当前位置: 仪器信息网 > 行业主题 > >

重芳烃脱烷基生产评价装置

仪器信息网重芳烃脱烷基生产评价装置专题为您提供2024年最新重芳烃脱烷基生产评价装置价格报价、厂家品牌的相关信息, 包括重芳烃脱烷基生产评价装置参数、型号等,不管是国产,还是进口品牌的重芳烃脱烷基生产评价装置您都可以在这里找到。 除此之外,仪器信息网还免费为您整合重芳烃脱烷基生产评价装置相关的耗材配件、试剂标物,还有重芳烃脱烷基生产评价装置相关的最新资讯、资料,以及重芳烃脱烷基生产评价装置相关的解决方案。

重芳烃脱烷基生产评价装置相关的方案

  • 新拓仪器:超声-微波协同萃取装置用于土壤中多环芳烃的分析
    摘要 本研究将开放式微波和直接超声波振荡两种不同的能量方式相结合,研制出超声-微波协同萃取装置,通过萃取土壤中微量多环芳烃(PAHs),对方法和仪器的可行性进行了初步评价。结果表明,在60 mL二氯甲烷-正已烷1:1的混合萃取剂,100 W微波辐射功率(超声振动功率固定为50 W),萃取9-10 min,土壤中多环芳烃回收率达86.6%,相对标准偏差约4.0%。与索氏抽提、高压密闭和开放式微波等萃取方法相比,新方法具有样品容量大,萃取时间短,萃取效率受样品中含水量和溶剂极性影响小等优点。
  • 便携式气质联用仪结合固相微萃取装置检测土壤中8种多环芳烃
    环境中的多环芳烃(PAHs)由有机物(如煤、石油和木材等)燃烧不完全而产生,是常见的环境和食品污染物。由于PAHs具有致癌、致畸和致突变性,更具有较强的持久性,美国环保署已把16种多环芳烃列入优先控制有毒有机污染物黑名单中,在我国环保部第一批公布的68种优先污染物中,PAHs有7种。根据《全国土壤污染状况调查公报》,全国土壤总的超标率为16.1%,总体状况不容乐观,其中有机污染物以六六六、滴滴涕和多环芳烃为主,多环芳烃的点位超标率达到1.4%,仅次于滴滴涕。在不同类型用地中,耕地是多环芳烃的主要污染区,在典型地块的周边土壤污染调查中,结果表明工业废弃地、工业园区、采油区、采矿区、污水灌溉区及干线公路两侧都是多环芳烃的主要污染地块,在调查的同地块中超标点位分别占34.9%、29.4%、23.6%、33.4%、26.4%和20.3%。由此可见,建立现场快速分析土壤中多环芳烃的分析方法,判断污染程度,对保护人体健康具有重要的实际意义。土壤基体复杂,且PAHs浓度低(痕量或超痕量),难以直接测定,必须采用一定的预处理技术使其可以达到可检测的水平。对于PAHs的检测大多采用GC、GC-MS或LC方法,便携式GC-MS技术是传统的GC-MS技术的衍生和发展,作为现场快速检测设备,更真实地反映了污染物的排放情况,而固相微萃取是集采样,浓缩,萃取及进样于一体的无需使用溶剂的一种前处理方法,操作方便、简单,省时省力,将其与体积小、重量轻及分析速度快的Mars-400 Plus便携式GC-MS相结合,能及时快速地应对一些突发事故。因此本文采取选用SPME方法结合Mars-400 Plus便携式GC-MS检测土壤中的PAHs,建立了便携式GC-MS检测土壤中的萘、苊烯和苊等8种多环芳烃的分析方法。
  • 便携式气质联用仪结合固相微萃取装置检测水中8种多环芳烃
    多环芳烃(PAHs)由2个或2个以上苯环以稠环方式相连的化合物,是煤、石油、木材、烟草、有机高分子化合物等有机物不完全燃烧时产生的半挥发性碳氢化合物,广泛存在于环境水体中,是一类典型的持久性有机污染物,具有致癌、致畸变和致突变作用,是水环境重要的监测项目之一。水中PAHs的前处理方法有液液萃取法、固相萃取法(SPE)和固相微萃取法(SPME)等,但液液萃取法实验时间长,且需要大量试剂;SPME相较于SPE具有萃取相用量更少、对待测物的选择性更高、溶质更易洗脱,在一些突发情况下能够作为一种快速有效的前处理方法。Mars-400 Plus便携式GC-MS体积小、分析速度快且可单人背负,将SPME技术与GC-MS相结合,能在最短时间内对水污染突发事故、大气污染突发事故或食品安全事故等进行快速分析检测,及时采取应对措施。因此本文采取SPME前处理方法,建立了便携式GC-MS分析水中的萘、苊烯和苊等8种多环芳烃的分析方法。
  • 土壤中16种多环芳烃的测定
    采用LC1620A高效液相色谱仪,使用C18色谱柱梯度洗脱,能有效分离土壤中的16种多环芳烃。采用LC1620A高效液相色谱仪,使用C18色谱柱梯度洗脱,能有效分离土壤中的16种多环芳烃
  • 搅拌子固相吸附-热脱附-气相色谱/ 质谱/ 质谱法快速测定空气中多环芳烃
    与传统检测空气中的多环芳烃方法相比, 采用SBSE被动采样技术, 大大减少了采样时间,仅需3小时就能达到传统方法3天的检测下限,并且无须溶剂,直接采取热脱附进样,绿色环保,成本低,携带方便,方法成熟。
  • 自来水中16种多环芳烃的检测
    使用LabTech Sepaths UP 柱膜通用全自动固相萃取系统对1L自来水中16种多环芳烃(PAHs)类化合物萃取富集处理,再经疏水膜干燥装置除水、氮吹仪氮吹浓缩后的加标回收率为73.2%~113.1%,重现性RSD为1.43%~9.3%,回收率高,重现性良好,说明LabTech Sepaths UP 柱膜通用全自动固相萃取系统适用于大体积水样中低浓度多环芳烃(PAHs)类化合物的萃取富集,适于其试验样品前处理。
  • Microtox 技术检测多环芳烃生物毒性的研究
    多环芳烃(PAHs) 为环境中广泛分布的重要污染物之一 ,因其潜在毒性、致癌性和致畸诱变作用[9 ],其环境污染的危害及风险评价已成为当今环境科学研究的重要课题[1 ,10 ] 。Microtox 技术(又称发光细菌毒性测试技术) 由于其高灵敏性 ,近年来在多环芳烃污染环境的毒性评价方面已被国外广泛应用[11 ,12 ],并被列为我国环境质量生物监测的国家标准[2 ,3 ] 。
  • 北京豫维:毛细管色谱切割2反吹法归一化分析汽油中芳烃
    发展了一种毛细管色谱切割2反吹方法分析汽油中的芳烃。利用OV22330 强极性毛细管预柱将芳烃保留至n2C10之后,并反吹到非极性毛细管柱中按沸点详细分离分析。从预柱先流出的组分和从分析柱流出的组分都先后进入同一检测器中,因此可用响应因子校正的归一化方法定量分析汽油中的芳烃。该方法在15 min 内完成汽油中苯至C10芳烃的分析,结果的重复精度误差≤ 3 %(RSD) ,切割误差± 5 s 时对分析结果的影响≤ 4 %(RSD) 。对该方法的装置和部分应用进行了讨论。
  • 采用 Agilent 5977B 单四极杆气质联用系统测定土壤中多环芳烃
    采用 Agilent 7890B 气相色谱 /5977B 单四极杆气质联用系统成功开发出两种测定土壤样品多环芳烃含量的分析方法,通过四个角度来验证分析方法的合规性,包括仪器的最低检测限 (IDL)、 校正曲线的平均响应因子 RSD、不同添加水平的样品加标回收率结果和方法耐用性评价。所有结果均完全满足国家相关技术规定和环境保护标准,因此该方法可作为土壤中多环芳烃含量测定的推荐方案。
  • 行业应用 | 16种多环芳烃的测定
    为了贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,环境保护部先后制定了《HJ 478-2009水质多环芳烃的测定液液萃取和固相萃取高效液相色谱法》、《HJ 647-2013环境空气和废气气相和颗粒物中多环芳烃的测定高效液相色谱法》、《HJ 784-2016土壤和沉积物多环芳烃的测定高效液相色谱法》以及《HJ 892-2017固体废物多环芳烃的测定高效液相色谱法》。在本文中,我们采用具有DAD检测器的液相色谱仪,进行土壤试样中16种多环芳烃的测定。
  • 二维气相色谱采用中心切割技术分析汽油 中的氧化物和芳烃
    本文描述了二维气相色谱方法分析汽油中氧化物添加剂和芳烃。本方法采用的 Agilest 6890N 气相色谱系统,配备了Deans switch 设备动态地进行中心切割将汽油基体切入到第二根色谱柱。这一技术增强了分离度,使得氧化物和芳烃化合物与烃类基质完全地分开。独特设计的中心切割装置,可快速简便地设定切割时间。Agilent 6890N 电子流量控制 (EPC) 使得系统具有更好的保留时间的精密度,就保证了更窄的切割时间从而获得更好的分离度和定量的精密度。这一设计也大大改善了系统的过载和峰形不好的情况。因此提高了极性低含量添加剂分析结果的可信度。多种常用的氧化物添加剂和芳烃化合物的测定证实了系统卓越的校正和定量性能。Agilest 6890NGC EPC 采用反吹技术可以大大的减少分析时间,提高了分析效率。
  • 芘11种多环芳烃的荧光检测(资生堂)
    前期使用二极管阵列检测器对16种多环芳烃混标进行了检测(详见:Feb. 9, 2012 报告:《16种多环芳烃混标的PDA检测》),本次试验在其基础上进行了其中11种的荧光检测。使用资生堂的CAPCELL PAK MGII S5:4.6mm i.d.×250mm色谱柱,按照国标GB/T 24893-2010《动植物油脂 多环芳烃的测定》中的流动相条件,使用荧光检测器对其中的11种多环芳烃进行了检测分析。
  • 苯并(a)蒽等11种多环芳烃的荧光检测(资生堂)
    前期使用二极管阵列检测器对16种多环芳烃混标进行了检测(详见:Feb. 9, 2012 报告:《16种多环芳烃混标的PDA检测》),本次试验在其基础上进行了其中11种的荧光检测。使用资生堂的CAPCELL PAK MGII S5:4.6mm i.d.×250mm色谱柱,按照国标GB/T 24893-2010《动植物油脂 多环芳烃的测定》中的流动相条件,使用荧光检测器对其中的11种多环芳烃进行了检测分析。
  • 苯并(a)芘等11种多环芳烃的荧光检测(资生堂)
    前期使用二极管阵列检测器对16种多环芳烃混标进行了检测(详见:Feb. 9, 2012 报告:《16种多环芳烃混标的PDA检测》),本次试验在其基础上进行了其中11种的荧光检测。使用资生堂的CAPCELL PAK MGII S5:4.6mm i.d.×250mm色谱柱,按照国标GB/T 24893-2010《动植物油脂 多环芳烃的测定》中的流动相条件,使用荧光检测器对其中的11种多环芳烃进行了检测分析。
  • 蒽等11种多环芳烃的荧光检测(资生堂)
    前期使用二极管阵列检测器对16种多环芳烃混标进行了检测(详见:Feb. 9, 2012 报告:《16种多环芳烃混标的PDA检测》),本次试验在其基础上进行了其中11种的荧光检测。使用资生堂的CAPCELL PAK MGII S5:4.6mm i.d.×250mm色谱柱,按照国标GB/T 24893-2010《动植物油脂 多环芳烃的测定》中的流动相条件,使用荧光检测器对其中的11种多环芳烃进行了检测分析。
  • 11种多环芳烃的荧光检测(资生堂)
    前期使用二极管阵列检测器对16种多环芳烃混标进行了检测(详见:Feb. 9, 2012 报告:《16种多环芳烃混标的PDA检测》),本次试验在其基础上进行了其中11种的荧光检测。使用资生堂的CAPCELL PAK MGII S5:4.6mm i.d.×250mm色谱柱,按照国标GB/T 24893-2010《动植物油脂 多环芳烃的测定》中的流动相条件,使用荧光检测器对其中的11种多环芳烃进行了检测分析。
  • 水中多环芳烃检测方案-Empore固相萃取膜
    使用LabTech Sepaths UP 柱膜通用全自动固相萃取系统对1L自来水中16种多环芳烃(PAHs)类化合物萃取富集处理,再经疏水膜干燥装置除水、氮吹仪氮吹浓缩后的加标回收率为74.8%~100.2%,重现性RSD为3.4%~9.8%,回收率高,重现性良好,说明LabTech Sepaths UP 柱膜通用全自动固相萃取系统适用于大体积水样中低浓度多环芳烃(PAHs)类化合物的萃取富集,适于其试验样品前处理。
  • Agilent 7890B-5977B气质联用测定土壤中多环芳烃
    本文采用 Agilent 7890B 气相色谱 /5977B 单四极杆气质联用系统成功开发出两种测定土壤样品多环芳烃含量的分析方法,通过四个角度来验证分析方法的合规性,包括仪器的低检测限 (IDL)、校正曲线的平均响应因子 RSD、不同添加水平的样品加标回收率结果和方法耐用性评价。所有结果均完全满足《技术规定》和国家环境保护标准《HJ 805-2016》、《HJ 783-2016》和《EPA 3550B》规定的要求。因此该方法可作为土壤中多环芳烃含量测定的推荐方案。
  • 15种多环芳烃的测定
    参考国家环境保护标准《 HJ 647-2013 环境空气和废气 气相和颗粒物中多环芳烃的测定 高效液相色谱法 》 ,应用Primaide 高效液相色谱仪荧光检测系统对15种常见的多环芳烃进行了测定。15种多环芳烃在选定的分析条件下获得了良好的分离,方法检出限远远低于标准要求值,充分体现了Primaide荧光检测器高灵敏度的特点。
  • 高效液相色谱法检测16种多环芳烃
    按照国标方法中推荐的梯度洗脱程序,使用EasySep-1020和BISCHOFF色谱柱可以基本实现16种多环芳烃的分离。
  • 芘等16种多环芳烃混标的PDA检测
    使用资生堂的CAPCELL PAK MGII S5:4.6mm i.d.×250mm色谱柱,按照国标GB/T 24893-2010《动植物油脂 多环芳烃的测定》中的流动相条件,使用二极管阵列检测器(PDA)对16种多环芳烃混合标准品进行了分析。使用资生堂更短的CAPCELL PAK MGII S3:2.0mm i.d.×75mm色谱柱,可实现16种多环芳烃的快速分析,分析时间缩短为国家标准中的一半以下。
  • 苯并(a)蒽等16种多环芳烃混标的PDA检测
    使用资生堂的CAPCELL PAK MGII S5:4.6mm i.d.×250mm色谱柱,按照国标GB/T 24893-2010《动植物油脂 多环芳烃的测定》中的流动相条件,使用二极管阵列检测器(PDA)对16种多环芳烃混合标准品进行了分析。使用资生堂更短的CAPCELL PAK MGII S3:2.0mm i.d.×75mm色谱柱,可实现16种多环芳烃的快速分析,分析时间缩短为国家标准中的一半以下。
  • 芴等16种多环芳烃混标的PDA检测
    使用资生堂的CAPCELL PAK MGII S5:4.6mm i.d.×250mm色谱柱,按照国标GB/T 24893-2010《动植物油脂 多环芳烃的测定》中的流动相条件,使用二极管阵列检测器(PDA)对16种多环芳烃混合标准品进行了分析。使用资生堂更短的CAPCELL PAK MGII S3:2.0mm i.d.×75mm色谱柱,可实现16种多环芳烃的快速分析,分析时间缩短为国家标准中的一半以下。
  • 蒽等16种多环芳烃混标的PDA检测
    使用资生堂的CAPCELL PAK MGII S5:4.6mm i.d.×250mm色谱柱,按照国标GB/T 24893-2010《动植物油脂 多环芳烃的测定》中的流动相条件,使用二极管阵列检测器(PDA)对16种多环芳烃混合标准品进行了分析。使用资生堂更短的CAPCELL PAK MGII S3:2.0mm i.d.×75mm色谱柱,可实现16种多环芳烃的快速分析,分析时间缩短为国家标准中的一半以下。
  • 16种多环芳烃混标的PDA检测
    使用资生堂的CAPCELL PAK MGII S5:4.6mm i.d.×250mm色谱柱,按照国标GB/T 24893-2010《动植物油脂 多环芳烃的测定》中的流动相条件,使用二极管阵列检测器(PDA)对16种多环芳烃混合标准品进行了分析。使用资生堂更短的CAPCELL PAK MGII S3:2.0mm i.d.×75mm色谱柱,可实现16种多环芳烃的快速分析,分析时间缩短为国家标准中的一半以下。
  • 肉类样品中多环芳烃的检测:样品制备与GC MS 分析
    本文将提供一种使用气相色谱/质谱联用仪(GC/MS)检测低浓度水平的欧盟优先监测的 15+1 种多环芳烃的方法。文中描述了一种可靠的肉类样品中多环芳烃的提取与净化方法。样品的制备只涉及 3,4-苯并芘一种化合物。除去方法的优化以及校准,文中对多种肉类样品进行分析并检测了实际样品中多环芳烃的浓度含量。
  • 水质16种多环芳烃测定的解决方案
    多环芳烃 (PAH) 是有机物在高温和热解条件下不完全燃烧所形成的环境污染物。在空气、水、土壤和食品中都存在多环芳烃。由于某些PAH 可致癌、致突变,对水生生物有一定的毒性,大多数国家都对其进行系统的监测。美国和欧盟的一些指南文件或报告中包含了推荐的分析方法。过去这些指南中列出的PAH 数量和PAH zui高限量均有所增加,未来还将继续扩展。我们的目标是开发一种针对水质多环芳烃的全自动前处理解决方案。
  • 二维气相色谱采用中心切割技术分析汽油 中的氧化物和芳烃
    本文描述了二维气相色谱方法分析汽油中氧化物添加剂和芳烃。本方法采用的 Agilest 6890N 气相色谱系统,配备了Deans switch 设备动态地进行中心切割将汽油基体切入到第二根色谱柱。这一技术增强了分离度,使得氧化物和芳烃化合物与烃类基质完全地分开。独特设计的中心切割装置,可快速简便地设定切割时间。Agilent 6890N 电子流量控制 (EPC) 使得系统具有更好的保留时间的精密度,就保证了更窄的切割时间从而获得更好的分离度和定量的精密度。这一设计也大大改善了系统的过载和峰形不好的情况。因此提高了极性低含量添加剂分析结果的可信度。多种常用的氧化物添加剂和芳烃化合物的测定证实了系统卓越的校正和定量性能。Agilest 6890NGC EPC 采用反吹技术可以大大的减少分析时间,提高了分析效率。
  • 空气微粒中多环芳烃的热解析:GC-MS分析
    多环芳烃(PAHs)广泛存在于环境土壤、水和空气微粒中。在常见的 16 种多环芳烃物质中,有7种被国际癌症研究机构(IARC)列为动物致癌物。因此,鉴于多环芳烃的致癌性,各国也都将其列为环境监测和监管的对象。分析土壤和水中多环芳烃常用的方法是首先用溶剂将多环芳烃从样品基质中提取出来,然后将液体提取物注入GC-MS 联用仪进行分析。在对空气中微粒表面吸附的多环芳烃进行监测的时候也采用了相似的技术进行分析。在分析空气颗粒中多环芳烃时常用的一种方法是加利福尼亚州空气资源管理委员会第429 号方法。虽然第429 号方法准确度和精密度都很好,但是该方法需要使用树脂采集空气样品,并在样品收集好后用二氯甲烷进行提取。这就使得在应用该方法时存在既费时,又接触有害溶剂的问题。本文描述了一种利用自动热解析将通过玻璃纤维滤纸收集的多环芳烃导入GC-MS 联用系统的技术,该技术不使用有害溶剂,而且极大地减少了样品制备的时间。其实,使用自动热解析分析多环芳烃是非常困难的,因为在加热时必须对整个样品路径进行加热,以防止出现严重的拖尾现象和待测物质残留。数据表明,本文所研究方法能够通过热解析对全部16 种多环芳烃类物质进行较好的分析。
  • 土壤中15种多环芳烃解决方案
    本文参考《HJ 784-2016 土壤和沉积物 多环芳烃的测定 高效液相色谱》,建立了利用全自动固相萃取仪(Fotector Plus)结合高效液相色谱检测沉积物中多环芳烃残留量的方法。在100mL丙酮-正己烷(1+1)提取后,使用Auto EVA-08IR浓缩至1mL后 Fotector Plus全自动固相萃取仪净化,自动完成 SPE 柱活化、样品上样、淋洗、收集等步骤,收集液再氮吹浓缩、溶剂转换、定容后,用UPLC检测。1.AutoEVA-08IR能够自动浓缩并红外定容,针的液面追随系统能够让你的浓缩过程省时、省气;2.Fotector Plus能够自动的完成整个固相萃取流程,从活化到上样,清洗样品瓶,洗脱一步到位,省时省事;3.Fotector Plus采用全自动操作,固相萃取过程中可以排除操作带来的误差,能够获得手动固相萃取无法达到的RSD水平;4.Fotector Plus 能够实现高通量处理,最多一天能够处理180个样品,真正为批量检测提供帮助;5.利用Reeko Fotector Plus全自动固相萃取系统能够很好的重现《HJ 784-2016 土壤和沉积物 多环芳烃的测定 高效液相色谱》,回收率与RSD符合HJ 784-2016的允许差要求,符合HJ 784-2016中对分析结果的质量控制的要求。

厂商最新方案

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制