当前位置: 仪器信息网 > 行业主题 > >

血液活度动态在线分析系统

仪器信息网血液活度动态在线分析系统专题为您提供2024年最新血液活度动态在线分析系统价格报价、厂家品牌的相关信息, 包括血液活度动态在线分析系统参数、型号等,不管是国产,还是进口品牌的血液活度动态在线分析系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合血液活度动态在线分析系统相关的耗材配件、试剂标物,还有血液活度动态在线分析系统相关的最新资讯、资料,以及血液活度动态在线分析系统相关的解决方案。

血液活度动态在线分析系统相关的论坛

  • 粉体在线激光粒度分析系统的设计与实验研究

    粉体在线激光粒度分析系统的设计与实验研究

    粉体在线激光粒度分析系统的设计与实验研究李文涛,任中京 (济南微纳颗粒仪器股份有限公司,济南250100,中国)liwentao0306@163.com,renzhongjing@vip.sina.com 摘要:本文介绍了一种可以对流动颗粒的粒度分布进行实时监测的在线激光粒度分析系统。详细介绍了在线取样系统、密封样品窗口、测试系统、远程通讯系统的设计,该系统能够安全连续性自动化运行,并能够将粒度分布中的关键参数提供给生产线控制系统,对于粉磨分级生产过程的工艺控制具有非常重要的意义。关键字:激光粒度仪;在线监测;系统定制1、 引言在水泥、硅胶等产品生产中,粒径作为其中的一个关键参数,直接影响产品质量。传统上粉体的粒度测试采用人工采制样或机械采制样,加人工实验室化验的方法,这种方法有很多的的缺点:1、取制样误差大,以局部代表整体过程,存在代表性问题;2、不在线,不实时,分析数据严重滞后;3、分析数据对实时生产过程指导意义不大,只能是一种补救措施。激光粒度测试仪器以其快速、准确、重复、方便等特点越来越多地被用于生产控制,随着生产控制的进一步要求,离线测试已经不能够满足要求,为了能够得到连续的粒度测试结果,在线粒度测试系统渐渐成为成为了各大厂家关注的焦点。目前,国际上英国马尔文、德国新帕泰克、中国微纳颗粒等激光粒度仪厂家都推出了粉体在线激光粒度分析仪,本文就针对微纳仪器的粉体在线激光粒度分析系统的设计与实验结果进行深入的探讨。2、 系统构成粉体在线激光粒度分析系统是可用于工业现场的粉体粒度分析系统,各项参数根据客户应用要求量身定制,本系统主要有以下几部分构成:主机系统、供气系统、取样系统、样品分散系统、密封样品窗口系统、回料系统、现场控制柜系统、远程传输与显示系统。本系统的主要功能是可以对流动的颗粒粒度分布进行实时监测,并提供准确的控制信号。系统结构如图1所示。取样器把粉体样品从生产线管道中取出,通过卸料器传给喂料器,喂料器均匀地把样品送入样品分散泵中,分散好的粉体样品通过防堵反吹阀进入仪器主机,在保护气的作用下通过样品窗口,回料泵把测试过的粉体样品送回到生产线管道中。测试过程中主机把测试到的粉体散射光谱实时地传输到现场控制柜,由安装到现场控制柜PC平板中的在线粒度分析软件通过反演运算得到粉体样品的粒度分布,现场控制柜把得到的粒度分布数据一方面通过远程通讯传给中控PC,工作人员可根据粒度分布数据对生产线及时作出调整,也可直接传输给生产线控制系统,直接调整生产线上的设备使其运转到最佳位置。现场控制柜中的PLC系统是整套系统的控制中心,能控制系统上每一个部件的开关,并对系统的运行实时监控,对异常情况及时报警。 图1 系统结构图3、 系统设计3.1 在线取样系统http://ng1.17img.cn/bbsfiles/images/2015/12/201512100948_577152_3049057_3.jpg从管道中取出具有代表性的样品是实现粉体粒度在线测试的第一步,根据不同的粉体生产工艺,本设计提供两种取样系统:负压取样和螺旋取样,负压取样主要应用于飞灰式取样,如火力发电厂锅炉尾部烟气飞灰取样,螺旋取样主要应用于粉料的取样,如水泥在空气斜槽中传输过程中的取样。负压取样器由取样管和喷射泵组成,取样管插入工艺管道,通过特殊设计的取样孔从气固两相流中取出具有代表性的样品。喷射泵与取样管相连,可以形成0.04MPa的负压,将取样管中的样品吸出送到主机进行测试,喷射泵采用陶瓷内芯,具有良好的耐磨特性。粉体在管道中传输过程中大小颗粒会产生分层现象,因此应采取多点取样,本负压取样系统为运动式取样,取样器在运动控制箱的控制下从位置1到位置2作往复运动,在运动过程中连续取样,保证了取出的样品具有代表性。粉体运输一般采用气体输送,管道中存在一定的正压力或负压力,螺旋取样器只有在常压下才能正常工作,因此在本设计中加入了旋转卸料阀,能够实现空气密封,保证螺旋取样器的正常工作,取出的样品进入到分散泵中分散后经防堵反吹阀门进入主机进行测试。3.2 密封样品窗口保持主机镜头,探头的洁净是保证在线仪器的连续运行的关键,本设计中采用全密封式样品窗设计,一次保护气对密封玻璃起到气幕保护和吹扫的作用,二次保护气保证密封窗口内的气体压力平衡,避免样品从喷射管中喷出时出现返料现象。3.3 测试系统测试系统主要由主机和软件系统构成。主机系统包括光路部分、电路部分、机械密封部分,光路部分采用反傅立叶变换光路,全量程采用米氏散射理论。电路部分扫描速度1000次/秒, 每秒可显示2个完整粒度分布(用户可调)。仪器符合ISO13320标准,所有接口(采样管,阀门,管道)及主机各个部位均采用夹套式接头方便现场检修。软件系统专门为在线粒度监测系统研制,软件具有形象化的良好的人机界面,操作方便,运行可靠,安全性良好,为用户自行定制输出数据项目提供方便。3.4 远程通讯系统在线激光粒度分析系统的通讯系统构成如下图所示,在线控制系统用于现场测试的自动控制及报警,现场PC为在线粒度测试软件的运行平台,生产控制系统为粉体生产设备的控制系统,中控PC用于数据的显示及远程生产线控制。在线控制系统控制器采用PLC,能够稳定地控制各器件的依次启动和依次关闭,并能够接收粒度分布数据并转换为4-20mA标准信号输出,能够与生产控制系统进行接口,用于生产设备控制,提供完善的报警装置。如果在线设备出现问题则自动报警,并自动采取保护措施。现场PC采用一体式工控机进行数据的采集、处理、并实时显示在线颗粒的粒度分布,与中控室终端采用光纤通讯,能够保证在远距离和电磁干扰的情况下稳定传输数据,http://ng1.17img.cn/bbsfiles/images/2015/12/201512100949_577153_3049057_3.jpg 图2 通讯结构图4、 系统应用4.1 现场安装http://ng1.17img.cn/bbsfiles/images/2015/12/201512100950_577157_3049057_3.jpg图3 现场安装图如图3所示是微纳公司为南京某水泥生产线定制的矿渣微粉在线粒度测试系统现场。本项目目的是为了在线24小时连续监测某公司成品的粒度分布数据,为生产线提供调整依据。本项目分为以下几个系统:1、在线取样系统2、在线分散系统3、在线主机4、在线回料系统5、在线空气净化系统6、在线气体分配系统7、PLC控制系统8、工业PC测试系统(含在线粒度监测系统专用软件)9、远程传输与显示系统4.2 监测数据http://ng1.17img.cn/bbsfiles/images/2015/12/201512100949_577155_3049057_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/12/201512100950_577156_3049057_3.jpg图7 粒度分布图图8 粒度数据监控图5、结论针对在线粒度测试方面的技术难点,本文结合微纳仪器在线粒度分析仪器进行了详细的分析研究,初步研究结果表明在线取样技术,封闭样品窗技术,远程通讯技术均满足了粉体粒度在线测试的需求。参考文献 蔡小舒,舒明旭,沈建琪,等.颗粒粒度测量技术及应用,北京:化学工业出版社,2010:128-142 胡荣泽.粒度仪的量化指标.水泥技术,2007(02):69-71.

  • 粉体在线激光粒度分析系统的设计与实验研究

    粉体在线激光粒度分析系统的设计与实验研究

    粉体在线激光粒度分析系统的设计与实验研究李文涛,任中京 (济南微纳颗粒仪器股份有限公司,济南250100,中国)liwentao0306@163.com,renzhongjing@vip.sina.com 摘要:本文介绍了一种可以对流动颗粒的粒度分布进行实时监测的在线激光粒度分析系统。详细介绍了在线取样系统、密封样品窗口、测试系统、远程通讯系统的设计,该系统能够安全连续性自动化运行,并能够将粒度分布中的关键参数提供给生产线控制系统,对于粉磨分级生产过程的工艺控制具有非常重要的意义。关键字:激光粒度仪;在线监测;系统定制1、 引言在水泥、硅胶等产品生产中,粒径作为其中的一个关键参数,直接影响产品质量。传统上粉体的粒度测试采用人工采制样或机械采制样,加人工实验室化验的方法,这种方法有很多的的缺点:1、取制样误差大,以局部代表整体过程,存在代表性问题;2、不在线,不实时,分析数据严重滞后;3、分析数据对实时生产过程指导意义不大,只能是一种补救措施。激光粒度测试仪器以其快速、准确、重复、方便等特点越来越多地被用于生产控制,随着生产控制的进一步要求,离线测试已经不能够满足要求,为了能够得到连续的粒度测试结果,在线粒度测试系统渐渐成为成为了各大厂家关注的焦点。目前,国际上英国马尔文、德国新帕泰克、中国微纳颗粒等激光粒度仪厂家都推出了粉体在线激光粒度分析仪,本文就针对微纳仪器的粉体在线激光粒度分析系统的设计与实验结果进行深入的探讨。2、 系统构成粉体在线激光粒度分析系统是可用于工业现场的粉体粒度分析系统,各项参数根据客户应用要求量身定制,本系统主要有以下几部分构成:主机系统、供气系统、取样系统、样品分散系统、密封样品窗口系统、回料系统、现场控制柜系统、远程传输与显示系统。本系统的主要功能是可以对流动的颗粒粒度分布进行实时监测,并提供准确的控制信号。系统结构如图1所示。取样器把粉体样品从生产线管道中取出,通过卸料器传给喂料器,喂料器均匀地把样品送入样品分散泵中,分散好的粉体样品通过防堵反吹阀进入仪器主机,在保护气的作用下通过样品窗口,回料泵把测试过的粉体样品送回到生产线管道中。测试过程中主机把测试到的粉体散射光谱实时地传输到现场控制柜,由安装到现场控制柜PC平板中的在线粒度分析软件通过反演运算得到粉体样品的粒度分布,现场控制柜把得到的粒度分布数据一方面通过远程通讯传给中控PC,工作人员可根据粒度分布数据对生产线及时作出调整,也可直接传输给生产线控制系统,直接调整生产线上的设备使其运转到最佳位置。现场控制柜中的PLC系统是整套系统的控制中心,能控制系统上每一个部件的开关,并对系统的运行实时监控,对异常情况及时报警。http://ng1.17img.cn/bbsfiles/images/2017/10/2015102809294799_01_3049057_3.jpg 图1 系统结构图1、 系统设计3.1 在线取样系统从管道中取出具有代表性的样品是实现粉体粒度在线测试的第一步,根据不同的粉体生产工艺,本设计提供两种取样系统:负压取样和螺旋取样,负压取样主要应用于飞灰式取样,如火力发电厂锅炉尾部烟气飞灰取样,螺旋取样主要应用于粉料的取样,如水泥在空气斜槽中传输过程中的取样。负压取样器由取样管和喷射泵组成,取样管插入工艺管道,通过特殊设计的取样孔从气固两相流中取出具有代表性的样品。喷射泵与取样管相连,可以形成0.04MPa的负压,将取样管中的样品吸出送到主机进行测试,喷射泵采用陶瓷内芯,具有良好的耐磨特性。粉体在管道中传输过程中大小颗粒会产生分层现象,因此应采取多点取样,本负压取样系统为运动式取样,取样器在运动控制箱的控制下从位置1到位置2作往复运动,在运动过程中连续取样,保证了取出的样品具有代表性。粉体运输一般采用气体输送,管道中存在一定的正压力或负压力,螺旋取样器只有在常压下才能正常工作,因此在本设计中加入了旋转卸料阀,能够实现空气密封,保证螺旋取样器的正常工作,取出的样品进入到分散泵中分散后经防堵反吹阀门进入主机进行测试。3.2 密封样品窗口保持主机镜头,探头的洁净是保证在线仪器的连续运行的关键,本设计中采用全密封式样品窗设计,一次保护气对密封玻璃起到气幕保护和吹扫的作用,二次保护气保证密封窗口内的气体压力平衡,避免样品从喷射管中喷出时出现返料现象。3.3 测试系统测试系统主要由主机和软件系统构成。主机系统包括光路部分、电路部分、机械密封部分,光路部分采用反傅立叶变换光路,全量程采用米氏散射理论。电路部分扫描速度1000次/秒, 每秒可显示2个完整粒度分布(用户可调)。仪器符合ISO13320标准,所有接口(采样管,阀门,管道)及主机各个部位均采用夹套式接头方便现场检修。软件系统专门为在线粒度监测系统研制,软件具有形象化的良好的人机界面,操作方便,运行可靠,安全性良好,为用户自行定制输出数据项目提供方便。3.4 远程通讯系统在线激光粒度分析系统的通讯系统构成如下图所示,在线控制系统用于现场测试的自动控制及报警,现场PC为在线粒度测试软件的运行平台,生产控制系统为粉体生产设备的控制系统,中控PC用于数据的显示及远程生产线控制。在线控制系统控制器采用PLC,能够稳定地控制各器件的依次启动和依次关闭,并能够接收粒度分布数据并转换为4-20mA标准信号输出,能够与生产控制系统进行接口,用于生产设备控制,提供完善的报警装置。如果在线设备出现问题则自动报警,并自动采取保护措施。现场PC采用一体式工控机进行数据的采集、处理、并实时显示在线颗粒的粒度分布,与中控室终端采用光纤通讯,能够保证在远距离和电磁干扰的情况下稳定传输数据,http://ng1.17img.cn/bbsfiles/images/2017/10/2015102809315868_01_3049057_3.jpg1、 系统应用4.1 现场安装http://ng1.17img.cn/bbsfiles/images/2017/10/2015102809324531_01_3049057_3.jpg如图3所示是微纳公司为南京某水泥生产线定制的矿渣微粉在线粒度测试系统现场。本项目目的是为了在线24小时连续监测某公司成品的粒度分布数据,为生产线提供调整依据。本项目分为以下几个系统:1、在线取样系统2、在线分散系统3、在线主机4、在线回料系统5、在线空气净化系统6、在线气体分配系统7、PLC控制系统8、工业PC测试系统(含在线粒度监测系统专用软件)9、远程传输与显示系统4.2 监测数据http://ng1.17img.cn/bbsfiles/images/2015/10/201510280933_571202_3049057_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/10/201510280933_571203_3049057_3.png5、结论针对在线粒度测试方面的技术难点,本文结合微纳仪器在线粒度分析仪器进行了详细的分析研究,初步研究结果表明在线取样技术,封闭样品窗技术,远程通讯技术均满足了粉体粒度在线测试的需求。参考文献 蔡小舒,舒明旭,沈建琪,等.颗粒粒度测量技术及应用,北京:化学工业出版社,2010:128-142 胡荣泽.粒度仪的量化指标.水泥技术,2007(02):69-71.

  • 粉体在线激光粒度分析系统的设计与实验研究

    粉体在线激光粒度分析系统的设计与实验研究

    粉体在线激光粒度分析系统的设计与实验研究李文涛,任中京 (济南微纳颗粒仪器股份有限公司,济南250100,中国)liwentao0306@163.com,renzhongjing@vip.sina.com 摘要:本文介绍了一种可以对流动颗粒的粒度分布进行实时监测的在线激光粒度分析系统。详细介绍了在线取样系统、密封样品窗口、测试系统、远程通讯系统的设计,该系统能够安全连续性自动化运行,并能够将粒度分布中的关键参数提供给生产线控制系统,对于粉磨分级生产过程的工艺控制具有非常重要的意义。关键字:激光粒度仪;在线监测;系统定制1、 引言在水泥、硅胶等产品生产中,粒径作为其中的一个关键参数,直接影响产品质量。传统上粉体的粒度测试采用人工采制样或机械采制样,加人工实验室化验的方法,这种方法有很多的的缺点:1、取制样误差大,以局部代表整体过程,存在代表性问题;2、不在线,不实时,分析数据严重滞后;3、分析数据对实时生产过程指导意义不大,只能是一种补救措施。激光粒度测试仪器以其快速、准确、重复、方便等特点越来越多地被用于生产控制,随着生产控制的进一步要求,离线测试已经不能够满足要求,为了能够得到连续的粒度测试结果,在线粒度测试系统渐渐成为成为了各大厂家关注的焦点。目前,国际上英国马尔文、德国新帕泰克、中国微纳颗粒等激光粒度仪厂家都推出了粉体在线激光粒度分析仪,本文就针对微纳仪器的粉体在线激光粒度分析系统的设计与实验结果进行深入的探讨。2、 系统构成粉体在线激光粒度分析系统是可用于工业现场的粉体粒度分析系统,各项参数根据客户应用要求量身定制,本系统主要有以下几部分构成:主机系统、供气系统、取样系统、样品分散系统、密封样品窗口系统、回料系统、现场控制柜系统、远程传输与显示系统。本系统的主要功能是可以对流动的颗粒粒度分布进行实时监测,并提供准确的控制信号。系统结构如图1所示。取样器把粉体样品从生产线管道中取出,通过卸料器传给喂料器,喂料器均匀地把样品送入样品分散泵中,分散好的粉体样品通过防堵反吹阀进入仪器主机,在保护气的作用下通过样品窗口,回料泵把测试过的粉体样品送回到生产线管道中。测试过程中主机把测试到的粉体散射光谱实时地传输到现场控制柜,由安装到现场控制柜PC平板中的在线粒度分析软件通过反演运算得到粉体样品的粒度分布,现场控制柜把得到的粒度分布数据一方面通过远程通讯传给中控PC,工作人员可根据粒度分布数据对生产线及时作出调整,也可直接传输给生产线控制系统,直接调整生产线上的设备使其运转到最佳位置。现场控制柜中的PLC系统是整套系统的控制中心,能控制系统上每一个部件的开关,并对系统的运行实时监控,对异常情况及时报警。http://ng1.17img.cn/bbsfiles/images/2015/12/201512021531_576005_3050076_3.jpg1、 系统设计3.1 在线取样系统从管道中取出具有代表性的样品是实现粉体粒度在线测试的第一步,根据不同的粉体生产工艺,本设计提供两种取样系统:负压取样和螺旋取样,负压取样主要应用于飞灰式取样,如火力发电厂锅炉尾部烟气飞灰取样,螺旋取样主要应用于粉料的取样,如水泥在空气斜槽中传输过程中的取样。负压取样器由取样管和喷射泵组成,取样管插入工艺管道,通过特殊设计的取样孔从气固两相流中取出具有代表性的样品。喷射泵与取样管相连,可以形成0.04MPa的负压,将取样管中的样品吸出送到主机进行测试,喷射泵采用陶瓷内芯,具有良好的耐磨特性。粉体在管道中传输过程中大小颗粒会产生分层现象,因此应采取多点取样,本负压取样系统为运动式取样,取样器在运动控制箱的控制下从位置1到位置2作往复运动,在运动过程中连续取样,保证了取出的样品具有代表性。粉体运输一般采用气体输送,管道中存在一定的正压力或负压力,螺旋取样器只有在常压下才能正常工作,因此在本设计中加入了旋转卸料阀,能够实现空气密封,保证螺旋取样器的正常工作,取出的样品进入到分散泵中分散后经防堵反吹阀门进入主机进行测试。3.2 密封样品窗口保持主机镜头,探头的洁净是保证在线仪器的连续运行的关键,本设计中采用全密封式样品窗设计,一次保护气对密封玻璃起到气幕保护和吹扫的作用,二次保护气保证密封窗口内的气体压力平衡,避免样品从喷射管中喷出时出现返料现象。3.3 测试系统测试系统主要由主机和软件系统构成。主机系统包括光路部分、电路部分、机械密封部分,光路部分采用反傅立叶变换光路,全量程采用米氏散射理论。电路部分扫描速度1000次/秒, 每秒可显示2个完整粒度分布(用户可调)。仪器符合ISO13320标准,所有接口(采样管,阀门,管道)及主机各个部位均采用夹套式接头方便现场检修。软件系统专门为在线粒度监测系统研制,软件具有形象化的良好的人机界面,操作方便,运行可靠,安全性良好,为用户自行定制输出数据项目提供方便。3.4 远程通讯系统在线激光粒度分析系统的通讯系统构成如下图所示,在线控制系统用于现场测试的自动控制及报警,现场PC为在线粒度测试软件的运行平台,生产控制系统为粉体生产设备的控制系统,中控PC用于数据的显示及远程生产线控制。在线控制系统控制器采用PLC,能够稳定地控制各器件的依次启动和依次关闭,并能够接收粒度分布数据并转换为4-20mA标准信号输出,能够与生产控制系统进行接口,用于生产设备控制,提供完善的报警装置。如果在线设备出现问题则自动报警,并自动采取保护措施。现场PC采用一体式工控机进行数据的采集、处理、并实时显示在线颗粒的粒度分布,与中控室终端采用光纤通讯,能够保证在远距离和电磁干扰的情况下稳定传输数据,http://ng1.17img.cn/bbsfiles/images/2015/12/201512021533_576006_3050076_3.jpg1、 系统应用4.1 现场安装http://ng1.17img.cn/bbsfiles/images/2015/12/201512021534_576007_3050076_3.jpg如图3所示是微纳公司为南京某水泥生产线定制的矿渣微粉在线粒度测试系统现场。本项目目的是为了在线24小时连续监测某公司成品的粒度分布数据,为生产线提供调整依据。本项目分为以下几个系统:1、在线取样系统2、在线分散系统3、在线主机4、在线回料系统5、在线空气净化系统6、在线气体分配系统7、PLC控制系统8、工业PC测试系统(含在线粒度监测系统专用软件)9、远程传输与显示系统4.2 监测数据

  • 60万!武汉血液中心全自动化学发光免疫分析系统及新冠抗体化学发光试剂采购项目

    [quote]项目概况武汉血液中心全自动化学发光免疫分析系统及新冠抗体化学发光试剂采购项目 采购项目的潜在供应商应在武汉市江汉区新华路151号纽宾凯国际酒店23楼2308室现场领取/网上领取获取采购文件,并于2023年02月01日 09点30分(北京时间)前提交响应文件。[/quote][font=inherit]一、项目基本情况[/font]项目编号:WHCSIMC2023-9516003ZF(W)项目名称:武汉血液中心全自动化学发光免疫分析系统及新冠抗体化学发光试剂采购项目采购方式:竞争性磋商预算金额:60.0000000 万元(人民币)采购需求:[table][tr][td][align=center][font=inherit]序号[/font][/align][/td][td][align=center][font=inherit]货物名称[/font][/align][/td][td][align=center][font=inherit]数量[/font][/align][/td][td][align=center][font=inherit]单位[/font][/align][/td][td][align=center][font=inherit]采购[/font][font=inherit]预算([/font][font=inherit]万元[/font][font=inherit])[/font][/align][/td][/tr][tr][td][align=center]1[/align][/td][td][align=center]全自动化学发光免疫分析系统[/align][/td][td][align=center]1[/align][/td][td][align=center]套[/align][/td][td][align=center]20[/align][/td][/tr][tr][td][align=center]2[/align][/td][td][align=center]新型冠状病毒抗体试剂[/align][/td][td][align=center]60000[/align][/td][td][align=center]人份[/align][/td][td][align=center]40[/align][/td][/tr][tr][td=4,1][align=center]合计[/align][/td][td][align=center]60[/align][/td][/tr][/table]合同履行期限:交货期:设备交货期为合同签订后10天内;试剂按采购人要求分批次送货,接到订单后7个工作日内送货质保期:设备自验收合格之日起免费维修、保养、校验五年(含所有相关耗材、零配件及人工费用),每年一次以上免费的保养(含所有相关耗材、零配件及人工费用);试剂有效期≥12个月本项目( 不接受 )联合体投标。

  • 血液中毒物的分析,为临床中毒提供治疗依据的求助

    最近刚刚开始接触血液中毒物的测定,最近用乙酸乙酯提取血液中有机磷农药,对于常规的十几种农药,提取效率还可以,但是对于其他的毒物(菊酯类、dupin、安定类药物等),这个单一的前处理方式就无法解决问题了。如何选择合适的提取剂,合适的前处理,达到最优的提取效率一直困扰着我。希望各位接触过此类分析的前辈能给点建议,感激不尽!

  • 动态颗粒图像分析仪的研制

    动态颗粒图像分析仪的研制摘要:本文论证了研制动态颗粒图像分析仪的必要性与背景, 介绍了winner100实现动态颗粒测试的方法以及技术特征。评价了动态颗粒图像分析仪的实用价值与科学意义。关键词.. 动态颗粒, 图像分析, 粒度与形状,3 维一、问题的提出颗粒是组成材料的基本单元, 影响材料的性能的不仅是颗粒的化学组成, 颗粒的大小与颗粒的形态对材料的性能影响巨大, 因此颗粒粒度与形态的检测越来越受到各行业的重视。目前检测颗粒大小和颗粒形态的方法有多种,激光粒度分析仪、沉降粒度仪、电阻法粒度亦、颗粒图像分析技术是最常用的技术。激光粒度分析仪、沉降粒度仪、电阻法粒度仪, 只能检测颗粒大小, 不能检测颗粒形状;颗粒图像分析技术是一种不仅可以检测颗粒大小也可以检测颗粒形状对唯一方法, 但是由于此种技术有几个致命的缺点限制了它的进一步发展:1.样品制备困难。颗粒在载玻片上很难得到充分的分散, 由于颗粒粘连使得颗粒分析的准确性大受影响; 2.颗粒处于静态, 非球形颗粒的取向会对测试结果造成偏离;3.由于显微镜的视场有限, 被测得颗粒数目受到很大限制, 因此取样的代表性差, 重复性不好。由于以上问题, 颗粒测试中急需一种性能更加优越的测试装置, 能够获得颗粒的准确图像, 操作简便, 满足颗粒形状和颗粒粒度分析的更高要求。国际上荷兰安米德公司、德国新帕泰克公司、德国莱驰公司均推出了同时测定颗粒粒与形状的图像分析仪。国内尚无此种产品, 济南微纳公司通过3年的攻关研制的winner100 颗粒图像分析仪填补了此项空白。二、动态颗粒测试的方法与技术特征Winner100突破了传统的颗粒图像仪的工作模式, 采用超声样品分散系统分散颗粒, 高速摄像头对动态颗粒图像进行采集, 1微秒可以采集一幅颗粒图像, 用计算机对图像进行分析处理, 达到对颗粒粒度与形态进行三维同时测试的目的。其主要技术特征有:1.彻底改变了手工制样操作繁琐的局面, 样品制备操作非常简单, 分散效果好; 2.采用功能强大的动态颗粒图像分析软件, 具有高速采样、自动颗粒图像处理, 实时显示当前图像、实时分析粒度分布、连续统计分析结果, 处理策略自行编程, 多种粒径定义选择, 粒度统计、形状分析等多种功能。打印报告允许自行编辑。3.动态测试使颗粒采样数量无限增加, 统计结果真实可靠, 代表性好、重复性高;4.动态测试使颗粒不同侧面得到采样, 实现了三维测试, 彻底消除了二维测试的颗粒取向误差;粒度测试结果可以与激光粒度分析仪比美。5.winner100动态图像分析专用软件具有强大的图像处理功能;6.支持多种粒径选择和多种粒度分布, 具有多种图像处理功能及其集成处理, 支持图像采集间隔设定与实时显示颗粒形貌与当时粒度分布和累计粒度分布, 记录并显示粒度波动图, 可以输出多种分析图表, 高性能的软件使使用者的颗粒分析工作变得十分轻松方便。7.本成果不仅可用于实验室颗粒分析, 也适用于颗粒在线粒度与粒形监测。对杜会经济发展和科学进步的意义本项目突破了显微静态图像分析的局限, 在国内率先提出动态颗粒图像分析的概念;由于颗粒运动中测试, 克服了二维颗粒图像分析的弊病, 大大提高了采样代表性, 消除了颗粒取向误差, 使颗粒粘连问题彻底解决。本项成果克服了静态颗粒图像仪的缺陷, 提供了一种对运动颗粒同时进行粒度与形状分析的先进手段, 具有操作简单, 测试范围广, 代表性好, 准确可靠, 直观可视, 适用于1-6000微米的各种固体颗粒。可以广泛应用于建材、化工、石油、金属与非金属、环保、轻工、国防等众多领域的实验室和在线颗粒粒度与形状分析。无疑, 对于提高我国各行业颗粒测试水平和经济发展具有重要的实用价值。颗粒测试的基础是颗粒的表征, 本项成果提供了一种颗粒动态测试的实用手段, 因此颗粒的三维表征问题就提到了议事日程上来, 颗粒的三维表征对颗粒学的进步与发展具有重要的意义。[color=blac

  • 【原创】在线分析器样品处理系统技术的发展及应用(上)

    在线分析器样品处理系统技术的发展及应用金义忠 重庆凌卡分析仪器有限公司摘 要 以21世纪前沿技术的视野来审视在线分析器的样品处理系统技术,样品处理系统技术是过程分析器器工程应用系统(以下简称在线分析系统)的核心和关键技术,确立这一技术观念意义深远,将对在线分析系统的推广应用,产生极大的激励和促进作用。本文对样气处理系统的体系、样气处理系统技术的针对性设计,工业炉窑、化工领域在线分析系统的工程应用技术进行了重点综述,肯定了当前研发样品处理系统技术的最新努力及最新进展。 关键词 样品处理系统技术 在线分析器 在线分析系统 样品处理部件1样气处理系统在在线分析系统中的地位样品处理系统如果只限于过程气体分析系统领域,就该称为样气处理系统。在在线分析工程技术行业内,本文所述的样气处理系统,过去却一直叫取样预处理系统、预处理系统、样气预处理系统、取样及预处理单元等。由于长期带着“预”字,好像只是在线分析器的附加部分,并未受到应有的重视。GB/T 19768—2005《在线分析器试样处理系统性能表示》的国家标准,其实JB/T 6854—1993的机械部标准,早就在处理系统之前取消了“预”字,从中必然引申出;样气处理系统和样气处理部件的技术概念和专业术语。令人遗憾的是,长期以来并未得到本行业人士的关注和认可。本文着力阐述的样气处理系统技术,自身有相对独立性、严密性、系统性,PLC可编程序控制器的自控功能及其软件就是一个证明。德国H&B公司的60S型干法高温取样探头在中国市场单独销售有数十套之多,最高售价135万元,算是另一个颇具说服力的证明。为了推进在线分析系统工程应用技术的发展,我们应有一种新的技术观念:在线分析面对诸多十分艰巨复杂的技术难题,样气处理系统技术是在线分析系统的核心和关键技术,期待样气处理系统技术从此走上全面提升和发展的轨道。2在线分析器工程应用对样气处理系统技术的依赖和要求2.1 1986年以前,国内各分析器器专业厂的在线分析器器几乎全是以单机销售的形式投放市场,而德国H&B公司的在线分析器却大约有三分之二是以在线分析系统(包括分析小屋)的形式投放市场,那时样气处理系统有个“预”字并不冤。以川分的红外等三项技术引进为契机,同时从H&B公司引进了在线分析系统技术,并两次培训系统设计和工程应用人才,使川仪无意中充当了一次在线分析器工程应用先驱的角色,设计水平、应用水平、生产规模都有长足进步。 在线分析器工程应用的症结和最佳途径在线分析器的长期连续、适时的检测分析,必然要求连续取样和严格的样气处理技术,要求样气真实和传输快速,样气进入分析器时,要求达到近于标准气的品质。在线分析系统长期连续运行的可靠性和安全性,以及近于免维护的易维护性,都完全依赖样气处理系统技术的针对性设计。根据每项在线分析系统的现场应用条件和取样条件,要采用专业化、规范化,针对性设计的专用型在线分析系统,由具有长期工程实践经验的专业制造商生产这些高品质在线分析系统,并承担全过程技术服务。对于完善的过程气体分析,起决定作用的是使样气处理系统与千差万别的生产工艺条件和环境应用条件匹配得当、组合完善。在线分析器对样气处理系统的这种绝对依赖,使在线分析器以在线分析系统形式供货既是在线分析工程技术发展的必然,也在业界各方人士的情理之中。3复杂的样气条件和干法样气处理技术3.1 复杂的样气条件是过程气体分析面对的最大困难:高温或低温、高粉尘、高水分或液雾、高压负压、腐蚀性和爆炸性危险;较高的自动化程度,少维护甚至近于免维护的应用要求;防尘及防水、防腐蚀、防爆炸等方面苛刻的防护及安全要求;较快的反应速度,滞后时间一般要求<60s ;保证必要的检测准确度等。3.2 干法样气处理技术的必要性 干法样气处理技术有利于有效保持样气的真实性,进而保证必要的检测准确度。干法样气处理技术能使样气干燥、洁净,达到近于标准气的品质,可能发生的腐蚀性也大为降低。所有这些都有利于保证在线分析器连续、稳定、可靠、准确地运行,延长其使用寿命,我见过某石化企业使用超过20年的红外分析器。干法样气处理技术已成为绝对的主流技术。当然湿法样气处理技术也并未完全淘汰,如焦炉煤气O2分析系统,湿法对付焦油更为有效。4样气处理系统技术的体系性特征在线分析系统如果去掉在线分析器和某些应用保障条件部分,就是样气处理系统,体系性地简述样气处理系统如下:4.1 采样探头 通常称为取样探头,是样气处理系统最重要的样气处理部件,根据不同的取样条件,就一定有不同的针对性极强的探头,最常用的是低于650℃的中温通用型探头。取样探头还应包括压缩空气加热(180℃)反吹单元及其程控反吹技术。4.2 样气输送管线 通常多采用Φ6×1不锈钢管,为避免发生冷凝,常采用伴热保温技术(120℃),伴热方式以自控温电伴热带较为经济实用。4.3 过滤器 过滤器就其用途来说,以下三类较有代表性:一是探头过滤器,在取样点就地过滤粉尘,避免在其后产生粉尘沉淀和堵塞的危险,目前的先进水平是0.3μm 99%。二是后级高精度膜式过滤器,以保护分析器为主要目的,目前的先进水平是0.05μm 99%。三是分析器内部的微型过滤器,以在线分析器的自保护为目的,并不属于样气处理系统。4.4 样气冷凝器 使样气冷凝至低露点、以干燥样气为目的。压缩机式样气冷凝器能使样气由140℃冷至2℃露点,效果最好,成本最高;半导体制冷样气冷凝器,入口样气温度一般只能是45℃;涡流致冷样气冷凝器,能使样气温度降低20℃以上,最大的优势是使用压缩空气,本安防爆;使用水源的样气冷却器(即交换器)也有很多应用。4.5 采样泵 通常称为抽气泵,样气压力为负压或微正压时,也能为分析器提供规定的样气流量,隔膜式抽气泵用得较多。另外,常用蠕动泵来排放冷凝液。4.6 气液分离器 气液分离常是十分棘手的技术难题 旋风自洁式分离器 对分离>5μm粉尘和液雾较为有效,相当于70μm粒度以上的重力分离;凝结式分离器能对付更小粒度的微小液雾;特定项目专用型(如乙烯裂解)的气液分离是技术含量很高的综合技术;最简单的气液分离器仅是圆筒中加上一根管子;现在已有采用聚合膜方式过滤液雾的研究。4.7 样气流量测量及控制 样气流量一般用球形转子流量计,流量控制用针形阀调节。切换和关断气路要采用各种阀件,以“五通切换阀”最被看重。4.8 样气压力测量与调节 高压的减压、稳压与调节是项困难任务,各种阀的原理及规格的选择也很有专业性。高压力样气在取样点根部阀处就地减压很有必要,以避免降低反应速度。4.9 部件材料的正确选用 以O型密封圈选材为例:连续使用温度的高低依次为,氟橡胶包覆聚四氟乙烯、氟橡胶、硅橡胶、丁晴橡胶。4.10 设备外壳及防护 一般采用的机柜称为仪表盘,组装后称为分析(仪器)柜; 人可以进入的机柜称为分析小屋; 机柜对粉尘、水的防护等级以IPXX表示; 机柜对可燃性气体和蒸气的防爆等级。如 dⅡCT6。4.11 机柜的气候调节 机柜的气候调节可分为降温、加热、换气等三个大的方面。4.12 自控单元 样气处理系统的连续、稳定、近于免维护的运行,以及各种报警,都离不开PLC可编程序控制器为核心的自控单元。4.13 标准物质 即标准气,是在线分析器的计量标准,现在已采用99.999%的高纯氮作为零点气。4.14 快速回路设计,提高分析系统的反应速度。4.15 尾气和冷凝液的安全排放。4.16 数据处理及远程传输。4.17 工程现场安装的施工设计。

  • 煤质在线实时检测分析与监控系统简介

    “煤质在线实时检测分析与监控系统”(以下简称为煤质在线检测系统)是我们在国际上率先开发的,用于电厂入炉煤炉前煤质在线实时检测分析、入厂煤全程实时监测的绿色环保、低能高效、无辐射的高科技产品。该系统应用高精的红外检测分析技术,在国际上率先真正实现了原煤的热值及灰份、挥发份等工业分析值的在线实时检测与分析,其检测分析方法于一九九九年通过全国鉴定,结论为国际领先水平,在没有应用推广及经济效益的情况下,获辽宁省科技进步三等奖。煤质在线检测系统采用全封闭恒温保护设计,于二零零三年六月十二日在阜新发电厂通过在线实时检测分析现场验收。为我国乃至世界的原煤检测分析技术尤其是热值的直接检测,开辟了一种快速、简便、高效、实时、全程监控的新方法。一、 主要技术路线及技术关键煤质在线检测系统采用傅立叶变换红外光谱分析技术,红外光是一种电磁能量,当其照射到样品时,由于样品内有机成份在不同波数对红外光吸收能量不同,将这些不同记录下来,既得到红外光谱,当对红外光谱所包含的信息进行分析后,就会得到样品内不同有机成份的性质及含量。煤质在线检测系统是利用红外探测光对在线(输煤皮带上)原煤样品进行实时测量,通过对燃煤中各种官能团对红外光吸收各有差异的特点,应用计算机将这些差异进行识别处理,从而准确地测量出燃煤的热值及灰份、挥发份等工业分析值。 煤质在线检测系统的技术关键是根据样品光谱中的信息特征,利用设计开发的软件及建立的数学模型系统,通过计算机识别,进行定性与定量分析。定性分析是利用模式识别与聚类的一些算法,主要用于将所测到光谱进行分类。定量分析是根据比耳定律,应用化学计量学的方法,建立全谱区的光谱信息与含量及性质间的数学关系,通过严格的统计验证并选择最佳数学模型,计算出对应成分的含量或性质。 该技术是将硬件和软件相结合,特别是利用软件,解决红外光谱中谱峰重叠、高背景底强度的信息、图谱不稳定等难点,充分提取红外光谱的信息,达到分析的目的。二、达到的指标 此前,由于没有有效的在线实时检测手段,火力发电厂入炉原煤检测只是每天在炉前进行抽样,经混样、缩分、制样,化验分析等步骤,要二十四小时后才能出具一份工业分析值报表,供生产调度参考。这种方式,使得燃煤在已经燃烧后很长时间才得到其工业分析值,不能起到指导生产、节约成本的目的,使燃煤成本的结算始终处于负平衡态,因此,无法实现发电厂竟实时竟价上网的目标。 煤质在线检测系统完全改变了原始的离线检测方法与手段,实现了在线、实时、连续检测分析与监控:1. 检测与分析时间:全程连续跟踪检测一组数据(包括低位热值、弹筒热值、空干基灰份、干燥基灰份、收到基灰份、干燥无灰基挥发份、空干基挥发份等),需时间约为60s;2. 检测指标为:(1) 热值(低位、弹筒):±1000J/g;(2) 灰份(空干基、干燥基、收到基):±2%;(3) 挥发份(空干基、干燥无灰基):±1%。 由于上述指标的实现,可使燃煤结算达到分时及炉前预知燃煤成本的正平衡态,从真正意义上实现了指导生产,从而为实现竟价上网提供了重要的手段。三、 傅立叶变换红外光谱仪的原理傅立叶红外光谱仪的原理是把光源发出的光,经迈克尔逊干涉仪调制成干涉光,再让干涉光照射样品,由检测器获得干涉图,由计算机把干涉图进行傅立叶变换,得到全波段吸收光谱. 傅立叶变换红外光谱仪在整个检测过程中,只有一个可动镜在实验过程中运动;它的测量波段宽,光通量大,检测灵敏度高,具有多路通过的特点,故所有频率可同时测量;它的扫描速度最快可达60次/秒,因使用调制音频测量,故杂散光不影响检测;因样品放置于分束器后测量,大量辐射由分束器阻挡,样品接受调制波,故使热效应极小;因检测器仅对调制的声频信号有反响,其自身的红外辐射不会被检测器吸收。 四、 傅立叶变换红外光谱仪的特点 付立叶变换红外光谱仪共具备六个特点,既高光通量的特点,采用光能量损失很小的反射镜,以使入射光全部通过光孔,使光通量很大;高信噪比的特点,将入射光按不同的频率被干涉仪调制成不同的声频信息值,使所用检测器既获得强度的信息,又获得频率的信息,使各种频率光同时落在检测器上,无须分辨测量既测完全部光谱;高测量精度的特点,使动镜在无摩擦的空气轴承上移动,通过激光干涉图零点取样,用计算机自动完成数据输出及绘图,无人为因素干扰;高分辨率的特点,采用多路通过的方法,使分辨率随采样数据增加而加多;测量速度快的特点,采用多次扫描类加法消除光谱噪声,改善信噪比,提高灵敏度;测量波段宽、全波段分辨率一致的特点,用干涉法采集数据,以数字形式存储运算,使采集范围广且达到全波段分辨率一致。五、现场应用情况“阜新发电厂煤质在线实时检测”科研课题测试工作于二零零三年四月十二日在二十万机组五段输煤栈道进行。装置开机时间九点零六分,结束时间十三点五十八分;现场在线实时采集原煤样品六十四个,实际得到四十九组化验室化验数据,在线实时采集光谱十六组。对比数据见下表:测试指标化验室化验 平均值装置检测 平均值绝对 误差低位热值(g/J)19984.319924.3-60弹筒热值(g/J)22607.323106.8499.5空干基灰份(%)25.8827.791.91干燥基灰份(%)26.5027.951.45收到基灰份(%)23.5423.690.15空干基挥发份(%)29.8830.350.47干燥无灰基挥发份(%)41.6941.38-0.31 阜新发电厂参加建模原煤样品离线化验按照化验室的工作要求进行,建模用原煤样品光谱采取周累计采集方法进行;建模时温度控制在24~26℃,其中低位热值分布范围为10508J/g至29588J/g;弹筒热值分布范围为12392 J/g至29388 J/g;干燥基灰份分布范围为8.49%至55.33%;空干基灰份分布范围为8.1%至53.16%;收到基灰份分布范围为7.27%至50.86%;空干基挥发份分布范围为19.21%至35.55%;干燥无灰基挥发份分布范围为28.26%至52.8%,在建模的过程中,严格按照设备的使用要求进行测试,既设备预热时间大约为40分钟。目前阜新发电厂已正常使用煤质在线检测系统。 综上,煤质在线检测系统以高精的技术、稳定的模型、实时的测量、全程的监控等技术,完全实现了原煤的在线实时检测,它不仅可用于发电厂发电燃煤成本的实时结算,还可用于入厂煤的实时检测监控,一定会为我国的燃煤企业及电力系统的节能带来无穷的经济效益和广泛的社会效益。

  • 分析血液透析用水标准技术参数以及性能

    随着世界各国人民身体素质不断提高,现在的人们越来越多的关注安全的水,介绍医药和医疗用纯水水质相对更严格,要求更高。经常需要血液透析水处理设备和电电阻应该高于1500万多。  血液透析水处理设备技术参数  1.产透析用纯化水水质符合美国AAMI美国/ASAIO血液透析用水标准。  2.符合国家YY0572-2005血液透析用水标准。  3.内毒素、细菌去除率≥99%。  4.溶解盐去除率≥97%。  5.水回收率达70%以上。  6.系统排空率≥99%、无死腔。  透析用水系统组成部分  1.多介质过滤器(配自动冲洗装置):清除颗粒杂质,铁锰等离子。  2.活性炭过滤器(配自动冲洗装置):清除氯等有机物离子。  3.软化过滤器(配自动冲洗再生装置):清除钙镁等离子,降低原水硬度。  4.二级反渗主机(进口反渗膜部件):去除离子、细菌、热源等。  6.控制器:整套设备采用人机界面+高性能工业PLC全自动自动控制和手动控制。  血液净化透析水处理设备性能特征  1.全循环恒压供水方式,双路供水活水透析  2.全自动运行控制,自动开停机反渗透高压泵保护系统  3. 透析用水系统的预处理系统自动冲洗及再生运行,系统设有膜元件自动冲洗程序设备每运行2-6小时(可调)自动对膜元件冲洗,以避免浓水中的高浓度盐类在RO膜表面沉积结垢而影响膜的性能。  血液净化透析水处理设备从整个医药行业用超纯水的特点出发,针对不同用户对高纯水的不同要求,采用反渗透,EDI等最新工艺,比较有针对性地设计出成套高纯水处理工艺,以满足药厂、医院透析用纯化水制取、大输液制取的用水要求。  血液透析水处理设备根据与超纯水制药行业的特点,根据不同用户的不同需求的高反渗透纯水,EDI等最新技术,更有针对性的设计成套高纯水处理技术,为了满足制药工厂、医院、透析与纯净水生产、大输液水要求。

  • 【原创】在线分析器样品处理系统技术的发展及应用(下)

    5用于水泥窑尾的干法高温取样探头系统5.1 炉窑负压型样气处理系统 负压或微正压样气,只要压力不大于0.01MPa,往往都必须采用某种原理的抽气泵这一标志性部件,才能满足样气流量的规范要求。(个别炉窑负压型在线分析系统也需要防爆,例如焦炉煤气。)5.2 水泥窑尾的正常取样条件样气温度<1300℃样气粉尘气量<2000g/m3 5.3 干法高温探头的关键技术特性高精度粉尘过滤技术 0.3μm 99%,气流阻力<6mmH2O适用样气温度 ≤1300℃ ;控温封闭循环水冷却 (出水温度<85℃);过滤器加热180℃,内外程控反吹扫;反吹周期,可按需要在现场设定或修改;探头长度 3m ;全面的自动控制和安全报警技术;现场安装、投运技术。5.4 LKP 101S 型干法高温探头系统(图)LKP 101S 型干法高温取样探头系统 5.5 干法高温取样探头实际上是一套综合技术的复杂系统、成套设备或成套装置,称为高温探头系统名副其实。它是在线分析系统的技术制高点之一。6防爆分析小屋6.1 化工、石化领域的样气基本都是正压力,并有严格的防爆要求,就该采用正压防爆型样气处理系统,当然在线分析器也要严格选择隔爆型的,样气处理部件也要采用防爆型的。6.2 防爆分析小屋。防爆级别dⅡCT4 • 规格:2.7m高,长和宽可在订货时选择。 • 结构:钢板结构,厚度50mm 充填阻燃绝热离心真空保温棉; 外墙为抛光磨砂不锈钢板,内墙是镀锌喷塑钢板,顶部为304SS; 外开门,防爆视窗、紧急逃生锁; 内置标准气瓶和载气瓶以及固定架; 整体排点接地保护; “地”为人字钢板,δ=5; 全封闭安全集管排放系统,带阻火器的安全放空罩。 • 电器设备:防爆空调器(1.5P)、防爆排风扇、防爆照明灯、防爆电源接线箱、防爆信号接线箱、防爆防腐蚀开关、防爆报警灯、防爆型CO报警器等。 • 技术特点:专业、规范的全封闭结构防爆系统。6.3 防爆分析小屋是在线分析系统的另一个技术制高点。7 样气处理系统技术的发展趋势7.1 样气处理系统技术发展的动力在线分析器,特别是国外公司的在线分析器近几年出现高速发展与进步,如:19″标准机箱的六组分在线分析器。由于节能、环保、资源和高新技术的国家长期产业导向,使国内在线分析系统显现高速增长的、开放的市场特征。这成为样气处理系统技术发展的两种主要动力。7.2 样气处理系统技术发展的某些趋势 • 持续改进的理念非常适合于样气处理系统技术的发展:例如成都倍诚分析技术研究所的涡流致冷样气冷凝器已经改进了第五代,该公司的防爆分析小屋可代表该领域的国内先进水平。 • 冲击样气处理系统技术的制高点:川分的干法高温探头连续几年占领国内市场近80%的份额。• 小型化是技术发展总的内在规律之一:美国世伟洛克公司研发出如同糖葫芦串态势的“集成”式新型样气处理系统,总体积非常小,价格高昂,技术适应性也较窄,尚不具备推广条件。英国士富梅公司的氧化锆反吹气路为Φ2的焊接三通气路,氧化锆传感器比大手指头还小。 • 样气处理系统先进技术的大面积提高尚需时日:如探头过滤器和后级过滤器虽然已经达到0.3μm 99%和0.05μm 99%(单级)的先进水平,而另一些公司,包括一些参与国内市场竞争的国外公司却分别停留在2μm和0.5μm左右的原有保守水平。 • 样气处理系统技术的研发出现走向深入的苗头: 组合式样气处理部件(如水洗分离器); 高效样气处理部件(如高效水冷却分离器); 自洁式免维护样气处理部件(如旋风自洁式过滤器); 安全性高的样气处理部件(如可拆式化工取样探头); 新原理的样气处理部件(如高效自吹洗综合过滤器); 不使用样气电子冷凝器和蠕动泵的本安型样气处理系统技术已在研发之中; 开始出现专业化的样气处理部件研发公司和营销网站。8 新型样气处理部件实用新型(专利技术)解析 (专利发明人 金义忠等)高效自吹洗综合过滤器• 目前的各种过滤器均针对粉尘,对液雾不但无能为力,还常会堵塞或损坏过滤薄膜,从而造成膜式过滤器失效。有的厂家不得已,采用了水份报警型膜式过滤器。 • 有一种具有纳米特性的聚合薄膜材料有非常独特的性能, 过滤精度 0.3μm 可达99.9999% 0.05μm 也能达到99% 油雾过滤率 0.0001% (水雾过滤率也该是这一技术数据) 疏水特性(如荷叶对于水) 聚合膜即便被水泡湿了也不会影响其透气性。 气流阻力 ≤7mmH2O(60L/h下,Ф50膜片) 有较好的抗张强度,不容易损坏。 • 新型高效自吹洗综合过滤器 既能过滤0.05μm的粉尘99% ,也能过滤0.05μm的液雾99% , 过滤出的粉尘和液雾可自清洁,然后由旁路流排出,维护量大为降低。9 对样气处理系统技术发展的期待9.1 样气处理系统技术的发展单靠分析器的发展和市场的扩张来推动是不够的。在线分析工程技术理论的创新和样气处理系统技术本身技术的创新也是样气处理系统技术发展的强劲动力。9.2 通过本次前沿技术国际论坛,我们期待样气处理系统技术的发展能有一个坚持“持续改进、持续创新”理念的全新的发展方向。 2007年9月10日作者:金义忠 重庆凌卡分析仪器有限公司来源:中国在线分析系统网

  • 在线分析系统的管理与维护

    [b][b][font=宋体]一、在线分析系统的管理[/font][/b][/b][font=宋体]由于在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术是一套复杂的系统,[/font][font=宋体]所以[/font][font=宋体],[/font][font=宋体]在管理模式和人员素质要求上[/font][font=宋体]更偏向于工程管理而非化验室常规仪表的管理[/font][font=宋体]。[/font][font=宋体]对于[/font][font=宋体]在线分析仪表[/font][font=宋体],判断其[/font][font=宋体]运行好坏[/font][font=宋体]的最重要指标[/font][font=宋体]主要是[/font][font=宋体]看[/font][font=宋体]该仪表是否能提供稳定准确的分析数据,这项工作单靠仪表专业是难以完成的,需要分析专业强有力的支持与帮助。所以,在管理模式上应采用在线分析仪表与分析化验室同处于一个部门(或者是两个部门同处于一个上级领导部门)的管理模式,使这两个专业相互支持、相互配合、共同发展,化验室定期对在线分析仪表进行对比分析,以便仪表专业人员对在线分析仪表的运行状态进行评估,保证分析结果的准确性,同时也为在线分析仪表的维护和校调提供了依据[/font][font=宋体];[/font][font=宋体]而在线分析仪表的采用大大减轻了分析化验室的工作压力,从而使得在线分析仪表得到不断的发展,充分发挥其最大作用。[/font][font=宋体]因此,相比于在线近红外分析仪表性能,严格的工程管理才是在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]系统发挥作用的基础[/font][font=宋体]。[/font][font=宋体]由于在线近红外分析仪表牵涉分析化学、光谱学、仪表自动化和化学计量学等[/font][font=宋体]诸多技术,所以要求管理和使用人员具有各相关专业的基础知识和基本技能,而且责任心也应较其他部门更强。在线分析仪表班组必须综合仪表、分析、电气、工艺、设备、计算机等专业人员的技术力量,形成一个良好的相互补充、相互协调、责任明晰、共同发展的工作氛围,才能为在线分析仪表长期、稳定、准确地运行提供保障。此外,需要提及的一种发展趋势是,用户不再组建自己的在线分析仪表管理和维护队伍,而是将在线分析技术这一繁杂、专业技术性很强的维护和服务任[/font][font=宋体]务承包[/font][font=宋体]给社会专业公司完整负责,以系统形式提供全方位服务,这样一方面可以保证在线分析仪的正常运行,另外还可节省和优化人力资源。应该说,这是使在线分析仪正常运行、发挥出其应有效用的一种较完善的方式,这一观念也正逐渐在国际大型工厂(如石化等)得到认可和实践。[/font][b][b][font=宋体]二、在线分析系统的验证及其维护[/font][/b][/b][font=宋体]在分析系统安装完毕后[/font][font=宋体],应按照设计说明和生产商提供的技术指标,严格对在线分析系统的软硬件进行验收,逐项验证各项指标是否满足要求,如光谱仪和样品预处理的性能、软件功能是否齐全等。对初始分析模型的验证,可参[/font][font='Times New Roman'][font=宋体]考[/font]ASTM D6122[font=宋体]标准方法进行。收集至少[/font][font=Times New Roman]20[/font][font=宋体]个非模型界外过程分析样品作为验证样本,且待测性质和组成的分布范围应足够宽,其标准偏差至少为所用基础测试方法再现性的[/font][font=Times New Roman]70%[/font][font=宋体],然后对近红外分析模型的预测值和基础测试方法得到的结果进行统计学检验分析,如相关(斜率)检验和偏差检验,只有完全通过这些检验的模型才能用于过程分析。[/font][font=Times New Roman]ASTM D6122[/font][font=宋体]同时给出了在线分析过程中,对光谱仪(包括光纤探头和流通池)性能(如基线、光程、波长、分辨率和吸光度精度和线性)进行定期(最好是每天一次)检验的方法。检验使用[/font][/font][font=宋体][font=Times New Roman]3[/font][/font][font='Times New Roman'][font=宋体]类样品[/font][/font][font=宋体]—[/font][font='Times New Roman'][font=宋体]检验样品[/font][/font][font=宋体] [font=Times New Roman]([/font][/font][font='Times New Roman']check samples[/font][font=宋体][font=Times New Roman])[/font][/font][font='Times New Roman'][font=宋体]、测试样品[/font][/font][font=宋体] [font=Times New Roman]([/font][/font][font='Times New Roman']test samples[/font][font=宋体][font=Times New Roman])[/font][/font][font='Times New Roman'][font=宋体]和光学滤光片[/font][/font][font=宋体][font=Times New Roman]([/font][/font][font='Times New Roman']optical filters[/font][font=宋体][font=Times New Roman])[/font][font=宋体]。[/font][/font][font='Times New Roman'][font=宋体]其中[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]测试样品为模型能覆盖的在线实际分析样品,通过一定方式保存,保证其组分[/font][/font][font=宋体]不随时间发生变化;检验样品则[/font][font='Times New Roman'][font=宋体]可以是纯化合物或几种化合物的混合物,但应尽可能包含在线分析样品的主要基团[/font][/font][font=宋体];[/font][font='Times New Roman'][font=宋体]光学滤光片主要用于插[/font][/font][font=宋体]入[/font][font=宋体]式探头的检测,其在材料上应不同于光谱仪内置的用来校正波长的滤光片。检验涉及[/font][font=宋体]3[/font][font=宋体][font=宋体]种方法:水平[/font]0检测,对光谱仪的变动进行测试,包括波长稳定性、光度噪声、基线稳定性、光谱分辨率和吸光度线性;水平A检测,用数学方法比较检验样品、测试样品或光学滤光片的光谱与其历史记录光谱之间的差异;水平B检测,用所建模[/font][font=宋体]型预测检验样品、测试样品或光学滤光片光[/font][font=宋体]谱,[/font][font='Times New Roman'][font=宋体]其预测值、马氏距离和光谱残差与历史值进行比较[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]以检测分析仪性能的变化。[/font][/font][font=宋体]在实际应用分析中[/font][font='Times New Roman'][font=宋体],若连续[/font]6[font=宋体]次测量光谱都为模型界外点,则必须用上述方法对仪器的性能进行检验,以确定模型界外光谱是否是由于光谱仪的变动引起的。为保证近红外在线分析数据的准确性,需要定期对其结果标定([/font][font=Times New Roman]ASTM D6122[/font][font=宋体]建议每周一次),可以采用两种方法来保证分析数据的准确性:一是采用标准样品[/font][/font][font=宋体]。[/font][font='Times New Roman'][font=宋体]对于有些测试对象很难获得标准样品,这时可采用第二种方法,即与化验室进行数据对比,其差值应在基础测试方法要求的再现性范围内。如果差值超过范围,则需要再次采样分析,如果结果又满足了要求,说明采样或者化验室分析数据有问题[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]否则需要对硬件和模型进行系统检验,找出引起偏差的主要原因。而且,每隔一段时间(如[/font]1~2[font=宋体]个月),要对这段的对比数据进行统计分析,可使用[/font][font=Times New Roman]ASTM D6122[/font][font=宋体]推荐的[/font][/font][font=宋体][font=Times New Roman]3[/font][/font][font='Times New Roman'][font=宋体]种质量控制图(单值控制图、指数权重移动平均控制图和两图移动范围控制图),即使两种方法之间的偏差满足要求,也可以根据统计结果来判断分析仪的运行状态,如是否存在系统误差等。在与实验室分析结果进行对比时,有几点问题值得注意:[/font][/font][font=宋体]一是[/font][font=宋体][font=宋体]在线分析样品与实验室分析样品在时间和组成上的一致性,即两者为[/font][font=宋体]“同一个”样品;[/font][/font][font=宋体]二是[/font][font=宋体]实验室所用的分析方法是建立[/font][font=宋体]近红外分析模型所采用的方法[/font][font=宋体];[/font][font=宋体]三是[/font][font=宋体]在实验室进行分析时,应尽可能用同一台设备和同一人员进行分析[/font][font=宋体]。[/font][font=宋体]如有可[/font][font='Times New Roman'][font=宋体]能应平行测定[/font]3[font=宋体]次,取平均值。对在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析系统的日常维护一般主要集中在光谱仪、样品预处理系统和分析模型[/font][/font][font=宋体][font=Times New Roman]3[/font][/font][font='Times New Roman'][font=宋体]部分上。光谱仪的光源能量会随着时间的变化逐渐下降,可通过光谱信噪比测试来判断何时更换光源,更换光源后应对分析模型的有效性进行验证[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]确保其变动对模型没有显著影响。此外,取样[/font]-[font=宋体]测样装置也应定期检查和清洗,防止光学窗片污染、刮伤、磨损等对分析结果的影响。样品预处理系统的维护包括各控制阀件和仪[/font][/font][font=宋体]表工作是否正常[/font][font='Times New Roman'][font=宋体],以及一些耗用品如干燥剂、过滤网[/font]/[font=宋体]膜等的更换。[/font][/font][font=宋体]对分析模[/font][font=宋体]型的修改与扩充是在线近红外分析系统维护的主要内容[/font][font='Times New Roman'][font=宋体],也是最为复杂的一个环节。一般当出现模型界外样品时,就需考虑模型维护问题。[/font]ASTM[font=宋体]为近红外分析模型的建立、检验和维护制定了具体的标准化操作规范。建立分析模型可参照[/font][font=Times New Roman]ASTM E 1655[/font][/font][font=宋体]、[/font][font='Times New Roman']GB/T29858-2013[/font][font=宋体]和[/font][font='Times New Roman']GB/T37969-2019[/font][font=宋体]等[/font][font='Times New Roman'][font=宋体]标准,[/font]ASTM D 2885/3764[font=宋体]则提供了模型自动检验标准,[/font][font=Times New Roman]ASTM D6122[/font][font=宋体]为自动检验特异样品和判定测[/font][/font][font=宋体]量[/font][font='Times New Roman'][font=宋体]值漂移标准。[/font][/font][font=宋体]模型预测性能受到两大基本因素影响:一是样品化学组分发生变化;二是仪器的系统漂移。[/font][font='Times New Roman'][font=宋体]当发生[/font][/font][font=宋体]样品化学组分发生变化[/font][font='Times New Roman'][font=宋体]时,需要及时将这些样品补充到样品集中,对近红外在线分析模型进行更新,扩充模型的覆盖范围。[/font][/font][font=宋体]但[/font][font='Times New Roman'][font=宋体]在线模型用[/font][/font][font=宋体]于[/font][font='Times New Roman'][font=宋体]控制[/font][/font][font=宋体]循环中以后[/font][font='Times New Roman'][font=宋体],[/font][/font][font=宋体]不宜进行[/font][font='Times New Roman'][font=宋体]频繁的模型重建工作[/font][/font][font=宋体],如果实在需要才能对模型进行更新。[/font][font='Times New Roman'][font=宋体]因此,在线测量模型必须在确定建立完善后才能投[/font][/font][font=宋体]入[/font][font='Times New Roman'][font=宋体]使用[/font][/font][font=宋体]。[/font][font='Times New Roman'][font=宋体]若界外样品由[/font][/font][font=宋体]仪器的系统漂移[/font][font='Times New Roman'][font=宋体]引起,则需要找出问题的具体原因,加以解决,如排除硬件故障,保证分析条件的一致性。对于样品粒度、温度、压力或流速等因素引起的界外样品,也可通过将这些变动因素引入模型的办法来解决,但这样做会降低模型的精度。为确保仪器的可靠性,常规的仪器诊断数据如波长准确度、噪声水平、带宽以及参考标准样品的光谱响应等应该做自动记录。[/font][/font][font=宋体]此外,[/font][font='Times New Roman'][font=宋体]还需要经常性地抽取一些控制样本进行[/font][/font][font=宋体]近红外[/font][font='Times New Roman'][font=宋体]测量和参考方法测量的对比以检验[/font][/font][font=宋体]近红外[/font][font='Times New Roman'][font=宋体]方法的性能,一般每隔[/font]4~8[font=宋体]小时需要做一次验证工作,并记录检验结果。把这些记录结果绘制成一个控制图表可以有效地监控仪器和测量模型的性能。[/font][/font]

  • 在线分析系统的管理与维护

    [b][b][font=宋体]一、在线分析系统的管理[/font][/b][/b][font=宋体]由于在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术是一套复杂的系统,[/font][font=宋体]所以[/font][font=宋体],[/font][font=宋体]在管理模式和人员素质要求上[/font][font=宋体]更偏向于工程管理而非化验室常规仪表的管理[/font][font=宋体]。[/font][font=宋体]对于[/font][font=宋体]在线分析仪表[/font][font=宋体],判断其[/font][font=宋体]运行好坏[/font][font=宋体]的最重要指标[/font][font=宋体]主要是[/font][font=宋体]看[/font][font=宋体]该仪表是否能提供稳定准确的分析数据,这项工作单靠仪表专业是难以完成的,需要分析专业强有力的支持与帮助。所以,在管理模式上应采用在线分析仪表与分析化验室同处于一个部门(或者是两个部门同处于一个上级领导部门)的管理模式,使这两个专业相互支持、相互配合、共同发展,化验室定期对在线分析仪表进行对比分析,以便仪表专业人员对在线分析仪表的运行状态进行评估,保证分析结果的准确性,同时也为在线分析仪表的维护和校调提供了依据[/font][font=宋体];[/font][font=宋体]而在线分析仪表的采用大大减轻了分析化验室的工作压力,从而使得在线分析仪表得到不断的发展,充分发挥其最大作用。[/font][font=宋体]因此,相比于在线近红外分析仪表性能,严格的工程管理才是在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]系统发挥作用的基础[/font][font=宋体]。[/font][font=宋体]由于在线近红外分析仪表牵涉分析化学、光谱学、仪表自动化和化学计量学等[/font][font=宋体]诸多技术,所以要求管理和使用人员具有各相关专业的基础知识和基本技能,而且责任心也应较其他部门更强。在线分析仪表班组必须综合仪表、分析、电气、工艺、设备、计算机等专业人员的技术力量,形成一个良好的相互补充、相互协调、责任明晰、共同发展的工作氛围,才能为在线分析仪表长期、稳定、准确地运行提供保障。此外,需要提及的一种发展趋势是,用户不再组建自己的在线分析仪表管理和维护队伍,而是将在线分析技术这一繁杂、专业技术性很强的维护和服务任[/font][font=宋体]务承包[/font][font=宋体]给社会专业公司完整负责,以系统形式提供全方位服务,这样一方面可以保证在线分析仪的正常运行,另外还可节省和优化人力资源。应该说,这是使在线分析仪正常运行、发挥出其应有效用的一种较完善的方式,这一观念也正逐渐在国际大型工厂(如石化等)得到认可和实践。[/font][b][b][font=宋体]二、在线分析系统的验证及其维护[/font][/b][/b][font=宋体]在分析系统安装完毕后[/font][font=宋体],应按照设计说明和生产商提供的技术指标,严格对在线分析系统的软硬件进行验收,逐项验证各项指标是否满足要求,如光谱仪和样品预处理的性能、软件功能是否齐全等。对初始分析模型的验证,可参[/font][font='Times New Roman'][font=宋体]考[/font]ASTM D6122[font=宋体]标准方法进行。收集至少[/font][font=Times New Roman]20[/font][font=宋体]个非模型界外过程分析样品作为验证样本,且待测性质和组成的分布范围应足够宽,其标准偏差至少为所用基础测试方法再现性的[/font][font=Times New Roman]70%[/font][font=宋体],然后对近红外分析模型的预测值和基础测试方法得到的结果进行统计学检验分析,如相关(斜率)检验和偏差检验,只有完全通过这些检验的模型才能用于过程分析。[/font][font=Times New Roman]ASTM D6122[/font][font=宋体]同时给出了在线分析过程中,对光谱仪(包括光纤探头和流通池)性能(如基线、光程、波长、分辨率和吸光度精度和线性)进行定期(最好是每天一次)检验的方法。检验使用[/font][/font][font=宋体][font=Times New Roman]3[/font][/font][font='Times New Roman'][font=宋体]类样品[/font][/font][font=宋体]—[/font][font='Times New Roman'][font=宋体]检验样品[/font][/font][font=宋体] [font=Times New Roman]([/font][/font][font='Times New Roman']check samples[/font][font=宋体][font=Times New Roman])[/font][/font][font='Times New Roman'][font=宋体]、测试样品[/font][/font][font=宋体] [font=Times New Roman]([/font][/font][font='Times New Roman']test samples[/font][font=宋体][font=Times New Roman])[/font][/font][font='Times New Roman'][font=宋体]和光学滤光片[/font][/font][font=宋体][font=Times New Roman]([/font][/font][font='Times New Roman']optical filters[/font][font=宋体][font=Times New Roman])[/font][font=宋体]。[/font][/font][font='Times New Roman'][font=宋体]其中[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]测试样品为模型能覆盖的在线实际分析样品,通过一定方式保存,保证其组分[/font][/font][font=宋体]不随时间发生变化;检验样品则[/font][font='Times New Roman'][font=宋体]可以是纯化合物或几种化合物的混合物,但应尽可能包含在线分析样品的主要基团[/font][/font][font=宋体];[/font][font='Times New Roman'][font=宋体]光学滤光片主要用于插[/font][/font][font=宋体]入[/font][font=宋体]式探头的检测,其在材料上应不同于光谱仪内置的用来校正波长的滤光片。检验涉及[/font][font=宋体]3[/font][font=宋体][font=宋体]种方法:水平[/font]0检测,对光谱仪的变动进行测试,包括波长稳定性、光度噪声、基线稳定性、光谱分辨率和吸光度线性;水平A检测,用数学方法比较检验样品、测试样品或光学滤光片的光谱与其历史记录光谱之间的差异;水平B检测,用所建模[/font][font=宋体]型预测检验样品、测试样品或光学滤光片光[/font][font=宋体]谱,[/font][font='Times New Roman'][font=宋体]其预测值、马氏距离和光谱残差与历史值进行比较[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]以检测分析仪性能的变化。[/font][/font][font=宋体]在实际应用分析中[/font][font='Times New Roman'][font=宋体],若连续[/font]6[font=宋体]次测量光谱都为模型界外点,则必须用上述方法对仪器的性能进行检验,以确定模型界外光谱是否是由于光谱仪的变动引起的。为保证近红外在线分析数据的准确性,需要定期对其结果标定([/font][font=Times New Roman]ASTM D6122[/font][font=宋体]建议每周一次),可以采用两种方法来保证分析数据的准确性:一是采用标准样品[/font][/font][font=宋体]。[/font][font='Times New Roman'][font=宋体]对于有些测试对象很难获得标准样品,这时可采用第二种方法,即与化验室进行数据对比,其差值应在基础测试方法要求的再现性范围内。如果差值超过范围,则需要再次采样分析,如果结果又满足了要求,说明采样或者化验室分析数据有问题[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]否则需要对硬件和模型进行系统检验,找出引起偏差的主要原因。而且,每隔一段时间(如[/font]1~2[font=宋体]个月),要对这段的对比数据进行统计分析,可使用[/font][font=Times New Roman]ASTM D6122[/font][font=宋体]推荐的[/font][/font][font=宋体][font=Times New Roman]3[/font][/font][font='Times New Roman'][font=宋体]种质量控制图(单值控制图、指数权重移动平均控制图和两图移动范围控制图),即使两种方法之间的偏差满足要求,也可以根据统计结果来判断分析仪的运行状态,如是否存在系统误差等。在与实验室分析结果进行对比时,有几点问题值得注意:[/font][/font][font=宋体]一是[/font][font=宋体][font=宋体]在线分析样品与实验室分析样品在时间和组成上的一致性,即两者为[/font][font=宋体]“同一个”样品;[/font][/font][font=宋体]二是[/font][font=宋体]实验室所用的分析方法是建立[/font][font=宋体]近红外分析模型所采用的方法[/font][font=宋体];[/font][font=宋体]三是[/font][font=宋体]在实验室进行分析时,应尽可能用同一台设备和同一人员进行分析[/font][font=宋体]。[/font][font=宋体]如有可[/font][font='Times New Roman'][font=宋体]能应平行测定[/font]3[font=宋体]次,取平均值。对在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析系统的日常维护一般主要集中在光谱仪、样品预处理系统和分析模型[/font][/font][font=宋体][font=Times New Roman]3[/font][/font][font='Times New Roman'][font=宋体]部分上。光谱仪的光源能量会随着时间的变化逐渐下降,可通过光谱信噪比测试来判断何时更换光源,更换光源后应对分析模型的有效性进行验证[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]确保其变动对模型没有显著影响。此外,取样[/font]-[font=宋体]测样装置也应定期检查和清洗,防止光学窗片污染、刮伤、磨损等对分析结果的影响。样品预处理系统的维护包括各控制阀件和仪[/font][/font][font=宋体]表工作是否正常[/font][font='Times New Roman'][font=宋体],以及一些耗用品如干燥剂、过滤网[/font]/[font=宋体]膜等的更换。[/font][/font][font=宋体]对分析模[/font][font=宋体]型的修改与扩充是在线近红外分析系统维护的主要内容[/font][font='Times New Roman'][font=宋体],也是最为复杂的一个环节。一般当出现模型界外样品时,就需考虑模型维护问题。[/font]ASTM[font=宋体]为近红外分析模型的建立、检验和维护制定了具体的标准化操作规范。建立分析模型可参照[/font][font=Times New Roman]ASTM E 1655[/font][/font][font=宋体]、[/font][font='Times New Roman']GB/T29858-2013[/font][font=宋体]和[/font][font='Times New Roman']GB/T37969-2019[/font][font=宋体]等[/font][font='Times New Roman'][font=宋体]标准,[/font]ASTM D 2885/3764[font=宋体]则提供了模型自动检验标准,[/font][font=Times New Roman]ASTM D6122[/font][font=宋体]为自动检验特异样品和判定测[/font][/font][font=宋体]量[/font][font='Times New Roman'][font=宋体]值漂移标准。[/font][/font][font=宋体]模型预测性能受到两大基本因素影响:一是样品化学组分发生变化;二是仪器的系统漂移。[/font][font='Times New Roman'][font=宋体]当发生[/font][/font][font=宋体]样品化学组分发生变化[/font][font='Times New Roman'][font=宋体]时,需要及时将这些样品补充到样品集中,对近红外在线分析模型进行更新,扩充模型的覆盖范围。[/font][/font][font=宋体]但[/font][font='Times New Roman'][font=宋体]在线模型用[/font][/font][font=宋体]于[/font][font='Times New Roman'][font=宋体]控制[/font][/font][font=宋体]循环中以后[/font][font='Times New Roman'][font=宋体],[/font][/font][font=宋体]不宜进行[/font][font='Times New Roman'][font=宋体]频繁的模型重建工作[/font][/font][font=宋体],如果实在需要才能对模型进行更新。[/font][font='Times New Roman'][font=宋体]因此,在线测量模型必须在确定建立完善后才能投[/font][/font][font=宋体]入[/font][font='Times New Roman'][font=宋体]使用[/font][/font][font=宋体]。[/font][font='Times New Roman'][font=宋体]若界外样品由[/font][/font][font=宋体]仪器的系统漂移[/font][font='Times New Roman'][font=宋体]引起,则需要找出问题的具体原因,加以解决,如排除硬件故障,保证分析条件的一致性。对于样品粒度、温度、压力或流速等因素引起的界外样品,也可通过将这些变动因素引入模型的办法来解决,但这样做会降低模型的精度。为确保仪器的可靠性,常规的仪器诊断数据如波长准确度、噪声水平、带宽以及参考标准样品的光谱响应等应该做自动记录。[/font][/font][font=宋体]此外,[/font][font='Times New Roman'][font=宋体]还需要经常性地抽取一些控制样本进行[/font][/font][font=宋体]近红外[/font][font='Times New Roman'][font=宋体]测量和参考方法测量的对比以检验[/font][/font][font=宋体]近红外[/font][font='Times New Roman'][font=宋体]方法的性能,一般每隔[/font]4~8[font=宋体]小时需要做一次验证工作,并记录检验结果。把这些记录结果绘制成一个控制图表可以有效地监控仪器和测量模型的性能。[/font][/font]

  • 在线中子活化煤质分析仪在煤矿的应用

    在线中子活化煤质分析仪在煤矿的应用 [澳]M艾德沃兹  在线煤质分析仪应用于煤炭业已有20多年的历史,其稳定的销量足以证明其价值。在线分 析仪通过提供实时信息为煤厂各煤种的质量控制和生产管理提供了极大的帮助, 如果依赖化验室,这些数据只能在采样后的数小时甚至数天后才能得到。 近年来, 随着经济下滑,生产优化和料堆控制变得尤为重要。煤炭业的持续下滑导致该行业重新关注 煤炭质量管理,从而提高客户满意度最终增加煤炭销量。同时也提高矿区资源的有效利用, 使原先认为煤质不达标的资源可以有选择地开采。为达到上述目的,煤炭生产商和煤炭用户 开始寻找更为经济且仍然高精度煤质分析仪。随着人们对环境的日益关注,特别是对硫释放的关注导致法律对污染控制更加严格。 新近设计的皮带在线中子活化煤质分析仪(PGNAA)恰好可以满足上述要求。  1 在线煤质分析技术与设备  1.1  双能量伽玛传输技术(DUET)  DUET仪器自20世纪80年代早期上市以来,已成为在线煤质监测设备家族中的重要一员。 该设备价格相对低廉,安装便捷,可以直接在皮带上进行在线煤质分析,只要是分析固定煤 种,DUET分析仪测定煤质灰分就可以达到相当的精度。它利用两个γ射线源贯穿煤层而测量 灰分。对给定的煤种,该设备的测定精度为:一个标准偏差下0.5%~1%。该设备的主要缺点 是其标定与煤种有关,特别是在灰中的铁和钙元素变动很大的情况下。  该设备的用途包括:监测运送到选煤厂的原煤;监测洗净的精煤;给选煤厂提供反馈信息; 通过混煤优化资源利用,使之达到一定的质量目标;监测送往用户的煤质是否达到合同要求 的质量。  1.2  自然伽玛射线技术  另一种广泛使用的简单的分析仪能够测定煤中的自然放射性大小,并将其与灰分联系起来。 这种煤质分析仪不需要放射源,对影响DUET系统的铁和钙元素的变化不敏感。  然而,作为一种“被动”的系统,该分析仪的精度大约只为1%~2%,其理想应用是测量厚煤 层的灰分,例如原煤输送机或选煤厂入料输送机上的煤质,在煤层很厚时,这仍然是测定灰 分的唯一技术。然而,该分析仪同样与煤种有关,因为它依赖与灰分相关的自然伽玛放射素 的存在(如钾)。    1.3 快速伽玛中子活化分析技术(PGNAA)  为满足市场上对具有高精度却与煤种无关的灰分仪的需求,上世纪80年代中期开发了首 台PGNAA旁线分析仪。该分析仪最常用于电厂配煤控制,以及选煤厂控制和煤的分选和销售 煤的质量控制。除了测定人们通常感兴趣的灰分,水分,发热量以外,还可以测定灰分中的 硫分,美国清洁空气法案要求电厂对SO2的排放进行控制,该分析仪也可以测定对锅炉结 焦有影响的Na和Cl。  这种旁线分析仪需要采样设备把煤从皮带上采初样。煤样通过垂直溜槽进行中子照射分析 。在几分之一秒的时间内,吸收的能量以伽玛辐射的形式释放出来。由于每一元素具有特定 的伽玛射线光谱,光谱可以拆解成组成元素的光谱,从而确定煤中的元素成分。 。该技术与煤种无关,所以很有吸引力。  元素分析通过计算组合,可以得出灰分,发热量和挥发分。该分析仪对灰分的分析精度0.25 %~0.4%。  该分析仪本身价值数十万美金,而且配套的采样和传输系统也价格不菲,这就限制了分析仪 的广泛使用。  2  PGNAA皮带在线分析仪的应用  直到最近,把PGNAA直接用于在线测量输送机上的煤质测试才获得成功。实验结果虽不能达 到通常旁线PGNAA分析仪低于0.4%的精度,但使得系统成本大为降低。理论计算表明,溜槽 通过式的PGNAA分析仪不存在皮带在线分析时受到煤层厚度变化和煤质垂直方向分布不均匀 的问题。  与PGNAA旁线分析仪相比,PGNAA在线分析仪的优势体现在该设备不需要安装采样楼,可以直 接放在主皮带上使用。因此,大大节省了采样和传输设备的安装和维护成本。除此之外,也 避免了采样偏差,因为在线分析仪是对整个煤流进行分析。  除了煤层很厚的现场之外,在线分析仪可以在任意位置安装。在煤层厚度超过35cm ,使用通过自然放射性来测定灰分的分析仪仍然是合适的。  PGNAA在线分析仪的适用性意味着它可以分析各种不同的煤种,工厂试验已经证明了其准确 测定煤质的能力。由于该设备能够准确、实时地分析灰分、水分、硫分、发热量、灰分中的 氧化物和其他参数,能进行更好的配煤和选煤。因此,降低了工厂的生产成本。分析结果可 以实现每两分钟更新一次,便于工厂相应进行快速调节。  3  皮带在线分析仪的发展  3.1  工厂测试  以PGNAA旁线分析仪的技术为基础,加上经济、可靠和高速的现成的电脑处理芯片,克服了 早期PGNAA在线分析仪遇到的困难。工厂测试首次表明可以对输送机上煤质成分的变化进行 修正补偿,基于此结果,就可以进行分析仪的现场试验了。   3.2  现场试验  2000年3月,Scantech公司在澳大利亚昆士兰州进行了COALSCAN9500X型PGNAA在线分析仪的 商业化现场试验。在现场,卡车把煤运到料仓中,然后三级破碎机把煤加工成最大粒度为90 mm。分析仪安装在破碎机之后的1050mm宽的输送机上,把煤送入1000t的料仓。皮带上煤 层 在厚度100~400mm之间变动。分析仪后面装有皮带刮扫式自动采样系统,煤可以直接从缓 冲仓装到火车上或者地面运输至电厂,电厂的自动采样系统测定每个班的结果,并与分析 仪的分析结果相比较以进行核实,这是PGNAA分析仪的典型应用。  通过动态采样可以检验仪器在工厂里按静态煤样所作的标定是否准确。将所有的动态采样均 按双倍收集以评估采样误差,化验室的误差,以及分析仪误差。当年进行了6次采样比较, 使分析仪涵盖了一系列不同煤种、煤厚以及皮带垂直方向上不均匀的分布。每次采样比较会 收集10份双倍样本,送到两个权威化验室进行分析。因此每一样本会有三个结果(分别来自 化验室1、化验室2和分析仪)。由于一些外部因素的影响,每次收集的样本数量比预定的30 个(10×3)要少。  3.3  现场试验的结果  每个样本均在PGNAA分析仪后的某一位置由皮带刮扫双倍收取,奇数样本送往化验室1,偶数 样本送往化验室2,每90秒采样一次,根据选煤厂的工作状况,样本在1~3小时内采完,每 次采样均依照ASTM标准。  尽管该试验原先并不研究采样和化验室的精度,但任何一项新技术都必须与现有的方法进行 比较,再来讨论彼此之间有哪些不同。两个样本分析结果的不同使检验分析仪标定结果变得 更加不确定。样本按照GRUBBSESTIMATOR方法进行评估。  双倍收集样本提供了公平、独立地评估化验室和分析仪的误差手段。事 实上,由于试验中动态样本的收集特别仔细和严格,化验室结果的准确性很可能优于日常进 行的传统化验结果。我们预见分析结果会有发散分布,但是7月份两组化验室结果的灵敏性 不同,8月份出现了偏移误差。化验室结果的不可靠性增加了需要用现场数据标定分 析仪的困难,两组化验室灰分结果的标准偏差是1.02%。如果这一结果是在线分析仪和 化验结果的偏差,通常是不能被接受的。  表1 皮带在线分析仪灰分精度的Grubbs估算值(略)  通过G RUBBSESTIMATOR方法可以单独估算分析仪精度以及每一个化验室的精度。表1汇总了这些估 算精度,分析仪的估算精度高于化验室的估算精度。数据中有明显的偏离点,因此在舍弃了这些偏离点数据后对估算精度重新进行了计算。舍弃 这些数据采用两级步骤,即分别对35个样本,32个样本以及全部36个样本进行了评估。分析 仪的灰分估算精度达到了0.25%,对适当标定的PGNAA分析。

  • 泌尿系统动态监护仪器:国内外发展现状和关键技术分析

    泌尿系统动态监护仪器:国内外发展现状和关键技术分析

    [color=#cc0000]  摘要:针对泌尿系统动态监护仪器,对国内外主流品牌及其产品进行了介绍,并对各自的特点进行了详细分析。同时针对泌尿系统动态监护仪器的模块化和多功能化,对相应的关键技术进行了分析。[/color][align=center][img=,690,297]https://ng1.17img.cn/bbsfiles/images/2018/12/201812252044057127_514_3384_3.jpg!w690x297.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#cc0000]1.前言[/color][/b]  在泌尿系统的治疗、监护和康复过程中,需要对膀胱压力、尿管压力、尿量、尿流率等基础生理特征参数进行全智能化动态监测、安全监护和远程数据管理,甚至需要可穿戴形式的监护装置以提高生活质量。随着目前社会的飞速发展,人工成本逐渐升高,互联网技术及其基础建设的日趋完善,都将促使全球医疗市场对泌尿系统动态监护仪器和装备在近些年内形成庞大需求,因此开发研制智能化、网络化、多功能集成化的泌尿系统动态监护终端设备将有十分重要的社会价值和经济价值。  泌尿系统动态监护仪器应为模块式结构,是集多功能为一体的监护仪器,既能实时动态测量泌尿系统相关参数,并将监测数据无线传输到云数据库,又能用于防止尿失禁发生而进行的膀胱功能维护和恢复训练,同时也可以拆分模块构成独立仪器进行使用。另外,泌尿系统动态监护仪器还应廉价且硬件不复杂,从而保证长期连续工作的可靠性,可满足临床实时监测、网络化数据管理、病患临床及家庭可穿戴式康复训练的需要。  本文针对泌尿系统动态监护仪器,对国内外主流品牌及其产品进行了介绍,并对各自的特点进行了详细分析。同时针对泌尿系统动态监护仪器的模块化和多功能化,对相应的关键技术进行了分析。[b][color=#cc0000]2.国内外主要品牌[/color][/b]  泌尿系统动态监测将逐渐成为临床监护设备的新成员,在欧美各国已在一定范围内得到应用,并整合进各医疗中心的临床重症信息系统,成为ICU、CCU、手术室、重症观察室的必备监护设备。  目前的各种泌尿系统监护仪基本都是基于多年来成熟的插入人体膀胱内的导尿管技术而衍生出的各种监护功能,这就势必涉及到医疗行业诸多特殊的检测条件,要求尽可能采用与尿液不直接接触的测试方法,监护仪器要尽可能简便耐用以利于护理人员和病患操作和使用。总之,临床条件下的复杂性对泌尿系统动态监护仪提出了很高的要求。尽管多年来的相关研究一直不断,但真正能用于临床的成熟技术极少并一直被国外个别公司掌握。随着近几年微电子技术的发展和资本市场对医疗仪器行业的重点关注,特别是新型微电子传感器技术的突破和互联网技术的广泛应用,泌尿系统动态监护仪器市场呈现十分活跃的趋势,出现了一些新公司和新产品。  总之,在技术层面,目前市场上泌尿系统动态监护设备还远不能满足临床需求,特别是综合监护多功能化和网络终端化有待进一步提高,整个市场处于一个技术突破和应用爆发的前夜。  目前国内外有多个尿液动态监测仪器品牌,主要品牌如表2-1所示。[align=center][color=#cc0000]表2-1 国内外泌尿系统动态监测仪器厂家[/color][/align][align=center][img=,500,617]https://ng1.17img.cn/bbsfiles/images/2018/12/201812252016591867_942_3384_3.png!w690x852.jpg[/img][/align][align=center][b][color=#cc0000][img=,500,686]https://ng1.17img.cn/bbsfiles/images/2018/12/201812252017337237_5181_3384_3.png!w690x947.jpg[/img][/color][/b][/align][align=center][b][color=#cc0000][img=,500,322]https://ng1.17img.cn/bbsfiles/images/2018/12/201812252017575887_2440_3384_3.png!w690x445.jpg[/img][/color][/b][/align][b][color=#cc0000]3.市场主流产品分析[/color][/b]  由于临床条件下对泌尿系统动态监护的要求很高,真正技术成熟并能成功用于临床的动态监护仪器品牌并不多,下面对目前市场上最具代表性的三种泌尿系统动态监测设备进行技术分析。[color=#cc0000]3.1.以色列FlowSence Medical公司尿液计量仪[/color]  以色列FlowSence医疗公司在2009年就推出了尿液计量仪,多年来一直是泌尿系统监护仪器的主要生产厂商。该公司目前的主打产品是URINFO 2000尿液监控仪,如图3-1所示,此仪器将一次性使用的配套尿袋(耗材)和精密的电子监测系统集成在一起,在尿袋上设计有特殊的尿液滴头使得导尿管流入的尿液形成尿滴,尿滴在重力作用下做自由落体滴入集尿袋。在尿液滴头的下方有红外传感器进行尿滴计数而最终获得尿液容积。[align=center][img=,690,230]https://ng1.17img.cn/bbsfiles/images/2018/12/201812252037453064_4373_3384_3.png!w690x230.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-1 以色列FlowSence医疗公司URINFO 2000尿液监控仪[/color][/align][color=#cc0000]3.1.1.尿流率和尿量测量功能[/color]  URINFO 2000尿液监控仪通过测量规定形状的尿滴数量和数据处理来进行尿流率和尿量的测量。如图3-2所示,首先通过一次性尿袋上方的专用滤芯,滤除尿液内的浓稠物质,使达到液滴口处的尿液比重基本接近清水状态,即对不同密度的尿液进行归一化处理,然后处理过的尿滴在重力作用下做自由落体滴入集尿袋。  URINFO 2000是首次使用红外光电技术监测尿液的尿液监控仪器,即在液滴口的下方采用红外传感器进行液滴计数而最终获得尿液容积,并设定每个液滴的体积控制为已知常数,按照清水密度和尿液容积计算得到尿液量。这种红外光电技术在后续的多家型号尿液监控仪上都有采用。[align=center][color=#cc0000][img=,690,493]https://ng1.17img.cn/bbsfiles/images/2018/12/201812252038052474_2064_3384_3.png!w690x493.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-2 URINFO 2000尿液监控仪原理图[/color][/align][color=#cc0000]3.1.2.远程监护和数据管理功能[/color]  URINFO 2000尿液监控仪最早由以色列Medynamixt公司首次在2009年推出,当时仅能对设定的单一间隔时间内的尿量数据进行回访,没有尿液流量的记录波形图,当时并不具有远程监护和数据管理功能。后续改进的型号已经可以达到了九天数据存储,并逐步完善了远程监护和数据管理功能。  目前Medynamixt公司已被以色列Flowsense公司收购,据报道URINFO 2000尿液监控仪的改进工作已经停止,以色列Flowsense公司网站也无法进入。[color=#cc0000]3.1.3.特点分析[/color]  URINFO 2000尿液监控仪是国际上临床应用的典型产品,并有大量文献进行过相关的研究报道。Hersh等人将URINFO 2000监控仪与标准人工操作的DK-3460尿液计进行了测量精度对比,如图3-3所示,从护士得到的测量结果中可以看出自动测量仪器的精度为8%,而人工测量精度为23%。另外,通过对大量护士的调查证明,自动测量仪器的使用非常便利。[align=center][img=3-03.人工和监控仪测量对比,690,459]https://ng1.17img.cn/bbsfiles/images/2018/12/201812252020332846_5486_3384_3.png!w690x459.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-3 新旧测试方法对比,人工测量(左),自动测量(右)[/color][/align][color=#cc0000]3.1.4.优点[/color](1) 只进行尿流率和尿量测量,监护仪结构简单,没有任何动力机械装置。(2) 测量精度高,在全量程范围内都具有很高精度。(3) 低功耗,使用电池供电可连续使用3年以上。(4) 重量轻,没有交流电源线等外围的牵连,所以移动方便。(5) 使用专门的一次性集尿袋,保证了耗材供应的垄断性。[color=#cc0000]3.1.5.缺点[/color](1) 功能单一,只能进行尿流率和尿量测量,并没有充分发挥出膀胱内插入导尿管的全部作用,特别是不具备防止尿失禁的护理康复训练功能。(2) 滤芯在临床使用中极易堵塞,一旦发生堵塞只能更换尿袋,增加了使用成本和护理工作量。(3) 采用光电液滴计数法,液滴是在重力作用下通过检测光路。因为经常会产生连滴现象,测量精度很难做到很高。(4) 光电液滴计数法抗干扰能力差,在较大外界干扰时,如更换尿袋、患者翻身、咳嗽和护理时,都会产生很大的测量误差。为了在较大外力干扰下不产生误动作和测量出错,只能采取暂停测量的方法进行处理。(5) 需使用定制的集尿袋,作为耗材价格偏高,限制了医院使用的范围。[color=#cc0000]3.2.西安汇智医疗集团有限公司尿流监护系统[/color]  西安汇智医疗集团有限公司历经五年研发了全球独家尿流监护系统,无论在结构设计方面,还是在多功能性,都有非常独到的特点。西安汇智的发展目标是根据护理领域的需求,量身定制智能监护平台,逐步实现患者血氧、脉率、体温、尿量等基础生命特征的全程智能化检测、安全监护与远程数据管理,而尿流监护系统则是智能监护平台的重要终端之一。如图3-4所示为西安汇智尿流监护系统。[align=center][color=#cc0000][img=3-04.西安汇智尿流监护系统,690,243]https://ng1.17img.cn/bbsfiles/images/2018/12/201812252021266269_8104_3384_3.png!w690x243.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-4 西安汇智尿流监护系统[/color][/align]  西安汇智尿流监护系统的工作原理如图3-5所示。[align=center][color=#cc0000][img=3-05.西安汇智尿流监护系统工作原理图,690,381]https://ng1.17img.cn/bbsfiles/images/2018/12/201812252021566937_7905_3384_3.png!w690x381.jpg[/img][/color][/align][align=center][color=#cc0000]图3-5 西安汇智尿流监护系统工作原理[/color][/align]  从原理图可以看出,尿流监护系统的设计思路是各种参数检测过程中尽可能不与尿液发生直接接触,以保证尿流监护系统的多次重复使用。同时还需在普通一次性使用的导尿管和集尿袋基础上进行改进,嵌入功能性部件,形成特制和专属性质的一次性使用的导尿管和集尿袋,控制尿流监护系统的整个产品链,保证了尿袋耗材供应的垄断性。  西安汇智尿流监护系统集尿量、尿流率、膀胱内压、尿管压力等基础生理特征参数监测、膀胱收缩功能护理和远程数据通讯功能为一体的新型医疗仪器。这些功能的实现分别采用了相应的传感器和电子模块,并由微处理器进行整体控制,这些功能介绍如下。[color=#cc0000]3.2.1.尿流率测量功能[/color]  如图3-5所示,基于动态液滴红外光电感应测试技术,将红外测量模块布置在透明或半透明导尿管的两侧。尿液液滴穿过红外测量模量光束区域时引起红外探测信号的变化,红外感应器由此获取尿液动态液滴数量等信息,信息经微控制器处理最终计算出患者的尿流率。[color=#cc0000]3.2.2.尿量测量和收集功能[/color]  如图3-5所示,尿量的测量采用了称重法,即通过集尿袋实时收集尿液,而集尿袋悬挂在重量传感器上实时测量集尿袋中尿液的重量变化。实时尿量测量数据上传到微处理器后进行显示、存储和报警。[color=#cc0000]3.2.3.膀胱压力测量功能[/color]  在泌尿系统护理过程中,通常会通过测定膀胱内压力,根据患者膀胱内尿液量增加、膀胱内压力达到正常排尿压力时控制尿液导管开通,由此保持膀胱一张一弛能力,防止长时间留置导尿管后膀胱功能减弱而引起的排尿困难甚至失禁现象发生。  如图3-5所示,西安汇智尿流监护系统中在导尿管路中设计了一个“贮液空腔”来充当膀胱来贮存尿液。在“贮液空腔”的侧壁上还设计了一个用弹性薄膜材料制成的压力探测窗口,用外部压力探测器检测此窗口处的压力来监测膀胱内压力的变化。这种压力探测窗口设计方式的优点是可以避免压力探测器直接与尿液接触,但压力探测窗口的弹性材料张力的一致性、成型松紧的工艺一致性和环境温度等对压力测量精度影响很大。在实际应用中发现,通过“贮液空腔”和压力探测窗口外部监测膀胱内压力时误差很大而基本无法使用。  为提高“贮液空腔”侧壁压力测量的准确性,西安汇智提出了将压力传感器直接植入“贮液空腔”内部侧壁上的技术方案,如图3-6所示。由于密闭导尿管内的液体具有很好的压力传递作用,在导尿管内尿液充盈时监测导尿管内压力便能直接感知膀胱内压力,压力稳定不易被干扰,因此这种导尿管植入式压力传感器的压力测量方式一般会非常准确和稳定,但目前还未看到西安汇智采用此技术的产品面世。[align=center][img=,600,554]https://ng1.17img.cn/bbsfiles/images/2018/12/201812252044262827_6225_3384_3.png!w657x607.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-6 西安汇智尿流监护系统植入式压力传感器结构示意图[/color][/align][color=#cc0000]3.2.4. 导尿管电动闭合和开启功能[/color]  结合压力测量功能,自动控制导尿管的闭合和开启以模拟人体憋尿和排尿功能,相应的尿管截止阀则是一种能够代替尿道括约肌实现自主控制尿管启闭的装置。为此西安汇智尿流监护系统中配备了一种微型低压电动截止阀,其工作原理如图3-7所示。这种形式电动截止阀的特点是从导管外部来控制导尿管的闭合和开启,避免了执行机构与尿液的直接接触。同时这种截止阀的工作方式可以设定为开关模式,即只在开关操作时通电执行,其他时刻则处于断电状态,使得电动截止阀的耗电量极小,非常便于可穿戴监护仪器的使用。[align=center][img=3-07.电动截止阀原理图,690,368]https://ng1.17img.cn/bbsfiles/images/2018/12/201812252023285407_4798_3384_3.png!w690x368.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-7 电动截止阀工作原理图[/color][/align][color=#cc0000]3.2.5. 远程监护和数据管理功能[/color]  具有无线传输功能,可实现远程监护和数据管理。[color=#cc0000]3.2.6. 优点[/color](1) 结构和功能设计非常巧妙和独到,将多个功能巧妙的设计在一台监护仪中,这种多功能性设计思路代表了泌尿系统监护仪的发展方向。(2) 在具备尿流率和尿量测量功能的同时,还具备动态监测膀胱压力的功能,由此使患者在留置尿管期间膀胱功能得到良好的维护和锻炼,可有效减小留置导尿管期间引发膀胱功能性障碍等不良反应的发生率。(3) 使用专门的集尿袋,保证了耗材供应的垄断性。[color=#cc0000]3.2.7. 缺点[/color]  尽管在结构和功能设计上非常的巧妙和独到,但在工程实现上还存在很多实际问题,整体表现为功能齐全但实际应用效果较差。(1) 针对不同的尿液流动形式,尽管西安汇智尿流监护系统分别采用了红外光栅扫描测量和称重测量两个功能模块来获取尿流率信息,以期满足不同尿液计量精度的要求,但总的测量精度整体还是比较低,并未达到设计要求。尽管模仿以色列技术也采用了非接触红外技术测量尿滴,但由于并未像以色列技术那样首先对尿液进行过滤和尿滴规范化处理,自然测量精度会打折扣。另外,在采用称重法测量时,一方面是称重传感器精度不够,另一方面是未考虑尿液比重与清水的不同,也造成称重法测量存在较大误差。这种采用称重法时存在的问题也是目前其他品牌仪器所面临的共同问题。(2) 尽管很独到的将导管截止阀应用到了监护仪上,但并未考虑引入导管截止阀所带来的相应问题,如截止阀失效无法开启造成病患憋尿严重时如何处理,导尿管多次打开闭合后因尿液中的杂物造成导尿管粘连无法导通时如何处理,截止阀的功耗能否满足监护仪电池长期正常工作要求等。(3) 由于压力测量的不准确,限制了此仪器在膀胱功能维护和锻炼方面的应用。[color=#cc0000]3.3. 以色列RenalSense公司[/color]  以色列RenalSense公司出品的Clarity RMS监护系统,可持续测量尿流量,自动向医务人员传送实时数据和发出波动警报。这些信息反映了肾脏功能的变化,提供了急性肾损伤(AKI)风险的早期信号,并有助于快速干预,此外对治疗效果监测和体液平衡管理有重要价值。  Clarity RMS监护系统如图3-8所示,此系统首次将流量传感器和温度传感器直接植入到导管中与导尿管相连接,在不需要已知尿液物理化学特性的前提下能够精确测量尿液流量和膀胱温度,从而得到准确的尿流率、尿量和体内温度的实时变化数据。可以这样说,以色列RenalSense公司的Clarity RMS监护系统基本代表了目前国际上泌尿系统监护设备的最新技术水平和发展趋势。[align=center][color=#cc0000][img=,690,306]https://ng1.17img.cn/bbsfiles/images/2018/12/201812252044526261_6310_3384_3.png!w690x306.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-8 以色列RenalSense公司Clarity RMS?监护系统[/color][/align]  Clarity RMS监护系统首次将尿量、尿流率和膀胱温度这些基础生理特征参数监测和远程数据通讯功能集成为一体,这些功能的实现分别采用了最新的MEMS传感器技术,并由微处理器进行整体控制,这些功能介绍如下。[color=#cc0000]3.3.1. 尿流率和尿量测量功能[/color]  为了实现临床低速尿流的测量,以色列RenalSense公司采用了微型热式流量传感器及其封装技术。如图3-9所示,将微型流量传感器直接封装在一个探测导管中,探测导管串接在导尿管路上来监测尿流率和尿流量。[align=center][color=#cc0000][img=3-09.量热式微流量质量流量计原理图,500,274]https://ng1.17img.cn/bbsfiles/images/2018/12/201812252025241424_6598_3384_3.png!w690x379.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-9 封装有热式流量计的一次性使用探测导管[/color][/align]  探测导管将快速的微型热式流量测量传感元件与高精度信号处理电路集成在一个微芯片上,微芯片上的加热器将极少量热量加载到被测介质上。两个温度传感器对称放置在加热器两侧以检测微小温度差异从而提供相应的热传递信息,该信息直接与液体流量相关。微芯片集成了敏感的传感器模拟信号放大电路和数字化处理电路,可实现非常高的测量重复性,并有助于线性、校准、温度补偿流量测量信号,同时实现高速数据输出。[color=#cc0000]3.3.2. 体温测量功能[/color]  以色列RenalSense公司在标准的硅橡胶导尿管内置体温传感器,传感器置于导尿管的管内顶端球囊前。临床使用时可在导尿的同时监测体温。膀胱温度与肺动脉有关,需要这个体温探头来测体温,特别是在体外循环后的快速复温时。对危急病人可以使用PA 导管测温,但如果PA管被取走,或测温失败,那么就无法监测温度。由于这些病人通常都插有导尿管,所以带有体温探头的导尿管是最好的选择,特别是在PA管被除去时。[color=#cc0000]3.3.3. 远程监护和数据分析及管理功能[/color]  具有网络化远程监护和数据管理,实现了人体“体液平衡”的出入量和“肾脏预警”的监测及数据信息化。[color=#cc0000]3.3.4. 优点[/color](1) 采用微型传感器技术的最大优势是可实现超低质量流量测量,可在每分钟几毫升范围内精确测量流量,甚至低至纳升以下都无问题。(2) 基于热式流量测量原理的传感器速度快,小巧轻便,适合大批量生产。(3) 集成了体温测试功能,为多功能化做了很有意义的尝试,导尿管既导尿又测温,增加了安全性和减少了病患痛苦。(4) 采用特制的导尿管,可以直接应用在所有型号的集尿袋,兼容性强。[color=#cc0000]3.3.5. 缺点[/color](1) 由于采用了植入式流量传感器和温度传感器,还需经过大量临床考核以证明技术成熟度。(2) 植入式流量传感器和温度传感器是直接制作在导尿管中,这势必会在集尿袋基础上增加成本。[color=#cc0000]3.4. 技术总结[/color]  现代医学的不断发展,在重症医学疾病诊断中,人体“体液平衡”的出入量和“肾脏预警”的监测及数据信息化越来越受到重视,在重症医学诊断中不仅对患者的入量液体有明确的要求,特别在心外科、急诊科、重症监护、肾脏、器官移植、泌尿系统、循环系统、烧伤科等疾病中进行预防诊断、疗效观察及预后尤为重要。  未来泌尿系统监护设备一定是数字化、实时化、连续动态化、多功能集成化和网络化的床旁监测和床旁诊断,所要集成的具体监测功能包括:  (1)实时的动态尿流率和尿量监测;  (2)实时的动态体温、动态膀胱压、动态腹内压监测;  (3)膀胱功能的维护和训练恢复;  (4)尿常规和尿生化的实时监测。  上述各厂家泌尿系统监护系统的功能和技术应用,也都明显证明了以上的技术发展方向,这也为泌尿系统监护系统的进一步发展指明了方向。[color=#cc0000][b]4. 泌尿系统动态监护仪器的功能和架构[/b][/color]  目前理想中的泌尿系统动态监护仪器应为模块式结构,可构成多功能泌尿系统监护仪器,既能实时动态测量泌尿系统相关参数,并将监测数据无线传输到云数据库,也能用于防止尿失禁发生而进行的膀胱功能维护和恢复训练,同时也可以拆分模块构成独立仪器进行使用。整机应模块化构成、廉价、硬件简单和多种应用场景,可满足临床实时监测、网络化数据管理、病患临床及家庭可穿戴式康复训练的需要。[color=#cc0000]4.1. 泌尿系统监护仪应实现的功能[/color]  泌尿系统监护仪主要功能应包括以下三项内容:  (1)尿流率和尿量实时监测功能;  (2)膀胱功能维护和训练功能;  (3)远程数据管理功能。  其中这三项功能以模块形式实现,即可组合成一体进行多功能使用,也可拆分为单独模块进行单项功能使用,选择更加灵活,可满足不同使用场景的需要。[color=#cc0000]4.2. 泌尿系统监护仪器的架构[/color]  泌尿系统监护仪器的整体架构如图4-1所示。[align=center][color=#cc0000][img=4-01.泌尿系统监护仪结构示意图,690,290]https://ng1.17img.cn/bbsfiles/images/2018/12/201812252026415024_3909_3384_3.png!w690x290.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图4-1 泌尿系统监护仪器的整体架构[/color][/align]  其中传感器与执行器所构成的膀胱维护和训练恢复功能模块,可单独进行使用。[b][color=#cc0000]5. 关键技术分析[/color][/b]  根据图41所示的泌尿系统监护仪构架,将对相应的关键技术进行分析。[color=#cc0000]5.1. 称重法尿流量测试技术[/color]  泌尿系统监护仪所需监测的一个重要指标是尿流量和尿流率,采用重量法测量的是尿液实时尿流量(重量)。目前国内外尿液实时重量测量普遍采用的重力传感器技术,重力传感器技术目前已经非常成熟,测量精度高和体积小,且可以非常方便的进行校准和考核。[color=#cc0000]5.2. 红外光电法尿流率测试技术[/color]  泌尿系统监护仪器所需监测的另外一个重要指标是尿流率,单位为毫升/小时(ml/hours),因此必须实时测量尿液体积准确得到尿流率。目前国内普遍采用的方法是通过重量法测量尿量后,再用人为设定尿液密度值来计算尿液体积,这样设定的尿液密度比较随意且误差大。  国外在尿流率测量方面普遍采用的是非接触红外光电法,即将尿液设法调制为规则形状的液滴形式,通过光电法对液滴进行计数来准确得到尿液体积,如果再结合称重法得到尿液重量,就可以准确得到尿液密度这个重要参数。  目前国内只有西安汇智公司采用了红外光电法技术,但并未采用尿液成滴措施,测量准确性到底如何无法判断。目前有更先进的红外光电液滴测试技术,可以对液滴进行准确的计数,而且制造成本低廉。  红外光电法测量尿流率的技术难点之一是尿液成滴技术,即需要将尿液调制成规则下落尿滴,而尿滴形状会受到尿液粘度、密度、滴口大小和表面张力等多种因素影响,这些都需要开展相应的研究和试验进行解决。[color=#cc0000]5.3. 尿管压力测试技术[/color]  尿管压力是临床膀胱功能维护和训练时的关键测量参数,西安汇智公司曾经尝试在导尿管路上增加特制的“贮液空腔”加“压力感知窗口”来进行尿管压力测量,但证明此方法不可行。随后西安汇智提出了在导尿管内壁上直接植入压力传感器的技术方案,但未见真正工程实现。  根据目前所掌握的多种细管内部压力测试技术,尿管压力测量主要采用以下两种形式:  (1)一次性使用的液体压力测试管:即将一个特制导管串接在导尿管路中,特制导管内植入压力传感器测量导管中的液体压力,。  (2)可重复使用的液体压力探测装置:即通过对导尿管进行特殊结构设计,将导尿管中的液体压力准确传递给安装在导尿管外部的压力传感器。  这两种压力测试技术都可以保证测量精度,技术成熟度较高,但还需要进行工程考核验证,还需要考虑传感器材料的卫生等级以及制作成本能否满足实际要求。[color=#cc0000]5.4. 流量和压力校准及考核技术[/color]  上述尿流量、尿流率和压力的测量,都需要建立相应的装置进行校准和考核。采用清水来模拟尿液,采用流体领域内的成熟技术可以建立液体流量和压力的校准和考核装置。[color=#cc0000]5.5. 尿管截止阀技术[/color]  单纯的导尿管截止阀就是从外部用电控的方式来夹紧和松开导尿管,这种电控方式很容易采用步进电极形式予以实现,在这方面西安汇智已经有了成功的技术方案。特别需要考虑的是尿管截止阀在使用过程中是一种常闭状态,这就要求需要考虑以下两种突发情况时的应对方法:  (1)尿管截止阀出现故障无法打开而导致病患无法排尿,造成病患膀胱压力上升;  (2)导尿管壁出现粘连,在尿管截止阀打开后,导尿管粘连无法使尿液导通。[color=#cc0000]5.6. 截止阀试验和考核技术[/color]  截止阀控制参数优化和考核需要建立计算机控制的导尿管截止阀检测装置和膀胱模拟器,这些都可以采用蓄水箱、水泵、液位计、数据采集器和计算机控制系统进行组建。截止阀检测装置和膀胱模拟器需要与上述压力和流量校准和考核装置一并设计和组建。  [color=#cc0000]5.7. 微控制器技术[/color]  微控制器技术目前已经非常成熟,需要在众多微控制器平台中选择合适的微控制器以满足数据采集、控制、通信和网络连接的需求。[color=#cc0000]5.8. 通信技术分析[/color]  目前国内互联网通信技术已经非常发达,医院临床系统一般都具有自己独立的网络信息系统和护士站网络化监视系统,未来还将随着物联网的发展而不断扩展,泌尿系统监护仪器作为一个临床终端,需要在标准化和规范化基础上进行入网连接,这也就是说,泌尿系统监护仪器是一个非常典型的物联网应用。[color=#cc0000]5.9. 数据显示和分析技术可行性分析[/color]  泌尿系统监护仪所采集的数据除了存储在监护仪自带存储器内之外,还需显示在医院信息化系统终端上,并具有数据分析功能,这就需要泌尿系统监护仪器的数据按照医院信息化系统的格式进行实时传输。这方面需要与医院进行协调按照标准格式进行传输外,还需与医院医生进行协调,采用他们认可的数据分析技术。[b][color=#cc0000]6. 结论[/color][/b]  泌尿系统动态监护仪器应为模块式结构,可构成多功能泌尿系统监护仪器,既能实时动态测量泌尿系统相关参数,并将监测数据无线传输到云数据库,也能用于防止尿失禁发生而进行的膀胱功能维护和恢复训练,同时也可以拆分模块构成独立仪器进行使用。整机应廉价且硬件不复杂,长期运行可靠性高,操作简便,可满足临床实时监测、网络化数据管理、病患临床及家庭可穿戴式康复训练的需要。  泌尿系统动态监护仪器作为一种临床仪器,会受到医疗条件(可能需要非接触测量)、造价成本(可能一次性使用和低价)等众多因素的限制,其技术难度体现在众多限制条件下还要保证长时间连续运行的准确性和可靠性。随着当代技术的飞速发展,特别是目前微电子技术、互联网基础建设和相应的社会配套能力的日新月异,泌尿系统动态监护仪器将会很快得到实质性的技术突破和广泛应用。[align=center]=======================================================================[/align][align=center][img=泌尿系统动态监护仪器-上海依阳,690,482]https://ng1.17img.cn/bbsfiles/images/2018/12/201812252117243615_2937_3384_3.png!w690x482.jpg[/img][/align][align=center] [/align]

  • 全自动血液分析仪校准规范化的建议

    全自动血液分析仪是临床实验室最常用的分析仪器之一,其检测结果是否准确对疾病的诊断和治疗监测有直接的影响。一、血液分析仪校准的一般要求 (一)为了保证检测结果的准确性,要求对每一台血液分析仪进行校准。仪器安装时必须由厂家进行校准并提供校准记录,否则不能用于临床标本的检测。 (二)实验室需按“建议”的要求建立适合本实验室使用的血液分析校准程序并写成文件。内容包括:使用校准物的溯源性、来源、名称及其保存方法;校准的具体方法和步骤;何时要求进行校准、由何人负责实施等。 (三)血液分析仪进行校准后,必须开展室内质量控制以监测仪器的检测结果是否发生漂移。 二、校准物

  • 发酵过程中细胞浓度在线检测系统-在线活细胞浓度分析仪

    发酵过程中,细胞浓度是一个非常重要的生理参数,不但可以计算比生长速率,底物消耗速率、生物量产率和维持系数等参数,还可以及时判断是否有染菌等异常情况发生。目前测量细胞浓度的方法主要有化学法(DNA/RNA分析)和物理法(干重、光密度、呼吸商等)两大类。一般来说,与物理法相比,化学法能较准确的测量有代谢活性的生物量,缺点是花费时间长,而利用物理法测量,无法区分区分处于悬浮状态的颗粒和微生物,也无法分别活死细胞。 实现在线活细胞浓度一直是发酵领域的热门话题,仅些年来出现了不少的测量方法,依据的工作原理也是五花八门,其中最具代表性的有声学,激光散色、荧光、核磁、量热或电容。 其中法国fogale公司的测量仪器,以电容法为工作原理,直接将传感器安装与发酵罐上,可承受121℃高温灭菌,理论技术也比较成熟,是目前最为理想的适合工业级别的在线活细胞传感器。工作原理:电容传感器采用活细胞的介电特性,实时连续测量活细胞的生物体积,可应用于实验室桌面型的反应器或者是工业规模的大型反应器两对对电极位于传感器的顶部,一对用于在培养基中产生交变的电场,在电场范围内,带有完整细胞膜的细胞会在培养基中发生极化现象,发生极化的细胞可以认为是极小的电容,死细胞或者其他粒子没有完整的细胞膜,所以不能形成电容型号。另一对电极用于检测培养基中的介电信号,培养基中的介电信号和细胞的浓度是精确关联的。细胞的极化率和电场的频率纯在函数关系,当频率增加时,培养基中细胞的介电常数由低频峰(最大极化)降低到高频峰(最小极化)。这种随频率增加极化率降低的现象称为β-散射。传感器采用双频测量模式:培养基的基线在10MHz左右得到,细胞的信号在临界频率区域获得,在曲线的拐点,(动物细胞和细菌在1MHz,酵母在2MHz)我们获得了最佳的信号线性。应用:这项技术可广泛应用于各种细胞培养,生物发酵过程。已被文献证实可应用的细胞如下:动物细胞:CHO, BHK, MDCK, PERC6, NSO, HEK, Hela,Hybridoma, Vero细 菌:E.Coli, Bacillus Thuringensis, Salmonella,Streptomyces, Lactic Bacteria酵 母:Pichia Pastoris, Saccharomyces Cervisiae, PolymorphaHasenula昆虫细胞:sf9, Hi-5真 菌:Absidia

  • 【在线讲座92期】血液、尿液的石墨炉AAS直接进样分析方法,火热报名中……(2011年8月3日 14:30)

    http://ng1.17img.cn/bbsfiles/images/2017/01/201701191653_631139_2334537_3.gif【在线讲座92期】血液、尿液的石墨炉AAS直接进样分析方法主讲人:杨仁康 珀金埃尔默仪器(上海)有限公司活动时间:2011年8月3日 下午 14:30http://ng1.17img.cn/bbsfiles/images/2017/01/201701191653_631139_2334537_3.gif1、报名条件:只要您是仪器网注册用户均可报名参加。2、参加及审核人数限制:限制报名人数为120人,审核人数100人。3、报名截止时间:2011年8月3日下午14:304、报名参会:http://simg.instrument.com.cn/meeting/images/20100414/baoming.jpg5、参与互动:本次讲座采取网络讲堂直播模式,欢迎大家积极发言提问。 *参会期间您还可以将有疑问的数据通过上传的形式给老师予以展示,并寻求解答*6、环境配置:只要您有电脑、外加一个耳麦就能参加。建议使用IE浏览器进入会场。7、参加奖励:报名且参与讲座的人将每人奖励5--50分不等的奖励。8、提问时间:现在就可以在此帖提问啦,截至2011年8月2日9、会议进入:2011年8月3日14:00点就可以进入会议室10、开课时间:2011年8月3日14:3011、特别说明:报名并通过审核将会收到1 封电子邮件通知函(您已注册培训课程),请注意查收,并按提示进入会议室!为了使您的报名申请顺利通过,请填写完整而正确的信息哦~http://simg.instrument.com.cn/webinar/20110223/images/zb_11.gif注意:由于参会名额有限,如您通过审核,请您珍惜宝贵的学习交流机会,按时参加会议。如您临时有事无法参会,请您进入报名页面请假。无故不参会将会影响您下一次的参会报名。快来参加吧:我要报名》》》快来提问吧:我要提问》》》

  • IRIS Intrepid II ICP-OES对少量血液样品中的多种元素分析

    摘要传统ICP-OES仪器的气动雾化器相对效率差,雾化室体积大。也就是说该技术一般需要3-5ml的最小进样量,从而限制在某些方面的应用如临床或法医检定。本文探讨了仅使用1.5ml的进样量,对主量和微量元素进行准确测定所需的仪器条件和分析方法。虽然原实验是用血液进行的临床分析,但该方法同样适合于任何小体积样品的分析应用。仪器条件分析使用美国热电公司的IRIS Intrepid II垂直炬ICP-OES。Intrepid II是IRIS家族第四代使用电荷注入式(CID)检测器的高分辨率中阶梯光谱仪。CID技术的发展使该检测器较以前版本具有更高的灵敏度和更低的噪音,改进了仪器的检出极限。选择垂直观测等离子体减少基体干扰。由于IRIS垂直设计中有一个后反射镜光路系统以改进灵敏度接近于水平炬设计,同时没有基体干扰效应。使用改进的进样系统处理小样品量,包括高盐微量雾化器、20ml玻璃Cinnabar旋流雾化室和小孔管。

  • 血液中的酒精分析

    大家好!我们用Porapak Q填充柱分析血液中的酒精,每次做样前两针叔丁醇出峰正常,第三针以后就基本不出峰。那位老师知道这是么原因?

  • LSPZ2000-正弦动态压力传感器测试系统

    LSPZ2000-正弦动态压力传感器测试系统

    [b][font=宋体]系统概述:[/font][/b]LSPZ2000-[font=宋体]正弦动态压力传感器测试系统可实现固定频率段压力校准测试,还可实现一定范围内的扫频压力校准测试,有利于帮助用户分析产品提升改进动态特性。[/font][font=宋体]正弦压力发生机构由驱动系统﹑传动系统﹑主机等部分构成。主机包括旋转阀﹑压力室等部分。驱动系统由饲服电机和控制器驱动。旋转阀是该装置的主要部分,压力室是传感器感受正弦压力的位置。压力室的结构尺寸直接影响正弦压力的频率和压力波的失真度。压力室的容积越小,正弦压力的频率上限越高。[/font][b][font=宋体]技术要求:[/font][/b]1) [font=宋体]正弦波输出频率:[/font]1Hz[font=宋体]~[/font]5000Hz[font=宋体];[/font]2) [font=宋体]压力范围:[/font]0.01MPa[font=宋体]~[/font]5MPa[font=宋体];[/font]3) [font=宋体]相移误差:不大于±[/font]10[font=宋体]°;[/font]4) [font=宋体]失真度:不大于[/font]15%[font=宋体];[/font]5) [font=宋体]幅值最大不确定度:不大于[/font]8%[font=宋体];[/font][b][font=宋体]软件功能:[/font][/b]1)[font=宋体]可实现校准数据自动采集、分析和存储;[/font]2)[font=宋体]可实现四路同步并行采集分析;[/font]3)[font=宋体]可自动生成校准记录;[/font]4)[font=宋体]具有示波、光标读取等在线分析功能;[/font]5)[font=宋体]满足《动态压力标准器检定规程》([/font]JJG1142-2017[font=宋体])。[img=,173,159]https://ng1.17img.cn/bbsfiles/images/2022/08/202208011659332317_1856_5627570_3.jpg!w173x159.jpg[/img][/font][b][color=black] [/color][/b]

  • LSPZ2000-正弦动态压力传感器测试系统

    [b][font=宋体]系统概述:[/font][/b]LSPZ2000-[font=宋体]正弦动态压力传感器测试系统可实现固定频率段压力校准测试,还可实现一定范围内的扫频压力校准测试,有利于帮助用户分析产品提升改进动态特性。[/font][font=宋体]正弦压力发生机构由驱动系统﹑传动系统﹑主机等部分构成。主机包括旋转阀﹑压力室等部分。驱动系统由饲服电机和控制器驱动。旋转阀是该装置的主要部分,压力室是传感器感受正弦压力的位置。压力室的结构尺寸直接影响正弦压力的频率和压力波的失真度。压力室的容积越小,正弦压力的频率上限越高。[/font][b][font=宋体]技术要求:[/font][/b]1) [font=宋体]正弦波输出频率:[/font]1Hz[font=宋体]~[/font]5000Hz[font=宋体];[/font]2) [font=宋体]压力范围:[/font]0.01MPa[font=宋体]~[/font]5MPa[font=宋体];[/font]3) [font=宋体]相移误差:不大于±[/font]10[font=宋体]°;[/font]4) [font=宋体]失真度:不大于[/font]15%[font=宋体];[/font]5) [font=宋体]幅值最大不确定度:不大于[/font]8%[font=宋体];[/font][b][font=宋体]软件功能:[/font][/b]1)[font=宋体]可实现校准数据自动采集、分析和存储;[/font]2)[font=宋体]可实现四路同步并行采集分析;[/font]3)[font=宋体]可自动生成校准记录;[/font]4)[font=宋体]具有示波、光标读取等在线分析功能;[/font]5)[font=宋体]满足《动态压力标准器检定规程》([/font]JJG1142-2017[font=宋体])。[/font][b][color=black] [/color][font=宋体][color=black]应用领域:[/color][/font][/b][font=宋体][color=black]军工、航空航天、计量院、各大院校等[/color][/font]

  • 聚光的顺序注射在线水质分析系统怎样样?

    近日有新闻,聚光科技“顺序注射在线水质分析系统 WMS-2000”被评为国家重点新产品。  聚光说:该系统试剂消耗少,测量准确,重复性好,扩展性强,可实现不同参数或多参数的分析 应用于水污染源、水环境和工业过程等领域的在线水质监测 在食品、污水处理、石油化工、印染造纸、煤矿等行业也得到了较好地应用。有了解这个产品的吗? 出来聊聊啊?

  • 【原创】在线分析小屋的系统集成

    在这里看了不少大家共享的资源自己也是从事在线分析系统设计的不到之处望各位不吝赐教,深表感谢!目前整套系统正在集成Ing整体集成完毕的照片后续上传先传部分已经集成好的图片,与大家共勉!

  • 西安交通大学XTDIC 三维数字散斑动态变形测量分析系统

    XTDIC 三维数字散斑动态变形测量分析系统是实验力学领域中一种重要的测试方法,通过追踪物体表面的散斑图像,实现变形过程中物体表面的三维坐标、位移及应变的动态测量。其主要应用有:[b]材料力学性能测量:[/b]DIC已成功应用于各种复杂材料的力学性能测试中。如火箭发动剂固体燃料、橡胶、光纤、压电薄膜、复合材料以及木材、岩石、土方等天然材料的力学性能的检测中。值得注意的是,DIC被广泛应用于破坏力学研究中,包括裂纹尖端应变场测量、裂纹尖端张开位移测量以及高温下裂纹尖端应变场测量等。[b]细观力学测量:[/b]借助于扫描电子显微镜(SEM)、扫描隧道电子显微镜(STEM)以及原子力显微镜(AFM),DIC被越来越多地应用于细观力学测量。最近,数字散斑相关方法还被应用于物体表面粗糙度的测量中。[b]损伤与破坏检测:[/b]DIC被应用于多种复杂材料,如岩石、炸药材料的破坏检测中。DIC还被应用于一些特殊器件,如陶瓷电容器、电子器件,电子封装的无损检测研究中。[b]生物力学测量:[/b]DIC被应用于测量手术复位后肱骨头在内旋转及前屈运动下大小结节的相对位移量,以及颈椎内固定器对人体颈椎运动生物力学性能的影响等。[b]大中专院校的研究教学:[/b]本系统开展各种软组织、金属及复合材料性能测试、力学性能测试分析、有限元分析验证等研究和教学实验,具有大至1000%应变测量范围,并可以实时计算、实现动态全场的应变变形测量。在土木工程的相关研究中,如四点弯试件、半圆弧试件、悬臂梁实验,对应完整实验设计方案,以非接触式的方式提升研究手段,提高研究能力。

  • 血液分析仪双通道意义及作用

    血液分析仪的双通道,简单的说就是WBC和RBC分别单独一个通道进行计数,主要是有两个功能,1、计数速度快一倍左右,单通道的一般是30T/H,双通道是60T/H2、因为WBC和RBC的直径不一样,单通道的小孔一般都比较大,这样会对RBC计数造成一些影响,一般好一点的厂家都有相应的软件补偿技术来保证结果准确

  • 【资料】不同通信平台在污染源在线监测系统中的应用

    [size=4]环境监测在人类防治环境污染, 解决现存的或潜在的环境问题, 改善生活环境和生态环境, 协调人类和环境的关系, 最终实现人类的可持续发展的活动中起着举足轻重的作用。 由于人力和物力的限制, 某些时候难以保证所测数据的准确性和实时性, 而且污染源和污染程度经常受气象、风向以及其他季节性变化的影响, 是随时变化的, 传统的人工监测方法已不再实用, 甚至某些时候是无能为力。为了精确地、全面地掌握污染现状, 尽早发现环境的异常变化, 迅速作出污染预报,及时追踪污染源等, 建立污染源在线监测系统是相当必要的。而在线监测系统通信平台的选择是必须考虑的一大问题。1 污染源在线监测系统数据通信的特点 污染源在线监测系统获得的数据是监测系统的核心, 准确、快速地获取数据是污染源在线监测系统的基础, 这就要求污染源在线监测系统数据通信应具有实时性和准确性的特点。数据通信平台所传输的数据, 必须具有自动保存和备份功能, 获得的数据可以以图标、表格及图形等丰富多样的形式实时展现各排污口仪器运行状况、 污染物的浓度、 流量以及设备的发展趋势与动态。 通过获得的监测数据, 可以从多种角度和层面来统计分析排污状况。 同时, 通过数据传输获取的数据续有安全性高的特点, 确保数据真实性和机密性, 可防止人为篡改。2 通信平台的种类 目前, 在线污染源自动监测系统中所采用的通信平台, 大概主要有有线公众电话网、 无线移动通信网、 有线专用网、 无线专用网、 有线电视网、 国际互联网以及卫星和微波中继站等。[/size]

  • 【分享】在线分析工程技术导论(收集)

    1 在线分析工程技术的发展进程1.1 封闭的“原始”发展阶段(1956~1986的30年)最早的在线分析器是上海某公司合营厂生产的电厂烟气热导式CO2分析仪,72年笔者在重庆九龙坡电厂见识过它的残骸。至1985年的30年中,以比较原始,普遍的低水平尚不专业为其标志。这期间学习前苏联,大型石化、化肥成套设备的引进,起了很大的推动作用。1.2 开放的“数量”发展阶段(1986年至2006年的20年)川分厂借助技术引进的良机,于1986年启动了与德国H&B公司在在线分析系统工程应用方面的合作,开国内之先河。至2006年的20年中,以专业队伍壮大,技术水平提高,国内外企业竞争加剧,出现爆发性增长的现实市场为其标志。但是本专业的理论水平却严重滞后,阻碍了在线分析技术的质量发展。1.3 专业的“质量”发展阶段(2007年— )以本次“21世纪前沿技术论坛”为发端,在线分析工程技术将进入伴随着理论发展的质量发展阶段,绝不会错过当前的历史性大机遇。“在线分析工程技术导论”实际上仍属概论或概述性质,目的是倡导和推进本专业理论基础的构建和质量的发展。2 在线分析工程技术定义 气体分析仪 Gas Analyzer输出信号为气体混合物中一种或多种组分的浓度、分压、露点温度的单调函数的分析器。在线分析器 On-line Analyzer是在工业生产工艺过程和环境监测中,对物质化学成分及有关物理性质完全自动地长期连续分析和测量的分析器。也习惯称在线分析器表。 在线分析系统 On-line Analysis System是在线分析器与样气处理系统通过针对现场应用条件和样气条件的专业化分析系统设计,所实现的合理匹配与完善结合,能长期连续稳定、准确可靠,近于免维护运行的成套设备。也习惯称过程分析成套系统。 在线分析工程技术 On-line Analysis engineering是以工业生产和环保领域的在线分析工程项目为中心,开发出连续稳定、准确可靠、近于免维护的样气处理系统,进而确保在线分析系统高准确度、连续稳定的检测分析,适时监控物质成分量的工程技术。3 重新界定样气处理系统的地位功能本文所述的样气处理系统,过去却一直叫“取样预处理装置”,是在线分析器的附加部分和迫不得已的延伸,早期甚至直接组合在分析器机箱上,后来地位虽有提高,也就是到“预处理”止步,始终是分析器附带着“预处理”。“JB/T 6854—1993在线分析器器试样处理系统性能表示”的专业标准,已上升为国家标准GB/T 19768-2005)已经在处理系统之前取消了“预”字,从中必然准确引申出“样气处理部件”和“样气处理系统”的技术概念和专业名词。十多年来,人们对此却视而不见,实在有负在线分析工程技术发展的良机。本文为样气处理系统取消“预”字,以系统取代“装置”足可以证明自身的独立性、系统性、严密性。PLC的自控功能及其软件技术就是证明。H&B公司的60号干法高温取样探头系统曾在中国卖过135万元的天价是另一个证明。样气处理系统开始强有力地去促进和推广在线分析器的工程应用了。我们新的技术观 在线分析面对诸多十分艰巨复杂的技术难题,使得样气处理系统技术成为在线分析系统的关键和核心技术。技术观和方法论都是推动技术发展的最强有力的动力,我们期待样气处理系统从此走上自觉健康、高速发展的轨道。4 在线分析器工程应用的症结和最佳途径 4.1 在线分析器的工程应用长期存在三大症结在线分析的连续自动取样和样气处理技术,要求样气不失真和快速传输;在线分析的有效抗干扰,排除可能出现的系统误差,以保证必要的检测准确度; 分析系统长期连续运行的可靠性和易维护性。4.2 在线分析器工程应用的最佳途径 采用CAD技术的专业化、规范化、针对性设计的专用型在线分析系统; 硬件技术和软件技术以及长期工程实践经验的优秀技术集成,由专业化专家型人才集成所研发、制造的品质精良的在线分析系统。 实践工程学指导下的全过程技术服务,兑现“100%工程应用投运成功率”的承诺。5 在线分析系统的组成5.1 分析系统的硬件部分 一般由在线分析器、取样探头、压缩空气反吹单元、后级样气处理装置(样气输送、伴热和冷却、冷凝和排放冷凝液、抽吸或压力调节、粉尘过滤和除液雾、流量控制、气路切换、旁路流控制、尾气和冷凝液的集管安全排放、各种报警等)、PLC自控单元、信号输出处理及远传通讯、仪表盘和标准气,分析器器柜的加热或降温等。5.2 分析系统的软件部分一般包括选型及应用咨询、确定技术方案和系统配置、系统的针对性设计与制造、现场调试和操作人员培训、备品备件供应和应用整改等,应提供富有工程实践经验的全过程技术服务。6 在线分析系统的应用指南对于完善的过程气体分析,起决定作用的是使样气处理系统与千差万别的生产工艺条件以及环境应用条件匹配得当,组合完善。 样气处理系统与样气条件及应用条件的合理匹配,只有通过针对性的专用型在线分析系统的专业化设计才有可能实现。对在线分析系统检测分析结果的所有怀疑,只有正确地使用标准气,对分析器的零点和量程进行定期的严密校准,才能予以确认。为了提高过程气体分析的准确度,除了在线分析器的合理选型外,还应特别关注可能出现的干扰误差和影响误差,有时进行系统误差校正是十分必要的,此时专业供应商的经验和咨询建议尤其值得重视。7 在线分析系统的技术对策7.1 过程气体分析面对的困难和问题: 高温或低温、高粉尘、高水分或液雾、高压或负压、腐蚀性或爆炸性等恶劣样气条件; 较高的自动化程度,少维护量甚至免维护; 防尘、防溅、防腐和防爆等方面的防护要求; 较快的反应速度,系统滞后时间一般不允许超过60秒; 保证必要的检测分析准确度(即高准确度应用)。7.2 干法取样技术的必要性: 干法样气处理系统能有效地保证必要的检测准确度,可达到与在线分析器单机准确度相当的水平,干法取样当今已成为绝对的主流技术; 强调以实践工程学为导向,强调综合的技术措施,以确保最终应用效果为目标。7.3 高粉尘取样的综合技术措施示例: 高温、高粉尘、防堵塞连续取样技术已经是十分成熟的技术,属于带外过滤器的干法取样探头; 高精度过滤器,>0.3µ m粉尘的过滤精度可达99%; 采用压缩空气反吹单元,由PLC程控内外吹扫外过滤器,有完善的反吹程序; 过滤器及样气传输管线伴热,避免出现冷凝; 严格而富有实践经验的现场安装施工、调试投运技术。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制