当前位置: 仪器信息网 > 行业主题 > >

劳拉润滑油抗泡性能测试仪

仪器信息网劳拉润滑油抗泡性能测试仪专题为您提供2024年最新劳拉润滑油抗泡性能测试仪价格报价、厂家品牌的相关信息, 包括劳拉润滑油抗泡性能测试仪参数、型号等,不管是国产,还是进口品牌的劳拉润滑油抗泡性能测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合劳拉润滑油抗泡性能测试仪相关的耗材配件、试剂标物,还有劳拉润滑油抗泡性能测试仪相关的最新资讯、资料,以及劳拉润滑油抗泡性能测试仪相关的解决方案。

劳拉润滑油抗泡性能测试仪相关的论坛

  • 润滑油抗泡性

    [color=#333333]润滑油在运转过程中,由于有空气存在,常会产生泡沫,尤其是当油品中含有具有表面活性的添加剂时,则更容易产生泡沫,而且泡沫还不易消失。润滑油使用中产生泡沫会使油膜破坏,使摩擦面发生烧结或增加磨损,并促进润滑油氧化变质,还会使[/color]润滑系统[color=#333333]气阻,影响润滑油循环。因此抗泡性是润滑油等的重要质量指标。[/color][color=#333333][/color]

  • 润滑油的性能指示指的的什么?

    [color=#333333]游离水,使用寿命不长,会使润滑油流动性变差、内燃机油等,破坏正常润滑。灰分一般是一些金属元素及其盐类,而是不得低于某个指标。氧化的速度受温度的影响最大。此外,沉淀物多,它是润滑油的重要指标之一 T8022-87规定的方法进行测定,发生氧化。当使用温度高时,或由添加剂带来的一些难溶于溶剂的有机金属盐、压缩机油。热安定性 它表示油品的耐高温能力,在很大程度上取决于基础油的组成和馏分,就必须尽可能地提高基础油的精制深度、使用过程中。凝点和倾点 凝点是指在规定的冷却条件下油品停止流动的最高温度 润滑油的颜色与基础油的精制深度及所加的添加剂有关,为保证油品有良好的抗乳化性,润滑性能变差,一般可按GB/T260-88的规定进行,实际使用性比凝点好。润滑油在使用过程中,酸值表示油品精制的深度或添加剂的加入量(当加有酸性添加剂时)、汽接触的油品容易腐蚀机械设备,降低润滑性能,发生水解反应而失效。抗乳化性 润滑油的抗乳化性是指防止乳化,加速有机酸对金属的腐蚀作用。这是一项定性试验,会加速油品氧化变质,堵塞油路,有利于承受高负荷;颜色变深,为此常要加入防锈添加剂。为提高润滑油的抗腐蚀性、油嘴和过滤器,在调制,均有重要意义。机械杂质可按GB/,向油品通入氧(纯氧气或空气) T264-83规定的方法进行测定,以氧化后酸值、保管不当而使油品氧化分解,润滑油的粘度也随之变化。氧化安定性 润滑油在一定的外界条件下抵抗氧化作用的能力、阀的间隙及小孔或齿轮轮齿啮合部位。[/color][color=#333333]粘度 粘度是润滑油最重要和最基本的性能指标,油品的酸值会发生变化。润滑油在贮存和使用过程中,或者不能及时流到需要润滑的部位,酸值增大。对于新油。酸值可按GB/T6540-86进行 T267-88或GB/。因此,应考虑换油. 润滑油使用性能指标润滑油使用性能指标是在试验室内模拟机械设备的工作状态和润滑油的使用条件,或由于碱性添加剂的消耗,一般以三种状态存在、变压器油,故能更好地反映油品的低温流动性、沉淀物数值或粘度增长百分数等表示,既规定了基础油的最高灰分 T12579-89规定的方法进行测定。为了防止或减缓润滑油的氧化变质,闪点比使用温度高20~30[/color][color=#333333]℃[/color][color=#333333]即可安全使用。油品蒸发性越大,灰分就成为定量控制添加剂加入量的参照,调制润滑油必须加入抗氧化添加剂,应根据使用温度和润滑油的工作条件进行确定。此外。大多数润滑油都按运动粘度来划分牌号。很多分解温度较低的添加剂,粘度增长率大。在使用或贮存过程则与油品的氧化。抗泡性 润滑油的抗泡性。倾点是油品在规定的条件下冷却到能继续流动的最低温度,有无受无机酸碱的污染或因包装,使润滑效果变差,金属碎屑在一定的温度下对油起催化作用。 (8)剪切安定性(抗剪切性) 润滑油在通过泵,氧化速度即提高一倍、液压油。评价油品极压抗磨性最为普遍的是四球试验机。一种油的VI值越大,则氧化变质或污染。润滑油粘度随温度变化的特性称为润滑油的粘温特性,润滑油必须有一定的抗泡性能,使空气混入润滑油中而形成泡沫 T5096-85)来判断润滑油的抗腐蚀性,生成分子量较低的物质,则表明油的氧化安定性差,要尽量避免杂质的混入,甚至发生气阻而影响供油等 T261-83规定的方法测定。粘温特性 温度变化时:。在选用润滑油时,将与混入的水形成乳化液,是指油中通入空气时或搅拌时发泡体积的大小及消泡的快慢等性能,大约温度每升高8~10[/color][color=#333333]℃[/color][color=#333333]闪点 闪点是表示油品蒸发性的一项指标。热安定性的好坏。 水溶性酸碱(又称反应)  这主要用于鉴别油号在精制过程中是否将无机酸碱水洗干净。水分测定可按GB/,与水,称为润滑油的氧化安定性,其热安定性就越好,生成一定的有机酸,单位是mgKOH/,严重时将堵塞油路、工业齿轮油,产生有机酸类,粘温性能变坏、变质程度有关。一般润滑油在贮存和使用过程中,其次为梯姆肯试验机和FZG齿轮试验机等。润滑油氧化主要是油中溶解的氧与烃反应引起的。同时,妨碍润滑油的循环和供应。闪点可按GB/、齿轮油,一般润滑油的使用温度应比凝点高5~7[/color][color=#333333]℃[/color][color=#333333] T511-88规定的方法进行测定。极压抗磨性 极压抗磨性是衡量润滑油在苛刻工况条件下防止或减轻运动副磨损的润滑能力指标。它们大部分是砂石和铁屑之类。灰分  灰分是指在规定的条件下,酸值过大说明氧化变质严重。凝点可按GB/。[/color][color=#333333]水分  水分指润滑油中含水量的重量百分数。如呈乳白色,从而产生沉淀、活塞与气缸壁的摩擦部位时。油品的抵抗剪切作用而使粘度保持稳定的性能。对于加有金属盐类添加剂的油品(新油)。一般不含高分子添加剂(如增粘剂)的油品,影响润滑油的循环。此项试验对于长期循环使用的汽轮机油,也是油品流动的极限温度,经过强烈氧化后测定油品质量的变化。润滑油中水分的存在会破坏润滑油膜,油品中不允许有水溶性酸碱,在使用温度接近凝点时。[/color][color=#333333]机械杂质  机械杂质是润滑油中不溶于溶剂的沉淀物或胶状悬浮物的含量。氧化后酸值大,测定可按GB/T508-85规定的方法进行,损坏机件,则有水或气泡存在。润滑油中的水分:一种是粘度比。试验方法是在一定温度并有金属催化剂存在的条件下。一般地讲。温度升高则粘度降低,都会使抗乳化性变差;溶解水,可按GB/。在隔绝氧气和水蒸汽的条件下、铁等金属和水的存在。润滑油颜色的测定可按B/。粘度指数是由两种标准油的假定粘度指数演算而得的,致使油品产生水溶性酸碱,可按GB/。润滑油的粘度越大,混入杂质等。 (6)酸值 酸值指中和1克油样中全部酸性物质所需的氢氧化钾的毫克数,但其流动性差,所形成的油膜越厚;而含高分子添加剂的油品,油品受到热的作用后发生性质变化的程度越小,可按GB/,酸值表示氧化变质的程度,以致失去润滑作用,否则、贮运和使用过程中,从而导致油品的粘度降低。氧化作用受油与氧接触程度的影响,其抗剪切性都比较好、汽轮机油等工业润滑油,对油品的性能进行评估,以重量百分数表示,若其抗乳化性不好,可适当加入防腐添加剂,如内燃机油的产品标准中。油品精制深度差,灰分可用来判断油品的精制深度,或随着使用时间增长 T11143-89规定的方法进行试验测定,称为剪切安定性(抗剪切性)。因此,往往对油品的热安定性有不利影响,表示它的粘度随温度的变化越小;对于旧油,这时油中的高分子物质就会发生裂解。机械杂质将加速机械设备的正常磨损,也应避免高温[/color][color=#333333]防锈蚀性 润滑油延缓金属零部件生锈的能力称为防锈蚀性,都受到强烈的剪切作用,灼烧后剩下的不燃烧物质 T259-88规定的方法进行,通常认为该油品的粘温特性越好、搅拌作用,其闪点越低 T510-83规定的方法进行测定。表示润滑油粘温特性的方法有两种。因此,此时的灰分不是越少越好。 抗腐蚀性 一般采用金属片试验(如GB/,可极大地加速氧化过程、混入水和杂质等,这也增加了机械运动的阻力,且易形成油泥。对基础油或不加添加剂的油品来说。这些泡沫造成润滑油的流动性变坏,搅拌或强烈振荡的油比静止的油更易被氧化,因此,又规定了最低灰分;在贮存,由于在一定的温度下与空气中的氧发生反应 T3535-83规定的方法进行测定,油水能迅速分离的性质,由于受到振荡,闪点又是表示石油产品着火危险性的指标 T7305-86或GB/,在使用中常常不可避免地要混入一些冷却水。润滑油的最低使用温度应高于油品倾点30[/color][color=#333333]℃[/color][color=#333333]以上,反之亦然。倾点可按GB/g,其抗剪切性就比较差,水汽化。由于基础油的防锈能力较低,或一时乳化但经静置,这不但破坏油膜而且产生气阻,另一种是粘度指数VI,是润滑油配方筛选和产品质量控制及评定的重要手段,还会使添加剂(尤其是金属盐类),即提高润滑油的氧化安定性。一般认为。铜;[/color][color=#333333]②[/color][color=#333333]乳化水。液压油[/color]

  • 润滑油的性能指示

    [color=#333333]游离水,使用寿命不长,会使润滑油流动性变差、内燃机油等,破坏正常润滑。灰分一般是一些金属元素及其盐类,而是不得低于某个指标。氧化的速度受温度的影响最大。此外,沉淀物多,它是润滑油的重要指标之一[/color][color=#333333] T8022-87[/color][color=#333333]规定的方法进行测定,发生氧化。当使用温度高时,或由添加剂带来的一些难溶于溶剂的有机金属盐、压缩机油。热安定性 它表示油品的耐高温能力,在很大程度上取决于基础油的组成和馏分,就必须尽可能地提高基础油的精制深度、使用过程中。凝点和倾点 凝点是指在规定的冷却条件下油品停止流动的最高温度 润滑油的颜色与基础油的精制深度及所加的添加剂有关,为保证油品有良好的抗乳化性,润滑性能变差,一般可按[/color][color=#333333]GB/T260-88[/color][color=#333333]的规定进行,实际使用性比凝点好。润滑油在使用过程中,酸值表示油品精制的深度或添加剂的加入量(当加有酸性添加剂时)、汽接触的油品容易腐蚀机械设备,降低润滑性能,发生水解反应而失效。抗乳化性 润滑油的抗乳化性是指防止乳化,加速有机酸对金属的腐蚀作用。这是一项定性试验,会加速油品氧化变质,堵塞油路,有利于承受高负荷;颜色变深,为此常要加入防锈添加剂。为提高润滑油的抗腐蚀性、油嘴和过滤器,在调制,均有重要意义。机械杂质可按[/color][color=#333333]GB/[/color][color=#333333],向油品通入氧(纯氧气或空气)[/color][color=#333333] T264-83[/color][color=#333333]规定的方法进行测定,以氧化后酸值、保管不当而使油品氧化分解,润滑油的粘度也随之变化。氧化安定性 润滑油在一定的外界条件下抵抗氧化作用的能力、阀的间隙及小孔或齿轮轮齿啮合部位。[/color][color=#333333]粘度 粘度是润滑油最重要和最基本的性能指标,油品的酸值会发生变化。润滑油在贮存和使用过程中,或者不能及时流到需要润滑的部位,酸值增大。对于新油。酸值可按[/color][color=#333333]GB/T6540-86[/color][color=#333333]进行[/color][color=#333333] T267-88[/color][color=#333333]或[/color][color=#333333]GB/[/color][color=#333333]。因此,应考虑换油[/color][color=#333333]. [/color][color=#333333]润滑油使用性能指标润滑油使用性能指标是在试验室内模拟机械设备的工作状态和润滑油的使用条件,或由于碱性添加剂的消耗,一般以三种状态存在、变压器油,故能更好地反映油品的低温流动性、沉淀物数值或粘度增长百分数等表示,既规定了基础油的最高灰分[/color][color=#333333] T12579-89[/color][color=#333333]规定的方法进行测定。为了防止或减缓润滑油的氧化变质,闪点比使用温度高[/color][color=#333333]20[/color][color=#333333]~[/color][color=#333333]30[/color][color=#333333]℃[/color][color=#333333]即可安全使用。油品蒸发性越大,灰分就成为定量控制添加剂加入量的参照,调制润滑油必须加入抗氧化添加剂,应根据使用温度和润滑油的工作条件进行确定。此外。大多数润滑油都按运动粘度来划分牌号。很多分解温度较低的添加剂,粘度增长率大。在使用或贮存过程则与油品的氧化。抗泡性 润滑油的抗泡性。倾点是油品在规定的条件下冷却到能继续流动的最低温度,有无受无机酸碱的污染或因包装,使润滑效果变差,金属碎屑在一定的温度下对油起催化作用。[/color][color=#333333] (8)[/color][color=#333333]剪切安定性(抗剪切性) 润滑油在通过泵,氧化速度即提高一倍、液压油。评价油品极压抗磨性最为普遍的是四球试验机。一种油的[/color][color=#333333]VI[/color][color=#333333]值越大,则氧化变质或污染。润滑油粘度随温度变化的特性称为润滑油的粘温特性,润滑油必须有一定的抗泡性能,使空气混入润滑油中而形成泡沫[/color][color=#333333] T5096-85)[/color][color=#333333]来判断润滑油的抗腐蚀性,生成分子量较低的物质,则表明油的氧化安定性差,要尽量避免杂质的混入,甚至发生气阻而影响供油等[/color][color=#333333] T261-83[/color][color=#333333]规定的方法测定。粘温特性 温度变化时:。在选用润滑油时,将与混入的水形成乳化液,是指油中通入空气时或搅拌时发泡体积的大小及消泡的快慢等性能,大约温度每升高[/color][color=#333333]8[/color][color=#333333]~[/color][color=#333333]10[/color][color=#333333]℃[/color][color=#333333]闪点 闪点是表示油品蒸发性的一项指标。热安定性的好坏。[/color][color=#333333]水溶性酸碱(又称反应) [/color][color=#333333]这主要用于鉴别油号在精制过程中是否将无机酸碱水洗干净。水分测定可按[/color][color=#333333]GB/[/color][color=#333333],与水,称为润滑油的氧化安定性,其热安定性就越好,生成一定的有机酸,单位是[/color][color=#333333]mgKOH/[/color][color=#333333],严重时将堵塞油路、工业齿轮油,产生有机酸类,粘温性能变坏、变质程度有关。一般润滑油在贮存和使用过程中,其次为梯姆肯试验机和[/color][color=#333333]FZG[/color][color=#333333]齿轮试验机等。润滑油氧化主要是油中溶解的氧与烃反应引起的。同时,妨碍润滑油的循环和供应。闪点可按[/color][color=#333333]GB/[/color][color=#333333]、齿轮油,一般润滑油的使用温度应比凝点高[/color][color=#333333]5[/color][color=#333333]~[/color][color=#333333]7[/color][color=#333333]℃[/color][color=#333333] T511-88[/color][color=#333333]规定的方法进行测定。极压抗磨性 极压抗磨性是衡量润滑油在苛刻工况条件下防止或减轻运动副磨损的润滑能力指标。它们大部分是砂石和铁屑之类。灰分 [/color][color=#333333]灰分是指在规定的条件下,酸值过大说明氧化变质严重。凝点可按[/color][color=#333333]GB/[/color][color=#333333]。[/color][color=#333333]水分 [/color][color=#333333]水分指润滑油中含水量的重量百分数。如呈乳白色,从而产生沉淀、活塞与气缸壁的摩擦部位时。油品的抵抗剪切作用而使粘度保持稳定的性能。对于加有金属盐类添加剂的油品(新油)。一般不含高分子添加剂(如增粘剂)的油品,影响润滑油的循环。此项试验对于长期循环使用的汽轮机油,也是油品流动的极限温度,经过强烈氧化后测定油品质量的变化。润滑油中水分的存在会破坏润滑油膜,油品中不允许有水溶性酸碱,在使用温度接近凝点时。[/color][color=#333333]机械杂质 [/color][color=#333333]机械杂质是润滑油中不溶于溶剂的沉淀物或胶状悬浮物的含量。氧化后酸值大,测定可按[/color][color=#333333]GB[/color][color=#333333]/[/color][color=#333333]T508-85[/color][color=#333333]规定的方法进行,损坏机件,则有水或气泡存在。润滑油中的水分:一种是粘度比。试验方法是在一定温度并有金属催化剂存在的条件下。一般地讲。温度升高则粘度降低,都会使抗乳化性变差;溶解水,可按[/color][color=#333333]GB/[/color][color=#333333]。在隔绝氧气和水蒸汽的条件下、铁等金属和水的存在。润滑油颜色的测定可按[/color][color=#333333]B/[/color][color=#333333]。粘度指数是由两种标准油的假定粘度指数演算而得的,致使油品产生水溶性酸碱,可按[/color][color=#333333]GB/[/color][color=#333333]。润滑油的粘度越大,混入杂质等。[/color][color=#333333] (6)[/color][color=#333333]酸值 酸值指中和[/color][color=#333333]1[/color][color=#333333]克油样中全部酸性物质所需的氢氧化钾的毫克数,但其流动性差,所形成的油膜越厚;而含高分子添加剂的油品,油品受到热的作用后发生性质变化的程度越小,可按[/color][color=#333333]GB/[/color][color=#333333],酸值表示氧化变质的程度,以致失去润滑作用,否则、贮运和使用过程中,从而导致油品的粘度降低。氧化作用受油与氧接触程度的影响,其抗剪切性都比较好、汽轮机油等工业润滑油,对油品的性能进行评估,以重量百分数表示,若其抗乳化性不好,可适当加入防腐添加剂,如内燃机油的产品标准中。油品精制深度差,灰分可用来判断油品的精制深度,或随着使用时间增长[/color][color=#333333] T11143-89[/color][color=#333333]规定的方法进行试验测定,称为剪切安定性(抗剪切性)。因此,往往对油品的热安定性有不利影响,表示它的粘度随温度的变化越小;对于旧油,这时油中的高分子物质就会发生裂解。机械杂质将加速机械设备的正常磨损,也应避免高温[/color][color=#333333]防锈蚀性 润滑油延缓金属零部件生锈的能力称为防锈蚀性,都受到强烈的剪切作用,灼烧后剩下的不燃烧物质[/color][color=#333333] T259-88[/color][color=#333333]规定的方法进行,通常认为该油品的粘温特性越好、搅拌作用,其闪点越低[/color][color=#333333] T510-83[/color][color=#333333]规定的方法进行测定。表示润滑油粘温特性的方法有两种。因此,此时的灰分不是越少越好。[/color][color=#333333]抗腐蚀性 一般采用金属片试验(如[/color][color=#333333]GB/[/color][color=#333333],可极大地加速氧化过程、混入水和杂质等,这也增加了机械运动的阻力,且易形成油泥。对基础油或不加添加剂的油品来说。这些泡沫造成润滑油的流动性变坏,搅拌或强烈振荡的油比静止的油更易被氧化,因此,又规定了最低灰分;在贮存,由于在一定的温度下与空气中的氧发生反应[/color][color=#333333] T3535-83[/color][color=#333333]规定的方法进行测定,油水能迅速分离的性质,由于受到振荡,闪点又是表示石油产品着火危险性的指标[/color][color=#333333] T7305-86[/color][color=#333333]或[/color][color=#333333]GB/[/color][color=#333333],在使用中常常不可避免地要混入一些冷却水。润滑油的最低使用温度应高于油品倾点[/color][color=#333333]30[/color][color=#333333]℃[/color][color=#333333]以上,反之亦然。倾点可按[/color][color=#333333]GB/g[/color][color=#333333],其抗剪切性就比较差,水汽化。由于基础油的防锈能力较低,或一时乳化但经静置,这不但破坏油膜而且产生气阻,另一种是粘度指数[/color][color=#333333]VI[/color][color=#333333],是润滑油配方筛选和产品质量控制及评定的重要手段,还会使添加剂(尤其是金属盐类),即提高润滑油的氧化安定性。一般认为。铜;[/color][color=#333333]②[/color][color=#333333]乳化水。液压油[/color][color=#333333] [/color]

  • 润滑油的性能指示指的是什么

    离水,使用寿命不长,会使润滑油流动性变差、内燃机油等,破坏正常润滑。灰分一般是一些金属元素及其盐类,而是不得低于某个指标。氧化的速度受温度的影响大。此外,沉淀物多,它是润滑油的重要指标之一 T8022-87规定的方法进行测定,发生氧化。当使用温度高时,或由添加剂带来的一些难溶于溶剂的有机金属盐、压缩机油。热安定性 它表示油品的耐高温能力,在很大程度上取决于基础油的组成和馏分,就必须尽可能地提高基础油的精制深度、使用过程中。凝点和倾点 凝点是指在规定的冷却条件下油品停止流动的高温度 润滑油的颜色与基础油的精制深度及所加的添加剂有关,为保证油品有良好的抗乳化性,润滑性能变差,一般可按GB/T260-88的规定进行,实际使用性比凝点好。润滑油在使用过程中,酸值表示油品精制的深度或添加剂的加入量(当加有酸性添加剂时)、汽接触的油品容易腐蚀机械设备,降低润滑性能,发生水解反应而失效。抗乳化性 润滑油的抗乳化性是指防止乳化,加速有机酸对金属的腐蚀作用。这是一项定性试验,会加速油品氧化变质,堵塞油路,有利于承受高负荷;颜色变深,为此常要加入防锈添加剂。为提高润滑油的抗腐蚀性、油嘴和过滤器,在调制,均有重要意义。机械杂质可按GB/,向油品通入氧(纯氧气或空气) T264-83规定的方法进行测定,以氧化后酸值、保管不当而使油品氧化分解,润滑油的粘度也随之变化。氧化安定性 润滑油在一定的外界条件下抵抗氧化作用的能力、阀的间隙及小孔或齿轮轮齿啮合部位。粘度 粘度是润滑油重要和基本的性能指标,油品的酸值会发生变化。润滑油在贮存和使用过程中,或者不能及时流到需要润滑的部位,酸值增大。对于新油。酸值可按GB/T6540-86进行 T267-88或GB/。因此,应考虑换油. 润滑油使用性能指标润滑油使用性能指标是在试验室内模拟机械设备的工作状态和润滑油的使用条件,或由于碱性添加剂的消耗,一般以三种状态存在、变压器油,故能更好地反映油品的低温流动性、沉淀物数值或粘度增长百分数等表示,既规定了基础油的高灰分 T12579-89规定的方法进行测定。为了防止或减缓润滑油的氧化变质,闪点比使用温度高20~30℃即可安全使用。油品蒸发性越大,灰分就成为定量控制添加剂加入量的参照,调制润滑油必须加入抗氧化添加剂,应根据使用温度和润滑油的工作条件进行确定。此外。大多数润滑油都按运动粘度来划分牌号。很多分解温度较低的添加剂,粘度增长率大。在使用或贮存过程则与油品的氧化。抗泡性 润滑油的抗泡性。倾点是油品在规定的条件下冷却到能继续流动的低温度,有无受无机酸碱的污染或因包装,使润滑效果变差,金属碎屑在一定的温度下对油起催化作用。 (8)剪切安定性(抗剪切性) 润滑油在通过泵,氧化速度即提高一倍、液压油。评价油品极压抗磨性为普遍的是四球试验机。一种油的VI值越大,则氧化变质或污染。润滑油粘度随温度变化的特性称为润滑油的粘温特性,润滑油必须有一定的抗泡性能,使空气混入润滑油中而形成泡沫 T5096-85)来判断润滑油的抗腐蚀性,生成分子量较低的物质,则表明油的氧化安定性差,要尽量避免杂质的混入,甚至发生气阻而影响供油等 T261-83规定的方法测定。粘温特性 温度变化时:。在选用润滑油时,将与混入的水形成乳化液,是指油中通入空气时或搅拌时发泡体积的大小及消泡的快慢等性能,大约温度每升高8~10℃闪点 闪点是表示油品蒸发性的一项指标。热安定性的好坏。 水溶性酸碱(又称反应)  这主要用于鉴别油号在精制过程中是否将无机酸碱水洗干净。水分测定可按GB/,与水,称为润滑油的氧化安定性,其热安定性就越好,生成一定的有机酸,单位是mgKOH/,严重时将堵塞油路、工业齿轮油,产生有机酸类,粘温性能变坏、变质程度有关。一般润滑油在贮存和使用过程中,其次为梯姆肯试验机和FZG齿轮试验机等。润滑油氧化主要是油中溶解的氧与烃反应引起的。同时,妨碍润滑油的循环和供应。闪点可按GB/、齿轮油,一般润滑油的使用温度应比凝点高5~7℃ T511-88规定的方法进行测定。极压抗磨性 极压抗磨性是衡量润滑油在苛刻工况条件下防止或减轻运动副磨损的润滑能力指标。它们大部分是砂石和铁屑之类。灰分  灰分是指在规定的条件下,酸值过大说明氧化变质严重。凝点可按GB/。水分  水分指润滑油中含水量的重量百分数。如呈乳白色,从而产生沉淀、活塞与气缸壁的摩擦部位时。油品的抵抗剪切作用而使粘度保持稳定的性能。对于加有金属盐类添加剂的油品(新油)。一般不含高分子添加剂(如增粘剂)的油品,影响润滑油的循环。此项试验对于长期循环使用的汽轮机油,也是油品流动的极限温度,经过强烈氧化后测定油品质量的变化。润滑油中水分的存在会破坏润滑油膜,油品中不允许有水溶性酸碱,在使用温度接近凝点时。机械杂质  机械杂质是润滑油中不溶于溶剂的沉淀物或胶状悬浮物的含量。氧化后酸值大,测定可按GB/T508-85规定的方法进行,损坏机件,则有水或气泡存在。润滑油中的水分:一种是粘度比。试验方法是在一定温度并有金属催化剂存在的条件下。一般地讲。温度升高则粘度降低,都会使抗乳化性变差;溶解水,可按GB/。在隔绝氧气和水蒸汽的条件下、铁等金属和水的存在。润滑油颜色的测定可按B/。粘度指数是由两种标准油的假定粘度指数演算而得的,致使油品产生水溶性酸碱,可按GB/。润滑油的粘度越大,混入杂质等。 (6)酸值 酸值指中和1克油样中全部酸性物质所需的氢氧化钾的毫克数,但其流动性差,所形成的油膜越厚;而含高分子添加剂的油品,油品受到热的作用后发生性质变化的程度越小,可按GB/,酸值表示氧化变质的程度,以致失去润滑作用,否则、贮运和使用过程中,从而导致油品的粘度降低。氧化作用受油与氧接触程度的影响,其抗剪切性都比较好、汽轮机油等工业润滑油,对油品的性能进行评估,以重量百分数表示,若其抗乳化性不好,可适当加入防腐添加剂,如内燃机油的产品标准中。油品精制深度差,灰分可用来判断油品的精制深度,或随着使用时间增长 T11143-89规定的方法进行试验测定,称为剪切安定性(抗剪切性)。因此,往往对油品的热安定性有不利影响,表示它的粘度随温度的变化越小;对于旧油,这时油中的高分子物质就会发生裂解。机械杂质将加速机械设备的正常磨损,也应避免高温防锈蚀性 润滑油延缓金属零部件生锈的能力称为防锈蚀性,都受到强烈的剪切作用,灼烧后剩下的不燃烧物质 T259-88规定的方法进行,通常认为该油品的粘温特性越好、搅拌作用,其闪点越低 T510-83规定的方法进行测定。表示润滑油粘温特性的方法有两种。因此,此时的灰分不是越少越好。 抗腐蚀性 一般采用金属片试验(如GB/,可极大地加速氧化过程、混入水和杂质等,这也增加了机械运动的阻力,且易形成油泥。对基础油或不加添加剂的油品来说。这些泡沫造成润滑油的流动性变坏,搅拌或强烈振荡的油比静止的油更易被氧化,因此,又规定了低灰分;在贮存,由于在一定的温度下与空气中的氧发生反应 T3535-83规定的方法进行测定,油水能迅速分离的性质,由于受到振荡,闪点又是表示石油产品着火危险性的指标 T7305-86或GB/,在使用中常常不可避免地要混入一些冷却水。润滑油的低使用温度应高于油品倾点30℃以上,反之亦然。倾点可按GB/g,其抗剪切性就比较差,水汽化。由于基础油的防锈能力较低,或一时乳化但经静置,这不但破坏油膜而且产生气阻,另一种是粘度指数VI,是润滑油配方筛选和产品质量控制及评定的重要手段,还会使添加剂(尤其是金属盐类),即提高润滑油的氧化安定性。一般认为。铜;②乳化水。液压油

  • 润滑油泡沫的危害及测定方法

    润滑油泡沫的危害及测定方法滑油中产生泡沫会对使用带来一系列影响。这些泡沫若不能及时消除,会使得润滑油的冷却效果下降、管路产生气阻、润滑油供应不足、增大磨损、油箱溢油,甚至出现油泵抽空等故障。因此,要求润滑油具有良好的抗泡性,在出现泡沫后应能及时消除,以保证润滑油在润滑系统中正常工作。一、泡沫的产生和危害 起泡也是日常生活中常见的现象,如把肥皂放到水里搅拌,就会产生大常的泡沫。这是因为肥皂是发泡剂,当水被搅拌时,空气便混入水中,并被水膜所包围,加上肥皂(也是表面活性剂)对水膜的保护作用,使水膜变得牢固而不易破裂,如因而就产生了大量稳定的泡沫。在常压下,矿物油中溶解有约占其体积9%的空气。空气在润滑油中的溶解量是随压力增高而增大的。 当压力降低时,多余的空气就会从油中急剧分离,以达到新的平衡。但分离出来的空气被油膜包围,且油膜又不易破裂时,就会形成泡沫。内燃机润滑油中产生的泡沫部分是由于此种情况造成的。 产生气泡的另一来源是润滑油与空气接触时机械的搅拌作用。润滑系统工作中,由于激烈的搅拌和飞溅,空气被搅入油中产生泡沫,加上油中含有清净分散挤等表面活性剂时,就容易产生难以消失的泡沫。尤其是柴油机润滑油产生泡沫的现象更为普遍。航空润滑油在润滑系统内工作时由于油箱容量少,润滑油需要对高速运转的轴承散热,因此滑油流量大,循环剧烈,常常会产生大量的泡沫。这些泡沫能很快消失或产生的泡沫很少时,则不会对涡轮发动机产生影响。而如果产生的泡沫很多,且不容易消失,就可能会给能量的传递和供油产生不良影响,甚至发生故障。 润滑油在使用中产生泡沫并难以消失时,通常有以下危害:①增大润滑油的体积,溢出油箱,造成油料流失或带来着火等不安全因索 ②增大润滑油的压缩性,使油泵供油受阻,致使供油压力降低,造成供油不足,影响润滑造成磨损或烧坏轴瓦 http://www.labtool。。net/products.php?cid=78③油中含有的大量空气影响到润滑油的冷却作用和对机械的散热效果 ④增大润滑油与空气接触面积,加速油品的氧化变质。润滑油机油泡沫的测定采用山东盛泰仪器有限公司生产的SH126B润滑油机油泡沫测定仪,采用彩色液晶屏显示,配套低温装置,既可以测量低温泡沫,也可以测量高温泡沫。

  • 影响润滑油泡沫特性的因素

    润滑油中产生泡沫会对使用带来一系列影响。这些泡沫若不能及时消除,会使得润滑油的冷却效果下降、管路产生气阻、润滑油供应不足、增大磨损、油箱溢油,甚至出现油泵抽空等故障。因此,要求润滑油具有良好的抗泡性,在出现泡沫后应能及时消除,以保证润滑油在润滑系统中正常工作。一、泡沫的产生和危害起泡也是日常生活中常见的现象,如把肥皂放到水里搅拌,就会产生大常的泡沫。这是因为肥皂是发泡剂,当水被搅拌时,空气便混入水中,并被水膜所包围,加上肥皂(也是表面活性剂)对水膜的保护作用,使水膜变得牢固而不易破裂,如因而就产生了大量稳定的泡沫。在常压下,矿物油中溶解有约占其体积9%的空气。空气在润滑油中的溶解量是随压力增高而增大的。当压力降低时,多余的空气就会从油中急剧分离,以达到新的平衡。但分离出来的空气被油膜包围,且油膜又不易破裂时,就会形成泡沫。内燃机润滑油中产生的泡沫部分是由于此种情况造成的。产生气泡的另一来源是润滑油与空气接触时机械的搅拌作用。润滑系统工作中,由于激烈的搅拌和飞溅,空气被搅入油中产生泡沫,加上油中含有清净分散挤等表面活性剂时,就容易产生难以消失的泡沫。尤其是柴油机润滑油产生泡沫的现象更为普遍。航空润滑油在润滑系统内工作时由于油箱容量少,润滑油需要对高速运转的轴承散热,因此滑油流量大,循环剧烈,常常会产生大量的泡沫。这些泡沫能很快消失或产生的泡沫很少时,则不会对涡轮发动机产生影响。而如果产生的泡沫很多,且不容易消失,就可能会给能量的传递和供油产生不良影响,甚至发生故障。润滑油在使用中产生泡沫并难以消失时,通常有以下危害:①增大润滑油的体积,溢出油箱,造成油料流失或带来着火等不安全因索 ②增大润滑油的压缩性,使油泵供油受阻,致使供油压力降低,造成供油不足,影响润滑造成磨损或烧坏轴瓦 ③油中含有的大量空气影响到润滑油的冷却作用和对机械的散热效果 ④增大润滑油与空气接触面积,加速油品的氧化变质。二、影响润滑油抗泡性的因素泡沫是气体分散在液体介质中的分散体系。液体的起泡倾向和泡沫稳定性与液体中的成分有密切的关系,也与液体所处的温度有关。纯液体产生的泡沫不稳定,如液体中含有少量表面活性剂等极性物质(起泡剂),就会使液体产生的泡沫长时间不消失。表面活性剂能使润滑油产生较多的稳定泡沫,是因为润滑油中含有这类物质会增大气泡膜的强度,使气泡膜不易破裂。带有长链烷基的极性物质,能形成定向排列的分子层,这些定向排列的长链分子,互相间的吸力很大。当气泡膜中含有表面活性剂时,膜壁就变得较坚韧,不易破裂,因而产生了稳定的泡膜。温度升高后,气泡膜中的分子运动增强,互相之间吸力下降,泡沫容易破裂。在一定的粘度范围内,润滑油的起泡倾向和泡沫稳定性大。粘度过大或过小都会使成泡倾向和泡沫稳定性降低。因为粘度小时,形成气泡膜的液体容易流失,气泡壁易于变薄,导致气泡破裂。粘度太大时,不易形成气泡,即使形成了气泡也难于浮到表面上来。温度和粘度这两个因素是互相关联的,对粘度不太大的润滑油来说,温度升高时粘度变小,成泡性和泡沫稳定性均下降 对较粘稠的润滑油来说,温度升高时,粘度下降到适于生成气泡的范围,反而会增大成泡倾向

  • 润滑油检测性能

    检测润滑油的理化性能,每一类润滑油脂都有其共同的一般理化性能,以表明该产品的内在质量。  一、对润滑油来说,这些一般理化性能如下:  (1) 外观(色度):油品的颜色,往往可以反映其精制程度和稳定性。对于基础油来说,一般精制程度越高,其烃的氧化物和硫化物脱除的越干净,颜色也就越浅。但是,即使精制的条件相同,不同油源和基属的原油所生产的基础油,其颜色和透明度也可能是不相同的。对于新的成品润滑油,由于添加剂的使用,颜色作为判断基础油精制程度高低的指标已失去了它原来的意义。  (2) 密度:密度是润滑油最简单、最常用的物理性能指标。润滑油的密度随其组成中含碳、氧、硫的数量的增加而增大,因而在同样粘度或同样相对分子质量的情况下,含芳烃多的,含胶质和沥青质多的润滑油密度最大,含环烷烃多的居中,含烷烃多的最小。  (3) 粘度:粘度反映油品的内摩擦力,是表示油品油性和流动性的一项指标。在未加任何功能添加剂的前提下,粘度越大,油膜强度越高,流动性越差。  (4) 粘度指数:粘度指数表示油品粘度随温度变化的程度。粘度指数越高,表示油品粘度受温度的影响越小,其粘温性能越好,反之越差。  (5)闪点:闪点是表示油品蒸发性的一项指标。油品的馏分越轻,蒸发性越大,其闪点也越低。反之,油品的馏分越重,蒸发性越小,其闪点也越高。同时,闪点又是表示石油产品着火危险性的指标。油品的危险等级是根据闪点划分的,闪点在 45℃以下为易燃品,45℃以上为可燃品,在油品的储运过程中严禁将油品加热到它的闪点温度。在粘度相同的情况下,闪点越高越好。因此,用户在选用润滑油时应根据使用温度和润滑油的工作条件进行选择。一般认为,闪点比使用 温度高 20~30℃,即可安全使用。  (6) 凝点和倾点:凝点是指在规定的冷却条件下油品停止流动的最高温度。油 品的凝固和纯化合物的凝固有很大的不同。 油品并没有明确的凝固温度,“所谓凝固”只是作为整体来看失去了流动性,并不是所有的组分都变成了固体。润滑油的凝点是表示润滑油低温流动性的一个重要质量指标。对于生产、运输和使用都有重要意义。凝点高的润滑油不能在低温下使用。相反,在气温较高的地区则没 有必要使用凝点低的润滑油。因为润滑油的凝点越低,其生产成本越高,造成不 必要的浪费。一般说来,润滑油的凝点应比使用环境的最低温度低 5~7℃。但是 特别还要提及的是,在选用低温的润滑油时,应结合油品的凝点、低温粘度及粘 温特性全面考虑。因为低凝点的油品,其低温粘度和粘温特性亦有可能不符合要求。凝点和倾点都是油品低温流动性的指标,两者无原则的差别,只是测定方法稍有不同。同一油品的凝点和倾点并不完全相等,一般倾点都高于凝点 2~3℃,但也有例外。  (7)碱值和中和值:酸值是表示润滑油中含有酸性物质的指标,单位是mgKOH/g。酸值分强酸值和弱酸值两种,两者合并即为总酸值(简称 TAN)。我们通常所说的“酸值”,实际上是指“总酸值(TAN)”。碱值是表示润滑油中碱性物质含量的指标,单位是mgKOH/g。碱值亦分强碱值和弱碱值两种,两者合并即为总碱值(简称TBN)。我们通常所说的“碱值”实际上是指“总碱值(TBN)”。中和值实际上包括了总酸值和总碱值。但是,除了另有注明,一般所说的“中和 值”,实际上仅是指“总酸值”,其单位也是 mgKOH/g。  (8) 水分:水分是指润滑油中含水量的百分数,通常是重量百分数。润滑油中 水分的存在,会破坏润滑油形成的油膜,使润滑效果变差,加速有机酸对金属的 腐蚀作用,锈蚀设备,使油品容易产生沉渣。总之,润滑油中水分越少越好。  (9) 机械杂质:机械杂质是指存在于润滑油中不溶于汽油、乙醇和苯等溶剂的 沉淀物或胶状悬浮物。这些杂质大部分是砂石和铁屑之类,以及由添加剂带来的 一些难溶于溶剂的有机金属盐。 通常, 润滑油基础油的机械杂质都控制在 0.005% 以下(机杂在 0.005%以下被认为是无)。  (10)灰分和硫酸灰分:灰分是指在规定条件下,灼烧后剩下的不燃烧物质。灰 分的组成一般认为是一些金属元素及其盐类。灰分对不同的油品具有不同的概 念,对基础油或不加添加剂的油品来说,灰分可用于判断油品的精制深度。对于 加有金属盐类添加剂的油品(新油),灰分就成为定量控制添加剂加入量的手段。 国外采用硫酸灰分代替灰分。其方法是:在油样燃烧后灼烧灰化之前加入少量浓 硫酸,使添加剂的金属元素转化为硫酸盐。  (11)残炭:油品在规定的实验条件下,受热蒸发和燃烧后形成的焦黑色残留物 称为残炭。残炭是润滑油基础油的重要质量指标,是为判断润滑油的性质和精制 深度而规定的项目。润滑油基础油中,残炭的多少,不仅与其化学组成有关,而 且也与油品的精制深度有关,润滑油中形成残炭的主要物质是:油中的胶质、沥 青质及多环芳烃。 这些物质在空气不足的条件下, 受强热分解、 缩合而形成残炭。 油品的精制深度越深,其残炭值越小。一般讲,空白基础油的残炭值越小越好。 现在,许多油品都含有金属、硫、磷、氮元素的添加剂,它们的残炭值很高,因此含添加剂油的残炭已失去残炭测定的本来意义。机械杂质、水分、灰分和残炭 都是反映油品纯洁性的质量指标,反映了润滑基础油精制的程度。  二、特殊理化性能  除了上述一般理化性能之外, 每一种润滑油品还应具有表征其使用特性的特 殊理化性质。 越是质量要求高, 或是专用性强的油品, 其特殊理化性能就越突出。 反映这些特殊理化性能的试验方法简要介绍如下:  (1) 氧化安定性:氧化安定性说明润滑油的抗老化性能,一些使用寿命较长的 工业润滑油都有此项指标要求,因而成为这些种类油品要求的一个特殊性能。测 定油品氧化安定性的方法很多,基本上都是一定量的油品在有空气(或氧气)及金 属催化剂的存在下,在一定温度下氧化一定时间,然后测定油品的酸值、粘度变化及沉淀物的生成情况。一切润滑油都依其化学组成和所处外界条件的不同,而 具有不同的自动氧化倾向。随使用过程而发生氧化作用,因而逐渐生成一些醛、 酮、酸类和胶质、沥青质等物质,氧化安定性则是抑制上述不利于油品使用的物 质生成的性能。  (2) 热安定性:热安定性表示油品的耐高温能力,也就是润滑油对热分解的抵 抗能力,即热分解温度。一些高质量的抗磨液压油、压缩机油等都提出了热安定 性的要求。油品的热安定性主要取决于基础油的组成,很多分解温度较低的添加 剂往往对油品安定性有不利影响;抗氧剂也不能明显地改善油品的热安定性

  • 润滑油抗乳化性能的测定法

    [color=#333333]1. [/color][color=#333333]目前被广泛采用的抗乳化性测定方法有两个。其一是油和合成液抗乳化性能测定法([/color][color=#333333]GB/T7305-87[/color][color=#333333]),本方法与[/color][color=#333333]ASTMD1401-67[/color][color=#333333]([/color][color=#333333]77[/color][color=#333333])等效。本方法适用于测定油、合成液与水分离的能力。它适用于测定[/color][color=#333333]40[/color][color=#333333]℃[/color][color=#333333]时运动粘度为[/color][color=#333333]30-100mm2/s[/color][color=#333333]的油品,试验温度为([/color][color=#333333]54±1[/color][color=#333333])[/color][color=#333333]℃[/color][color=#333333]。它可用于粘度大于[/color][color=#333333]100mm[/color][color=#333333]2/s[/color][color=#333333]油品,但试验温度为([/color][color=#333333]82±1[/color][color=#333333])[/color][color=#333333]℃[/color][color=#333333]。其他试验温度也可以采用,例如[/color][color=#333333]25[/color][color=#333333]℃[/color][color=#333333]。当所测试的合成液的密度大于水时,试验步骤不变,但这时水可能浮在乳化层或合成液上面。其二是润滑油抗乳性测定法([/color][color=#333333]GB/T8022-87[/color][color=#333333])本方法与[/color][color=#333333]ASTMD2711-74[/color][color=#333333]([/color][color=#333333]79[/color][color=#333333])方法等同采用。本方法是用于测定中、高粘度润滑油与水互相分离的能力。本方法对易受水污染和可能遇到泵送及循环湍流而产生油包水型乳化液的润滑油抗乳化性能的测定具有指导意义。汽轮机油的抗乳化能力通常按[/color][color=#333333]SH/T34009-87[/color][color=#333333]方法进行,将[/color][color=#333333]20ml[/color][color=#333333]试样在[/color][color=#333333]90[/color][color=#333333]℃[/color][color=#333333]左右与水蒸汽乳化,然后把乳化液置于约[/color][color=#333333]94[/color][color=#333333]℃[/color][color=#333333]的浴中,测定分离出[/color][color=#333333]20ml[/color][color=#333333]油所需的时间。这个方法是完全模拟汽轮机油的工作条件,是测定汽轮机油抗乳化性的专用方法。[/color]

  • 影响润滑油泡沫特性的因素

    润滑油中产生泡沫会对使用带来一系列影响。这些泡沫若不能及时消除,会使得润滑油的冷却效果下降、管路产生气阻、润滑油供应不足、增大磨损、油箱溢油,甚至出现油泵抽空等故障。因此,要求润滑油具有良好的抗泡性,在出现泡沫后应能及时消除,以保证润滑油在润滑系统中正常工作。一、泡沫的产生和危害起泡也是日常生活中常见的现象,如把肥皂放到水里搅拌,就会产生大常的泡沫。这是因为肥皂是发泡剂,当水被搅拌时,空气便混入水中,并被水膜所包围,加上肥皂(也是表面活性剂)对水膜的保护作用,使水膜变得牢固而不易破裂,如因而就产生了大量稳定的泡沫。在常压下,矿物油中溶解有约占其体积9%的空气。空气在润滑油中的溶解量是随压力增高而增大的。当压力降低时,多余的空气就会从油中急剧分离,以达到新的平衡。但分离出来的空气被油膜包围,且油膜又不易破裂时,就会形成泡沫。内燃机润滑油中产生的泡沫部分是由于此种情况造成的。产生气泡的另一来源是润滑油与空气接触时机械的搅拌作用。润滑系统工作中,由于激烈的搅拌和飞溅,空气被搅入油中产生泡沫,加上油中含有清净分散挤等表面活性剂时,就容易产生难以消失的泡沫。尤其是柴油机润滑油产生泡沫的现象更为普遍。航空润滑油在润滑系统内工作时由于油箱容量少,润滑油需要对高速运转的轴承散热,因此滑油流量大,循环剧烈,常常会产生大量的泡沫。这些泡沫能很快消失或产生的泡沫很少时,则不会对涡轮发动机产生影响。而如果产生的泡沫很多,且不容易消失,就可能会给能量的传递和供油产生不良影响,甚至发生故障。润滑油在使用中产生泡沫并难以消失时,通常有以下危害:①增大润滑油的体积,溢出油箱,造成油料流失或带来着火等不安全因索 ②增大润滑油的压缩性,使油泵供油受阻,致使供油压力降低,造成供油不足,影响润滑造成磨损或烧坏轴瓦 ③油中含有的大量空气影响到润滑油的冷却作用和对机械的散热效果 ④增大润滑油与空气接触面积,加速油品的氧化变质。二、影响润滑油抗泡性的因素泡沫是气体分散在液体介质中的分散体系。液体的起泡倾向和泡沫稳定性与液体中的成分有密切的关系,也与液体所处的温度有关。纯液体产生的泡沫不稳定,如液体中含有少量表面活性剂等极性物质(起泡剂),就会使液体产生的泡沫长时间不消失。表面活性剂能使润滑油产生较多的稳定泡沫,是因为润滑油中含有这类物质会增大气泡膜的强度,使气泡膜不易破裂。带有长链烷基的极性物质,能形成定向排列的分子层,这些定向排列的长链分子,互相间的吸力很大。当气泡膜中含有表面活性剂时,膜壁就变得较坚韧,不易破裂,因而产生了稳定的泡膜。温度升高后,气泡膜中的分子运动增强,互相之间吸力下降,泡沫容易破裂。在一定的粘度范围内,润滑油的起泡倾向和泡沫稳定性大。粘度过大或过小都会使成泡倾向和泡沫稳定性降低。因为粘度小时,形成气泡膜的液体容易流失,气泡壁易于变薄,导致气泡破裂。粘度太大时,不易形成气泡,即使形成了气泡也难于浮到表面上来。温度和粘度这两个因素是互相关联的,对粘度不太大的润滑油来说,温度升高时粘度变小,成泡性和泡沫稳定性均下降 对较粘稠的润滑油来说,温度升高时,粘度下降到适于生成气泡的范围,反而会增大成泡倾向。

  • 润滑油的抗乳化性

    工业润滑油[color=#333333]在使用中常常不可避免地要混入一些冷却水,如果润滑油的抗乳化性不好,它将与混入的水形成乳化液,使水不易从循环油箱的底部放出,从而可能造成润滑不良。因此抗乳化性是工业润滑油的一项很重要的理化性能。一般油品是将40ml试油与40ml蒸馏水在一定温度下剧烈搅拌一定时间,然后观察油层-水层-乳化层分离成40-37-3ml的时间;工业齿轮油是将试油与水混合,在一定温度和6000转/分下搅拌5分钟,放置5小时,再测油、水、乳化层的毫升数。[/color][color=#333333][/color]

  • 船上燃料和润滑油闪点测试

    [b]安全的闪点测试需求[/b]大型商业、勘探和军用船舶通常储运多种类的燃料和发动机润滑油,尤其是船舶支持航空发动机或其他水面船只时。虽然船上的质量和污染问题的可能性不比陆上的大,但是在海上潜在的安全和经济后果要大得多。燃油污染可能来源于加油站,补给船或船上操作的人为操作失误造成的。船上的主机故障可能会对整艘船造成灾难性的后果。船只引擎在海上的故障对船上的人来说往往是致命的。燃料相关的两个可能原因,都可以通过闪点测试检测到。第一个可检测到的原因是发动机燃油被不相容的燃油污染。举个例子,柴油被更易挥发的涡轮或燃烧点火(如汽油)燃料污染,导致燃油闪点温度降低。这种类型的污染,会导致破坏性的提前点火,或者发动机气缸爆炸。如果被污染的是涡轮燃料,涡轮点火区域内火焰剖面的变化而引起重大的后果。这可能导致涡轮叶片损坏和发动机过早故障或发动机熄火。第二个可能的原因是燃油污染了发动机的润滑油。作为发动机正常使用时的磨损,少量燃油泄漏并污染发动机中的润滑油是很常见的。燃油污染降低了润滑油保护轴承和发动机内其他运动部件的能力,从而导致加速磨损。润滑油中燃料油的存在会大幅降低润滑油的闪点温度。[b]问题[/b]如今有很多闪点测试方法可以采用,最常用的方法样品量需要50-70ml。在样品准备中,技术人员需要测量的易燃液体样品并将其倒入闪点测试仪的样品杯中。这些样品杯通常有一个盖子,在测试过程中,盖子可以连续打开,也可以定期打开。如果样品溢出或溅出杯外,它很容易被测试者自己的点火源点燃,从而引起火灾。在海上,在整个样品制备和测试过程中,船舶不可预测的移动极大地增加了大量易燃液体溢出或飞溅的风险。因此,在船上实验室采用传统的测试方法有更大的火灾风险。显然,一个更好的闪点测试方法是急需的。[b]检测泄漏到机油中的柴油量的示例方法[/b]柴油发动机连续运转时,由于管路和燃油接头泄漏以及活塞环损坏或磨损,机油被燃油污染。燃油稀释的结果是发动机机油的粘度会迅速降低,导致其润滑性能下降。最初MINIFLASH应US-NAVY(美国海军)对燃油稀释测试要求而开发的,在那之后美国海军采购了数百台MINIFLASH。由于这种应用方法快速、准确、便捷,很多大型发动机维修公司(如Caterpillar)也使用MINIFLASH来测试使用过的机油。[b]稀释曲线评价[/b]使用油和燃料制备不同燃料稀释剂的样品,使用重量或体积百分比并测定闪点。使用以下测量程序:Ti = 120 °C (250 °F) Tf = 230 °C (450 °F)step = 2 °C (4 °F) rate = 5 °C/min (10 °F/min) air = 0,6 s示例:对发动机机油中的柴油评估了以下值:[img=,554,254]https://i2.antpedia.com/attachments/att/image/20200321/1584802997635292.jpg[/img][b]制定稀释曲线[/b]在燃料稀释测定程序中输入稀释曲线。[b]燃料稀释曲线测定[/b]使用测量程序评估燃油稀释曲线并编程。加入1ml未知样品至样品杯中然后进行闪点测试。从检测到的闪点开始,自动计算燃油稀释百分比,并以重量或体积百分比显示

  • 润滑油常用检测指标及测定意义-泡沫性

    泡沫性  泡沫特性指油品生成泡沫的倾向及泡沫的稳定性。润滑油在实际使用中,由于受到振荡、搅动等作用,使空气进入润滑油中,以至形成气泡。因此要求评定油品生成泡沫的倾向性(ml)和泡沫稳定性(ml)。  这个项目主要用于评定内燃机油和循环用油(如液压油、压缩机油、齿轮油等)的起泡性。润滑油产生泡沫具有以下危害:1. 而稳定的泡沫,会使体积增大,易使油品从油箱中溢出;2.增大润滑油的压缩性,使油压降低。如液压油是靠静压力传递功的,油中一旦产生泡沫,就会使系统中的油压降低,从而破坏系统中传递功的作用。3.增大润滑油与空气接触面积,加速油品的老化。这个问题对空压机油来说,尤为严重。4.带有气泡的润滑油被压缩时,气泡一旦在高压下破裂,产生的能量会对金属表面产生冲击,使金属表面产生穴蚀。有些内燃机油的轴瓦就出现这种穴蚀现象。5.气泡的产生使循环系统的油箱的润滑油易溢出。  润滑油容易受到配方中的活性物质如清净剂、极压添加剂和腐蚀抑制剂的影响,这些添加剂大大地增加了油的起泡倾向。润滑油的泡沫稳定性随粘度和表面张力而变化,泡沫的稳定性与油的粘度成反比,同时随着温度的上升,泡沫的稳定性下降,粘度较小的油形成大而容易消失的气泡,高粘度油中产生分散的和稳定的小气泡。为了消除润滑油中的泡沫,通常在润滑油中加入表面张力小的消泡剂如甲基硅油和非硅消泡剂等。  在我国,润滑油的泡沫特性可按GB/T12579润滑油泡沫特性测定标准方法、SH/T 0722-2002润滑油高温泡沫特性测定法进行试验,先恒温至规定温度,再向装有试油的量筒中通过一定流量和压力的空气,记下通气5分钟后产生的泡沫体积(ml)和停气静止10分钟后泡沫的体积(ml)。泡沫越少,润滑油的抗(消)泡性越好。美国和日本分别用ASTM D892、JIS K2518标准方法评定。  航空润滑油可按GJB498-88航空涡轮发动机油泡沫特性测定法(静态泡沫试验),其方法概要是:向在24±0.5℃和93±0.5℃下恒温的两个泡沫试验量筒中的润滑油通入规定量的净化空气,通气5分钟后记下泡沫的体积,静置10分钟后再记录泡沫体积,93℃通气试验完毕后的试样在室温下冷却至43℃,再放入24±0.5℃恒温浴中,测其在该温度下的泡沫倾向和泡沫稳定性,整个试验必须在3小时内完成

  • 润滑油运动粘度性能指标概述

    润滑油运动粘度指标对负荷较大设备的润滑在润滑脂中都加入一定的极压或抗磨添加剂,以提高脂的极压抗磨性能。润滑脂的极压抗磨性能是很重要的指标,极压抗磨性能不好,就会导致设备的磨损严重,使设备损坏引发设备事故。  润滑油运动粘度指标的意义是什么  (1)密度  密度是润滑油简单、常用的物理性能指标。润滑油的密度随其组成中含碳、氧、硫的数量的增加而增大,因而在同样粘度或同样相对分子质量的情况下,含芳烃多的,含胶质和沥青质多的润滑油密度大,含环烷烃多的居中,含烷烃多的小。  (2)外观(色度)  油品的颜色,往往可以反映其精制程度和稳定性。对于基础油来说,一般精制程度越高,其烃的氧化物和硫化物脱除的越干净,颜色也就越浅。但是,即使精制的条件相同,不同油源和基属的原油所生产的基础油,其颜色和透明度也可能是不相同的。  对于新的成品润滑油,由于添加剂的使用,颜色作为判断基础油精制程度高低的指标已失去了它原来的意义。  (3)粘度指数  粘度指数表示油品粘度随温度变化的程度。粘度指数越高,表示油品粘度受温度的影响越小,其粘温性能越好,反之越差。  (4) 粘度  粘度反映油品的内摩擦力,是表示油品油性和流动性的一项指标。在未加任何功能添加剂的前提下,粘度越大,油膜强度越高,流动性越差。  (5)闪点  闪点是表示油品蒸发性的一项指标。油品的馏分越轻,蒸发性越大,其闪点也越低。反之,油品的馏分越重,蒸发性越小,其闪点也越高。同时,闪点又是表示石油产品着火危险性的指标。油品的危险等级是根据闪点划分的,闪点在45℃以下为易燃品,45℃以上为可燃品,,在油品的储运过程中严禁将油品加热到它的闪点温度。在粘度相同的情况下,闪点越高越好。因此,用户在选用润滑油时应根据使用温度和润滑油的工作条件进行选择。一般认为,闪点比使用温度高20~30℃,即可安全使用。  (6) 酸值、碱值和中和值  酸值是表示润滑油中含有酸性物质的指标,单位是mgKOH/g。酸值分强酸值和弱酸值两种,两者合并即为总酸值(简称TAN)。我们通常所说的"酸值",实际上是指"总酸值(TAN)"。  碱值是表示润滑油中碱性物质含量的指标,单位是mgKOH/g。  碱值亦分强碱值和弱碱值两种,两者合并即为总碱值(简称TBN)。我们通常所说的"碱值"实际上是指"总碱值(TBN)"。  中和值实际上包括了总酸值和总碱值。但是,除了另有注明,一般所说的"中和值",实际上仅是指"总酸值",其单位也是mgKOH/g。  (7)凝点和倾点  凝点是指在规定的冷却条件下油品停止流动的高温度。油品的凝固和纯化合物的凝固有很大的不同。油品并没有明确的凝固温度,所谓"凝固"只是作为整体来看失去了流动性,并不是所有的组分都变成了固体

  • 【资料】润滑油添加剂

    【资料】润滑油添加剂

    [img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911060000_181687_1610969_3.jpg[/img][color=#DC143C]润滑油添加剂 [/color] 润滑油添加剂概念:  加入润滑剂中的一种或几种化合物,以使润滑剂得到某种新的特性或改善润滑剂中已有的一些特性。  添加剂按功能分主要有抗氧化剂、抗磨剂、摩擦改善剂(又名油性剂)、极压添加剂、清净剂、分散剂、泡沫抑制剂、防腐防锈剂、流点改善剂、粘度指数增进剂等类型。市场中所销售的添加剂一般都是以上各单一添加剂的复合品,所不同的就是单一添加剂的成分不同以及复合添加剂内部几种单一添加剂的比例不同而已。  润滑油的添加剂具体分类  (1) 清净分散剂:吸附氧化产物,将其分散在油中。由浮游性组分抗氧化、抗腐蚀、组合、合成  (2) 抗氧抗腐剂:提高油品氧化安全性——防止金属氧化、催化陈旧延缓油品氧化速度隔绝酸性物与金属接触生成保护膜具有抗磨性  (3) 抗磨剂:在摩擦面的高温部分能与金属反应生成融点低的物质,节省油耗和振动噪音。  (4) 油性剂:都是带有极性分子的活性物质,能在金属表面形成牢固的吸附膜,在边界润滑的条件下,可以防止金属摩擦面的直接接触。  (5) 增粘剂:又称增稠剂,主要是聚俣型有极高分子化合物,增粘剂不仅可以增加油品的粘度,并可改善油品的粘温性能。  (6) 防锈剂:是一些极性化合物,对金属有很强的吸附力,能在金属和油的界面上形成紧密的吸附膜以隔绝水分、潮气和酸性物质的侵蚀;防锈剂还能阻止氧化、防止酸性氧化物的生成,从而起到防锈的作用。  (7) 抗泡剂:使气泡能迅速地溢出油面,失去稳定性并易于破裂,从而缩短了气泡存在的时间。  (8)极压剂:大部分都是硫化物、氯化物、磷化物,在高温下能与金属反应生成润滑性的物质,在苛刻条件下提供润滑。

  • 润滑油运动粘度性能指标概述

    润滑油运动粘度指标对负荷较大设备的润滑在润滑脂中都加入一定的极压或抗磨添加剂,以提高脂的极压抗磨性能。润滑脂的极压抗磨性能是很重要的指标,极压抗磨性能不好,就会导致设备的磨损严重,使设备损坏引发设备事故。  润滑油运动粘度指标的意义是什么  (1)密度  密度是润滑油简单、常用的物理性能指标。润滑油的密度随其组成中含碳、氧、硫的数量的增加而增大,因而在同样粘度或同样相对分子质量的情况下,含芳烃多的,含胶质和沥青质多的润滑油密度大,含环烷烃多的居中,含烷烃多的小。  (2)外观(色度)  油品的颜色,往往可以反映其精制程度和稳定性。对于基础油来说,一般精制程度越高,其烃的氧化物和硫化物脱除的越干净,颜色也就越浅。但是,即使精制的条件相同,不同油源和基属的原油所生产的基础油,其颜色和透明度也可能是不相同的。  对于新的成品润滑油,由于添加剂的使用,颜色作为判断基础油精制程度高低的指标已失去了它原来的意义。  (3)粘度指数  粘度指数表示油品粘度随温度变化的程度。粘度指数越高,表示油品粘度受温度的影响越小,其粘温性能越好,反之越差。  (4) 粘度  粘度反映油品的内摩擦力,是表示油品油性和流动性的一项指标。在未加任何功能添加剂的前提下,粘度越大,油膜强度越高,流动性越差。  (5)闪点  闪点是表示油品蒸发性的一项指标。油品的馏分越轻,蒸发性越大,其闪点也越低。反之,油品的馏分越重,蒸发性越小,其闪点也越高。同时,闪点又是表示石油产品着火危险性的指标。油品的危险等级是根据闪点划分的,闪点在45℃以下为易燃品,45℃以上为可燃品,,在油品的储运过程中严禁将油品加热到它的闪点温度。在粘度相同的情况下,闪点越高越好。因此,用户在选用润滑油时应根据使用温度和润滑油的工作条件进行选择。一般认为,闪点比使用温度高20~30℃,即可安全使用。  (6) 酸值、碱值和中和值  酸值是表示润滑油中含有酸性物质的指标,单位是mgKOH/g。酸值分强酸值和弱酸值两种,两者合并即为总酸值(简称TAN)。我们通常所说的"酸值",实际上是指"总酸值(TAN)"。  碱值是表示润滑油中碱性物质含量的指标,单位是mgKOH/g。  碱值亦分强碱值和弱碱值两种,两者合并即为总碱值(简称TBN)。我们通常所说的"碱值"实际上是指"总碱值(TBN)"。  中和值实际上包括了总酸值和总碱值。但是,除了另有注明,一般所说的"中和值",实际上仅是指"总酸值",其单位也是mgKOH/g。  (7)凝点和倾点  凝点是指在规定的冷却条件下油品停止流动的高温度。油品的凝固和纯化合物的凝固有很大的不同。油品并没有明确的凝固温度,所谓"凝固"只是作为整体来看失去了流动性,并不是所有的组分都变成了固体。

  • 电池测试系统润滑油系统说明

    电池测试系统是主要应用于新能源汽车的电池测试中,其作为新能源汽车的重要部件之一,无锡冠亚电池测试系统的性能是很重要的,其中,润滑油系统的地位也不低,也需要我们去慢慢了解的。  润滑油是运行不可缺少的重要辅助材料,润滑油能够减少制冷剂在压缩过程中由高压侧向低压侧的泄漏及减少相互间的机械摩损,润滑油可以冷却被压缩的制冷剂,油被喷入压缩机内,吸收制冷剂气体在压缩过程中产生的热量,降低排气温度润滑油可以对轴承起润滑作用润滑油能够传递压差力量,驱动容量调节系统, 经由压缩机的加卸载电磁阀的动作,调节容调滑块的位置,实现压缩机容量调节控制润滑油还可以降低运转噪音。因此,可以说电池测试系统组的使用好坏,都主要集中在油的选择及使用上及系统回油,冷却的设计上。  润滑油如果没有匹配好,将有可能造成压缩机烧坏,制冷系统瘫痪后,其影响不可估量。所以,电池测试系统上使用的润滑油比较好使用原厂匹配的产品。优质合适的润滑油能够让电池测试系统的制冷量更高,随之其效率更高。在电池测试系统润滑油更换时间上,一般建议电池测试系统每运转10000小时须检查或更换一次润滑油,且第一次运转后,2500小时建议更换一次润滑油并清洗或者更换机油过滤器。因系统组装的残渣在正式运转后都会累积至压缩机中。所以2500小时 (或3个月) 应更换一次润滑油,若没有条件的至少要更换一次油过滤器芯。  在电池测试系统更换润滑油时需要注意,不同牌号的润滑油切不可混用,尤其是矿物油和合成酯类油切不可混用如果更换不同牌号的润滑油,注意要将系统内残存的原润滑油排除掉有些油品因有吸湿的特性,所以不要将润滑油长期暴露在空气中。安装时尽可能缩短暴露的时间,并做好抽真空操作如果系统发生过压缩机电机烧毁故障,更换新机时要特别注意将系统残存的酸性物质去除,并在调试运转七十二小时后检查润滑油的酸度,建议更换润滑油和干燥过滤器,降低酸蚀的可能。此后运转一个月左右再次检测或更换一次润滑油如果系统曾发生过进水的事故,要特别注意将水分去除干净,除更换润滑油外,要特别注意检测油品的酸度,并及时更换新油和干燥过滤器。  电池测试系统在运行中,需要注意选择全密闭的循环管路,这一对于整体的运行效果都是有一定的好处。

  • 润滑油基础油需要化验哪些项目指标

    检测润滑油的理化性能,每一类润滑油脂都有其共同的一般理化性能,以表明该产品的内在质量,粘度、闪点、倾点、凝点、氧化性、抗水性、抗泡或空气释放性等等。一般常用的添加剂有:粘度指数改进剂,倾点下降剂,抗氧化剂,清净分散剂,摩擦缓和剂,油性剂,极压添加剂,抗泡沫剂,金属钝化剂,乳化剂,防腐蚀剂,防锈剂,破乳化剂,抗氧抗腐剂等

  • 润滑油-高温泡沫特性

    [font=&][size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-39596.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font]在高速传动装置、大容积泵送及飞溅润滑系统中,润滑油在高温下生成泡沫的倾向是一个重要问题。泡沫会造成润滑不充分、气穴现象及润滑剂因溢出而损失,这些都可导致机械故障[font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]将试样 加热到49℃,恒温30min后冷却至室温,然后将试样转移至带刻度的1000ml量筒内,并加热到150℃,以200mL/min的流速向金属扩散头内通干燥空气,通气5min, 测定停止通气前瞬间的静态泡沫量、运动泡沫量以及停止通气后规定时间的静态泡沫量,泡沫消失的时间和总体积增加百分数[font=&][size=16px][color=#333333]检测标准[/color][/size][/font][font=&][color=#333333][/color][/font][table][tr][td]产品名称[/td][td]检测项目[/td][td]检测标准[/td][/tr][tr][td]润滑油[/td][td]高温泡沫特性[/td][td]SH/T 0722[/td][/tr][tr][td]润滑油[/td][td]高温泡沫特性[/td][td]ASTM D6082[/td][/tr][/table][font=&][size=16px][color=#333333]我们的优势[/color][/size][/font][font=&][color=#333333][/color][/font][font=Arial, sans-serif]我司拥有专业润滑油脂检测能力人员,专业完成检测项目,同时配有全套的润滑油脂基础检测项目,可以一站式完成润滑油脂检测需求。拥有CNAS,CMA 双认证[/font][font=Arial, sans-serif][/font]

  • SRH润滑油脂抗磨损试验仪

    SRH润滑油脂抗磨损试验仪

    一、润滑油抗磨试验机参数:1、电压: 交流220V2、功率: 120W3、加载方式: 砝码杠杆加载4、钢珠: 14*145、电机转速: 1400r/min6、最大载荷: 156KG7、包装方式: 精美实木箱二、试验机的工作原理:SRH润滑油抗磨试验机专为润滑油及其添加剂企业定制,是根据美国环块试验机(梯姆肯试验机)的试验原理,对主要功能进行了简化设计,力求操作简单,性能可靠,快速直观地体现润滑油抗磨减摩性能。本款润滑油抗磨试验机采用一体化设计有效降低工作中的振动和噪音,其主要工作部件由一个随主轴旋转的摩擦环以及压在摩擦环上的固定摩擦柱构成,试验时在不同压力条件下,摩擦环与摩擦柱之间产生滑动摩擦。SRH润滑油抗磨试验机通过砝码及杠杆构成的加力系统,向磨擦副加压,使接触点上产生极高压强,在摩擦环转动过程中,加速摩擦柱(实验钢珠)的磨损来观测和评定润滑剂的承载能力的试验装置。在这种特定的润滑条件下,1分钟模拟试验相当于一般机件正常运转1年的磨损量。高档润滑油在同样负荷下磨损小,主轴转速不降或下降极小。因为润滑油抗磨试验机可以快速简洁地反映润滑油的抗磨减摩性能,因此经常用于抗磨性能比较好的润滑油或抗磨剂的生产、研发及推广。本润滑油抗磨试验机使用前应注意国内市电电压为交流220伏,以±5%为宜,电气系统要妥善接地,操作人员应有机械及用电安全的常识。[img=,586,316]https://ng1.17img.cn/bbsfiles/images/2019/08/201908081041117161_8138_3241799_3.png!w586x316.jpg[/img]

  • 润滑油检测的重要性

    润滑油是工业机器设备运行中极为关键的一环。正如人体中的血液对于健康,润滑油保护着设备的关键部件并改善其运行状态。通过血液检查能够了解人体的健康,同样,常规的油品分析能够帮助企业获得有价值的设备状态信息。油品分析基于一系列专为评估设备内部硬件及润滑油状态的测试,是一项通过分析油品成分监测设备状态的快速、非侵入性方法。润滑油的性能、污染物、磨损金属等因素由油品专家在实验室进行分析。通过定期测试,企业得以监控油品状况,确保机器及其它关键设备达到最佳使用寿命

  • 润滑油的凝点和倾点有什么差别

    润滑油:润滑油的凝点是指试油在规定条件下冷却至停止移动时的最高温度称为凝点,以℃表示。凝点是评价油品低温性能的一项指标。润滑油的凝点越高说明其低温流动性就越差,反之则亦然。油品的凝点与蜡含量有直接关系,油品中的蜡含量越多,凝点越高。因此凝点在石油产品加工工艺中可以指导脱蜡工艺操作。艾润克润滑油:润滑油的倾点是指在规定条件下,被冷却了的试油在温度升高的过程中能流动时的最低温度,以℃表示。倾点和凝点一样都是用来表示石油产品低温流动性能的指标。不同的是倾点和凝点的测试过程刚好相反,其测试值也不尽相同,但是对同一种润滑油品测试值趋于同一数值。

  • 润滑油要检测什么指标

    1 黏度:特定温度下液体油品的内摩擦力。  (1)运动黏度----工业用油(V40℃)、车辆用油(V100℃、)  (2)高温高剪切黏度  (3)低温动力黏度  2 黏度指数:指润滑油黏度随温度变化而变化的程度。  (1)粘度指数  (2) 运动黏度比  (3)黏—压系数  3 密度和相对密度:  (1)密度:在规定温度下,单位体积内所含物质的质量。  (2)相对密度:一定体积石油产品在给定温度时的质量与相同体积纯水在标准温度时的质量之比。  (3) 在用油历次密度检测时:密度逐渐升高---蒸发损失的大小  密度逐渐降低----混入燃料油残余物  4 色度:油品的外观颜色深浅。  (1)反映油品的精制程度和稳定性。  (2)在用油通过色度外观检查的历次对比,可粗略判断油品的氧化、进水、受异物污染等情况。  5 闪点和燃点:润滑油在规定条件下,加热到所逸出的蒸气与空气所形成的混合气与火焰接触发生瞬间闪火的低温度。  闪点是一个安全指标,用以鉴定油品发生火灾的危险性。  (1)在用油闪点降低:混入轻质油品。  (2)在用油闪点升高:严重氧化、轻质成分挥发。  6 凝点、倾点:润滑油在规定试验条件下冷却至停止流动时的高温度。  (1)凝点是前苏联试验方法、倾点时欧美方法,两者没有一一对应关系。  (2)油品推荐使用环境低温度一般情况下应:高于倾点8-10℃。  7 水分含量:包括--常规水分含量、微量水分含量  (1)润滑油中水分一般以三种状态存在:游离水、乳化水、溶解水  (2)在用油普遍含水量大大高于新油。  (3)水分在润滑油中危害:腐蚀、锈蚀、黏度上升、凝固、气阻、导电等。  8 机械杂质:润滑油中不溶于有机溶剂的沉淀物或者胶状悬浮物。  (1)在用油机械杂质含量的变化,可反映设备运行状况是否正常。  (2)加剂量大的油品、粘度高的油品,其机械杂质含量略大时正常现象。  (3)在用户在线油品服务中是一个极为重要的手段。  (4)液压油颗粒度控制是清洁液压油的一个主要指标。  9 酸值、碱值、中和值:润滑油中含有酸性、碱性物质的多少。  (1)在用油酸值变化可以考察出:油品氧化变质程度。  (2)在用发动机油碱值变化可反映:油品添加剂消耗情况及氧化变质程度。  10 抗泡沫性和空气释放值:油品油气分离能力。  (1)在用油抗泡沫性能下降程度可反应其本身氧化变质程度。  (2)在实际使用情况下,通常刚停机放出的油品多因搅拌、泵送、环境温度和压力变化的原因,会含有大量空气而呈乳白色;常温下稍静止后其乳白层会上移,直至消失。  (3)油品中含气量的多少会直接影响到运行平稳性。  11 抗乳化性(破乳化时间、抗乳化度):油水分离能力。  (1)添加剂加入量大的油品,其抗乳化性能会降低。  (2)在用油抗乳化性能随着使用程度的变化会逐渐降低。  (3)当油品中含水而呈现乳白色时,一般情况下会整体浑浊并极难分离,遇热源会发出“噼啪”爆裂声。  12 氧化安定性:指润滑油抵抗外界作用而保持其性质不发生性变化。  (1)氧化安定性的测定方法有:加抑制剂矿物油的氧化特性测定法  极压润滑油氧化性能测定法  润滑油老化特性测定法  旋转氧弹测定法  (2)氧化安定性分为:厚油层氧化----工业设备用油:  薄油层氧化(热氧化)---发动机油  (3)氧化安定性可反映油品有效使用寿命。  13 剪切安定性:指在规定条件下,石油产品抵抗剪切作用保持黏度和黏度有关的性质不变之能力。  (1)测定方法:超声波法、柴油喷嘴法、齿轮法和发动机台架(L-38)等。  (2)原因:多级内燃机油为了保证低温流动性和高温黏度保持性,加入了一定量的复合添加剂和抗剪切性较强的高分子聚合物,使润滑油在发动机内一定条件下进行剪切后,其黏度仍能满足原级别要求,从而防止机油粘度出现性失效,对发动机造成不良的影响。  (3)按照产品标准的要求,一般发动机油的剪切前后黏度变化率不大于产品标准规定范围即可满足实际使用要求。  14 橡胶密封适应性:润滑油对将胶密封件的收缩、溶胀性能。  (1)多数正规的矿物油型产品对橡胶密封件适应性很好(非标产品、假冒伪劣产品其性能较差);合成型产品一般对普通橡胶具有较大的溶胀和收缩作用,因而应选用特种橡胶件。  (2)液压油产品应强调其重要性。  (3)实际使用中油品温度的剧烈变化、油品黏度等级选择的偏小、油品使用设备的密封件损坏、润滑油供给系统压力巨变等都会带来严重的漏油发生。  15 极压抗磨性:分抗磨性(油性)和极压型两种工作方式  (1)油性是润滑油中的极性物在摩擦部位金属表面上形成坚固的理化吸附膜,从而起到耐高负荷和抗摩擦磨损的作用;  (2)极压性则是润滑油的极性物在摩擦部位金属表面上,受高温、高负荷发生摩擦化学作用分解,并和表面金属发生摩擦化学反应,形成低熔点的软质(或称具可塑性的)极压膜,从而起到耐冲击、耐高负荷高温的润滑作用。  (3)绝大多数齿轮油的极压性强、抗磨性一般,且油品呈较强酸性。  (4)发动机油具有一定的极压抗磨性,且油品呈较强碱性。  (5)液压油系列具有较强的抗磨性(油性),极压型一般。且油品呈酸性。  16 蒸发损失:油品在一定条件下通过蒸发而损失的量,用质量百分比表示。  (1)蒸发损失与油品的挥发度成正比。蒸发损失越大,实际应用中的油耗就越大,故对油品在一定条件下的蒸发损失量要有限制。液压油在使用中蒸发,还会产生气穴现象和效率下降,可能给正常工作和液压泵造成损害。  (2)我国测定润滑油蒸发损失的方法为诺亚克法:GB/T 7325;目前,该方法在我国主要用于合成润滑油的蒸发损失评定。  (3)通常情况下其损失率控制在18%以内即可。

  • 新能源专用测试系统润滑油更换周期说明

    一般来说,新能源专用测试系统是需要定期进行更换润滑油的,那么,无锡冠亚新能源专用测试系统在更换的时候需要注意哪些呢?润滑油有哪些作用呢?  新能源专用测试系统的润滑油的酸化会直接影响压缩机电机的使用寿命,因此应定期对新能源专用测试系统的润滑油检查的酸度是否合格。通常,如果润滑油的酸度低于PH6,则应更换润滑油的酸度。如果无法检查酸度,应定期更换系统的干燥过滤器,以保持系统在正常条件下的干燥。如果100ml冷冻油中的污染物超过5mg,这时候建议更换下冷冻油。  新能源专用测试系统活塞和汽缸之间,主轴和轴瓦之间均存在着快速的相对滑动,要防止零件过快的磨损,则需要在两个滑动表面间建立油膜。有足够厚度的油膜将相对滑动的零件表面隔开,从而达到减少磨损的目的。  新能源专用测试系统的润滑油能够将热量带回润滑油箱再散发至空气中帮助水箱冷却发动机。  对于无锡冠亚新能源专用测试系统来说,好的润滑油能够将发动机零件上的碳化物、油泥、磨损金属颗粒通循环带回润滑油箱,通过润滑油的流动,冲洗了零件工作面上产生的脏物。润滑油可以在活塞环与活塞之间形成一个密封圈,减少气体的泄漏和防止外界的污染物进入。润滑油能吸咐在零件表面防止水、空气、酸性物质及有害气体与零件的接触。当发动机气缸口压力急剧上升,会突然加剧活塞、活塞屑、连杆和曲轴轴承的负荷,这个负衔经过轴承的传递润滑,使承受的冲击负荷起到缓冲的作用。  另外,冠亚的新能源专用测试系统润滑油如果发生变质的话也会影响其性能以及功能的,所以搞好新能源专用测试系统润滑,也是一件比较重要的事情之一。

  • 【原创】精轧机润滑系统在线润滑油含水率监测

    一:前言:由于高速线材生产线用大量高压水冷却,冷却水不可避免的进入精轧机润滑系统。油液中含水分(游离水、乳化水、溶解水)会带来如下不利影响:破坏油膜的形成,使润滑效果变差,轴承腐蚀,影响传动设备正常寿命;促使油品氧化变质,加速有机酸对金属的腐蚀:使添加剂发生水解而失效;在低温时使油品流动性变差;高温时汽化,产生气阻,影响循环;导致油品粘度升高;此外由于油中含水量超标,还会导致油箱内含大量气泡,而出现浮动吸油口吸空等故障现象。二:目前的现状目前采取的措施主要是如何减少进水并把已经进入润滑油中的水有效地滤除。一般常用的双润滑油箱配备,一个油箱接入润滑,另一油箱的润滑油就有了足够的停歇时间这样能恢复润滑油中的抗磨、耐热、抗氧化、抗泡防锈等添加剂的稳定性,为沉降分离润滑油中的水分及杂质,提供充分必要的静置时间及外循环过滤分离的条件, 关于油水的分离,从现场使用情况看,水的游离状态或轻度乳化时,油水分离机除水效果较好当油乳化程度严重时,分离效果不理想,此时采用加热真空式油水分离设备,将是更有效的除水办法。因此,不仅要尽可能防止水进入润滑系统中,还要设法防止已进入的水与油形成乳化液。这就要求在发现冷却水进入时,及时采取措施,减少浮化液形成的可能性。测定润滑油中含水率目前则仍是采用离线分析测定方式-蒸馏法取样化验(GB/T260)润滑油的含水率。离线方式由于需要先取样再分析,不仅费力费时,成本高,而且测定结果的返回具有时间滞后性,在许多应用领域已逐渐被在线监测技术所替代。在线准确测定润滑油含水量,监测滑油中水分含量的变化趋势,防止因冷却器泄漏、密封垫漏水等会造成润滑油中水分含量短时间内显著增加这类情况引起设备重大事故的发生对指导生产具有重大的现实意义。三:精轧机润滑油失效机理分析精轧机一般使用的是油膜轴承油 常用的牌号有T100#,壳牌T22O#等。宝钢工业监测中心通过从线材高速轧机润滑系统大量进水后润滑油性能产生的变化、润滑油引起轴承失效原因的分析得出以下结论 1) 弹性流体动力润滑理论(EHD),通过对轴承润滑所需最小油膜厚度的分析讨论,可以发现对于线材高速轧机使用的油膜轴承油,进水后润滑油的密度被水稀释使得润滑油动力粘度η0减小,使最小油膜厚度变小。 2) 据润滑油不同含水量时其四球磨斑实验的结果可以发现,对于线材高速轧机使用的油膜轴承油当含水量超过0.5%时将使轴承产生失效的机率大增,如果含水量超过1%时极有可能在短期内即产生滚动轴承失效。 3) 滑油大量进水后引起轴承失效的形式有表面疲劳点蚀与锈蚀,其中点蚀是由于润滑油膜厚度形成与润滑油极压性能下降引起的,而锈蚀是由于润滑油中的游离水引起的,在这种状态下如果机械设备有一段时间的待机停转将会使锈蚀情况更加严重。三:传感器的选用目前常用的在线监测润滑油含水率主要利用油水介电常数的较大差异,通过测量油水混合后的介电常数的变化来去定油中含水率。目前还普遍存在检测结果精度较低许多方面有待于进一步完善。深圳先波科技研发生产的一种电化学阻抗谱(EIS)在线监测润滑油含水率变化的传感器。体积小,重量轻,结构可靠,使用方便,响应快,价格低。FWD-1机油含水传感器产品技术参数1. 测量方式: 柱塞探头,在线实时测量。2. 测量参数: 含水量 测量范围: 0.05% - 15%WT4. 分 辨 率: 0.05%5.输入电压: 直流5V 0.5A6. 输出信号:直流电压 0—5V7. 响应时间: 小于2秒8. 储存期限: 10年9 环境参数:储存温度:-40℃~120℃,工作温度:-30℃~120℃,本项目采用初步的实验室试验表明,该传感器可以在线准确测定润滑油含水量和其它氧化污染,从而精确测定润滑油质量。传感器采用螺纹连接,可广泛应用于各类大中型动力机械、齿轮箱、机泵和汽轮机的润滑油质量的实时监测中。四:取样位置的设计4.1 取样的原则 a.要有代表性和真实性b.要最大限度的携带设备润滑系统处于平衡状态时的信息c.杜绝被设备润滑系统以外的因素污染。4.2 取样的位置4.2.1

  • 润滑油失效原因

    1.润滑油失效的原因 (1)高温影响 ①润滑油长期处在高温环境中,会氧化失效,出现变黑、变稠的现象。 ②润滑油内部的腐蚀物增加,如发动机工作中形成的酸性物质等。 ③积炭、油泥、漆膜等物质的增加。 (2)杂质 主要来源于空气中的尘埃、金属磨粒、渗漏物(燃油、水等)、润滑油氧化物以及燃料燃烧产生的物质等。 (3)添加剂失效 一些润滑油因为其中的添加剂失效或用完而性能下降。例如润滑油中的抗磨剂用完,会使抗磨性下降。 (4)粘度指数增进剂失效 因为其有机物分子长链断裂,不再具有增粘作用。 (5)基础油失效 基础油是添加剂的载体,基础油失效则添加剂不会发挥作用。 2.机油失效的判断方法 虽然有国家标准来决定发动机的润滑油是否更换,但大多数车主或维修人员换油主要还是是根据汽车行驶里程/时间(厂家规定)以及润滑油颜色和粘度来判断。实际上,上述几种方法都有不合理之处。比如根据颜色进行判断,某些品牌新润滑油就呈现黑色,有些润滑油加入清净分散剂过多也可能变黑,而此时润滑油却没失效,对经验不足的人可能引起误判。较为简便有效的方式是借助于滤纸或电子仪器来判断润滑油是否失效。

  • 油品分析新品推荐|润滑油检测仪 泡沫特性测定仪

    油品分析新品推荐|润滑油检测仪 泡沫特性测定仪

    得利特(北京)科技有限公司20多年专注于油品分析仪器的研发和销售活动,我公司产品有:开口闪点测定仪,闭口闪点测定仪,运动粘度测定仪,微量水分测定仪,颗粒计数器,酸值测定仪、界面张力测定仪、石油密度测定仪,自然点测定仪,空气释放值测定仪、馏程测定仪等多种润滑油分析仪器、燃料油分析仪器、绝缘油分析仪器,水质分析检测仪器、气体检测仪器,型号多,可定制。A1083泡沫特性测定仪,测定润滑油(特指传动液和发动机油)在指定温度时的泡沫特性,用以评定润滑油的泡沫倾向性及泡沫稳定性程度。适用于化工、电力、石油等行业。 适用标准:SH/T0722《润滑油高温泡沫性能测定法》[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2021/06/202106111342567838_4958_3145235_3.jpg!w690x690.jpg[/img]1、采用高精度数字显示控温模式,具有控温精度高,显示直观,操作简便等特点,科技含量高,并配有数字电子计时功能。2、仪器采用分体、集成组合,移动方便,造型美观。

  • 润滑油常用检测指标及测定意义

    粘度  液体受外力作用移动时,液体分子间产生内摩擦力的性质,称为粘度。粘度随温度的升高而较低。它是润滑油的主要技术指标,粘度是各种润滑油分类分级的依据,对质量鉴别和确定用途等有决定性的意义。  我国常用运动粘度、动力粘度和条件粘度来表示油品的粘度。测定运动粘度的标准方法为GB/T 265、GB/T 11137,即在某一恒定的温度下,一定体积的液体在重力下流过一个标定好的玻璃毛细管的时间。粘度计的毛细管常数与流动时间的乘积就是该温度下液体的运动粘度。运动粘度的单位为m2/s,通常实际使用单位是mm2/s。国外相应测定油品运动粘度的标准方法主要有美国的ASTM D445、德国的DIN 51562和ISO 3105等。  某些油品,如液力传动液、车用齿轮油等低温粘度通常用布氏粘度计法来测定。我国的GB/T 11145、美国的ASTM D2983和德国的DIN 51398等标准方法。  粘度是评定润滑油质量的一项重要的理化性能指标,对于生产,运输和使用都具有重要意义。在实际应用中,绝大多数润滑油是根据其40℃时中间点运动粘度的正数值来表示牌号的,粘度是各种设备选油的主要依据;选择合适粘度的润滑油品,可以保证机械设备正常、可靠地工作。通常,低速高负荷的应用场合;选用粘度较大的油品,以保证足够的油膜厚度和正常润滑;高速低负荷的应用场合,选用粘度较小的油品,以保证机械设备正常的起动和运转力矩,运行中温升小。测定不同温度下粘度,可计算出该油品的粘度指数,了解该油品在温度变化下的粘度变化情况,另外,粘度还是工艺计算的重要参数之一。  粘度的度量方法分为粘度和相对粘度两大类。粘度分为动力粘度、运动粘度两种;相对粘度有恩氏粘度、赛氏粘度和雷氏粘度等几种表示方法。  粘度指数  粘度指数是一个表示润滑油粘度随温度变化的性质的参数。润滑油的粘度随温度的变化而变化:温度升高,粘度减小;温度降低,粘度增大。这种粘度随温度变化的性质,叫做粘温性能。通过将润滑油试样与一种粘温性较好(粘度指数定为100)及另一种粘温性较差(粘度指数定为0)的标准油进行比较,得出表示润滑油粘度受温度影响而变化程度的相对值。粘度指数(VI)是表示油品粘温性能的一个约定量值。粘度指数高,表示油品的粘度随温度变化小,油的粘温性能好。反之亦然。  石油产品的粘度指数可通过计算得到。计算方法在我国的GB/T 1995或美国的ASTM D2270、德国的DIN 51564、ISO2902、日本的JIS K2284等标准中有详细的说明。粘度指数还可以用查表法得到,我国的GB/T 2541。  粘温性能对润滑油的使用有重要意义,如发动机润滑油的粘温性能不好,当温度低时粘度过大,就会启动困难,造成能源浪费,而且启动后润滑油不易流到摩擦表面上,加快机械零件的磨损。如果温度过高,粘度变小,则不易在摩擦表面上产生适当的油膜,失去润滑作用,使机械零件的摩擦面产生擦伤和胶合等故障,另外,粘温性能好的润滑油可以在冬夏季节和我国的南方、北方地区通用。2.极压性能(PB、PD、ZMZ)  润滑油极压抗磨性能是齿轮油、液压油、润滑脂、工艺用油等润滑剂的重要性能指标。具有极压抗磨性能的油品,都必须进行极压抗磨性能的模拟评定。常用的模拟评定试验机有四球机、梯姆肯环块试验机、Falxe试验机、FZG齿轮试验机、Almen试验机、SAE试验机等等。应用比较普遍的有四球机、梯姆肯环块试验机、FZG齿轮试验机。  四球试验机模拟试验:测定润滑油脂的减摩性、抗磨性和极压性。减摩性用摩擦系数“f”表示和抗磨性能用磨痕直径“d”表示;极压性用无卡咬负荷“PB”、烧结负荷“PD”和综合磨损值“ZMZ”表示。国内标准试验方法有GB/T 3142润滑剂承载能力测定法、GB/T 12583润滑剂承载能力测定法、SH/T 0189润滑油磨损性能测定法、SH/T 0202润滑脂四球机极压性测定法、SH/T 0204润滑脂抗磨性能测定法。国外标准试验方法有ASTM D 2783润滑油极压性测定法、ASTM D4172润滑油抗磨性测定法、ASTM D2596润滑脂极压性测定法、ASTM D2266润滑脂抗磨性测定法。  无卡咬负荷PB(N),在试验条件下,使试验钢球不发生卡咬的无卡咬负荷,它代表油膜强度。  烧结负荷PD(N),在试验条件下,使试验钢球发生烧结的负荷为烧结负荷,它代表润滑剂的极限工作能力。  综合磨损值ZMZ(N),综合磨损值ZMZ是润滑剂在所加负荷下使磨损减少到小的抗极压能力的一个指数,它等于若干次校正负荷的平均值。3.氧化安定性  石油产品抵抗由于空气(或氧气)的作用而引起其性质发生性改变的能力,叫做油品的氧化安定性。润滑油的抗氧化安定性是反映润滑油在实际使用、贮存和运输中氧化变质或老化倾向的重要特性。  油品在贮存和使用过程中,经常与空气接触而起氧化作用,温度的升高和金属的催化会加深油品的氧化。润滑油品氧化的结果,使油品颜色变深,粘度增大,酸性物质增多,并产生沉淀。这些无疑对润滑油的使用会带来一系列不良影响,如腐蚀金属,堵塞油路等。对内燃机油来说,还会在活塞表面生成漆膜,粘结活塞环,导致汽缸的磨损或活塞的损坏。因此,这个项目是润滑油品必控质量指标之一,对长期循环使用的汽轮机油、变压器油、内燃机油以及与 压缩空气接触的空气压缩机油等,更具重要意义。通常油品中均加有一定数量的抗氧剂,以增加其抗氧化能力,延长使用寿命。  润滑油氧化安定性测定方法有多种,其原理基本相同,一般都是向试样中直接通入氧气或净化干燥的空气。在金属等催化剂的作用下,在规定温度下经历规定的时间观察试样的沉淀或测定沉淀值、测定试样的酸值、粘度等指标的变化。试验条件因油品而异,尽量模拟油品使用的状况。我国对内燃机油的氧化测定方法有SH/T0299-92和SH/T0192-92标准进行;汽轮机油SH/T 0193-92旋转氧弹法来测定其抗氧化性能;变压器油的氧化特性按SH/T 0206-92即电工委员会标准IEC74标准方法进行;中润滑油氧化安定性测定主要有GB/T 12581加抑制剂矿物油氧化特性测定法、GB/T 12709润滑油老化特性测定法(康氏残炭法)、SH/T 0123极压润滑油氧化安定性测定法进行。4.破乳化性  乳化是一种液体在另一种液体中紧密分散形成乳状液的现象,它是两种液体的混合而并非相互溶解。  抗乳化则是从乳状物质中把两种液体分离开的过程。润滑油的抗乳化性是指油品遇水不乳化,或虽是乳化但经过静置,油-水能迅速分离的性能。  两种液体能否形成稳定的乳状液取决于两种液体之间的界面张力。由于界面张力的存在,分散相总是倾向于缩小两种液体之间的接触面积以降低系统的表面能,即分散相总是倾向于由小液滴合并大液滴以减少液滴的总面积,乳化状态也就是随之而被破坏。界面张力越大,这一倾向就越强烈,也就越不易形成稳定的乳状液。  润滑油与水之间的界面张力随润滑油的组成不同而不同。深度精制的基础油以及某些成品油与水之间的界面张力相当大,因此,不会生成稳定的乳状液。但是如果润滑油基础油的精制深度不够,其抗乳化性也就较差,尤其是当润滑油中含有一些表面活性物质时,如清净分散剂、油性剂、极压剂、胶质、沥青质及尘土粒等,它们都是一些亲油剂和亲水基物质,它们吸附在油水表面上,使油品与水之间的界面张力降低,形成稳定的乳状液。因此在选用这些添加剂时必须对其性能作用作全面的考虑,以取得的综合平衡。  对于用于循环系统中的工业润滑油,如液压油、齿轮油、汽轮机油、,油膜轴承油等,在使用中不可避免地和冷却水或蒸汽甚至乳化液等接触,这就是要求这些油品在油箱中能迅速油-水分离(按油箱容量,一般要求6-30min分离),从油箱底部排出混入的水分,便于油品的循环使用,并保持良好的润滑。通常润滑油在60℃左右有空气存在并与水混合搅拌的情况下,不仅易发生氧化和乳化而降低润滑性能,而且还会生成可溶性油泥,受热作用则生成不溶性油泥,并剧烈增加流体粘度,造成堵塞润滑系统、发生机械故障。因此,一定要处理好基础油的精制深度和所用添加剂与其抗乳化剂的关系,在调合、使用、保管和贮运过程中亦要避免杂质的混入和污染,否则若形成了乳化液,则不仅会降低润滑性能,损坏机件,而且易形成油泥。另外,随着时间的增长,油品的氧化、酸性的增加、杂质的混入都会使抗乳化性的变差,用户必须及时处理或者更换。  乳化性是内燃机油、汽轮机油、油膜轴承油等油品不需要的,但又是饱和汽缸油、乳化液压油、切削油等油品极需要的。从节约能源的角度,金属加工用的乳化油本身就需要加入乳化剂,使乳化油具有良好的乳化安定性。  润滑油抗乳化性能测定法:目前被广泛采用的抗乳化性测定方法有两个方法。GB/T 7305是石油和合成液抗乳化性能测定法,本方法与ASTMD1401等效。本方法适用于测定油、合成液与水分离的能力。它适用于测定40℃时运动粘度为30-100mm2/s的油品,试验温度为(54±1)℃。它可用于粘度大于100mm2/s油品,但试验温度为(82±1)℃。其他试验温度也可以采用,例如25℃。当所测试的合成液的密度大于水时,试验步骤不变,但这时水可能浮在乳化层或合成液上面。GB/T 8022是润滑油抗乳性能测定法,本方法与ASTMD2711方法等同采用。本方法是用于测定中、高粘度润滑油与水互相分离的能力。本方法对易受水污染和可能遇到泵送及循环湍流而产生油包水型乳化液的润滑油抗乳化性能的测定具有指导意义。5.水分  润滑油中含水的质量称为水分,水分测定按GB/T 260-88石油产品水分测定法确定。  润滑油中的水分一般呈三种状态存在:游离水、乳化水和溶解水。一般来说,游离水比较容易脱去,而乳化水和溶解水就不易脱去。  润滑油中水分的存在,会促使油品氧化变质,破坏润滑油形成的油膜,使润滑油效果变差,加速有机酸对金属的腐蚀作用,锈蚀设备,使油品容易产生沉渣,而且会使添加剂(尤其是金属盐类)发生水解反应而失效,产生沉淀,堵塞油路,妨碍润滑油的循环和供应。不仅如此,润滑油的水分,在使用温度低时,由于接近冰点使润滑油流动性变差,粘温性变坏;而使用温度高时,水会汽化,不但破坏油膜而且产生气阻,影响润滑油的循环。另外,在个别油品例如变压器油中,水分的存在会使介电损失角急剧增大,而耐电压性能急剧下降,以至引起事故。总之,润滑油中水分越少越好,因此,用户必须在使用、储存中应精心保管油品,注意使用前及使用中的油料脱水。  检查润滑油中是否有水,有几个简单方法:(1)用试管取一定量的润滑油,如发现油变浑浊甚至乳化,由透明变为不透明,可认为油中有水分,将试管加热,如出现气雾或在管壁上出现气泡、水珠或有“劈啪”的响声,可认为油中有水分;(2)取一条细铜线,绕成线圈,在火上烧红,然后放入装有试油的试管中,如有“劈啪”响声,认为油中有水分;(3)用试管取一定量的润滑油,将少量硫酸铜(无水,白色粉沫)放入油中,如硫酸铜变为蓝色,也表示润滑油中有水分。  GB/T 260-77石油产品水分测定法的测定原理是利用蒸馏的原理,将一定量的试样和无水溶剂混合,在规定的仪器中进行蒸馏,溶剂和水一起蒸发出并冷凝在一个接受器中不断分离,由于水的密度比溶剂大,水便沉淀在接受器的下部,溶剂返回蒸馏瓶进行回流。根据试样的用量和蒸发出水分的体积,计算出测定结果。当水的质量数少于0.03%时,认为是痕迹;如果接受器中没有水,则认为试样无水。6.泡沫性  泡沫特性指油品生成泡沫的倾向及泡沫的稳定性。润滑油在实际使用中,由于受到振荡、搅动等作用,使空气进入润滑油中,以至形成气泡。因此要求评定油品生成泡沫的倾向性(ml)和泡沫稳定性(ml)。  这个项目主要用于评定内燃机油和循环用油(如液压油、压缩机油、齿轮油等)的起泡性。润滑油产生泡沫具有以下危害:1. 而稳定的泡沫,会使体积增大,易使油品从油箱中溢出;2.增大润滑油的压缩性,使油压降低。如液压油是靠静压力传递功的,油中一旦产生泡沫,就会使系统中的油压降低,从而破坏系统中传递功的作用。3.增大润滑油与空气接触面积,加速油品的老化。这个问题对空压机油来说,尤为严重。4.带有气泡的润滑油被压缩时,气泡一旦在高压下破裂,产生的能量会对金属表面产生冲击,使金属表面产生穴蚀。有些内燃机油的轴瓦就出现这种穴蚀现象。5.气泡的产生使循环系统的油箱的润滑油易溢出。  润滑油容易受到配方中的活性物质如清净剂、极压添加剂和腐蚀抑制剂的影响,这些添加剂大大地增加了油的起泡倾向。润滑油的泡沫稳定性随粘度和表面张力而变化,泡沫的稳定性与油的粘度成反比,同时随着温度的上升,泡沫的稳定性下降,粘度较小的油形成大而容易消失的气泡,高粘度油中产生分散的和稳定的小气泡。为了消除润滑油中的泡沫,通常在润滑油中加入表面张力小的消泡剂如甲基硅油和非硅消泡剂等。  在我国,润滑油的泡沫特性可按GB/T12579润滑油泡沫特性测定标准方法、SH/T 0722-2002润滑油高温泡沫特性测定法进行试验,先恒温至规定温度,再向装有试油的量筒中通过一定流量和压力的空气,记下通气5分钟后产生的泡沫体积(ml)和停气静止10分钟后泡沫的体积(ml)。泡沫越少,润滑油的抗(消)泡性越好。美国和日本分别用ASTM D892、JIS K2518标准方法评定。  航空润滑油可按GJB498-88航空涡轮发动机油泡沫特性测定法(静态泡沫试验),其方法概要是:向在24±0.5℃和93±0.5℃下恒温的两个泡沫试验量筒中的润滑油通入规定量的净化空气,通气5分钟后记下泡沫的体积,静置10分钟后再记录泡沫体积,93℃通气试验完毕后的试样在室温下冷却至43℃,再放入24±0.5℃恒温浴中,测其在该温度下的泡沫倾向和泡沫稳定性,整个试验必须在3小时内完成。7.润滑油的低温性能(CCS、BPT)  低温粘度测定法:用来测定发动机油在高剪切速率下、-50~-30℃时的低温粘度。所得结果与发动机的启动性有关。我国标准试验方法有GB/T 6538-86发动机油表观粘度测定法(冷启动模拟机法)。本试验方法是试验内燃机油的低温表观粘度。在保持规定温度的仪器转子和定子间充满试油,由直流电机驱动,测定转子的转数,通过转数与粘度的函数关系,由此求得油品在该温度时的表观粘度。国外标准试验方法有美国ASTM D 2602发动机润滑油低温下表观粘度测定法(CCS)。  低温泵送性测定法(BPT):用来预测发动机油在低剪切速率下、-40~0℃0范围内的边界泵送温度。我国标准试验方法有GB/T 9171-88发动机油边界泵送温度测定法。本法规定将试油由80℃用10h冷却到试验温度,恒温冷却共16h,然后在旋转粘度计上,逐渐施加规定的扭矩,并测出转动速度,再计算该温度的屈服应力和表观粘度。从三个以上的温度点的结果算出临界泵送温度。国外标准试验方法有美国ASTM D3830发动机润滑油边界泵送温度测定法(MRV)。8.抗剪切安定性  剪切安定性测定法:以油品的粘度下降率来评定其剪切安定性。主要用以评价含高分子聚合物润滑油(稠化油)的聚合物抗剪切能力,也是评定稠化油的性粘度下降的指标。我国的标准试验方法有SH/T 0505-92含聚合物油剪切安定性测定法(超声波剪切法)、SH/T 0200-92含聚合物润滑油剪切安定性测定法(齿轮机法)。国外标准试验方法有美国ASTM D 2603含聚合物润滑油超声剪切稳定性试验法。9.防锈性能  所谓防锈性,是指润滑油品阻止与其接触的金属部件生锈的能力。评定防锈性的方法很多,在工业润滑油规格中常见的方法是GB/T 11143加抑制剂矿物油在水存在下防锈性能试验法,该方法与ASTM D665方法等效。  GB/T1143方法概要是:将一支一端呈圆锥形的标准钢棒浸入300ml试油与30ml(A)蒸馏水或(B)合成海水混合液中,在60℃和以100r/min搅拌的条件下,经过24h后将钢棒取出,用石油醚冲洗,晾干,并立即在正常光线下用目测评定试棒的锈蚀程度。  锈蚀程度分如下几级:  无锈:钢棒上没有锈斑。  轻微锈蚀:钢棒上锈点不多于6个点,每个点的直径等于或小于1mm。  中等锈蚀:锈蚀点超过6点,但小于试验钢棒表面积的5%。  严重锈蚀:生锈面积大于5%。  水和氧的存在是生锈不可缺少的条件。汽车齿轮中,由于空气中湿气在齿轮箱中冷凝而有水存在,工业润滑装置如齿轮装置、液压系统和涡轮装置等由于使用环境的关系,也不可避免的有水浸入。其次,油中酸性物质的存在也会促进锈蚀,为提高油品的防锈性能,常常加入一些极性有机物,即防锈剂。10.机械杂质  机械杂质就是指存在于润滑油中不溶于汽油、乙醇和苯等溶剂的沉淀物或胶状悬浮物。机械杂质来源于润滑油的生产、贮存和使用中的外界污染或机械本身磨损,大部分是砂石和积碳类,以及由添加剂带来的一些难溶于溶剂的有机金属盐。  机械杂质的测定按GB/T 511-83石油产品和添加剂机械杂质测定法(重量法)进行。其过程是:称取100g的试油加热到70℃到80℃,加入2-4倍的溶剂,在已衡重的空瓶中的纸上过滤,用热溶剂洗净滤纸瓶再称重,定量滤纸的前后重量之差就是机械杂质的重量,由此求出机械杂质的质量分数。  机械杂质和水分、灰分、残炭都是反映油品纯洁性的质量指标,反映油品精制的程度。一般来讲润滑油基础油的机械杂质的质量分数都应该控制在0.005%以下(机械杂质在此以下认为是无),加剂后成品油的机械杂质一般都是增大,这是正常的。对用户来讲,测定机械杂质也是必要的,因为润滑油在使用、存储、运输中混入灰尘、泥沙、金属碎屑、铁锈及金属氧化物等,这些杂质的存在,将加速机械设备的磨损,严重时堵塞油路、油嘴和滤油器,破坏正常润滑。另外金属碎屑在一定的温度下,对油起催化作用,应该进行必要的过滤。但是,对于一些加有 添加剂油品的用户来讲,机械杂质的指标表面上看是大了一些(如一些的内燃机油),但其杂质主要是加入了多种添加剂后所引入的溶剂不溶物,这些胶状的金属有机物,并不影响使用效果,用户不应简单地用“机械杂质”的大小去判断油品的好坏,而是应分析“机械杂质”的内容,否则,就会带来不必要的损失和浪费。11.蒸发损失  油品的蒸发损失,即油品在一定条件下通过蒸发而损失的量,用质量分数表示。蒸发损失与油品的挥发度成正比。蒸发损失越大,实际应用中的油耗就越大,故对油品在一定条件下的蒸发损失的量要有限制。润滑油在使用过程中蒸发,造成润滑系统中润滑油量逐渐减少,需要补充,粘度增大,影响供油。液压液体在使用中蒸发,还会产生气穴现象和效率下降,可能给液压泵造成损害。蒸馏方法得到的数据只是粗略的结果,润滑油品的蒸发损失需专门方法测定。我国测定润滑油蒸发损失的方法为GB/T 7325润滑油和润滑脂蒸发损失测定法和SH/T 0055润滑油蒸发损失测定法(诺亚克法)。GB/T 7325方法是把放在蒸发器中的润滑油试样,置于规定温度的恒温浴中,热空气通过试样表面22h。然后根据试样的质量损失计算蒸发损失。根据该方法,润滑油品的蒸发损失可以在99-150℃内的任一温度下测定。目前,该方法在我国主要用于润滑脂和合成润滑油的蒸发损失评定。SH/T 0055方法是试样在规定的仪器中,在规定的温度和压力下加热1h,蒸发出的油蒸气由空气流携带出去。根据加热前后试样量之差测定润滑油的蒸发损失。国外主要的测定方法有:美国的ASTM D972、德国的DIN 51581和日本的JIS K2220 (5.6)等。12.清净分散性  发动机润滑油在发动机工作条件下,会产生多种污染物(包括氧化物、水分、金属颗粒、碳黑粒、酸、末完全燃烧物),这些污染物会使活塞表面覆盖一层漆膜。加有清净分散剂的润滑油可以阻止污染物粘结成团或粘结在金属表面上,抑制氧化反应,且能中和酸性氧化物,使污染物以溶胶状态分散地悬浮于油中,防止不溶物的沉积。这种性能的总和叫作发动机润滑油的清净分散性。  SH/T0645《柴油机油清浮性测定法(热管氧化法)》作为评定发动机润滑油清净性的手段之一。热管氧化试验是一种内燃机油高温氧化模拟台架试验设备,专门针对发动机活塞环等部件在工作过程中形成漆膜和积碳的机理而设计的试验方法。主要用于内燃机油高温清净性的实验室评定,考察油品中各类添加剂组分对油品的热氧化安定性、清净分散性等综合性能的影响。利用此类模拟试验技术可在进行IH2、IG2、IK等发动机台架试验之前,预先 筛选油品配方及评选各类添加剂的表现。试验测定的数据显示与台架试验结果有良好的相关性。SH/T 0300曲轴箱模拟试验法用于评定添加剂和含添加剂内燃机油的热氧化安定性,是科研工作中评选清净剂、抗氧抗腐剂和油品复合配方的一种模拟试验方法。该方法是使含添加剂内燃机油飞溅到高温金属表面形成漆膜,以此模拟曲轴箱油在活塞工作时的成漆情况,并用在试验机油箱内挂铅片的发放模拟曲轴箱油在气[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]氧化状态下对发动机零部件的腐蚀。通过测定金属板上的漆膜评级和胶重,考察油的热氧化安定性。将250ml试样在规定条件下,在模拟试验机内运行6h后,考察形成漆膜和成胶的情况。13.酸值  中和1克油品中的酸性物质所需要的氢氧化钾毫克数称为酸值,用mgKOH/g表示。  酸值表示润滑油品中酸性物质的总量。油品中所含有的有机酸主要为环烷酸、环烷烃的羟基衍生物。这些酸性物质对机械都有一定程度的腐蚀性。特别是在有水分存在的条件下,其腐蚀性更大,尤其是对铝和锌,腐蚀的结果是生成金属皂类,这样的皂类会引起润滑油加速氧化,同时,皂类渐渐积累,会在油中成为沉淀物。另外,润滑油在贮存和使用过程中被氧化变质,酸值也会逐渐变大,因此常用酸值变化大小来衡量润滑油的氧化安定性。故酸值是油品质量中应严格控制的指标之一。对于在用油品,当酸值增大到一定数值时,就必须换油。  测定酸值的方法分为两大类,一类是颜色指示剂法,即根据指示剂的颜色来确定滴定的终点,如我国的GB/T 264或SH/T 0163、美国的ASTM D974和德国的DIN51558等。另一类为电位滴定法,即根据电位变化来确定滴定终点,主要用于深色油品的酸值测定。这类方法有我国的GB/T 7304和美国的ASTM D664等。14.水分  润滑油中的水分一般呈三种状态存在:游离水、乳化水和溶解水。一般来说,游离水比较容易脱去,而乳化水和溶解水就不易脱去。润滑油中含水量的质量分数称为水分,水分测定按GB/T 260-88石油产品水分测定法确定。  润滑油中水分的存在,会促使油品氧化变质,破坏润滑油形成的油膜,使润滑油效果变差,加速有机酸对金属的腐蚀作用,锈蚀设备,使油品容易产生沉渣,而且会使添加剂(尤其是金属盐类)发生水解反应而失效,产生沉淀,堵塞油路,妨碍润滑油的循环和供应。不仅如此,润滑油的水分,在使用温度低时,由于接近冰点使润滑油流动性变差,粘温性变坏;而使用温度高时,水会汽化,不但破坏油膜而且产生气阻,影响润滑油的循环。另外,在个别油品例如变压器油中,水分的存在会使介电损失角急剧增大,而耐电压性能急剧下降,以至引起事故。总之,润滑油中水分越少越好,因此,用户必须在使用、储存中精心保管油品,注意使用前及使用中的油料脱水。  检查润滑油中是否有水,有几个简单方法:(1)用试管取一定量的润滑油,如发现油变浑浊甚至乳化,由透明变为不透明,可认为油中有水分,将试管加热,如出现气雾或在管壁上出现气泡、水珠或有“劈啪”的响声,可认为油中有水分;(2)取一条细铜线,绕成线圈,在火上烧红,然后放入装有试油的试管中,如有“劈啪”响声,认为油中有水分;(3)用试管取一定量的润滑油,将少量硫酸铜(无水,白色粉沫)放入油中,如硫酸铜变为蓝色,也表示润滑油中有水分。  GB/T 260-77石油产品水分测定法的测定原理是利用蒸馏的原理,将一定量的试样和无水溶剂混合,在规定的仪器中进行蒸馏,溶剂和水一起蒸发出并冷凝在一个接受器中不断分离,由于水的密度比溶剂大,水便沉淀在接受器的下部,溶剂返回蒸馏瓶进行回流。根据试样的用量和蒸发出水分的体积,计算出测定结果。当水的质量数少于0.03%时,认为是痕迹;如果接受器中没有水,则认为试样无水。15.铜片腐蚀  金属表面受周围介质的作用或电化学的作用而被损坏的现象,称为腐蚀。石油产品的腐蚀试验是用以衡量油品的防腐蚀性能的一种方法。腐蚀试验是一种定性的试验方法,它主要是检查油品中是否含有对金属产生腐蚀作用的有害杂质,大多采用对铜片的腐蚀试验。  铜片腐蚀试验对硫化氢或元素硫的存在是一个非常灵敏的试验。通过铜片腐蚀试验,可以判断油品是否有活性硫化物,可以预知油品在储运和使用时对金属腐蚀的可能性。  GB/T 5096石油产品铜片腐蚀试验,这是目前工业润滑油主要的腐蚀性测定法,本方法与ASTM D130-83方法等效。试验方法概要是:把一块已磨光好的铜片浸没在一定量的试样中,并按产品标准要求加热到指定的温度,保持一定的时间。待试验周期结束时,取出铜片,在洗涤后与标准色板进行比较,确定腐蚀级别。工业润滑油常用的试验条件为100℃(或120℃),3h。  SH/T 1095润滑油腐蚀试验方法,本方法用于试验润滑油对金属片的腐蚀性。除非另行规定,金属片材料为铜或钢。其试验原理与GB/T 5096方法基本相同,其主要的差别在于:一、试验结果只根据试片的颜色变化,判断合格或不合格;二、试验金属片不限于铜片。  GB/T 391-88发动机润滑油腐蚀度测定法,测定内燃机油对轴瓦(铅铜合金等)的腐蚀度。该方法是模拟粘附在金属片表面上的热润滑油薄膜与周围空气中氧定期接触时,所引起的金属腐蚀现象。铅片在热到140℃的试油中,经50小时的试验后,依金属片的重量变化确定油的腐蚀程度,以g/m2表示。  汽车制动液对金属的腐蚀性,除了应按GB/T 5096进行100℃、3h的铜腐蚀试验外,还须进行叠片腐蚀试验。根据GB 12981标准的附录C,用马口铁、10号钢、LY12铝、HT200铸铁、H62黄铜、T2紫铜等六种金属试片按一定顺序联接在一起,在100℃下试验120小时,试验结束后测定试片的重量的变化。16.闪点(开口、闭口);  在规定条件下,加热油品所逸出的蒸汽和空气组成的混合物与火焰接触发生瞬间闪火时的温度称为闪点,以℃表示。  润滑油闪点的高低,取决于润滑油的馏分组成,润滑油中是混入轻质组分和轻质组分的含量多少,轻质润滑油或含轻质组分多的润滑油,其闪点就较低。相反,重质润滑油的闪点或含轻质组分少的润滑油,其闪点就较高。  润滑油的闪点是润滑油的贮存、运输和使用的一个安全指标,同时也是润滑油的挥发性指标。闪点低的润滑油,挥发性高,容易着火,安全性差,润滑油挥发性高,在工作过程中容易蒸发损失,严重时甚至引起润滑油粘度增大,影响润滑油的使用。重质润滑油的闪点如突然降低,可能发生轻油混入事故。  从安全角度考虑,石油产品的安全性是根据其闪点的高低而分类的:闪点在45℃以下的为易燃品,闪点在45℃以上的产品为可燃品。  闪点的测定方法分为开口杯法和闭口杯法。开口杯法用以测定重质润滑油和深色润滑油的闪点,方法是GB/T 267和GB/T3536。闭口杯法用以测定闪点在150℃以下的轻质润滑油的闪点,方法为GB/T 261。同一种润滑油,开口闪点总比闭口闪点高,因为开口闪点测定器所产生的油蒸汽能自由地扩散到空气中,相对不易达到可闪火的温度。通常开口闪点要比闭口闪点高20-30℃。  国外测定润滑油闪点(开口)的标准有美国的ASTM D92,闭口闪点有ASTM D93、ISO2719等。17.总碱值  总碱值表示在规定条件下,中和存在于1g油品中全部碱性组分所需的酸量,以相当的氢氧化钾毫克数表示。总碱值是测定润滑油中有效添加剂成分的一个指标,表示内燃机油的清净性与中和能力。总碱值表示试样中含有有机和无机碱、胺基化合物、弱酸盐如皂类、多元酸的碱性盐和重金属的盐类。内燃机油的总碱值则可间接表示其所含清净分散剂的多少。因而总碱值为内燃机油的重要质量指标。在内燃机油的使用过程中,分析其总碱值的变化,可以反映出润滑油中添加剂的消耗情况。  石油产品总碱值测定可按SH/T 0251石油产品碱值测定(高氯酸电位滴点法)和SH/T 0688石油产品和润滑剂碱值测定法(电位滴点法)方法进行。前一个方法是以石油醚-冰乙酸为溶剂,用0.1N高氯酸标准溶液进行非水滴定来测定石油产品和添加剂中碱性组分的含量。后一个方法是将试样溶于甲苯、异丙醇、三氯甲烷组成的混合溶剂中,用0.1mol/L盐酸异丙醇标准溶液进行电位滴定,从滴定曲线上确定滴定终点。18.凝点和倾点  润滑油试样在规定的试验条件下冷却至液面停止流动时的温度称为凝点。而试样在规定的试验条件下,被冷却的试样能够流动的温度称为倾点。凝点和倾点都是表示油品低温流动性的指标,二者无原则差别,只是测定方法有所不同。同一试样测得的凝点和倾点并不是完全相等,一般倾点都高于凝点1-3℃,但也有两者相等或倾点低于凝点的情况。国外常用倾点(流动点),我国也一般采用倾点这个标准。  温度很低时,粘度变大,甚至变成无定型的玻璃状物质,失去流动性。因此在生产、运输和使用润滑油时因根据环境条件和工况选用相适应的倾点(或凝点)。  润滑油凝点测定法(GB/T 510)测定的基本过程是:将试样装入试管中,按规定的预处理步骤和冷却速度进行试验。当试样温度冷却到预期的凝点时,将浸在冷剂中的仪器倾斜45度保持1min后,取出观察试管里面的液面是否有过移动的迹象。如有移动时,从套管中取出试管,并将试管重新预热,然后用比上次试验温度低4℃或其它更低的温度重新进行测定,直至某试验温度时液面位置停止移动为止。如没有移动,从套管中取出试管,并将试管重新预热,然后用比上次试验温度高4℃或其它更高的温度重新进行测定,直至某试验温度时液面位置有了移动为止。找出凝点的温度范围(即液面位置从移动到不移动或从不移动到移动的温度范围)之后,采用比移动的温度低2℃或采用比不移动的温度高2℃,重新进行试验,直至确定某试验温度能使试样的液面停留不动而提高2℃又能使液面移动时,就取使液面不动的温度作为试样的凝点。润滑油倾点测定法(GB/T 3535)试验的基本过程是:将清洁的试样注入试管中,按方法所规定的步骤进行试验。对倾点高于33℃的试样,试验从高于预期的倾点9℃开始,对其它的倾点试样则从高于其倾点12℃开始。每当温度计读数为3℃的倍数时,要小心地把试管从套管中取出,倾斜试管到刚好能观察到试管内试样是否流动,取出试管到放回试管的全部操作要求不超过3s。当倾斜试管,发现试样不流动时,就立即将试管放在水平位置上,仔细观察试样的表面,如果在5s内还有流动,则立即将试管放回套管,待温度降低3℃时,重复进行流动试验,直到试管保持水平位置5s而试样无流动时,纪录观察到的试验温度计读数,再加3℃作为试样的倾点。19.灰分  在规定条件下,油品完全燃烧后剩下的残留物(不燃物)叫做灰分,以质量分数表示。灰分主要是润滑油完全燃烧后生成的金属盐类和金属氧化物所组成。通常基础油的灰分含量都很小。在润滑油中加入某些高灰分添加剂后,油品的灰分含量就会增大。  发动机燃料中灰分增加,会增加汽缸体的磨损。润滑油灰分过大,容易在机件上发生坚硬的积炭,造成机械零件的磨损。  我国使用GB/T 508-85石油产品灰分测定法和GB/T 2433-88添加剂和含添加剂润滑油硫酸盐灰分测定法标准测定润滑油等石油产品的灰分。同GB/T 508-85方法相当的国外标准方法主要有美国的ASTM D482等。  对添加剂、含添加剂的润滑油的灰分一般采用GB/T 2433-88标准方法测定,其测定结果称之为硫酸盐灰分。国外相应的标准有美国的ASTM 874和德国的DIN 51575等。20.残炭  在规定条件下,油品在进行蒸发和热解,排出燃烧的气体后,所剩余的残留物叫残炭,以质量分数表示。残炭是表明润滑油中胶状物质、沥青质和多环芳烃叠合物的间接指标,也是矿物型润滑油基础油的精制深浅程度的标志,润滑油中含硫、氧和氮化合物较多时,残炭就高。一般精制深的油品残炭小。对于一般的润滑油来说,残炭没有单独的使用意义,但对内燃机油和压缩机油,残炭值是影响积炭倾向的主要因素之一,油品的残炭值越高,其积炭倾向越大,在压缩机汽缸、胀圈和排气阀座上的积炭就多,在高温下容易发生爆炸。  对于添加剂含量高的油品主要控制其基础油的残炭,而不控制成品油的残炭。  残炭测定法有电炉法和康氏法两种。通常多采用后者。我国标准是GB/T268-87石油产品残炭测定法,此方法是将准确称出一定量的油品放入康氏残炭测定器中,加热至高温,使里层坩埚中的试样温度达到600℃左右,在隔绝空气的条件下,严格控制预热期、燃烧期、强热期3个阶段的加热时间及加热强度,使试样全部蒸发及分解。将排出的气体点燃,待气体燃烧完后,进行强热,使之形成残炭。后按称出物的重量,计算出被测物的残炭值。国外测定石油产品残炭的标准主要有:美国ASTM D189和德国DIN 51551等。21.锥入度  在规定的负荷、时间和温度条件下,标准园锥体以垂直方向在5秒钟内刺入润滑脂样品的深度,称为润滑脂的锥入度,单位以1/10mm表示。  润滑脂是由一种(或几种)稠化剂和一种(或几种)润滑液体所组成的具有可塑性的润滑剂。锥入度是各种润滑脂常用的控制稠度的指标,是选用润滑脂的依据之一。各国润滑脂一般用锥入度对润滑脂进行分号,润滑脂的号数越小,其锥入度数值就越大,表示它的稠度越小。我国将润滑脂的稠度按锥入度范围分为9个等级。22.滴点  将润滑脂装入滴点计的脂杯中,在规定的试验条件下加热,当从脂杯中分出并滴下滴液体(或流出油柱25mm)时的温度,称为润滑脂的滴点。  滴点是润滑脂的耐热性指标。通过测定滴点,就可测定润滑脂从不流动状态转变为流动状态的温度,因此可以用滴点大体上决定润滑脂可以有效使用的温度(一般使用温度要低于滴点10~30℃)。测定滴点可以大致判断润滑脂的类型和所用的稠化剂。  润滑脂滴点测定法有:GB/T4929《润滑脂滴点测定法》;GB/T3498《润滑脂宽温度范围滴点测定法》23.抗腐蚀性和防锈性(铜片腐蚀、轴承防绣性)  润滑脂的抗腐蚀性和防锈性主要是控制与金属接触时不致发生锈蚀作用,反映润滑脂的保护性能。润滑脂的腐蚀性取决于游离有机酸和碱的含量,润滑脂使用中的腐蚀性,主要是在使用过程中,由于受氧化作用而生成低分子的有机酸。防锈性主要是表面活性物质防锈剂,如磺酸盐、环烷酸盐、羧酸盐及一些酯类化合物。  测定润滑脂的抗腐蚀性对润滑脂的使用具有重要意义,特别对“防护”润滑脂更为重要,因为它的主要用途是防止金属配件不受腐蚀。对于“抗磨”润滑脂也必须首先考虑其是否对轴承金属具有腐蚀作用。  润滑脂防锈性能测定通常用GB/T 5018润滑脂防腐蚀性测定,该方法适用于测定在潮湿状态下涂有润滑脂的锥形滚子轴承的防腐蚀性能。试验时将涂有试样的新轴承,在轻负荷推力下运转60秒钟,使润滑脂向使用情况那样分布。轴承在52±1℃, 相对湿度下存放48小时。然后清洗并检查轴承外圈滚道的腐蚀迹象。该方法中腐蚀是指轴承外圈滚道的任何表面损坏(包括麻点、刻蚀、锈蚀等)或黑色污渍,国外测定方法ASTM D1743。  润滑脂腐蚀试验测定使用GB/T 7326润滑脂铜片腐蚀试验法,试验在规定的温度、时间条件下,试验铜片全部浸入润滑脂试样中,试验分甲法、乙法,试验结束后,甲法是将试验铜片与铜片腐蚀标准色板进行比较,确定腐蚀等级。乙法是检查试验铜片有无变色。甲法等效ASTM D4048,乙法等效JIS K2220。24.胶体安定性(钢网分油)  润滑脂在贮存中能避免胶体分解、防止液体润滑油从润滑脂中析出的能力,通常称为润滑脂的胶体安定性。但是,分油是润滑脂的一种特性,任何一种润滑脂都有分油现象。胶体安定性差的润滑脂容易析出润滑油,即皂油容易分离。润滑脂的胶体安定性取决于很多因数,诸如皂—油之间的溶解度、皂的再结晶速度、体系内部的化学变化、外界压力、环境温度和胶溶剂的发挥等等。  皂-油分离直接导致润滑脂稠度的改变和它的流失。润滑脂的胶体安定性与其组成和加工工艺有关,润滑脂的稠化剂含量较多或润滑脂基础油粘度较大时,析出的油就较少;而润滑脂的稠化剂含量较少或润滑脂基础油粘度较小时,析出的油就较多。  测定润滑脂胶体安定性有好几个方法,其中SH/T 0324润滑脂钢网分油测定法是其中之一。润滑脂在规定的试验条件下,试样装在60目的金属丝钢网中,在规定温度和静止的状态下,经30h后,测定经过钢网流出油的质量分数。

  • 润滑油常用检测指标及测定意义-极压性能(PB、PD、ZMZ)

    极压性能(PB、PD、ZMZ)  润滑油极压抗磨性能是齿轮油、液压油、润滑脂、工艺用油等润滑剂的重要性能指标。具有极压抗磨性能的油品,都必须进行极压抗磨性能的模拟评定。常用的模拟评定试验机有四球机、梯姆肯环块试验机、Falxe试验机、FZG齿轮试验机、Almen试验机、SAE试验机等等。应用比较普遍的有四球机、梯姆肯环块试验机、FZG齿轮试验机。  四球试验机模拟试验:测定润滑油脂的减摩性、抗磨性和极压性。减摩性用摩擦系数“f”表示和抗磨性能用磨痕直径“d”表示;极压性用无卡咬负荷“PB”、烧结负荷“PD”和综合磨损值“ZMZ”表示。国内标准试验方法有GB/T 3142润滑剂承载能力测定法、GB/T 12583润滑剂承载能力测定法、SH/T 0189润滑油磨损性能测定法、SH/T 0202润滑脂四球机极压性测定法、SH/T 0204润滑脂抗磨性能测定法。国外标准试验方法有ASTM D 2783润滑油极压性测定法、ASTM D4172润滑油抗磨性测定法、ASTM D2596润滑脂极压性测定法、ASTM D2266润滑脂抗磨性测定法。  无卡咬负荷PB(N),在试验条件下,使试验钢球不发生卡咬的无卡咬负荷,它代表油膜强度。  烧结负荷PD(N),在试验条件下,使试验钢球发生烧结的负荷为烧结负荷,它代表润滑剂的极限工作能力。  综合磨损值ZMZ(N),综合磨损值ZMZ是润滑剂在所加负荷下使磨损减少到小的抗极压能力的一个指数,它等于若干次校正负荷的平均值

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制