当前位置: 仪器信息网 > 行业主题 > >

连续土壤气体通量监测系统

仪器信息网连续土壤气体通量监测系统专题为您提供2024年最新连续土壤气体通量监测系统价格报价、厂家品牌的相关信息, 包括连续土壤气体通量监测系统参数、型号等,不管是国产,还是进口品牌的连续土壤气体通量监测系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合连续土壤气体通量监测系统相关的耗材配件、试剂标物,还有连续土壤气体通量监测系统相关的最新资讯、资料,以及连续土壤气体通量监测系统相关的解决方案。

连续土壤气体通量监测系统相关的论坛

  • 土壤中吡虫啉的检测

    土壤中吡虫啉的检测

    前言吡虫啉又名咪蚜胺、蚜虱净,是[url=https://baike.baidu.com/item/%E7%83%9F%E7%A2%B1/4832691%22 \t %22https://baike.baidu.com/item/%E5%90%A1%E8%99%AB%E5%95%89/_blank]烟碱[/url]类超高效杀虫剂,主要通过选择性控制昆虫神经系统烟碱型乙酰胆碱酶受体,阻断昆虫中枢神经系统的正常传导,从而导致害虫出现麻痹进而死亡。该类杀虫剂具有高效、低毒、低残留,害虫不易产生抗性,对人、畜、植物和天敌安全等特点,并有触杀、胃毒和内吸多重药效,且其防治对象广,可广泛用于水稻、棉花、蔬菜等各种农作物。为了对农作物中的农药残留进行实时的监督管理,保障人民健康,建立合理、快速的检测方法是非常有必要的。传统的土壤中吡虫啉萃取方法为液液萃取方法,费时费力,本文使用全自动高效快速溶剂萃取系统对土壤中的吡虫啉进行萃取,最后经[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]检测,建立了一套高效快捷的土壤中吡虫啉萃取检测方法。经过实验,使用本方法土壤中吡虫啉回收率为93.02%~98.32%,RSD为2.31%,实验得到较高的回收率和良好的重现性。关键词:土壤,吡虫啉,Flex-HPSE,M64,SPE 10001实验过程1.1仪器与试剂Flex-HPSE 全自动高效快速溶剂萃取系统;[color=black]高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url][/color];SPE 1000全自动固相萃取系统;M64高通量平行浓缩系统;吡虫啉标准工作液标液:10μg/mL;固相萃取柱:Labtech CARB石墨炭黑固相萃取柱500mg/6mL;乙腈(色谱纯);甲苯(分析纯);固相萃取洗脱液:乙腈:甲苯=3:1(体积比);硅藻土:置于马弗炉中450℃烘4h,冷却后贮于玻璃瓶中于干燥器内保存。1.2实验方法1.2.1土壤样品提取准确称量10g土壤样品和5g硅藻土,混合均匀,装入22mL萃取罐中。同样方法装填好两个萃取罐后,置于Flex-HPSE中(双通道同时运行,可自动连续萃取多个样品),萃取方法如下图。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210091019086670_3030_5237388_3.png[/img][/align][align=center]图1 土壤中吡虫啉快速溶剂萃取方法[/align]1.2.2净化及浓缩将萃取后的样品置于M64高通量平行浓缩系统氮吹浓缩,待样品浓缩至大约1mL时取出,待净化。使用SPE 1000全自动固相萃取系统进行净化实验,固相萃取方法如图2。净化完成后,将样品再次置于M64高通量平行浓缩系统氮吹浓缩,浓缩至近干,用[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]流动相定容至1mL后上机检测。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210091019089336_889_5237388_3.png[/img][/align][align=center]图2 土壤中吡虫啉固相萃取净化方法[/align]1.2.3样品加标回收率实验按1.2.1方法装填样品的过程中,加入50μL吡虫啉标准工作液,加标浓度为50μg/kg,然后按照1.2.1~1.2.2方法进行实验,共进行两组4个平行样品,最后用流动相定容至1mL,用来测定加标回收率。1.3.3[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]检测条件色谱柱:C18,柱长250mm,内径4.6mm,粒径5μm,或性能相当者;流动相:乙腈:水=25:75;流速:1.0mL/min;紫外检测波长:270nm;柱温:30℃;进样量:20μL。2实验结果2.1吡虫啉色谱图2.1.1吡虫啉标品色谱图下图为吡虫啉标品色谱图。[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210091019090254_4222_5237388_3.png[/img][align=center]图3 吡虫啉标品色谱图[/align]2.1.2土壤中吡虫啉加标样品色谱图下图为土壤中吡虫啉加标样品色谱图。[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210091019091104_4837_5237388_3.png[/img][align=center]图4 土壤中吡虫啉加标样品色谱图[/align]2.1.3土壤中吡虫啉空白样品色谱图下图为土壤中吡虫啉空白样品色谱图。从图中可以看出空白样品中没有吡虫啉检出。[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210091019091983_6955_5237388_3.png[/img][align=center]图5 土壤中吡虫啉空白样品色谱图[/align]2.2 土壤中吡虫啉加标回收率用[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]检测土壤中吡虫啉加标回收率计算结果如下表,加标回收率为93.02%~98.32%,RSD为2.31%。[align=center]表1 土壤中吡虫啉回收率[/align][table][tr][td=1,2][align=center]标样[/align][/td][td=1,2][align=center]出峰时间(min)[/align][/td][td=1,2][align=center]加标浓度([size=13px]μg/kg[/size])[/align][/td][td=7,1][align=center]回收率(%)[/align][/td][td][align=center]平均值(%)[/align][/td][td][align=center]RSD(%)[/align][/td][/tr][tr][td][align=center]1[/align][/td][td=2,1][align=center]2[/align][/td][td=2,1][align=center]3[/align][/td][td=2,1][align=center]4[/align][/td][/tr][tr][td][align=center][color=black]吡虫啉[/color][/align][/td][td][align=center][color=black]8.60[/color][/align][/td][td][align=center][color=black]50[/color][/align][/td][td=2,1][align=center][color=black]93.02[/color][/align][/td][td=2,1][align=center][color=black]98.32[/color][/align][/td][td=2,1][align=center][color=black]96.57[/color][/align][/td][td][align=center][color=black]95.53[/color][/align][/td][td][align=center][color=black]95.86[/color][/align][/td][td=2,1][align=center][color=black]2.31[/color][/align][/td][/tr][/table]3结论与讨论使用全自动高效快速溶剂萃取系统对土壤中的吡虫啉进行萃取,高通量平行浓缩系统浓缩,全自动固相萃取系统净化,最后经[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]检测,建立了一套高效快捷的土壤中吡虫啉萃取检测方法。经检测,使用本方法土壤中吡虫啉的加标回收率为93.02%~98.32%,RSD为2.31%,回收率高,重现性良好。参考标准1、GB/T 19649-2006 谷粮中475种农药及相关化学品残留量的测定 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱法

  • 【转帖】全国耕地土壤监测技术规程

    1 范围本规程规定了实施土壤监测过程中监测点的建立、监测的内容、观测记载、分析测试及编写报告的技术规程。本规程适用于全国耕地的土壤监测。2.术语2.1 土壤监测土壤监测指土壤基础地力监测。是通过土壤调查、化验,植株分析,田间作业及作物生长情况与产量记载等方法,对土壤的理化性状和生产能力,进行动态监测。2.2 土壤基础地力耕地土壤的地形地貌、成土母质特征,农田基础设施及培肥水平,土壤理化性状等综合构成的耕地生产能力。2.3 监测点为进行土壤长期定位监测而设置的观测、试验、取样的地块。3 监测点的处理3.1 不施肥处理(空白区)旱地小区面积0.1亩以上,用设置保护行、垒区间小埂等方法隔离 。水稻土小区面积0.05-0.1亩,用水泥板或其它材料作隔板,防止肥、水渗透,隔板高0.6-0.8m,厚0.05m.埋深0.3-0.5m,露出地面0.3m。该处理连续进行三年后停止。蔬菜不设置无肥区。3.2 常规措施处理面积不小于0.5亩或直接用大田定点观测。以当地主要种植制度、种植方式为主(见附录B),耕作、栽培等管理方式、施肥能代表当地一般水平。4 土壤监测内容4.1 气象调查收集气象台哨或记载监测点所在地常年的几项主要气象要素数据。按表1的项目调查与记载。4.2 监测点基本情况的调查与记载4.2.1 土壤环境与农业生产情况拍摄景观照片。按表1的项目调查与记载。4.2.2 基础剖面的观察与记载挖掘基础剖面,采集剖面样,拍摄剖面彩色照片。按表2要求进行剖面形态描述与记载。4.2.3 基础剖面样的采集与化验按剖面发生学层次取样。建点时取样化验一次。化验项目见表24.3 监测农化样的采集与化验农化样分为五年一次和每年一次采集与化验两种形式,在本年度最后一季作物收获后,立即在监测地块采集土样。4.3.1 五年一次农化样采集与化验建点时不分处理区采集土样。以后每五年一次,在常规施肥区采集土样。水稻土按耕层和犁底层,旱地按耕层、亚耕层分层采取混合土样,每一个样要求有20个以上的取样点采土混匀。化验项目见表3。4.3.2 每年一次农化样采集与化验在每年度最后一季作物收获后,立即在监测地块的常规施肥区采集土样。水稻土、旱地只采集耕层,蔬菜地采集耕层和亚耕层土样。每个样要求有20个以上取样点采土混合。化验项目见表34.4 植株样的采集与分析选择主要作物的主栽品种(各大区主要作物见附录B),每种作物在每季作物收获前采集常规施肥区有代表性的植株样本。大株作物取5株以上,小株作物20株以上。果实与茎叶分别分析。(蔬菜不测定养分含量)化验项目见表34.5 测定方法土壤监测测试方法表分析项目 引用标准 测试方法土壤 机械组成 吸管法或比重计法(质地分类参见附录D)容重 环刀法酸碱度 pH计法(水土比1:1)碳酸钙 GB 9835?8 气量法、重量法或容量法交换量 EDTA-铵盐快速法或其它方法有机质 GB 9834?8 重铬酸钾滴定法全氮 GB 7173?7 硫酸-硫酸钾-硫酸铜消煮蒸馏滴定法碱解氮 扩散法全磷 GB 9837?8 氢氧化钠熔融-钼锑抗比色法有效磷 GB 12297?0 碳酸氢钠浸提-钼锑抗比色法全钾 GB 9836?8 氢氧化钠熔融-火焰光度计法缓效钾 硝酸煮沸浸提-火焰光度计法速效钾 醋酸铵浸提-火焰光度计法速 Cu DTPA浸提-[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计法效 Zn DTPA浸提-[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计法微 Fe DTPA浸提-[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计法量 Mn DTPA浸提-[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计法元 B GB 12298?0 沸水浸提-姜黄素比色法素 Mo 极普法或硫氰酸钾比色法植株 全氮 过氧化氢消煮蒸馏法或扩散法全磷 过氧化氢消煮钼锑抗比色法全钾 过氧化氢消煮火焰光度计法主要参考资料:1、《土壤理化分析》,南京土壤研究所,上海科学技术出版社2、《农化分析》,南京农业大学,农业出版社3、《土壤农业化学常规分析方法》,中国土壤学会农业化学专业委员会,科学技术出版社4.6 监测年度的计算方法对于一年两熟、一年三熟或两年三熟制地区,年度计算以冬作前一年的播种整地的时间为始到当年最后一季作物收获为止。对于一年一熟制地区,只种一季冬作(冬小麦)实行夏季休闲或只种一季春作(玉米、谷子、高粱、棉花、中稻)实行冬季休闲的,年度计算以前季作物收获后开始,到该季作物收获为止。种植绿肥与种植其它作物一样处理、观测和记载。4.7 田间作业记载监测员对全年度当日田间作业情况记载在表4上,主要作业内容包括:4.7.1 作物种植记载一年度内每季作物的名称、品种(注明是常规品种或杂交品种)、播期、播种方式、收获期等。4.7.2 耕作耕、耙、中耕、除草时间、次数。4.7.3 施肥基肥、追肥次数和用量,施肥的时间与所处的作物生育时期、方式 (撒施、穴施、条施、根外施等)、肥料品种、化肥有效养分的百分数等。4.7.4 灌排灌溉设施(井、渠、提)、灌水次数、时间、水量,排水方式 (明沟或暗沟)和效果,地面连续降水量(mm)和排除的时间、地下水位降低深度。4.7.5 病虫害防治病虫害种类、发生时间、危害程度、防治方法与防治效果。4.7.6 风、雨、雹、旱、涝、霜、冻、冷等灾害出现的时间及强度。4.7.7 其他对监测地块有影响的自然、人为因素。4.8 作物产量的测定对处理区的每季作物分别进行果实与茎叶产量的测定。果实产量测定可以去边行后实打实收。也可以随机取样测定,全田块取五个以上面积1-2m2(小麦)、5-10m2(玉米)的样方实脱测产。为便于取样,把1-2m2或5-10m2换算成穴数或米垄数。茎叶产量根据小样本进行果实与茎叶重量比的考种数据换算。保证有足够的单株数量,一般穴播作物考种取10穴;条播细秆作物取1米垄;条播粗秆作物取5-10米垄(蔬菜不测产,棉花分籽棉和秸秆测产,并把籽棉折成皮棉)。产量按表5中项目填写4.9 施肥整理与计算一年度内每季作物的施肥情况分别进行整理和计算,按表4中项目填写4.10 监测点年度资料汇总表按监测点年度资料汇总表3项目填写。5 建立耕地土壤监测数据管理系统5.1 国家级耕地土壤监测数据管理系统建立与要求全国农业技术推广服务中心建立国家级耕地土壤监测数据管理系统,该系统要有录入、修改、查询、统计、输出等功能,包括表1、表2、表3中的全部内容。5.2 省级耕地土壤监测数据管理系统建立与要求各地按照全国农业技术推广服务中心建立的国家级土壤监测数据管理系统建立省级耕地土壤监测数据管理系统,内容要包括表1、表2、表3中的全部内容。省级耕地土壤监测数据管理系统主要是为各省录入国家级土壤监测点数据,并上报全国农业技术推广服务中心,并且把省、地、县三级监测点也应当纳入计算机统一管理,以加快数据的传输与处理。6 编写报告6.1 土壤监测年度报告内容6.1.1 主要指当年耕地质量现状评估,并与上年耕地质量状况比较。如土壤养分(有机质、氮、磷、钾)、施肥量(有机肥和化肥)、作物产量的变化分析。6.1.2 通过对各级土壤监测点、肥料试验及有关统计资料等的分析,提出区域性的配方施肥方案,合理利用耕地以及保持和提高耕地质量的措施和对策。6.2 中、长期(五年、十年)耕地质量报告内容6.2.1 不同等级耕地类型的数量变化及现状评估:如吨粮田建设标准和现有的数量;中低产田的标准和现有数量等。6.2.2 耕地质量变化趋势评估,如土壤肥力变化规律,尤其是土壤有机质、氮、磷、钾养分的消长情况;改造中低产田的数量和投入;施肥量(有机肥和化肥)的变化;几种主要耕作制度对耕地质量的影响;作物产量变化;氮、磷、钾肥的肥效变化;耕地增产潜力分析等。6.2.3 提出合理利用耕地以及保持和提高耕地质量的措施和对策。

  • 气体\土壤检出限换算

    1.以1.0L/min采集气体60min,标准中给出的检出限为0.04mg/m3 ,那么如果采样的时候调整采样时间为45min,共计采样体积45L,此时的检出限是否是60*0.04/45=0.05mg/m32.土壤中取样量0.5g,电容到50ml,标准中检出限为0.5mg/kg,那如果在实验员在实验时土壤取样量去了0.3g,其他步骤与标准要求相同,此时该指标的检出限是否需要换算,如果可以换算请问具体是怎么换算的,是否有依据??还是说本身没按照标准取样就是错误的,必须按照标准一样进行实验3.一般对气体会进行检出限换算,未遇到过土壤中换算检出限,为什么气体的可以进行换算检出限的计算??是否有依据(有点搞蒙了,求各位帮忙解惑一下)

  • CEMS 烟气排放连续监测系统

    烟气排放连续监测系统(CEMS),主要应用于对各种工业废气源的连续监测中,如火电厂,垃圾焚烧厂,煤炭、石油化工厂,造纸厂等行业。随着大气污染问题的日益突出,政府对工厂和企业废气排放的监督也更加重视。如何对一个工厂的烟气排放进行监控,并判断是否达到排放标准,这都得依靠CEMS来完成。CEMS有两个很重要的目的是分别对固体颗粒物浓度和污染性气体含量进行检测,而在这些气体中二氧化硫(SO2)是一种对环境危害性比较大的气体,需要二氧化硫传感器来进行测量。CEMS主要由气态污染物监测子系统、颗粒物浓度监测子系统、排放流量参数监测子系统和数据采集处理与通讯系统组成。这里对二氧化硫含量的监测属于气态污染物监测子系统,二氧化硫气体传感器通过对经处理后废气中二氧化硫的测量,判断所排放含量是否达到要求,是否要进一步进行脱硫处理。同时二氧化硫气体传感器的测量值也为可能需要的进一步处理提供了数据上的依据,能起到提高脱硫效率的作用。

  • 土壤微生物繁殖会释放温室气体 或加速全球变暖

    据报道,刊登在《自然》杂志的一项研究成果称,大气中的二氧化碳会促进土壤微生物的繁殖,释放出更多的温室气体甲烷和氧化亚氮,这意味着大自然在减缓全球变暖上并未有如以往所想的那样高效率。  研究人员包括都柏林圣三一学院的吉斯·吉勒里让、北亚利桑那大学的布鲁斯·亨格特和弗洛里达大学的克雷格·奥森伯格教授,他们搜集了迄今为止主要涉及北美、欧洲、亚洲范围的森林、草原、湿地和稻田等农耕用地的49个不同实验项目的数据。这些实验有共同的主题,即测试大气层中的额外二氧化碳对土壤如何吸收和释放气体甲烷和氧化亚氮的影响。  该研究小组对所有数据进行分析后发现:额外的二氧化碳在所有的生态系统中促进了土壤里氧化亚氮的释放,在稻田和湿地中导致土壤释放更多的甲烷。而这个“罪魁祸首”是土壤中特化的微生物,它吸入化学物硝酸盐和二氧化碳,产出温室气体甲烷和氧化亚氮。前者比二氧化碳强效25倍,后者高至300倍。  植物生长是生态系统减缓气候变化的主要方法之一,植物通过光合作用减少空气中的二氧化碳。但布鲁斯·亨格特说道:“植物吸收的二氧化碳越多,微生物释放出的温室气体就越多。”额外的二氧化碳为微生物提供了燃料,催生了其排至大气的副产品氧化亚氮和甲烷,最终抵消了更多的植物生长的冷却效应。

  • 【转帖】全国耕地土壤监测管理办法

    第一章 总 则   第一条 耕地土壤监测是保护耕地质量和保证我国农业可持续发展的重要工作,根据《基本农田保护条例》规定,制定本办法。   第二条 本办法所指土壤监测管理,包括土壤监测点设置、样品采集分析化验、资料整理与应用、人员的选择、培训与表彰、经费来源与使用等。   第三条 国家级土壤监测的管理必须按本办法和《全国土壤监测技术规程》(以下简称“规程”)执行,省、地(市)、县各级耕地土壤监测可参照执行,或结合各地实际,制定适合当地的管理办法和技术规程。   第四条 国家级土壤监测的管理工作,由农业部委托全国农业技术推广服务中心负责。县级以上农业主管部门(土肥站、测试中心、农技中心)负责本行政区域土壤监测管理工作。   第二章 土壤监测点的设置   第五条 监测点主要设在商品粮棉基地、优质农产品基地、出口创汇产品基地及大城市郊区永久性蔬菜地。充分考虑各地区的主要耕作制度、土壤类型、分布面积、生产能力、地理位置、管理水平、技术投入等具有代表性的地块上。国家级土壤监测点设立保护性标志,设点尽量避开城镇、村庄、道路,最好设在永久性基本农田保护区内。国家级监测点长期保持不变,如必须变动,报农业部批准。   第六条 土壤监测实行国家和地方分级负责制,形成国家、省、市、县四级监测体系。国家级监测点在“九五”期间控制在250个点以内。国家级与省级监测点至少按1:3配套,省级与地市级监测点按1:3配套,地市级与县级监测点按1:3配套,形成金字塔式的监测体系。   第三章 土壤监测的分析化验   第七条 国家级土壤监测点的土壤和植株样由各省、自治区、直辖市指定在省级土肥测试中心进行。没有省级土肥测试中心的省份,要在全国农业技术推广服务中心同意的前提下,指定在同等水平的土肥测试中心或化验室完成分析化验任务。在分析过程中都要加入标准样进行质量控制。   第八条 国家级土壤监测点的土壤和植株样(指分析样),必须在省级土肥测试中心保存一定的时间,便于对以后的分析结果进行比较。   第四章 土壤监测资料的上报、管理与应用   第九条 县级监测主持人按“规程”要求认真填写土壤监测原始资料表和采集土壤与植株样,审定无误后,报省级土肥部门。省级土肥部门将土壤与植株样送交指定测试中心进行分析化验并对其结果和县上报的原始资料再次审定无误后,认真计算和填写监测点基本情况调查表(表1)、监测点剖面记载与测试结果表(表2)、监测点年度资料汇总表(表3)。   第十条 各省每年五月底以前将上年监测点年度资料汇总表(表3)和土壤监测年度报告上报全国农业技术推广服务中心,并发布全省土壤监测年度报告。全国农业技术推广服务中心及时进行整理分析,并于当年七月底前完成并发布上年度全国耕地土壤监测年度报告,为有关部门提供服务 。   第十一条 建立省级土壤监测数据数据管理系统,每年定时更新数据。各省在上报年度报表时,必须同时报送数据磁盘。   第十二条 必须建立严格的档案制度。县监测主持部门负责保管每个监测点的原始档案材料。省监测主持部门负责保管县级上报的每个监测点的档案材料。全国农业技术推广服务中心保管省级上报的每个监测点的档案材料,并建立全国土壤监测数据管理系统。   第十三条 土壤监测成果主要为农业综合开发,中低产田改良,吨粮田建设,化肥的生产和科学施肥等提供重要依据,并提出耕地地力建设对策。其作用分为两个方面,一要为领导决策提供依据,起到参谋的作用;二要为农民服务,有针对性地提出解决区域性土壤存在问题的对策。   第十四条 土壤监测的技术资料和成果按其任务下达权限,归主管部门所有,未经许可,不可单方转让、发布有关技术材料。各级土肥部门和人员都有对监测资料加强管理和实行保密的责任和义务。   第五章 土壤监测人员的选择、培训与表彰   第十五条 省级监测主持人员要有大专以上学历、工作认真、科学严谨,熟悉农业生产和计算机应用;地县级监测主持人要具有中专以上学历、工作认真、熟悉当地农业生产;农民监测员要要有初中以上文化知识,经过土壤监测技术培训,认真负责,事业心强,诚实可信,种田技术能代表当地一般水平。   第十六条 为提高土壤监测人员的素质,保证土壤监测质量。全国农业技术推广服务中心将适时组织省级土壤监测人员进行有关数据处理方面的培训。省级土壤监测主持部门(土肥站、测试中心、农技中心)不定期的组织市、县和农民监测员进行有关土壤监测技术规程方面的培训。   第十七条 对在全国耕地土壤监测工作中,成绩突出的单位和个人,每3-5年进行一次表彰。   第六章 土壤监测经费   第十八条 国家级土壤监测点的经费由农业部事业费支付,主要用于国家级监测点土壤调查、化验,植株分析,赔产,资料汇总等。   第十九条 省、市、县各级土壤监测经费由同级农业主管部门,协调有关计划、财务主管部门,以专项事业经费等形式予以解决,以确保此项工作正常开展。

  • 【金秋计划】污染土壤修复热脱附工艺系统组成包括哪些

    污染土壤修复热脱附工艺系统组成: 1、燃料系统。热脱附技术采用管道输送燃气,燃气管道上安装有调压阀,确保进入燃烧器的燃气压力满足设备要求。 2、加热系统。加热系统的设计关键是加热井点布置,须综合考虑污染物的浓度、工期要求及现场的平面布置等因素。 3、抽提系统。整个修复区域外设有防渗阻隔墙,确保区域外的地下水不会流入。抽提系统一般设计为竖向SVE井和水平SVE管,通过在土壤中形成负压来抽提加热产生的污染气体。抽提管的长度与加热管一致,同时确保抽提范围能覆盖到整个修复区域。 4、地面保温系统。井管系统安装完毕后,一般在表面覆盖一层25 mm厚的隔热材料和25 mm 厚的混凝土用作隔热层,然后再安装燃烧器和地面管道等。设置混凝土隔热层一方面可减少热量 散失,并确保现场操作的安全;另一方面还可防止污染物扩散,避免运行时造成二次污染。 5、温度监测和传输系统。该系统在整个加热过程中,对单个燃烧器的燃烧状况、压力以及土 壤中关键位置的温度、压力等参数进行实时监测和数据传输,从而实现对整个过程的实时监控。修复区域中的单个燃烧器可以单独控制,也可以组合控制,以达到温度梯度和能量消耗优化结果。[font=微软雅黑][color=#666666]  6、尾水尾气处理系统。在加热过程中,土壤中的污染物从土壤中解吸出来,形成含污染物的 蒸汽。含污染物的蒸汽被抽提井抽取至地表,然后进入后续的尾水及尾气系统处理。尾水统一收 集输送至现场污水处理站进行处理;尾气统一收集输送至现场尾气处理站,经过一级气水分离、 冷凝、二级气水分离后,少量不凝气体进入到蓄热式氧化炉或燃烧室中完成处理,达标排放标准。[/color][/font]

  • 多功能土壤农药残留检测仪可以循环检测吗

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=16px]多功能土壤农药残留检测仪可以循环检测吗,多功能土壤农药残留检测仪可以进行循环检测。这种检测仪通常具有多个检测通道,能够同时或连续对多个样品进行检测。完成一个样品的检测后,仪器会自动或手动切换到下一个样品进行检测,从而实现循环检测的功能。循环检测功能使得多功能土壤农药残留检测仪能够高效、连续地对大量样品进行农药残留检测,提高了检测效率。同时,仪器通常还具备数据存储和打印功能,可以将检测结果进行保存和打印,方便后续的数据分析和处理。需要注意的是,在使用多功能土壤农药残留检测仪进行循环检测时,应确保仪器处于正常工作状态,并按照说明书或操作手册的要求进行正确操作。此外,还应定期对仪器进行维护和校准,以保证其检测结果的准确性和可靠性。综上所述,多功能土壤农药残留检测仪的循环检测功能使得其能够高效、连续地对土壤样品进行农药残留检测,为土壤污染监测和治理提供了有力的技术支持。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/04/202404291123288055_8620_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 【分享】烟气排放连续监测系统在水泥厂的应用前景

    为了控制水泥工业的大气污染物排放,促进水泥工业产业结构调整,国家环境保护总局组织中国环境科学研究院、合肥水泥研究设计院、中国材料工业科工集团公司起草了新的《水泥工业大气污染物排放标准》(GB4915-2004)。新的排放标准要求从2005年1月1日起,新、改、扩建水泥生产线,水泥窑排气筒应当安装烟气颗粒物、二氧化硫和氮氧化物连续监测装置;烘干机、烘干磨、煤磨及冷却机排气筒应当安装烟气颗粒物连续监测装置;对现有水泥生产线,应当逐步安装连续监测装置,各省、自治区、直辖市人民政府环境保护部门应当根据水泥工业结构调整和达标进展情况制定安装计划。近年来国内企业也日益重视环境监测问题和完善监测系统,越来越多的电厂、石化、冶金企业已率先开始进行烟尘和SO2浓度监测,而国内水泥生产企业则相对开始的较晚,但随着新的水泥行业大气排放标准的颁布实行,水泥企业也日益重视环境监测问题和完善监测系统,所以烟气排放连续监测系统(CEMS)在水泥厂的应用前景很好。欧美发达国家环境治理、保护的实施与优化得益于环境参数的检测或监测水平的提高,不仅大量采用了先进的测控仪表与计算机系统,而且各企业在环境监测与保护方面投入巨资进行全方位的检测、监控与管理。上个世纪90年代,我国也开始环境监测自动在线监测仪的开发研制。目前,仍处在发展中,国产化进程较慢,烟气排放在线监测系统(CEMS)使用成功与否的关键在于检测仪表的选型设计与系统的集成,因过程分析面对的困难与问题很多:高温、高粉尘、高水份、负压及腐蚀性等恶劣气体条件;应保证必要的检测准确度;应有较快的反应速度;应易安装、易标定;防尘、防溅、防腐等防护要求;应有较高的自动化程度,较少的维护工作量。一、水泥厂污染源的主要分布与特点水泥厂的污染源主要分布在以下几个生产环节中:1.水泥回转窑窑尾是水泥生产环节中粉尘排放量最大的排放点,窑外分解窑尾烟尘浓度为60g/m3~80g/m3,这一环节的污染物成分复杂,除粉尘、烟尘外,还有二氧化硫、氮氧化物、氟化物等有害气体。2.烘干机、烘干磨、煤磨、冷却机、破碎机、磨机、包装机及其他通风生产设备污染物主要为固体颗粒物排放浓度大。二、分析气体成分针对水泥厂污染源的特点,新标准只要求对水泥窑及窑磨一体机需进行气体分析。一般可以有几种分析气体成分的方法,过去主要采用传统的分析方法,如化学分析法、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法;其缺点是必须对烟气进行人工取样,在实验室进行分析,其中操作者的操作技能对分析的精度有很大影响;而且传统方法只能单一成分地逐个进行检测分析,不具备多重输入和信号处理功能;分析费时,响应速度慢,效率低,难以实现在线监测。而现在主要采用最新光学技术,在不影响被测气体本身状态时于烟道上进行实时的直接测量。该方法具有以下特点:利用SO2对一定波长紫外光的强吸收特性消除其他成分影响;可测范围大。但采用此类检测方式的仪表价格很高,关键部件往往需要进口。而另一种红外线式较适合水泥厂的应用,它基于非分光红外吸收测量法的原理,具有理想的抗干扰能力;其性能指标优越,重复性好,性价比较高。三、测量粉尘浓度国家环保总局颁布的《水泥工业大气污染物排放标准》中规定水泥厂几大污染环节都必须进行粉尘浓度的在线监测。因为新标准对粉尘浓度这一指标要求较高,所以对于连续监测系统(CEMS)的准确度要求也就更高。目前国外主要采用光透射原理——当可控光源穿过带有微小颗粒的气体时,一个高灵敏的传感器可检测出被微小颗粒吸收的光能,并将其与参比光进行比较,从而确定透射值或浊度值,再进一步得出粉尘浓度值。国内在该领域的技术也比较成熟,国产化程度较高。此类仪表具有以下特点:以光学技术为基础,自动完成测量、控制、线性测试以及污染物检测功能,反应速度快、无采样处理过程;带有反吹装置,防止光学镜头面不受污染;具备快速切断阀,可在吹扫装置失效后自动保护仪器;安装简便,发射与检测单元可通过法兰安装在烟管两侧。四、水泥厂安装监测系统的建议监测系统设计应考虑开放性、低成本、高可靠性和良好的扩充性。因此,针对不同测量对象特征,采用最适用的自动测量仪表,在通讯解决方案上有多种方式可选:无线通讯方案有其优点,如易解决通讯问题,可降低成本,可简化安装,采用大功率天线可增加通讯距离等,但利小于弊,一是水泥厂现场环境恶劣,大量房屋和炉窑等设施会阻塞或影响调频信号的传输;二是电气、电力设施多会产生复杂多样的电磁干扰,受约束因素多。因此在通讯方面还要进行不断改进,以便更好地进行监控。随着光学技术、计算机技术与自动检测等新技术的发展,许多以前难以检测的非电量(如实现水泥厂炉窑、塔罐烟气排放点的自动采样与预处理,粉尘与SO2等主要污染因子和烟气流量的在线监测)均得以解决,这将有利于促使岗位作业人员及时调整与监控脱硫、除尘等环保设施的运行状态,加强达标排放管理,这对于水泥厂排放点的有效监测与管理有着积极而重要的意义。

  • 土壤“三普”丨土壤检测技术专家答疑集锦

    [font=&]不论是过去还是现在,土壤一直是农业生产不可或缺的重要条件,可以说没有没有充足的土壤资源作为支撑,人类很难养活自己,所以土壤的重要性就不言而喻了。从2月16日起,我国第三次全国土壤普查正式开启。时隔40年再次启动普查任务,意义重大。[/font][font=&]3月30日信立方旗下 我要测网联合多家在土壤检测领域头部会员单位及科研院所、高校等专家领导,成功举办了主题为《助力“土壤普查”,保护绿色未来—土壤分析检测技术》的专题网络研讨会。13位报告嘉宾与上千TIC人线上互动交流,共话最新土壤分析检测技术,助力全国第三次土壤普查。各位老师的现场答疑来了![/font][size=24px][color=#ff0000][b]以下问题解答在一楼[/b][/color][/size][font=&]1、问:感谢老师分享,土壤形态提取初学,想问一下:常用到KCl和磷酸盐,能分别简要讲解一下这两种盐的各自作用吗?谢谢![/font]2、问:715三次读数测定,Cu,Cr元素的读数RSD<5%,但是pb的三次读数RSD会达到20%左右,这个怎么解决,谢谢。3、这样可有效提升稳定性。RSD也会变好些。问:铝,硅,钛能用ICP_MS检测吗?[font=&]4、土壤中全硅铝那种方法快速?[font=&]5、关于土壤重金属前处理中酸量怎么探究?[/font][font=&]6、水浴王水消解土壤测汞时,如何减少过程空白?[/font][font=&]7、水浴王水消解土壤测汞时,GSS-4浓度高于定值2倍,怎么解决?[/font][font=&]8、土壤汞的消解怎么处理比较好?[/font][font=&]9、六价铬用碱溶法容易导致[/font][url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff][color=#3333ff]原子吸收[/color][/color][/url][/font][font=&]仪积盐,有什么好的方法避免吗?[/font][font=&]10、地区化学样品具体包括哪些呢?哪里有相关定义呀?[/font][font=&]11、铂金坩埚使用的时候需要注意哪些问题?[/font][font=&]12、土壤中有效态铁锰锌做的偏低,有什么方法解决?[/font][font=&]13、问:土壤加标是加标土还是加标液?[/font][font=&]14、问:老师如果标准里没给标曲定量,只给平均相对响应因子定量,这种情况怎么做,是否还要求r?[/font][font=&]15、问:HJ 168-2020中精密度的验证每个样品至少测定6次,请问气体有组织样品如何做?是指采1个样品测定6次还是采6个实际样品?[/font][font=&]16、问:老师您好,除了质控选取百分之10的平行样之外,实验员自己需要做百分之10的平行吗,结果是报其中一个值还是报均值呢,谢谢老师[/font][font=&]17、问:土壤全程序空白有什么要求?[/font]

  • 土壤与固废检测技术的革新

    [b]土壤检测是为了了解土壤中污染物的种类、含量及分布情况,从而制定出合理的治理方案[/b]。目前,常见的土壤检测技术包括:[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]技术、[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]技术、X射线荧光光谱技术和红外光谱技术等。这些技术能够快速、准确地测定土壤中的多种元素含量,辅助政府和企业制定出更为科学、严谨的环保政策和治理措施。固废检测是为了对固体废弃物进行无害化处理或资源化利用前的检测和监测。常见的[color=#4367b4]#固废处理#[/color]技术包括:热解-[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用技术、扫描电子显微镜技术、红外光谱技术等。这些技术可以对固体废弃物中的有机物、无机物、重金属等进行快速、准确的定性和定量分析,为固废处理和资源化利用提供科学依据。[b]基因测序技术是近年来应用于土壤和固废检测的新兴技术[/b]。通过对土壤和固废中微生物的DNA或RNA进行测序并分析,我们可以深入了解微生物的物种组成、数量以及功能。基因测序技术的进步使得我们能够更好地了解土壤生态系统的复杂性,预测土壤质量、污染程度以及生态恢复的潜力。此外,该技术还能揭示固废中的潜在微生物降解能力,为固废管理和处理提供科学依据。[b]光谱技术也成为土壤检测的重要手段[/b]。通过利用红外光谱仪等设备,可以测定土壤中有机质的含量、微量元素的存在形态以及土壤的物理结构等关键信息。这种非破坏性的检测方法不仅可以快速获得土壤的状态信息,还可以避免传统采样方法对土壤生态系统的破坏。

  • 中国土壤监测市场有多大

    2017环境检测服务需求贯穿土壤污染防治始终,初期基础性工作中,对土壤污染状况以及污染地块分布调查将涉及到环境检测工作,在此后风险评估筛查,对修复效果评估中,也均涉及环境检测业务。土壤监测是做好土壤防治、处理的基础。 从“土十条”整体基调来看,土壤污染调查被放在一个很重要的位置,其第一条提出要“展开土壤污染调查,掌握土壤环境质量状况”,“建设土壤环境质量监测网络”,可见政策对土壤监测的重视程度。 相比大气污染、水污染相比,目前土壤污染的具体情况大家的掌握程度比较低,全国上下还未形成一个统一的国家层面的土壤环境监测网络,各部门分工不清,难以形成合力,导致土壤监测效率低下。 2005年至2013年,环保部同国土资源部开展了全国土壤污染状况调查,调查面积约为630万平方公里,其中,耕地调查精度为8公里×8公里,林地、草地调查精度为16公里×16公里,未利用地调查精度为32公里×32公里。可见,当前的各项调查精度远远无法满足土壤污染防控和治理修复的需求,市场空缺巨大,土壤监测领域蕴含着巨大的商机。那么土壤的监测市场到底有多大呢?

  • 【转帖】科学家发现:蚯蚓能预报土壤污染 或用于监测

    金丝雀对瓦斯等有毒气体十分敏感,只要有非常淡薄的瓦斯产生,它就会立刻晕倒。17世纪,英国人把金丝雀放入矿井检测空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量。现在,科学家发现,蚯蚓也能像“矿井中的金丝雀”一样预报土壤污染。英国爱丁堡大学进化生物学研究所的科学家研究发现,土壤中即使含有少量污染物,也会使蚯蚓的生命周期发生根本改变,影响它们的繁殖能力。对污染敏感科学家对受铜、镉和除草剂等不同污染物影响的蚯蚓分别进行脱氧核糖核酸(DNA)检测,发现即便少量污染物也会对蚯蚓产生显著影响,而且这种影响长期积累将会对其产生灾难性后果。英国《泰晤士报》29日援引研究项目负责人马克• 布拉克斯特教授的话报道,除草剂等农药常会渗入土壤,人们却从未考虑这些化学品对土壤产生的长期影响。“土壤里的蚯蚓就像矿井中的金丝雀,有些问题我们尚未察觉,但它们其实已经发出警报。”布拉克斯特介绍说,少量污染产生的影响日积月累将十分严重,这些污染会对植物和粮食作物产生影响,接着再进入我们的食物链。他补充说,重度污染会杀死动物,因此很容易被发现。少量污染物产生的轻微污染虽同样严重,却很难察觉。尽管人们并没有将除草剂等化学物质直接放入土壤中,但蚯蚓仍受到显著影响。毒物学家认为,这种影响令人担忧。长期遭忽视蚯蚓能分解土壤中的有机物、疏松土壤、改善土质。进化论的创始人查尔斯• 达尔文非常重视对蚯蚓的研究,但之后这种最常见的生物却长期被人忽略。布拉克斯特说,长期以来,科学家们把土壤当成试验台或“黑匣子”,认为不需要了解它本身,而他们的项目将会改变这种成见。“这样下去,直到土壤受侵蚀、生态系统彻底崩溃,我们也不会知道是怎么回事,”布拉克斯特说,“我们必须进入到‘黑匣子’内部,分别研究它的每个部分,提出一些具体问题。”科学家重新重视对蚯蚓的研究将有助于尽早发现土壤污染。项目小组的研究已经发现蚯蚓对除草剂和工业副产品等化学物非常敏感。布拉克斯特说:“这些发现为我们打开了视野,让我们认识到土壤污染的严重程度。”开发副产品利用即便少量污染物也能对蚯蚓构成显著影响的研究结果,科学家认为,可以将蚯蚓用于土壤监测。科学家可以利用从蚯蚓体内提取的基因,检测土壤是否受到有毒物质污染。布拉克斯特说:“这很可能成为环境监测的新手段,我们可以直接通过生活在土壤中的生物进行检测,而并非利用间接的化学分析。”他补充说,这个项目的所有研究数据将在网上公布,以方便各个国家使用。此外,蚯蚓被生物学家视为生态工程师,它在分解植物残体和动物粪便方面效果显著,因此曾被用来处理生活垃圾。美国加利福尼亚州政府鼓励员工在办公室里饲养蚯蚓,因为它们不仅能吃掉包括员工的残羹冷炙在内的各色垃圾,更可以变废为宝,制造天然肥料。

  • 【分享】污染源烟气、烟尘连续监测系统

    污染源烟气、烟尘连续监测系统点击次数:914 发布时间:2007-1-31 13:47:42污染源烟气、烟尘连续监测系统 主要技术内容 一、基本原理:定电位电解法就是电化学传感器在一定电位作用下,当被测气体通过传感器渗透膜进入电解槽时,发生电化学反应而产生电流,电流信号的大小与被测气体浓度成正比。其特点是:灵敏度高、测量范围宽、预处理要求条件不高,造价低。烟尘监测采用交流耦合原理,安装方便,维护量少。流速采用热式质量流量计,无须反吹。系统具有监测、校准自动切换、积水定时排放、数据定时上传、远程维护、远程故障诊断、管理中心将曲线、棒图、日报、月报、年报打印备案等功能。 二、技术关键:该系统采用自制的采样枪,有效地除去烟气中的灰尘,保证长时间不堵塞;半导体制冷技术实现汽水快速分离,确保系统可靠运行,提高监测精度。上述技术已获得了三项中国专利。 主要技术指标及条件 一、技术指标:烟尘:0~1000mg/Nm3;二氧化硫:0~10000mg/Nm3;流速:0~30m/s;温度:0~500℃;压力:-01~0MPa、0~01MPa。 二、条件要求:现场配备AC220V电源和电话线。 主要设备及运行管理 一、主要设备:1工控机AWS-825PB,2数据采集处理装置,3系统控制装置,4数据库管理系统,5数据通讯系统,6气体预处理装置,7气体成分分析装置,8EMS6交流耦合烟尘仪,9454FT热式质量流量计,10温度、压力检测装置。 二、运行管理:每月整理数据,将日报、月报及各种曲线打印出来;每三个月清理采样枪及气路。 投资效益 总投资49.58万元,其中设备投资47.58万元,主体设备寿命10年。运行费用2万元/年。 国家环保总局科技司于2000年11月对该系统组织了鉴定,认为:该系统采用抽取式测量,较好解决了多级过滤除尘、半导体制冷、快速冷冻脱水等技术关键,消除了干扰,提高了系统的可靠性。仪器在现场运行一年多,稳定性较好。该系统具有监测、校准自动切换、数据管理与传输功能,还可对系统的运行状况进行远程查询、故障诊断等功能。该系统具有监测烟气其它污染物的扩展功能。该系统经检测表明,零点漂移、量程漂移、重复性、准确度符合企业标准,现场监测结果与国家标准方法监测结果有良好的可比性。

  • 【原创大赛】为《土壤环境监测技术规范》的修订进言

    [align=center][font=黑体][size=18px][b]为《土壤环境监测技术规范》的修订进言[/b][/size][/font][/align][align=center][font=华文楷体][font=华文楷体][size=18px](老兵) [/size][/font][/font][/align][font=华文楷体][font=华文楷体] [size=16px]自[/size][/font][size=16px]2004年12月9日发布的《土壤环境监测技术规范》(HJ/T164-2004)实施以来,对我国的土壤环境监测起了重要作用,但随着GB36600-2018、GB15618-2018、HJ964-2018、HJ25.1~HJ25.5—2019和《在产企业土壤及地下水自行监测技术指南》等标准的发布和即将发布,原有的《土壤环境监测技术规范》(HJ/T164-2004)已无法适应当今土壤环境监测中出现的新情况和新问题,国家因此将对其进行修订,并编制了《土壤环境监测技术规范》征求意见稿(见附件)。本文从技术、文字表达层面对该征求意见稿和相关文审意见进行分析,期冀能为提升《土壤环境监测技术规范》的修订质量进言献策,特提出如下修订意见。[/size][/font][font=华文楷体] [size=18px] 1、第1页(包括第28页)“HJ XXX 土壤环境背景含量统计技术导则”应更正为“HJ 1185 区域性土壤环境背景含量统计技术导则(试行)”。[/size][/font][size=18px][font=华文楷体] 2、关于第2页“土壤混合样 soil mixture sample”定义需删除的文审意见,笔者认为不能删除,且还需要保留和在后续的采样中细化,理由是单点样的代表性极差,不能总体反映监测范围区域尺度的土壤环境质量。[/font][font=华文楷体] 3、关于4.3.1监测项目,肥力不足是[/font][font=华文楷体]影响作物产量[/font][font=华文楷体]的主要原因,[/font][font=华文楷体]氮、磷、钾[/font][font=华文楷体]等土壤地力(肥力)指标已有农业部门在管,生态环境部门要管的是污染所致的生态环境污染风险问题,而不宜把[/font][font=华文楷体]影响作物产量[/font][font=华文楷体][font=华文楷体]的土壤地力(肥力)指标当污染物来测,建议将[/font]“[/font][font=华文楷体]影响作物产量项目可选测全盐量、硼、[/font][font=华文楷体]氟、[/font][font=华文楷体]氮、磷、钾等[/font][font=华文楷体]”,改为“凡属于区域内的特征污染物,且存在生态环境影响风险时[/font][font=华文楷体]可[/font][font=华文楷体]列为[/font][font=华文楷体]选测[/font][font=华文楷体][font=华文楷体]项目[/font]”。如流域内湖库水质的富营养化管控需要监测土壤中[/font][font=华文楷体]全盐量、氮、磷[/font][font=华文楷体]和有效磷[/font][font=华文楷体]等[/font][font=华文楷体]”,铝厂和磷化工的大气污染沉降影响需要监测土壤中的氟化物等。[/font][font=华文楷体] “以防控管理对象土壤环境风险为目的的监测可根据采样点所处的用地类型结合特征污染物(或潜在污染物)选择监测项目:如污水灌溉项目应测氰化物、六价铬、挥发酚、烷基汞、硫化物、石油类等;POPs与高毒农药施用区测量苯、挥发性卤代烃、有机磷农药、多氯联苯等。”建议改为“以防控管理对象土壤环境风险为目的的监测可根据采样点所处的用地类型结合特征污染物(或潜在污染物)选择监测项目”。理由是“应测”的指标过度了,还是应“结合特征污染物(或潜在污染物)来选择监测项目”。[/font][font=华文楷体] 4、第5页14行“[/font][font=华文楷体]系统随机布点法适合布点单元内土壤特征和污染特征相似的情况[/font][font=华文楷体]”建议改为“[/font][font=华文楷体]系统随机布点法适合布点单元内土壤[/font][font=华文楷体]污染分布均匀[/font][font=华文楷体]和污染特征相似的情况[/font][font=华文楷体]”。[/font][font=华文楷体] 5、第6页倒数5行“每个种植基地布设点位综合考虑种植年限、化肥农药施用量、有无污水灌溉等因素”建议改为“每个种植基地布设点位应综合考虑地形地貌、种植年限、化肥农药施用量、有无污水灌溉等因素”。[/font][font=华文楷体] 6、第7页“3)地下水水源:以取水口为中心,在地下水水流方向上布设点位。划定保护区的可在一级保护区、二级保护区和缓冲区各布设1个监测点,未划定保护区的,可在距取水口25 m、50 m、100 m处各设1个监测点”的规定不明确,建议改为“3)地下水水源:以取水口为中心,在地下水水流方向的上[/font][font=华文楷体][color=#ff0000]游[/color][/font][font=华文楷体][font=华文楷体]布设点位。划定保护区的可在一级保护区、二级保护区和缓冲区各布设[/font]1个监测点,未划定保护区的,可在距取水口25 m、50 m、100 m处[/font][font=华文楷体][color=#ff0000]的上游[/color][/font][font=华文楷体][font=华文楷体]各设[/font]1个监测点。”[/font][font=华文楷体] 7、第8页“c)背景点”布点建议增加“因地形地貌、土地利用方式、污染物扩散迁移特征和多种土类等因素致使土壤特征有明显差别或采样条件受到限制时,监测点位应根据实际情况进行调整”的规定。 [/font][font=华文楷体] 8、第9页3行关于“土壤单独样品和混合样品采集与研究目的有关,在研究土壤环境质量水平和垂向变化时一般采用单独样品;在土壤环境质量监测中,推荐使用混合样品。此外,选择单独样品或混合样品也与监测项目有关,监测项目具有挥发性时,只能采集单独样品。单独样品指在坐标点单点取 0-20 cm 土壤,应尽可能做到取样量上下一致。”建议改为“土壤单独样品和混合样品采集与监测项目和研究目的有关,除VOCs外,在土壤环境质量监测中表层样应采集混合样品;监测项目具有挥发性时,只能采集单独样品,即在坐标点单点取 0m~20 cm 土壤;不论单独样还是混合样均应尽可能做到取样量上下一致。”[/font][font=华文楷体] 6.3.1.2 深层样品采集时,针对VOCs应增加只能采用直推式或冲击式钻进方式采样的规定。[/font][font=华文楷体] 9、第11页6.3.2.1挥发性有机样品的采集建议增加“可通过PID快筛VOCs的监测结果,决定是否在样品瓶加不加甲醇”的规定。[/font][font=华文楷体] 6.3.2.2半挥发性有机物、难挥发性有机物及挥发性无机样品采集,建议明确“凡测试项目为风干样的土样应采集混合样,凡测试项目为鲜样的应采集单独样”。因为此类样品的挥发损失相对样品的代表性的影响来说要小得多,况且六价铬、氰化物和汞的分析测试样品均为过0.15mm孔径的风干样,已属于非密封和高度扰动的样品。[/font][font=华文楷体] 10、第12页 6.3.2.3非挥发性无机样品的采集关于“测定重金属、氟化物等非挥发性的无机样品时,可使用干样进行样品分析,可采集单独样品或混合样品”建议改为“测定重金属、氟化物等非挥发性的无机样品时,应使用风干样进行样品分析,除钻孔柱状样采集单独样品外,一般应采集混合样品。”[/font][font=华文楷体]……[/font][font=华文楷体]“用于化学分析的土壤样品,采样量应不低于500 g。用于样品库的样品,采样量应不低于2000 g。”建议改为“单独样品采样量应不低于500 g;混合样品采样量应不低于2000 g,专项工作另有规定者,按规定执行。”[/font][font=华文楷体][font=华文楷体] 表[/font]1 常见的存储容器材质及其适用情况在中的“聚氯乙烯袋”建议改为“聚乙烯袋”,因前者不常用,常用的是“聚乙烯袋”。[/font][font=华文楷体] 6.5 记录及标签中的经纬度为便于打印、书写和规范,建议用小数表示,小数位数不得少于6位。[/font][font=华文楷体] 11、第13页6.6 采样质量控制应增加“样品的保存(容器、时间要求)和管理”等技术要求。[/font][font=华文楷体] 12、第14页“c)样品的运输。由专人将土壤样品送到实验室,运输前及时填写《土壤样品运输记录表》”建议改为c)样品的运输和发送。土壤样品运输和发送前应及时填写“土壤样品交接清单或样品流转单”,否则本规范应增加《土壤样品运输记录表》的资料性附录。[/font][font=华文楷体] 13、第14页“气温偏高或偏低时还应采取控温措施”建议改为“气温偏高时还应采取控温措施”,因为低温对样品保存的影响可忽略。[/font][font=华文楷体] 14、第15页“图5 土壤样品制备流程图”建议改为“图5 土壤样品风干制备流程图”,并应标注说明“测试项目不需要的粒径样品,可以免去该粒径样品的制备和过筛”,如不用WDXRF测重金属,便无需过0.075mm筛,不用NY/T 1121.6-2006测土壤有机质,就无需过0.25mm筛。、[/font][font=华文楷体] 15、关于8.1.2 无机样品干燥一节,“土壤样品风干室原则上要求朝南、向阳,但严防阳光直射土样,需通风良好,整洁,无尘,无易挥发性化学物质”应改为“土壤样品风干室应严防阳光直射土样,自然风干需通风良好,整洁,无尘,无易挥发性化学物质”。[/font][font=华文楷体][font=华文楷体] 关于[/font]“土壤风干室内应配置温湿度计,对室内温湿度有所控制。在土壤样品风干期间每日记录室内的温湿度”的规定不接地气,需要给出温湿度控制的量化指标。[/font][font=华文楷体] 样品风干容器不应局限于使用搪瓷风干盘,应允许使用适宜的塑料盘,塑料盘便于压碎土样、无需垫纸和易于清洗。[/font][font=华文楷体] 8.1.2.2 无机样品机械干燥应增加低湿快速风干的方法,快速风干系统的湿度以控制在20%(RH)以下、温度在30℃~40℃之间为宜。[/font][font=华文楷体] 16、关于8.1.3 无机样品的研磨及过筛一节,应增加“不同样品的操作工位应有效隔离并独立设置,以防止制样粉尘的交叉污染”的规定;样品混匀应增加“混样仪混匀”和“塑料袋手工颠倒法”等混匀方法;“计算细磨土壤样损失率。细磨土壤样品的损失率应低于百分之七”建议改为“计算细磨土壤损失率。细磨土壤样品的损失率应[/font][font=华文楷体]≤[/font][font=华文楷体]5%”。“球磨仪研磨结束后,球磨罐和配球也需要擦洗,利用高压气泵吹干”建议改为“球磨仪研磨结束后,球磨罐和配球应用毛刷清扫和高压气泵吹净,不得有可见附着物,否则应水洗烘干或用洁净碎玻璃(或待制备样品的粗磨样弃样)球磨清洗。”[/font][font=华文楷体][font=华文楷体] 应增加[/font]“可选用全手工制样、半自动机械制样和全自动土壤样品制备系统制样”的内容,并给出各种方法所用仪器设备的技术要求,比如金属分析样品制备不得使用不锈钢等含待测组分材质的工具和仪器,采用磨球仪进行样品的细磨应使用玛瑙材质的球磨罐,全自动土壤样品制备系统应具备干燥、研磨、混匀分样、筛分、称量装样和清洁等功能,建议以规范性附录的形式给出制样方法。[/font][font=华文楷体] 17、[/font][font=华文楷体][font=华文楷体]关于[/font]“[font=华文楷体]8.3 样品制备过程中的质量控制[/font][font=华文楷体]”一节,建议增加“为做好土壤样品制备质量的有效监督,必要时可采用视频实时监控”的措施。 [/font][/font][font=华文楷体] “均匀性检查是指将样品摊开,分成四份,以目视的方法检查其均匀性”建议改为“均匀性检查是指将样品摊开,分成四份,以目视的方法检查其均匀性,必要时可利用便携或小型台式XRF对分成四分中的两份可疑样进行检测,当Pb、As、Zn和Cu测值大于20mg/kg时的一个或一个以上元素的对数差大于0.10时,可判定为样品不均匀。凡作为平行密码样的样品均应进行均匀性检查”。[/font][font=华文楷体][font=华文楷体] 17、关于[/font][font=华文楷体]8.4 注意事项[/font][font=华文楷体]“样品研磨过程中,所有样品必须全部研磨过筛”建议改为“样品研磨过程中,除2mm样品外,所有样品必须全部研磨过筛。”[/font][/font][font=华文楷体] 18、关于“9.3 样品的长期保存”须通过验证汞和六价铬的保存时间,给出合理的规定,否则不能解释为何与相关检测标准的规定不一致。[/font][font=华文楷体] 19、关于10.2.1“监测项目分析方法应优选用国家或行业标准方法,见附录E表1。农用地或建设用地土壤可选用对应土壤污染风险管控标准规定的分析方法。”建议改为“监测项目分析方法应选用GB15618和GB36600规定的方法和附录E表1中的分析方法。”[/font][font=华文楷体] 20、第19页10.3 样品处理“(GB 36600-2018)规定方法样品处理方法”应更正为“(GB 36600-2018)规定方法的样品处理方法”。[/font][font=华文楷体] 21、“表3 土壤样品理化项目分析测试精密度和准确度允许值表”建议删除pH和阳离子交换量的相对偏差值,因为绝对偏差与相对偏差的评价结果不一致;阳离子交换量的相对误差“±10%”建议改为“±10%或土壤标准值±1倍不确定度”,因为按GBW07412和GBW07416土壤分析标准物质标准值的不确定度折算,其1倍不确定度的相对误差已分别达13.1%和13.4%。[/font][font=华文楷体] 22、第23页11.2.5.2 校准曲线一节中的“标准曲线”建议统一称为“校准曲线”。[/font][font=华文楷体] 23、第24页“离群值判定规则按GB/T 6380执行”建议改为“Ⅰ型极值分布样本离群值判定规则按GB/T 6380执行,正态样本离群值的判断和处理按GB/T4883执行”。因为后面的“结果表示”和“数据的有效性”均要求用Grubbs法检验,而Grubbs法检验则来自环境监测常用的GB/T4883。[/font][font=华文楷体][font=华文楷体] 关于结果表示中[/font]“土壤样品测定一般保留三位有效数字,含量较低的镉和汞保留两位有效数字,并注明检出限数值。分析结果的精密度数据,一般只取一位有效数字,当测定数据很多时,可取两位有效数字。表示分析结果的有效数字的位数不可超过方法检出限的最低位数”的规定不严谨,如汞的方法检出限是0.002mg/kg,按保留保留两位有效数字的说法,测值0.00252可按0.0025报出,这便违反了不可超过方法检出限最低位数的规定。因此建议修改为“土壤样品测定一般保留三位有效数字,且其分析结果的小数位数不得超过方法检出限的小数位数。分析结果的精密度数据,一般只取一位有效数字,当测定数据很多时,可取两位有效数字。”[/font][font=华文楷体][font=华文楷体] 12.4 监测报告[/font][font=华文楷体]的内容还需增加[/font]“样品的交接时间”。[/font][font=华文楷体] 24、第26页“现有国家标准未涉及项目,可参照其他行业或地方标准进行评价”建议改为“现有国家标准未涉及项目,可参照其他行业或地方标准或国外标准进行评价,并应给出标准值选取的说明。”[/font][font=华文楷体][font=华文楷体] 25、附录B[/font][font=华文楷体]有关部分污染源及周边点位布设示例[/font][font=华文楷体]与前述的[/font]“采用放射性布点法和带状布点法,布点密度由中心起由密渐稀,在同一密度圈均匀布点”等规定不一致,建议将“主导风向下风向75 m、200 m、400 m处各布设1各监测点”改为“以主导风向下风向75 m、200 m、400 m处分别各布设3个、2个和1个监测点,同一密度圈各样点等间距为40m,每个监测点的采样网格按20m[/font][font=华文楷体]×[/font][font=华文楷体]20m设置,非挥发性项目样品表层土样品须采集混合样”(灌溉水污染型可参考此内容修改);b)工业企业遗留或遗弃场地由于污染分布未知和不均匀,在园区场地500 m范围内不宜采用系统随机布点,而应改用系统布点法;C)采矿区周边点位布设不论是开阔地带的采矿区还是依靠山体的矿区,仅布3个点太少,点位设置过于理想化,应考虑露天采场与矿井(竖井或平巷掘进)的差异,应将弃渣尾矿暂存区、运矿道路、大气污染主导风向、地表水漫灌影响区域和地下水出露流向区等疑似污染区应作为布点的重点。[/font][font=华文楷体][font=华文楷体] 26、建议将“附录[/font][font=华文楷体]D[/font][font=华文楷体]土壤样品预处理方法[/font]”改为“附录D重金属形态分析样品的处理方法”,并删除除重金属形态分析样品外的其它前处理方法。删除的原因是相关环境监测方法标准已有规定,应以检测方法标准规定为准。[/font][font=华文楷体] 27、附录E 表1土壤监测项目分析方法中的有机质应删除已作废的“GB 9834”,建议增加“LY/T1243”;氧化稀土总量应删除已作废的“GB 6260”,并将其变更为“[/font][font=华文楷体]NY/T 30[/font][font=华文楷体]”;另建议增加铊、铍、钴等元素的ICP-[/font][font=华文楷体]MS法[/font][font=华文楷体][font=华文楷体];序号为[/font]51的监测项目“氟化物”应改为“水溶性氟化物和总氟化物”;有效态元素分析方法建议增加“GB23739”和“NY/T890”等测试方法。[/font][font=华文楷体] 28、 [font=华文楷体]附录F中E.1.1 基础误差(FE)的表述有问题,因为土壤不均匀性造成土壤监测的基础误差,除可通过研磨成小颗粒试样和混合均匀减小外,还需要通过增加布点采样数来减小误差。[/font][/font][/size]

  • 土壤“三普”丨土壤检测技术专家答疑集锦

    不论是过去还是现在,土壤一直是农业生产不可或缺的重要条件,可以说没有没有充足的土壤资源作为支撑,人类很难养活自己,所以土壤的重要性就不言而喻了。从2月16日起,我国第三次全国土壤普查正式开启。时隔40年再次启动普查任务,意义重大。3月30日信立方旗下 我要测网联合多家在土壤检测领域头部会员单位及科研院所、高校等专家领导,成功举办了主题为《助力“土壤普查”,保护绿色未来—土壤分析检测技术》的专题网络研讨会。13位报告嘉宾与上千TIC人线上互动交流,共话最新土壤分析检测技术,助力全国第三次土壤普查。各位老师的现场答疑来了!卞永荣老师答疑1、问:感谢老师分享,土壤形态提取初学,想问一下:常用到KCl和磷酸盐,能分别简要讲解一下这两种盐的各自作用吗?谢谢!答:KCl,磷酸盐都属于中性提取剂,区别是铁、铝氧化物对磷酸根有较强吸附,同时与六价铬竞争吸附点位,另外,pH缓冲性有利于六价铬稳定性。欧阳昆老师答疑1、问:715三次读数测定,Cu,Cr元素的读数RSD<5%,但是pb的三次读数RSD会达到20%左右,这个怎么解决,谢谢。答:715为垂直火炬,本身灵敏度不是太高。Pb的激发在氩环境下强度不是很高,所以灵敏度较差,在针对Pb的分析中,一是要提升样品中的测量浓度二就是要增加积分时间,提升测量信号的信背比。所以可采用增加读取时间(也就是软件中的一次读数时间),默认的是1秒,可采用3-5秒。2、这样可有效提升稳定性。RSD也会变好些。问:铝,硅,钛能用ICP_MS检测吗?答:从测量角度而言是没有任何问题的,[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]的检测能力完全是可以胜任的。但是也要看仪器的配置,反应气体的条件。样品的基体,溶液的测量浓度,以及干扰的状态等等因素,每个元素的分析都有其特定的条件和理想状态,这都需要从方法的角度去一一实验予以解决。不是单纯能与不能的问题。蔡玉曼老师答疑1、土壤中全硅铝那种方法快速?答:土壤中全硅铝测定方法有以下几种:碳酸钠碱熔-重量法测定硅、碳酸钠碱熔-EDTA容量法测定铝(与硅在一个体系中),氢氧化钠碱熔-比色法测定硅,氢氧化钠碱熔-EDTA容量法测定铝,粉末压片-X荧光光谱法同时测定硅、铝,高温熔片-X荧光光谱法同时测定硅、铝,高温熔片-电感耦合等离子体发射光谱法同时测定硅、铝,四酸分解-电感耦合等离子体发射光谱法测定铝等。其中快速的测定方法有粉末压片-X荧光光谱法同时测定硅、铝,高温熔片-X荧光光谱法同时测定硅、铝,高温熔片-电感耦合等离子体发射光谱法同时测定硅、铝,前两种方法是要需要根据同类标准物质做曲线,高温熔片-X荧光光谱法同时测定硅、铝还需要增加测定烧失量进行归一技术。这几种方法可以根据自身的仪器设备选择。2、关于土壤重金属前处理中酸量怎么探究?答:土壤重金属前处理中加酸量还是要根据称样量和采用的消解方法决定,如称样量为0.1g,敞开式需要的酸量要多一些,混酸15ml~20ml,密闭消解加酸量就少,3ml左右,以最终消解完全为目标。3、水浴王水消解土壤测汞时,如何减少过程空白?答:首先选择空白低的试剂,对采购的每个批次试剂进行空白试验。注意不一定级别高的试剂就空白一定低,如优级纯的盐酸可能在提纯过程中因Hg具有挥发性反而同酸一起蒸发而富集。其次,空白样品用酸和量与样品一致。第三,消解过程中比色管盖子盖上,避免环境对样品的污染。第四,装土壤样品的袋子用塑料袋或者带盖的玻璃瓶或塑料瓶,隔绝空气,避免样品与样品之间、样品与环境之间的相互影响。4、水浴王水消解土壤测汞时,GSS-4浓度高于定值2倍,怎么解决?答:土壤一级标准物质定值一般都要有8家以上实验室联合参加定值,GSS-4土壤标准物质已经定值了有20多年,至少在地质行业中广泛用了20多年,定值的数据应该是可靠的。GSS-4 Hg的含量(0.59±0.05)μg/g,属于比较高的,在测定这个标准物质的时候,可以减少称样量减去稀释的步骤,避免可能因稀释器皿带来的污染。消解用的比色管预先需要用热1+1王水进行浸泡清洗。5、土壤汞的消解怎么处理比较好?答:见第三、第四个问题。6、六价铬用碱溶法容易导致[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪积盐,有什么好的方法避免吗?答:六价铬采用氢氧化钠-碳酸钠提取,溶液中的盐类很高,采用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计测定在燃烧器头上很容易积盐,从而影响测定。在测定过程中要时时观察燃烧器头和火焰的状态,测定中间加测一个校准曲线的点,一旦出现火焰有缺口,火焰不稳定、校准点吸光度下降严重,就要停止检测,清洗燃烧器头。如果检测的样品多,可以分段检测,每次测定的样品数量控制在吸光度稳定的阶段。如果样品中六价铬含量比较高,可以进行稀释一倍后再检测,减少盐类的浓度,延长燃烧器头积盐时间。7、地区化学样品具体包括哪些呢?哪里有相关定义呀?答:区域生态地球化学样品包括岩石、土壤、水系沉积物、水质、土壤溶液、生物样、大气降尘等,具体可参照DZ 0289-2015《区域生态地球化学评价规范》。8、铂金坩埚使用的时候需要注意哪些问题?答:1)铂坩埚加热温度不得高于1200℃,应在氧化焰上加热或者灼烧,不得用还原焰。2)不得在铂坩埚中加热或熔融碱金属的氧化物或者氢氧化物、氧化钡、硫代硫酸钠、含大量磷或者硫的样品。3)不得加热或熔融碱金属的硝酸盐、亚硝酸盐、氯化物、氰化物等。4)不得加热或熔融(灼烧)含有重金属Pb、Bi、Sn、Sd、Ag、Hg、Cu化合物的样品。5)高温白热的铂器皿,绝不容许与其它任何金属接触,在高温下夹取时须用铂头钳子,以免生成合金。6)不得处理卤素或分解出卤素的物料和氧化物。不能在铂坩埚中直接加盐酸提取熔融物。7)从铂坩埚取出熔融物时不可用手揉捏,也不可用玻璃棒捣刮。8)铂坩埚清洗方法:a)可在稀盐酸内煮沸,一般1.5 mol/L~2 mol/L HCl中(或HNO3,切不可两者混合)。b)可用焦硫酸钾、碳酸钠或硼砂熔融洗净。c)必要时可用70目~100目的无棱角细砂,水湿后擦拭。9、土壤中有效态铁锰锌做的偏低,有什么方法解决?答:土壤中有效态锌需要根据土壤样品的酸碱度选择不同的提取剂,不能统一用一种提取剂,否则结果有偏差。酸性土壤和中性是 0.1 mol/L盐酸,石灰性和中性土壤用DTPA浸提剂。测定方法根据实验室的条件可选择比色法、[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法、ICP-OES、[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]等,但注意校准曲线中要同步加入相应的提取剂,酸度控制也要严格、一致,否则测定结果容易偏低或者再现性比较差。其他元素也是,主要是校准曲线中要同步加入相应的提取剂。计曼老师答疑1、问:土壤加标是加标土还是加标液?答:加标液2、问:老师如果标准里没给标曲定量,只给平均相对响应因子定量,这种情况怎么做,是否还要求r?答:对R值也有要求。3、问:HJ 168-2020中精密度的验证每个样品至少测定6次,请问气体有组织样品如何做?是指采1个样品测定6次还是采6个实际样品?答:理论上是需要采6个实际样品,实际需要考虑采集6个样品的可操作性来确定。4、问:老师您好,除了质控选取百分之10的平行样之外,实验员自己需要做百分之10的平行吗,结果是报其中一个值还是报均值呢,谢谢老师答:对于平行样,只要满足标准要求/百分之10的要求就行,结果报平均值(标准中有特殊情况除外)。5、问:土壤全程序空白有什么要求?答:与样品相同的方法、步骤进行定量全程序的分析。

  • 【转帖】我国土壤调查监测体系及相应标准亟待完

    我国土壤调查监测体系及相应标准亟待完有关专家建议应制订全国土壤调查纲要;进一步加强市、县级环境监测部门土壤监测能力建设;制订统一的评价标准和综合分析技术方法,统一技术要求,并把经费保障落到实处。 据介绍,目前我国土壤环境监测存在现行标准体系尚不完善,特别是有机污染物没有参照标准;分析项目中土壤测定方法不够科学;试点调查农产品样品数量偏少,且受时间限制;试点监测过程中与农业、水利等相关部门的横向沟通不够;土壤调查专项资金支持不到位;监测项目对土壤污染和污染物特性针对性不强;基层环境监测站的能力需要加强等问题。为此,专家建议,必须保障开展全国土壤环境状况调查组织、经费、技术、标准和核查等方面的落实,准确掌握全国环境监测能力状况,技术方案既要达到调查监测的目的,也要兼顾全国监测能力水平不平衡的现状;明确规定各级环境监测部门在调查中的职责分工和具体工作内容;全国范围的土壤调查监测重点工作应由市、县环境监测部门完成;积极开展土壤监测业务培训,为保质保量完成土壤监测任务提供能力保障;加强土壤分析评价标准研究,制订完善的质量控制措施。根据我国国土辽阔的特点,开展土壤监测监督检查,除国家组织专家检查外,还需要组织各地分片互查,取长补短,做到发现问题及时解决;建立土壤信息数据库,提高调查成果应用效率;增加采样深度,以更准确地反映土壤污染对农作物的危害,更好地掌握土壤污染与农作物生长的关系,在重污染地域增加土壤采样。 2005年11月,国家环保总局启动《全国土壤现状调查及污染防治专项实施方案》,并组织一省三市开展土壤监测试点工作。 据中国环境监测总站有关专家介绍,我国现有环境监测站2200个,但开展土壤环境监测的为数不多。土壤环境监测落后的原因一是对土壤污染重视不够、认识不够;二是土壤污染监测和治理立法欠缺、土壤环境质量标准控制指标少,评价较难,土壤与人体之间的物质流动关系较复杂,受到诸多因素影响,制订土壤污染物的环境质量标准难度很大,有些指标可以监测但很难评价;三是目前绝大部分环评缺乏土壤环境质量评价的内容;四是国家环保总局于2004年12月发布的《土壤环境监测技术规范》宣传落实不到位,有些基层环境监测站至今尚不知有这样的技术规范。

  • 土壤监测的重要性

    土壤监测的重要性

    [b][size=16px]土壤监测的重要性:[/size][/b]农业生产最本质的意义是要可持续发展的生产出高品质、高产量的农产品,这是从古自今不变的定律。对于农产品的品质和产量追求,不论是科技发达的今天还是科技落后的封建社会,人们都一直没有停止过。施肥,灌溉,合理密度种植,嫁接,品种培育,杀虫,疏枝,松土,土壤检测等等行为,都是为了提高农产品的品质和产量。土壤检测在现代农业生产中是一项很重要的工作,通过土壤检测我们可以知道土壤的墒情、养分含量、酸碱度、污染情况等等土壤土壤品质相关的数据。土壤检测所得的这些数据对于农业生产都是至关重要的。[align=center][img=,615,431]https://ng1.17img.cn/bbsfiles/images/2021/07/202107271413537471_7656_5332387_3.jpg!w615x431.jpg[/img][/align][b]1、土壤墒情检测[/b]土壤墒情是表示土壤水分含量的一个数据。通过土壤墒情检测,我们可以知道水分含量情况也好根据检测数据实施科学灌溉,保证作物可以不因为水分情况而影响产量或品质。土壤墒情监测有利于指导灌溉,避免过度灌溉,浪费水资源。[b]2、土壤养分检测[/b]土壤中的养分是植物生长的必须品,养分过少或者过多都会影响作物生长,所以说合理的土壤养分含量对作物的生长还是非常重要的。土壤养分检测可以帮助我们指导施肥工作。土壤检测仪可以检测土壤中的养分(氮、磷、钾)等等,有利于我们及时补充土壤养分,提高作物产量。[b]3、土壤重金属检测[/b]土壤重金属检测可以判断出一片土壤的污染情况。一般情况土壤中的重金属都是因为工业污染和农药滥用引起的残留。一旦农作物吸收重金属并被食用,这会很大的危害人体健康问题。土壤检测对于农业生产来说意义是非常巨大的,它对我们农业的生产和环境治理都是非常重要的。我们可以通过土壤养分检测仪,利用试剂来检测土壤中的重金属含量,保证土壤免受污染。

  • 【分享】土壤监测基础知识介绍

    监测类型 monitoring type根据土壤监测目的,土壤环境监测有4种主要类型:区域土壤环境背景监测、农田土壤环境质量监测、建设项目土壤环境评价监测和土壤污染事故监测。监测单元 monitoring unit按地形—成土母质—土壤类型—环境影响划分的监测区域范围。土壤采样点 soil sampling point监测单元内实施监测采样的地点。土壤剖面 soil profile按土壤特征,将表土竖直向下的土壤平面划分成的不同层面的取样区域,在各层中部位多点取样,等量混匀。或根据研究的目的采取不同层的土壤样品。土壤混合样 soil mixture sample在农田耕作层采集若干点的等量耕作层土壤并经混合均匀后的土壤样品,组成混合样的分点数要在5~20个。农田土壤 soil in farmland用于种植各种粮食作物、蔬菜、水果、纤维和糖料作物、油料作物及农区森林、花卉、药材、草料等作物的农业用地土壤。土壤背景 soil background区域内很少受人类活动影响和不受或未明显受现代工业污染与破坏的情况下,土壤原来固有的化学组成和元素含量水平。但实际上目前已经很难找到不受人类活动和污染影响的土壤,只能去找影响尽可能少的土壤。不同自然条件下发育的不同土类或同一种土类发育于不同的母质母岩区,其土壤环境背景值也有明显差异;就是同一地点采集的样品,分析结果也不可能完全相同,因此土壤环境背景值是统计性的。土壤环境 soil environment地球环境由岩石圈、水圈、土壤圈、生物圈和大气圈构成,土壤位于该系统的中心,既是各圈层相互作用的产物,又是各圈层物质循环与能量交换的枢纽。受自然和人为作用,内在或外显的土壤状况称之为土壤环境。

  • LBTFY 工业烟尘、气连续监测系统

    LBTFY 工业烟尘、气连续监测系统

    LBTFY 工业烟尘、气连续监测系统可监测烟道中的粉尘及烟气中的二氧化碳、氨氧化物、氧气、湿度、温度、压力、流速等参数,可广泛应用于各种工业、垃圾焚烧排放的气体成分连续监测场合。除此之外,LBTFY 还可以检测针对特定场合的HCI、NH3、H2S、CI2、VOC等气体。 我公司是国内极少数拥有LBTFY系统全套知识产权的科技型企业,气体分析仪、粉尘仪、温压流一体机和预处理等均为自主研发生产,在同类产品中拥有很高的市场占有率。此系统采用公司完全知识产权的高温紫外差分气体分析技术,有效避免粉尘和水分对测量的干扰。 整个气体流路(含探头、伴热管线、泵阀和测量池)150℃以上高温伴热,并定期自动反吹,避免粉尘堵塞过滤器和管道、以及污染分析仪测量池。 结构简单,整个系统无运动部件,可靠性高。[table][tr][td=1,12,86][align=center]主要技术参数及性能[/align][/td][td=1,1,110][align=center][b]项目[/b][/align][/td][td=1,1,470][align=center][b]技术指标[/b][/align][/td][/tr][tr][td=1,1,93]测量参考[/td][td=1,1,490]SO[sub]2[/sub]、NO、NO[sub]2[/sub]、O[sub]2[/sub] 【除O[sub]2[/sub]:0-25%,其他都为(0-50ppm)~(0-100%)】[/td][/tr][tr][td=1,1,93]测量参考[/td][td=1,1,490]粉尘(0-50mg/m[sup]3[/sup])~(0-50g/m[sup]3[/sup])、温、压、流(量程可定制)、湿度(0-100%)[/td][/tr][tr][td=1,1,93]伴热管线、探头伴热温度[/td][td=1,1,490]120℃-200℃[/td][/tr][tr][td=1,1,93]防护等级[/td][td=1,1,490]机柜IP42,其他IP65[/td][/tr][tr][td=1,1,93]供电[/td][td=1,1,490]220VAC,1500W(30米伴热管线时)[/td][/tr][tr][td=1,1,93]环境温度[/td][td=1,1,490]-20℃-50℃(小屋需配空调)[/td][/tr][tr][td=1,1,93]环境湿度[/td][td=1,1,490]5%RH~95%RH(不结露)[/td][/tr][tr][td=1,1,93]对外输出[/td][td=1,1,490]4~20mA,RS485[/td][/tr][tr][td=1,1,93]压缩空气要求[/td][td=1,1,490]0.4~0.7MPa,0.25m[sup]3[/sup],洁净无油[/td][/tr][tr][td=1,1,93]尺寸[/td][td=1,1,490]600mm*600mm*1800mm[/td][/tr][tr][td=1,1,93]重量[/td][td=1,1,490]约100kg主要技术参数及性能项目技术指标 测量参考SO2、NO、NO2、O2 【除O2:0-25%,其他都为(0-50ppm)~(0-100%)】 测量参考粉尘(0-50mg/m3)~(0-50g/m3)、温、压、流(量程可定制)、湿度(0-100%) 伴热管线、探头伴热温度120℃-200℃ 防护等级机柜IP42,其他IP65 供电220VAC,1500W(30米伴热管线时) 环境温度-20℃-50℃(小屋需配空调) 环境湿度5%RH~95%RH(不结露) 对外输出4~20mA,RS485 压缩空气要求0.4~0.7MPa,0.25m3,洁净无油 尺寸600mm*600mm*1800mm 重量约100kg[/td][/tr][/table][img=,500,1129]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_670021_3167027_3.jpg[/img][img=,247,247]http://ng1.17img.cn/bbsfiles/images/2016/12/201612221029_01_3167027_3.jpg[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制