增速在10%左右,有望达到1500万辆。   环保部相关专家根据相关调研的结果表示,汽车的大量使用造成了两方面不容忽视的环境问题,一方面是汽车排放的大气污染物和噪声对车外环境的污染,另一方面就是车体材料释放有害物质造成的车内环境污染。   对汽车排放造成的环境污染,国家已经制定并发布了一系列汽车大气污染物和噪声排放标准,并实施了型式核准、生产一致性检查和在用车排放检查制度,对控制汽车污染发挥了重要作用。而对车内环境污染,国家尚未制定控制标准和采取污染治理措施。   业内人士认为,随着汽车进入家庭步伐的加快,车内空气污染问题会越来越受到关注,相关国家标准的制定和颁布已经显得较为迫切。
  • Palas®空气质量监测仪器帮助应对空气污染挑战
    空气是维持生命的重要物质,其质量优劣对人体健康有重要影响。伴随冬季的到来大气以下沉气流为主,污染物不易扩散。Palas® 对城市细粉尘污染的监测有着丰富的经验,并且对恶劣天气下的空气质量监测同样熟悉。颗粒物监测专家Palas® 提供的AQ Guard Smart网格化空气质量监测仪和Fidas® 单颗粒计数气溶胶粒径分布光谱仪是用于空气质量监测的专业仪器,为测量空气中的气溶胶颗粒物提供监测支持。用吸烟的危害衡量空气污染程度空气中的PM2.5颗粒物的粒径仅2.5微米。因为这些颗粒足够小,可以深入肺部进入血液,并引发心脏病、中风、肺癌和哮喘等疾病危害到人们的健康。同时人们深谙吸烟对身体健康的危害,一家著名的环境机构通过环境监测数据报告,设计了一款应用程序,通过将空气质量与吸烟的数量联系起来,将空气污染与吸烟行为造成的危害进行对比,对空气污染的健康影响进行了深入分析,以帮助人们了解空气污染对健康的影响。其结果直观且引人注目,通过该应用程序可查看不同地区的空气污染信息。例如在一天内的监测中,海南的空气污染程度相当于一天吸0.4支香烟,系统提示当前的空气质量令人满意,空气污染很少或没有风险,人们可以享受平常的户外活动;而保定的空气污染程度则相当于一天吸9支香烟,系统提醒目前的主要空气污染物PM2.5可能影响身体健康,人们应减少户外活动,特别是弱势人群。由此可知空气污染在一些城市是一个不容乐观的现状,人们需要时刻关注空气污染所带来的伤害。海南与保定两地一天内的空气污染用吸烟量衡量的对比恶劣天气中的气溶胶监测针对不同原因造成的空气污染,专注于研究气溶胶和颗粒物的监测专家Palas® 带来了空气质量监测解决方案。2021年9月隶属于西班牙加那利群岛(Islas Canarias)的拉帕尔马岛(La Palma),发生了50年不遇的火山喷发。而后不到半年,今年2月又遭遇了由强季节性风引起的沙尘暴。接踵而至的自然灾害对当地的空气环境以及人们的生活造成严重影响。Palas® 即刻响应,部署员工飞往该岛安装了10台AQ Guard Smart 网格化监测仪。面对此次沙尘暴AQ Guard Smart再次为西班牙当局提供实时监测信息,以帮助他们做出决策并告知公众。AQ Guard Smart监测到的火山灰和撒哈拉沙尘PSD成相图可靠的Palas® 监测仪器Palas® 稳定的空气质量监测仪器,能对颗粒物浓度和分布进行可靠、连续、灵活的测量,找出颗粒物污染产生原因,并对其扩散作出预测,可用于移动走航监测、颗粒物排放扩散研究、安全工作条件的监控,以及在路边位置、建筑工地或工业厂房进行临时或长期的空气质量监测等,以帮助人们应对各种空气污染的挑战。AQ Guard Smart网格化环境空气质量监测仪选配数据云平台,即插即用,实时查看热点数据:AQ Guard Smart 是适用于室外空气气溶胶监测的光谱仪,以通过 EN 16450 标准下的 Fidas® 200 为基础,采用单颗粒物散射光测量原理。可加载气体传感器(SO2、CO、NO2、O3),从而提供评估空气质量数据。AQ Guard Smart 不需要重新校准,可长时间运行。可通过对粒度分布的具体分析来确定粒度测定的偏差和PM值的偏移,并且将其作为系统自测的内容,当多出容差时系统自动显示和报警。AQ Guard Smart通过 Palas® MyAtmosphere 传输测量数据;单独运行时,可以借助带或不带太阳能支持的外部电池来运行系统。产品优势以经过认证的 FIDAS® 200 系列为基础而开发的技术,可以保证细粉尘值的高准确度和可重现性;以公认的快捷方便的现场校准而闻名通过云 MYATMOSPHERE 实现短时间调试和即时记录测量值通过 Wi-Fi 热点、远程访问和外部触摸板,根据现场情况进行配置通过 GPRS/3G/4G/Ethernet/Wi-Fi 通信,可选:LoRaWAN可扩展气象站和气体传感器,可以更好地评估和评价颗粒物数据以高时间分辨率测量 Cn、PM1、PM2.5、PM4、PM10(可选:SO2、CO、NO2、O3)颗粒物测量范围从 0.175 - 20,000 nm 到 100 mg/m³ 质量浓度或 20000 个颗粒/cm³ (单一颗粒物分析)应用领域工业: - 生产过程 - 散装物料处理(混合,卸料,储存,包装等) - 厂界监控施工现场:道路,铁路,拆除现场建筑物:学校,幼儿园,医院,酒店,办公室,公共服务建筑物建筑工地或其他污染区域附近的住宅建筑公共交通:机场,火车站,电车和地铁站,游轮,客舱,例如在电车、火车上Fidas® 单颗粒计数气溶胶粒径分布光谱仪Palas® Fidas® 单颗粒计数气溶胶粒径分布光谱仪是为管制空气污染而开发的气溶胶光谱仪。它可以连续分析环境空气中存在的细粉尘颗粒,测量尺寸范围为180 nm – 18 µ m,并计算PM10和PM2.5排放值。同时计算并记录的还有PM1,PM4,PMtot,颗粒数浓度Cn和粒度分布。因此,通过计数、单颗粒测量原理即可提供有关细尘颗粒信息。产品优势获得德国TÜ V Rheinland认证以及英国MCERTS认证连续和同时实时测量多个PM值基于颗粒物粒径分布的详细信息可调时间分辨率从1 秒以上至24小时通过Palas® 服务器云区域进行全球数据检索低维护、低消耗品应用领域监测网中合规性监测颗粒物特征科学研究移动走航监测颗粒物排放扩散研究
  • 中石化自主开发微痕量气体组分同位素分析新技术
    近日,石油勘探开发研究院无锡石油地质研究所实验研究人员应用自主开发的微痕量气体组分同位素分析新技术,对鄂尔多斯盆地的富烃类气藏、云南腾冲的温泉气、济阳坳陷地区二氧化碳气藏中的气体进行氢同位素分析,收到让地球化学研究人员满意的分析效果。历经40多年发展的无锡石油地质研究所实验研究中心在稳定同位素分析领域方面有着深厚的技术积累,逐步形成具有特色的同位素分析技术系列,得到国内外同行认可。面对油气勘探研究需要和目前同位素分析技术难题,在上级的支持下,这个所不断更新实验技术装备,引进3台不同型号的稳定同位素质谱仪,包括与其相配套的水平衡装置、预浓缩装置、气相色谱仪等先进设备。   同时,这个所着力加强技术创新和新技术的开发应用,坚持将传统技术方法与创新分析技术相结合,在原有稳定同位素分析技术的基础上,通过将稳定同位素质谱仪与其相配套的设备互相联接,成功开发了新同位素分析技术。   燃烧/高温裂解元素分析仪与稳定同位素质谱仪(Delta V)联机使用碳—氮、氢—氧同位素连续测定技术,可进行批量样品分析,具有样品量小、检测速度快、准确度高的特点,能满足沉积有机质碳、氢、氧、氮4种元素同位素组成的分析要求。使用燃烧装置能够实现一次进样同时检出样品中碳、氮同位素组成的目标,而使用裂解装置可同时在线测定其氢、氧同位素组成,还可用于水中氢氧同位素分析。   预浓缩装置与稳定同位素质谱仪(MAT253)联用测定微痕量气体组分的同位素分析技术,能满足低浓度甲烷气样品的碳氢同位素分析,同时利用天然气中各个组分在低温下被特定填料吸附的物理性能差异,对天然气中微痕量氢气的富集与分离,有效消除天然气中微痕量氢气同位素分析的技术瓶颈,为幔源流体中氢的地球化学研究提供有力技术支撑。   据悉,稳定同位素分析新技术的开发与应用,为石油天然气地质研究提供了丰富的地球化学信息,在油气成因类型判识、油气源对比、运移示踪和成藏机理研究等方面发挥着独特作用,深受课题科研攻关人员和油气田生产单位的欢迎。
  • “起底”有毒有害痕量元素大气排放
    不管是资源利用还是污染控制,摸清家底都是基础且必须的工作。近日,北京师范大学教授田贺忠团队基于多源数据融合,评估了“大气十条”(《大气污染防治行动计划》)实施期间,不同排放控制措施对各部门有毒有害痕量元素大气排放变化的驱动。并利用大气传输模型及暴露风险评价模型,量化分析了典型行业(燃煤、冶金等)排放变化对有毒有害痕量元素大气暴露浓度及健康风险的影响。5月1日,相关论文在《一个地球》在线发表。痕量元素大气传输及暴露风险示意。受访者供图痕量元素关乎健康国际癌症研究机构(IARC)曾将砷、镍、镉、六价铬、铅、钴、锑及其化合物认定为致癌物质。这些重金属元素在大气中含量极少,但具有毒性、累积性和致癌性的特点,长期暴露在较高浓度有害痕量元素大气环境中,会对人体呼吸系统、心血管系统等构成严重威胁。2013年9月,国务院印发《大气污染防治行动计划》,多措并举展开大气污染防治。从重点行业整改关停,到全面整治小锅炉、控制机动车保有量、治理餐饮污染,再到大力发展清洁新能源。一系列举措很快显现成效,我国重点区域空气质量明显好转,重污染天气大幅度减少。2017年,第一次全国污染源普查对减排效果有了整体了解,但这些减排措施如何影响我国大气中有害痕量元素排放、其暴露浓度水平及相关健康风险仍不清楚。“‘大气十条’中的治理措施和围绕该措施进行的普查主要针对颗粒物、二氧化硫和氮氧化物等常规大气污染物,实际上我们还应该关注其中对人体健康危害较大的有毒有害微量元素,比如砷、铅、镉等。”田贺忠告诉《中国科学报》,“这项研究基于多源数据融合,建立了中国有毒有害痕量元素网格化大气排放清单模型,评估了不同排放控制措施对各部门、各省区有毒有害痕量元素排放变化的驱动,并利用大气传输模型及暴露风险评价模型,量化分析研究了典型行业排放变化对有害痕量元素暴露浓度及健康风险的影响。”“协同减排”效益明显“总体来讲,‘大气十条’实施期间有毒有害痕量元素的排放减少成效明显,但其风险依然值得关注。”田贺忠说。通过调查研究全国燃煤电厂、黑色金属冶炼、有色金属冶炼、水泥生产、垃圾焚烧电厂等典型工业排放源的点源排放量及各省煤炭消耗量和装机容量空间分布,研究人员发现,中国五大城市群(华北平原、长三角、珠三角、川—渝和汾渭平原)有害痕量元素排放量占全国总排放量的42%;五大城市群以外,湖南、内蒙古、云南、辽宁及河南省也是有害痕量元素排放量较高省份;“大气十条”期间,全国11种有害痕量元素年均暴露浓度约减少28.1%。其中,燃煤部门的排放削减对钴、砷、硒、铬和锌浓度减少的驱动最显著,贡献在50%以上;而黑色金属冶炼部门的排放变化则主导了镉和铅浓度的降低。“尽管如此,2017年中国有毒有害痕量元素污染依然严重。较高的痕量元素浓度主要集中在中国东部、华北和西南部分地区。”该论文第一作者、海南大学南海海洋资源利用国家重点实验室副研究员刘姝涵(北师大环境学院博士)说,“此外,六价铬的全国年均浓度比国家空气质量标准高出15倍,其中最大值出现在山东省。砷、镍元素浓度在山东省和上海市略高于标准限值。”研究发现,“大气十条”期间,7种致癌元素的全国年均致癌风险下降了约39.5%。其中钴、六价铬和砷元素下降幅度最大。然而,2017年,有害痕量元素年均致癌风险值仍超过阈值,较高致癌风险主要出现在中国东部。山东和上海砷和镍元素致癌风险分别达风险阈值的9倍和1.6倍。情景分析表明,2012年至2017年,燃煤部门排放变化主导了致癌风险降低,带来了1.5×10-6 致癌风险的下降。黑色金属冶炼和有色金属冶炼部门排放变化分别带来了0.8×10-6和0.3×10-6 致癌风险的下降。“‘大气十条’主要针对PM2.5等常规污染物展开,但对有害痕量元素起到了很好的‘协同减排效益’。”田贺忠解释说,“燃煤电厂超低排放改造等重点工业行业的除尘、脱硫、脱硝工艺升级改造同时减少了有害痕量元素排放。”多源数据融合显威力“‘大气十条’的施行,不但减排效果显著,还推动了各行业部门相关信息的公开,这为我们进行定量研究提供了很多基础数据。此外,地理信息技术、数字化和人工智能技术的发展,也让我们使用‘多源数据融合’,进行更精细的‘点源化’研究成为可能。”田贺忠说。进行污染物调查研究,过去的数据来源单一,通常统计年鉴等宏观数据不显示排放源的具体位置。近年来,随着各行业信息公开化程度不断提高,各省、区,各行业、企业,甚至一些协会、组织也会从不同的角度披露一些重点排放源的信息和数据。这些数据虽然源自不同部门,服务于不同对象,甚至数据侧重点、统计方法、呈现方式各不相同,但经过数据清洗和技术处理,这些不同来源的数据却可以相互补充验证。“比如,各省的统计年鉴和月度统计公报中有每年和每月水泥产量数据,我们会结合当地的经济数据,结合水、煤、电量等相关数据信息,排污许可证允许排量等,通过多渠道分析研究,弄清它的排放量。”田贺忠补充说,“了解一家企业使用什么生产工艺装备,掌握它的除尘、脱硫、脱硝技术路径,知道它消耗了多少煤和原材料等信息,就可以建立一套技术方法去核算它排放多少砷、铅、镉等元素,这就是‘多源数据融合’。”利用这些数据,研究人员将我国主要燃煤电厂、黑色冶炼、有色冶炼、水泥生产、垃圾焚烧等重点工业源进行精确经纬度定位,利用各种直接和间接的数据,结合当地GDP、人口、土地利用、交通流等数据,再通过实地调研和现场实测等抽样验证,利用数理统计分析方法精确核算出趋近实际的排放量,并将其精准定位在网格上。“重金属成分的健康风险是精细控制空气污染的先决条件。”该论文匿名审稿人评价说,“本文的创新贡献在于提供了最新的排放清单和健康风险估计。该研究基于对具体措施的效益评估,为减缓有毒有害痕量元素污染和相关健康风险提供了关键见解。为中国实施清洁空气和低碳政策下精准控制有毒痕量元素提供了科学依据,也为其他国家和地区量化痕量元素排放提供了参考。”
  • 岛津针对环境污染物检测应用交流会圆满举行
    12月6日,由纳锘实业携手日本岛津&岛津技迩联合主办的“岛津针对环境污染物检测应用方案交流会”在岛津上海中心成功举办。此次会议针对《环境污染物检测应用方案》展开详细研讨和交流,分享GCMS/MS,ICPE-9800,AA-6880,LC-16液相色谱仪,ICPMS-2030,EDX-7000能量色散型 X 射线荧光分析装置在污染物检测分析中的应用。 会议非常荣幸邀请到上海30多家第三方检测机构,包含SGS,环境监测站,中国环境科学院等50多位工作在环境污染物检测行业的专家学者。纳锘实业邰经理为本次交流会拉开序幕,介绍公司历史和不断取得的进步。同时也为第三方检测机构带来了新的售后保养一站式服务,解决了维修售后难的问题。年末交替,邰经理也为第三方机构介绍了NTC服务,帮助第三方机构解决新员工培训问题。 岛津小型分析仪器事业部赵彤老师为我们介绍二恶英在环境中的危害,大气环境中的二噁英来源复杂,钢铁冶炼有色金属冶炼,汽车尾气,焚烧生产(包括医药废水焚烧,化工厂的废物焚烧,生活垃圾焚烧,燃煤电厂等)。同时分享三重四极杆质谱法(GC-MS/MS)测定土壤环境中超痕量二恶英的分析方法。(GC-MS/MS)具有较好的灵敏度和重复性,实际样品的检测结果与高分辨气相色谱-高分辨质谱(HRGC/HRMS)法的测定结果具有较好的一致性。 下午时分,来自岛津大分事业部吴静老师为我们分享能量色散型 X 射线荧光EDX7000/8000,该系列产品具有非破坏、方便、快捷的特点,灵敏度相对较高等特点。鉴于在 RoHS、ELV 领域成功的应用经验,以及环保法规的相似性。岛津希望开始在土壤分析领域开拓 XRF 仪器的应用,分析效果均高于国标标准。 接下来来自岛津大分事业部苗国玉经理,为我们介绍X 射线荧光分析(XRF)。X射线荧光分析仪在众多元素分析领域已经得到了广泛的应用,已经成为企业进行质控及产品分析的必备手段。在环境检测,可以检测As、Pb、Cr、Ni、Cu、Zn、V、Co、Mn 等九重重金属元素。具有方便、快捷等特点,灵敏度也可以满足相关元素限量要求。 近年来,我国汽车工业和汽车消费均呈现持续、高速增长的趋势。然而汽车内饰材料散发的VOCs会形成严重的空气污染,对人体健康会造成严重影响。日本岛津技迩金盛经理,为我们分享岛津技迩《车内空气污染物综合解决方案》,主要针对第三方检测空气质量检测分析。详细介绍在做VOCs分析时,InertCap 1MS 气相毛细管柱,具有最高惰性和最低流失的特性,是VOCs分析的理想选择。 最后,纳锘邀请各位专家学者参观了岛津分析中心。分析中心浓缩了岛津小型分析仪器和大型分析仪器,种类齐全。现场各位展开了热烈的技术交流,岛津分析中心实验员热情与各位来宾交流。邰经理为各位来宾讲解GCMS构成与使用
  • 北京空气污染“超过了可检测的最差水平”
    21日的北京因为大雾,空气污染达到5级“重度污染”,成为2011年首个重度污染天。而据法新社报道,美国驻北京大使馆当天的独立检测结果显示,21日北京的空气污染程度“超过了可检测的最差水平”。(2月23日《环球时报》)   一句北京天气“危险且超过指标”,令人黯然而不安。所谓超过指标,大概是指面对糟糕的空气指标,现行测量指标失灵了、束手无策了,因为它超过了指标所能承受和想象的可怕程度。应该说,所谓的“北京空气糟糕到无法检测”并非信口开河,这一点北京市环卫部门的检测数据也提供了佐证——2月21日,雾气弥漫的京城出现今年首个重度污染天,当天北京市空气平均污染指数为333,达到5级重度污染。对此,环保局专家建议老年人和心肺疾病患者减少室外活动,或者“老人和儿童应避免外出”。   空气糟糕不是新闻,但糟糕到测量指标无法检测的地步,委实算得上新闻,每个生活在这个城市的人也许都在劫难逃,都免不了惶恐。“北京空气糟糕到无法检测”提醒我们,是时候关注城市空气污染了,也是时候大力遏制空气污染了。   当然,空气污染不是北京的专利,国内不少城市都存在空气污染现象,而北京的空气污染似乎更严重。商人史玉柱前不久在微博上公布了这样一组耐人寻味的数据:“张跃(笔者注:张跃,远大中央空调集团董事长)的远大是做空气生意的。他随身携带2个空气检测仪器我很好奇,就拿来玩。里面有他去过的城市空气污染记录,换算成吸一天该空气相当于一天吸多少支高焦油香烟,记录如下:丽江1,北京21,广州25,上海9,南京9,长沙13,成都12,武汉13,如果我生活在丽江,一天抽20支烟,和北京不抽烟的人被危害程度是一样滴。”   如果说这些数据只是一个业内人士的随机试验,那么中国工程院院士钟南山的研究,则可证明空气污染的严重事实。“50岁以上的广州人肺都是黑色的!”2008年6月12日,在珠江三角洲大气污染防治高峰论坛上,钟南山说,根据临床和手术统计数据显示,因吸入污染物过多,广州人一旦超过50岁,肺部就变成了黑色。大气污染致肺癌成常见病——“珠三角正面临着复合型大气污染的威胁!”   很显然,在一个空气急剧恶化的时代,但凡生活在城市中的人(在乡村,空气或许也好不了哪里去),都不得不承受空气的侵袭。不妨以笔者本人为例,笔者刚到北京的好长一段时间内,嗓子咳嗽得厉害,久久难愈,用药也解决不了问题,原因就是北京空气干燥且污染。   单单嗓子难受倒还罢了,空气污染带给人们的更有深度的身体危害,比如对身体的心血管、肺部等造成伤害,统计显示,一到灰霾天、大雾天,医院呼吸科的门诊量都会上升20%。研究还表明,空气对人体健康的影响更甚于饮用水,空气中不可见的微尘、细菌、挥发性气体及金属颗粒,是导致人类68%以上疾病的根源。据报道,香港大学分析1996年至2006年间香港的能见度和死亡率,发现香港地区每年平均有1200人因空气污染致死。   平心而论,30多年前的国人,做梦也不会想到今天的生活会如此富足 同样的是,30多年前的国人,做梦也不会想到今天的空气污染会如此糟糕。“开着宝马喝污水,是对现代化的讽刺”,环境保护部部长周生贤如是说。诚然,开着宝马喝污水、垃圾堆旁食鲍鱼,确实很具讽刺性。更具讽刺的是,绝大多数人开不起宝马,但不得不承受喝污水、吃地沟油、呼吸污染空气,这更是不容回避的悲剧。现在几乎每个城市都在打造幸福指数,都在提高城市的宜居度,如果连安全的空气都呼吸不上,幸福和宜居就是虚妄之谈。
  • 当AI遇上光学:深度学习如何大幅提升痕量气体分析灵敏度?
    今天七月,Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (SAA)期刊上发表了一个来自安徽大学周胜副教授课题组的研究成果《Optimized adaptive Savitzky-Golay filtering algorithm based on deep learning network for absorption spectroscopy》。此项工作将深度学习应用在激光光谱气体分析技术上的Savitzky-Golay(简称S-G)滤波抗噪算法,并通过仿真和实验证实该方法能够提升痕量NO2气体分析中光谱信号的信噪比,有助于实现更高灵敏度的气体分析。激光光谱分析是一个很强大的气体分析技术,能够实现非接触式、高精度、高灵敏度、高选择性的痕量气体分析(ppm或ppb量级)。然而,实际操作中所测得的吸收光谱会受到噪声的干扰,导致不准确的测量结果。过去的研究工作中提出了一些抑制噪声的算法,其中S-G滤波算法由于速度快、无需提供过多的参数、且能较好的保留原始光谱的形状和高度,成为近年来较受关注的方法,并且已经在某些应用场景(例如连续血糖监测)证明其面对各类噪声的有效性。S-G滤波算法的性能决定于两个参数:多项式阶数(k)和平均计算的窗口大小(b)。但是,噪声源和吸收光谱在实际应用中是未知的,因此难以获得固定的参数值使得滤波效果达到优。为了解决这个问题,研究人员提出了一种优化的自适应S-G算法,将深度学习网络与传统的S-G 滤波相结合,以提高测量系统的性能。深度学习网路以其非线性映射和建模能力对数据的规律性进行研究,并实现出色的“自我调整”和“跟踪反馈”。相较于传统的S-G算法,经过优化的算法可以调整滤波参数以实现光谱的佳信噪比。图一展示了用于训练S-G滤波算法参数的深度学习网络。这个具有多层感知器的人工智能网络提供了设计上的弹性,可以通过调整层数、神经元数量、和一些优化指标以达到所需的性能。用庞大的数据集进行高效训练后,相应的网络模型将达到最状态。接着,经过训练的网络模型将使用变量数据输入找到好的 k 和 b。 与此同时,输入数据集也将按传统方式计算以获得佳参数k 和 b。通过比较模型预测和人机计算的结果,由人工决定出佳的网络参数。图一 用于计算S-G滤波算法参数的深度学习网络 研究组以NO2为目标气体,选取波数位于1630.1至1630.42 cm-1的吸收谱线,进行了软件仿真和实验测量作为新方法(adaptive S–G filtering, 以下称ASGF)的验证,同时与另一常用的multi-signal averaging filtering(MAF)方法作比较。MAF计算时间长且主要用于白噪声的抑制。仿真结果显示在白噪声干扰的条件下(图二),MAF将信噪比从原始的6.58 dB提升至12.62 dB,新的ASGF算法则能提升至15.51 dB。图三则显示了非白噪声的背景噪声干扰,MAF方法将信噪比从原始的7.14 dB提升至13.22 dB,新的ASGF算法则提升至了更高的17.37dB。 图二 仿真验证ASFG算法在白噪声干扰下的性能表现 图三 仿真验证ASFG算法在其他背景噪声干扰下的性能表现 图四展示了实际实验的设置,它由一个光源、一个带压强控制器的多通气体吸收池、一系列反射镜、一个碲镉汞光电探测器和一台计算机组成。昕虹光电为此项研究工作提供的激光源为Q-Qube型量子级联激光发射头,这是一款热电冷却,空气制冷型,内准直输出的连续波CW室温分布反馈型量子级联激光(DFB-QCL)源,最峰值输出功率为 30 mW,由QC750-Touch型一体化激光驱动器,集温度控制器和低噪声恒流电流控制器驱动于一身,使光源系统发出6.2 μm波长的激光。极低的光学噪声和驱动器稳定性为此实验奠定了高质量信号基础。激光通过多通池由热电致冷型的碲镉汞光电探测器接收,信号传输至电脑后进行数据处理与分析。 图四 用于验证ASGF算法用于痕量NO2气体分析的实验设置 实验设置在压力0.1 atm和温度296 K的氮气中对4 ppm NO2的测量。其测量和过滤后的吸收光谱如图五(a)所示,原始数据测吸收特性淹没在噪声中,而经ASGF算法过滤后的频谱已显着平滑,使识别更容易。研究组对吸收光谱数据与理论Voigt 函数拟合,图五(b)结果表明拟合的R平方值高达0.99934,表明滤波后的吸收光谱与理论形状吻合良好。 图五 实测NO2的吸收光谱和经ASFG算法后的吸收光谱,可以看到滤波后的吸收光谱与理论形状吻合良好 结合了深度学习的神经网络技术,研究组提出的自适应S-G滤波算法表现出显着的滤波效果,在激光光谱气体分析领域中能够大幅改善光谱信号的信噪比。面对大气环境中具有挑战性的痕量气体分子检测,将能提供更优异的灵敏度和可靠性。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制