原位群落光合呼吸监测系统

仪器信息网原位群落光合呼吸监测系统专题为您提供2024年最新原位群落光合呼吸监测系统价格报价、厂家品牌的相关信息, 包括原位群落光合呼吸监测系统参数、型号等,不管是国产,还是进口品牌的原位群落光合呼吸监测系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合原位群落光合呼吸监测系统相关的耗材配件、试剂标物,还有原位群落光合呼吸监测系统相关的最新资讯、资料,以及原位群落光合呼吸监测系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

原位群落光合呼吸监测系统相关的厂商

  • 400-860-5168转4548
    超新芯(CHIPNOVA)是早期原位芯片技术开发研究者,拥有MEMS芯片制造和原位电镜方面的资深团队,10余年来技术不断迭代升级,在电镜中实现了液、气体微环境引入及光、电、力、热等外场控制与高时空分辨显微研究。相关系统在材料、能源、环境、化学、生物等领域广泛应用,促进了人类对微观世界的探索,推动了相关领域的科技进步。除了继续深耕原位电子显微等高端科研领域,做世界一流的科研产品供应商;超新芯(CHIPNOVA)也正将相关技术延伸应用于智慧物联、大健康等民用领域,产品涵盖提供智慧牧场方案的智能项圈、监测实时血糖状况的CGM,为国人提供高品质的技术与服务。
    留言咨询
  • 400-860-5168转1706
    北京普瑞亿科科技有限公司成立于2007年,是国内领先的仪器设备、系统方案和咨询服务提供商。普瑞亿科参与过科学技术部、中国科学院和北京市科学技术委员会等发起的多个设备研发项目,具有突出的仪器研发、设计和生产能力,可以提供多种痕量和温室气体分析仪、光谱和质谱同位素分析仪、室内和室外土壤呼吸测量系统、高性能数据采集器和云平台服务等,致力为生态环保、能源地质、城市安全、农林牧渔、水文水资源、医疗健康、半导体等行业客户和研究机构提供系统解决方案。普瑞亿科是国内较早提供高精度温室气体和同位素分析仪的制造商,针对 “双碳”市场需求,在遵循MVS(Monitoring-监测、Verification-核查、Support-支持)体系的前提下,为政府机关、科研院所、企事业单位及其它机构提供“双碳”行动有效性评估和碳核查所需的整套方案,包含定位观测站、车载走航、低空无人机搭载的监测设备租售运维、碳核查核算支持、碳源汇科学评价、以及区域“碳中和”建议。针对碳氮水循环科学研究,普瑞亿科提供一系列具有自主知识产权的科研级产品,包含不限于基于中红外直接吸收光谱(MIRLASTM)技术的一系列高精度温室气体(CO CO2 CH4 N2O H2O)分析仪;多组分在线、分布式在线和便携式原位土壤呼吸、群落光合、地上地下廓线测量系统,室内全自动变温培养土壤呼吸测量系统;基于TureTDR 技术的分布式和便携式土壤温度、湿度和盐度测量系统、COSMOS区域土壤含水量测量系统,以及自主研发的高性能数据采集器和云平台。相关产品在国内和国外众多科研院所、大专院校等单位,以及中国生态系统研究网络(CERN)、中国森林生态系统定位研究网络(CFERN)等网络安装运行,取得用户的一致好评。普瑞亿科注重产品应用培训和售前售后服务支持,投资逾千万设立开放实验室并取得CMA认证。开放实验室主要从事新产品研发立项评估及后期验证、测试方法探索及样品分析检测、售前售后技术拓展和支持、行业和地方标准修订和制定等。公司设有专业的技术支持服务团队始终坚守“科学严谨、快速高效”的服务理念,为客户提供7×24小时快速响应和全方位技术支持,协助客户优选科研工作中所需的更优硬件、探讨科研方案设计、提供设备运维服务、分析科研数据等工作。稳定的产品质量与高效的服务支持赢得诸多客户的信赖,真正做到了“Science to Solutions”。立足现在、着眼未来,公司始终奉行“诚信服务、质量优先、真诚合作、共同发展”的企业宗旨,秉承服务程序更简单、更灵活、更机动、响应速度更快的经营理念,积极为客户提供更安全、更优质、更可靠、更高效、更高性价比的解决方案和先进产品,让更多的用户获益于先进仪器设备带来的优异成果。地址:北京市海淀区瀚河园路自在香山98-1号楼 邮编:100093电邮:info@pri-eco.com电话:(+86)10-51651246,88121891传真:(+86)10-88121891-8002
    留言咨询
  • 400-860-5168转6184
    奥影检测科技(上海)有限公司,可选多种射线源与探测器的组合,适合扫描大小小型有色金属芯片、复合材料电子器件、化石生物样本岩心、渗透模拟土壤岩石样品等。奥影检测提供工业CT系统OEM/ODM生产,研发生产了高能加速器工业CT、双源双探测器工业CT、微焦点CT、计量型工业CT、纳米CT、平板快速CT、原位加载CT等等。
    留言咨询

原位群落光合呼吸监测系统相关的仪器

  • 产品简介通过MEMS芯片对样品施加力学、电场、热场控制,在原位样品台内构建力、电、热复合多场自动控制及反馈测量系统,结合EDS、EELS、SAED、HRTEM、STEM等多种不同模式,实现从纳米层面实时、动态监测样品在真空环境下随温度、电场、施加力变化产生的微观结构、相变、元素价态、微观应力以及表/界面处的结构和成分演化等关键信息。我们的优势力学性能1.高精度压电陶瓷驱动,纳米级别精度数字化精确定位。2.实现1000℃加热条件下压缩、拉伸、弯曲等微观力学性能测试。3.nN级力学测量噪音。4.具备连续的载荷-位移-时间数据实时自动收集功能。5.具备恒定载荷、恒定位移、循环加载控制功能,适用于材料的蠕变特性、应力松弛、疲劳性能研究。优异的热学性能1.高精密红外测温校正,微米级高分辨热场测量及校准,确保温度的准确性。2.超高频控温方式,排除导线和接触电阻的影响,测量温度和电学参数更精确。3.采用高稳定性贵金属加热丝(非陶瓷材料),既是热导材料又是热敏材料,其电阻与温度有良好的线性关系,加热区覆盖整个观测区域,升温降温速度快,热场稳定且均匀,稳定状态下温度波动≤±0.1℃。4.采用闭合回路高频动态控制和反馈环境温度的控温方式,高频反馈控制消除误差,控温精度±0.01 ℃。5.多级复合加热MEMS芯片设计,控制加热过程热扩散,极大抑制升温过程的热漂移,确保实验的高效观察。优异的电学性能1.芯片表面的保护性涂层保证电学测量的低噪音和精确性,电流测量精度可达皮安级。2.MEMS微加工特殊设计,同时加载电场、热场、力学,相互独立控制。智能化软件1.人机分离,软件远程控制纳米探针运动,自动测量载荷-位移数据。2.自定义程序升温曲线。可定义10步以上升温程序、恒温时间等,同时可手动控制目标温度及时间,在程序升温过程中发现需要变温及恒温,可即时调整实验方案,提升实验效率。3.内置绝对温标校准程序,每块芯片每次控温都能根据电阻值变化,重新进行曲线拟合和校正,确保测量温度精确性,保证高温实验的重现性及可靠性。技术参数类别项目参数基本参数杆体材质高强度钛合金控制方式高精度压电陶瓷倾转角α≥±20°,倾转分辨率<0.1°(实际范围取决于透射电镜和极靴型号)适用电镜Thermo Fisher/FEI, JEOL, Hitachi适用极靴ST, XT, T, BioT, HRP, HTP, CRP(HR)TEM/STEM支持(HR)EDS/EELS/SAED支持应用案例600°C高温下铜纳米柱力学压缩实验以形状尺寸微小或操作尺度极小为特征的微机电系统 (MEMS)越来越受到人们的高度重视 , 对于尺度在 100μm 量级以下的样品 , 会给常规的拉伸和压缩试验带来一系列的困难。纳米压缩实验 , 由于在材料表面局部体积内只产生很小的压力 , 正逐渐成为微 / 纳米尺度力学特性测量的主要工作方式。因此 , 开展微纳米尺度下材料变形行为的实验研究十分必要。为了研究单晶面心立方材料的微纳米尺度下变形行为 , 以纳米压缩实验为主要手段 , 分析了铜纳米柱初始塑性变形行为和晶体缺陷对单晶铜初始塑性变形的影响。结果表明铜柱在纳米压缩过程中表现出更大程度的弹性变形。同时对压缩周围材料发生凸起的原因和产生的影响进行了分析 , 认为铜纳米柱压缩时周围材料的凸起将导致纳米硬度和测量的弹性模量值偏大。为了研究表面形貌的不均匀性对铜纳米柱初始塑性变形行为的影响 , 通过加热的方法 , 在铜纳米柱表面制备得到纳米级的表面缺陷 , 并对表面缺陷的纳米压缩实验数据进行对比分析 , 结果表明表面缺陷的存在会极大影响铜纳米柱初始塑性变形。通过透射电子显微镜 ,铜纳米柱压缩点周围的位错形态进行了观察 , 除了观察到纳米压缩周围生成的位错 , 还发现有层错、不全位错及位错环的共存。表明铜纳米柱的初始塑性变形与位错的发生有密切的联系。
    留言咨询
  • OTC-Auto原位(in-situ)群落光合-呼吸监测系统 OTC-Auto原位群落光合-呼吸监测系统为易科泰专利产品(专利号:ZL 2020 2 0395637.6)采用国际先进传感器技术,由原位安装自动开启式OTC(Open-top chamber)、数据采集控制系统、CO2分析仪及传感器组成,可选配叶绿素荧光监测模块、SCG-3土壤剖面CO2梯度监测、微根窗根系动态观测、植被成像分析等。可配置单体式群落光合-呼吸监测箱或多通道群落光合-呼吸监测系统,用于野外或温室内单株植物或植物群落如湿地、草原、农田、苔原等的光合-呼吸监测、碳通量监测、群落生理生态研究、植物表型分析研究等。功能特点:1.可实现对个体、群落乃至生态系统原位(in-situ)CO2/H2O通量、光合-呼吸等持续监测2.可配置单体式群落光合-呼吸监测箱、双体式群落光合-呼吸监测箱(用于对比实验等)、或多通道式监测系统3.自动开启,内置扩散式高精度生态监测专用CO2/O2传感器,无需配置复杂以及高耗能的气体抽样系统,即气泵和相应的管路控制等4.标配CO2、空气温湿度、PAR(光合有效辐射)、土壤水分温度等参数,可选配雨量筒、太阳辐射、大气压、水位、荧光光纤O2测量等其它传感器5.可选配流通式(具抽样泵)CO2与CH4同步监测;或外置式(气体分析仪不在测量室内)多参数温室气体分析系统,同步监测CO2、CH4、N2O及NH3等温室气体,CH4和N2O等MDCD(Minimum detectable concentration difference)可达ppb级6.模块式结构,配置灵活,具备强大的可扩展性7.可选配叶绿素荧光监测模块,以进行叶绿素稳态荧光Fs、光量子产量、荧光淬灭、OJIP、光响应曲线等监测分析8.可选配SCG-N土壤剖面不同梯度CO2/O2监测,易科泰专利技术(专利号:ZL 2016 2 0734283.7)9.可选配植被成像分析和微根窗根系成像分析,全面分析植被盖度、生长、根系动态等10.可选配植物/作物生理生态监测,同步监测叶面温度、茎杆生长、果实生长、光合作用等生理生态参数 技术指标:1.红外CO2分析仪:量程0-2000 ppm,精确度1.5%,分辨率1ppm,温度、气压补偿,可选配多层梯度监测(如土壤表层、冠层、冠层以上等)2.自动开闭OTC:标准配置64(长)x64(宽)x50cm(高),扩散式抽样或梯度多路管抽样技术,封闭式测量,可根据植被群落类型选配其它大小高度的自动开闭OTC,可编辑设置Protocol,默认为开启50分钟、关闭10分钟、采样频率30s3.空气温湿度传感器:温度测量范围-40-60℃(可选配其它测量范围),精度0.1℃;空气湿度测量范围0-100%,精确度2%4.光合有效辐射传感器:波段400mm-700mm,灵敏度10.0mV/mmolm-2s-1,工作温度-20-60℃;5.土壤水分温度:0-60% VWC,精度± 3% (VWC);-40 - +80°C, ± 0.2°C6.可选配外置多参数气体分析仪,FTIR技术,可同时分析H2O、CO2、N2O等气体;MDCD(最低监测差异):H2O:0.010%(Vol);CO2:5ppm;CH4:40ppb;N2O:7ppb;NH3:70ppb7.可选配CO2、CH4同步测量,其中甲烷测量范围0-100ppm、最低检测限0.4ppm、分辨率0.01ppm8.叶绿素荧光监测单元(建议选配):标准配置可监测F0、Ft、Fm、Fm’、QY、QY_Ln、QY_Dn、NPQ、qP、Rfd等叶绿素荧光参数。高级配置除以上参数外,还可测量OJIP、荧光淬灭、光响应曲线等9.可选配荧光光纤O2测量技术监测O2浓度通量(建议选配),可选配单层或多层梯度监测,测量量程0-50%,分辨率0.05%,精确度±0.2%,温度、气压补偿,可监测气相(空气)或液相(水体)O2浓度10.专业数据采集分析软件,具备数据采集、下载、图表显示和基本统计分析(如平均、相关分析等)等功能案例实验: 案例1为在易科泰生态技术公司上庄实验站温室大棚内监测的群落光合-呼吸状况,监测时间为2015年11月14日早晨5:00至下午15:48,当天天气多云。监测系统为单体式,大小为60x60x50cm(体积为0.18立方米),OTC自动开启30分钟然后关闭20分钟,采样频率30s。表中为PAR(红线)与CO2浓度(蓝线)的数据。可以看出,在上午8:00前以呼吸为主(每个峰值CO2浓度升高的斜率乘以体积再除以OTC底面积即为CO2通量),包括土壤呼吸和植物的呼吸(要区分土壤呼吸与植物呼吸,必须选配双体式,其中一个OTC内没有植物);上午9点后光照增强,系统主要以光合作用为主(光合作用大于呼吸作用)。产地:易科泰集成系统
    留言咨询
  • 土壤空间异质性强,即便是同一区块相同土壤类型的土壤呼吸,其通量差异性也非常大。科学家在进行土壤呼吸研究时,通常需要在空间、时间和气体种类上进行多维度的组合研究,才能更好地解释土壤呼吸的内在机制。PRI-8600D能为上述研究提供时间顺序上、不同位点土壤呼吸循环测量解决方案。PRI-8600D具有专利的双循环气路设计,能提升不同通道之间的切换效率,尤其适用于超过16(18)个监测位点或分析仪流速过低的情况。PRI-8600D能提供多种灵活可靠的解决方案: 1)分析仪:可选配基于非色散红外技术(NDIR)的CO2 分析仪,或是基于激光光谱吸收技术的高精度CO2 CH4 N2O气体浓度分析仪,抑或是基于激光光谱吸收技术的高精度CO2 CH4 N2O同位素分析仪等; 2)通道数量:具有可选的通道数量,8(9)通道,16(18)通道,24(27)通道,32(36)通道或者更多; 3)气路长度:具有可选的气路长度,15m 至 100m可选(因为需要匹配循环气泵压力和流速,须出厂前定制); 4)呼吸室:可选呼吸暗室、群落光合箱、明暗交替的呼吸室/箱。土壤呼吸室带有专利的动压平衡装置,能保持呼吸室内压力与外界大气压一致,最大限度降低测量室内因土壤呼吸或测量室外因风速扰动带来的测量误差。 PRI-8600D多通道土壤呼吸(群落光合)测量系统可以满足不同科学研究需要,适用于生态学、农学、林学、肥料学、冻土、地震学研究,以及垃圾掩埋等领域。主要特点兼容性好,可连接不同的同位素或气体浓度分析仪;双循环气路设计,能提升不同通道之间的切换效率;定制化程度高,通道数量、气路长度、呼吸室种类;标配3路标准气切换模块,可在线进行系统标定;专利的动压平衡装置,能提升通量测量精度和准度。技术指标PRI-8600D多通道复路系统(专利号:ZL201810968150.X)性能指标通道数量8(9)通道,16(18)通道,24(27)通道,32(36)通道或者更多校准通道3通道操控方式平板触控测量半径标准15m,可以通过更换循环泵增加测量半径至100m气体流速标准进出测量室4.0 L/min取样温度-10 ~ 45 °C取样压力80~ 115 kPa取样湿度99% R.H,无冷凝@45°C,无需干燥出/入口接头1/4英寸接头套管8800-1 CO2 H2O分析仪(可内置于PRI-8600D)性能指标CO2 测量范围0-2000 ppmCO2 准确度± 2%,校准后优于±1.5%CO2 零点稳定性± 2%(12个月)CO2 重复性@零点± 0.3%CO2 重复性@跨度± 1.5%CO2 恒温下的零点漂移± 2% / 年CO2 常温下的零点漂移± 0.03% / ℃H2O 测量范围0~6%H2O 准确度± 2%标准工作温度-20 ~45 °C标准工作压力800 ~ 1150 mbar取样流速标准1L/min,可调T90响应时间标准10 s,可调预热时间1 min校准频率建议12月校准一次湿度99% R.H,无冷凝输出RS-232, 模拟输出8600-2012长期土壤呼吸室(专利号:ZL201710708393.5,ZL201420354126.4)性能指标呼吸室尺寸220 mm(D) x 120 mm(H)呼吸室容积3718 cm3呼吸室截面积314 cm2空气温度范围-40 ~ +85 °C空气温度精度± 0.2 °C线缆长度标配15m尺寸440 mm(L) x 260 mm(W) x 260 mm(H)重量7.5 Kg8600-1000 长期透明箱(专利号:ZL201420354126.4,ZL202010450149.5)性能指标呼吸室容积90500 cm3呼吸室截面积1936 cm2空气温度范围-40 ~ +85 °C空气温度精度± 0.2 °C线缆长度标配15 m尺寸500 mm(L) x 500 mm(L) x 400 mm(H)重量20 kg8600-201 土壤温度传感器性能指标温度范围-40 ~ +85 °C温度精度± 0.2 °C线缆长度标配15m8600-202 土壤湿度传感器性能指标湿度范围0 ~ 100 %湿度精度± 3 %线缆长度标配15m配置说明 PRI-8600D多通道土壤呼吸(群落光合)测量系统主要包含多路复路系统主控箱,双循环泵,触屏PAD; 可选配CO2 H2O分析仪,高精度CO2 CH4 N2O气体浓度分析仪,高精度CO2 CH4 N2O同位素分析仪; 可选各种呼吸室,如土壤呼吸室、群光光合箱,明暗交替呼吸室/箱(含动压平衡装置),空气温度、土壤温度和土壤湿度传感器等; 可选配不同长度的气路管线,标配15m,可以定制长度至100m。
    留言咨询

原位群落光合呼吸监测系统相关的资讯

  • 文献分享丨灌溉绿洲农业生态系统中土壤呼吸CO2及其Δ13C值随时间变化的测量策略
    土壤呼吸中13C的天然丰度可以为研究土壤-植物大气圈系统中的碳动力学提供有力的工具,并对大气δ13C产生很大影响,因为它是进入大气的最大CO2通量之一。大气δ13C可以进一步反映陆地生态系统的分馏,为生物圈-大气CO2交换提供有价值的示踪剂。此外,使用稳定同位素13C作为示踪剂是划分土壤呼吸成分的极好方法,因为它可以在对土壤环境干扰最小的情况下识别释放的CO2的来源。如果由于缺乏δs数据而导致陆地呼吸的同位素组成参数化不正确,基于呼吸过程中陆地同位素分馏常数的生态系统和全球碳循环模型可能会给出不正确的结果。在现有的δs研究中,最常用的方法是使用静态封闭土壤室,在选定的时间间隔从中收集空气样本,并通过同位素比质谱仪测定进行后分析。在这些实验中,样品采集的频率固有地受到烧瓶采集和离线质谱分析所需的时间和精力的限制。因此,最佳测量时间对于获得日、月或年平均δs非常重要。 基于此,中国科学院地理科学与自然资源研究所温学发等研究人员采用非稳态条件下在线连续多通道双循环观测系统,在中国西北的灌溉玉米生态系统中进行了Rs和δs的原位连续测量。研究过程中,基于连续和高频(1Hz)测量,研究Rs和δs在日、月和季节时间尺度上的最佳测量时间,量化Rs和Δs的最佳测量频率,以在季节时间尺度下达到一定的准确度(±10%、±20%或±30%)。从而评估生长季节土壤呼吸CO2(Rs)及其δ13C(δs)值以及土壤温度(ST)和土壤含水量(SWC)的最佳测量时间和频率。 研究发现,尽管在生长季节,Rs和δs通常随着非生物和生物因素的变化而表现出明显的日变化和季节变化,但在9:00–10:00或此时(如9:00–11:00)的窗口中测得的Rs和Δs通常与日平均值没有显著差异。因此,如果研究人员无法直接测量昼夜模式,建议将这些时间尺度作为气候和植物类型相似地区的最佳测量时间。这项研究的结果为未来在其他灌溉农业生态系统中使用非连续测量提供了指导,可用于选择最佳测量时间并在保证一定精度的同时降低测量频率。试验方案及设备 下图是整套系统的示意图。整个方案由1)分析模块;2)采样模块;3)控制模块和4)校准模块构成。整体采用多通道双循环的设计思路,实现待测气体既能快速周转,又能互不干扰,并且将死体积降至最低水平。下图中蓝色线条代表的气路循环为整套系统的大循环,气体在呼吸室和控制系统内快速循环,能实时反馈气体浓度的变化。黄色线条代表的气路循环为小循环,从大循环中取分析仪需要的气体流量进行分析检测,测试完成的气体再次送回循环气路。原位多通道双循环观测系统示意图(std1, std2, std3:标准气体;MV:3通电磁阀;OF:溢流;V:流量控制阀;P:KNF泵;F:过滤器) 1、降低每一个呼吸室的关闭速度,最大限度减少呼吸室盖紧过程因空气下压产生的土壤呼吸测量的不确定性,保证数据测量结果的稳定性和准确性。 2、缩短每个循环周期的测量时间,尤其有利于土壤呼吸通量较低需要延长单个呼吸室测量时间,以及单次循环土壤呼吸室较多的情况。 3、有利于提高流速较慢分析仪的响应时间。 4、双泵交替工作有利于延长泵的使用寿命。 土壤空间异质性强,即便是同一区块相同土壤类型的土壤呼吸,其通量差异性也非常大。科学家在进行土壤呼吸研究时,通常需要在空间、时间和气体种类上进行多维度的组合研究,才能更好地解释土壤呼吸的内在机制。基于此,普瑞亿科研发了PRI-8600D 多通道土壤呼吸(群落光合)测量系统,能为上述研究提供时间顺序上、不同位点土壤呼吸循环测量解决方案。 PRI-8600D双循环复路系统是普瑞亿科潜心研发多年的土壤呼吸测量多路系统,具有发明专利(专利号:ZL201710784488.5),并在科技部重点研发计划项目支持下,于2023年完成最新一轮的升级。升级完成后,相对其他厂家的同类产品具有以下特点和优势: 1)具有双循环气路设计:设有奇数组和偶数组两个分组,每组均包含1个一体化的汇流排和1一个循环泵,并通过电磁阀组连接在一起交替为分析仪主机提供气源。两组复路系统交替工作,在前一个呼吸室测量结束前,次一个呼吸室开始工作,并在前一个呼吸室测量结束时,切入第二个呼吸室进行测量。 2)升级高度集成的采集汇流排、双路双循环汇流排、标样汇流排,极大的减少了分析气路的“死体积”;而模块化的设计也大大降低了气路泄漏的风险,保证了测量结果稳定可靠。 3)升级每个通道内置的过滤器材质为SUS304,提高了整机的气密性和稳定性,保障了整套系统能靠运行。 4)升级工业级电控逻辑板,即使在极端的工况下,设备也能稳定可靠的运行。MODBUS RTU的RS485通讯为客户大范围远距离应用提供了可能。 5)具有三路标准气接口,这可以实现高校准频率需要的分析仪时间在线校准,比如光谱同位素分析仪。 6)升级的气电混装定制化接头和线缆,设备更简洁/美观和可靠;同时,实现一个较小尺寸的主机箱连接不少于32个土壤呼吸室。 7)标配一个RS-232、一个RS-485 通讯接口,为一个复路系统驳接多个气体分析仪提供可能(可根据客户应用,拓展RS-232、RS-485和TTL通讯)。 8)具有WIFI接口,可以连接触控设备进行测量参数配置;具有双网口,可以进行数据自动上传和远程数据跟踪。 9)可以同时接驳土壤呼吸明室/土壤呼吸暗室/大容量群落光合室等。 10)若只需要CO2 H2O测量,分析仪可以内嵌到一个主机箱内。 8600-2012 全自动土壤呼吸测量暗室具有发明专利(专利号:ZL202021501088.2),该呼吸室升级了气电混装的线缆结构,升级土壤呼吸的防水等级至IP66,升级呼吸室多层采样装置,设备简洁、美观、可靠。 8600-2012 具有动压平衡装置,通过科学的设计,既能保证呼吸室内大气压于外界大气压的平衡,也能在一定限度内消除外界风速对呼吸室内气体的扰动,保证测量结果的准确性。配合PRI-8600D双循环,8600-2012关闭呼吸室的速率可以很低,最大限度消除其对土壤呼吸的扰动。 8600-2012C 是全自动土壤呼吸明室,呼吸室上部没有任何遮挡,考虑到植物生长高度,透明呼吸室高度可以在一定范围内特殊定制。兼容性好,可连接不同的同位素或气体浓度分析仪;双循环气路设计,能提升不同通道之间的切换效率;定制化程度高,通道数量、气路长度、呼吸室种类;标配3路标准气切换模块,可在线进行系统标定;专利的动压平衡装置,能提升通量测量精度和准度。PRI-8600D 多通道土壤呼吸(群落光合)测量系统主要包含多路复路系统主控箱,双循环泵,触屏PAD;可选配 CO2 H2O 分析仪,高精度 CO2 CH4 N2O 气体浓度分析仪,高精度 CO2 CH4 N2O 同位素分析仪;可选各种呼吸室,如土壤呼吸室、群光光合箱,明暗交替呼吸室/箱(含动压平衡装置),空气温度、土壤温度和土壤湿度传感器等;可选配不同长度的气路管线,标配15 m,可以定制长度至100 m。装置,能提升通量测量精度和准度。 PRI-8600D 多通道土壤呼吸(群落光合)测量系统可以满足不同科学研究需要,适用于生态学、农学、林学、肥料学、冻土、地震学研究,以及垃圾掩埋等领域。
  • 土壤呼吸 | 极端干旱改变土壤微生物功能群丰度来降低土壤异养呼吸
    土壤呼吸 | 极端干旱通过改变高寒泥炭地土壤微生物功能群丰度来降低土壤异养呼吸而非甲烷通量【温室气体】人类活动造成温室气体排放急剧增加,全球地表温度持续上升,显著改变了自然生态系统碳水循环格局。极端气候事件,尤其是极端干旱事件发生的频率和强度不断升高,对土壤含水量、土壤微生物群落结构和功能、土壤异养呼吸(Rh)以及土壤甲烷(CH4)通量具有重要影响。高寒泥炭地拥有巨大的碳储量,对气候变化高度敏感。虽然目前围绕高寒泥炭地碳排放开展了一些研究,但对高寒泥炭地生态系统碳排放对极端干旱响应的微生物机制仍不清楚。若尔盖国家级自然保护区基于此,中国林业科学研究院湿地研究所的研究团队以青藏高原东部若尔盖国家级自然保护区高寒泥炭地(33°47′56.62′′ N,102°57′28.44′′ E,3430 m.a.s.l.)为研究对象,依托模拟极端干旱的野外控制实验平台,通过原位观测和室内试验相结合,旨在解决以下问题:(1)不同植物生长期,极端干旱如何影响Rh和CH4通量?(2)极端干旱如何影响土壤微生物群落结构和功能群?以及(3)驱动Rh和CH4通量变化的主要因素是什么?作者于2019年6月18日至9月25日测量了Rh(PS-9000便携式土壤碳通量自动测量系统(北京理加联合科技有限公司))和CH4通量(一个闭路静态室(0.5×0.5×0.5 m)+ABB LGR便携式温室气体分析仪(UGGA,GLA132-GGA))。试验三个生长期结束时,作者测量了样地0-20 cm土壤的土壤性质,包括总氮(TN)、土壤有机碳(SOC)、有效磷含量(AP)、总磷(P)、pH值、溶解有机碳(DOC)、土壤含水量(SWC)、硝态氮(NO3--N)、铵态氮(NH4+-N)、微生物生物量磷(MBP)、微生物生物量氮(MBN)和微生物生物量碳(MBC)。此外,还进行了新鲜土壤样品的DNA提取、PCR扩增和测序。图1 PS-9000便携式土壤碳通量自动测量系统。【结果】图2 不同植物生长期极端干旱对土壤异养呼吸(a)和甲烷通量(b)的影响。“ED”,“MD”,和“LD”分别代表植物快速生长期、盛花期和植物生长衰退期。图3 不同植物生长期极端干旱对细菌碳循环功能群的影响。图4 驱动因素对土壤微生物呼吸(a)和甲烷通量(b)的相对贡献。【结论】极端干旱导致植物生长衰退期土壤异养呼吸显著降低38.04 mg m−2h−1,但对CH4通量无显著影响。极端干旱显著降低了细菌的α多样性,显著降低了植物快速生长期和衰退期的Rokubacteria和Chloroflexi菌的相对丰度,显著增加了盛花期Actinobacteria菌的相对丰度。在植物快速生长期和盛花期,极端干旱使芳香烃降解功能群(aromatic hydrocarbon degraders)相对丰度分别降低了50.26%和64.37%。在植物生长衰退期,极端干旱显著降低了甲醇氧化(methanol oxidizers)和木质素降解(lignin degraders)功能群的相对丰度,分别为81.63%和82.08%。随机森林模型分析表明,细菌功能群在决定土壤异养呼吸和甲烷排放中起着重要的作用。芳香族化合物降解(aromatic compound degraders)和芳香烃(aromatic hydrocarbon degraders)降解功能群对土壤异养呼吸累计贡献率为11.89%。芳香族化合物降解(aromatic compound degraders)、芳香烃降解(aromatic hydrocarbon degraders)、脂肪族非甲烷烃降解(aliphatic non-methane hydrocarbon degraders)和甲基营养(methylotrophs)功能群对甲烷通量的累计贡献率为13.29%。研究结果强调土壤细菌碳循环功能群对于探索未来极端干旱背景下土壤碳循环可能的微生物响应机制至关重要,为高寒泥炭地应对未来气候变化提供了理论基础和科学依据。【产品简介】PS-9000是一套用于测量土壤CO₂通量的便携式测量系统,采用动态气室法测量,专利设计。具有控制测量、存储和数据处理等功能,可测量呼吸室内CO₂浓度变化,同时结合自身测量的空气温度、大气压、土壤温度等传感器的数据,计算处理得到CO₂通量。PS-9000可通过掌上控制器实现无线操作,实时显示仪器测量的各种参数值,并可现场修改各种设置参数。
  • “咳咳咳”扬尘监测系统,实现“肺呼吸”自由
    随着近几年工业技术的快速发展,“尘肺病”已成为我国一大职业病,并呈现每年以3万多人增长的趋势,现状不容乐观。什么是尘肺病绝大多数人认为尘肺病就是一种疾病。事实上,尘肺病是由于吸入各种物质的粉尘而引发的肺部疾病。根据不同的诱因也有不同类型的尘肺病,如煤工尘肺、水泥尘肺、石棉肺等。由于患病人口数量大,治疗困难,尘肺病已成为社会公认的一种不可治的疾病。相比于后期的治疗困难,前期通过各种预防措施更为简单直接,从源头上降低工人接触的粉尘浓度。同时,随着城市建设对环境治理要求的不断提高,扬尘监测已逐步成为环境监测的重要指标。因此,对于建筑工地、水泥工厂、大型工矿等扬尘浓度易于超标的场所,必须安装一套扬尘监测系统,实时监测空气中污染物的浓度,降低扬尘污染,也使工人们的呼吸更为轻松、顺畅,提高工作效率。建大仁科扬尘监测系统由扬尘监测站、传输系统和环境监控云平台组成,能够对安装环境中的温度、湿度、噪声、大气压力、风力、风速、风向、PM2.5、PM10、TSP等环境参数进行实时监测(根据需求可任意搭配),通过GPRS/4G方式将采集的数据上传至环境监控云平台,方便工作人员对现场环境质量进行实时的监测、查看与管理。扬尘监测系统的具体体现:扬尘监测站扬尘监测站包含1路百叶盒输出,对温湿度、噪声、PM2.5、PM10、气压、TSP等气象因素进行采集;1路风速采集;1路风向采集;1路继电器输出,可外接现场二级继电器控制雾炮(默认)及塔喷系统;外接1路 LED 屏(尺寸54cm*102cm),实时显示环境中各气象因素的当前数值。传输系统扬尘监测站可通过GPRS/4G方式将数据上传至环境监控云平台;同时,我司还提供免费对接平台的服务,只需用户提供平台的接口协议即可实现,帮助更加直观的监管扬尘。环境监控云平台环境监控云平台是建大仁科为远程实现环境质量自动监测与管理所研发的系统平台。可接收扬尘监测站实时上传的数据,对超限的数据进行报警;支持数据多种分析和导出方式;管理人员可直接在云平台对监测要素的数据进行上下限设置,报警设置等,及时对施工现场的扬尘污染进行防治。扬尘监测系统的独特优势:1.智能联动扬尘监测站专门设置1路继电器输出,当空气中PM2.5或PM10的数值超标时,系统会自动给继电器发送联动命令,从而控制现场雾炮或塔喷系统,降低空气中颗粒物的含量。2.双色显示屏高亮度大LED屏,可实现双色显示,绿色正常,红色超标,双色提示更清晰,提供专门手机APP修改显示的标头,可勾选屏幕显示内容,设置雾炮启动值。3.远程监控多样除了我司提供的环境监控云平台可在电脑端进行查看监控,还支持手机APP,微信公众号等多种终端登录方式,从而实现短信报警、铃声报警、微信提示等报警方式;能实时接收监测设备上传的数据,可直接在终端进行各种参数的设置,达到远程自动监控的目的。扬尘监测系统通过对现场环境各种污染物的数据纳入监控系统,为工作人员下一步控制工地的扬尘等颗粒物提供科学的数据支持,提高环境污染防治的力度,净化空气质量,帮助人们实现“肺呼吸”自由。

原位群落光合呼吸监测系统相关的方案

原位群落光合呼吸监测系统相关的资料

原位群落光合呼吸监测系统相关的论坛

  • 呼吸机实现液位检测功能有哪些方式

    [font=&][font=等线]呼吸机是一种医疗设备,用于辅助或代替患者的呼吸功能。主要用于治疗各种呼吸系统疾病[/font][/font][font=等线],[/font][font=&][font=等线]如呼吸衰竭、气道阻塞、睡眠呼吸暂停等[/font][/font][font=等线],[/font][font=&][font=等线]通过输送氧气或空气,以及调节呼吸节律和气压来维持患者的正常呼吸。[/font][/font][font=&][/font][font=等线]有些[/font][font=&][font=等线]呼吸机[/font][/font][font=等线]配备了[/font][font=&][font=等线]湿化器,用于加湿气体,防止患者的气道干燥。在这种情况下,需要检测湿化器中水的液位,以确保水足够供应湿化器,并避免干燥或过度湿润[/font][/font][font=等线]。如何及时发现水位变化及时加水呢,这时就要用到光电液位传感器。[/font][font=等线][/font][align=center][img=呼吸机液位检测,690,466]https://ng1.17img.cn/bbsfiles/images/2024/04/202404181449477254_3994_4008598_3.jpg!w690x466.jpg[/img][/align][font=等线][url=https://www.eptsz.com]光电分离式液位传感器[/url]相比于一体式液位传感器,水箱方便移动,加水方便,把菱鏡部分直接设计到用户水箱上,模具一体成型出来;光学组件分离出来,置于水箱外部感应。传感器独立于水箱外,中间可间隔空气,解决了水箱需移动加水的问题。用此方案的产品水位感应精准,水箱无外结构件干涉,更易清洁,避免传感器边角的细菌滋生,此方案适用于湿化器液位检测。[/font][font=等线][/font][font=等线]呼吸机湿化器实现液位检测能够提升治疗安全性、降低维护成本、节约医疗资源,提升用户使用呼吸机的体验。[/font][font=&][/font]

  • 植物呼吸测定仪是什么

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405241141356426_8312_5604214_3.jpg!w690x690.jpg[/img]   植物呼吸测定仪是一种专门用于测量植物呼吸作用的科学仪器。它基于生物学和物理学原理,通过精准地监测植物在特定环境下的气体交换,从而揭示植物呼吸作用的内在规律和机制。  植物呼吸测定仪的主要功能包括测量植物在光合作用和呼吸作用过程中产生的二氧化碳和消耗的氧气量,以及监测环境参数如温度、湿度和光照强度等。这些参数对于理解植物的生长状态、生理过程以及响应环境变化的机制至关重要。  在农业领域,植物呼吸测定仪发挥着不可替代的作用。它可以帮助农业科研人员深入了解作物生长过程中的呼吸特性,为优化作物种植条件、提高产量和品质提供科学依据。此外,植物呼吸测定仪还可以用于监测植物病害的发生和发展,为病害防治提供有力的技术支持。  在生态学和环境科学领域,植物呼吸测定仪同样具有广泛的应用。通过测量植物在不同生态系统中的呼吸作用,研究人员可以评估生态系统的碳平衡和能量流动,为制定科学合理的生态保护和恢复策略提供数据支持。  随着科学技术的不断发展,植物呼吸测定仪的性能和精度也在不断提高。未来,这种仪器将更加智能化、便携化,为植物生理生态研究提供更为便捷和高效的工具。同时,随着研究的深入,我们有望更加深入地了解植物呼吸作用的奥秘,为农业生产、生态保护和全球气候变化等领域的研究和发展提供新的视角和思路。

  • 果蔬呼吸测定仪平衡多久检测一次

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=16px]  果蔬呼吸测定仪平衡多久检测一次,果蔬呼吸测定仪的平衡时间和检测频率取决于多种因素,包括果蔬的种类、储存条件、仪器的性能等。以下是基于参考文章中的相关信息,对果蔬呼吸测定仪平衡时间和检测频率的清晰归纳:  平衡时间  仪器特点:果蔬呼吸测定仪通常可以根据果蔬的大小来选择不同体积的呼吸室,以加快平衡和测定时间。  具体时间:文中未直接提及具体的平衡时间,但一般来说,平衡时间可能因呼吸室的大小、果蔬的种类和数量、环境条件(如温度、湿度)等因素而异。  检测频率  常规检测:在常规储存条件下(如常温、冷藏库、气调库、超市冷柜等),果蔬呼吸测定仪可用于定期检测果蔬的呼吸强度,以了解其健康状况和新鲜度。  频率建议:  对于需要长期储存的果蔬,建议定期(如每天或每周)进行检测,以确保储存条件的稳定性和果蔬的品质。  在特殊情况下(如温度、湿度等环境条件发生显著变化时),可能需要增加检测频率,以便及时发现问题并采取措施。  注意事项  环境因素:储存环境的温度、湿度、气体成分等因素对果蔬的呼吸强度有很大影响,因此在进行检测时需要考虑这些因素的影响。  仪器校准:为了确保检测结果的准确性,需要定期对果蔬呼吸测定仪进行校准和维护。  总结  果蔬呼吸测定仪的平衡时间和检测频率因具体情况而异。在常规储存条件下,建议定期进行检测以了解果蔬的呼吸强度和品质。同时,需要注意环境因素对检测结果的影响,并定期对仪器进行校准和维护。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/06/202406261109153666_9373_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

原位群落光合呼吸监测系统相关的耗材

  • 呼吸一氧化碳检测套装 CH00270
    产品信息:德尔格检测管系统德尔格检测管是装满化学试剂的玻璃管,此化学试剂与特定的化学物质或相关化学物质发生反应。用德尔格accuro气泵抽取定量标准气样到检测管中,如果检测管中的试剂改变颜色,颜色变化的长度通常表明被测物质的浓度。德尔格检测管系统是全世界气体检测领域公认的、且应用最广泛的检测形式。**表示采样次数在20次以上的检测管,建议选配x-act 5000电动采样泵。订货信息:呼吸一氧化碳检测套装Respiratory CO Test Kit(5) 检测管检测管名称测量范围订货号呼吸一氧化碳检测套装Respiratory CO Test Kit(5)CH00270
  • 百道亨 呼吸性粉尘采样头 其他环境监测仪配件
    呼吸性粉尘采样头:呼吸性粉尘采样头30mm用于职业卫生呼吸型粉尘的长时间或个体采样呼吸性粉尘采样头37mm用于职业卫生呼吸性粉尘的长时间或个体采样呼吸性粉尘采样头25mm用于职业卫生呼吸型粉尘的长时间或个体采样
  • 天津U型压力计压力计华勃氏定容呼吸压力计
    微量呼吸压力计 华勃氏WARBURG MANOMETER别名:华勃氏定容呼吸压力计:一、概况及用途 该仪器是用明硅玻璃经灯工,刻度制成一支U形压力计和二只反应瓶,配套磨砂而成。一般在使用时常以12支为一组进行测试,它适用于生物医学方面,对生理与动植物组织或微生物的发酵和代谢分析,以及发芽组织的呼吸作用,在临床上用于对正常组织和肿瘤组织中乳酸、丙酮酸的测定,也可用于研究其它有关氧与二氧化碳气体的反应,如光合作用及酶的活性等。二、造型及原理 它是由U型具侧支管压力计和反应瓶组成,U型压力计用毛细管经刻度加工制成。测压灵敏。压力计左管上端开口,右管上端接有三路活塞,可以平衡压力或调整液面,弯形侧支管具有标准磨口塞与反应瓶相连,反应瓶是放置被测物的,底部有-一个环形小杯,放入硷性溶液以吸收二氧化碳,反应瓶有一个侧臂管,系供养料或在反应过程中作添加物料用,侧臂管的毛细管塞可作放气用。其原理:是凡含有气体的动植物活体细胞或组织,在消耗氧的同时放出二氧化碳,而二氧化碳气体被硷溶液吸收,在固定体积和一定温度的情况下气体的发生或消失(包括速度),可由密闭系统中气体压力计的液面改变而测得。三、使用方法(一)先将仪器洗净烘干,然后用水银灌入带活塞的U形管内。(二)在U形压力计的下端尾部套一小节胶管并用螺丝夹夹住,以调整压力计的液面升降位置。(三)在反应瓶的中心圈内放入吸收二氧化碳的氢氧化钾溶液,在反应瓶的外圈四周放入肝脏和生理容液葡萄糖等组织液,在反应瓶的侧管内盛入被检定的药物,插上毛细管塞,将反应瓶连接在U形压力计的磨砂塞上,必须用弹竇夹在钩上以防止脱落。(四)在活塞口上端的毛细孔与混合气体(氧气及二氧化碳)的贮气瓶相连。(五)测定:在未起反应之前使瓶内充满氧气,关闭活塞及毛细管寒,要严密不漏气,然后将整个压力计固定在水槽的外侧振荡轴上,使反应瓶完全浸在恒温水槽内的恒温水中,在12支压力计中,除二支做标准空白对照用外(即只放溶液不放入肝脏组织),其余可放入不同量的试物和不同剂量的药物进行测量。全部装妥后,所有的反应瓶都处在同一水温中。开动马达使仪器摇动,进行气体平衡,待标准管的液面到达“零”位时关闭活塞,读出被测管的读数,然后将压力it从水槽内取出小心地把侧管的药物倒入反应瓶的外園组织液中(切勿倾入反应瓶的中心周内).混合,立刻放回水槽内,开动秒表,继续摇动10分钟,右管中液体上升,左管中液休必然下降,通过转动螺丝夹使右管的液面仍回到250处,读出左管中液体体积,根据第一次测得的读数减去第二次被吸收后的读数,其差數就代表在10分钟反应瓶内的试样所消耗的氧气量,也就是该组织给以药物后该组织的反应如何。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制