当前位置: 仪器信息网 > 行业主题 > >

被动式调微芯片固体激光器

仪器信息网被动式调微芯片固体激光器专题为您提供2024年最新被动式调微芯片固体激光器价格报价、厂家品牌的相关信息, 包括被动式调微芯片固体激光器参数、型号等,不管是国产,还是进口品牌的被动式调微芯片固体激光器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合被动式调微芯片固体激光器相关的耗材配件、试剂标物,还有被动式调微芯片固体激光器相关的最新资讯、资料,以及被动式调微芯片固体激光器相关的解决方案。

被动式调微芯片固体激光器相关的资讯

  • 必达泰克公司半导体泵浦固体激光器获美国专利
    必达泰克公司的半导体泵浦固体激光器近日获得了美国专利 (专利号: US 7,218,655 B2), 为环境温度变化较大时的激光器应用提供了新的选择。 该激光器采用了必达泰克公司自主研发的先进技术,使其在没有致冷/加热控制器的情况下也能在环境温度变化较大的情况下获得稳定的输出,从而避免了带有温度控制系统的激光器所常有尺寸大、功耗高的弊病,使其更适用于如搜索营救时的信号指示、现场检测设备以及激光指示器等应用。该专利可应用于蓝光、绿光等固体激光器上,在拓宽激光器的适用温度范围和延长其使用寿命方面有显著的效果。 美国必达泰克公司一直致力于激光器和微型光纤光谱仪的研发生产,在激光器和光谱仪的研发生产上有着丰富的经验。目前必达泰克公司在激光器和光谱仪方面已获得两项美国专利,并且还有十几项专利正在审核中。美国必达泰克公司,竭诚为您的激光应用服务!
  • 首块激光器和光栅集成的硅芯片问世
    据美国物理学家组织网8月10日(北京时间)报道,新加坡数据存储研究所的魏永强(音译)和同事首次构建出一种由一个激光器和一个光栅集成的新型硅芯片,其中的光栅能让光变得更强并确保激光器输出1500纳米左右波长的光,而通讯设备标准的操作波长正是1500纳米。   光纤在传输数据时需要让不同波长的激光束同时通过,但这些不同波长的光波容易相互串扰,因此需要对激光器进行精确谐调,让其发出特定波长的光以避免这种串扰。使用光栅可以解决这个问题。   科学家们之前使用传统方法试图将一个激光器和一个光栅集成于一块硅芯片中,但都没有获得成功。激光器一般由几层半导体薄层构成,而光栅则由硅蚀刻而成,所有的材料都必须精确地对齐。传统的方法是,将激光器和光栅种植于一块独立的半导体芯片上,整个过程大约需要50多步,而且要求硅晶表面的粗糙度非常低,小于0.3纳米。   在新硅芯片中,激光器置于一面镜子和一个弯曲的光栅之间。光栅就像一块具有选择能力的镜子,仅仅将某一特定波长的光反射回激光器中,这样就制造出了一个光共振腔,使激光活动只针对特定波长,因此提供了通讯领域要求的精确性。   魏永强对这款新芯片进行测试后发现,其性能优异,发出光的功率为2.3毫瓦,而且只发出特定波长的光。   魏永强表示:“从实际应用角度来考虑,我们需要将多光源激光器集成在一块芯片上,因此将多个激光器和光栅整合在一块硅芯片上将是我们下一步面临的挑战。我们计划通过利用能处理更广谱波长的同样的光栅结构来按比例扩展最新的单波长激光器。新设备标志着我们很快就能对集成在单硅芯片上的通讯设备进行商业化生产。”
  • 活力激光获千万级A轮融资,专注研发千瓦级半导体激光器系列产品
    近日活力激光科技有限公司(以下简称“活力激光”)宣布完成数千万人民币A轮融资,由亦庄资本独家投资。本轮资金将主要用于研发和生产千瓦级半导体激光器(1千瓦至1万瓦)系列产品,在激光焊接和激光表面处理领域进行推广应用。  活力激光成立于2019年12月,主要专注于高功率半导体激光器的研发、生产和销售,整体技术及生产能力覆盖各种功率、波长和封装形式的半导体激光器,核心产品包括固体激光器泵浦源、千瓦级半导体激光器、以及应用于医疗美容等领域的小功率半导体激光器。公司在深圳宝安设有一处工厂,面积达3500平方米,其中无尘车间2000平米。  目前,活力激光团队规模超70人,核心成员曾任职于JDSU等头部激光器公司。公司创始人兼CEO蔡万绍拥有二十余年半导体激光器研发与生产经验,先后任职于JDSU/Lumentum、Oclaro、西安炬光等公司。  据Emergent Research相关报告数据,2021年全球半导体激光器市场规模为81.9亿美元(约551.9亿人民币),预计2022-2030年间年复合增长率为6.7%。值得一提的是,半导体激光器在医疗保健领域的应用价值高,目前已广泛用于医疗诊断、美容手术和治疗,这一方向也将成为半导体激光器市场增长的重要驱动力,而随着技术的突破,半导体激光器在工业加工领域的直接应用也将被打开,想象空间极大。  全球激光器市场核心玩家包括起步较早的通快、朗美通、恩耐、相干、业纳等国外公司,也有起步较晚但发展较快的锐科、英诺、炬光、长光华芯等国内公司。在成熟的光纤激光器领域,市场竞争相当激烈,从各大上市光纤激光器公司的财报中,可明显看到竞争激烈导致的价格下跌。  蔡万绍告诉36氪,为了避开同质化竞争激烈的细分市场,活力激光以产品创新作为突破口,采用国产芯片,率先在国内开发出878.6nm锁波长窄光谱的半导体激光器,以及1440nm二维点阵激光器,在固体激光器泵浦和激光嫩肤美容领域,打破了国外玩家的垄断,实现国产替代,目前该产品已逐渐放量增长。  “未来3-5年是激光芯片国产替代的重要时间窗口,也是半导体激光器创新发展的关键机遇。”蔡万绍提到,活力激光已经和国内多家激光芯片供应商展开合作,定制开发波长多样化的半导体激光器,包括1550nm(照明应用)、1470nm(医美应用)、780/766nm(碱金属气体激光器泵浦)、405nm/450nm/650nm(加工及照明应用)、以及常见的976nm和808nm激光波长,并同步研发千瓦级半导体激光器,覆盖1千瓦至1万瓦功率,取得了巨大进展。  相对来说,固体激光器的优势应用领域是非金属材料及合金材料的精细加工,光纤激光器的优势应用领域是钢铁材料的大功率激光切割,而半导体激光器凭借高功率、低能耗、高性价比、体积小、重量轻、波长多样性等优势,将在铁、铜、铝等金属材料的激光焊接和激光表面处理领域得到举足轻重的应用。  在蔡万绍看来,如果充分利用半导体激光器的优势展开产品研发布局,有望让半导体激光器在工业加工、医疗美容、照明显示、激光雷达等领域的总体应用量,提升至与光纤激光器、固体激光器同等的水平,逐步构建出三种激光器三分天下的格局。“我们的中期目标是成为国内领先的半导体激光器供应商。”他说。  目前,活力激光客户已覆盖多家激光器、机器视觉、医疗美容等领域上市公司,并在公司成立以来,保持了100%以上的年营收增长率,预计2023年收入将突破亿元关口。
  • 中科院在有机近红外固体微纳激光研究方面取得系列进展
    有机固体激光器因其制备简单、价格低廉和易于集成等优势,一直以来备受科研工作者的关注。与无机激光介质相比,有机激光材料来源广泛,并且具有发射光谱宽、受激发射截面积大等特性,近年来在激光显示、生物传感器等应用方面显示出很大的应用前景。在国家自然科学基金委、科技部和中国科学院的支持下,中国科学院化学研究所分子动态与稳态结构国家重点实验室和光化学院重点实验室研究员付红兵课题组近期在设计有机共轭小分子近红外发光材料的基础上,发展了有机固体微纳近红外激光器。  传统无机半导体垂直腔面发射激光器(Vertical Cavity SurfaceEmitting Laser, VCSEL)由上下两层反射腔镜以及夹在中间的活性层材料组成,需要复杂的工艺流程和昂贵的成本。相比较而言,有机半导体材料可以通过低温溶液加工工艺进行激光器谐振腔的构筑。科研人员从1,4-二芳乙烯基苯(DSB)入手,利用溶液自组装的方法制备了六边形微米盘单晶。利用这种微米片状结构所形成的回音壁模式(Whisper Gallery Mode)的光学微腔,通过调控微米片的尺寸,分别实现了单模和多模的激光发射 (Angew. Chem. Int. Ed. 2014, 53, 5863) 进一步基于有机分子的可裁剪性,系统研究并揭示了分子结构—微纳谐振腔—激光性能三者之间的内在关联规律,为高性能有机固体激光器提供了新的设计思路 (J. Am. Chem. Soc. 2014, 136, 16602) 与此同时科研人员把材料体系拓展到有机无机杂化钙钛矿材料,实现了绿光波段的激光发射 (Adv. Mater. 2015, 27, 22)。  最近,研究人员通过把“分子内氢键”引入有机共轭小分子的策略,合成了固体发光量子效率高达15.2%的近红外发光材料?查耳酮衍生物DPHP。由于DPHP的双亲性质,用溶液自组装方法自下而上构筑了有机微米半球的回音壁谐振腔。与此同时,DPHP材料自身超快的辐射速率,避免了在高强度泵浦光下的激子-激子湮灭现象,使得DPHP材料发出的近红外荧光在回音壁腔中实现了光的受激发大,这也是基于非掺杂型有机固体近红外激光的首例报道(J. Am. Chem. Soc. 2015, DOI:10.1021/jacs.5b03051)。文章在线发表后,美国《化学与工程新闻》(C&EN)周刊网站,以Organic Lasers Shine Bright in the Infrared 为题对此工作进行了相关报道并且给予了高度评价:“Easy-to-build hemispheres could prove widely useful for lasing applications”。图1 北京天坛(回音壁)和有机六边形微米盘中光波的回音壁现象图2 有机固体近红外激光器示意图
  • 首个集成在铌酸锂芯片上的激光器面世
    美国哈佛大学科学家在最新一期《光学》杂志上撰文称,他们研制出了首个集成在铌酸锂芯片上的激光器,为高功率通信系统、全集成光谱仪、光学遥感,以及量子网络的高效变频等应用铺平了道路。研究人员解释称,长距离通信网络、数据中心光互连和微波光子系统都依赖激光来产生光载波以用于数据传输。但大多数情况下,激光器是独立设备,位于调制器外部,这会使整个系统更昂贵,且稳定性和可扩展性也较差。在最新研究中,哈佛大学工程与应用科学学院(SEAS)的研究人员与行业合作伙伴携手,在铌酸锂芯片上开发了第一台全集成高功率激光器。他们将小型但功能强大的分布式反馈激光器集成在芯片上。这些激光器位于蚀刻在铌酸锂芯片内的小井或沟槽中,且与铌酸锂内的50千兆赫兹电光调制器相结合,构建了一个高功率发射器。最新研究资深作者马科隆卡尔说:“集成铌酸锂是开发高性能芯片级光学系统的重要平台,但将激光器安装到铌酸锂芯片上已被证明是一个极大的挑战。在这项研究中,我们借助纳米制造技巧和技术,克服了这些挑战,实现了在薄膜铌酸锂平台上集成高功率激光器的目标。”最新研究第一作者、SEAS研究生阿米拉桑沙姆斯安萨里说:“集成高性能即插即用激光器将显著降低未来通信系统的成本、复杂性和功耗。我们最新研制出来的这款集成激光器可以集成到更大的光学系统中,用于传感、激光雷达和数据通信等一系列应用。”研究团队强调说,将薄膜铌酸锂器件与高功率激光器相结合,是朝着大规模、低成本、高性能发射阵列和光网络方向迈出的关键一步。他们计划继续提高激光器的功率和可扩展性,以使其能应用于更多领域。
  • 我国光纤激光器实现新突破 优于国际同行
    中国科学院上海光学精密机械研究所先进激光技术与应用系统实验室李建郎研究员课题组“径向偏振光纤激光器”研究工作近日取得突破性进展。该研究组从掺镱光纤激光器中获得2.42瓦高效率、高偏振纯度和高轴对称性的径向偏振激光输出,创造了目前径向偏振光纤激光器研究的最高纪录。   径向偏振光束在离子捕获、生物光镊、高分辨率显微镜技术、电子加速以及高效率高精度金属材料加工等领域有着非常重要的应用,通过固体、气体激光器的输出来直接产生该种光束已经成为国际研究热点领域之一。2006年李建郎等人首次提出利用稀土掺杂的多模光纤作为增益介质来直接输出径向偏振激光的概念,并在掺镱光纤激光器实验中获得了近40毫瓦的径向偏振激光输出(Opt. Lett., 31, 2969, 2006 Opt. Lett., 32, 1360, 2007 Laser Phys. Lett., 4, 814 2007)。继该研究领域被开拓后,以色列魏兹曼研究所(Weizmann Institute of Science, Israel)、美国代顿大学(Dayton University, USA)等研究机构的科学家相继通过努力在掺铒光纤激光器中实现了140毫瓦(斜坡效率约为3%) 的径向偏振激光输出(Appl. Phys. Lett., 93, 191104, 2008 Appl. Phys. Lett., 95, 191111, 2009)。在这些前期研究中,由于寄生振荡等因素的干扰,激光器效率和功率很低,并且存在偏振纯度低以及光束轴对称性差等关键性缺陷,限制了径向偏振光纤激光器技术的进一步实用化。   该课题组李建郎、林迪等经过约一年时间的奋斗摸索,在实验中采用光纤耦合的976nm二极管激光器从端面泵浦1.8米长的多模掺镱双包层光纤。该增益光纤具有低V参量,仅支持光纤基模以及其邻阶模(其中包括TM01模,即径向偏振模)传输。同时增益光纤的一个端面被切成8o斜角以抑制光纤端面之间的寄生振荡。实验采用具有径向偏振选择性的光子晶体光栅镜做为激光器的输出耦合器。实验测得激光器阈值泵浦功率为0.9W,在最大泵浦功率7W 时输出功率达到2.42W,光—光效率为35%(对应的斜坡效率43.8%),激光器波长为1050nm。激光器输出圆环形光斑,且为径向偏振,偏振纯度为96%。   此结果目前已远优于其他国际同行的工作。该研究首次实验证明了径向偏振光纤激光器完全可以达到与同类的固体激光器相比拟的性能指标,从而基本消除了困扰径向偏振光纤激光器发展及应用的技术障碍。
  • 首台芯片级掺钛蓝宝石激光器研制成功
    激光线宽测量。图片来源:《自然光子学》美国耶鲁大学一组研究人员开发出首台芯片级掺钛蓝宝石激光器,这项突破的应用范围涵盖从原子钟到量子计算和光谱传感器。研究结果近日发表在《自然光子学》杂志上。掺钛蓝宝石激光器在20世纪80年代问世,可谓激光领域的一大进步。它成功的关键是用作放大激光能量的材料。掺钛蓝宝石被证明十分强大,因为它提供了比传统半导体激光器更宽的激光发射带宽。这一创新引领了物理学、生物学和化学领域的基础性发现和无数应用。台式掺钛蓝宝石激光器是许多学术和工业实验室的必备设备。然而,这种激光器的大带宽是以相对较高的阈值为代价的,也就是它所需的功率较高。因此,这些激光器价格昂贵,占用大量空间,在很大程度上限制了它们在实验室研究中的使用。研究人员表示,如果不克服这一限制,掺钛蓝宝石激光器仍将仅限于小众客户。将掺钛蓝宝石激光器的性能与芯片的小尺寸相结合,可驱动受功耗或空间大小限制的应用,如原子钟、便携式传感器、可见光通信设备,甚至量子计算芯片。耶鲁大学展示了世界上第一台集成了芯片级光子电路的掺钛蓝宝石激光器,它提供了芯片上迄今看到的最宽增益谱,为许多新的应用铺平了道路。新研究的关键在于激光器的低阈值。传统掺钛蓝宝石激光器的阈值超过100毫瓦,而新系统的阈值约为6.5毫瓦,通过进一步调整,研究人员相信可将阈值降低到1毫瓦。此外,新系统还与广泛用于蓝色LED和激光的氮化镓光电子器件兼容。
  • 一体化芯片同时集成激光器和光子波导,有望催生更精确原子钟实验,用于量子领域
    美国加州大学圣巴巴拉分校与加州理工学院的科学家携手,开发出了首款同时集成激光器和光子波导的芯片,向在硅上实现复杂系统和网络迈出了关键一步。此类光子芯片有助科学家开展更精确的原子钟实验,减少对巨型光学工作台的需求,也可用于量子领域。相关论文已发表于近日出版的《自然》杂志。实验概念图图片来源:《自然》网站集成电路出现后,科学家们开始将晶体管、二极管和其他组件集成在一个芯片上,这大大提高了芯片等的潜力。在过去几年里,光子学领域的科学家一直希望能实现同时集成激光器和光子波导。为研制出此类芯片,工程师们开发了插入式隔离器,以防止可能会出现的导致芯片不稳定的反射。但这种方法需要使用磁性材料,而这也会引发新的问题。在最新研究中,科学家找到了解决这些问题的方法,创造出了第一个真正可用的集成芯片。研究人员首先在硅衬底上放置一个超低损耗氮化硅波导,随后在波导管上覆盖多种硅,并在其上安装了低噪声磷酸铟激光器。通过将两个组件隔离开,防止了蚀刻过程中对波导的损坏。研究团队通过测量芯片的噪声水平来测试其性能,结果令人满意,随后他们用其制造出一个可调谐的微波频率发生器。
  • 400um光纤耦合千瓦半导体激光器
    成果名称 400um光纤耦合千瓦半导体激光器 单位名称 北京工业大学 联系人 李强 联系邮箱 ncltlq@bjut.edu.cn 成果成熟度 □研发阶段 &radic 已有样机 □通过小试 □通过中试 □可以量产 合作方式 &radic 技术转让 &radic 技术入股 &radic 合作开发 □其他 成果简介:   400&mu m光纤耦合千瓦半导体激光头实物图  400&mu m光纤耦合千瓦半导体激光器整机实物图 本项目研发的光纤耦合半导体激光器光纤耦合输出功率大于1000W,光束质量好,耦合光纤芯径400&mu m,光纤耦合效率大于96%,总的电光效率42.99%。样机集成激光模块、电源、冷却、控制等为一体,通过触摸屏实现激光器开关、输出功率设置、状态监测显示。激光器可以放置于机柜上方,也可以与机柜分离放置,适应科研应用及工业加工配合机床或者机械手的应用需求。产品化样机配备了用于激光焊接、激光熔覆的加工头,已进行了不锈钢等材料的激光焊接、激光熔覆加工应用。 本项目研发的高光束质量光纤耦合输出半导体激光器,采用标准的半导体阵列(10mm bar),避免采用特殊的半导体激光器所带来的器件成本增加;采用微光学元件对半导体阵列的发光单元重构、变换,单阵列输出功率高,组合阵列数减少,装配工艺相对简单,降低了制作成本;耦合传输光纤采用高功率石英传输光纤,提高激光器的传输效率和可靠性,满足推广应用的要求。 本项目创新点是采用标准的半导体阵列(10mm bar),通过微光学元件将阵列发光单元重构、变换的新方法,极大提高阵列的光束质量。本项目所研制的400&mu m光纤耦合千瓦激光器中,所使用的每一个半导体阵列都采用了该技术提高了光束质量,使得每个空间合束模块能够获得高功率、高光束质量的激光输出。 该项技术不仅可以应用于半导体激光器的直接应用,而且在用于泵浦源应用时,可以提高泵浦激光的功率密度,可以为提高输出激光的功率和光束质量。可以预期的是,利用该项技术,在现有的400&mu m光纤耦合千瓦激光器的技术基础上,通过合束更多的激光波长,获得2000W,甚至更高的激光输出功率,为工业应用提供更高功率的激光源。而且该项技术应用于泵浦固体激光器、光纤激光器等方面,提高了泵浦光的功率密度,也为实现高性能的固体激光器、光纤激光器等提供更好的技术支持。 应用前景: 输出激光光强分布图 半导体激光器与其他传统的材料加工用大功率激光器如 CO2 激光器、YAG 激光器相比,具有体积小巧,结构紧凑,是灯泵 Nd:YAG 激光器的1/3,光电转化效率高,节省能源,无污染,系统稳定性高,寿命长,维护费用低的特点。 目前大功率光纤耦合半导体激光器用于激光熔覆、激光焊接在中国处于启动阶段,国产光纤耦合半导体激光器,只能将标准半导体阵列激光耦合入大芯径光纤(芯径600&mu m以上光纤),由于激光亮度低,只能用于金属材料的激光熔覆。而本项目研制的400um光纤耦合千瓦半导体激光器,由于光束质量好,可直接用于激光熔覆、激光焊接、切割等领域,代替国外产品。 本项目开发的千瓦级光纤耦合半导体激光器除了具有国内外的半导体激光亮度的基础指标外,还具有其它优点:1. 自主开发,具有完全的自主知识产权;2.采用标准半导体阵列,使整体原材料成本降低20%-25%;3.空间合束组合模块后,进行偏振、波长合束的方法组合,使产业化中方便进行模块化工艺设计,适于大批量生产;4.采用微光学元件对光束进行整形,使装配难度及后端光纤耦合难度降低,从而降低生产成本;可附加多种功能,如指示光、光电探测器等,更灵活适应用于各种行业;5.多个半导体阵列模块可灵活组合,可方便为用户提供多种解决方案。 知识产权及项目获奖情况: 本项目开发的千瓦级光纤耦合半导体激光器受到北京市科学技术委员会首都科技条件平台资助,是自主开发产品,具有完全的自主知识产权。 专利情况: (1)大功率固体激光高效率光纤耦合方法,专利号:CN101122659A (2)激光二极管电极连接装置,专利号:CN100527532C
  • 物理所等二维纳米材料锁模全光纤激光器研究获进展
    p   超短脉冲激光具有峰值功率高、作用时间短、光谱宽等优点,在基础科学、医疗、航空航天、量子通信、军事等领域有着广泛的应用。特别是近年快速发展的飞秒光纤激光器由于结构简单、成本低、稳定性高以及便于携带等特点,表现出越来越广泛的应用前景。目前光纤锁模激光器,包括其它类型的固体激光器,要实现稳定的锁模运行,更多时候还得依靠可饱和吸收体,但由于可饱和吸收体所带来的激光损伤及损耗等问题,不仅制约着所能产生的激光脉宽与功率,也会影响到长期运行的可靠性。因此研究发展具有高损伤阈值及低损耗的新型可饱和吸收体,倍受激光专家及材料专家的关注。近十多年来,随着凝聚态物理与材料制备技术的发展,碳纳米管、石墨烯、拓扑绝缘体等材料作为可饱和吸收材料相继成功地应用于激光锁模中,特别是新发展起来的二维纳米材料由于具备窄带隙、超快电子弛豫时间和高损伤阈值等特点,表现出优良的可饱和吸收特性,利用该材料的锁模激光研究也成为人们广泛关注的热点研究内容之一。 /p p   中国科学院物理研究所/北京凝聚态物理国家实验室(筹)光物理重点实验室L07组一直致力于超快激光的研究,近年来针对小型化飞秒激光的发展,先后实现了多类晶体及光纤激光的可饱和吸收被动锁模。通过使用脉冲激光沉积方法将锑化碲拓扑绝缘体材料均匀生长在拉锥光纤的表面所形成的可饱和吸收体,首次实现了光纤激光的混合锁模,得到了70 fs的输出脉冲结果。通过使用具备超短电子弛豫时间的二硫化钨作为可饱和吸收材料,结合减小拉锥光纤的纤芯直径,得到了67 fs锁模脉冲输出,验证了该混合锁模光纤激光具有脉宽更短、定时抖动更低等优点。此外针对暗孤子产生技术的限制,通过理论计算Ginzburg- Landau方程中光纤激光器的增益、损耗、色散和非线性等参数的关系,理论分析了暗孤子脉冲形成的动力学机制,获得了信噪比高达94 dB的结果,实验上实现了最宽光谱的暗孤子脉冲输出。 /p p   最近该研究组与北京邮电大学合作,将二硫化钨作为饱和吸收材料用于光纤激光锁模,进一步实现了脉宽246 fs的锁模脉冲激光输出,据知这是迄今为止过渡金属硫化物全光纤锁模激光器所产生的最短脉宽报道。相关结果发表在新出版的一期Nanoscale(2017, 9: 5806)上,并被该杂志选为Highlights进展作为Inside front cover论文刊出(如图所示),论文第一作者为刘文军,通讯作者为北京邮电大学教授雷鸣及中科院物理所研究员魏志义。 /p p   该项研究获得了科技部“973”项目(2012CB821304)及国家自然科学基金项目(批准号11674036, 11078022 和 61378040)的支持。 /p p   相关论文: /p p   [1] Wenjun Liu, Lihui Pang, Hainian Han, Wenlong Tian, Hao Chen, Ming Lei, Peiguang Yan and Zhiyi Wei, 70 fs mode-locked erbium doped fiber laser with topological insulator, Scientific Reports, 6 (2016) 19997. /p p   [2] Wenjun Liu, Lihui Pang, Hainian Han, Mengli Liu, Ming Lei, Shaobo Fang, Hao Teng and Zhiyi Wei, Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers, Optics Express, 25 (2017) 2950-2959. /p p   [3] Wenjun Liu, Lihui Pang, Hainian Han, Wenlong Tian, Hao Chen, Ming Lei, Peiguang Yan and Zhiyi Wei, Generation of dark solitons in erbium-doped fiber lasers based Sb2Te3 saturable absorbers, Optics Express, 23 (2015) 26023-26031. /p p   [4] Wenjun Liu, Lihui Pang, Hainian Han, Zhongwei Shen, Ming Lei, Hao Teng and Zhiyi Wei, Dark solitons in WS2 erbium-doped fiber lasers, Photonics Research, 4 (2016) 111-114. /p p   [5] Wenjun Liu, Lihui Pang, Hainian Han, Ke Bi, Ming Lei and Zhiyi Wei, Tungsten disulphide for ultrashort pulse generation in all-fiber lasers, Nanoscale, 9 (2017) 5806-5811. /p p style=" text-align: center " img width=" 300" height=" 395" title=" W020170616579709764036.png" style=" width: 300px height: 395px " src=" http://img1.17img.cn/17img/images/201706/noimg/9d1831a1-51e9-41cb-a069-261a0f0bc4cb.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " 图:Nanoscale(2017, 9: 5806)论文被选为该期Inside front cover论文刊出 /p p /p p /p
  • 激光雷达 lidar
    激光雷达介绍   激光雷达   LiDAR(LightLaser Deteetion and Ranging),是激光探测及测距系统的简称。   用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物 。由发射机 、天线 、接收机 、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。 激光雷达的历史   自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。   随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。   LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(Global PositioningSystem、GPS)及惯性导航系统(InertialInertiNavigation System、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multiple echoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。   激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。   快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。   由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。 LiDAR的基本原理   LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIght Detection And Ranging - LIDAR。   激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。   LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。 激光雷达的妙用   激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。   直升机障碍物规避激光雷达   目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。   直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。   美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。   德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。   法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。   化学战剂探测激光雷达   传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。   俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。   德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9― 11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。   机载海洋激光雷达   传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。   迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。   成像激光雷达可水下探物   美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。 美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。 History and Vision History Velodyne's expertise with laser distance measurement started by participating in the 2005 Grand Challenge sponsored by the Defense Advanced Research Projects Agency (DARPA).A race for autonomous vehicles across the Mojave desert, DARPA's goal was to stimulate autonomous vehicle technology development for both military and commercial applications. Velodyne founders Dave and Bruce Hall entered the competition as Team DAD (Digital Audio Drive), traveling 6.2 miles in the first event and 25 miles in the second. The team developed technology for visualizing the environment, first using a dual video camera approach and later developing the laser-based system that laid the foundation for Velodyne's current products. The first Velodyne LIDAR scanner was about 30 inches in diameter and weighed close to 100 lbs. Choosing to commercialize the LIDAR scanner instead of competing in subsequent challenge events, Velodyne was able to dramatically reduce the sensor's size and weight while also improving performance. Velodyne's HDL-64E sensor was the primary means of terrain map construction and obstacle detection for all the top DARPA Urban Challenge teams. Vision Velodyne's ultimate vision for its LIDAR technology is simple: to save lives. We see the day where this sensor technology is deployed on every vehicle in the world. While traditional LIDAR sensors have relied on fixed electronics and rotating mirrors to deliver a 3-D terrain map, the rotation of an entire array of multiple fixed lasers has proven to be a quantum leap forward in sensing technology. This accomplishment has been termed a "disruptive event" by car safety research groups, who see the technology as a reason to rethink all that we know about vehicle sensors and the safety systems they enable. Until the day when we help eliminate automobile-relatedcasualties, Velodyne plans to market its unique LIDAR technology wherever sophisticated 3-D environment understanding is required: robotics, map capture, surveying, autonomous navigation, automotive safety ystems, and industrial applications. 激光雷达介绍   激光雷达   LiDAR(LightLaser Deteetion and Ranging),是激光探测及测距系统的简称。   用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物 。由发射机 、天线 、接收机 、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。 激光雷达的历史   自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。   随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。   LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(Global PositioningSystem、GPS)及惯性导航系统(InertialInertiNavigation System、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multiple echoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。   激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。   快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。   由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。 LiDAR的基本原理   LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIght Detection And Ranging - LIDAR。   激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。   LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。 激光雷达的妙用   激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。   直升机障碍物规避激光雷达   目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。   直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。   美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。   德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。   法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。   化学战剂探测激光雷达   传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。   俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。   德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9― 11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。   机载海洋激光雷达   传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。   迄今,机载海洋激光雷达已发展了三代
  • 生物医学玻璃的激光微加工—芯片实验室
    相信大家在部分科幻电影或动漫中,常常能看到可以植入人体的芯片,用来监控身体各个参数、增强人体机能和神经反应。芯片一旦植入,普通人就变身成为神秘特工或战士。而现实中随着马斯克的脑机接口正在一步步迈向临床,AlphGo把人类棋手完虐等以前只能在科幻电影中见到的“未来科技”,逐步在现实生活中出现的时候,拥有“小身材有大智慧”的AI芯片似乎也能够梦想照进现实了。事实上,如今已有一些“芯片实验室(Lab-on-a-chip)”出现了,并且其发展速度是非常快的!芯片实验室什么是“芯片实验室(Lab-on-a-chip)”?简单地说,能够将整个在实验室中进行的基本操作单位集成到简单微系统上的技术就叫“芯片实验室”。“芯片实验室”中的芯片是作为流体在其中流动的微通道图案,可被模塑或刻蚀。微通道和外部宏观环境之间的连接需要通过若干孔,这些孔穿透芯片,具有不同的尺寸,用于将流体注入芯片或从芯片中移除。在微流控芯片中,根据实验需要,流体被混合、分离或引导。终结果可形成自动复合系统,从而实现高通量检测。在生物医学应用领域,芯片实验室可以实现快速诊断。芯片实验室技术有望成为一种重要的诊断工具。这些微型化的设备使医疗保健服务提供方可以使用非常少量的试剂和测试样本执行一系列诊断测试。此外得益于它们的便携性,还可以在远离实验室环境的现场进行测试。制作芯片实验室(Lab- on-a-chip)或微流控芯片(Microfluidic chip)的材料主要是玻璃,受限于芯片的微尺度特性,在制备过程中,对玻璃进行激光微加工有着很高的要求。制作芯片实验室的大挑战之一是在玻璃芯片内部加工高精度管道、容器和阀门。挑战:玻璃微加工由于其脆性和透明性,玻璃中进行微小的特征加工进行是相当困难的。如果使用常规工具手段,实际上是不可能的。但是快激光器可以胜任这种加工。当脉冲持续时间低于几十皮秒时,激光与材料的相互作用进入冷烧蚀状态,加工质量和精度会变得很高。常规的微制造方法,例如光刻,压印和软蚀刻,已经用于制备微流体芯片。然而,当要实现具有多功能集成的复杂微流控芯片时,这些方法将面临巨大挑战,因为它们需要太多工艺步骤,并且成本很高。刻蚀来啦▲由NKT Photonics的ORIGAMI XP飞秒激光制备的芯片实验室样品大功率快激光脉冲穿透玻璃。紧聚焦的飞秒激光脉冲可以经济地生产具有多功能的通用微流控芯片。短脉冲宽度提供了令人难以置信的峰值功率,即使在透明材料中,也可以进行表面和块状材料内部的改性以进行划线。▲飞秒激光加工的芯片沟道特写快激光确保加工的高精度和高质量。通过利用激光的高度空间选择性,可以将相互作用区域地设置在材料的特定局部区域。这使得飞秒加工技术可以在透明材料中以微尺度对复杂的三维形状进行非常高分辨率的图案化和雕刻。▲深度小于10 μm的沟道特写NKT快激光器可以实现非常精细的深度和通道宽度控制飞秒级短脉冲宽度比材料中的电子-声子耦合过程都短,因此短的飞秒脉冲宽度,意味着在飞秒时间尺度传递能量,这能很好的抑制热影响区的形成和热损害。这种“冷烧蚀”方式实现了高精度和高分辨率的微加工处理,并具有的处理可靠性。紧密聚焦的光束可以在微尺度上非常高分辨率地对复杂形状进行微加工。▲用ORIGAMI XP飞秒激光处理过的芯片实验室样品的特写图片展示为芯片中直径约0.6 mm的圆形储集层NKT Photonics:我们来提供NKT Photonics的快激光提供的短脉冲非常适合用于制备芯片实验室器件。我们强烈建议将ORIGAMI XP用于玻璃和其他透明材料的激光加工。ORIGAMI XP是一款集成、单箱、微焦级飞秒激光器。激光头、控制器和空气冷却系统都集成在一个小巧而坚固的包装中,体积小,甚至可以放在手提行李中! ORIGAMI XP系统基于紧凑的啁啾脉冲放大技术平台,能够在1030 nm处提供高达75μJ的脉冲能量,5 W的平均功率以及小于400 fs的脉冲持续时间。 特点:• 风冷,单箱体,易于集成• • 双输出波长模块• 的脉冲能量和指向稳定性• 工业,坚固的设计• 可以任意方向安装• 实时脉冲能量测量和控制?• 高可靠性• 亦可用水冷 北京凌云光技术集团作为NKT Photonics公司在中国的战略合作伙伴,多年的合作中NKT Photonics公司与凌云始终如一,为客户不断提供更稳定、更先进、更前沿的技术,如果您对以上产品感兴趣,请拨打400 898 0800 电话问询!
  • 手持测温应用激光篇|热成像在激光器制造、激光切割、焊接时如何应用?
    据激光加工专委会统计,2023年中国激光产业产值约980亿元,直逼千亿元大关。 据MRFR数据显示,预计2026年全球激光加工市场规模将达到61.1亿美元。 中国激光产业正处于成长期,预计2024-2029年,我国激光产业市场规模将以20%左右的增速增长,到2029年产业规模或超7500亿元。可见,激光产业有着巨大的市场潜力。激光技术市场需求已成为国内外企业重点关注的话题之一。我国激光技术的市场需求主要在哪里?中国激光技术目前已应用于光纤通信、激光切割、激光焊接、激光雷达、激光美容等行业,涉及多个领域,形成了完整的产业链。激光切割激光焊接激光美容比如在工业制造领域,激光已成为需求极大的一种工具。用户可利用激光束对材料进行切割、焊接、打标、钻孔等,这类激光加工技术已在汽车、电子、航空、冶金、机械制造等行业得到广泛应用。新能源汽车制造激光打标激光钻孔激光这个“潜力股”跟热成像有关系吗?在激光这个庞大的产业链中,激光器和激光设备两个环节的竞争尤为激烈。激光器是产生、输出激光的器件,是激光设备的核心器件。从激光器来看,光纤激光器由于具备电光转换效率高、光束质量好、批量使用成本低等优势,可胜任各种多维任意空间加工应用,成为目前激光器的主流技术路线,在工业激光器中占比过半。对此值得关注的是,在光纤激光器的生产质检过程中,热成像仪可以发挥极大的应用价值。比如在大功率光纤激光器的制造过程中,严重的缺陷会导致光纤熔接处异常发热,从而对激光器造成损坏或烧掉热点。因此,光纤熔接接头的温度监测是光纤激光器制造过程中的一个重要环节。使用红外热像仪可以实现对光纤熔接点的温度监测,从而判断产品质量是否合格。在光纤激光器生产质检中,热成像还可以如何发力?先简单了解下,光纤激光器的组成和工作流程:注解:单条激光的功率有限。在泵浦和合束器的双重加成下,激光的输出功率会变得更大。在上述流程中,热成像可以有如下应用:① 光纤熔接点质量监测光纤之间会有很多焊接点,光纤熔接处可能存在一定尺寸的光学不连续性和缺陷,借助热成像仪可以监测光纤熔接点的温度有无异常,判断熔接点是否存在缺陷,提高产品质量。② 泵浦检测泵浦在工作时会产生大量热量,其温度会直接影响芯片输出的激光波长,使用热成像仪可以对每台泵的来料进行质量检测,保证激光器质量。③ 合束器检测通过热成像仪,既可以判断合束器温度是否异常,也可以检测合束聚合后,输入和输出光纤受热是否均匀。
  • 激光赛道再添新军 英诺激光A股上市
    7月6日,我国激光产业赛道再添新军,英诺激光(301021)正式登陆创业板。英诺激光本次IPO发行3800万股,发行价格9.46元/股,对应的市盈率和市净率分别为26.48倍和1.59倍;募资总额3.59亿,拟用于固体激光器及激光应用模组生产、营销及技术服务网络中心建设、激光及激光应用技术研究中心建设和企业管理信息化建设及补充流动资金。  激光器+定制模组双向驱动  英诺激光是国内领先的专注于微加工领域的激光器生产商和解决方案提供商,激光器产品包括DPSS调Q纳秒激光器(纳秒固体激光器)、超短脉冲激光器(超快激光器,包括皮秒、飞秒级)和MOPA纳秒/亚纳秒激光器(MOPA光纤激光器),覆盖从红外到深紫外的不同波段,从纳秒到飞秒的多种脉宽。  2018 至2020 年,英诺激光营业收入分别为2.91 亿、3.59 亿和3.39 亿元,除了2020年受疫情影响外,主营业务整体上呈良好增长态势,最近三年复合增长率为6.90%。2021年一季度,公司营业总收入8608.20万元、归母净利润1956.29万元,同比增速分别为100.17%和561.79%。  从营收构成来看,激光器产品和定制激光模组销售是公司主要收入来源。公司激光器产品主要面向激光智能装备集成商,2018至2020年主营业务收入占比分别为69.28%、63.32%和64.84%;定制激光模组主要面向工业制造商、科研机构等终端用户,2018至2020年主营业务收入占比分别为24.17%、30.12%和28.13%。随着新产品的研发、推广以及新客户的开发,公司定制激光模组销售收入呈整体增长态势。  盈利能力上,英诺激光的整体毛利率和净利率水平较高,超过多数国内的可比公司。2018 至2020 年,公司销售毛利率分别为56.91%、50.75%和50.63%,销售净利率分别为21.35%、19.97%和19.35%。  顶尖“高材生”团队  管理团队背景来看,英诺激光是一家“高材生”企业。公司核心技术团队是广东省“珠江人才计划”和深圳市“孔雀计划”重点引进的创新创业团队;董事长暨创始人赵晓杰毕业于华中科技大学光电子工程系,日本分子科学研究所博士后,普林斯顿大学应用研究科学家,该机构也被认为是全球顶级的电化学研究机构;MOPA纳秒/亚纳秒激光技术研发负责人林德教为清华大学博士,英国哈德斯菲尔德大学博士后,曾发表过与激光技术及应用相关的期刊论文70多篇。此外,公司的激光应用技术研发工程师陶沙、混合超快激光技术研发工程师杨昕、激光应用技术研发负责人Jie Zhang等也均拥有知名机构的博士学历背景。  截至2020年12月31日,英诺激光共有研发人员55人,占公司员工总数的16.67%,其中博士15人。2018年-2020年,公司研发投入占比分别为9.19%、10.72%、11.78%,处于行业头部水准。  得益于较强的技术背景和较高的研发投入,英诺激光已成为全球少数同时具有纳秒、亚纳秒、皮秒、飞秒级微加工激光器核心技术和生产能力的厂商之一,同时也是全球少数实现工业深紫外纳秒激光器批量供应的生产商之一,拥有专利124项,其中发明专利34项。  英诺激光的主要产品纳秒紫外激光器,2018年销售量为2633台,约占当年全国销量的21.94%,市占率水平较高。  国产激光器正当时  2018年起全球激光行业周期性下行,目前正处于加速复苏阶段。而国内激光产业自2012年以来,市场规模加速成长,年均复合增速达26.45%。2019 年,我国激光设备市场规模达到658 亿元,全球激光设备市场规模1267 亿元,超过一半以上的激光设备市场在国内。  从发展趋势上看,紫外激光器销量增长明显,现已成为激光微加工的主力机型。紫外光的波长较短,加工时的接触面相对较小,有利于减小热效应影响区,能够有效提升加工精度,应用领域广。根据《2019年中国激光产业发展报告》,国产紫外激光器的出货量从2014年的2300台增长至2018年的15000台,预计2020年出货量有望达到20,000 台,整体增速较高。18年15000台出货量中,纳秒紫外激光器约占八成,是目前激光微加工领域的主力产品。  同时,超快激光器也正蓬勃发展,2017、2018 年两年的增速远超过整体激光设备市场增速。超快激光器短脉宽、大功率,适用于精密加工,未来仍有望成为激光微加工领域新的增长点。  回到公司而言,英诺激光的主力产品便是纳秒紫外激光器,主要竞争对手包括美国光谱物理、美国相干和华日精密激光等。与国际先进企业相比,公司的产品在光束质量M2、最大单脉冲能量和平均输出功率等性能指标上已达到国际先进水平。同时,超快激光器正是英诺激光主要研发布局方向,目前公司部分产品的性能也已达到或接近国际先进水平,该领域主要竞争对手包括美国光谱物理、美国相干等。  公司表示,未来将继续专注于微加工激光器及解决方案的自主研发,在激光器方面进一步丰富产品线,朝更短波长、更窄脉宽、更高功率方向发展。在微加工解决方案方面,积极布局激光技术在生命健康、生物医疗、高效微纳制造等新兴领域的应用,成为全球激光微加工行业的技术引领者之一。
  • 我国大功率激光器用标准创新打破国外垄断
    全国大功率激光器应用分技术委员会在武汉成立   曾被国外垄断的大功率激光器技术,通过技术标准创新,现已转化为我国具有完全自主知识产权的尖端产品。11月11日,全国光辐射安全和激光设备标准化技术委员会大功率激光器应用分技术委员会,在湖北武汉东湖国家自主创新示范区成立。   大功率激光器是激光产业的高端核心技术。30年来,我国对大功率气体激光器、大功率固体激光器、高功率激光传输聚焦加工系统、大功率激光加工工艺等,实行了引进、吸收和消化,逐步开发出各种大功率的激光焊接、激光切割、激光打孔、激光表面处理的成套设备。随着这些高新技术的广泛应用,使钢铁、汽车、能源、电子、船舶等支柱产业的技术能力和制造水平得到迅速提升。   然而,与美国、欧盟、日本等国相比,目前我国在大功率激光器的制造水平和应用规模上,尚处在初级研制或小规模生产阶段,尤其是高端的大功率激光器与激光加工成套设备几乎全部依赖国外进口。究其原因,主要是我国的大功率激光器尚未达到生产标准化,难以保证产品质量和提高技术档次,同时也限制了发展规模。因此,大功率激光器应用专业的标准研制,是促进我国激光产业科学发展的攻关大课题。   近几年来,武汉华工激光工程有限公司旗下的科威晶激光技术有限公司,在引进生产大功率激光器的过程中,借助武汉华工激光工程有限公司的自主研发和标准创新,成功地开发出4000瓦轴快流二氧化碳激光器。这项拥有完全知识产权的大功率激光器,入选国家重点新产品计划,今年产销量可望达到120台。从此,国产大功率激光器实现了规模化量产,跻身于世界大功率激光器7大生产企业。   武汉华工激光工程有限公司自主制定的大功率激光器生产标准,达到了国外先进水平。自2008年开始,湖北省和武汉市的质监部门积极支持该公司筹备激光领域的国家级标准化分技术委员会,以此提高我国大功率激光器应用专业的整体水平,缩短与国际先进水平的差距。经国家标准化管理委员会批准,由武汉华工激光工程有限公司申办的全国光辐射和激光设备标准化技术委员会大功率激光器应用分技术委员会,正式落户武汉东湖国家自主创新示范区。   在全国大功率激光器应用分技术委员会一届一次工作会议上,确定北京工业大学激光工程研究院院长左铁钏等25位专家担任该委员会委员,武汉华工激光工程有限公司为该委员会秘书处承担单位。   据了解,作为我国激光领域的首个国家级标准化分技术委员会,将站在行业发展的战略高度,对国内外大功率激光器应用加工设备的相关标准进行对比分析 组织编制大功率激光器应用的标准体系,制定大功率激光器应用技术和安全辐射等基础标准。
  • 长光华芯即将登陆科创板 高功率半导体激光芯片前景可期
    3月15日,苏州长光华芯光电技术股份有限公司(以下简称“长光华芯”)刊登《发行安排及初步询价公告》《招股意向书》等公告文件,这意味着该公司已经启动发行,即将登陆科创板,将成为A股第一家半导体激光芯片上市公司。 长光华芯本次IPO发行募集资金重点投向科技创新领域的项目为“高功率激光芯片、器件、模块产能扩充项目”“垂直腔面发射半导体激光器(VCSEL)及光通讯激光芯片产业化项目”及“研发中心建设项目”。 其中,高功率激光芯片、器件、模块产能扩充项目总投资5.99亿元,包括购置厂房、MOCVD (外延生长)、流片、巴条上盘预排机、激光划片、自动粘片机等相关设备,整体扩大公司高功率半导体激光芯片、器件、模块产品的产能规模。VCSEL及光通讯激光芯片产业化项目投资3.05亿元,项目有利于实现VCSEL芯片和光通讯芯片产业化,拓展至消费电子、汽车雷达、光通讯等更多应用领域,该项目的实施能够丰富公司原有产品结构,为公司提供新的增长点。借助登陆资本市场的契机,长光华芯将进一步加大研发投入,对半导体激光芯片及高效泵浦技术、光纤耦合半导体激光器泵浦源模块技术和大功率高可靠性半导体激光器封装技术等激光领域前沿技术进行研究,打造可持续领先的研发能力和新方向拓展能力,助力高功率激光技术的创新发展。据悉,长光华芯聚焦半导体激光行业,始终专注于半导体激光芯片、器件及模块等激光行业核心元器件的研发、制造及销售,紧跟下游市场发展趋势,不断创新生产工艺,布局产品线,已形成由半导体激光芯片、器件、模块及直接半导体激光器构成的四大类、多系列产品矩阵,为半导体激光行业的垂直产业链公司。得益于前期大量的研发投入,2021年长光华芯实现营业收入4.29亿元、净利润1.15亿元,较2020年增长率分别达到73.59%和340.49%。
  • 海尔欣发布DFB-2000 半导体激光器屏显驱动新品
    DFB-2000是海尔欣推出的新一代DFB激光器驱动控制器,整合了全新设计的触摸屏UI界面,激光电流源,以及温度控制功能,极大的方便了用户的操作、使用及测量。海尔欣自主研发的电路,具有极低的电流噪声与极低的温度漂移,最适合精密光学测量。驱动器包含散热单元,TEC温度控制电路和低噪声电流驱动,支持外部任意波形的模拟信号调制,并将状态监控实时显示于驱动器触摸屏上。与QC750-TouchTM量子级联激光驱动器类似,考虑到激光器芯片的昂贵成本,海尔欣特殊设计的最大电流软钳制功能,可有效规避异常情况下大电流对激光管造成的损伤。除此以外,DFB-2000同时具备多种安全保护机制,zui大限度保证激光器的安全。该产品可被广泛使用在基于实验室和现场部署的多种近红外光谱测量系统,集成度高,稳定可靠。产品特色• 一体化集成电流源及温控驱动,功能完备• 温度控制驱动采用非PWM式的连续电流输出控制,大大延长TEC器件的使用寿命• 多种输出保护机制,确保芯片安全,如可调电流钳制、输出缓启动、过压欠压保护、 超温保护、继电器短路输出保护等• 最大电流软钳制功能,避免误操作大电流损坏激光管• 全液晶触控UI界面,便于用户操作使用及数据观测• 全自主研发,集成度高,性价比高参数指标电流源驱动性能 输出电流范围 10 ~ 250mA 漂移24hr(@25℃) 5V 模拟调制带宽 DC - 100kHz 缓启动时间 3 ~ 4s 电流噪声密度 (10kHz~100kHz@250mA) TEC最大控制电流 ±2A TEC最大控制电压 5V 最大热功率耗散 12W 设置温度范围 10 ~ 50℃ 控温范围 10 ~ 50℃ 控温稳定度 0.01℃(环境温度25℃恒温) 0.05℃(室温环境) 温度传感器类型 适用10 kΩ或20kΩ热敏电阻模拟外调制 输入阻抗 10 kΩ 调制系数 100mA/V ±1% 3dB带宽 DC -100kHz 调制电压范围 ±2.5V通用参数 供电电源 5V DC,15W (含电源适配器) 工作环境温度 10 ~ 40℃ 储存环境温度 -10 ~ 85℃ 输出接口 RS232通讯(含模块通讯线缆) 人机界面(含触控笔) 全液晶触摸屏显示与控制,报警,日志记录功能 尺寸(长*宽*高) 16.2×11.56×5.37 cm3 重量 <1.5kg结构尺寸(单位:mm)接口定义序号名称备注1. 液晶显示屏 显示界面,详见用户手册3. 旋转编码器微调电流、温度、快速开机等,详见用户手册232 通讯接口6. 电源接口供电输入8. 触控笔 方便进行屏幕操作 表1 壳体面板说明(部分)1. TEC+14. TEC-2. Thermistor13. Case3. NC12. NC4. NC11. LD Cathode5. Thermistor10. LD Anode6. NC9. NC7. NC8. NC注:可根据客户实际需要更改引脚定义。 表2 DFB发射模块接口说明(部分)界面视图(部分)图1 主界面1)激光器电流:显示了实际的激光器电流值。2)TEC温度:显示了实际的TEC温度值。3)激光器电流和TEC温度左边的选择按钮:一旦选中相应的选项可以用旋转按钮进行微调。4)激光器开关:控制激光器电流源开启/关闭。开启状态时开关为橙色,关闭状态时为灰色。图2 设备连接创新点:• 一体化集成电流源及温控驱动,功能完备 • 温度控制驱动采用非PWM式的连续电流输出控制,大大延长TEC器件的使用寿命 • 多种输出保护机制,确保芯片安全,如可调电流钳制、输出缓启动、过压欠压保护、 超温保护、继电器短路输出保护等 • 最大电流软钳制功能,避免误操作大电流损坏激光管 • 全液晶触控UI界面,便于用户操作使用及数据观测 • 全自主研发,集成度高,性价比高 DFB-2000 半导体激光器屏显驱动
  • 存储器和高能激光芯片设备有新突破!
    近日,《nature》杂志更新了两则最新研究,明尼苏达大学团队研究出计算随机存取存储器CRAM,可以极大地减少人工智能(AI)处理所需的能量消耗;斯坦福大学的研究人员则在芯片上设计开发出一台微型的钛蓝宝石 (Ti:Sa) 激光器,可用于未来的量子计算机、神经科学等领域。明尼苏达大学研究出计算随机存取存储器CRAM近期,《nature》杂志的同行评议科学期刊《npj Unconventional Computing》发布了一项名为计算随机存取存储器(Computational Random-Access Memory, CRAM)的最新研究,该新技术能够极大地减少人工智能(AI)处理所需的能量消耗。图片来源:《nature》截图据悉,这项技术由明尼苏达大学双城分校的一组工程研究人员开发,该校电气与计算机工程系博士后研究员、论文第一作者杨吕表示,这项工作是 CRAM 的首次实验演示,其中数据可以完全在存储器阵列内处理,而无需离开计算机存储信息的网格。国际能源署(IEA)于2024年3月发布了全球能源使用预测,预测人工智能的能源消耗可能会从2022年的460太瓦时(TWh)增加一倍至2026年的1,000 TWh。这大致相当于日本整个国家的电力消耗。目前,随着人工智能应用需求的不断增长,许多研究人员一直在寻找方法来创建更节能的流程,同时保持高性能和低成本。通常机器或人工智能流程在逻辑和内存之间传输数据会消耗大量的电力和能源。据悉,这项研究已经进行了二十多年,其最早可以追溯到电气与计算机工程系教授王建平在使用MTJ(磁隧道结)纳米设备进行计算方面的开创性工作。“我们20年前直接使用存储单元进行计算的最初想法被认为是疯狂的”,该论文的资深作者、明尼苏达大学电气与计算机工程系杰出 McKnight 教授兼 Robert F. Hartmann主席王建平 (Jian-Ping Wang) 表示。2022年1月3日,明尼苏达大学理工学院宣布,明大“Distinguished McKnight University Professor”王建平博士当选美国国家发明家科学院(National Academy of Inventors - NAI)院士。MTJ器件是一种纳米结构器件,这是一种利用磁性材料实现存储的新兴技术。在王建平的专利 MTJ研究的基础上,这个团队开发出了磁性RAM (MRAM),目前这种技术已用于智能手表和其他嵌入式系统。在CRAM中,MTJ不仅仅用于存储数据,还被用来执行计算任务。通过精确控制MTJ的状态,可以实现诸如AND、OR、NAND、NOR和多数逻辑运算等基本逻辑操作。CRAM技术采用了高密度、可重构的自旋电子(spintronic)计算基底,直接嵌入到内存单元中。与三星的PIM技术相比,CRAM技术使数据无需离开内存即可进行处理,消除了数据在内存单元与处理单元之间的长距离传输。CRAM通过消除数据在内存和处理单元之间的移动,显著降低了能耗。此外,由于CRAM的计算直接发生在内存中,它还提供了更好的随机访问能力、可重构性以及大规模并行处理能力。CRAM 架构实现了真正的在内存中进行计算,打破了传统冯诺依曼架构中计算与内存之间的瓶颈——冯诺依曼架构是一种存储程序计算机的理论设计,是几乎所有现代计算机的基础。CRAM技术展现了巨大的潜力,尤其是在机器学习、生物信息学、图像处理、信号处理、神经网络和边缘计算等领域。例如,一项基于CRAM的机器学习推理加速器的研究表明,它在能量延迟乘积方面的性能比现有技术提高了大约1000倍。此外,CRAM在执行MNIST手写数字分类任务时,能耗和时间分别降低了2500倍和1700倍。当下CRAM技术展现出巨大的潜力,但其真实计算能力的局限在于连续CRAM数组内部。任何需要跨越不同CRAM数组的数据访问和计算都会增加额外的数据移动开销。未来,研究人员仍需应对可扩展性、制造和与现有硅片集成方面的挑战。他们已计划与半导体行业领导者进行演示合作,以帮助将CRAM变成商业现实。高能激光芯片设备研究有新突破!近日,斯坦福大学的研究人员在芯片上设计开发出一台微型的钛蓝宝石 (Ti:Sa) 激光器,相关研究已于6月26日更新在《nature》杂志上。原型机的体积仅为传统传统钛宝石激光器的万分之一,而生产成本也仅有原来的千分之一。总体而言,新设备同时解决了体积大、价格高等挑战,而且在规模效率方面也具有优势。目前传统激光器成本高达10万美元。但科学家认为,采用杂志上提及的最新方法,每台激光器的成本可能会降至100美元。他们还声称,未来可以在一块四英寸晶圆上安装数千台激光器,而每台激光器的成本将降至最低。这些小型激光器可用于未来的量子计算机、神经科学,甚至微观手术。图片来源:《nature》截图实验性激光依赖于两个关键过程。首先,他们将蓝宝石晶体研磨成厚度仅为几百纳米的一层。然后,他们制作出一个由微小脊线组成的旋涡,并用绿色激光笔照射其中。随着旋涡的每次旋转,激光的强度都会增加。“最棘手的部分之一是平台的生产,”这项研究的共同第一作者、斯坦福大学博士生Joshua Yang告诉《生活科学》。“蓝宝石是一种非常坚硬的材料。当你研磨它时,它常常不喜欢它,它会破裂,或者损坏你用来研磨的东西。”激光的强度通过晶体表面的一系列涡流增加(图源:Joshua Lang 等人,《自然》杂志)该学术团队对这项技术十分看好,主要原因在于这台最新激光器可以调节到不同的波长;具体来说,从 700 到 1,000 纳米,或从红光到红外光。杨教授以固态量子比特为例,指出这对于原子研究人员来说至关重要。“这些原子系统需要不同的能量(才能从一种状态过渡到另一种状态),”他说。“如果你购买的激光器增益带宽较小,而另一种过渡超出了该带宽,那么你就必须购买另一种激光器来解决该问题。”目前, Joshua Yang和他的同事已创建了一家名为Brightlight Photonics 的公司,以实现这项技术商业化。
  • 我国高功率全固态激光器成功实现应用
    工欲善其事,必先利其器。高功率全固态激光器技术就是先进制造领域的一把利器。长期以来,国外在高功率激光技术领域一直对我国实行严密的技术封锁,严重制约了我国先进制造领域工业关键激光成套装备的发展。为摆脱我国在这一技术领域的长期被动落后局面,抢占战略主动权,自&ldquo 十五&rdquo 开始,863计划持续对该项技术进行大力支持,经过多年攻关,相继突破3kW、4kW、6kW和8kW的激光输出,到&ldquo 十一五&rdquo 中期,成功研制了具有完全自主知识产权的工业级5KW全固态激光器,打破了国际禁运。   为加速成果转化应用,&ldquo 十二五&rdquo 期间,863计划继续设立&ldquo 先进激光材料及全固态激光技术&rdquo 主题项目,中国科学院半导体研究所牵头承担,以工业应用需求为导向,研制系列化的高稳定、高可靠的工业级全固态激光器及其装备,并在激光焊接、表面处理等领域实现产业化应用。目前,在项目研究成果基础上,我国首个具有自主知识产权的高功率全固态激光器生产线已在江苏丹阳建成,并实现批量生产 在汽车零部件激光焊接领域,自主研制的全固态激光器成功打破国外垄断,实现了产业化应用突破,自2012年以来,已为奇瑞汽车焊接了超过10万套自动变速箱的核心部件,为北京奔驰汽车焊接了近3万套天窗 攻克无预热情况下的激光熔覆防微裂纹、微气孔等核心技术,为全球第三大石油装备制造商威德福公司成功研制出超高耐磨转井部件,实现威德福首次将该类高难度核心部件从英国的剑桥转移到亚洲进行生产。   经过863计划长期的持续支持,我国的高功率全固态激光器产品已初步形成了从自主研制激光器到成套装备集成再到应用的完整产业链。随着我国激光技术的不断进步,更多的高功率全固态激光器产品走上成熟的工业化进程,将为提升我国先进制造产业核心竞争力,扭转关键成套装备基本依靠进口的被动局面,加强国防建设提供有力的装备保障和技术支撑。
  • 太赫兹光子马约拉纳零模量子级联激光芯片
    近日,新加坡南洋理工大学电气与电子工程学院的Qi Jie Wang教授团队及其合作者们通过构建光子类马约拉纳零模(Majorana-like zero mode),在量子级联激光芯片中实现单模、柱状矢量光场输出的太赫兹量子级联激光器。相关成果以“Photonic Majorana quantum cascade laser with polarization-winding emission”为题发表于期刊《Nature Communications》上。新加坡南洋理工大学电气与电子工程学院博士后韩松(现为浙江大学杭州国际科创中心和浙江大学信电学院研究员)为论文第一作者,博士研究生Yunda Chua为共同第一作者;南洋理工大学电气与电子工程学院Qi Jie Wang教授为论文第一通讯作者,武汉大学信息电子学院曾永全教授为共同通讯作者。拓扑学研究的是几何物体或空间在连续形变下保持的全局性质,它只关注物体之间的空间关系而不考虑其大小和形状。对具有特殊拓扑性质的光子结构而言,空间上的缺陷和无序只会引起局部参数变化,不影响该空间的全局性质。拓扑光子结构的典型特征在于结构内部是绝缘体,而表面则能支持无带隙的界面(表面)态。受结构全局性质的规范,界面态可沿着有限光子绝缘系统的边缘或畴壁单向传输,并且能够有效地绕过结构拐角及制备误差引起的缺陷和无序而无后向散射(即拓扑保护)。因此,拓扑光子结构可用于实现高鲁棒性半导体激光器,即“拓扑激光器”。然而,拓扑激光器研究面临两大共性难题:1)需要光泵;2)需要外加磁场或者构建等效磁场来产生受拓扑保护的界面态激光模式。二者均显著增加了激光器系统的复杂程度、成本和功耗,降低了激光器的可靠性,阻碍了其实用化进程。针对上述难题,课题组前期利用量子能谷霍尔效应的原理,以太赫兹有源超晶格材料为增益介质,集成能谷光子晶体,通过简单的设计打破结构反对称性来产生“能谷-动量锁定”的边界传输模式,实现了拓扑界面态的片上单向传输和放大,从而首次研发出电泵浦拓扑激光器。然而该工作是多模激光器且其信噪比低,难以实现激光器出射光的光束控制。随后,来自南加州大学的科学家利用量子自旋霍尔效应,在室温条件下,实现近红外电泵浦单模激光。然而,该工作设计复杂的超大尺寸耦合环形谐振腔阵列实现拓扑边界态,其样品整体尺寸在200个波长以上,且需要耦合光栅增强激光输出和信噪比,难以实现光束调控、赋形、极化控制等高性能激光器。此外,两个工作均需要选择性地泵浦边界态,牺牲光子晶体体态增益材料,难以实现大面积集成的高功率激光器。因此,对电泵浦拓扑激光器性能的提升,如光束调控、赋形、极化控制、高功率输出等,亟待新的物理机制。团队创造性地将凝聚态中p波超导的马约拉纳零能模式引入到光子晶体体系,并利用光子类马约拉纳零能模式的辐射特性,实现了全动态范围单模输出(边模抑制比大于15dB,输出光率约1毫瓦)、柱状矢量光场调控、固态电泵浦、单片集成的太赫兹拓扑激光器。该成果的独特优势还有:(1)在不需要选择性泵浦的情况下,其发光腔体整体直径可以低至大约4个波长,是目前报道能保证毫瓦量级功率条件下最紧凑的太赫兹拓扑激光器(相对激光波长),这极大提升了该类半导体激光器在实际应用中的集成度。(2)光子马约拉纳微腔的自由光谱程(free spectral range)与腔体尺寸呈现二次方反比律[3],这一特性使得光子马约拉纳微腔更容易在大面积条件下保持单模激光输出。团队也在电泵浦拓扑激光器体系中证实了该二次方反比律,并实现了大面积泵浦下高功率(大于9毫瓦)和单模激光输出,其功率是同等尺寸下脊形激光器的5.4倍。图1.光子马约拉纳激光器的示意图a和加工样品图b。图2.a.超胞(supercell)能带随Kekule调制相位的变化。b.类马约拉纳光子腔的相位分布及六方晶格位置与相位之间的关系。中心虚线圆包围的部分为非Kekule调制区域(non-Kekule modulated region),其半径标记为ζ,这里ζ=2a。图中显示马约拉纳光子腔的相位绕数为+1。c.相位绕数为+1的类马约拉纳光子腔的空气孔的大小分布。d,e.三维模拟的类马约拉纳光子腔的近场(Ez)与远场(Intensity)分布。图3. a,b实验测到的激光模式随泵浦电流密度变化,a.相位绕数+1,b.相位绕数-1。c.理论计算的净增益。d.实验测得的L-I-V曲线和在对应位置激光光谱。图4.远场测试。a.测试装置示意图。b,c.数值仿真和实验测试的远场光斑。d,e.加偏振片后的激光光谱和光斑。图5.大面积激光的L-I-V曲线,激光光谱,和单模性分析。
  • 科学家刷新纳米线激光器波长调谐纪录
    在国家自然科学基金纳米科技重大研究计划的重点项目等支持下,湖南大学教授邹炳锁领导的纳米光子学小组与美国亚利桑那州立大学教授宁存政领导的纳米光子学小组合作,成功演示了调谐范围从500到700纳米范围调谐的半导体激光芯片,创下了一个新的纳米线激光器调谐范围的世界纪录。相关文章发表在最近一期的《美国化学会杂志》上。   宽调谐的半导体激光器拥有许多从光谱技术、光通讯,到芯片原位的生物或分子检测的用途。但实现这样的激光器一直很困难,主要是外延生长的半导体微结构的晶格失配有限,不能大幅度成分调节,因而对半导体带边影响有限,而发光受制于半导体的带边,因此无法实现大范围调谐。邹炳锁领导的纳米光子学小组成员潘安练采用一维纳米结构生长技术,可以将晶格失配大部分驰豫掉或全部消除,这样,可能得到大范围成分调节的半导体纳米线或带。   纳米线沿一个方向布满整个基片,成分均匀变化,可以看到一个连续颜色可变的激光发射带。除了激射外,这样的合金半导体还可能在光伏太阳能电池、分子和生物检测等方面得到很大应用。   邹炳锁领导的团队近年一直致力于一维半导体纳米结构光子学研究,并在国内率先开展纳米线光波导和纳米激光器等方面的研究,处于国内领先和国际先进水平,在多功能半导体纳米结构光子学的研究上取得了多项重要的研究成果。如潘安练、邹炳锁等教授首次合成发光颜色可以在可见光波段可调的半导体合金纳米带和纳米线,率先实现光在纳米线内长程(百微米量级)光波导,实现了硫化镉纳米线常温下的受激发射现象等。小组成员陈克求教授、王玲玲教授等对一维波导理论的研究也取得了重要成果。该小组已有多篇论文在国际著名学术期刊上发表。
  • 聚焦半导体激光器,华光光电获兴证资本投资
    9月29日,兴证创新资本发布消息称,兴证资本旗下基金近日完成了对山东华光光电子股份有限公司(以下简称“华光光电”)的投资,投资细节未披露。华光光电成立于1999年,是国内规模较大的半导体激光外延材料生长、芯片制备及器件封装为核心产品的高新技术企业。作为国内较早引进生产型MOCVD设备进行半导体激光器研发和生产的高新技术企业,华光光电拥有国内规模较大的激光外延片、芯片、器件、模组及应用产品一条龙生产线,产品从毫瓦级到千瓦级,波长覆盖紫光波段到近红外波段,多项成果达到世界领先水平,是国际上极少数具有研发实力、并能量产高功率半导体激光器芯片及器件的公司之一。随着研发实力的不断提升,华光光电自2008年以来,先后获批山东省重点实验室、山东省工程实验室、山东省工程技术中心、山东省企业技术中心、山东省协同创新中心等一系列省级研发创新平台、国家级企业技术中心,并在今年8月份凭借在半导体激光器领域的领先技术、行业专业定位及发展潜力等优势,获批2022年度国家级专精特新“小巨人”企业。
  • 半导体所硅基外延量子点激光器研究取得进展
    硅基光电子集成芯片以成熟稳定的CMOS工艺为基础,将传统光学系统所需的巨量功能器件高密度集成在同一芯片上,提升芯片的信息传输和处理能力,可广泛应用于超大数据中心、5G/6G、物联网、超级计算机、人工智能等新兴领域。硅(Si)材料发光效率低,因此将发光效率高的III-V族半导体材料如砷化镓(GaAs)外延在CMOS兼容Si基衬底上,并外延和制备激光器被公认为最优的片上光源方案。Si与GaAs材料间存在大的晶格失配、极性失配和热膨胀系数失配等问题,因而在与CMOS兼容的无偏角Si衬底上研制高性能硅基外延激光器需要解决一系列关键的科学与技术难点。   近期,中国科学院半导体研究所材料科学重点实验室杨涛与杨晓光研究团队,在硅基外延量子点激光器及其掺杂调控方面取得重要进展。该团队采用分子束外延技术,在缓冲层总厚度2700nm条件下,将硅基GaAs材料缺陷密度降低至106cm-2量级。科研人员采用叠层InAs/GaAs量子点结构作为有源区,并首次提出和将“p型调制掺杂+直接Si掺杂”的分域双掺杂调控技术应用于有源区,研制出可高温工作的低功耗片上光源。室温下,该器件连续输出功率超过70mW,阈值电流比同结构仅p型掺杂激光器降低30%。该器件最高连续工作温度超过115°C,为目前公开报道中与CMOS兼容的无偏角硅基直接外延激光器的最高值。上述成果为实现超低功耗、高温度稳定的高密度硅基光电子集成芯片提供了关键方案和核心光源。   6月1日,相关研究成果以Significantly enhanced performance of InAs/GaAs quantum dot lasers on Si(001) via spatially separated co-doping为题,发表在《光学快报》(Optics Express)上。国际半导体行业杂志Semiconductor Today以专栏形式报道并推荐了这一成果。研究工作得到国家重点研发计划和国家自然科学基金等的支持。图1.硅基外延量子点激光器结构示意及器件前腔面的扫描电子显微图像。图2.采用双掺杂调控的器件与参比器件在不同工作温度下的连续输出P-I曲线,插图为双掺杂调控激光器在115℃、175mA连续电流下的光谱。
  • 世界最大激光器:192束激光点燃人造太阳
    经过10余年设计制造、35亿美元投资,美国建成世界最大激光器   新浪科技讯 北京时间5月7日消息,据美国《连线》杂志网站报道,在劳伦斯利弗莫尔国家实验室(LLNL)国家点火设施(NIF)的科学家,希望利用192个激光器和一个由400英尺长的放大器及滤光器阵列构成的装置,制造出一个像太阳或者爆炸的核弹一样的自维持聚变反应堆(self-sustaining fusion reaction)。最后一批激光器安装完毕后,《连线》网站记者参观了这个点火设施。观看看世界上最先进的科学设备。   1.美国“国家点火装置”   这个大部头看起来可能很像迈克尔贝执导的《变形金刚》中的人物,但是这个大型机器很快就会成为地球上的恒星诞生地。   美国“国家点火装置” 位于加州,投资约合24亿英镑,占地约一个足球场大小。科学家希望该激光器能模仿太阳中心的热和压力。“国家点火装置”由192个激光束组成,产生的激光能量将是世界第二大激光器、罗切斯特大学的激光器的60倍。2010年,192束激光将被汇聚于一个氢燃料小球上,创造核聚变反应,打造出微型“人造太阳”,产生亿度高温。   2.庞大的靶室    庞大的靶室   在庞大的靶室里,192束激光束进入直径是33英尺的蓝色真空室,在那里跟一个胡椒瓶大小的目标物相撞。然后这些光束会以动力较低的红外线的形式,从该仪器的不同部位出来,这个部位跟DVD播放器的内部结构类似。接着激光经过一系列复杂的放大器、过滤器和镜子,以便变得足够强大和精确,可以产生自维持聚变反应堆。   3.包含放射性氢同位素、氘和氚的铍球    包含放射性氢同位素、氘和氚的铍球   这个铍球包含放射性氢同位素、氘和氚。科学家将利用这个系统的192个激光器产生的X射线轰击它。核子熔合的关键是有足够的能量把两个核子熔合在一起,在这项实验中用的是氢核子。由于把两个核子分开的斥力非常强,因此这项任务需要利用极其复杂的工程学和特别多的能量。   例如,在光束进入真空室(包含图片上方的目标物)之前,激光必须通过巨大的合成水晶,转变成紫外线。发射到真空室里的光束会进入一个被称作黑体辐射空腔(hohlraum)的豆形软糖大小的反射壳(reflective shell)里,光束的能量在这里产生高能X射线。从理论上来说,X射线的能量应该足以产生可以克服电磁力的热和压力,这样核子就能熔合在一起了。电磁力促使同位素的核子分开。   4.靶室顶部的起重机和气闸盖    靶室顶部的起重机和气闸盖   在第一张照片的靶室顶上,是用来把底部仪器放入真空室的起重机和气闸盖。如果这个仪器产生作用,它将成为未来发电厂的前身,将提高科学家对宇宙里的力的理解。当常规核试验被禁止的时候,它还有助于我们了解核武器内部的工作方式。   5.精密诊断系统    精密诊断系统   激光束将被发射到精密诊断系统里,以在它进入靶室以前,确定它能正常工作。   6.激光间    激光间   在激光间(laser bay)里眺望,会看到国家点火设施的激光间2号向远处延伸超过400英尺,激光在从这里到达靶室的过程中,会被放大和过滤。过去35年间,科学家在劳伦斯利弗莫尔国家实验室建设了另外3个激光熔合系统,然而它们都不能生成足够达到核子熔合的能量。第一个激光熔合系统——Janus在1974年开始运行,它产生了10焦耳能量。第二项试验在1977年实施,这个激光熔合系统被称作Shiva,它产生了10000焦耳能量。   最后一项实验在1984年实施,这个被称作Nova的激光熔合项目产生了30000焦耳能量,这也是它的制造者第一次相信通过这种方法可以实现核子熔合。国家点火设施科研组制造的这个最新系统有望产生180万焦耳紫外线能量,科学家认为这些能量已经足以在劳伦斯利弗莫尔国家实验室里产生一个小恒星。   7.磷酸盐放大玻璃    磷酸盐放大玻璃   国家点火设施包含3000多块混合着钕的磷酸盐放大玻璃,这是在熔合试验中用来增加激光束的能量的一种基本材料。这些放大玻璃板隐藏在密封的激光间周围的围墙里。   8.技术人员在激光间里安装光束管    技术人员在激光间里安装光束管   技术人员在激光间里安装光束管,激光通过这些管会进入调试间。激光在调试间里会被重新改变运行路线,并重新排列,然后被输送到靶室里。   9.紧急停运盘    紧急停运盘   在整个国家点火设施里,标明激光位置的紧急停运盘(emergency shutdown panels),可在激光发射时,为那些在错误的时间站在错误的地方的科学家和技术人员提供安全保障。   10.光导纤维    光导纤维   光导纤维(黄色电缆部分)把低能激光传输到能量放大器里。然后在通过混有钕的合成磷酸盐的过程中,利用强大的频闪放电管放大。   11.能量放大器    能量放大器   能量放大器隐藏在天花板上的金属覆盖物下面,它含有可增大激光能量的玻璃板。在激光刚刚进入放大玻璃前,灯管把能量吸入玻璃里,接着激光束会获得这些能量。   12.可变形的镜子    可变形的镜子   可变形的镜子隐藏在天花板上覆盖的银膜下面,这种镜子是被用来塑造光束的波阵面,并弥补它在进入调试间前出现的任何缺陷。每个镜子利用39个调节器改变镜子表面的形状,纠正出现错误的光束。你在照片中看到的电线是用来控制镜子的调节器的。   13.激光放大器    激光放大器   激光束在进入主放大器和能量放大器前,较低前置放大器会放大激光束,并给它们塑形,让它们变得更加流畅。   14.便携式洁净室    便携式洁净室   科学家利用一个独立的便携式洁净室(CleanRoom)运输和安置能量放大器和其他元件,这个洁净室就像用来装配微芯片的小室。   15.能量放大器    能量放大器   每个能量放大器都被安装在洁净室附近,然后利用遥控运输机把它们运输到梁线所在处。   16.技术人员校对能量放大器    技术人员校对能量放大器   从照片中可以看到,能量放大器在被放入梁线以前,技术人员正在对它进行校对。   17.模仿NASA的主控室    模仿NASA的主控室   照片中的主控室看起来跟美国宇航局的任务控制中心很相似,这是因为前者是模仿后者建造的。国家点火设施并不是利用这个主控室把火箭发射到外太空,而是设法通过激光,利用它把恒星的能量(核子熔合)带回地球。   18.光束源控制中心    光束源控制中心   光束源控制中心即已知的主控振荡器室,看起来跟数据中心(Server Farm)很像,但是这个控制中心不是利用电脑,而是安装了一排排架子。光束通过光纤前往能量放大器的过程中,看起来就像网络供应商使用的网络。   19.国家点火设施的激光源    国家点火设施的激光源   国家点火设施的激光是从一个相对较小、能量较低,并且比较呆板的盒子里发射出来的。这个激光器呈固体状态,跟传统激光指示器没有多大区别,不过它们发射的光波波长不一样,前者是红外线,后者是可见光。   20.高能灯管    高能灯管   高能灯管(flashlamps)跟照相机里的灯管一样,但是前者的体积超大,它可以用来激发激光。每束光束刚产生时,强度仅跟你的激光指示器发出的激光强度一样,但是它们在二十亿分之一秒内,强度就能曾大到500太拉瓦,大约是美国能量输出峰值时功率的500倍。   这一结果是能实现的,因为该实验室里拥有巨大的电容器,里面储存了大量能量。这个电容器非常危险,当它充电后,这个房间将被封闭,禁止任何人靠近,以免出现高压放电现象,伤着来访的人。   国家点火设施的外面看起来很像《半条命(Half-Life)》的拍摄现场,这种普通的外观掩饰了在里面进行的历史性科学研究。(孝文) 英刊揭秘世界最强激光产生过程(组图)   导读:2009年4月,耗资达35亿美元的美国“国家点火装置”(NIF)正式开始进行相关实验,并计划于2010年最终实现聚变反应。届时会将192束激光同时照射在一个微小的目标上,是迄今世界上性能最强大的激光装置。英国《新科学家》杂志网站13日撰文揭秘世界最强激光产生过程。以下为全文:   “国家点火装置”是美国国家核安全管理局(NNSA)的库存管理计划的关键环节。在受控实验室条件下,“国家点火装置”将进行聚变点火和热核燃烧实验,实验结果将为NNSA提供相关武器生产条件的实验手段。这些条件对NNSA在不开展地下核试验的条件下评估并验证核武库的工作至关重要。“国家点火装置”实验将研究武器效应、辐射输运、二次内爆和点火相关的物理学机理,并支持库存管理计划继续取得成功。“国家点火装置”是目前世界上最大和最复杂的激光光学系统,用于在实验室条件下实现人类历史上的第一次聚变点火。192束矩形激光束将在30英尺的靶室中实现会聚,其中靶室内含有直径为0.44厘米的氢同位素靶丸。发生聚变反应时,温度可达到1亿度,压力超过1000亿个大气压。   以下是“国家点火装置”产生最强激光的几大步骤:   1、安装球形外壳      安装球形外壳   为了产生聚变所必须的高温和高压,“国家点火装置”将汇聚其所有192束激光束同时射向一个氢燃料目标之上。“国家点火装置”呈球形(如图所示),直径约为10米,重约130吨。装置内有一个目标聚变舱,点火实验就发生于目标聚变舱内。整个球体由18块铝材外壳拼接而成,每块外壳均约10厘米厚。球体外壳上正方形窗口就是激光束的入口,而圆形窗口则是用来安装和调节诊断装置,诊断装置共有近100个分片。   2、用调节器调整靶位      用调节器调整靶位  这是目标聚变舱内部的照片。激光束通过外壳上的入口进入目标舱,把将近500万亿瓦特的能量瞄准于位置调节器的尖端。图中右侧的长形带有尖端的物体就是位置调节器,每次实验的目标氢燃料球就置放于尖端之上。当所有激光束全部投入时,“国家点火装置”将能够把大约200万焦耳的紫外线激光能量聚焦到小小的目标氢燃料球之上,它比此前任何激光系统所携带能量的60倍还要多。当激光束的热和压力达到足以熔化小圆柱目标中氢原子的时候,所释能量要比激光本身产生的能量更多。氢弹爆炸和太阳核心会发生这类反应。科学家相信,总有一天通过核聚变而不是核裂变会产生一种清洁安全的能源。   3、将燃料放入燃料舱(圆柱体)      将燃料放入燃料舱(圆柱体)   进入“国家点火装置”的所有192束激光束都将被引向图中这个铰笔刀大小的圆柱体。该圆柱体中将装有聚变实验所使用的目标燃料,目标燃料就是约为豌豆大小的球状冰冻氢燃料。实验时,激光束将通过各自窗口进入目标舱内,从各个方向压缩和加热氢燃料球,希望能够产生自给能量的聚变反应。曾经有不少科学家认为可控核聚变反应是不可能实现的。近年来,科学家找到了一些点燃热聚变反应的方法,美国研究人员找到的方法是利用高能激光。虽然科学家们也尝试了其他种核聚变发生技术,但从已完成的实验效果看,激光技术是目前最有效的手段。除激光外,利用超高温微波加热法,也可达到点燃核聚变的温度。   4、压缩并加热燃料      压缩并加热燃料   所有激光束进入这个金属舱内部时,他们将产生强烈的X光线。这些X光线不仅仅可以把豌豆大小的氢燃料球压缩成一个直径只有人类头发丝截面直径大小的小点,它还能够将其加热到大约300万摄氏度的高温。尽管激光的爆发只能持续大约十亿分之一秒,但物理学家们仍然希望这种强烈的脉冲可以迫使氢原子相互结合形成氦,同时释放出足够的能量以激活周围其他氢原子的聚变,直到燃料用尽为止。在激光点火装置内,一束红外线激光经过许多面透镜和凹面镜的折射和反射之后,将变成一束功率巨大的激光束。然后,研究人员再将该激光束转变为192束单独的紫外线激光束,照向目标反应室的聚变舱中心。当激光束照射到聚变舱内部时,瞬间产生高能X射线,压缩燃料球芯块直至其外壳发生爆裂,直到引起燃料内部的核聚变,从而产生巨大能量。   5、用磷酸二氢钾晶体转换激光束      用磷酸二氢钾晶体转换激光束   激光束在进入目标舱内之前,必须要先由红外线转换成紫外线,因为紫外线对加热目标燃料更为有效。激光转换过程必须要使用磷酸二氢钾晶体。图中的这块磷酸二氢钾晶体重约360公斤。首先将一粒籽晶放入一个高约2米的溶液桶中,经过两个月的培养才可形成如此巨型的晶体。然后将晶体切割成一个个截面积约为40平方厘米的小块。“国家点火装置”共需要大约600多块这样的晶体小块。“国家点火装置”将被用于一系列天体物理实验,但是,它的首要目的是帮助政府科学家确保美国“老年”核武器的可靠性。“国家点火装置”项目的建造计划于上世纪90年代早期提出,1997年正式开始建设。(刘妍)
  • 或裁员百人,这个芯片大厂为何舍弃激光雷达技术开发?
    近日,Mobileye宣布终止用于自动驾驶和高度自动驾驶系统的下一代调频连续波 (FMCW) 激光雷达的内部开发。激光雷达研发部门将于 2024 年底解散,影响约 100 名员工。Mobileye预计2024 年激光雷达研发部门的运营费用总计约为 6,000 万美元(包括与股权激励费用相关的约 500 万美元)。Mobileye认为,下一代 FMCW 激光雷达的可用性在其“非视觉系统路线图” 的重要性有所下降。此外,公司基于EyeQ6的计算机视觉感知技术取得了实质性进展,内部开发的成像雷达性能进一步明确,而第三方供应商开发的飞行时间(ToF)激光雷达装置的成本降幅超出预期。由于需求环境不确定,Mobileye选择精简业务以应对市场变化。同时,第三方ToF激光雷达的成本节省效果优于预期,这也是Mobileye决定关闭内部FMCW激光雷达研发部门的重要因素之一。Mobileye的成像雷达已达到基于 B 样品的性能规格,预计将于明年按计划投入生产。成像雷达是Mobileye在内部传感器开发项目中的一项战略重点。Mobileye表示,“这是一项核心构建块技术,我们预计它将在成本/性能优化和可扩展性方面为基于 Mobileye 的免目视系统带来竞争优势。”此次终止激光雷达意味着Mobileye在自动驾驶技术战略上的重大调整,这一举措并不影响Mobileye的客户产品计划或产品开发,也不会对2024年的业绩产生重大影响,不过将减少未来激光雷达研发的支出。Mobileye的股价因宣布终止激光雷达的内部研发而下跌2.6%。FMCW激光雷达成本过高激光雷达(LiDAR,Light Detection and Ranging)是一种利用激光束进行探测和测距的光学遥感技术。具体来说,激光雷达由激光发射单元、接收单元、扫描系统和信息处理单元组成。激光雷达技术分为飞行时间(ToF)激光雷达、调频连续波(FMCW)激光雷达、成像雷达。ToF激光雷达通过测量发射激光脉冲与目标回波脉冲之间的时间间隔来计算距离。具体而言,激光器发出一个激光脉冲,当该脉冲遇到物体后反射回来,接收器记录下回波信号到达的时间,从而计算出目标距离。ToF激光雷达系统结构简单、成本较低、响应速度快、探测精度高,适用于中短距离测距。不过也存在距离盲区,不能测量近距离内的物体;空间分辨率受限于脉冲宽度。FMCW激光雷达使用频率调制的连续波信号进行测距和测速。相较于传统的脉冲式激光雷达,FMCW激光雷达具有抗恶劣天气干扰能力强、高度集成化、灵敏度高和信噪比高等优点。此外,FMCW激光雷达在复杂环境中也能实现良好的成像效果。相比ToF,FMCW激光雷达的成本较高。成像雷达通常指的是毫米波或微波成像雷达,它通过发射电磁波并接收反射回来的信号来生成目标的图像。成像雷达能够生成目标区域的二维或三维图像,广泛应用于自动驾驶汽车、气象探测等领域。随着新能源汽车的普及率不断提升,高级辅助驾驶系统(ADAS)和自动驾驶技术的发展,对激光雷达的需求也在增加,应用正在快速增长。如今的激光雷达,价格还是过于昂贵,主要应用在售价20万元的车型上,包括小鹏和蔚来在第二品牌车型上基本都放弃了使用激光雷达,转向纯视觉或轻传感器方案。激光雷达在新能源汽车中的应用不仅限于当前的L2+和L3级别自动驾驶,还将在未来向更高阶的自动驾驶技术迈进。例如,L5级自动驾驶通常需要四至六个激光雷达来确保安全性。成像雷达成Mobileye一项战略重点成像雷达与激光雷达的主要区别在于使用的波长不同。激光雷达使用的是可见光或近红外光,而成像雷达则使用微波或毫米波。在抗干扰能力和穿透能力方面,成像雷达可能优于激光雷达。Mobileye的成像雷达技术在近年来取得了显著进展。Mobileye与Wistron NeWeb Corp.(启碁科技)合作生产其软件定义的成像雷达,预计于2025年内实现量产。去年9月,Mobileye与法雷奥达成合作,共同开发全球领先的成像雷达。Mobileye与法雷奥达认为,作为自动驾驶传感系统的关键部分之一,成像雷达将成为更先进的 ADAS 解决方案和自动驾驶功能的支持性部件。Mobileye成像雷达采用了先进的雷达架构,包括大规模 MIMO(多收多发)天线设计、自主开发的高端射频设计和高保真采样技术,这些技术使得成像雷达能够实现精确的物体探测和更广泛的覆盖范围。据悉,Mobileye的成像雷达采用集成式片上系统设计,最大限度地提高了处理器效率,并采用了领先的雷达数据解析算法,可提供 300 米以致更远距离周围环境的详细四维图像。该雷达具有中距离 140 度视场角和 近距离 170 度视场角,即使在拥挤的城市街道上,也能更准确地探测到其他传感器可能会忽略的 行人、车辆或障碍物。英特尔营收收紧,准备卖了Mobileye?据悉,Mobileye终止激光雷达内部开发的决策是关于公司未来技术投资的一项独立决策,基于对激光雷达的市场经济效益、该产品的项目时间规划以及资金需求等方面的考量。Mobileye研发FMCW激光雷达的计划在2021年前后,原计划在2027年-2028年开始量产FMCW激光雷达。Mobileye的预期在2028年是该产品需求的爆发期,而且会持续爆发。目前为止,尽管也有不少公司同样押注了这条赛道,但这几年来,ToF依旧是目前市场主流的激光雷达测距路线。同时,由于新能源市场行情景气下滑等因素,Mobileye也受到了影响,正朝着连续第三年亏损的方向发展。Mobileye的财报显示,2023年公司的初步业绩整体不佳,客户芯片库存过高导致年度展望不及市场预期,进一步拖累了股价。截至9月5日,Mobileye的股价今年已下跌约71%,市值约为102亿美元。Mobileye也大幅下调了2024年营收和利润预期。Mobileye预计,由于中国市场不稳定,其全年营收将在16亿至16.8亿美元之间,调整后营业利润在1.52亿至2.01亿美元之间。Mobileye成立于1999年,其核心业务包括开发用于自动驾驶和ADAS的视觉传感器、芯片及软件解决方案,其主要产品包括EyeQ系列系统集成芯片。Mobileye于2017年被英特尔收购,当时是英特尔在自动驾驶领域的重要布局。近日,由于英特尔经营业绩下滑,以及在代工业务上的巨额亏损以及市场需求疲软等问题,彭博援引知情人士报道称,英特尔在对其战略进行全面评估的过程中考虑出售Mobileye。去年,英特尔已经出售了Mobileye的部分股份,并从该交易中获得了约15亿美元的资金。如果英特尔试图通过出售更多Mobileye的股份来筹集资金,说明英特尔与Mobileye正度过一个艰难时期。
  • 华丽回归,助力智能制造,探索激光新应用,2022华南激光展盛大开幕
    11月15日华南先进激光及加工应用技术展览会终于,终于,终于不负众望如约而至了!!!这一天,虽然等了两年,但是,今年展会以新身份、新面貌再次回归业内视野第二十四届中国国际高新技术成果交易会成员展——2022华南国际智能制造、先进电子及激光技术博览会(简称:LEAP Expo)于11月15日,在深圳国际会展中心(宝安新馆)盛大开幕。而作为LEAP Expo成员展之一,华南先进激光及加工应用技术展览会(简称:华南激光展)与LEAP Expo旗下成员展慕尼黑华南电子展及慕尼黑华南电子生产设备展,并与同期举办的华南电路板国际贸易采购博览会、中国(深圳)机器视觉展暨机器视觉技术及工业应用研讨会(VisionChina深圳)共同亮相高交会。LEAP Expo为制造业不同细分领域的专业观众集中呈现了表面贴装、点胶注胶及材料、线束加工、电子组装自动化、机器人及智能仓储、质量控制、元器件制造、半导体、传感器、电源、无源元件、连接器、测试测量、PCB、汽车电子、激光智造技术及装备、光源和先进激光器件、激光加工控制及配套系统、工业智能检测与质量控制技术、激光加工服务、3D打印/增材制造技术,机器视觉核心部件和辅件等多个板块的新品及技术研发成果,联合产业优质企业,助力高交会在智能制造领域主题的呈现与技术展示。联动大湾区,响应“20+8”产业集群目标聚焦消费电子、半导体、锂电、医疗、智能检测等应用领域当前,粤港澳大湾区是目前中国最具活力和最国际化的地区之一,有着完整的机器人及智能制造产业链,产业集群协同效应日益凸显。在以“内循环”为主体,“双循环”相互促进的发展格局推动下,深圳处于内外循环交汇的重要位置,是大湾区建设的重要引擎。今年,深圳提出“20+8”产业集群发展目标:着力推动网络与通信、软件与信息服务、智能终端、超高清视频显示、新能源、海洋产业等增加值千亿级产业集群发展优势更加凸显,半导体与集成电路、智能传感器、工业母机等产业短板加快补齐,智能网联汽车、新材料、高端医疗器械、生物医药、数字创意、现代时尚等产业发展水平显著提升,同时也是为粤港澳大湾区先进制造业核心竞争力的提升注入强劲动力。华南激光展立足大湾区,背靠华南雄厚的产业基础与市场资源,深度剖析先进激光器,诠释未来激光新应用。展会汇聚了多家知名企业,为大家呈现智能检测、激光材料与配件、激光器、激光设备与控制系统等激光智能制造上下游产业链一站式采购平台,携手大族、华工、二十三所、通快、MKS、隐冠半导体、韵腾、热刺、创鑫、普雷茨特、光惠、锐科、步波、泰德、华日、飞博、汉立、汇乐、圣德科、中图仪器、滨松、佳能、永新、凌云光、凯普林、 镭宝、Ekspla、长飞光坊、炬光、奥创、晨锐腾晶、灏克、大科激光、卓镭、嘉强、东露阳、Light Conversion、仪景通、盛镭、德擎、诺派、贝尔金、星汉、铟尼镭斯、鼎鑫盛、易安锐、视百科、睿达、日月新、斯派特等激光产业链内知名企业,联袂演绎激光技术在消费电子、半导体、锂电、医疗、智能检测等重点终端应用场景的加工展示与创新发展。激光+智能制造,跨界融合看激光创新技术及智能检测展示区智能制造是“中国制造2025”主攻方向,是未来制造业发展的重大趋势和核心内容。通过跨界融合打开了智能制造升级的新出口,加速中国制造2025的进一步落地。深圳是国内激光和增材制造产业的重要集聚区,已初步形成覆盖材料、器件、软件、设备和应用服务全链条的产业生态体系。今年深圳出台的行动计划中指出“行业应用深度融合”,到2025年,围绕3C电子、新能源、新型显示等优势领域,将打造一批“激光+”和“3D打印+”智能制造应用示范项目。建成若干检验检测、试验验证、应用研发等产业基础设施和公共服务平台,形成覆盖源头创新、智能制造、创新应用的产业发展生态。华南激光展顺势而为,为强化创新驱动,推动技术跨越发展,提升“基础与专用材料-关键零部件-高端装备与系统-应用于服务”的激光产业链整体创新效能,精心打造“激光创新技术及智能检测展示区”,携手通快、MKS、普雷茨特、TOPTICA、滨松光子、奥创、光惠、蓝菲、德擎集中展示激光创新技术、工业智能检测技术及核心部件,内容包括光源和先进激光器件、激光加工控制及配套系统、检测仪器和设备等,应用于激光加工制造的AOI缺陷检测、产品表面及外观检测、零件的几何尺寸和误差测量等。现场通过各类演示模式及配合专人讲解,为消费电子、微电子/半导体、集成电路、新能源、汽车工程、医疗等下游用户带来激光深度应用和智能检测技术方案。Start-ups初创专区氛围热烈,企业前景看好作为创业浓度强、创业氛围好的城市-深圳,指引着科技的创新和发展。深圳人社部门为了中小企业的创业之路更加顺利,出台了一系列政策。为了更好地赋能初创企业,匹配专业领域买家或企业技术人才。本届华南激光展携手慕尼黑上海光博会,推出“初创企业助力计划”,发挥平台优势,帮助初创企业扩大品牌影响力,提供宣传渠道,寻找合适人才。麓邦、久渡科技、康克科技、法拉第、佛山帕科斯、蓝溪华兴光电、中辉激光、光缘实业、杰昇精密五金、长春飞鹰、广东艾莫讯等11家初创规模的企业齐聚“Start-ups初创专区”,纷纷拿出了各自专注领域的引以为豪的展品向专业观众解说,应用领域广泛,产品种类繁多,甚至已经远销海外,涵盖光学元件、光学模组、光学系统及仪器、激光腔体、特种光纤处理设备及高功率光纤器件、保偏光纤产品、高端激光器、超短脉冲光纤激光器、固体激光器、半导体激光器老化系统、半导体激光器测试系统、半导体激光器、高功率皮秒激光器、激光打标,激光焊接、激光清洗控制、精密机械零部件、激光切割机、激光清洗机等。可以说这些初创企业都是“未来之星”,期待他们在激光市场中能继续发光发热,为行业发展贡献更多力量,创造更多技术可能,甚至引起行业变革。头脑风暴,探索激光工艺赋能消费电子创新升级随着全球消费电子产业迅速发展,消费电子产品朝着集成化、精密化、智能化的方向升级,电子产品的内部构建也愈发精巧,对制造过程中的高效率、高精度、热影响区小、无污染等要求越来越高,激光工艺的发展正为消费行业的精密加工带来了更优的解决方案。消费电子产品制造对激光工艺的需求既是生产制造升级的需求,也为华南地区的消费电子创新智造提供持续动力。华南激光展开幕当日,《激光工艺赋能消费电子创新制造研讨会》同期举办。针对激光技术在消费电子产品制造行业的创新应用和解决方案展开话题讨论,深度探索消费电子智能制造中对激光工艺需求和难点,促进激光技术的技术革新和设备升级。大会为消费电子领域用户寻找新技术、了解行业先机、与业内专家近距离交流提供了一个绝佳平台。浩浩荡荡买家团,商贸配对不可少为进一步帮助展商拓展商机、获取意向订单、提高参展效率,华南激光展主办方联合行业协会、媒体及相关业界机构共同邀请了由消费电子、微电子、工业电子等应用领域人士组成的专业买家团,莅临参观展会,更在展会现场专设商贸配对区,基于展前供需双方线上填写的采购及配对需求,特邀有采购意向的决策层与展商一对一线下开展贸易洽谈。2022华南激光展,作为第二十四届高交会智能制造系列展之一,依托于高交会的平台优势,以推动“激光+智能制造”深度融合为目标,深挖激光产业链先进技术产品,配套同期论坛、商贸配对等丰富同期活动,以期汇聚更多行业优质资源、精准对接垂直领域核心业务,为上下游企业提供综合性服务商贸平台。明日会议预告目前,5G、智能汽车、智能制造、人工智能、物联网等技术的快速发展,对各类芯片的旺盛需求,正成为驱动半导体制造业进一步增长的重要力量。另一方面,由于缺乏核“芯”技术而带来的产业发展卡脖子问题,以及当前因为芯片短缺问题而导致的生产停滞问题,都在促使国内芯片制造业奋力图强!而在半导体芯片的制造及封装测试过程中,激光技术正在越来越多地参与其中,从晶圆的光刻到切割划片,从清洗到钻孔,激光已经成为半导体制造中不可或缺的关键工具。本次研讨会雅时国际商讯、《激光世界》杂志将联合华南先进激光及加工应用技术展览会,围绕“激光技术在半导体芯片制造中的应用”这一话题展开讨论。逛展那么累怎能不奖励自己?别忘了明天前往6H44展位参与幸运大抽奖活动精美礼品等你来拿走!速速来试试好运吧!此外,观看展会云直播且转发朋友圈也有好礼相送啦!
  • 我国成功研发出民用半导体激光器件
    “民用半导体激光器件我们已摆脱长期依赖进口的局面。现在,我们已经发明成功,工艺性能稳定,产品投入规模生产阶段。”1月10日,记者在山东浪潮华光公司采访,听着技术专家高兴地介绍着,看到那长长的流水线正“收获成熟的芯片”。如今,我们的企业真正拥有了世界顶尖的核心技术,产品价格大幅度下降,让“等面值人民币”买到“等面值美元”的产品不再是梦想。   民用激光显示技术能够完美地再现自然色彩,是继黑白显示、彩色显示、数字显示之后的第四代显示技术。目前,国际上激光显示技术已发展到产业化前期阶段,未来3至5年,将是全球激光显示技术产业化发展的关键时期。为加快推进光电技术研究,打破关键技术的“封锁”,我国把“新一代激光显示技术工程化开发”列为863计划重点项目,其中的“高可靠性、低成本半导体激光器材料与器件工程化开发”课题让山东浪潮华光光电子有限公司所承担。   浪潮华光是国内唯一一家拥有从激光器材料生长到器件制作的完整生产线的高新技术企业,自1999年建厂以来,其半导体激光二极管及大功率激光器的产销量持续稳居国内第一。为推进课题进展,浪潮华光组建精英团队,加速科研攻关。公司成立了由总经理、国务院特殊津贴专家郑铁民研究员担任组长的项目小组,调动公司所有资源,完善了科研团队建设,从半导体激光器的材料生长、管芯工艺制作、器件封装等整个制造工艺链均配备了专业人才。组建了以长江学者徐现刚教授为学术带头人的研发团队,有研究员、高级工程师和博士、硕士等80余人。强大的科研团队借助公司已有的省级半导体激光器技术实验室、山东省半导体发光材料与器件工程实验室等科研平台,开展了技术攻关。   期间,在徐现刚教授的引领下,技术总监夏伟博士组织浪潮华光的精英团队成员,集思广益,刻苦钻研,成功实现了三大关键技术突破:一是TM偏振808nm半导体激光器外延材料与芯片研制。围绕实现项目要求的特定偏振激光输出,项目组从理论设计激光器的材料结构开始,进行了系统的研究,有效采用了MOCVD技术制备这种特殊材料,加快了科研步伐。目前,该技术世界上只有为数不多的几个大公司掌握。通过5个月的努力,浪潮华光成功掌握了自主生长技术,满足了项目需求。二是635nm激光器外延材料与芯片研制。为了增加红光分量的亮度,激光显示项目在红光波段选择了波长最短的635nm半导体激光器。浪潮华光在650nm半导体激光器方面积累了丰富经验,形成了稳定的650nm半导体激光器产品,占据市场70%的份额。虽然635nm激光器相比650nm红光激光器只有十五纳米的波长差异,但是其带来的技术难题却成几何级数增长。目前,只有日本的几家公司掌握了635nm激光器的制作技术。浪潮华光研发团队经过上千次的试验,最终突破了635nm红光激光器材料的生长技术难点,实现了红光激光器的大功率输出和长期可靠工作。三是模组封装及集成技术。浪潮华光的封装技术人员克服时间紧任务重的困难,与863项目的用户积极配合,实现了高精度多管芯封装技术、新型热沉制作技术、微透镜整形技术等多项自主创新技术,完成了项目要求的模组封装和整形。   目前,针对所承担的“863”项目,浪潮华光已成功研制出满足激光显示工程化要求的808nm、635nm高可靠性、低成本半导体激光器件,并已经初步实现了规模化的生产。从目前的科研和生产进度上看,浪潮华光有望提前全面完成项目预定任务,并能实现批量提供民用激光显示用激光光源的目标,将会大大降低激光器的价格,并带动国内激光器应用市场的发展和更加广泛的应用,实现了“替代进口产品、提高我国半导体激光器的地位、实现激光器显示用核心元器件国产化”的梦想,让该公司产品在国际激光显示产业中独占鳌头。
  • 唇齿相依:固体难溶制剂与激光粒度仪的不解缘 ——访北京九州通科技孵化器有限公司实验中心制剂主管靳海明
    p style=" text-indent: 2em " 现代化工业是架构于标准之上的精密机器,而“粒度”对于诸多行业都是决定命运的钥匙,往往也是不能承受的生命之轻。对于制药业,特别是口服难溶性药物行业更是如此。“难溶性药物的溶解是我们做口服固体制剂最大的难点之一,因为药原料被吃下后,必须溶解才能被人体吸收,否则药效就会受到限制。一般来说,难溶性药物的溶解速率和粒径成正相关,粒径越小,溶解得越快,因此难溶性固体口服制剂的粒径控制就特别关键。” 北京九州通科技孵化器有限公司实验中心制剂主管靳海明这样说。作为从事制剂研发工作近10年的工程师,粒度对于他来说无疑是夙兴夜寐都挂在心头的块垒,而Topsizer激光粒度仪就此成为了靳海明在工作中最重要的存在。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/82d60d50-f0c4-4436-8584-c032641b5576.jpg" title=" 靳海明与他的工作“伙伴”Topsizer激光粒度分析仪.jpg" / /p p style=" text-indent: 2em text-align: center " strong span style=" color: rgb(127, 127, 127) " 靳海明与他的工作“伙伴”Topsizer激光粒度分析仪 /span /strong /p p style=" text-indent: 2em " strong 固体难溶性制剂呼唤激光粒度仪 /strong /p p style=" text-indent: 2em " 九州通科技孵化器有限公司是一家致力于促进医药高科技产业发展的专业孵化器,靳海明所在的专业技术服务平台共享实验室正是公司冲在最前面的研发及服务中枢,他们不仅要为创业公司的样品、产品检测提供仪器设备方面的支持,还要承担大量的制药研发工作。 /p p style=" text-indent: 2em " “就粒度而言,D90是我们要考量的重要参数。”靳海明说,D90是指颗粒粒度分布中,从小到大累计分布百分数达到90%时对应的粒径值。简而言之,就是90%的样品都小于的粒径值。这个数值,对于原料的溶出是否能达到要求,影响至关重要。“再者,粒度的分布范围可以看出物料的粒径是否均匀,是否符合正态分布,如果粒径分布不够均匀,成品的生产质量控制就会非常棘手。”靳海明强调。 /p p style=" text-indent: 2em " 粒度检测的方法多种多样,具体到固体难溶性药物的检测领域,所用最普及的不外乎两种,筛分法和激光粒度仪测量法。“筛分法与激光粒度仪相比,检测的速度和直观性完全不是一个数量级,就像手动使用计算机计算和excel直接拉表格之间的差距一样。”靳海明笑着说,“另外,固体难溶性药物,大部分粒径要求都在20微米以下,这个范围对于筛分法来说分辨起来也很有难度。因此,激光粒度仪就成为了最好的选择,特别是对于硝苯地平、缬沙坦、蒙脱石散等药物的粒径检测,激光粒度仪的适配性可谓一时无两。” /p p style=" text-indent: 2em " strong 超过4年的稳定表现 Topsizer成最佳拍档 /strong /p p style=" text-indent: 2em " 与靳海明朝夕相伴的,是珠海欧美克的Topsizer激光粒度分析仪,购买于2013年12月。谈到Topsizer,他赞不绝口:“我们这个设备的精度特别好,测量十几微米的样品,误差在正负1%之间,完美地满足我们的需求,可谓是我工作中的最佳拍档!” /p p style=" text-indent: 2em " Topsizer是珠海欧美克于2012年9月推出的一款高性能激光粒度分析仪,也是欧美克在2010年被马尔文收购后,推出的第一款激光粒度分析仪。磨剑多年,又得到国际技术支持,出产的自然是宝刃重锋。据了解,不同于欧美克前代产品,Topsizer采用了双光源长焦距设计,检测系统的主光源为准直性良好的进口氦氖激光器,探测器上安装有防护罩,核心元器件都是进口产品。该仪器支持干湿法分散,0.02微米,重现性小于等于0.5%,测量时间小于30s,价位在20-30万之间,性价比很高。 /p p style=" text-indent: 2em " 在采访过程中,Topsizer的稳定性,最让笔者深感惊讶。“在我们实验室,Topsizer日均工作时长可达4小时,从购买到现在4年半的时间,这款仪器本身除了有一次烧断过保险丝,再就没有出现任何故障。”靳海明满脸幸福地说。他还现场打开电脑给笔者展示了Topsizer光源的激光强度,屏幕数字显示为84。据了解,这一数字与购买最初那一年基本持平,衰减很少。这种在高强度工作下长期稳定的表现,的确让人垂涎。笔者从珠海欧美克北区销售经理李宏成处了解到,Topsizer的工艺加工工序,借鉴了马尔文帕纳科的先进经验,由机器一次性工装而成,充分降低了之前人工拧装带来的误差和应力,减少了故障率。这,或许就是Topsizer能够数年如一日稳定表现的重要原因吧! /p p style=" text-indent: 2em " strong 专业服务赢口碑& nbsp 欧美克品牌享誉制药业 /strong /p p style=" text-indent: 2em " 除了对Topsizer的性能和质量甚感满意,欧美克专业热情的服务团队也让靳海明竖起大拇指。他告诉笔者,固体难溶性制剂的粒度检测,干法或湿法分散兼而有之,每种方法都有各自的问题,湿法分散需要适合的分散剂,干法分散需要控制不同的气压,而不论哪种方法,样品分散不够充分都是要极力避免的重大问题。因为一旦分散结果不好,有大量团聚现象,测量出的粒径结果也就不可靠了。靳海明告诉笔者,每当遇到这种问题致电售后时,欧美克的工程师总能给出可行的解决方案。“别的不说,就连欧美克的销售经理也非常专业,不仅懂市场,还懂设备、懂原理、懂生产研发,堪称全才!”靳海明由衷地赞叹道。事实上,除了被动服务,欧美克每年还都会组织新老客户进行培训,培训内容从原理到应用应有尽有,让靳海明收益匪浅。 /p p style=" text-indent: 2em " 服务专业化,除了售后服务团队人员素质的专业化外,能否快速响应客户的售后需求也是衡量服务专业与否的重要指标。据了解,欧美克通过电话、视频、上门三种方式实现对用户的售后服务。其中,落实到上门服务,可实现48小时及时响应。在北京、淄博、郑州、成都、上海等办事处周边地区,以及拥有大型合作代理机构的部分偏远地区,甚至可以实现24小时内,以至于半天之内的快速响应。专业的服务成为了欧美克留在靳海明心中最深刻的印象。 /p p style=" text-indent: 2em " 在采访中,笔者也曾十分好奇,在我国群雄迭出的激光粒度仪市场,是什么原因让靳海明在万千选择中独独青睐于欧美克的Topsizer呢?靳海明告诉笔者,他们在选购仪器之前,往往会在相关网站论坛上询问调查,Topsizer这款激光粒度分析仪在同行中评价甚高,再加上珠海欧美克这个品牌也耳闻已久,因此就选择下定决心要购买这款仪器。 “这可以说是我到目前为止最满意的一次购买了。真的是买得放心,用得顺心。”靳海明笑着说。 /p p style=" text-indent: 2em " strong 后记: /strong 惊艳可能只需要一眼,但感情却是在长期亲密无隙的合作中慢慢培养的,从靳海明眉眼间的笑意,演示仪器时的小心翼翼,笔者能清楚地看到Topsizer在他心中的份量。在采访的最后,笔者请他到大厅拍一张照片,“没问题,不过先让我给仪器套上防尘罩。”靳海明的动作耐心而仔细。超过4年的并肩作战,牵起了Topsizer激光粒度仪和靳海明之间的不解缘。就好比金箍棒伴着孙悟空西天取经,烟斗伴着福尔摩斯破案无数,无疑在未来的制剂研发、检测工作中,Topsizer也将继续取得更大的成就! /p
  • 空天院实现超快波长切换的宽调谐范围长波固体激光光源
    近日,在中国科学院科研仪器设备研制项目的支持下,中科院空天信息创新研究院激光工程技术研究中心基于声光偏转器(AOD)调谐技术和光参量振荡技术(OPO)实现了8.0-8.7μm长波激光的可调谐超快波长切换,波长切换时间优于100μs,波长个数≥70个,单个波长谱宽≤30nm。该激光器能够在长波波段快速扫频且具有极高的峰值功率,将为我国复杂环境中的毒性气体遥测、光电对抗等提供优质的激光光源。光参量振荡技术(OPO)是非线性光学频率变换技术。随着非线性红外晶体制备技术的提升,基于OPO产生高峰值功率高重复频率长波激光成为目前激光技术研究领域的热点。然而,OPO技术通常基于温度、晶体转动、泵浦源波长调节等方式实现激光波长的调谐。项目团队提出基于声光偏转器调节参量光角度和相位匹配条件,进而实现输出波长的快速调节。历时3年,该团队先后突破了2μm激光源、红外晶体及谐振腔镜损伤特性表征、行波腔调谐补偿等关键技术,完成了超快波长切换的宽调谐范围长波固体激光光源的技术验证。后续,项目团队将按照中科院科研仪器设备研制项目的既定目标,开展工程样机研制和应用示范工作。AOD驱动频率与输出的长波激光波长
  • 40年坚持,打通双折射双频激光器及干涉仪全技术链条
    双频激光干涉仪是先进制造业、半导体芯片制造等行业不可或缺的纳米精度的尺子,应用广泛。张书练教授团队(先清华大学精密测试技术及仪器国家重点实验室,后镭测科技有限公司),以解决双频激光干涉仪关键技术为线,经近40年坚韧攀登,研究完成了“可伐-玻璃组装式单频氦氖激光器→双折射双频激光器→双折射双频激光干涉仪”的全链条技术,并批产。该技术开国内可伐-玻璃组装式氦氖激光器之先,吹制工艺或成历史。开国内外应力激光腔镜产生双频激光之先,解大频差和高功率不可得兼之难,频率差可以在1~40 MHZ范围选择而功率大于1 mW。双折射双频激光干涉仪测量70 m长度误差小于5 μm,非线性误差小于1 nm,测量速度高于3 m。1 研究背景激光干涉仪是当今纳米时代的长度基准,也是先进制造业(机床、光刻机,航空、航天等)制造的精度保证。制造精度和生产效率越来越高,对激光干涉仪的测量精度和测量速度提出了更高的要求。激光干涉仪的“激光”是(HeNe)氦氖激光器,至今无可替代。传统HeNe双频激光干涉仪存两个难点,成为瓶颈:1)国内外,我们之前,双频激光器靠塞曼效应产生两个频率,频率之差小(在3 ~ 5 MHz之间),频差越大激光功率越小,不能满足光刻机等应用的更大频率差要求(如10、20、40 MHz),频率差大,测量速度高,效率高;2)不论是单频还是双频激光干涉仪,国产还是外购,各型号都有几纳米甚至十几纳米的非线性误差,一直没有找到解决办法。通常,在单频激光器的光增益路径上加磁场后(塞曼效应)就变成双频激光器。可是,相当长的期间,购买到的大部分单频激光器因为常出现跳模,用于单频激光干涉仪时淘汰率很高,此外,加上磁场后单频并不呈现双频,双频激光干涉仪难有好的光源。经近40年坚持,研究打通了单频氦氖激光器→双折射双频激光器→双频激光干涉仪的全技术链条,批产,获得了广泛应用和认可。2 双折射双频激光器及干涉仪的关键和全链条技术2.1 双折射双频激光器置晶体石英片(图1a中的Q双面增透)或有内应力的玻璃元件(图1b中的M2右表面镀反射膜)于激光器谐振腔内,这些元件的双折射使激光频率分裂,一个频率分裂成两个频率,两个频率的偏振方向互相垂直(正交偏振)。反复实验证明,激光器可输出频率差大于但不能小于40 MHz两个频率。如果频率差稍大于40 MHz,在改变(调谐)激光频率谐振腔长(即用压电陶瓷1纳米一步“距”的推动M2改变激光谐振腔长)过程中看到的是一个频率振荡会陡然变成两个频率振荡,而前者功率陡然下降一半,刚升起的频率则获得同样的功率。继续调谐腔长,最早振荡的频率会陡然消失,而后起振的频率功率升高到最大。如果频率差小于40 MHz,两频率则有你无我。图2示出了频率差20 MHz时o光和e光的光强度此长彼消得过程。理论和实验一致。图1 激光频率分裂原理图。(a)晶体石英片Q于激光谐振腔内,(b)激光输出镜为M2右表面,对M2加力使激光反射镜内产生应力图2 频差20 MHz时的强烈模竞争。激光强度随腔长调谐(改变)的实验曲线。理论和实验一致图3给出了两个频率的频率差多大时,在频率轴上两个频率的共存区的宽度,也即两个频率差大小对应的共存频域宽度。曲线最左侧可见,在约40 MHz时,共存宽度迅速下降趋于0 Hz,也即小于40 MHz时,两频率之一熄灭,频率差消失。图3 实验测得的两个频率共存的频域宽度和激光频率差的关系2.2 双折射-塞曼双频激光器塞曼双频激光器的频率差一般在5 MHz以下,功率随频率差增大而减小,7 MHz时的激光功率仅0.2 mW以下。作者团队研发的双折射双频激光器频率差大于40 MHz,研制成的双折射-塞曼双频激光器可以输出百KHz到几十MHz的频率差,而功率不因频率差增大而改变,可以达到1.5 mW。双折射-塞曼双频激光器包括两项关键技术,先由双折射造成激光器频率分裂,决定了激光器输出为两个偏振正交频率以及它们的间隔(频率差)的大小。再因激光器上加了横向磁场,横向塞曼效应使增益原子分成两群——π群和σ群。π群和σ群光子的偏振对应双折射互相垂直的主方向,也即正交偏振的光“各吃各粮”,它们之间的相互竞争不存在了,无论频率差大小都能振荡。频率差可以是3、5、7、10、20、40 MHz或更大。2.3 内雕应力双折射-塞曼双频激光器提出了“内雕应力”的概念和产生双频的原理,即用窄脉冲激光器对激光腔镜表面或基片内部造孔(或穴),造成激光腔镜内的应力精确改变(图4所示),“雕刻”提高了频率差的控制精度。“内雕应力”双折射双频激光器不仅用于国产双频激光干涉仪,也用于运行中的光刻机的激光器替换。同时,提供了科研单位的科学研究。该激光器替换正在服役的光刻机的原有激光器,使光刻机机台误差由24 nm下降到6 nm。图4 内雕应力双折射-塞曼双频激光器。M2内部雕刻出的孔造成激光器的双频,磁条PMF1和PMF2消除激光器强模竞争2.4 可伐-玻璃组装式(无吹制)双频激光器国内,研制生产HeNe激光器历史很长,但我国一直靠吹制工艺制造氦氖激光器,而且不能制造可伐-玻璃组装式氦氖激光器。北京镭测科技有限公司研制成可伐-玻璃组装式单频氦氖激光器,功率大于1 mW,满足单频和双频激光器的需求。同时,这一技术将使整个国产氦氖激光器告别吹制,进入一个新的技术高度(如图5所示)。图5 可伐-玻璃组装内雕应力双频激光器(镭测科技提供)2.5 研制成的双频激光干涉仪技术指标作者强调的是,我们有了可伐-玻璃组装式激光器和双折射(内应力)-塞曼双频激光器,双频激光干涉仪有了强力的“心脏”,有了自主可控的基础。团队又全面设计干涉仪的光、机、电、算。时至今日,可伐-玻璃组装式双折射(-塞曼)双频激光器(非吹制)和干涉仪已批量生产,正在满足科学研究和产业的需求。中国计量科学院对双折射-塞曼双频激光干涉仪的测试结果:频率稳定度为10-8,分辨力为1 nm,非线性误差小于1 nm(图6所示),12小时漂移35 nm(图7所示),70 m长度测量误差小于5 μm。这些数据来自中国计量科学院测试证书:CDjx 2014-2352, CDjx 2018-4810, CDjx 2020-04463等。图6 双频激光干涉仪非线性误差图7 双折射-塞曼双频激光干涉仪12小时零点漂移3 展望在实现“可伐-玻璃组装式激光器”→“内雕应力双折射-塞曼双频激光器”→“双折射-塞曼双频激光干涉仪”全链条技术基础上,进一步发展各种规格的可伐-玻璃组装式激光器,以开拓双折射-塞曼双频激光干涉仪的应用深度和应用范围。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制