当前位置: 仪器信息网 > 行业主题 > >

高精度蓝光拍照式测量系统

仪器信息网高精度蓝光拍照式测量系统专题为您提供2024年最新高精度蓝光拍照式测量系统价格报价、厂家品牌的相关信息, 包括高精度蓝光拍照式测量系统参数、型号等,不管是国产,还是进口品牌的高精度蓝光拍照式测量系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高精度蓝光拍照式测量系统相关的耗材配件、试剂标物,还有高精度蓝光拍照式测量系统相关的最新资讯、资料,以及高精度蓝光拍照式测量系统相关的解决方案。

高精度蓝光拍照式测量系统相关的论坛

  • 高精度压强(真空度)和温度同时控制技术在光谱测量及光谱仪中应用的实施方案

    高精度压强(真空度)和温度同时控制技术在光谱测量及光谱仪中应用的实施方案

    [align=center][color=#990000][img=光谱仪压强控制,690,398]https://ng1.17img.cn/bbsfiles/images/2021/07/202107030808077473_8105_3384_3.png!w690x398.jpg[/img][/color][/align][color=#990000]摘要:光谱测量和光谱仪是检测监测中的重要技术手段,为了得到满意的测量精度,光谱仪要求配套高精度的压强和温度传感器、执行机构和PID控制器,并需具有适用范围广、精度高、易集成和成本低的特点。本文将针对光谱仪压强和温度控制的特点,结合上海依阳公司的创新性产品,给出高精度和高性价比的光谱测量和光谱仪温压测控方案。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]1. 问题的提出[/color][/size] 光谱测量作为定性、定量的科学分析方法,以其测量精度高、响应速度快的优势成为各种检测监测研究中的重要技术手段,但在实际应用中样品气体的压强和温度变化会对测量结果产生严重的影响,以下是光谱测量中的温压控制方面国内外所做的一些研究工作以及所表现出来的影响特征:[color=#990000](1)压强控制范围[/color] 不同的光谱测量和光谱仪对压强控制范围有着各自不同的要求,如使用气体吸收池的红外光谱仪,吸收峰的强度可以通过调整试样气体的压强(或压力)来达到,一般压强范围为0.5~60kPa。在采用可调谐二极管激光吸收光谱(TDLAS)技术测量大气中二氧化碳浓度时,就需要6~101kPa范围内的稳定压强。在X射线光谱分析仪检测器内压强的精确控制中,要使得工作气体的密度稳定来保证检测器的测量精度,一般压强控制在一个大气压附近或者更高,而激光诱导击穿光谱仪的工作压强最大可达275kPa。由此可见,光谱仪内工作气体的压强控制范围比较宽泛,一般在0.1~300kPa范围内,这基本覆盖了从真空负压到3倍大气压的4个数量级的压强范围。[color=#990000](2)压强控制精度[/color] 在光谱测试中,观察到的谱线强度与真实气体浓度之间的关系取决于气体样品的压强,所以压强控制精度直接决定了光谱测量精度。如美国Picarro公司的光谱分析仪中的压强控制精度±0.0005大气压(波动率±0.05%@1大气压)。文献[1]报道了设定压强为6.67kPa时对吸收池进行控制,经过连续四小时控制,压强波动为±3.2Pa,波动率为±0.047%。文献[2]报道了样品池内气体压强同样被控制在6.67kPa时压强长期波动幅度为7Pa,波动率为±0.047%。文献[3]报道了激光红外多通池压强控制系统的稳定性测量,目标压强设定为60Torr,在150~200s时间内最大波动为±0.04Torr,波动率为±0.067%。文献[4]专门报道了光谱测量仪器的高精度温压控制系统的设计研究,目标压强值为18.665kPa,42小时的恒压控制,最大偏差为5.33Pa,波动率为±0.014%。文献[5]介绍了X射线光谱仪中探测器的恒压控制结果,在工作气体恒压在940hPa过程中,波动小于±2hPa,波动率为±2%。文献[6]介绍了X射线光电光谱仪在0.05~30mbar压强范围内的恒压控制技术,在设定值为0.1mbar时,恒定精度可达±0.001mbar,波动率为±1%。[color=#990000](3)温度控制精度[/color] 在光谱测试中,谱线强度与真实气体浓度之间的关系还取决于气体样品的温度稳定性,而且温度的稳定性同时也会影响压强的稳定性。文献[2]报道了样品池内气体温度控制在室温(24℃)时,温度短期波动为±0.01℃,长期温漂为±0.025℃,波动率为±0.1%。文献[4]报道的光谱测量仪器的高精度温度控制系统中,温度控制在45℃,42小时内的温度波动为±0.0015℃,波动率小于±0.004%。 综上所述,由于样品气体的压强和温度变化是影响测量结果的主要因素,所以在光谱测量以及各种光谱仪中,对样品气体的压强和温度调节及控制有以下几方面的要求: (1)压强控制范围非常宽泛(0.1~300kPa),但相应的测量和控制精度则要求很高,这就对压强测量传感器、控制阀、真空泵和相应的控制器提出了很高的要求,并且这闭环控制系统中的四个组件必须相互匹配,否则很难得到满意的结果。 (2)同样,在温度的高精度控制过程中,也应选择合适的温度传感器、加热装置、电源和控制器,并在温度闭环控制系统中四者也必须相互匹配。 (3)在压强和温度这两个闭环控制系统中,都会用到高精度控制器,为了降低实验成本和光谱仪造价,希望能用一个具有2路同时PID自动控制功能的高精度控制器。 (4)针对不同的光谱测量和光谱仪,其测试结构并不相同,这就要求温压控制系统中的各个部件具有独立性,由此有利于测试装置和光谱仪结构和合理布局和集成。 总之,为了得到光谱测量的满意精度,要求配套高精度的压强和温度传感器、执行机构和PID控制器,并具有适用范围广、精度高、易集成和成本低的特点。本文将针对这些特点,结合上海依阳公司的创新性产品,给出高精度和高性价比的光谱测量和光谱仪温压测控方案。[color=#990000][size=18px]2. 光谱仪压强和温度一体化测控方案[/size]2.1. 控制模式设计(1)压强控制模式[/color] 针对光谱仪上述的压强测控范围(0.1~300kPa),最佳方案是针对具体使用的压强范围选择相应的测控模式,如图2-1所示,针对低压范围建议采用上游控制模式,针对高压范围建议采用下游测控模式,也可以采用上下游同时控制的双向控制模式。[align=center][color=#990000][img=光谱仪压强控制,690,217]https://ng1.17img.cn/bbsfiles/images/2021/07/202107030808325845_3021_3384_3.png!w690x217.jpg[/img][/color][/align][color=#990000][/color][align=center]图2-1 压强控制的三种模式[/align] 针对低压采用上游控制模式,可以重复发挥真空泵的抽速,使得真空腔体内的压强可以快速准确的实现恒定控制。针对高压(如1个大气压左右)采用下游控制模式,可以有效控制真空泵的抽速,使得真空腔体内的压强可以快速准确的实现恒定控制,同时还避免了进气口处的样品气体和其他工作气体的流量太大。 如果对进气流量和腔体压强有严格规定并都需要准确控制,则需要采用双向控制模式,双向控制模式可以在某一恒定压强下控制不同的进气流量,但双向控制模式需要控制器具有双向控制功能,这对控制器提出了更高的能力要求。以上三种控制模式的特点更详细介绍,请参考文献[7]。[color=#990000](2)温度控制模式[/color] 同样,温度测控模式也要根据不同的温度范围和控温精度要求进行选择,如在室温附近且控温精度较高的情况下,则需要具有加热和制冷功能的双向控制模式,只有这种模式才能保证足够高的控温精度。如果在高温范围内,也建议采用双向控制方式,即以加热为主同时辅助一定的冷却补偿,以提高控温精度和快速的温度稳定。[color=#990000]2.2. 传感器的选配[/color] 传感器的精度是保证压强和温度测控准确的关键,因此传感器的选择尤为重要。 对于上述范围的压强控制,强烈建议采用目前精度最高的薄膜电容真空计[8],这种真空计的测量精度可以达到其读数的0.2%,全量程内具有很好的线性度,非常便于连接控制器进行线性控制,并具有很高的分辨率和很小的温漂。在实际选型中,需要根据不同的压强范围选择合适量程的真空计,如对于上述0.1~300kPa的压强范围,可以选择2Torr和1000Torr两种规格的真空计,由此对相应压强量程实现准确的覆盖。 对于温度控制而言,当温度不高的范围内,强烈建议测量精度最高的热敏电阻温度传感器,较高温度时也建议采用高温型的热敏电阻或铂电阻温度传感器。如果加热温度超过了热敏电阻和铂电阻传感器的使用范围,则建议采用热电偶型温度传感器。这些温度传感器在使用前都需要进行计量校准。[color=#990000]2.3. 执行机构的选配[/color] 压强控制执行机构是决定能否实现高稳定性恒定控制的关键。如图2-2所示,强烈建议采用线性度和磁滞小的步进电机驱动的电动针阀,不建议采用磁滞和控制误差都较大的比例电磁阀。电动针阀可以布置在进气口和出气口处,也可以根据上游或下游控制模式的选择布置一个电动针阀。如果光谱仪的真空腔体庞大,电动针阀就需要更换为口径和流速更大的电控阀门,以便更快的实现压强恒定控制。详细指标可参见文献[8,9]。[align=center][color=#990000][img=电动针阀和电动调节阀,690,369]https://ng1.17img.cn/bbsfiles/images/2021/07/202107030808519287_4900_3384_3.png!w690x369.jpg[/img][/color][/align][color=#990000][/color][align=center]图2-2 小流量电动针阀和大流量电动阀门[/align] 温度控制的执行机构建议采用具有帕尔贴效应的半导体热电片,这种热电片具有加热制冷双向工作模式,配合高精度的热敏电阻和控制器可以实现超高精度的温度控制,非常适合光谱仪小工作腔室的控温。 如果光谱仪工作腔室较大且温度在300℃以下,建议采用具有加热制冷功能的外排式循环浴进行加热,这种循环浴同样具有加热制冷功能,可达到较高的控温精度。 如果光谱仪工作在更高温度,则建议采用电阻丝或光加热方式,同时配备一定的通风冷却装置以提高加热的热响应速度,从而保证温控的稳定性和速度。[color=#990000]2.4. 控制器的选配[/color] 控制器是实现高精度和高稳定性压强和温度测控的最终保障。在压强控制设计中,控制器需要根据所选真空计和执行机构进行选配,选配的详细介绍可参见文献[10]。根据文献的计算可得认为,如果要保证压强测控的精度,必须采用至少16位以上的A/D模数采集器。同样,温度测控的精度保证也是由模数采集器的位数决定。因此,对于光谱仪中压强和温度的控制,建议采用了目前上海依阳实业有限公司开发的精度和性价比最高,并结合了PID参数控制功能的24位A/D采集的控制器,详细内容可参见文献[11]。 按照上述的选型,最终压强和温度的测控方案如图2-3所示。[align=center][color=#990000][img=光谱仪压强和温度控制框图,690,291]https://ng1.17img.cn/bbsfiles/images/2021/07/202107030809355503_6326_3384_3.png!w690x291.jpg[/img][/color][/align][color=#990000][/color][align=center]图2-3 光谱仪压强和温度测控方案示意图[/align] 特别需要指出的是,上述的压强和温度控制,基本都采用了双向控制模式,而我们所开发的这款高精度控制器恰恰具有这个功能。另外,在光谱仪实际应用中,压强和温度需要同时进行控制,可以采用两台控制器分别进行控制,但相应的光谱仪整体体积增大、操作变得繁复并增加成本。而目前所建议使用的高精度控制器则是一台双通道的PID控制器,两个通道可以独立同时进行不同PID参数的控制和PID参数自整定,并且每个通道都具有双向控制功能,这有效简化了控制器并降低了仪器尺寸和成本。[size=18px][color=#990000]3. 总结[/color][/size] 综上所述,通过对光谱测量和光谱仪的压强和温度测控要求的分析,确定了详细的温压测控技术方案,并详细介绍了方案确定的依据以及相应所选部件的技术参数指标。 整个技术方案完全能满足光谱测量和光谱仪对压强和温度测控的要求,并具有测控精度高、功能强大、适用范围广、易集成和成本低的特点。除了薄膜电容真空计为进口产品之外(也可选国产真空计),方案中的所有选择部件和仪表都为国产制造。[color=#990000]4. 参考文献[/color](1)牛明生, 王贵师. 基于可调谐二极管激光技术利用小波去噪在2.008μm波段对δ13CO2的研究[J]. 物理学报, 2017(02):136-144.(2)孙明国, 马宏亮, 刘强,等. 参数主动控制的痕量气体实时在线测量系统[J]. 光学学报, 2018, v.38;No.434(05):344-350.(3)许绘香, 孔国利. 采用Ziegler-Nichols-PID算法的激光红外多通池压强控制系统研制[J]. 红外与激光工程, 2020(9).(4)周心禺, 董洋, 王坤阳,等. 用于光谱测量仪器的高精度温压控制系统设计[J]. 量子电子学报, 2020, v.37 No.194(03):14-20.(5)Elvira V H , Roteta M , A Fernández-Sotillo, et al. Design and optimization of a proportional counter for the absolute determination of low-energy x-ray emission rates[J]. Review of Scientific Instruments, 2020, 91(10):103304.(6)Kerherve G , Regoutz A , D Bentley, et al. Laboratory-based high pressure X-ray photoelectron spectroscopy: A novel and flexible reaction cell approach[J]. Review of Scientific Instruments, 2017, 88(3):033102.(7)上海依阳实业有限公司,“真空度(气压)控制:上游模式和下游模式的特点以及新技术“,知乎:https://zhuanlan.zhihu.com/p/341861844.(8)上海依阳实业有限公司,“真空压力控制装置:电动针阀(电控针型阀)”:http://www.eyoungindustry.com/2021/621/29.html.(9)上海依阳实业有限公司,“微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(MPCVD)系统中真空压力控制装置的国产化替代”,知乎:https://zhuanlan.zhihu.com/p/377943078.(10)上海依阳实业有限公司,“彻底讲清如何在真空系统中实现压力和真空度的准确测量和控制”,知乎:https://zhuanlan.zhihu.com/p/343942420.(11)上海依阳实业有限公司,“高精度可编程真空压力控制器(压强控制器和温度控制器)”:http://www.eyoungindustry.com/2021/618/28.html.[align=center]=======================================================================[/align][align=center] [img=,690,345]https://ng1.17img.cn/bbsfiles/images/2021/07/202107030804374064_8626_3384_3.jpg!w690x345.jpg[/img][/align]

  • 大直径电缆测径仪 高精度实时测径仪 激光测径仪

    [b]LPXJ70.1单路测径仪[/b]为大直径的测径仪,可以适用于0~70mm范围内的轧材外径检测,并且可根据检测需求,实现测径仪的定制,对更大线材的外径尺寸进行测量。该测径仪测量范围大,并且可以达到静态测量精度0.01mm,而动态测量精度也可以达到0.02mm,实现高精度的外径在线检测。LPXJ70.1单向测径仪(以下称本仪器)内置1组固定式光电测头,可对被测物一个方向的外径尺寸进行实时测量。主要应用于BV线、通讯电缆、塑胶线、电力电缆、光纤、漆包线、铝塑管、钢材、纤维等各类管材、棒材、线材的外径测量,在线检测和离线检测均可,并能实现自动反馈控制以及与电脑的联机通讯。[b]安装位置[/b]本仪器应用于线缆生产线时,既可以安装在冷却水槽之前,也可以安装在水槽之后。安装在水槽前时,由于外径测控仪距离挤塑机近,反馈控制及时,能获得最佳的控制效果。但此时塑料尚未固化,仪器测量的是线缆的热态外径,通常略大于其实际外径(冷态外径) ,因此设定的标称值应适当加大。安装在水槽后时,测量值为线缆的实际外径值,比较准确可靠,但控制滞后量大,控制效果较差。另外,被测线缆须吹干,否则线缆表面的水膜会影响测量精度,实际使用时应根据被测物带水的程度,适当加大设定的标称值。[b]安装方法[/b]1)打开包装,检查仪器及附件是否齐全。2)为保证测量的准确性,底座应安装在坚实、平整的平面上;3)分别连接底座和支杆、支杆和托板、测径仪和托板;4)松开星形手柄调节测径仪水平高度,使设备与被测工件平行,且被测工件垂直于两视窗的中心线并平行于底座上基准面,保证被测工件从距离底座的上基准面27.5±8mm的范围内通过。5)连接外接屏、变频器。将航空插头插入机体上对应的接口(如图3)。6)检查无误后,连接电源线,开机上电。基本规格:型号:LPXJ70.1测量范围:0~70mm静态测量精度:±0.01mm动态测量精度:±0.02mm测量光源:远心平行光源,绿色,λ = 520 nm测量频率:500Hz供电电压:AC220±15%V 50Hz操作温度:-10~+45℃操作湿度:85%设备尺寸:740*125*190mm

  • 中国科大率先实现高精度量子测量术

    精度可达到纳米量级2013年04月19日 来源: 中国科技网 作者: 吴长锋 杨保国 最新发现与创新 中国科技网讯 记者从中国科大获悉,该校郭光灿院士领导的中科院量子信息重点实验室孙方稳研究组,在国际上首次利用量子统计测量技术实现不受传统光学散射极限限制的相邻发光物体的测量和分辨,其精度可以达到纳米量级。研究成果近日发表在国际权威刊物《物理评论快报》上。 如何提高测量精度,数百年来一直是科学研究的主要课题和技术发展的主要追求目标。因此,新型的测量技术不断被开发,而其中最有吸引力的就是利用量子力学基本原理实现的量子测量方法。随着量子力学的发展以及相关量子信息技术的开发和应用,量子测量一方面可以实现超过经典测量极限的高精度测量,另一方面可以实现经典方式无法完成的各种测量。 孙方稳研究组利用物体发光的量子统计属性,设计并实验实现了不受经典光学散射极限限制的量子统计测量技术,其精度可达纳米量级。实验中,他们用氮原子取代金刚石材料中的一个碳原子,与近邻的空穴形成氮—空穴色心——一种极其微小的发光体。然后,他们巧妙地利用简单的光学收集装置,通过探测色心所发出的光子数,基于它们的量子统计属性,成功实现了两个相距8.5纳米的氮—空穴色心独立成像和分辨,同时测量了每个色心的结构,测量精度达2.4纳米。如果通过增加收集光子数,可以把精度提高到1纳米以内。实验中所需的光路简单,测量系统稳定,不受量子消相干效应的影响。 量子统计测量技术除了适用于相邻物体的光学成像,还可以测量和分辨发光体的其他光学属性,如发光寿命、波长等。同时,该测量技术可实时测量近邻物体的动力学演化以及它们之间的相互作用,为实现进一步的量子信息技术提供了新的测量技术,也将在化学、材料、生物医学等方向得到应用。(记者吴长锋 通讯员杨保国) 《科技日报》(2013-04-19 一版)

  • 高精度形位测试系统

    高精度形位测试系统是想测发动机或试件经受温度变化后(如从70℃到-70℃)后,尺寸的变化,用于材料的性能研究。本人不知道到底用什么仪器设备可以测试,有哪位能指点一下啊?谢谢了!其中有用电子散斑、激光多普勒测试系统进行测试的,不是太清楚,请各位指教,谢谢了!

  • 【原创】基于感应耦合比率臂的高精度位移测量系统

    常用的电气测量方法有很多种,依据测量误差与测量方法相关联的特点,可以将现有的各种测量方法分为如下三大类:(1)直接测量法:直接测量未知量的数据;(2)差值测量法:测量未知量与已知量之差,间接获得被测量的值;(3)比率测量法:测量未知量与已知量之比值,间接获得被测量的值。测量的过程就是要在未知量和已知量间建立起一定的关系,最后获得被测量的大小。在采用上述不同的测量方法的,测量装置和过程引入的误差是不一样的。如在直接测量法中,因为测量时间与环境的变化会引入一个系统误差;而采用差值测量法时,由于两个被比较的元件的外界条件相同,检测它们的差值可在很大程度上消除上述系统误差,尤其是利用零偏法时,差值测量可以获得相当精确的结果,不过所测得的两个量之差值仍随着外部条件的变动而变化。采用比率测量法能够显著减小在一级近似下被测量中依赖于外界条件以乘积因子形式出现的误差项,从而具有优于差值测量法的抗干扰性能。1 比率测量法 一个物理量f,其值取决于外界因素如t(温度)、u(电压)……等,其一阶展开式为: f=f0+(аf/аt)0Δt+(аf/аu)0Δu+A (1)为简化数字运算,只考虑存在一个干扰因素的情况,参考量f1与被测量f2可以分别写作:f1=f01(1+β1Δt)和f2=f02(1+β2Δt),此处β1=1/(f01)(аf1)/(аt)0, β2=1/(f02)[(аf2)/(аt)]0,且有β1Δt1,β2Δt1。容易求出上述三种方法中的相对测量误差各为: а绝对=β2Δt=Lβ1ΔT (2) а差值=[(f02β2-f01β1)Δt/(f02-f01)]=[(LK-1)/(K-1)]β1ΔT (3) а比率=(β2-β1) Δt=(L-1)β1Δt (4) 其中L=(β2)/(β1),K=(f02)/(f01)。图1表示取L=1.5时相对误差随元件值的分布情况。可以看出,比率测量法在很宽的测量范围内均具有良好的抗干扰能力。当存在多个影响因素或者在分析由上述方法组合成的测量装置时,可根据叠加原理按系统误差的理论综合评定其精度。 2 电容位移传感器与比率测量 电容式微小位测量系统是近年来发展最快的位移测量技术之一。众所周知,用两块平行的金属板就可以构成一个电容位移传感器,其电容量由极板的相对有效面积、极板间距以及填充的介质特性所决定。只要被测特体位置的移动改变了电容器上述任何一个结构参数,传感器的电容量就会发生变化,通过测量电容量的变动即可精确地知道特体位移的大小。 电容位移传感器的三种基本类型如图2所示。其具体结构可视实际运用的场合灵活多变,电容极板可以是平面的或者球面的;运行电极可以采用水银等导电液体。图2所示的三种基本类型均可组成差动式结构,如各分类中下部图形所示。采用差动式结构能够提高传感器线路的输出灵敏度,减小非线性,还能在一定程序上抑制由静电吸引带来的误差。当要求测量系统具有很高的分辨力时,一般是保持极板面积相对固定而使电容传感器极板间隙随被测位移改变,即如图2(a)所示的结构。反之,采用保持间隔恒定而让极板相对面积可变的结构,则可以在相当大的动态范围内获得线性的响应。一般情况下,电阻、电感和电容等电子元件均被盾作双端元件。两端电容器的等效电路示如图3(a)。由于各端钮对附近导电物体的分布电容C1G、C2G是变化的,所以其总电容C12+[(C1G×C2G)/(C1G+C2G)也是不稳定的。如果电容式传位移传感设计成这种简单的结构,外界干扰会很大。为了消除上述分布参数的影响,必须对电容传感器进行完善的静电屏蔽,形成如图3(b)的结构,称之为三端电容器。这样的三端电容元件中,由极板形成的直接电容C12是确定的,但是C13、C23仍受引线芯屏间电容的影响。如何排队三端电容中分布参数的影响?怎样准确测量与位移相关的直接电容的大小呢? 上世纪五十年代在电力工学和计算学领域出现了一种新型的电压比率器件——感应耦合比率臂,它的突出特点是分压精度高,可达10 -8量级以上;输出阻抗低,能做到10mΩ以下;长期稳定性非常好,年漂移率保持在10 -9的水平。其后,感应分压器的理论与工艺日臻完善,极大地提高了电工测量和标准计量的精度,实现了对小电容的高精度测量,进而以计算电容与感应分压器为基准导出了电阻、电感等的计量标准。这一成就也对精密测量领域产生了积极的推动作用。如果将两个三端电容串接起来,分别用两个信号源供电,就形成了如图4所示的等效电路,其中,Y12=jωC12,Y’12=jωC'12。在公共点D与接地端之间连接一个检流计,调节两个外加电压的幅值和相位,使通过两个直接电容流向D点的电流大小相等、方向相反,直道检流计指零,便可得到下面的关系式: C12/C’12=-(U2/U1) (5)可见,只要知道了两个电压之比也就知道了两个三端电容的直接电容之比,于是就可以准确测量传感器相应的位移。两个电压源如果用感应耦合比率臂来实现,端钮对屏蔽的导纳对测量结果将没有明显的影响,因为Y23、Y’23在电路不平衡时只影响灵敏度,而当线路达到平衡状态时就没有影响了。至于Y13、Y’13引起的分压误差,则可以得到极大的降低,只要信号源的内阻足够小即可。如前所述,感应耦合比较率臂正好具有这一优良特性。 现以设计一个测量微小位移的系统为例来说明上述测量方法的应用。首先,用高导磁率环形铁芯绕制出感应耦合比率臂,再设计适当的可变间距三电极差动式电容位移传感器的结构,并采用比率测量线路,就有如图5所示的微位移测量系统原理框图。对双极板电容传感器,不考虑电场的边缘效率,两个直接电容为:C12=[(εA1)/(3.6πd1)](pF),C’12=[(εA2)/(3.6πd1)](pF)。不失一般性,对两个差动电容器可假定极板相对面积相等,即A1=A2=A(cm2)。极板间介质的介电常数也有ε1=ε2=ε(譬如均为空气)。d1、d2(cm)分别为两传感器的极板间距。N1、N2系感应分压器两部分电压对应的匝数,N1+N2=N0。将两个电容表示式代入(5)式,可得: d1=KN1 (6) d2=K(N0-N1) (7) 式中,K=(d1+d2)/N1+N2为测量系统的灵敏度系数,表示比率臂单位读数变化所对应的传感器中心电极的位移。现估算一下这个测量系统可能达到的指标。感应耦合比率臂的总的分压比不难做到1/N0=10 -7,两个传感器极板间距之和是个常量,取d1+d2=1mm,则位移灵敏度系数K=10 -8cm,只有0.4纳米。N1为仪器面板上的读数,其变化范围为从0到N0。从最后获得的极板位移与比率变压器读数的关系式(6)可知,读数随中心电极的位移呈线性变化。实际完成的系统由于结构的不完善性,在接近量程的两端会出现一定程度的非线性,如果采取等电位屏蔽等措施,可以把输出特性的非线性降低到可以忽略的程度。可见,将差动式电容位移传感器与比率测量方法结合起来,设计的测量系统既有很高的分辨能力及较强的抗干扰能力,也能够获得很好的线性响应。还有更多的资料,我在这里就不添了,大家感兴趣的话到这个网站上去下载吧!http://www.yiqi120.com/zlzxInfo.asp?id=1676

  • 非接触高精度涂层测厚系统

    可测量范围是什么?测量的精度一般是多少??答:一般测量范围如下:l? 低热传导系数的涂层(如大多数聚合物)的测量范围是0,1μm-500μml? 高热传导系数的涂层(如金属)的测量范围是0,1μm-1mm测量精度:l? 可重复性是? 1μml? 测厚精度是? 3%以上数值可能随不同的应用而有所变化,但客户的需求和测量的准确性可能取决于样品,以及用于校准的测量技术的准确性。非接触高精度涂层测厚:在测量时间、测量距离、检测精度、激光安全防护等各类因素之间寻求一种平衡,建立更高精度的解决方案。

  • 光声谱仪器中光声池的高精度气体压力控制解决方案

    光声谱仪器中光声池的高精度气体压力控制解决方案

    [align=center][size=16px][img=石英增强光声光谱和光热光谱技术中的高精密压力控制解决方案,600,393]https://ng1.17img.cn/bbsfiles/images/2023/11/202311130940541042_934_3221506_3.jpg!w690x452.jpg[/img][/size][/align][size=16px][color=#339999][b]摘要:光声池内气体压力的可调节控制以及稳定性是保证光声法高精度测量的关键,但在目前的光声和光谱研究中,对气体样品池内压力控制技术的报道极为简单,甚至很多都是错误的,根本无法实现高精度调节和控制,为此本文提出了可工程化实现的解决方案。基于动态平衡法控制介绍,解决方案采用了高精度真空计、气体流量计、电动针阀和双通道真空压力控制器等,可实现气体样品池的进气流量和真空压力的自动精密控制,并适用于多种气体。[/b][/color][/size][align=center][size=16px][color=#339999][b]===================[/b][/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 光声法是基于光声效应的一种光谱技术,气体分子吸收特定波长的调制光辐射能量,由振动基态跃迁到激发态,然后通过快速的辐射跃迁或者无辐射跃迁过程回到基态。 气体分子通过无辐射跃迁过程回到基态会产生热能,导致气体温度的变化,相应地引起气体压强的变化,从而产生声波信号,信号的强弱与入射光强和气体吸收大小成正比,检测声音信号即可间接测定气体浓度。在光声法中气体既是被检气体,又是吸收光辐射的探测器,利用同一光声池检测装置,只要改变光源的波长即可对多种气体进行检测。[/size][size=16px] 随着技术的发展出现了许多新型光声光谱检测技术,但光声池始终是所有光声光谱检测仪器中的核心部件,注入光声池内的被检气体压力是影响光声法测量精度的关键因素之一,主要体现在以下两个方面:[/size][size=16px] (1)气体压力的稳定性对测量精度的影响[1,2]。[/size][size=16px] (2)不同气体和浓度的光声法测量过程中,在一个最佳气体压力下时测量精度最高[3]。[/size][size=16px] 由此可见,光声池内气体压力的可调节控制以及稳定性是保证光声法高精度测量的关键,而在光声池压力控制的所有文献报道中,有些仅简单描述了压力控制基本原理,有些所描述的压力控制方法和装置根本无法实现高精度调节和控制。[/size][size=16px] 如文献[3]采用石英增强光声和光热光谱技术测量痕量一氧化碳气体含量的报道中,仅介绍了光声池进样气体方式和压力控制的原理,整个装置和压力控制结构的简单描述如图1所示,图中所示的光声池压力控制尽管包括了真空泵、针阀、压力传感器和压力控制系统(PCS),但压力控制系统的布置位置并不一定正确,既没有明确具体技术细节,也没有显示出压力控制的自动化能力和控制精度能达到什么水平。同样,许多多其他光声法测试技术的研究报道也多是如此简单介绍,并未看到光声池压力控制的详细文献报道。[/size][align=center][size=16px][color=#339999][b][img=文献[3]光声和光热谱检测系统结构示意图,600,527]https://ng1.17img.cn/bbsfiles/images/2023/11/202311130942538680_3779_3221506_3.jpg!w690x607.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 文献[3]光声和光热谱检测系统结构示意图[/b][/color][/size][/align][size=16px] 在河北大学的发明专利CN111595786B“基于光声效应的气体检测系统及方法”中提出了一种详细的光声池内部压力控制方法[4],其结构如图2所示。[/size][align=center][size=16px][color=#339999][b][img=文献[4]基于光声效应检测系统的结构示意图,690,447]https://ng1.17img.cn/bbsfiles/images/2023/11/202311130943224524_1783_3221506_3.jpg!w690x447.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 专利[4]基于光声效应检测系统的结构示意图[/b][/color][/size][/align][size=16px] 在图2所示的光声池压力控制系统中,光声池上设有供气体进入的进气口,进气口通过导管与?30℃的冷肼预浓缩装置相连通,可以去除待测气体中水分的干扰,达到一定的浓缩效果。在光声池上还设有供气体排出的出气口、控制腔体内气压的压力监测口以及压力控制口。在进气口、出气口和压力控制口处均设有单向阀,在出气口和压力控制口处均设有真空泵。在压力监测口设有气体压力传感器,气体压力传感器连接单片机,单片机控制继电器以及一个抽气系统,当腔体内的气压未达到所设置的目标值时,压力传感器传出电信号到控制系统中的单片机来控制继电器闭合,使电机转动,抽气系统运行,保持腔内部的气压值为设定好的目标值,当腔内的气压达到设定目标值时该抽气系统不工作。[/size][size=16px] 由此可见,尽管专利[4]中采用了单片机进行压力的自动控制,但所描述的抽气系统控制是一种最简单的开关式控制方式,这种控制方式在控制精度的稳定性很差,往往会使光声池内的实际压力在设定值上下出现较大波动现象。[/size][size=16px] 另外,这种开关模式在控制过程中存在很大的滞后性,当传感器测量到压力值大于或小于设定值时才发出关闭或启动抽气电机信号,这势必带来控制延迟。而且对于小容积内的气压控制,目前已很少采用调节真空泵转速或开关式真空泵技术,这是因为会很容易影响真空泵寿命。[/size][size=16px] 为了彻底解决光声光谱和光热光谱技术中气体样品池的压力精密控制问题,基于真空压力控制的动态平衡法,即通过自动调节气体样品池的进气和排气流量,使它们能快速达到动态平衡状态,本文将提出以下详细且可工程化实现的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 从研究文献所报道的光声光热法气体池内压力控制中,可以得出以下几项技术指标要求:[/size][size=16px] (1)气体池有一进气口和排气后,其中排气口连接真空泵,真空泵提供负压使样品气体通过进气口流入样品池,样品池的这种结构和气体取样方式则说明样品池内的压力一般应该是一个大气压上下的微负压或微正压,即样品池内的气体压力在500~1000Torr的绝对压力范围内,且要小于进气口压力。[/size][size=16px] (2)在文献[3]中报道了对最佳压力的测试研究,得到的最佳压力为600Torr。由此可见,针对不同气体的光声和光热法测试中,需要根据不同气体样品池的结构和具体被测气体寻找到最佳压力值,由此可保证最佳的测试精度。[/size][size=16px] (3)在文献[2,3]中,涉及到了多种气体混合和进气流量的控制,由此可说明在某些光声和光热法测试中需要具备对进气流量的调节,这也就是说,对于气体样品池而言,既要能调节进气流量,还要能调节气体压力且稳定控制。[/size][size=16px] 针对光声光谱和光热光谱技术中气体样品池的压力精密控制问题,特别是实现上述技术指标和功能,本解决方案所设计的气体样品池压力和进气流量控制系统结构如图3所示。[/size][align=center][size=16px][color=#339999][b][img=光声池气体压力和流量控制系统结构图,690,314]https://ng1.17img.cn/bbsfiles/images/2023/11/202311130943461767_8516_3221506_3.jpg!w690x314.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 光声池气体压力和进气流量控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图3所示,整个控制系统主要包含以下几方面的内容:[/size][size=16px] (1)压力控制模式:由于光声池内的压力需要在500~1000Torr的绝对压力范围进行调节和控制,因此解决方案中采用了动态平衡法中的下游控制模式,即恒定进气流量,通过调节排气流量的大小以达到不同的动态平衡,由此来实现不同气体压力的精密控制。进气形式如图3所示可以是单独一种气体,也可以是多种气体混合,各种气体可以通过气体质量流量控制器(MFC)进行流量的精密控制,各路气体进入一个混气罐进行混合后,再注入光声池内。气体的注入则通过排气端真空泵所提供的负压与进气端正压所形成的压力差来实现。[/size][size=16px] (2)压力控制回路:如图3中的蓝色箭头线所示,压力控制回路由1000Torr量程的电容真空计、NCNV-20型电动针阀和VPC2021-2型压力流量控制器组成,其中真空计检测光声池的真空压力并传输给控制器,控制器将传感器数据与压力设定值比较并经过PID计算,输出控制信号给排气电动针阀,实现压力自动恒定控制。[/size][size=16px] (3)流量控制回路:如图3中的红色箭头线所示,流量控制回路由气体流量计、NCNV-120电动针阀和VPC2021-2型压力流量控制器组成,其中控制器通过手动控制方式直接输出控制信号来调节进气电动针阀的开度,使得流量计达到希望值,由此可始终恒定进气流量保持不变。[/size][size=16px] 由此可见,通过图3所示的解决方案控制系统可实现光声池压力和进气流量的独立调节和控制,这种实现的关键部件是电控针阀和双通道压力流量控制器,电控针阀可以快速精密的调节进气和排气流量,而双通道压力流量控制器可直接连接真空计和流量计,实现高精度的真空压力和流量的测量,控制精度能小于读数的±1%,同时还能进行自动PID控制和手动恒定输出控制。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案对现有文献所报道的光声池压力控制方法进行了细化,比较而言,本文所提出的解决方案具有以下优势和特点:[/size][size=16px] (1)本解决方案更具有实用性,并经过了试验考核,按照解决方案可很快的搭建起光声池压力控制系统。[/size][size=16px] (2)本解决方案具有很强的适用性和可拓展性,如通过改变其中的相关部件参数指标就可适用于不同范围的真空压力,可满足光声法和光热法中对样品池气体压力的各种控制要求。[/size][size=16px] (3)本解决方案可以通过高压气源的改变来实现不同样品气体的测量,也可进行多种气体混合后的测试,具有很大的灵活性。[/size][size=16px] (4)解决方案中的真空压力控制自带计算机软件,可直接通过计算机的软件界面操作进行整个控制系统的调试和运行,且控制过程中的各种过程参数变化曲线自动存储,这样就无需再进行任何的控制软件编写即可很快搭建起控制系统,极大方便了光谱设备的搭建和测试研究。[/size][size=18px][color=#339999][b]4. 参考文献[/b][/color][/size][size=16px][1] 陈伟根,刘冰洁,胡金星,等.微弱气体光声光谱监测光声信号影响因素分析[J].重庆大学学报:自然科学版, 2011(2):7-13.[/size][size=16px][2] 张佳薇,谈志强,李明宝,等.气体流量对石英增强型光声光谱检测精度的影响[J].科学技术与工程, 2022(003):022.[/size][size=16px][3] Pinto D , Moser H , Waclawek J P ,et al.Parts-per-billion detection of carbon monoxide: A comparison between quartz-enhanced photoacoustic and photothermal spectroscopy[J].Photoacoustics, 2021, 22:100244.DOI:10.1016/j.pacs.2021.100244.[/size][size=16px][4] 娄存广,刘秀玲,王鑫,等.基于光声效应的气体检测系统及方法:CN202010511763.8[P]. CN111595786B[2023-11-10].[/size][size=16px][/size][size=16px][color=#339999][b][/b][/color][/size][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 纳米分辨率高精度激光衍射法在碳纤维细丝直径测量中的应用

    纳米分辨率高精度激光衍射法在碳纤维细丝直径测量中的应用

    [align=left][b][color=#339999]摘要:碳纤维单丝热膨胀系数是碳纤维复合材料设计、生产与可靠性和寿命评估的重要参数,本文针对单丝径向高温热膨胀系数测试这一难题提出了相应的解决方案。解决方案的核心内容是基于激光衍射法和高温辐射加热,并采用衍射轮廓拟合技术以及相应的校准、真空温度控制等技术,可实现几个纳米的测量分辨率。此解决方案不仅可以测量各种粗细单丝的直径及其热膨胀,还可以拓展应用于细丝的直径分布、截面形状和径向热膨胀测量。[/color][/b][/align][align=center][size=16px] [img=碳纤维单丝径向高温热膨胀系数激光衍射法测试解决方案,600,360]https://ng1.17img.cn/bbsfiles/images/2023/05/202305300838571272_2512_3221506_3.jpg!w690x414.jpg[/img]~~~~~~~~~~~~~~~~~~~[/size][/align][size=18px][color=#339999][b]1. 项目背景[/b][/color][/size][size=16px] 随着碳纤维增强复合材料应用的扩大,其设计也变得越来越精密。温度变化引起的热应力是复合材料设计中需要考虑的重要因素之一,而碳纤维的热膨胀系数是控制热应力的基本物理性能值。另外,碳纤维的热膨胀系数不仅是复合材料设计中的重要参数,也是预测制造工艺、可靠性和寿命的重要参数。[/size][size=16px] 由于碳纤维一般具有很强的方向性,其热膨胀系数主要包括轴向和径向热膨胀系数。本文将针对1~10微米直径的碳纤维单丝,提出径向热膨胀系数测试方法,特别是提出高温下径向热膨胀系数测试的解决方案。[/size][size=18px][color=#339999][b]2. 激光衍射法测量原理[/b][/color][/size][size=16px] 在假设碳纤维单丝是直径均匀、截面积形状为圆形细丝的前提下,按照热膨胀系数的定义,碳纤维单丝高温热膨胀系数的测试可以归结为不同温度下单丝直径的测量问题,具体测试涉及到单丝温度和单丝直径的精确测量。[/size][size=16px] 对于微小细丝直径的测量,只能选择非接触光学测量方法。可选择的测试方法主要有显微镜观测法、光学投影法和激光衍射法,但由于碳纤维测试需要涉及到高温和真空环境,显微镜直接观察方法很难实现较高温度,而投影法则是无法达到纳米量级的测量精度,因此本项目将选择激光衍射法,以实现纳米精度的单丝直径测量。[/size][size=16px] 激光衍射测量原理如图1所示。单色激光垂直照射被测细丝后在焦平面上形成衍射图形,通过对图形参数等的测量,可准确测得细丝直径。[/size][align=center][size=16px][img=01.激光衍射线径测量原理图,550,329]https://ng1.17img.cn/bbsfiles/images/2023/05/202305300841272151_4630_3221506_3.jpg!w690x413.jpg[/img][/size][/align][align=center][size=16px][color=#339999][b]图1 激光衍射法细丝直径测量原理图[/b][/color][/size][/align][size=18px][color=#339999][b]3. 细丝径向热膨胀测量装置[/b][/color][/size][size=16px] 基于激光衍射法的细丝径向高温热膨胀系数测量装置结构如图2所示。整个测量装置包括水冷真空系统、样品装置、温控加热装置和激光衍射测量装置四部分。[/size][align=center][size=16px][img=02.单丝碳纤维高温径向热膨胀系数激光衍射法测量装置结构示意图,500,452]https://ng1.17img.cn/bbsfiles/images/2023/05/202305300841487917_7673_3221506_3.jpg!w690x625.jpg[/img][/size][/align][align=center][size=16px][color=#339999][b]图2 单丝碳纤维高温径向热膨胀系数激光衍射法测量装置结构示意图[/b][/color][/size][/align][size=16px][color=#339999][b](1)水冷真空系统[/b][/color][/size][size=16px] 真空系统由水冷真空腔体内、真空泵和真空度控制系统构成。在整个高温测试过程中,需要对真空腔体抽真空,以便在整个高温测试过程中形成真空环境避免碳纤维细丝样品的氧化或烧断。真空腔体壁内通循环冷却水以对内部高温形成热防护。同时还需对循环冷却水温度和腔体内部真空度进行精密恒定控制,使得腔体温度和内部真空度所引起的腔体变形和光学窗口倾斜始终保持恒定和可重复。[/size][size=16px][color=#339999][b](2)样品装置[/b][/color][/size][size=16px] 采用悬空水平方式固定被测细丝碳纤维样品,细丝样品一端采用螺接压紧方式固定,另一端经过滑动装置采用砝码拉近,通过砝码重量提供的微小张力始终使细丝样品处于水平拉直状态。对于不同强度和粗细的碳纤维细丝,可通过更换砝码来提供不同的拉紧张力。[/size][size=16px][color=#339999][b](3)温控加热装置[/b][/color][/size][size=16px] 采用细管加热炉对整个样品进行辐射加热,测试过程中的温度变化按照步进台阶式形式变化,在每个设定点温度恒定后再进行激光衍射测量。这种加热方式的优点是用加热炉内的温度代替被测样品温度,由此可避免对细丝样品温度进行直接测量的困难性。[/size][size=16px][color=#339999][b](4)激光衍射测量装置[/b][/color][/size][size=16px] 激光衍射测量装置主要由激光源、衍射图像传感器和计算机图像分析系统组成。激光源和图像传感器分别水平布置在真空腔体的两侧,激光束垂直照射在被测细丝上,所形成的衍射图像由传感器接收。[/size][size=18px][color=#339999][b]4. 衍射轮廓的高精度测量[/b][/color][/size][size=16px] 细丝直径测量中采用激光衍射装置和图像传感器获得的衍射轮廓如图3所示。纤维直径根据测量衍射轮廓的第一个暗条纹之间距离,并由衍射公式计算获得。但如果直接采用图像传感器的固有位置分辨率,则只能获得10nm左右的直径测量分辨率,这显然无法获得足够高的直径变化检测精度。[/size][align=center][size=16px][color=#339999][b][img=03.图像传感器衍射轮廓示意图,550,402]https://ng1.17img.cn/bbsfiles/images/2023/05/202305300842072248_1383_3221506_3.jpg!w690x505.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 图像传感器衍射轮廓示意图[/b][/color][/size][/align][size=16px] 为进一步提高细丝直径测量的分辨率,本文提出了以下几方面具体措施:[/size][size=16px] (1)对图3所示的衍射轮廓进行细分,具体细分技术是对衍射轮廓曲线进行参数拟合,拟合中需考虑衍射光以及背景光强度,如光学元件和窗口的散射光以及样品在高温下发出的光。[/size][size=16px] (2)采用已知直径的细丝对成像物镜的焦距进行高精度标定,减小系统误差。[/size][size=16px] (3)在CCD 前增加滤光片,在成像物镜前增加一平行于衍射方向的长条状光阑。[/size][size=16px] 通过上述措施,可将激光衍射法细丝直径测量的分辨率提高到几个纳米范围内。[/size][size=18px][color=#339999][b]5. 总结[/b][/color][/size][size=16px] 本文所述解决方案,除了可以实现1~10微米量级粗细的碳纤维单丝直径和热膨胀系数测试之外,还具备以下几方面的测试能力:[/size][size=16px] (1)本文所述解决方案在设计的同时,还同时考虑了碳纤维轴向方向上热膨胀系数测试功能的实现,即采用激光干涉法测试细丝样品在轴向方向上收缩和膨胀过程中的位移变化。在真空腔体形状和空间尺寸上都考虑了激光干涉法位移测量装置的布置,采用相同的加热和测温装置也可提供碳纤维细丝轴向热膨胀所需的温度变化和测量。[/size][size=16px] (2)由于具有几个纳米的超高分辨率,通过增加扫描装置,此解决方案可以用于碳纤维单丝外径分布和外径形状的测量。[/size][size=16px] (3)为各种粗细的线状材料外径测量提供了一种高精度的激光衍射测量方法,非接触光学测试方法和高温加热能力,也可推广应用到低温范围内的测试应用。[/size][align=center][color=#339999][b][/b][/color][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 基于高精度外贴式超声液位计的油罐车防盗系统

    基于高精度外贴式超声液位计的油罐车防盗系统

    利用最新的超声技术开发的高精度外贴式超声液位计,测量精度可达0.1mm,可以用于储罐特别是油罐车的交接计量工作。本系统是以高精度的外贴式超声液位计为基础,重点监控罐体内油品的油层和水层的变化,能够实时监控罐车在运输过程中的内两种液体的体积变化情况,还辅以温度检测,根据油品在不同温度下的体积变化情况计算出装油时与到油时的体积变化。http://ng1.17img.cn/bbsfiles/images/2011/07/201107061017_303409_2333795_3.jpg http://ng1.17img.cn/bbsfiles/images/2011/07/201107061018_303411_2333795_3.jpg系统指标:l 液位分辨率:≤0.1mm;l 温度精度:≤0.2oCl 可测壁厚:≤10mm;l 可测液高:≤3m;l 可检测介质:不超过两种液体的可分层液体介质;系统优势及特点1、采用外贴式超声界面仪对罐体内的液位进行检测,避免与罐体内液体进行接触,可以适用于高腐蚀性液体的检测;2、可对具有双层液体层面的罐体进行检测,特别适用于罐内含有两种液体(如油和水)的罐车监控;3、测量精度高,测量精度达到0.1mm量级,对罐体内的液体进行精度计量,真正杜绝非自然损耗的产生,一旦发生液位剧烈变化,系统将自动输出报警提示;4、更加精确的温度测量,通过准确的油品膨胀系数计算,杜绝因温度变化而导致的罐内油品体积变化,进一步降低自然损耗比例。5、安装方式灵活,超声波界面仪直接吸附在罐底,其他部件固定在罐车上即可;6、监测无死角,系统直接对罐体内的液体进行体积测算,不会受到其他外界因素的干扰。

  • 半导体系统专用高精度控制电源的水泵相关说明

    半导体系统专用高精度控制电源应用在国内半导体行业中,无锡冠亚的半导体系统专用高精度控制电源中每个配件都是很重要的,其中,关于水泵是比较重要,我们也需要对其有一定的认识。  半导体系统专用高精度控制电源是一类广泛应用于国内工业生产领域的专业制冷设备,在半导体系统专用高精度控制电源中,水泵的运行是否正常对于保证低温半导体系统专用高精度控制电源设备的正常运转是非常重要的,定期对低温半导体系统专用高精度控制电源的水泵进行检测是非常关键的,那么,怎样合理的评估和检测低温半导体系统专用高精度控制电源水泵的情况好呢?  半导体系统专用高精度控制电源水泵的情况在较大程度上影响着低温半导体系统专用高精度控制电源设备的整体运行。在半导体系统专用高精度控制电源工作的时候,水泵在运行中,应注意检查各个仪表工作是否正常、稳定,特别注意电流表是否超过电动机额定电流,电流过大,过小应立即停机检查。  另外,半导体系统专用高精度控制电源设备的水泵相关工作系统能够较好的反映半导体系统专用高精度控制电源设备的工作状态。比如,水泵流量是否正常,检查出水管水流情况,根据水池水位变化,估计水泵运行时间,及时与调度联系。同时,还要检查水泵填料压板是否发热,滴水是否正常,每班不得少于八次。  半导体系统专用高精度控制电源的水泵性能是很关键的,需要我们认真对待,认真保养,只有每个配件的性能都可以的话,半导体系统专用高精度控制电源才能更好的使用。

  • 我们想购买高精度形位测试系统

    高精度形位测试系统是想测发动机或试件经受温度变化后(如从70℃到-70℃)后,尺寸的变化,用于材料的性能研究。本人不知道到底用什么仪器设备可以测试,有哪位能指点一下啊?谢谢了!其中有用电子散斑、激光多普勒测试系统进行测试的,不是太清楚,请各位指教,谢谢了!

  • 高精度测量气象六要素传感器

    高精度测量气象六要素传感器

    高精度测量气象六要素传感器气象观测是一项十分严谨又相当繁琐的工作,气象六要素传感器是基础的工作之一,但却是相当重要的,因为气象六要素传感器的质量直接影响气象预报的准确程度。对一定范围内的气象状况及变化进行观察和测定,然后把观测得到的数据结果进行采集和上传,为天气预 报、气候分析及气象研究提供依据,观测工作要系统和连续 地进行,对测得的数据要及时、准确上报。气象六要素传感器服务于多种生态和自然资源环境领域,可以监测和记录气象学、水文学和土壤与建筑活动、以及人为活动对自然的影响。传感器包括但不仅限于风速、风向、太阳辐射、空气温度、水温、土壤温度、相对湿度、降水、雪深、大气压力、土壤含水量、土壤电导率,以及土壤热通量。还可测量水环境因子,和空气环境因子。气象六要素传感器可观测温度、湿度、气压、风速、风向、降水等气象要素,并可获取实景观测图像。采用4G/LoRa/WiFi多种通信方式,保证气象与实景观测数据高频次上传云端。可通过手机APP、dashboard、API接口等方式提供多种形式的气象服务。可实现多设备组网联动,提供稳定可靠的气象数据采集及预报服务。[img=气象六要素传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204280917012954_9705_4136176_3.jpg!w690x690.jpg[/img]气象六要素传感器是专门为农业、水文、气象、生态考察研究等开发生产的多要素气象六要素传感器。可测量雨量、风向、风速、温度、大气压力、湿度等常规气象要素,也可根据用户需求定制其它测量要素。气象六要素传感器系统特点:具有性能稳定,检测精度高,无人值守等特点。测量精度高,无须人工参与。节能设计,可选配太阳能电池板,适合无市电地区常年使用。监测要素:环境温度、相对湿度、风速、降水量、光照强度、土壤温度、土壤墒情、水面蒸发、大气压力、风向、太阳辐射。气象站信息处理软件介绍,气象六要素传感器信息处理软件,操作简单、管理方便、集成度高、实时显示,支持数据查询、曲线查询、校正时间等极大方便用户使用,使自动气象信息管理变的方便可靠。[img=气象六要素传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204280917260421_6672_4136176_3.jpg!w690x690.jpg[/img]

  • 【原创大赛】防蓝光眼镜,真的需要吗?

    【原创大赛】防蓝光眼镜,真的需要吗?

    [font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]相信大家去买眼镜的时候都被推荐过[/font]“防蓝光眼镜”,不管是给孩子买还是自己买,这种眼镜好像都成了必选。好像选了它,才对眼睛更好,甚至还能防近视。[/color][/font][font=Calibri] [/font][font=Calibri][color=#5a5a5a][font=宋体]可是实际上,大部分消费者可能连蓝光是什么都不太清楚。[/font][/color][/font][font=Calibri] [/font][font=Calibri][color=#5a5a5a][font=宋体]今天我们打算好好和大家说说蓝光、防蓝光眼镜,以及镜片蓝光检测笔的一些[/font]“[font=宋体]套路[/font][font=Calibri]”[/font][font=宋体]。由于内容需要花一定的时间理解,我们先把结论放在开头:[/font][/color][/font][font=宋体][/font][font=宋体][/font][b][font=宋体][/font][font=Calibri][font=宋体]1、防蓝光眼镜不是必须的,[/font][/font][font=微软雅黑][font=微软雅黑]防蓝光[/font]≠防近视,目前没有蓝光导致近视的直接证据,[/font][font=Calibri][font=宋体]儿童和成人都不需要额外防蓝光;[/font][/font][font=微软雅黑][font=微软雅黑]2、保护视力的最佳方法是合理使用电子产品,平时采用[/font]20-20-20规则(详情在最后展示)远眺休息,保护眼睛[/font][font=Calibri][font=宋体];[/font][/font][font=Calibri][font=宋体]3、如有特殊的工作要求需要防蓝光眼镜,尽量选择大牌。[/font][/font][/b][font=Calibri] [/font][font=Calibri] [/font][font=宋体][/font][font=宋体]什么是蓝光?什么是蓝光?[/font][font=Calibri] [/font][font=宋体][color=#5a5a5a][font=宋体]蓝光是可见光的一部分,波长在[/font] 400~500 nm范围内,颜色呈蓝色和紫色,是可见光中能量最高,最接近紫外线的部分。[/color][/font][font=宋体][/font][img=,690,575]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091636482459_3700_1834892_3.png!w690x575.jpg[/img][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]生活中我们经常会接触到蓝光,比如太阳光、电视、电脑、平板、手机、[/font]LED灯等,这些光源中都有蓝光分布。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]蓝光的危害在[/font]GB/T 20145-2006 | 标准中有提到。[/color][/font][font=宋体][/font][img=,690,179]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091637476971_5530_1834892_3.png!w690x179.jpg[/img][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]对视网膜有害的蓝光波段,是主要集中在[/font]( 415~455nm )之间的高短波蓝光。[/color][/font][b][font=宋体][color=#5a5a5a]长期过量的蓝光光辐射,可对眼底视网膜造成慢性光损伤[/color][/font][/b][font=宋体][color=#5a5a5a]。[/color][/font][font=宋体][/font][img=,690,387]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091637566075_4599_1834892_3.png!w690x387.jpg[/img][font=宋体][/font][font=宋体][color=#5a5a5a]如果夜间长时间看冷色调的电子屏幕,比如手机,平板,电脑等,会扰乱人的自然睡眠节奏。尤其是正处于生长发育阶段的儿童和青少年,睡前建议减少电子产品的使用。[/color][/font][font=宋体][/font][img=,690,502]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091638083466_4523_1834892_3.png!w690x502.jpg[/img][font=Calibri][color=#5a5a5a] [/color][/font][font=宋体][color=#5a5a5a]蓝光也不是只有害处。它会影响人体的生物钟,具有调节昼夜节律的作用。白天,蓝光比较多,而傍晚则显著减少,所以人会形成白天工作、晚上休息的习惯。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a]同时它对产生暗视力以及影响屈光发育等有重要作用。[/color][/font][font=Calibri] [/font][font=Calibri] [/font][font=宋体][/font][font=宋体]蓝光眼镜与检测笔蓝光眼镜与检测笔[/font][font=宋体][/font][font=宋体][color=#5a5a5a]市面上的防蓝光眼镜,主要有两种,一种是[/color][/font][b][font=宋体][color=#5a5a5a]膜层防蓝光[/color][/font][/b][font=宋体][color=#5a5a5a][font=宋体],即在镜片表面镀一层膜[/font],将有害蓝光进行反射。[/color][/font][font=宋体][/font][font=微软雅黑][color=#5a5a5a]一种是[/color][/font][b][font=微软雅黑][color=#5a5a5a]基材防蓝光[/color][/font][/b][font=微软雅黑][color=#5a5a5a],通过在镜片基材加入防蓝光因子,从而将有害蓝光进行吸收阻隔。[/color][/font][font=宋体][/font][img=,690,387]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091638191422_6149_1834892_3.png!w690x387.jpg[/img][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]而对于防蓝光眼镜来说,真正需要阻隔的,是能穿透眼球晶状体到达视网膜的高能短波蓝光,即[/font]( 415~455nm )波段的蓝光。[/color][/font][font=宋体][/font][font=宋体][/font][font=宋体][color=#5a5a5a]因此,[/color][/font][b][font=宋体][color=#5a5a5a]阻隔这部分的蓝光,才是防蓝光眼镜的意义所在[/color][/font][/b][font=宋体][color=#5a5a5a]。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]近些年来,青少年近视问题越来越严重,配防蓝光眼镜的人也越来越多了。有部分眼镜店,在顾客配镜选购时,会拿出[/font]“[/color][/font][font=宋体][color=#5a5a5a]防蓝光镜片[/color][/font][font=宋体][color=#5a5a5a]”和“[/color][/font][font=宋体][color=#5a5a5a]蓝光测试笔[/color][/font][font=宋体][color=#5a5a5a]”来演示,比如这样:[/color][/font][font=宋体][/font][img=,690,417]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091638296366_4857_1834892_3.png!w690x417.jpg[/img][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]底下放个卡片,用[/font]“[/color][/font][font=宋体][color=#5a5a5a]蓝光笔[/color][/font][font=宋体][color=#5a5a5a]”照射,镜片能够阻挡光源,使其透不过去,就证明是“防[/color][/font][font=宋体][color=#5a5a5a]蓝光眼镜[/color][/font][font=宋体][color=#5a5a5a]”。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a]我们征集了同事的两副眼镜试了一下,结果一个[/color][/font][font=微软雅黑][color=#5a5a5a]透不过去[/color][/font][font=宋体][color=#5a5a5a],一个[/color][/font][font=微软雅黑][color=#5a5a5a]能透过[/color][/font][font=宋体][color=#5a5a5a]。[/color][/font][font=Calibri][color=#5a5a5a] [/color][/font][img=,600,360]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091638391898_2894_1834892_3.png!w600x360.jpg[/img][font=宋体][/font][font=宋体][color=#5a5a5a]乍一看非常直观,但是这里有个问题。这个笔发出的光,到底是什么波段的光?[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a]“[/color][/font][font=宋体][color=#5a5a5a]蓝光测试笔[/color][/font][font=宋体][color=#5a5a5a]”的标签上,用小字标明了其光源波长在 405 nm±10。[/color][/font][font=宋体][/font][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091638499917_6180_1834892_3.png!w690x517.jpg[/img][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]也就是说,通过测试笔验证,只说明该镜片能挡住[/font] 405 nm±10 波长的蓝光,[/color][/font][font=微软雅黑][color=#5a5a5a][font=微软雅黑]并不能判定是否能挡住[/font] 415~455nm 波段的蓝光。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]而在我们的生活中,不管是[/font]LED灯还是电子产品(手机、平板、电脑等),发出的蓝光波峰在 450nm 左右。[/color][/font][font=宋体][color=#5a5a5a]这种笔只是利用了波段不同的差异[/color][/font][font=宋体][color=#5a5a5a]而已。[/color][/font][font=宋体][/font][img=,690,604]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091639006871_3105_1834892_3.png!w690x604.jpg[/img][font=Calibri][color=#5a5a5a] [/color][/font][font=Calibri] [/font][font=宋体][/font][font=宋体]防蓝光眼镜真的需要吗?防蓝光真的需要吗?[/font][font=Calibri] [/font][font=宋体][color=#5a5a5a][font=宋体]市面上的防蓝光眼镜,之前由于缺乏统一的标准,质量参差不齐。值得一提的是,防蓝光的国家标准已经于今年[/font] 7 月 1 日正式实施,标准中明确列出了 4 种不同光谱范围的光透射比要求。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a]相信之后的防蓝光眼镜市场,可以得到不错的规范。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a]撇开这些不说,关于防蓝光眼镜这事儿,我们想给大家一些小建议:[/color][/font][font=Calibri] [/font][font=宋体]01[/font][b][font=宋体][color=#5a5a5a]防蓝光眼镜不是必须的。[/color][/font][/b][font=宋体][/font][font=宋体][color=#5a5a5a]儿童还处在生长发育期,由于部分防蓝光眼镜底色偏黄,可能会影响视觉发育,不建议日常采用防蓝光措施。[/color][/font][font=Calibri] [/font][font=宋体]02[/font][font=宋体][color=#5a5a5a][font=宋体]防蓝光[/font]≠防近视。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]目前没有蓝光导致近视的直接证据,因此家长不必过分担忧所谓的[/font]“蓝光危害”。 [/color][/font][img=,690,604]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091639271418_5252_1834892_3.png!w690x604.jpg[/img][font=Calibri] [/font][font=宋体]03[/font][b][font=宋体][color=#5a5a5a]成人也不需要额外的防蓝光措施。[/color][/font][/b][font=宋体][/font][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]如果出现视疲劳等症状,多远眺,减少连续用眼时间即可。推荐[/font] [/color][/font][b][font=宋体][color=#5a5a5a]20-20-20 规则[/color][/font][/b][font=宋体][color=#5a5a5a][font=宋体],也就是每隔[/font] 20 分钟,远眺至少 20 英尺(约 6 米)以外的物体,至少停留 20 秒。[/color][/font][font=宋体][/font][img=,690,431]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091639431832_8093_1834892_3.png!w690x431.jpg[/img][font=Calibri] [/font][font=宋体]04[/font][font=宋体][color=#5a5a5a]对于有特殊要求,比如长期高强度的电脑工作者等,如果一定要配防蓝光眼镜,尽量选择大品牌。[/color][/font][font=宋体][/font][font=Calibri] [/font][img=,539,76]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091640014951_2539_1834892_3.png!w539x76.jpg[/img][font=Calibri] [/font][font=Calibri] [/font][font=宋体][color=#5a5a5a]眼睛是我们生来就获得的美妙礼物,要保护好它,其实没有多么难。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]睡前减少电子产品的照射,避免在背景光比较差的环境下玩手机、看书,每隔[/font] 20 分钟远眺休息眼睛,这些都可以给眼睛带去保护。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a]现在,[/color][/font][b][font=宋体][color=#5a5a5a]放下手机,一起去看这美丽世界吧[/color][/font][/b][font=宋体][color=#5a5a5a]~[/color][/font][align=center][font=微软雅黑] [/font][/align]

  • 中为ZWL-S6超高精度光谱辐射计,全球同步发布

    随着LED产业日益成熟,国际、国内客户LED产品需求量的增加,消费者对于LED产品品质要求也越来越高,不仅强调发光效率,而且均匀性、一致性、显色性等指标也备受关注。无论是在LED背光领域,还是在LED照明领域,都需要更好光学量测设备,以解决量测方面的应用需要。此前,灵敏度高、测量精度准确,符合国际标准的高端检测设备,一直是国外设备处于主导地位。国内LED企业,为了生产出品质良好的LED产品,一套高端检测设备需要投入几十万甚至上百万,可是在售后的保障方面,由于时空距离,却并不能得到最快的响应。面对这种情况,LED业界对于具有国际水准、符合国际标准的国产高端检测设备充满期待。基于以上的种种原因,杭州中为光电技术股份有限公司(ZVISIONR)作为国际半导体照明装备领域领军企业之一,携手美国海洋光学(Ocean Optics),成功研发出全球领先的ZWL-S6超高精度光谱辐射计,首次真正打破了在高端测试机领域,国外设备厂商垄断的局面。将在满足客户的高端检测需求的前提下,大幅降低设备成本,同时以中为光电强大的服务实力为支撑,全力为中国LED行业加油!中为光电将于2011年8月30日在上海高工G20-LED峰会携手美国海洋光学(Ocean Optics)进行中国LED半导体装备领域设备首次全球同步发布!中为光电基础研究部总监殷源博士将在会议上分享中为光电(ZVISIONR)对于LED检测的最新观点与建议。高端应用环境首选中为ZWL-S6超高精度光谱辐射计系统:ZWL-S6超高精度光谱辐射计支持国际电工委员会(IEC)、国际照明委员会(CIE)、美国能源之星(Energy Star)、中国计量科学研究院(NIM)等权威检测标准;搭载中为F4M专利技术积分球、卓越的驱动电源、极致专业的夹具、权威的标准光源等顶级部件,可组成最高端的ZWL-3140Q超高精度颜色测量系统,能够有效的满足行业检测机构、企业实验室等高端应用环境对于光谱检测精度、稳定性、量测范围、测试速度、外观设计、软件功能等综合性能的高要求。同时,能够有效的降低高端设备的保有成本,为中国LED行业的发展贡献一份力量!

  • 【讨论】猪肉为什么会发蓝光

    【讨论】猪肉为什么会发蓝光

    [img]http://ng1.17img.cn/bbsfiles/images/2010/02/201002261053_202654_1641058_3.jpg[/img][b]  “发光猪肉”重现家乐福 检疫站:无法检验 质疑:“待定猪肉”该不该继续销售 调侃:吃了蓝光猪肉会不会变阿凡达? 家乐福超市:暂不下柜 动物检疫站:待送检更高级别部门[/b]  市民在家乐福超市长沙五一店买回的猪肉会发出蓝光以后(详见2010年2月9日A08版),引起了市民高度关注,很多市民纷纷来电询问这些蓝光猪肉最后的处理结果,这样的“待定猪肉”是不是还在家乐福销售?会不会对人体造成伤害? 记者2月24日采访了长沙市动物检疫站卫监科的胡鹏辉队长,他表示:“由于市里暂时没有相关检测项目,建议向更高一级部门送检。”[color=#f10b00]20楼、21楼、23楼、24楼有最新更新。目前认为是发光杆菌引起的。[/color]

  • 基于半导体制冷片的高精度温度控制系统

    基于半导体制冷片的高精度温度控制系统

    成果简介 半导体制冷片是利用特殊半导体材料构成的PN结产生Peltier效应制成,具有无噪声、体积小、结构简单、加热制冷切换方便、冷热转换具有可逆性等优点。化工安全组对基于半导体制冷片温控系统的影响因素进行了全面、系统分析和实验研究,设计完成了大功率、高可靠性的半导体制冷片驱动电路,并积累了半导体制冷片加热制冷切换双向温控算法的丰富经验,形成了半导体制冷片整套的研究方法和应用手段。目前,半导体制冷片的高精度温度控制系统已应用在产品中。系统组成http://ng1.17img.cn/bbsfiles/images/2016/07/201607121459_600117_3112929_3.jpg图1 基于半导体制冷片的温度控制单元结构http://ng1.17img.cn/bbsfiles/images/2016/07/201607121500_600118_3112929_3.png图2 高精度温度控制系统硬件组成技术指标(1)温度范围:0~120℃;(2)控温精度:±0.05℃;(3)半导体制冷片驱动电路能够最大支持20V 15A输出。http://ng1.17img.cn/bbsfiles/images/2016/07/201607121500_600119_3112929_3.jpg图3 0℃和120℃温度控制曲线图http://ng1.17img.cn/bbsfiles/images/2016/07/201607121500_600120_3112929_3.jpg图4 37.8℃温度控制过程曲线图 http://ng1.17img.cn/bbsfiles/images/2016/07/201607121500_600121_3112929_3.jpg图5 37.8℃稳态控制精度曲线图技术特点(1)高精度温度采集电路:创新性采用比率法和激励换向技术,系统温度分辨力达到0.001℃,检测精度达到±0.01℃。(2)大功率高可靠性的半导体制冷驱动:采用H桥电路形式实现半导体制冷片加热制冷方式的切换,解决了该类驱动电路无死区防护、功率小等问题;设计引入滤波和保护电路,大大增强了半导体制冷片的寿命及驱动电路的可靠性。(3)双向多模式温控:温控策略充分考虑半导体制冷片加热制冷输出功率差异、功率随温度变化以及系统加热制冷方式切换的随机性等因素,综合采用了单点与扫描结合、高低温分段处理、随环境温度变化动态调节等多重温控调节方式。获得研发资助情况浙江省公益项目前期应用示范情况已用于微量蒸气压测定仪产品中的温度控制,温度范围为0~120℃,控温精度为±0.05℃,驱动电路输出12V/10A。相关产品已通过批量试产,温控系统运行稳定可靠,可复制性强,实现成本低,适合于批量生产。转化应用前景半导体制冷片因加热制冷切换方便、结构简单、系统噪音小、控温精确度高以及成本低等优点,有望在科学仪器温度控制、温度发生和电气设备散热等领域获得广泛应用。特别是随着仪器仪表尤其是生命科学仪器、化学分析仪器等逐渐向高精度、小型化方向快速发展,高精度的小型温度控制系统需求越来越旺盛,因此半导体制冷片具有良好的应用前景。合作方式(1)技术转让;(2)委托开发;(3)双方联合开发。应用领域分析仪器、医疗仪器、生命科学测试仪器、家用电器等领域中高精度的恒温、匀速升降温等多模式的温度控制,以及电气装置散热等。联系人:杨遂军;联系电话:0571-86872415、0571-87676266;Email:yangsuijun1@sina.com;工贸所网址:http://itmt.cjlu.edu.cn;工贸所微信公众号:中国计量大学工贸所。中国计量大学工业与商贸计量技术研究所简介 中国计量大学是以“计量、测试、标准”为特色的院校,主要培养测试技术、仪器开发方向的专属人才。 中国计量大学工业与商贸计量技术研究所是学校为进一步推动高水平研究团队的建设而在2014年设立的两个学科特区之一,主要针对工业生产与贸易往来中关乎国计民生的计量测试问题,以新方法、技术、设备及评价为研究对象,主要研究方向为化工产品及工艺安全测试技术与仪器、零部件无损检测技术与设备、光栅信号处理与齿轮精密测量,涉及的单元技术有高精度温度检测技术、快速热电传感技术、高稳态温度场发生技术、低热惰性高压容器制备工艺、激光和电磁加热、非稳态传热反演、基于幅值分割原理的光栅信号数字细分、光栅信号短周期误差补偿、机器视觉高精度尺寸测量。研究所同时是化工产品安全测试技术及仪器浙江省工程实验室,先后承担国家重大科学仪器设备开发专项、国家公益性行业科研专项、国家自然基金、973等国家级项目,科研经费超千万。现有专职科研人员9人、工程技术人员2人、在读研究生30余人、行政与科研管理人员3人。 “应用驱动、产研融合”是研究所的标签,以应用驱动为前提,通过方法技术化、技术产品化、产品市场化,将科研成果落脚于实际应用,为经济与社会发展提供推动力,同时为研究所提供持续发展所需资金、影响力、信息等各类资源的支撑,目前研究所已拥有2家产业化公司。 更多研究所介绍请登录研究所网站itmt.cjlu.edu.cn或微信公众号。

  • 气象专用高精度数字压力计

    高精度压力数字压力计以其量程的灵活匹配,最大限度满足客户需求。此设备标配为单通道单模块,还可以选装大气压参考模块以模拟表压和绝压。可根据用户具体需求定制。这个特点使LPG2500特别适合用于需要对不同量程的压力装置进行数据比对的场合。应用领域:实验室,工业现场等LPG2500高精度数字压力计可测量当前压力。精确定度可达到:0.01%,解决现场测量标准,比如:实验室测量当前大气压力,达到高精度要求。解决风洞微压测量和高压风洞测量。产品特点. 精确度最高达到:0.01%FS. 支持多通道. 人性化智能设计. 支持外部通讯. 可用于差压表测试等. 多精度可选择:0.01%、0.02%、0.05%. 工作最大压力范围可订制应用客户:理化研究所、中国物理所等。服务理念:系统软件终身免费服务;定期进行用户回访;免费系统使用培训提供7X24小时服务,服务热线:13520277456选购配件l 工业级仪表箱:工业级仪表箱用于 LPG2500的运输,也可作为LPG2500空运容器。箱子由高强度抗冲击材料做成,外观为黑色,包含一个把手和一个伸缩拉杆;箱体内部专门根据LPG2500定制的高密度EVC泡沫,并且箱体内具有设备备件的储存空间。仪表箱体结实的特性和在恶劣环境的对设备的保护,非常适合成为LPG2500运输的保护箱体。l 校准证书每台LPG2500出厂时可溯源至计量院,可代送国家计量单位出具证书。

  • 高精度测厚仪哪个好

    在选择高精度测厚仪这样大型的机械设备时,往往都通过比较做出选择,知名品牌也是参考的一点,但是设备的质量也尤为重要。大成精密高精度测厚仪就符合这两点的厂家,在国内来说,他们做的是相当不错的,自主研发生产,质量高,得到了得到了消费者的大力认可,下面我们就来介绍一下,它好在哪些方面吧:   1、操作简单方便  简单方便的设备仪器不管是谁,都会非常喜欢的。如果设备仪器的操作比较繁琐或是需要专业人员来操作。厂家就会考虑很多方面,一来操作繁琐要对工作人员进行一系列的培训,二来请来的专业人员所需要的成本就会有所上升,利益就会相应减少。高精度测厚仪操作十分简单方便,这是厂家选择他们的其中一个理由。  2、能连接数据进行打印  测厚仪有电脑连接接口,在使用的时候可以购买相关软件,从而实现对测两次数据的储存打印,而且相关的软件还能够对测量数据进行统一,用专业的方式显示出来,从而让我们更加简单的了解测量数据机器所具有的特点。  http://www.dcprecision.cn/Uploads/201601/56a1a0aa23fb3.jpg  3、采用国外进口的优质元件  专业的测厚仪传感器部件通常采用的都是国外进口的优质元件,这些优质传感器元件能够让测厚仪的测厚分辨率比普通测厚仪增加很多,这种仪器对于零点一微米的距离都能精准的测量。然而测厚仪里面的优质传动元件也是确保测厚仪工作稳定性和准确性的重要因素。  激光测厚仪是近年来开发出的高科技实用型设备,是用于热轧生产线上实时在线式连续测量成材厚度的非接触式测量设备。它有效地改善了工作环境,具有测量准确、精度高、实用性好、安全可靠、无辐射、非接触式测量等人工测量及其它测量方法无法比拟的优点,并为轧制钢材厚度控制提供了准确的信息,从而提高了生产效率和产品质量,降低了劳动强度。  使用大成精密激光测厚仪以来,具不完全统计,因板厚误差造成的废品率下降了50%以上,创经济效益近千万元,受到各级部门和工作人员的肯定与赞赏。

  • 【讨论】高精度干式气体流量计

    工作原理:将几乎无摩擦力的石墨活塞置于体积精确的测量池中。旁通阀开启以接受被测气流,关闭以测量流量。活塞从下部平稳移动到上部,然后迅速落下,从活塞的起落时间,计算流量。•主要特点:高精度---- ± 1% • 采用干式活塞原理,使用简单方便 • 流量精确控制,经过ISO17025认证 • 测量范围广 ---- 100倍跨度 • 结构紧凑 • 方便快速 • 宽大显示屏幕 • 每组读数可高达100个 • 可内置温度、压力传感器,优化测试结果(520系列)厂家说,当气体流为5-50000标况毫升|分钟时,仪器不确定读不可置信地低至读书的±0.071%

  • 基于半导体制冷片的高精度温度控制系统-仪器温控-成果推广

    基于半导体制冷片的高精度温度控制系统-仪器温控-成果推广

    基于半导体制冷片的高精度温度控制系统成果简介半导体制冷片是利用特殊半导体材料构成的PN结产生Peltier效应制成,具有无噪声、体积小、结构简单、加热制冷切换方便、冷热转换具有可逆性等优点。化工安全组对基于半导体制冷片温控系统的影响因素进行了全面、系统分析和实验研究,设计完成了大功率、高可靠性的半导体制冷片驱动电路,并积累了半导体制冷片加热制冷切换双向温控算法的丰富经验,形成了半导体制冷片整套的研究方法和应用手段。目前,半导体制冷片的高精度温度控制系统已应用在产品中。系统组成http://ng1.17img.cn/bbsfiles/images/2016/05/201605302242_595303_3112929_3.png图1 基于半导体制冷片的温度控制单元结构http://ng1.17img.cn/bbsfiles/images/2016/05/201605302242_595304_3112929_3.jpg图2 高精度温度控制系统硬件组成技术指标(1)温度范围:0~120℃;(2)控温精度:±0.05℃;(3)半导体制冷片驱动电路能够最大支持20V 15A输出。http://ng1.17img.cn/bbsfiles/images/2016/05/201605302243_595305_3112929_3.jpg 图3 0℃和120℃温度控制曲线图http://ng1.17img.cn/bbsfiles/images/2016/05/201605302243_595306_3112929_3.jpg 图4 37.8℃温度控制过程曲线图 http://ng1.17img.cn/bbsfiles/images/2016/05/201605302243_595307_3112929_3.jpg 图5 37.8℃稳态控制精度曲线图技术特点(1)高精度温度采集电路:创新性采用比率法和激励换向技术,系统温度分辨力达到0.001℃,检测精度达到±0.01℃。(2)大功率高可靠性的半导体制冷驱动:采用H桥电路形式实现半导体制冷片加热制冷方式的切换,解决了该类驱动电路无死区防护、功率小等问题;设计引入滤波和保护电路,大大增强了半导体制冷片的寿命及驱动电路的可靠性。(3)双向多模式温控:温控策略充分考虑半导体制冷片加热制冷输出功率差异、功率随温度变化以及系统加热制冷方式切换的随机性等因素,综合采用了单点与扫描结合、高低温分段处理、随环境温度变化动态调节等多重温控调节方式。获得研发资助情况浙江省公益项目前期应用示范情况已用于微量蒸气压测定仪产品中的温度控制,温度范围为0~120℃,控温精度为±0.05℃,驱动电路输出12V/10A。相关产品已通过批量试产,温控系统运行稳定可靠,可复制性强,实现成本低,适合于批量生产。转化应用前景半导体制冷片因加热制冷切换方便、结构简单、系统噪音小、控温精确度高以及成本低等优点,有望在科学仪器温度控制、温度发生和电气设备散热等领域获得广泛应用。特别是随着仪器仪表尤其是生命科学仪器、化学分析仪器等逐渐向高精度、小型化方向快速发展,高精度的小型温度控制系统需求越来越旺盛,因此半导体制冷片具有良好的应用前景。合作方式(1)技术转让;(2)委托开发;(3)双方联合开发。应用领域分析仪器、医疗仪器、生命科学测试仪器、家用电器等领域中高精度的恒温、匀速升降温等多模式的温度控制,以及电气装置散热等。联系人:杨遂军;联系电话:0571- 86872415、0571-87676266;Email: yangsuijun1@sina.com。微信公众号:中国计量大学工贸所工贸所网站:itmt.cjlu.edu.cn中国计量大学工业与商贸计量技术研究所中国计量大学是以“计量、测试、标准”为特色的院校,主要培养测试技术、仪器开发方向的专属人才。中国计量大学工业与商贸计量技术研究所是学校为进一步推动高水平研究团队的建设而在2014年设立的两个学科特区之一,主要针对工业生产与贸易往来中关乎国计民生的计量测试问题,以新方法、技术、设备及评价为研究对象,主要研究方向为化工产品及工艺安全测试技术与仪器、零部件无损检测技术与设备、光栅信号处理与齿轮精密测量,涉及的单元技术有高精度温度检测技术、快速热电传感技术、高稳态温度场发生技术、低热惰性高压容器制备工艺、激光和电磁加热、非稳态传热反演、基于幅值分割原理的光栅信号数字细分、光栅信号短周期误差补偿、机器视觉高精度尺寸测量。研究所同时是化工产品安全测试技术及仪器浙江省工程实验室,先后承担国家重大科学仪器设备开发专项、国家公益性行业科研专项、国家自然基金、973等国家级项目,科研经费超千万。现有专职科研人员9人、工程技术人员2人、在读研究生30余人、行政与科研管理人员3人。“应用驱动、产研融合”是研究所的标签,以应用驱动为前提,通过方法技术化、技术产品化、产品市场化,将科研成果落脚于实际应用,为经济与社会发展提供推动力,同时为研究所提供持续发展所需资金、影响力、信息等各类资源的支撑,目前研究所已拥有2家产业化公司。

  • 泊肃叶压差法代高精度孔径测量中的压力控制解决方案

    泊肃叶压差法代高精度孔径测量中的压力控制解决方案

    [b][color=#3366ff]摘要:针对现有压力衰减法孔径测量中存在的基本概念不清和实施方法不明确等问题,本文详细介绍了压力衰减法的孔径测量基本原理,并重点介绍压差法测量中的高精度压力控制方法,为各种微小孔径和等效孔径的准确测量提供切实可行的解决方案。[/color][/b][align=center][img=压力衰减法孔径测量,550,294]https://ng1.17img.cn/bbsfiles/images/2022/12/202212230914562217_9430_3221506_3.jpg!w690x370.jpg[/img][/align][b][size=18px][color=#3366ff]1. 问题的提出[/color][/size][/b] 在工业生产和实验室研究中存在着大量管件内部孔径的测量需求,而且还要求具有较高的测量精度,常见的需要精密测量的几类孔径有: (1)毛细管内径。 (2)鲁尔接头或其他连接器母接头孔径。 (3)各种喷灯气孔孔径。 (4)栓环缝通道等效孔径。 (5)药用玻璃瓶或药品包装系统漏孔孔径。 通道孔径主要分为直接测量方法和间接测量方法。直接测量主要是通过精密的尺规等工具进行测量,如游标卡尺、圆锥尺、针规和塞规等,但直接测量方法并不适应于细长管和针栓环缝通道等的孔径或等效通径的测量。 间接测量法主要有光学法和流体标定法。光学法一般是利用像素为基本单位对各种形状的孔进行测量,适用于元件表面孔和裂纹的测量。但对于细长或者弯曲多变的孔径,光学法不适用。流体标定方法是一种基于压力衰减法的有效的等效通径标定方法,流体介质多以气体和液体为主,通过流量计和压力传感器分别测量流体流量和压力差。但在目前的压力衰减法中普遍存在以下几方面的问题: (1)在低于和高于一个标准大气压的负压和正压条件下,都可以采用压力衰减法进行孔径测量,但绝大多数文献和专利报道对此并没有明确的规定,正负压测试条件的使用显着非常随意和混乱。 (2)压力衰减法的核心是在被测孔径管道的两侧形成恒定压力差,并同时测量由此压差引起的流量变化,其中的恒定压力控制是建立试验条件和影响测量精度的最重要因素。对于精确的压力控制在各种文献和专利报道中很少看到,大多报道只是给出一个不完整的压力衰减法测试框图,对精确的压力控制以生成高精度的恒定压差还未见报道。 针对上述现有压力衰减法孔径测量中存在的问题,本文将详细介绍压力衰减法孔径测量的基本原理,重点介绍压差法测量中的高精度压力控制方法,为微小孔径和等效孔径的准确测量提供切实可行的解决方案。[b][size=18px][color=#3366ff]2. 压力衰减法基本原理——泊肃叶定律[/color][/size][/b] 在恒定压差条件下,在粗细均匀的水平刚性圆管中作层流流动的黏性流体,其体积流量满足如图1所示的泊肃叶(Poiseuille)公式。[align=center][img=泊肃叶定律,600,311]https://ng1.17img.cn/bbsfiles/images/2022/12/202212230917419388_2550_3221506_3.jpg!w690x358.jpg[/img][/align][align=center][color=#3366ff][b]图1 流体介质的泊肃叶定律[/b][/color][/align] 从泊肃叶公式中可以看出,体积流量与管孔半径的四次方成正比,孔径微小的变化都会对流量产生明显的影响。这就是压力衰减法孔径测量的依据,孔径的微小改变都会引起流量的显著变化,因此压力衰减法在孔径测量中具有很高的灵敏度,但前提是一要准确控制管道两端的压力,二是要准确测量体积流量。[b][size=18px][color=#3366ff]3. 孔径测量解决方案[/color][/size][/b] 依据泊肃叶定律,孔径测量的关键是实现准确的压力控制和流量测量。为此,本文针对高精度孔径测量提出的解决方案如图2所示。[align=center][b][color=#3366ff][img=压力衰减法孔径测量装置结构示意图,600,572]https://ng1.17img.cn/bbsfiles/images/2022/12/202212230918265466_3029_3221506_3.jpg!w690x658.jpg[/img][/color][/b][/align][align=center][b][color=#3366ff]图2 压力衰减法孔径测量装置结构示意图[/color][/b][/align] 如图2所示,被测孔径管件安装在两个压力腔室之间,整个装置的目的是精确控制这两个腔室的压力以形成稳定的压力差,在压力差稳定的装置下测量流进和留出两个腔室的气体流量,从而可计算得到被测孔径大小。 此孔径测量装置涉及以下几方面的主要内容: (1)此孔径测量装置采用了正压压力控制方案,这主要是因为正压控制同样可以达到很高的精度,而且,相对于负压真空环境下的测量和控制造价较低。正压控制过程中,采用纯净的高压气瓶和减压阀提供稳定的高压气源,高压气源同时供给两个压力控制阀以实现不同的正压压力控制。 (2)由于要测量进出两个腔室的气体流量,需要在两个腔室的进气口和出气口处分别安装气体质量流量计进行流量测量,因此压力控制阀无法直接对两个腔室的压力直接控制。为此,解决方案采用了串级控制方式,即在两个腔室上分别增加压力传感器,通过双通道PID压力控制器采集压力传感器信号,并两个通道分别设定不同的压力值,由此来驱动压力控制阀进行双回路的压力控制,由此实现两个腔室内的压力准确稳定在设定值上。 (3)压力控制阀是一个自带PID控制板和压力传感器的闭环压力控制装置,通过接收双通道PID压力控制器的控制信号,可以使压力控制阀出口处的压力准确恒定。压力控制阀自带泄压放气孔,由此两个压力控制阀组成的压差控制回路可使气体单向流过被测孔径管件。 (4)此解决方案中的孔径测量装置是一个对称装置,这种对称结构设计的目的是可以对被测孔径管件进行双向测试,这也是一种提高孔径测量精度的途径之一。 (5)压力控制器采用的是双通道高精度PID控制器,AD精度为24位,DA精度为16位,两个通道独立运行,可满足各种孔径精度测量中的压力控制需要。 (6)整个孔径测量装置的测量精度,除了受压力控制器精度影响之外,还会受到压力控制阀、压力传感器和气体质量流量计精度的影响,因此要针对不同的孔径测量精度要求选择合适精度的部件。 (7)由于此孔径测量装置是直接控制两个腔室的压力,所以在室温下运行时腔室温度的波动对压力变化没有影响,腔室压力控制自动会消除掉温度影响而保持腔室气压恒定。 (8)为了实现数据的自动采集和计算孔径测量结果,双通道压力控制器和两个气体质量流量计需要与计算机通讯连接(图2中并未绘出)。由此,通过计算机可设定控制压力,采集压力和流量变化曲线以监控压力和流量是否稳定,当达到稳态状态后可通过压力和流量采集数据并依据泊肃叶公式计算得到孔径测量值。[b][size=18px][color=#3366ff]4. 总结[/color][/size][/b] 综上所述,本文所提出的基于压力衰减法的孔径测量解决方案,具有很高的测量精度和广泛的适用性,整个测量过程自动运行,关键是可以满足多种形式的微小孔径测量,在替代传统塞规的前提下,是一种高精度的无损测量解决方案。特别是采用气体作为流体介质,非常适合微小尺寸(如毛细管等)和漏孔的等效口径测量。[align=center]~~~~~~~~~~~~~~~~~~~~~[/align]

  • 低温超导测试系统中实现高精度液氦压力控制的解决方案

    低温超导测试系统中实现高精度液氦压力控制的解决方案

    [color=#ff0000]摘要:针对目前两种典型低温超导测试系统中存在的液氦压力控制精度较差的问题,本文提出了相应的解决方案。解决方案分别采用了直接压力控制和流量控制两种技术手段和配套数控阀门,结合24位AD和16位DA的超高精度的PID真空压力控制器和压力传感器,大幅提高了液氦压力控制精度,最终实现低温超导性能的高精度测试。[/color][color=#ff0000][/color][color=#ff0000][/color][align=center][img=低温超导测试系统中实现高精度液氦温度控制的解决方案,690,411]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031120120633_4214_3221506_3.jpg!w690x411.jpg[/img][/align][align=center]~~~~~~~~~~~~~[/align][size=14px][/size][size=18px][color=#ff0000][b]1. 项目概述[/b][/color][/size] 各种超导部件如超导磁铁和超导腔体在装机前都需要在低温超导测试系统中对其性能进行测试,为了使超导部件达到低温环境则需要将被测部件浸泡在液氦介质内,并采用低温杜瓦盛装液氦介质。在整个测试过程中,对低温测试系统内的液氦压力要求极高,即要求杜瓦顶部氦气压强(绝对压力)有极好的稳定性,否则会导致测试不稳定,给测试结果带来严重误差。 目前国内现有的很多低温超导测试系统都存在液氦压力控制不稳定的严重问题,有些客户提出了相应的技术升级改造要求。 如图1所示的低温超导测试系统中,采用了两个不同口径的第一和第二泄压阀来粗调和细调液氦压力,但这种调节方法的液氦压力只能控制在1.2~1.6Bar范围内,对应4.39~4.74℃范围的液氦温度变化,造成0.35℃的温度波动。目前客户提出要设法将温度波动控制在0.1℃以内或更高的稳定性上,以提高超导部件性能测试精度。[align=center][color=#ff0000][b][img=超导试件测试时氦压控制系统,500,356]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031123466941_8802_3221506_3.jpg!w690x492.jpg[/img][/b][/color][/align][align=center][color=#ff0000][b]图1 低温超导测试系统液氦压力控制装置[/b][/color][/align] 如图2所示的高场超导磁体低温垂直测试系统,其压力控制范围1~1.3Bar,尽管在图2所示系统中采用了液氦加热器来改变液氦压力,但由于压力控制阀的调节精密度不够,最终造成压力控制精度远达不到测试要求,客户也提出了技术改造要求。[align=center][b][color=#ff0000][img=高场超导磁体低温垂直测试系统,400,557]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031123146762_3661_3221506_3.jpg!w522x728.jpg[/img][/color][/b][/align][align=center][b][color=#ff0000]图2 高场超导磁体低温垂直测试系统[/color][/b][/align] 针对上述两种典型低温超导测试系统中存在的液氦压力控制精度不足的问题,本文将提出相应的解决方案。解决方案将分别采用直接压力控制和流量控制两种技术手段和配套数控阀门,结合超高精度的PID真空压力控制器和压力传感器,可大幅度提高液氦压力控制精度,最终减小低温超导性能测试误差。[b][size=18px][color=#ff0000]2. 解决方案[/color][/size][/b] 在图1和图2所示的两种典型低温超导测试系统中,它们各自的液氦压力变化起因不同,因此要实现液氦压力准确控制的技术手段也不同。以下是解决方案中对应的两种不同技术途径。[b][color=#ff0000](1)直接压力调节法[/color][/b] 在图1所示的低温超导测试系统中,造成液氦蒸发的因素并不可控,只能通过调节液氦上方的氦气压力来使得测试系统保持稳定。因此,为了实现液氦上方的压强控制,解决方案采用了直接压力调节法,如图3所示,即采用数控压力控制阀代替图1中的第一和第二泄压阀。此压力控制阀与高精度PID控制器和压力传感器构成闭环控制回路,实现自动泄压和高精度压力控制。[align=center][color=#ff0000][b][img=纯压力控制结构,500,350]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031124390427_8017_3221506_3.jpg!w690x483.jpg[/img][/b][/color][/align][align=center][color=#ff0000][b]图3 直接压力调节法控制装置结构[/b][/color][/align] 数控压力控制阀是一种数控正压减压控制阀,正好可以满足低温超导测试系统的微正压控制需求。通过氦气源和减压阀提供的驱动压力,可在控制阀出口处实现高精度的压力控制,同时还保持很小的漏气以节省氦气。 另外,此数控压力控制阀具有很高的控制精度,结合高精度的压力传感器和PID真空压力控制器,可将液氦压力控制在0.1%的高精度水平。[b][color=#ff0000](2)流量调节法[/color][/b] 在图2所示的低温超低测试系统中,其不同之处之一是具有液氦加热器,即通过液氦加热器和压力控制阀构成的控制回路可进行不同液氦压力的控制,由此实现不同液氦温度的控制。 为实现不同液氦压力的精密控制,解决方案在此采用了流量调节法。如图4所示,解决方案采用了电动针阀作为图2中的压力控制阀,电动针阀与双通道高精度PID控制器、压力传感器和液氦加热器构成闭环控制回路,可以按照任意设定值进行高精度的压力控制。[align=center][color=#ff0000][b][img=流量控制结构,500,290]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031125069440_4211_3221506_3.jpg!w690x401.jpg[/img][/b][/color][/align][align=center][color=#ff0000][b]图4 流量调节法控制装置结构[/b][/color][/align] 电动针阀是一种数控的微小流量调节阀,可通过PID压力控制器自动调节针阀开度,流出的氦气可通向氦气回收气囊。电动针阀同样具有很高的控制精度,结合高精度的压力传感器和PID真空压力控制器,同样可将液氦压力控制在0.1%的高精度水平。[b][size=18px][color=#ff0000]3. 总结[/color][/size][/b] 通过上述解决方案的技术手段,可实现低温超低测试系统中液氦压力的准确控制,控制精度最高可达±0.1%。 按照绝对压力进行计算,饱和蒸气压为1.2Bar时,液氦温度为4.4K。由此,如果压力控制精度为±0.1%,液氦压力的波动范围为±1.2mBar(相当于绝对压力±120Pa),对应的液氦温度波动范围为4.4mK,即所控的液氦温度为4.4±0.0044K。 由此可见,通过本文所述的解决方案,仅通过采用工业级别较低造价的PID真空压力控制器和压力传感器,结合数控压力控制阀和电动针阀,就可实现很高精度的液氦压力控制,温度控制精度可达到mK量级,完全能满足绝大多数低温超导测试系统的需要。[align=center]~~~~~~~~~~~~~~~~~[/align]

  • 【资料】高精度数字失真度测量仪的设计

    引言   通信系统中采用的许多算法和技术都是在线性系统的前提下研究和设计的,一定频率的信号通过这些网络后,往往会产生新的频率分量,称之为该网络的线性失真。失真度分析采取的常用方法有基波抑制法和谐波分析法两种。  基波抑制法通常用在模拟失真度测量仪中,原理是采用具有频率选择性的无源网络(如谐振电桥、双T陷波网络等)抑制基波,由信号总功率和抑制基波后的信号功率计算出失真度。理想的基波抑制器应完全滤除基波,又不衰减任何其他频率。但实际上,基波抑制器对基波衰减抑制只能达到-60 dB~-80 dB,对谐波却损耗0.5 dB~1.0 dB。这种方式的失真度仪的性能主要依赖于硬件设计,调试和校准工作烦琐,一般只能实现固定1个或几个频率的失真度测量,其测量误差随着失真度降低而加大,并且随着器件老化,电路的稳定性和可靠性降低。  谐波分析法类似于频谱分析,通常是借助数字方式的以FFF(快速傅里叶变换)为基础的算法,或者采用模拟方式的选频测量方法,从而获得基波和各次谐波的功率,计算出失真度。模拟选频方式的失真度分析仪性能高,但硬件电路复杂。数字方式的失真度分析对硬件的设计要求降低,其性能主要决定于A/D转换的精度和数字信号处理算法。仅仅采用FFT来分析失真度是远远不够的,因为测量精度与其运算量、存储空间的大小和测量速度存在明显的矛盾。 针对以上失真度测量方法的不足,本文以数字谐波分析法为基础,提出了基于DFT(离散傅里叶变换)和过零检测法的失真度分析算法,不仅可满足高精度和任意频率的测试需求,还可降低硬件设计复杂度。  1失真度算法研究  1.1算法分析  失真度定义为: http://www.vihome.com.cn/class/UploadFiles_4704/200909/2009092213540898.jpg  式中:u1,u2,…,uM分别为被测频率的基频、二次谐波、…、M次谐波分量的幅度有效值;E1,E2,…,EM为基频和谐波分量的能量,一般M=5或7。 从失真度定义来分析,要测量信号的失真度,只须设法将被测信号的基波与谐波分离,分别测出它们各自的功率或电压有效值,代入式(1)即可。  DFT在DSP中通常用于对平稳信号的频谱估计,在应用中,将输入信号截短,得到的行向量X=x(n)与一个相同长度的正弦信号W=w(n)相乘积分,可得到向量X中含有正弦信号W的分量。所以,如果向量W的频率等于失真度测量的各个频率分量和它们的正交分量,则可以计算出输入信号中包含第m次谐波的能量Em: http://www.vihome.com.cn/class/UploadFiles_4704/200909/2009092213540809.jpg  将式(2)值代人式(1)就可得到失真度值。   在工程测量中,被测信号的频率往往未知,而DFT计算时是确定的频率,所以应给W提供准确的频率,而且W的频率预测越准确,能量计算也越精确。  为了准确找到基频,对采样信号采用过零检测法来测量频率,为避免噪声干扰,设置零幅度带,每通过零幅度带即为过零一次。被测信号频率由fx=N/T得到,T为时间基准,N为T内过零点数。过零检测法测频虽准确度较高,但是在标准的时间基准T中如10 ms、0.1 s、1 s等,由于被测信号与门控信号不可能同步锁定,所以存在固有的±1量化误差。本系统中如果选用1 s做时间基准的话,实时性不够。因此综合考虑实时性、存储量、处理速度之间的关系,选择T=0.1 s作为时间基准。这时±1误差被扩大10倍,为±10 Hz。为解决±1量化误差,使用以过零测频为中心,固定带宽(30 Hz)内最大值能量搜索办法(二分法)寻找基频能量最大值,经过5~7次迭代可得到准确的基频。然后直接使用此基频得到各次谐波的准确频率,并将基频和谐波频率提供给W,使用DFT就可直接估计基频和各高次谐波能量,完成失真度计算。  1.2仿真结果分析  使用MATLAB对上述算法进行仿真。设输入信号基频为1 kHz,并在±30 Hz范围内随机变动,信噪比20 dB,采样速率为44×103次采样/s,计算到7次谐波能量,基频能量二分法搜索带宽为30 Hz。最大值搜索时,当能量变化小于0.1%时终止,序列运算长度1 024个采样点,使用平方汉宁(Hanning)窗减少频谱泄漏。按这些条件,对500次具有随机频偏和失真特性的输入信号进行算法仿真。结果如图1所示。  仿真结果表明,采用上述条件时,频率计算误差控制在1 Hz以下(见图1(a));失真度误差能控制在1%以下(见图1(b))。如果终止条件更严格,测量精度可以更高。通过仿真还发现,当基频搜索时能量变化小于0.01%时终止,失真度测量误差可小于0.1%(见图1(d))。为使失真度算法更有效率,本系统采用能量变化小于0.1%时终止。  2数字失真度测量仪硬件结构  该系统硬件结构如图2所示。测量仪主要由信号调理、低通滤波、数据采集系统、主控制器AVR单片机(Atmega64L)、DSP(数字信号处理器)等模块组成。  2.1信号调理和低通滤波模块  信号调理和低通滤波的功能是对信号的幅度进行调理和滤波。信号的输入范围是不定的,小信号信噪比较低,大信号会引起A/D转换器对信号进行限幅而失真,所以采用数控可变增益放大器对信号输出电压范围进行调整,将信号的幅度控制在A/D转换器的满幅度附近。保证A/D转换器采集到的波形数据最大值仅占A/D转换器不失真输入范围的80%。低通滤波为20 kHz低通滤波器,其0.1 dB带宽为18 kHz,能有效滤除高频信号,同时保证较好的带内平坦度。  2.2数据采集模块  作为电子测量仪器要得到高精度的测量结果,要求A/D转换器的精度必须足够高。系统采用了TI公司的24 bit工业A/D转换器ADS1271,它可以得到低的漂移、极低的量化噪声。经ADS1271采样后的数据由DOUT引脚串行输出,与TMS320C6713的多通道缓冲串口McBSP直接相连。McBSP可支持字长为24 bit的数据,可直接接收A/D转换器输出的24 bit串行数据,并自动将接收数据中的数据位调整为DSP需要的格式。A/D转换器采样速率为44×103次采样/s。A/D转换器的采样脉冲信号由DSP的定时器提供。  2.3数据处理模块  DSP模块以TMS320C6713芯片为核心。该芯片是TI公司推出的一款高性能浮点DSP,内核包含了8个功能单元,采用先进的VLIW(甚长指令字)结构,使得DSP在单周期内能够执行多条指令。在225 MHz的时钟频率下,其最高执行速度可以达到1350×106次浮点运算/s。它还集成了丰富的片内外设单元,本系统主要用到的有HPI、EDMA和定时器。  主机接口为HPI,外部主机可以直接访问内部的存储器和存储器映像存储器,TMS320C6713的HPI通过EDMA控制器实现对DSP存储空间的访问,本系统中Atmega64L是主机,可以直接配置TMS320C6713的EDMA定时器,节省TMS320C6713的查询周期。ED-MA(增强型直接存储器访问)是C621x/C671x/C64x系列DSP特有的访问方式,其启动可以由内部或外部事件触发,本系统采用外部触发。  2.4外围设备  失真度测试系统的控制和结果显示通过标准RS-232接口完成。因此该数字失真度测量仪可以作为一个独立测量模块集合在其他综合测试仪中。  2.5控制模块  主控制器使用Atmega64L单片机,完成系统的控制。DSP的处理结果由主控制器通过HPI接口获得,并缓存在内存中;当外部命令读取测试结果时,再通过RS-232接口发送出去。控制模块还完成系统的低功耗控制、DSP运行模式等控制。  3软件实现  图3是TMS320C6713芯片的软件流程图。该芯片受Atmega64L控制。Atmega64L根据RS-232接口获得指令,然后根据指令参数来控制仪器的运行。TMS320C6713可执行两种操作:一种是自动测量,首先对采集数据使用过零法粗测频率,然后把粗测频率作为参数传递给失真度测量程序,由失真度计算程序完成测量;另一种是定频测量,把Atmega64L传递来的频率参数直接传递给失真度测量程序完成失真度的测量,而不需要事先测量频率。  失真度测量程序设有一个入口参数fmiddle,以此参数为中心频率在带宽30 Hz内使用最大值搜索法找寻准确的基频频率并完成失真度计算,返回值是实际测量的基频频率、信号电平、失真度。  DSP处理完数据后,把测试结果缓存在内存中,单片机根据指令通过HPI接口读取测试结果。  4性能分析  测量速度是决定仪器实用性的重要因素。每计算一次失真度,基频能量二分法最大值搜索时一般需要5~7次迭代,每次迭代含3次向量乘法(2次乘法,2次加法),取10次迭代需要30次向量乘累加操作、生成30个W向量;剩余6次谐波计算需要6个W向量,合计36个W向量。  W向量的生成如果采用直接调用库函数,运送量太大,而

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制