气溶胶加湿串联差分分析仪

仪器信息网气溶胶加湿串联差分分析仪专题为您提供2024年最新气溶胶加湿串联差分分析仪价格报价、厂家品牌的相关信息, 包括气溶胶加湿串联差分分析仪参数、型号等,不管是国产,还是进口品牌的气溶胶加湿串联差分分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气溶胶加湿串联差分分析仪相关的耗材配件、试剂标物,还有气溶胶加湿串联差分分析仪相关的最新资讯、资料,以及气溶胶加湿串联差分分析仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

气溶胶加湿串联差分分析仪相关的厂商

  • 400-860-5168转3373
    GRIMM 气溶胶科技公司是颗粒粒径谱仪的领军品牌,公司总部位于德国,成立于1981年。GRIMM提供多种便携式和固定式的颗粒物测量系统,我们的产品拥有优异的可靠性和准确性,已有上千台设备成功应用于世界各地。 GRIMM颗粒物测量产品的用户遍及学校、研究机构、环境、卫生、建筑、矿井、咨询等行业。 GRIMM拥有3个产品系列,分别是:室内空气颗粒物测量、环境颗粒物测量以及纳米颗粒物测量,适用于不同领域的颗粒物实时、连续测量。 GRIMM愿竭诚为您提供室内和户外颗粒物测量的一站式解决方案!
    留言咨询
  • 北京佳分分析仪器技术有限公司公司简介北京佳分分析仪器技术有限公司是集生产、研发、销售及售后服务于一体的专业气相色谱仪生产厂家,公司技术力量雄厚,具有中、高级技术职称并从事色谱开发与应用的技术人员占公司总人数90%以上。公司专业从事气相色谱仪及相关产品的生产与销售并承接各类专用色谱仪器的改装与服务。公司设计生产的气相色谱仪是在引进、吸收国外先进色谱技术的基础上,自行研制的新型气相色谱仪。该仪器突出了实用性,具有较高的性价比。可广泛应用在石油化工、科研、环保、大专院校、卫生防疫、食品检测、白酒检测等领域,我公司可为您提供优质的技术支持和完善的售前、售中、售后服务。经过多年的努力,公司已从单一的色谱产品开发、生产逐渐形成多元化的色谱相关配套产品的研制、生产和销售。业务范围:1. 气相色谱仪、液相色谱仪2. 色谱工作站、积分仪及其配套设备3. 氮气、氢气、空气发生器4. 色谱柱及相关色谱零备件5. 色谱专用气路调节稳压阀、稳流阀、针型阀、开关阀6. 气相色谱仪器改装和技术服务7. 实验室气路设计安装公司建有开放的色谱实验室,并配有专业技术人员免费为用户进行样品测试,并帮助用户选择最佳的色谱分析条件和建立完整的分析方法。让用户在购买仪器之前,充分了解自己开展工作所必须满足的色谱条件和要求。让用户做到心中有数,花最少的钱,购买到最适合自己分析要求的仪器和相关设备。不论您正在使用的是那个厂家的色谱产品,如果您在实际工作中遇到问题,欢迎您来电来函,我们将会尽力帮助您解决工作当中遇到的实际问题。公司服务宗旨:一流的质量、合理的价格、优质的服务
    留言咨询
  • 鲁分分析仪器有限公司是一家集研发,生产与销售分析仪器为一体的高科技企业,由原鲁南分析仪器厂改制而成。在上海建有研发基地,为上海市高新技术企业。公司拥有一批高技术,高素质人才,在色谱仪的研制、生产方面有着强大的优势,充分发挥利用鲁南三十多年来在气相色谱技术方面的科研成果及生产经验,以精湛的工艺、可靠的性能、优质的服务,逐步生产出高智能化的GC、LC系列,贡献于社会。
    留言咨询

气溶胶加湿串联差分分析仪相关的仪器

  • 气溶胶液化采样成分分析系统PILS Model 4002 新升级的PILS系统提供了快速可靠的野外现场气溶胶采样,可对PM1、PM2.5的水溶性气溶胶化学组成进行采样和观测 PILS系统收集气溶胶液体样品,分析样品的多种水溶性有机或无机成分以及水溶性总有机碳 精确的PILS系统和灵活的自动样品采集系统连用,使空气质量研究的关键气溶胶成分得到快速可靠的分析。 特点: 定量采样效率和现场测试 全自动化本地或远程操作 快速水溶组分数据 采样时间分辨率为30 s-12 h 具有离线分析能力,可以通过采集瓶将PILS和用户的离子色谱系统集成分析 可通过外置电脑主机远程控制采样循环 单液体样品可用多种离线分析技术 可实现长达19天无人值守连续工作 适于地面采样、飞机采样 80个采样瓶可进行大量样品的快速采样,时间为20s至2h,采样瓶有1ml和2ml可选 38 个采样瓶可进行5分钟和12小时的采样时间,有10ml、12ml和20ml规格可选. PILS软件界面 BMI的 Window实时软件简化了PILS系统操作,具有图形用户界面。 创新的控制软件可以自动进行本地和远程控制样品采集并记录控制各种系统参数: 气温、空气流速、相对湿度、气压、采样瓶数目和采样填充时间 PILS 可选项: 自动采集器 自动空气回零系统 气流控制系统 溶蚀器 技术参数: 组成: 前置撞击切割粒径: 1.0µ m 或2.5µ m PILS入口流速:15.0 lpm 蒸汽发生器液体流速:1.5 ml/min 注射泵水汽和样品流速: 0.03-1.0 ml/min 蒸汽喷射器尖端温度:98.5± 1.5° C 加热器温度(自动控制):100-300° C 液滴切割粒径:1.0µ m 化学种类检测: 硫酸盐、硝酸盐、亚硝酸盐、氯化物 (100 ng/m³ LOD) 铵、钾、钠、钙、镁(100 ng/m³ LOD) 醋酸盐、甲酸盐和草酸有机酸 (50 ng/m³ LOD) 水溶有机碳 (10 ppbLOD) 自动采样收集器: 旋转圆盘可支持的总采样瓶数目:38个或80个 采样瓶收集时间:30 seconds-12 hours 采样瓶可收集液体体积: 0.03-20 ml 可用采样瓶体积:1, 2, 10, 12 and 20 ml 电子特性: 电压:100-230 VAC 自动收集器最大电流:1.5-2.5 amps 操作温度范围:15-45° C PILS 软件界面: Windows数据采集系统、控制软件 记录参数包括: 软件可配置PILS运行循环和传感器标定 远程控制通讯口:RS-232 物理特性: 尺寸(含自动收集器):43wx48dx69h cm 重量(含自动收集器):52 kg
    留言咨询
  • 简介 生物气溶胶快速分析仪THBD是一款能够实时监测周边环境中生物气溶胶(即空气中悬浮的微生物,包括细菌、霉菌、病毒团、孢子等)浓度的仪器,当生物气溶胶浓度异常变动时进行快速报警。仪器的基本工作原理是使气溶胶颗粒穿过高强度紫外光束。由于微生物颗粒在紫外光下会产生自发荧光,仪器利用荧光结合散射光强度辨别单颗粒是否属于微生物,利用数据统计与智能算法判断生物气溶胶是否超出了正常本底范围。 THBD实现国产化、小型化、轻量化。相比传统的空气微生物分析方法需要冗长的采样和检测过程,THBD不经处理直接对气体实施测量,因而有很快的响应速度(短至10秒),而且没有消耗品,能连续工作,因而可以弥补传统技术在时效性上的缺陷,允许人员和设施迅速采取防护措施。 技术指标 项目 参数 原理 单粒子紫外荧光 进样流量 1.2L/min 鞘流流量 2.8L/min 总流量 4.0L/min 采样量 0.2L/0.5L/1L/2L/5L 可选 分析时间 10s/25s/50s/100s/250s 可选 光源 375nm紫外激光,70mW 荧光波长 405~650nm 粒径分析范围 0.5~10 μm, 16通道 颗粒分析效率 ≥80% (1~10 μm) 分析方法 荧光-粒径双参数积分图 灵敏度 100 Pts/L (生物颗粒) 报警方法 多级可选智能报警 工作温度 -20o C~50oC 工作湿度 0~95% RH 电池 14.4V, 6AH (可订制升级) 电池工作时间 不小于3小时(可订制升级) 尺寸 25cm x 20cm x 10cm (主机) 重量 4.1 Kg (主机) 外壳防护性 IP40 (可订制IP68及军标产品) 产品优势 小巧、轻便,可单人操作 内置电池,可多场景使用 响应速度快 无消耗品 采用自发荧光技术 可检出物范围广 操作便捷,智能报警 智能算法,适应复杂环境 应用领域 安全保障 环境监测 传染病防控 无菌实验室检测 海关检疫
    留言咨询
  • 在线离子色谱仪配大气气溶胶采样及前处理系统,即成为大气气溶胶在线分析仪,该分析仪能够及时、快速、准确的分析大气中的气体及气溶胶颗粒物所携带的阴阳离子及重金属中的有害物质,并将其物质种类、浓度等数据24小时通过网络不间断传至检测中心。主要用于环境空气自动站、硫酸雾、重大污染源所在地的连续自动监测,以及芯片加工等生产过程中的连续自动监测。原理:采用空气旋风式或撞击式切割器,使大气及大气中的颗粒物按直径大小(PM1.0~PM10),有选择的进入该系统,经过大气及颗粒物的分离系统,分别对可溶于水的大气样品及颗粒物样品进行连续不断地收集,样品经过前处理系统处理后,进入三通道在线离子色谱仪分析进行连续自动的在线分析,并将实时分析的阴离子、阳离子、重金属离子的数据传送至客户终端。检测技术指标:zui新性能参数,请参考zui新产品手册。性能特点:1.可更换不同粒径的PM10、PM2.5、PM1.0颗粒物采样器。2. 气体采集技术:垂直湿式平板式或同心圆管扩散溶蚀器,颗粒物损失小且二氧化硫气体吸收效率高。3.溶蚀器:无须更换薄膜及旋转机构等耗材,维护操作简易。4.颗粒物采集技术:颗粒物蒸大及惯性冲击二阶段捕集,颗粒物回收率高,并可针对水溶性有机碳采集。5.样品定量系统:气体样品及气溶胶样品,导入样品量测管并经上下光纤液位感知器检出,可精准进行样品体积定量,作为其他分析仪精确定量之用途,如水溶性碳分析仪。6.样品预留接口:可以连接在线水溶性有机碳自动测定系统。7.系统空白实验校准装置:可清洗系统管路并确定无气体及颗粒物残留。8.除泡装置:机械式除泡装置能有效的去除样品大气泡,避免大气泡进入离子色谱仪造成当机现象,确保测量的连续性及数据的准确性。9. 分流进量分析方式:气体及气溶胶采用阴阳离子分流且同时收样及送样方式,可避免样品交叉污染。10. 全时数据采样:配置四组注射系统,用于样品的自动进样,可全时收集气体及气溶胶,不会损失任何分秒的样品。11. 长时间全自动监测系统:采样可连续运行,运行期间无需换膜,实现在线自动监测。12. 适合各种环境下监测:颗粒物冷凝采样器具强制冷却装置,可在无空调环境下操作。13. 研究多样性与可扩充性:前处理器可单独使用或与IC、HPLC、ICP、TOC联用,达到分析项目的多样性与研究性之需求。14. 全中文操作接口:操作简单,一键自动采样。15. 远程监控:配备可连续运行的工业计算机IPC,以LAN接口可远程监控设备运行,仪器每小时自动生成监测报告。16. 监测数据数据库系统:监测数据可选择单一或多种物种同时显示历史数据查询、污染事件趋势曲线一目了然。17. 简讯警报装置:仪器针对采样流量、温度与样品量进行24小时连续监控,当异常状况发生,系统会主动通过微机或手机终端发布简讯通报相关人员。18. 内标查核系统:每个样品均持续定量注入内标标准品,查核内标回收率及精确定量样品量,以确认离子色谱仪分析状况之正常及稳定。19. 内标回收率测试:zui新性能参数,请参考zui新产品手册。20. 内标量弹性调整:可依灰霾程度自行调整内标注入量,避免超出检测极限。21. 离子色谱仪可单独使用:可依研究目的不同,进行其他实验设计分析。相关荣誉:应用案例:以PIC-Online在线离子色谱仪为核心构建的船载气溶胶离子成分在线分析系统,于2015.11-2016.04月在雪龙号南极考察船上运行,现场所得MSA,硫酸盐数据与南大洋海域数据可比,浓度量级一致。
    留言咨询

气溶胶加湿串联差分分析仪相关的资讯

  • 385万!南开大学热光法-质谱法联用碳气溶胶全组分分析仪采购
    项目概况南开大学环境科学与工程学院热光法-质谱法联用碳气溶胶全组分分析仪采购项目 招标项目的潜在投标人应在天津市河东区大桥道52号渤轻党校B座104室获取招标文件,并于2022年01月05日 09点30分(北京时间)前递交投标文件。一、项目基本情况项目编号:NK2021S048W项目名称:南开大学环境科学与工程学院热光法-质谱法联用碳气溶胶全组分分析仪采购项目预算金额:385.0000000 万元(人民币)采购需求:1、采购内容:热光法-质谱法联用碳气溶胶全组分分析仪的供货、安装及售后服务2、数量:1套3、本次项目接受进口产品投标。合同履行期限:交货时间:收到信用证后3个月内;到货口岸:北京首都机场╱天津滨海国际机场。交货地点:南开大学指定地点。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:(一)根据《财政部发展改革委 生态环境部 市场监管总局关于调整优化节能产品 环境标志产品政府采购执行机制的通知》(财库〔2019〕9号)、关于印发节能产品政府采购品目清单的通知(财库〔2019〕19号)的规定 ,对政府采购品目清单中的节能产品采用优先采购和强制采购的评标方法。(二)根据《财政部发展改革委 生态环境部 市场监管总局关于调整优化节能产品 环境标志产品政府采购执行机制的通知》(财库〔2019〕9号)、关于印发环境标志产品政府采购品目清单的通知(财库〔2019〕18号)的规定 ,对政府采购品目清单中的环境标志产品采用优先采购的评标方法。(三)按照《财政部关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库〔2016〕125号)的要求,根据开标当日投标文件开启时间一个小时之内“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)的信息,对列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单及其他不符合《中华人民共和国政府采购法》第二十二条规定条件的投标人,拒绝参与政府采购活动,同时对信用信息查询记录和证据进行打印存档。(四)根据财政部发布的《政府采购促进中小企业发展管理办法》规定,本项目对小型和微型企业产品的价格给予6%的扣除。(五)根据财政部发布的《关于政府采购支持监狱企业发展有关问题的通知》规定,本项目对监狱企业产品的价格给予6%的扣除。(六)根据财政部、民政部、中国残疾人联合会发布的《关于促进残疾人就业政府采购政策的通知》规定,本项目对残疾人福利性单位产品的价格给予6%的扣除。注:小微企业以投标人填写的《中小企业声明函》为判定标准,残疾人福利性单位以投标人填写的《残疾人福利性单位声明函》为判定标准,监狱企业须投标人提供由省级以上监狱管理局、戒毒管理局(含新疆生产建设兵团)出具的属于监狱企业的证明文件,否则不予认定。以上政策不重复享受。3.本项目的特定资格要求:(一)营业执照副本或事业单位法人证书或民办非企业单位登记证书或社会团体法人登记证书或基金会法人登记证书,自然人的身份证明。(二)投标人具有良好的商业信誉和健全的财务会计制度,提供2019年度或2020年度经第三方会计师事务所审计的企业财务报告或2020年至今银行出具的资信证明。(三)投标人具有依法缴纳税收和社会保障资金的良好记录,提供2020年至投标截止时间至少一个月的相关证明材料;依法免税或不需要缴纳社会保障资金的投标人,应提供相应文件证明其依法免税(税务机关出具)或不需要缴纳社会保障资金(社会保险基金管理部门出具)。(四)投标人参加政府采购活动前三年内,在经营活动中没有重大违法记录,并出具承诺函。(截至开标日成立不足3年的投标人可提供自成立以来无重大违法记录的书面声明)(五)若为进口产品代理商参与本次投标,还应提供仪器设备制造商针对本项目出具的授权书。(六)本项目不接受联合体投标。三、获取招标文件时间:2021年12月14日 至 2021年12月20日,每天上午9:00至12:00,下午13:30至16:30。(北京时间,法定节假日除外)地点:天津市河东区大桥道52号渤轻党校B座104室方式:(1)现场发售。(2)因新冠疫情影响,本项目推荐网上报名:供应商将南开大学环境科学与工程学院热光法-质谱法联用碳气溶胶全组分分析仪采购项目(项目编号:NK2021S048W)及供应商名称、联系人、联系电话发送至xuanfuzhaobiao@163.com报名,并致电022-84313819-801购买采购文件。(3)投标人在购买招标文件后,须在南开大学招投标管理办公室新版网站右侧“供应商注册”入口进行注册。已在旧版网站注册的供应商须在新版网站重新注册,注册网址:http://zbb.nankai.edu.cn,注册方法详见新版网站常用下载《供应商注册指南》。注:本项目采用资格后审合格制,报名成功不代表评标现场通过资格审查,投标文件中需提供完整、清晰、齐全的资格证明文件。售价:¥500.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年01月05日 09点30分(北京时间)开标时间:2022年01月05日 09点30分(北京时间)地点:天津市河东区大桥道渤轻党校B座107室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:南开大学     地址:天津市南开区卫津路94号        联系方式:于老师,022-23501661      2.采购代理机构信息名 称:天津烜福工程招标有限公司            地 址:天津市河东区大桥道52号            联系方式:戈女士022-84313819/84316123            3.项目联系方式项目联系人:戈女士电 话:  022-84313819/84316123
  • 普仁船载大气气溶胶在线定量分析仪搭载“雪龙号”赴南极科考
    2015年11月7日,由277名队员组成的中国第32次南极科学考察队乘“雪龙号”破冰船从上海出发,赴南极进行科考任务。总航程3万海里,预计历时159天。 在此次科考中,搭载了由青岛普仁仪器有限公司研发的国内首台AOMZ-3000型船载大气气溶胶在线定量分析仪。此款仪器将PIC-online型在线离子色谱仪与PAGM 大气气溶胶在线分析仪完美结合,对各种气候条件下的大气中无机阴阳离子进行不间断检测。 此款仪器的优势在于:1、大气样品的自动采集、自动过滤、自动稀释;2、淋洗液自动生成,全程无需再重新配制;3、工作曲线自行配制、自行校准、无需人工;4、分析一次样品仅需15分钟、全天96次分析、做到全程监测;5、由于全程自动化,所以避免了人工分析的误差、数据准确度高;6、阴阳离子同时检测;7、完善的自动保护装置、当泵压异常时,程序将自动关闭并发出警示信号;8、程序可下载到手机上,随时查看分析数据。 此次南极科考,青岛普仁仪器有限公司派出技术工程师于10月下旬登上雪龙号,根据船舱内的结构,对仪器进行了特殊的改造和加固,仪器安装完成后,进行了两周的全方位测试,各项性能指标完全符合设计和使用要求。普仁船载大气气溶胶在线定量分析仪优越的性能和精干的技术服务团队,得到科考专家的一致好评。 此次普仁与国家海洋局、中国极地研究中心在南极科考的深度合作,充分证明了我公司在高端在线离子色谱仪及气溶胶在线分析仪研发方面的能力和优势。 普仁船载大气气溶胶在线定量分析仪的成功研制及应用,进一步提升了我国在线分析类仪器的整体技术等级和核心竞争力,对于促进在线分析仪器向自主创新方向发展,逐步打破进口垄断的不利局面,以满足我国日益增长的检测市场需求,保障数据信息安全,具有重要的现实意义。
  • 蒸汽吸附分析仪在气溶胶吸湿性研究中的应用
    大气气溶胶是指悬浮在大气中的固体和液体颗粒共同组成的多相体系。人们所处的大气环境实际就是由不同相态的颗粒物均匀分散在空气中形成的一个气溶胶体系。常见的大气气溶胶包括直接排放至大气的沙尘、道路扬尘和黑炭等一次颗粒物,以及通过化学反应形成的二次颗粒物,例如二氧化硫和氮氧化物通过大气氧化形成的硫酸盐和硝酸盐等。由于大气气溶胶的环境、气候及健康效应,在过去几十年里,对它的理化性质的研究正日益受到包括化学家、环境学家等科学家等的重视。吸湿性是气溶胶最重要的物理化学性质之一(Tang et al., 2019a)。例如对于研究大气化学来说,吸湿性会影响实际环境条件下大气颗粒物的含水量,从而会影响颗粒物的大气化学反应活性;从大气能见度和直接辐射强迫的角度来看,在实际大气环境中,颗粒物吸水会导致其粒径增大,从而影响颗粒物的光学性质,继而影响气溶胶的消光系数、对能见度的影响以及对直接辐射强迫的影响;另外,气溶胶的吸湿性也与气溶胶颗粒物的云凝结核活性和冰核活性密切相关。1. 已有吸湿性测量技术的局限性现有研究中常用的吸湿性测量技术主要有吸湿性分级差分迁移率分析仪(H-TDMA)、电动力天平、显微镜以及红外光谱等(Tang et al., 2019a)。目前最常用的吸湿性测量技术为H-TDMA,该仪器是通过测定不同相对湿度下气溶胶的电迁移率直径来研究其吸湿性。使用该仪器对气溶胶的吸湿性进行表征时,必须假设气溶胶为球形,但某些颗粒物的形貌并不规则,例如花粉、烟炱以及矿质颗粒物等。另外,H-TDMA的测量精度较为有限,仅可测定颗粒物大于1%的直径变化。电动力天平是通过测量单个颗粒物的质量变化来研究其吸湿性,虽然它对颗粒物的形貌没有要求,但该仪器的灵敏度同样比较有限,一般只能测量大于1%的质量变化。此外,显微镜也常用于测量颗粒物的吸湿性,它可以通过测量颗粒物的形貌变化来直接观察颗粒物粒径的大小变化从而研究其吸湿性。然而该技术同样基于球形颗粒物的假设,且灵敏度有限。另外,红外光谱是一个非常灵敏的吸湿性测量方法,该方法通过测量颗粒物中水的红外光谱来研究吸湿性,但把颗粒物中水的红外吸收光谱定量转换为颗粒物的含水量时存在一定的限制。2. 蒸汽吸附分析仪虽然目前用于颗粒物吸湿性的测量手段较为丰富,但准确测定非球形的或者吸湿性较弱的颗粒物的吸湿性仍然是一个很大的挑战。本课题组自主开发和建立了使用蒸汽吸附分析仪测量大气颗粒物吸湿性的新方法,相关研究成果由Atmospheric Measurement Techniques发表(Gu et al., 2017a)。该方法通过测定不同相对湿度下颗粒物的质量变化来研究其吸湿性,其原理如图1所示。图1. 蒸汽吸附分析仪的装置示意图(Gu et al., 2017a)该仪器对颗粒物的形貌没有要求,且具有卓越的灵敏度,能够准确测定小于千分之一的质量变化;在温湿度控制方面性能突出,所能研究的相对湿度最高可达98%。由于上述卓越性能,这项测量技术非常适用于研究形貌不规则或吸湿性较弱的大气颗粒物(比如矿质颗粒物、烟炱和生物气溶胶等),目前已被成功用于研究花粉颗粒物(Chen et al., 2019 Tang et al., 2019b)、矿质颗粒物(Guo et al., 2019 Tang et al., 2019c Chen et al., 2020)、高氯酸盐(Gu et al., 2017b Jia et al., 2018)等的吸湿性,大幅度提高了我们对上述几类物质吸湿性的科学认识水平。下文将介绍蒸汽吸附分析仪的几个典型应用。2.1 花粉颗粒物花粉颗粒物是最重要的生物气溶胶之一,其年排放量为 47-84 Tg,对大气环境、人体健康和气候变化具有重要影响,同时也在植物繁衍和和生态系统演化中起着关键作用。吸湿性是花粉颗粒物最重要的理化性质之一,其会影响花粉颗粒物的质量与形貌,从而影响花粉在大气环境和呼吸道中的迁移和传输。由于花粉颗粒物的形貌不规则,且吸湿性较弱,因此先前已有的吸湿性测量技术较难准确测定花粉颗粒物的吸湿性,而我们的方法对颗粒物的形貌无要求且非常灵敏,所以非常适合用于研究花粉颗粒物的吸湿性。图2. 花粉颗粒物的产生、传输及其环境、气候及生态效应在我们已经发表的两项工作中(Chen et al., 2019 Tang et al., 2019b),我们研究了25和37摄氏度下共17种国内外代表性花粉(12种风媒、5种虫媒)的吸湿性。我们发现这些花粉颗粒具有相对较强的吸湿性。例如,当相对湿度从0%升高至90%时,花粉颗粒物的质量增加了30%-50%,当相对湿度达到95%时,花粉颗粒物的质量基本接近于干燥条件下的2倍,如图3所示。另外就目前已有的数据(包括本研究和前人的研究)来看,风媒花粉和虫媒花粉的吸湿性似乎没有系统差异,而中国常见花粉与欧洲/北美常见花粉的吸湿性也非常相似。此外,两个温度下(25和37摄氏度)花粉颗粒物吸湿性的差异比较小。本研究对于深入认识花粉颗粒物的环境行为具有重要意义,尤其是37摄氏度下的实验结果,为模拟花粉颗粒物在呼吸系统内的传输和沉降以及评估其对人体健康的影响提供了关键基础数据。图3. (a)松树花粉与(b)梨树花粉分别在25和37摄氏度下的吸湿性2.2 矿质颗粒物由干旱和半干旱地区地表排放进入大气的矿质气溶胶是一种非常常见的大气颗粒物,其年排放量居于全球第二位,大气含量则居于全球第一位。图4展示了一次典型的沙尘暴事件。矿质气溶胶作为对流层中最重要的气溶胶之一,显著影响全球大气污染、气候变化以及生物地球化学循环。吸湿性在很大程度上决定了矿质气溶胶对大气化学和气候的影响。我们使用蒸汽吸附分析仪测量了21种矿质气溶胶的质量随相对湿度(0-90%)的变化,从而定量阐明矿质气溶胶的吸湿性(Chen et al., 2020)。这21种矿质气溶胶包括14种常见矿物(如石英、长石、石灰石和伊利石等)以及7种来自全球不同地区的实际沙尘。图4. 一次典型的沙尘暴事件我们发现矿质气溶胶的吸湿性普遍较弱,如图5所示。除了蒙脱石以外,当相对湿度从0%增加至90%时,矿质气溶胶的质量增加了不到10%,表明绝大部分的矿质气溶胶的吸湿性较低。另外,我们发现矿质气溶胶的吸湿性与其比表面积密切相关,这表明矿质气溶胶的吸湿性可能是由水在颗粒物表面的吸附所决定的。例如对于蒙脱石,其比表面积较大,吸湿性也远远强于其他矿质气溶胶。上述研究结果可显著提高矿质气溶胶吸湿性的科学认识,从而有助于更好地阐明矿质气溶胶在大气化学和气候变化中的作用。图5. 矿物样品的吸湿性与(a)BET比表面积的关系以及(b)粒径的关系2.3 盐尘暴颗粒物最近几年的外场观测表明,矿质颗粒物,尤其是从干盐湖和盐碱地表面排放进入大气的矿质颗粒物,除了吸湿性很弱的矿物之外,往往还含有一定量的水溶性盐(如氯化钠和硫酸钠等)。这类矿质颗粒物常被俗称为盐尘暴颗粒物。然而,目前关于盐尘暴大气颗粒物吸湿性的科学认识还基本上处于空白阶段。在近几年发表的一项研究工作中(Tang et al., 2019c),我们在东起黄河三角洲,西至新疆罗布泊的干旱和半干旱盐碱地采集了13个地表土壤样品,采样点的地理分布如图6所示。我们使用X射线衍射仪测定了这些样品的矿物组分,使用离子色谱仪分析了它们的水溶性离子成分,并使用蒸汽吸附分析仪研究了这些样品的吸湿性。图6. 土壤样品采样点的地理分布研究发现,不同样品的吸湿性存在着很大的差异,如图7所示。对于某些盐尘暴样品,其吸湿性较弱,当相对湿度升高至90%时,其质量仅增加了10%左右,然而对于某些盐尘暴样品,当相对湿度升高至90%时,其质量已增加至干燥状态下的5倍,这基本接近于氯化钠或硫酸钠的吸湿性。随后我们又探讨了颗粒物的吸湿性与其水溶性离子含量的关系。我们发现当水溶性离子的含量越高,颗粒物的吸湿性越强。此外,我们还将颗粒物水溶性离子含量的数据输入至气溶胶热力学模型(ISORROPIA-II)中来计算颗粒物的吸湿性,结果表明该热力学模型并不能很好的模拟实际盐尘暴样品的吸湿性。以上研究结果将改变我们对于矿质颗粒物吸湿性的科学认识,进而帮助我们更好地了解矿质颗粒物在大气化学和气候系统中的作用。图7. (a)新疆自治区吐鲁番市艾丁湖表层盐土与(b)内蒙古杭锦后旗盐碱土样品的吸湿性2.4 蒸汽吸附分析仪与其他表征仪器的联用由于蒸汽吸附分析仪仅可得到颗粒物随相对湿度的质量变化,因此我们通常还会将蒸汽吸附分析仪与其他表征仪器进行联用,从而深入认识颗粒物的吸湿性。例如,在花粉颗粒物吸湿性的研究工作中(Tang et al., 2019b),除蒸汽吸附分析仪以外,我们还使用了透射傅立叶变换红外光谱仪测定样品的红外吸收,以获得花粉颗粒物的化学成分的信息。测量结果表明,花粉颗粒物的吸湿性在很大程度上决定于颗粒物中羟基的相对含量。这一研究结果揭示了花粉颗粒物的化学成分与吸湿性的关系,进一步增强了我们对花粉颗粒物的环境、健康和气候效应的认识。在代表性钙盐镁盐颗粒物吸湿性的研究工作中,我们使用蒸汽吸附分析仪与H-TDMA系统分析了八种钙盐镁盐的吸湿特性,直接得到了颗粒物在不同相对湿度(0-90%)下的液态水含量及粒径变化数据,并讨论了不同初始相态对颗粒物吸湿性的影响以及环境意义。以Ca(NO3)2为例,其在蒸汽吸附分析仪实验中观察到明显的潮解行为,表明初始相态下该颗粒物为结晶态;而在H-TDMA实验中,Ca(NO3)2气溶胶颗粒呈现连续吸湿行为,表明其初始相态为无定形态。但是,颗粒物潮解之后两种手段得到的吸湿性参数均与气溶胶热力学模型模拟值吻合,呈现出良好的一致性。结果表明,两种手段的联用能够互为补充地系统研究颗粒物在不同粒径、不同初始相态下的吸湿特性,并为气溶胶热力学模型的验证提供有效的基础物化数据。2.5 火星上的液态水我们开发的大气颗粒物吸湿性的新方法还可以用来帮助我们认识火星中的液态水。2018年,来自意大利宇航局的团队通过雷达在火星南极附近冰层的地下发现了一个液态水湖。一般来说,由于火星环境条件极度寒冷和干燥,纯净液态水很难在火星环境中稳定存在。而土壤中存在的高氯酸盐可以降低水的冰点,并可在亚饱和条件下通过吸收水蒸气形成水溶液,这可以解释为什么火星这种极度干旱的条件下可能存在液态水。目前一些研究认为,火星土壤中所含的高氯酸盐能够在相对湿度远低于100%时通过吸收大气中的水蒸气发生潮解从而形成稳定的溶液,但关于不同温度和相对湿度下高氯酸盐液态水含量的实验数据仍十分匮乏。图8. 火星液态水湖(来源于网络)我们使用蒸汽吸附分析仪测定了几种常见的高氯酸盐(无水高氯酸镁、六水合高氯酸镁、无水高氯酸钠、一水合高氯酸钠等)在不同温度下的相变和吸湿性 (Gu et al., 2017b Jia et al., 2018)。我们发现,高氯酸盐可在较低的相对湿度下吸水形成稳定的水溶液。如图9所示,对于高氯酸钠盐,在相对湿度低于20%时,其主要以无水高氯酸钠颗粒物稳定存在;当相对湿度升高至30%时,则主要以结晶态的一水合高氯酸钠稳定存在;当相对湿度进一步升高时,结晶态的一水合高氯酸钠将吸收大量水形成稳定的高氯酸钠溶液。另外,我们还发现高氯酸盐的潮解点会随着温度的升高而降低。例如一水合高氯酸钠的潮解点从5摄氏度时的∼51.5%降至30摄氏度时的∼43.5%。这项研究工作大大加深了我们对不同条件下高氯酸盐在土壤中的吸湿性的认识,并在一定程度上揭示了为什么火星上可能存在液态水背后的物理化学机制。图9 (a)高氯酸镁盐与(b)高氯酸纳盐随温度和相对湿度变化的相态图参考文献【1】Chen, L. X. D., Chen, Y. Z., Chen, L. L., Gu, W. J., Peng, C., Luo, S. X., Song, W., Wang, Z., and Tang, M. J.: Hygroscopic properties of eleven pollen species in China, ACS Earth Space Chem., 3, 2678-2683, 2019.【2】Chen, L. X. D., Peng, C., Gu, W. J., Fu, H. J., Jian, X., Zhang, H. H., Zhang, G. H., Zhu, J. X., Wang, X. M., and Tang, M. J.: On mineral dust aerosol hygroscopicity, Atmos. Chem. Phys., 20, 13611-13626, 2020.【3】Gu, W. J., Li, Y. J., Zhu, J. X., Jia, X. H., Lin, Q. H., Zhang, G. H., Ding, X., Song, W., Bi, X. H., Wang, X. M., and Tang, M. J.: Investigation of water adsorption and hygroscopicity of atmospherically relevant particles using a commercial vapor sorption analyzer, Atmos. Meas. Tech., 10, 3821-3832, 2017a.【4】Gu, W. J., Li, Y. J., Tang, M. J., Jia, X. H., Ding, X., Bi, X. H., and Wang, X. M.: Water uptake and hygroscopicity of perchlorates and implications for the existence of liquid water in some hyperarid environments, RSC Adv., 7, 46866-46873, 2017b.【5】Guo, L. Y., Gu, W. J., Peng, C., Wang, W. G., Li, Y. J., Zong, T. M., Tang, Y. J., Wu, Z. J., Lin, Q. H., Ge, M. F., Zhang, G. H., Hu, M., Bi, X. H., Wang, X. M., and Tang, M. J.: A comprehensive study of hygroscopic properties of calcium- and magnesium-containing salts: implication for hygroscopicity of mineral dust and sea salt aerosols, Atmos. Chem. Phys., 19, 2115-2133, 2019.【6】Jia, X. H., Gu, W. J., Li, Y. J., Cheng, P., Tang, Y. J., Guo, L. Y., Wang, X. M., and Tang, M. J.: Phase transitions and hygroscopic growth of Mg(ClO4)2, NaClO4, and NaClO4∙H2O: implications for the stability of aqueous water in hyperarid environments on Mars and on Earth, ACS Earth Space Chem., 2, 159-167, 2018.【7】Tang, M. J., Chan, C. K., Li, Y. J., Su, H., Ma, Q. X., Wu, Z. J., Zhang, G. H., Wang, Z., Ge, M. F., Hu, M., He, H., and Wang, X. M.: A review of experimental techniques for aerosol hygroscopicity studies, Atmos. Chem. Phys., 19, 12631-12686, 2019a.【8】Tang, M. J., Gu, W. J., Ma, Q. X., Li, Y. J., Zhong, C., Li, S., Yin, X., Huang, R. J., He, H., and Wang, X. M.: Water adsorption and hygroscopic growth of six anemophilous pollen species: the effect of temperature, Atmos. Chem. Phys., 19, 2247-2258, 2019b.【9】Tang, M. J., Zhang, H. H., Gu, W. J., Gao, J., Jian, X., Shi, G. L., Zhu, B. Q., Xie, L. H., Guo, L. Y., Gao, X. Y., Wang, Z., Zhang, G. H., and Wang, X. M.: Hygroscopic Properties of Saline Mineral Dust From Different Regions in China: Geographical Variations, Compositional Dependence, and Atmospheric Implications, J. Geophys. Res.-Atmos, 124, 10844-10857, 2019c.作者简介:唐明金,中国科学院广州地球化学研究所研究员,博士生导师。本科和硕士毕业于北京大学,博士毕业于马普化学研究所,并先后在英国剑桥大学和美国爱荷华大学从事博士后研究。主要研究方向为气溶胶化学及地球化学,已在Chemical Reviews、Atmospheric Chemistry and Physics和Journal of Geophysical Research-Atmospheres等国际知名期刊上发表SCI论文60余篇,并自2017年起担任国际SCI期刊Atmospheric Measurement Techniques副主编。曾获第18届侯德封矿物岩石地球化学青年科学家奖、第8届中国颗粒学会气溶胶青年科学家奖。

气溶胶加湿串联差分分析仪相关的方案

气溶胶加湿串联差分分析仪相关的资料

气溶胶加湿串联差分分析仪相关的试剂

气溶胶加湿串联差分分析仪相关的论坛

  • 普仁AOMZ-3000型船载大气气溶胶在线定量分析仪搭载“雪龙号”赴南极科考

    普仁AOMZ-3000型船载大气气溶胶在线定量分析仪搭载“雪龙号”赴南极科考

    http://ng1.17img.cn/bbsfiles/images/2015/11/201511200843_574437_482_3.jpg 2015年11月7日,由277名队员组成的中国第32次南极科学考察队乘“雪龙号”破冰船从上海出发,赴南极进行科考任务。总航程3万海里,预计历时159天。 在此次科考中,第一次搭载了由青岛普仁仪器有限公司研发的国内首台AOMZ-3000型船载大气气溶胶在线定量分析仪。此款仪器将PIC-online型在线离子色谱仪与PAGM 大气气溶胶在线分析仪完美结合,对各种气候条件下的大气中无机阴阳离子进行不间断检测。 此款仪器的优势在于:1、大气样品的自动采集、自动过滤、自动稀释;2、淋洗液自动生成,全程无需再重新配制;3、工作曲线自行配制、自行校准、无需人工;4、分析一次样品仅需15分钟、全天96次分析、做到全程监测;5、由于全程自动化,所以避免了人工分析的误差、数据准确度高;6、阴阳离子同时检测;7、完善的自动保护装置、当泵压异常时,程序将自动关闭并发出警示信号;8、程序可下载到手机上,随时查看分析数据。 此次南极科考,青岛普仁仪器有限公司派出技术工程师于10月下旬登上雪龙号,根据船舱内的结构,对仪器进行了特殊的改造和加固,仪器安装完成后,进行了两周的全方位测试,各项性能指标完全符合设计和使用要求。普仁船载大气气溶胶在线定量分析仪优越的性能和精干的技术服务团队,得到科考专家的一致好评。 此次普仁与国家海洋局、中国极地研究中心在南极科考的深度合作,充分证明了我公司在高端在线离子色谱仪及气溶胶在线分析仪研发方面的能力和优势。 普仁船载大气气溶胶在线定量分析仪的成功研制及应用,进一步提升了我国在线分析类仪器的整体技术等级和核心竞争力,对于促进在线分析仪器向自主创新方向发展,逐步打破进口垄断的不利局面,以满足我国日益增长的检测市场需求,保障数据信息安全,具有重要的现实意义。

  • 蒸汽吸附分析仪在气溶胶吸湿性研究中的应用

    [font=arial, helvetica, sans-serif][color=#000000]大气气溶胶是指悬浮在大气中的固体和液体颗粒共同组成的多相体系。人们所处的大气环境实际就是由不同相态的颗粒物均匀分散在空气中形成的一个气溶胶体系。常见的大气气溶胶包括直接排放至大气的沙尘、道路扬尘和黑炭等一次颗粒物,以及通过化学反应形成的二次颗粒物,例如二氧化硫和氮氧化物通过大气氧化形成的硫酸盐和硝酸盐等。由于大气气溶胶的环境、气候及健康效应,在过去几十年里,对它的理化性质的研究正日益受到包括化学家、环境学家等科学家等的重视。[/color][/font][font=arial, helvetica, sans-serif][color=#000000]吸湿性是气溶胶最重要的物理化学性质之一(Tang et al., 2019a)。例如对于研究大气化学来说,吸湿性会影响实际环境条件下大气颗粒物的含水量,从而会影响颗粒物的大气化学反应活性;从大气能见度和直接辐射强迫的角度来看,在实际大气环境中,颗粒物吸水会导致其粒径增大,从而影响颗粒物的光学性质,继而影响气溶胶的消光系数、对能见度的影响以及对直接辐射强迫的影响;另外,气溶胶的吸湿性也与气溶胶颗粒物的云凝结核活性和冰核活性密切相关。[/color][/font][font=arial, helvetica, sans-serif][color=#0070c0]1. 已有吸湿性测量技术的局限性[/color][/font][font=arial, helvetica, sans-serif][color=#000000]现有研究中常用的吸湿性测量技术主要有吸湿性分级差分迁移率分析仪(H-TDMA)、电动力天平、显微镜以及红外光谱等(Tang et al., 2019a)。目前最常用的吸湿性测量技术为H-TDMA,该仪器是通过测定不同相对湿度下气溶胶的电迁移率直径来研究其吸湿性。使用该仪器对气溶胶的吸湿性进行表征时,必须假设气溶胶为球形,但某些颗粒物的形貌并不规则,例如花粉、烟炱以及矿质颗粒物等。另外,H-TDMA的测量精度较为有限,仅可测定颗粒物大于1%的直径变化。[/color][/font][font=arial, helvetica, sans-serif][color=#000000]电动力天平是通过测量单个颗粒物的质量变化来研究其吸湿性,虽然它对颗粒物的形貌没有要求,但该仪器的灵敏度同样比较有限,一般只能测量大于1%的质量变化。此外,显微镜也常用于测量颗粒物的吸湿性,它可以通过测量颗粒物的形貌变化来直接观察颗粒物粒径的大小变化从而研究其吸湿性。然而该技术同样基于球形颗粒物的假设,且灵敏度有限。另外,红外光谱是一个非常灵敏的吸湿性测量方法,该方法通过测量颗粒物中水的红外光谱来研究吸湿性,但把颗粒物中水的红外吸收光谱定量转换为颗粒物的含水量时存在一定的限制。[/color][/font][font=arial, helvetica, sans-serif][color=#0070c0]2. 蒸汽吸附分析仪[/color][/font][font=arial, helvetica, sans-serif][color=#000000]虽然目前用于颗粒物吸湿性的测量手段较为丰富,但准确测定非球形的或者吸湿性较弱的颗粒物的吸湿性仍然是一个很大的挑战。本课题组自主开发和建立了使用蒸汽吸附分析仪测量大气颗粒物吸湿性的新方法,相关研究成果由Atmospheric Measurement Techniques发表(Gu et al., 2017a)。该方法通过测定不同相对湿度下颗粒物的质量变化来研究其吸湿性,其原理如图1所示。[/color][/font][align=center][img=图片1.png]https://img1.17img.cn/17img/images/202104/uepic/616e1c5d-0f0c-45d0-8af1-47ca370a87e5.jpg[/img][/align][align=left]更多详见:[url]https://www.instrument.com.cn/news/20210420/578041.shtml[/url][/align]

气溶胶加湿串联差分分析仪相关的耗材

  • TSI8533气溶胶监测仪
    美国TSI8533气溶胶监测仪 TSI 全新推出DUSTTRAK DRX 8533和8534型粉尘检测仪。 提供台式或手持式,适合于任何环境和应用。 新型DUSTTRAK 气溶胶监测仪是由电池驱动,数据 资料记录以及光散射激光光度计组成,可以给出实 时地气溶胶质量浓度读数。它们应用鞘气系统来隔 离光学室内的气溶胶,保持光学洁净,从而改进可靠性和低维护成本。该仪器可以用于干净的办公室,也适用于条件艰苦的工业车间、建筑工地、环境监测以及其它户外环境。DUSTTRAK DRX粉尘监测仪可以测量气溶胶污染物,如灰尘、烟雾、浓烟和薄雾等。 美国TSI8533气溶胶监测仪典型应用: 工业和职业卫生学调查; 室内空气质量调查; 室外环境监测; 基线的趋势跟踪和监控; 点源监测; 工程控制评估; 工程调研; 远程监测; 过程监测; 排放监测; 气溶胶研究; DUSTTRAK DRX 气溶胶监测仪特点 1.彩屏触摸显示 2.台式8533型可以称重采样(可配37mm滤盒) 3.采用激光法,采用激光法,应用鞘气系统来隔离光学室内的气溶胶,保持光学洁净,改进光学可靠性和低维护成本 4.具有数据无线远传功能和数据优盘存储 5.可同时测量和显示PM1/PM2.5/PM10每个通道的质量浓度 美国TSI8533气溶胶监测仪技术规格: 传感器类型 90° 光散射 气溶胶浓度范围 8533 台式型0.001 到150mg/m3 8534 持式型0.001 到150mg/m3 显示内容 可同时测量和显示PM1/PM2.5/PM10每个通道的质量浓度 分辨率 ± 0.1% 读数,0.001mg/m3 取大值 零点稳定度 ± 0.002 mg/m3 (24 小时,10 秒时间常数) 粒径范围 0.1 到15&mu m 流量 3.0L/min 流量准确度 偏差小于± 5%,内部流量控制 数据记录 5 MB 内存(60,000 数据点) 45 天(1 分钟采样间隔) 记录间隔 可调节,1 秒到1 小时 外形尺寸(HWD) 手持式12.5 x 12.1 x 31.6 厘米 台式13.5 x 21.6 x 22.4 厘米 重量 手持式1.3 kg, 1.5 kg 含电池 台式1.6 kg, 2.0 kg 含1 节电池 .2.5 kg 含2 节电池 通讯 8533 USB,以太网,使用U 盘存储数据 8534 USB,使用U 盘存储数据 屏幕 8533 5.7 in,VGA 彩色触摸屏 8534 3.5 in,VGA 彩色触摸屏 称重采样 8533 可更换37mm 滤盒(用户提供)
  • 默克气溶胶标准过滤器支架XX5004700
    默克气溶胶标准过滤器支架XX5004700属性 物料 尼龙轮(锁) 阳极氧化铝锁环 不锈钢主体 不锈钢支撑网(用于过滤器) 质量水平 100 长度 17.8 cm 直径 6.9 cm 过滤器直径 47 mm 过滤面积 9.6 cm2 配件 11 mm OD 入口软管连接器11 mm OD 入口/出口连接(用于限流孔的螺纹) 出口连接(封闭系统;带入口分散室) 应用 过滤 与气溶胶过滤器支架一起使用运输 环境默克气溶胶标准过滤器支架XX5004700说明 一般描述 这些气溶胶过滤器支架设计用于监测来自环境和/或封闭系统的悬浮微粒。选择适合您方法的支架设计。气溶胶过滤器支架有两种形式:开放式用于开放式大气采样,以及具有封闭连接和入口分散室的标准设计。 应用: 气体微粒污染监测 原理 真空
  • PAO气溶胶原液/油
    PAO气溶胶 PAO-4气溶胶Emery 3004 PAO气溶胶原液是一种专门用于高效过滤器检漏测试中的产生挑战性气溶胶的原液,中文对应的名称氢化-1-癸烯四聚体与1-癸烯三聚体 又名聚阿尔法烯烃是poly-alfa-olefins.?原液的浓度为100% ATI PAO油有效期 / 美国ATI PAO气溶胶原液有效期 / PAO-4气溶胶原液有效期 / 美国FDA推荐PAO油有效期 / ATI 检漏仪系统有效期ATI PAO气溶胶原液有效期 DOP检测有效期 DOP气溶胶有效期 DOP油有效期美国TDA-2H数字式光度计ATI 2H Photometer 光度计 ATI 2H 气溶胶光度计 ATI高效过滤器检漏仪TDA-2H光度计 TDA-2H 气溶胶光度计 高效过滤器检漏仪 ATI TDA-2H 数字,气溶胶光度计 数字式光度计(过滤器检漏仪)2H型便携光度计 高效过滤器检漏系统浓度计 高效过滤器泄漏率测试仪 ATI高效过滤器检测系统 过滤器泄漏扫描 TDA-2H Portable Photometer ATI高效过滤器检漏仪-TDA-2H光度计ATI高效过滤器检漏仪-TDA-2H光度计 PAO高效过滤器检漏仪/TDA-2H光度计ATI 5C气溶胶发生器 TDA-5C Aerosol Generator TDA-5C气溶胶发生器/悬浮粒子发生器/产尘仪 美国ATI TDA-5C 气溶胶发生器 气溶胶发生器 TDA-5C 气溶胶发生器 ATI PAO高效过滤器检漏仪---TDA-5C气溶胶发生器 产尘仪 ATI5C气溶胶悬浮粒子发生器 PSL标准粒子发生器 ATI高效过滤器检漏仪 PSL发生器 过滤器完整性测试用产尘仪 ATI 检漏仪系统PSL Jet Atomizer PSL标准粒子发生器气体发生器 气溶胶发生器 气溶胶 发生器 TDA-5C 热气溶胶发生器 ATI 5C 热气溶胶发生器 ATI TDA-5C热气溶胶发生器ATI 5C气溶胶发生器 美国ATI高效过滤器完整性检测仪 / 高效过滤器泄露检测仪 / 洁净房粉尘仪/ DOP发生器/ DOP检漏仪5CGenerator 5C悬浮微粒子发生器 ATI 4B气溶胶发生器 TDA-4B Aerosol Generator TDA-4B气溶胶发生器/悬浮粒子发生器/产尘仪 美国ATI TDA-4B 气溶胶发生器 气溶胶发生器 TDA-4B 气溶胶发生器 ATI PAO高效过滤器检漏仪---TDA-4B气溶胶发生器 产尘仪 ATI 4B气溶胶悬浮粒子发生器 PSL标准粒子发生器 ATI高效过滤器检漏仪 PSL发生器 过滤器完整性测试用产尘仪 ATI 检漏仪系统PSL Jet Atomizer PSL标准粒子发生器气体发生器 气溶胶发生器 气溶胶 发生器 TDA-4B 冷气溶胶发生器 ATI 4B冷气溶胶发生器 ATI TDA-4B冷气溶胶发
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制