当前位置: 仪器信息网 > 行业主题 > >

光电催化量子效率测试系统

仪器信息网光电催化量子效率测试系统专题为您提供2024年最新光电催化量子效率测试系统价格报价、厂家品牌的相关信息, 包括光电催化量子效率测试系统参数、型号等,不管是国产,还是进口品牌的光电催化量子效率测试系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光电催化量子效率测试系统相关的耗材配件、试剂标物,还有光电催化量子效率测试系统相关的最新资讯、资料,以及光电催化量子效率测试系统相关的解决方案。

光电催化量子效率测试系统相关的资讯

  • 华南师大兰亚乾团队在光电催化领域取得新进展
    近日,华南师范大学化学学院教授兰亚乾团队首次报道了水中绿色合成双功能酞菁-卟啉共价有机框架(COFs)并成功用于电催化CO2还原耦合甲醇氧化。相关成果发表于《国家科学评论》。  在光电催化领域,金属酞菁与卟啉分子由于表现出多种催化活性而被广泛研究。然而,如何将金属酞菁与卟啉两种功能分子有效结合,实现两者功能的耦合而进一步用于串联催化反应是一个巨大挑战。  已有报道将酞菁与卟啉分子进行共价偶联形成功能有机分子,但均不可避免使用有毒溶剂来进行合成反应。另一方面,在电催化能源转化中,电催化CO2还原结合有机氧化是生产高附加值化学品和提高能源效率的一种有前途的策略。然而,由于缺乏合适的电催化剂,实现有效的氧化还原偶联反应仍然具有挑战性。  为解决以上问题,研究人员首次发展了在纯水相中的绿色水热合成法将金属酞菁与卟啉共价组装合成聚酰亚胺连接的共价有机框架材料NiPc-2HPor COF,并且通过进一步金属后修饰合成了氧化还原双功能NiPc-NiPor COF。  更重要的是,由于NiPc-NiPor COF的高导电性和明确定义的双活性位点,在双活性位点的协同作用下,所合成的酞菁-卟啉COFs实现了同时高效CO2还原与甲醇氧化反应,且在低电压(2.1 V)下具有显著的长期稳定性。此外,原位红外实验证据和密度泛函理论计算表明,ECR过程主要在NiPor的辅助下在NiPc单元上进行,而MOR更倾向于NiPor与NiPc的结合。NiPc-NiPor COF的两个单元协同促进耦合氧化还原反应。  该研究工作首次实现了绿色化学合成酞菁-卟啉共价有机框架用于耦合多相催化的双功能催化剂的设计,为晶体材料多功能催化剂开辟了新的视野。
  • 岛津亮相2023电催化与电合成国际研讨会
    2023年4月7-9日,2023电催化与电合成国际研讨会在长沙普瑞酒店隆重召开。本届会议由由中国化学会电化学专业委员会和湖南大学共同主办,湖南大学化学化工学院承办。会议的宗旨是共享电催化与电合成研究创新成果与前沿技术、加强学术交流与探讨、拓宽研究思路,促进学术成果转化。会议名家荟萃、大咖云集,有来自中国、加拿大、澳大利亚、新加坡等国家的相关专家、学者、产业界人士与会进行学术交流。本届研讨会围绕会议主题采取大会报告、基础电化学讲座、主题报告和优秀青年人才论坛+资深专家点评等交流模式。设立了电催化、有机电合成、环境催化、光电催化、理论机制与方法、能源电化学、优秀青年人才论坛(专家点评)多个主题分会。岛津发表岛津分析计测事业部市场部资深专家龚沿东做了题目为《射线光电子能谱技术在催化材料研究中的应用》的报告。催化剂如今已经广泛应用于化工合成以及其他很多领域(如化肥生产、各种高分子材料合成,以及汽车尾气排放等等),使得原本必须在极其特殊条件下(高温、高压等)才能发生的化学反应可以在相对宽松的条件下就可以进行,并使反应效率得到很大的提高。由于所有的催化反应都是在催化剂表面几个原子层内进行的,而催化剂材料表面的形貌特征(包括晶体取向)都对催化效果有非常大的影响,其机理在于表面能的大小对反应物的选择性吸附有决定性的作用。利用XPS可以研究催化剂表面的元素成分及其所处的状态,从而对吸附和脱附的机理进行表征;通过在真空系统内引入反应气体,可以进行原位的吸附与脱附研究;通过对失效(中毒)的催化剂的表面元素成分与价态的研究,就可以为催化剂的活化提供必要的理论依据。岛津展位本文内容非商业广告,仅供专业人士参考。
  • 想提高电催化研究效率?多电极控温流动看过来!
    电化学----“古老又年轻”电催化作为纳米材料和能源化学领域的研究热点,是未来新能源存储与转化技术的关键所在,如以电解水制氢和燃料电池为核心的氢能产业。除了可以通过小分子的活化转化将可再生能源存储为化学能,电催化更有魅力的地方在于温和、可控、绿色的化学品合成。其实,电化学的发展史是非常有渊源的。早在1893年Thompson发现电子以前,电化学的基本原理和规律就已从实验中得出。 图1:1780年Galvani发现“生物电”现象电化学的起源可以追湖到1780年Galvani从生命体系中发现的“生物电”现象,它揭示了生物学和电化学之间的深奥联系。 图2:1800年Volta发明利用电化学原理连续供电的伏打电堆1800年Volta发明了人类*个电池,它是利用电化学原理制成的*个具有实用价值的连续供电装置。(图1-2)早期,科学家主要是依赖对电流、电位、电容和电量等电化学参数的测量和分析研究,获得的宏观数据限制了对电极界面结构和反应历程的实质性认识。电化学*的进步发生在20世纪的后30年间,把光谱技术同电化学方法结合在同一电解池中工作,从而实现在分子水平上认识电化学现象和规律。随着光谱、波谱技术从60年代,特别是80年代以来的迅速发展,原位光、波谱电化学方法,以及理论计算方法在电化学过程动力学的研究方面日益受到重视并得到了广泛应用。经过近100年的发展,电催化从最初作为电化学科学的一个分支,目前已经成为一门交叉性极强的学科,科学家也在不断挖掘新的合成路径来提高电催化性能。催化剂“动起来”更有效率近期,美国化学学会Chemrxiv预印本期刊发表的一篇文章中使用Vapourtec离子电化学反应器开发了一种用于生成六元二锂盐的多相连续流,该例建立了一种生成六元二芳基碘酸盐的多步连续流动方法。这是对现有批处理方法在可伸缩性和原子经济方面的一个显著改进。该方法Friedel-Crafts类烷基化中使用容易获得的乙酸苄基酯,而随后的阳极氧化环化直接生成相应的环状碘鎓盐。* Friedel-Crafts 反应(傅-克反应)指芳香化合物在酸(Lewis酸或质子酸)催化下与卤代烃和酰卤等亲电试剂作用,在芳环上导入烷基或酰基的反应,分为Friedel-Crafts烷基化反应和Friedel-Crafts酰基化反应。* 高价碘化合物(HVI)是合成化学家公认的试剂。它们被描述为其他危险过渡金属的替代品。这是由于它们在亲电基团转移、光催化或有机催化中的巨大反应性,以及它们作为天然产物合成的构建块的实用性。在这篇研究文章中,科学家通过Brø nsted酸介导的Friedel-Crafts反应,然后进行氧化环化,以形成所需的CDIS 1,改进了碘油烯的形成。这种合成方法是以邻碘苄基醇为起始原料。它允许在短的反应时间内完成各种繁琐的合成CDIS方法。流动化学可显著提高电催化剂的抗疲劳性和稳定性,甚至可以让很不稳定的催化剂达到持久稳定的催化效果。合成挑战一个显著的缺点是使用化学计量量的化学氧化剂,这降低原子经济性并需要额外的处理程序。解决方案碘烯的阳极氧化。电化学是一种非常经济的工具,可以避免使用化学氧化剂合成高价碘试剂。碘芳烃在电池内或电池外电化学过程中都是合适且成熟的介质。HVI、DIS和CDIS通过阳极氧化产生。电化学工艺的明显优势,因为不需要进一步稀释或添加,所以其在流动中的实验操作简单直接。因此,将已经建立的针对CDIS 1的传统合成法转化为多步电化学流程,从而提高反应时间、原子经济性和可扩展性。实验过程1、建立分批优化的反应条件 在分批条件下电化学氧化和环化中间体碘油烯,通过初步观察,确定三氟甲磺酸适合环化并作为抗衡离子。2、引入流动化学在仅两当量的TfOH以74%的产率形成产物1a。但是研究人员发现由于需要额外的苯,这些反应条件不能转移到多步骤反应中,会形成堵塞流动反应器的黑色沉淀物。 3、两步流程优化 反应在Vapourtec离子电化学流动反应器中进行,分别采用玻璃碳 (GC) 阳极和铂阴极。收率是基于在各自条件下通过两个反应器体积后的20 min (0.200 mmol) 收集。4、研究不同对位取代芳烃 在Vapourtec离子电化学流动反应器中研究了不同的对位取代芳烃。通过使用仲苄基醇来衍生苄基位置,在0°C下,3g转化的Friedel-Crafts步骤缩短了约10倍。实验总结1、开发了*个多步连续流动程序,用于生成环状六元二芳基碘鎓盐;2、从容易获得的乙酸苄基酯开始,将Friedel-Crafts烷基化与随后的阳极氧化环化相结合。由于这些反应的条件相当苛刻,该方法目前受到使用的窄原料的限制;3、未来可以通过解决窄原料的限制问题,实现其他基质和更高的产量;4、缩短反应时间,提高原子经济性和可扩展性。Vapourtec电化学反应器连续电化学反应电化学反应器一旦与Vapourtec流动化学系统集成,离子电化学反应器的温度可以控制在-10º C和100º C之间,这为探索开辟了广阔的化学反应空间。历史上,绝大多数电化学反应都是在室温下进行的,很少有冷却电化学反应的例子。辉瑞公司和日本庆应义塾大学最近发表的一些重要文献也表明,加热电化学反应时,反应结果会有很好的改善。 ● 集成或独立操作选项,易于组装/拆卸,无泄漏操作 ● 与E系列和R系列系统兼容 ● -10°C~+100°C ● 在高达5bar的压力下操作 ● 20种电极材料可用,使用5 cm x 5 cm扁平电极 ● 电极间距、电极面积和反应器体积的灵活性。*封面图来源于Pexels,其他图片来源于网络,旨在分享,如有侵权请联系删除参考文献:[1] One-Pot Synthesis and Conformational Analysis of Six-Membered Cyclic Iodonium Salts Lucien D. Caspers, Julian Spils, Mattis Damrath, Enno Lork, and Boris J. NachtsheimThe Journal of Organic Chemistry 2020 85 (14), 9161-9178 DOI: 10.1021/acs.joc.0c01125[2] https://chemrxiv.org/engage/chemrxiv/article-details/634bfda24a18762789e5c3b1
  • 瑞士万通参加“2018电催化与电合成国际研讨会”
    2018年3月30日-4月1日,由湖南大学主办的“第一届电催化与电合成国际研讨会 (“2018 International Symposium on Electrocatalysis and Electrosynthesis”)在星城长沙顺利召开。 本次会议的目的是对电催化与电合成的研究进行讨论和思考,专注于能源电催化、燃料电池电催化、电解水电催化、光电催化、电催化合成等方面的研究。共有约500名研究人员,学者,博士,业界专业人员参与了此次盛会。瑞士万通携旗下电化学产品参加了此次会议。大会开幕式现场 大会开幕式上,厦门大学孙世刚院士为大会致开幕词。本次会议分为大会报告和三个分论坛举行,共近150场学术汇报。瑞士万通展台 会场外,瑞士万通设立了展台,展出了电化学拉曼光谱仪和旋转环盘电极(RRDE),吸引了众多学者前来交流讨论,不少专家对我们的仪器产生了浓烈的兴趣。 RRDE 旋转环盘电极主要特点:独特的汞密封技术,将固-固接触变为固-液接触,实现静音工作,终身免维护内置光电测速系统,实现对转速的闭环控制,在10000rpm下的误差不超过2rpm可完全密封,满足用户对环境的苛刻要求体积仅为同类产品的1/10,小巧的体积可以轻松放入手套箱中 关于Metrohm Autolab三十多年来,Metrohm Autolab恒电位/恒电流仪在品质,可靠性和耐用性方面,已经成为电化学领域的标杆!我们致力于为从事电化学研究的用户,提供最前沿的仪器,控制软件,附件和应用方案 。Mmetrohm Autolab为满足电化学研究的需要,提供一系列仪器,包括紧凑型,经济型仪器,灵活的模块化系统,以及可以同时测定多个样品的多通道工作站。
  • 大连化物所实现电催化过程电子转移成像
    近日,大连化物所催化国家重点实验室分子催化与原位表征研究组(503组)李灿院士、范峰滔研究员等在液相原位电化学成像的研究方面取得新进展,实现了电催化过程中电荷转移过程的纳米尺度直观成像,直接观察到金属电极在微纳尺度存在空间差异的界面内电势差,突破了人们在传统电化学方面对电子转移过程的认识。  电化学反应的内在驱动力是电化学势,而电化学势的决定因素是界面内电位差,即电子转移情况。如何探测界面电势的局域分布,揭示其与电子转移动力学之间的内在关系对于纳米催化剂的反应机理的认识至关重要。一直以来,研究人员就设想通过纳米探针观测反应过程的电子转移情况,但该尺度下的电流极其微弱,常常受到外界噪音干扰。另外,液相中化学物种的扩散过程常常使电化学成像难以稳定。更重要的是,在电催化过程中,催化反应与电子转移过程卷积在一起,使得该电子转移过程难以直接探测。  本工作中,李灿团队建立了具有纳米级空间分辨率的原子力显微镜和扫描电化学成像联用的表征方法。该方法利用纳米探针的移动扫描测量了能够转移电子的外球电对分子和催化产物分子的局域分布,实现了对电子转移过程和电催化反应过程的原位反应成像。在金属纳米颗粒上的电子转移成像发现,该过程呈现位点依赖的空间异质性,突破了人们对金属电极上电子转移过程的微观认识。同时,通过解耦传质效应对界面电子转移的干扰,数学建模的有限元方法提取速率常数和内电势差测量等一系列精细的实验,揭示了空间差异的界面内电势差与电子转移速率常数对数间的线性关系。该方法在电化学领域对电子转移过程和催化反应实现原位观测,对原位成像技术的发展以及电催化过程机理探测方面提供新思路。  国际同行认为,该工作是原位扫描电化学探针技术的一个新里程碑,这也使人们可以从物理化学底层原理出发,发现纳米催化剂的结构—性能关系。  李灿团队长期致力于太阳能光催化、光电催化、电催化以及催化光谱表征的前沿科学研究,取得了系列成果,特别是利用自主研发的空间分辨的表面光电压显微镜对光催化剂表面光生电荷给出了可视化图像,在国际上最早将其应用到微纳尺度光催化材料电荷分离的成像研究(Angew. Chem. Int. Ed., 2015;Nature Energy, 2018;Angew. Chem. Int. Ed., 2020等)中。  相关研究成果以“Visualizing the Spatial Heterogeneity of Electron Transfer on a Metallic Nanoplate Prism”为题,发表在《纳米快报》(Nano Letters)上。该工作的第一作者是大连化物所503组博士研究生聂伟。该工作得到国家自然科学基金委,“人工光合成”基础科学中心项目、中科院和大连化物所等相关项目的资助。  文章链接:https://pubs.acs.org/doi/10.1021/acs.nanolett.1c03529
  • 北京中教金源应邀参加2018电催化与电合成国际研讨会
    3月30日至4月1日,由中国化学会主办,中国化学会电化学专业委员会和湖南大学共同承办的2018电催化与电合成国际研讨会在长沙召开。开幕式由大会共同主席王双印教授主持,中国化学会常务理事,厦门大学孙世刚院士,湖南大学谭蔚泓院士,曹一家副校长出席活动。来自5个国家和地区,100多家国内外高校,研究机构近500名电催化与电合成领域的学者参加了会议。 北京中教金源科技有限公司作为光电催化领域的国内知名的实验室设备仪器生产商和提供商,全方位系统解决方案供应商也应邀参加了本次会议。 会议设置主会场1个,分会场3个,大会主题报告1个,大会报告13个,分会主题报告21个。邀请报告51个和口头报告15个。厦门大学孙世刚院士,武汉大学庄林教授,吉林大学林海波教授,新加坡南洋理工大学楼雄文教授,国家纳米科学中心唐智勇研究员,中山大学童叶翔教授,澳大利亚格里菲斯大学姚向东教授,重庆大学魏子栋教授,澳大利亚科廷大学蒋三平教授,阿德莱德大学乔世璋教授,加州大学圣克鲁兹分校陈少伟教授等做了报告。 会议充分展示和交流了近年来我国广大科技工作者在电催化与电合成领域所取得的最新进展和突出成果,深入探讨了该领域当前所面临的机遇,挑战及未来发展方向,为电催化与电合成的研究提供了新理念,新思路,新举措。 本次会议中教金源由蔡总亲自带队,携2018全力打造的新产品高温光热催化反应系统(光热协同)参会。会议现场中教金源展台蔡总和客户交流
  • 湖北工业大学程正旺团队:具有匹配带隙和功函数的p–n结促进高效可见光催化析氢
    近日,湖北工业大学理学院(芯片产业学院)程正旺等提出了一种基于匹配带隙和功函数的p-n异质结,不仅促进了可见光吸收,还极大地提高了光生载流子的分离与迁移效率,实现了高效、稳定的PEC可见光析氢。今天小编为大家分享该研究成果,希望对您的科学研究或工业生产带来一些灵感和启发。应用方向:清洁能源,光电催化,分解水制氢,异质结正文:光电催化分解水制氢(H2)为解决能源消耗与环境污染问题提供了重要的解决方案,在实现我国“双碳”战略目标方面具有重要意义。然而,受限于单一催化剂有限的光吸收能力和光生电子-空穴对的复合,导致可见光条件下的光电催化效率并不理想。因此,如何设计和合成高效、稳定的分解水光电催化剂成为领域内的核心课题。针对上述科学问题,湖北工业大学理学院(芯片产业学院)程正旺等提出了一种基于匹配带隙和功函数的p-n异质结,不仅促进了可见光吸收,还极大地提高了光生载流子的分离与迁移效率,实现了高效、稳定的PEC可见光析氢。该工作以“Construction of nanorod-shaped TiO2/Cu3N p–n heterojunction for efficient visible-light hydrogen evolution”为题发表在国际期刊Journal of Materials Chemistry C上。程正旺等采用磁控溅射法,将p型Cu3N薄膜沉积到一维 n型TiO2纳米阵列上,形成了TiO2/Cu3N p-n异质结。得益于合适的能隙和内建电场的协同作用,形成的TiO2/Cu3N p-n异质结不仅将带隙从TiO2的3.09 eV减小到TiO2/Cu3N的2.01 eV,光响应范围也从从紫外区扩展到可见光区域。此外,光生电子-空穴对的分离和转移效率明显改善,平均载流子寿命延长了3倍。进一步地,在 420 nm可见光照射和-0.97 V vs. RHE(可逆氢电极)条件下,光电流密度从TiO2的-0.33 mA/cm2提高到TiO2/Cu3N的-4.66 mA/cm2,提高了约14.12倍。此外,构建的TiO2/Cu3N异质结表现出稳定的PEC析氢性能,相应的可见光分解水产氢速率达到6.98 µ mol/cm2/h。以上结果表明:构建具有合适带隙和功函数的p-n异质结是提高TiO2光电催化性能的一种有效途径,并且有望应用于其他光电催化剂。本项研究为设计和制备高效、低成本、无毒的PEC分解水电极和其他光电子化学应用提供了一条有效的途径。图1. 样品制备流程示意图。图2. TiO2/Cu3N样品的X射线衍射图谱(XRD)。图3. TiO2 (a),Cu3N (b)和TiO2/Cu3N的莫特-肖特基曲线(MS);TiO2/Cu3N界面的TEM图像;理论计算的平面平均电势,(e) TiO2(101),(f) Cu3N(110)。图4. 直接带隙TiO2、TiO2/Cu3N ((αhν)2~hν)和间接带隙Cu3N ((αhν)1/2~hν)的紫外-可见漫反射光谱(DRS) (a)和相应的Tauc图(b)。图5. (a) 稳态光致荧光(PL)光谱,(b) 时间分辨PL (TRPL)光谱。图6. (a) TiO2、Cu3N及TiO2/Cu3N的表面光电压谱(SPV);(b) 在-0.97 V vs. RHE和 420 nm光照射条件下,TiO2、Cu3N及TiO2/Cu3N的光电流密度-电压曲线;(c) 电化学阻抗Nyquist图。图7. (a) TiO2/Cu3N在 420 nm可见光照射下PEC产氢H2的循环稳定性。(b)本研究中TiO2/Cu3N的平均产氢速率与报道的TiO2基异质结结果的比较。图8. 420 nm可见光照射下,TiO2/Cu3N p-n异质结的光生载流子迁移与光电催化分解水析氢机理图。关于此文章的更多细节请查看原文链接:https://doi.org/10.1039/D4TC00916A配置推荐本文中TiO2及TiO2/Cu3N发光测试使用卓立汉光公司的OmniFluo990稳态瞬态荧光光谱仪完成。OmniFluo990为模块化搭建结构,通过搭配不同的光源、检测器和各类附件,为紫外/可见/近红外发光测试提供综合解决方案,也为光电催化分解水制氢催化剂的研发提供有利工具。免责声明 北京卓立汉光仪器有限公司公众号所发布内容(含图片)来源于原作者提供或原文授权转载。文章版权、数据及所述观点归原作者原出处所有,北京卓立汉光仪器有限公司发布及转载目的在于传递更多信息及用于网络分享。 如果您认为本文存在侵权之处,请与我们联系,会第一时间及时处理。我们力求数据严谨准确, 如有任何疑问,敬请读者不吝赐教。我们也热忱欢迎您投稿并发。
  • 2021 年第一期飞纳电镜优秀论文赏析|一种新型电催化剂
    随着能源不断消耗,大气中 CO2 的排放量逐年递增,由此引发的环境问题已成为全球关注的热点。去年的联合国大会上,我国向世界承诺,二氧化碳排放力争于 2030 年前达到峰值,努力争取 2060 年前实现碳中和。如何减少 CO2 排放、有效转化和利用 CO2 已引起各国政府的高度关注,CO2 的固定和转化是降低其含量的有效途径之一。 我们都知道自然生物可以利用太阳能、化能等能量形式固定二氧化碳进行自养生长。到目前为止,科学家共发现了 6 种天然固碳途径。其中卡尔文循环(光合作用中的碳反应部分)是自然界分布最广的固碳途径,每年可将 1 千亿吨二氧化碳转化成再生物质。但天然固碳的转换效率较低、经济性较差,是限制其实现工业化利用的主要瓶颈。因此构建具有高转化效率的人工固碳途径一直是相关领域的研究重点。 图1. 卡尔文循环(来自:维基百科) CO2 电化学还原(ERC)技术是在常温常压条件下,利用电能(尤其是可再生能源发电)将 CO2 与水直接反应生成合成气、甲酸、碳氢化合物、醇类等高附加值的化学品或液态燃料的新技术,是一条实现可再生能源存储与 CO2 转化利用的绿色途径,对人类的可持续发展具有重要意义。ERC 技术不需要制氢、加温和加压等额外消耗的能量,且设备投资少,其潜在的经济效益和环境效益引起了研究者广泛关注。 近年来,电化学还原技术取得了长足进展,但仍存在许多亟待解决的问题,例如产物的选择性低、偏电流密度低、催化剂的稳定性与耐久性欠佳等,这些问题限制了 ERC 技术的实际应用和商业化。电催化剂作为 ERC 技术的关键材料,其性能直接影响 CO2 转化效率、还原产物选择性及稳定性。因此,开发高性能的电催化剂,提高催化剂的催化活性、选择性和稳定性具有重要的研究意义和应用价值。 在所有金属电催化剂中,Cu 基催化剂是唯一可在水溶性电解质溶液中将 CO2 高选择性地催化还原生成碳氢化合物和醇类的催化剂。在 Cu 基催化剂表面,CO2 可以还原成 CO、HCOOH、CH4、C2H6、C2H4 及含氧碳氢化合物(醇类)等 16 种不同的还原产物。不同的 Cu 基催化剂用于 ERC 反应时,还原产物分布不同。影响还原产物选择性和还原效率有多种因素,包括催化剂的结构、形貌、晶面、尺寸、组成、表面缺陷等。 浙江大学功能复合材料与结构研究所的研究人员研发出一种新型电催化剂,今年 6 月 2 日,相关研究成果以《在铜-分子界面上紧固溴离子使 CO2 高效电还原成乙醇》(Fastening Br&ndash Ions at Copper&ndash Molecule Interface Enables Highly Efficient Electroreduction of CO2 to Ethanol)为题,发表在《ACS Energy Letter》上。 图2. 在新型电催化剂 CuBr 作用下的 CO2 &ldquo 酿&rdquo 酒过程 研发出的新型电催化剂十二烷硫醇改性 CuBr,在催化过程中会形成一个稳定的 Br 掺杂 Cu 硫醇界面,从而更高效地将二氧化碳还原成乙醇。该电催化剂的 C2+(含有两个碳原子及以上的化合物)法拉第效率提高了 72%, 乙醇的法拉第效率达到 35.9%。 图3. 新型电催化剂的合成过程 上图阐述了在铜箔上合成 CuBr 纳米四面体并使用十二硫醇(DDT)进行修饰改性的过程。首先将机械抛光的铜箔片在 CuBr2 溶液中浸泡 30s,快速形成 CuBr四面体。利用飞纳台式场发射扫描电镜 Phenom Pharos 对 CuBr 和 CuBr - DDT 的形貌进行观察,在铜箔的整个表面上可以清晰地观察到排列紧密、表面光滑的四面体纳米结构(图 3b)。经过 DDT 处理后,可以看到 CuBr 四面体表面吸附的絮凝状 DDT(图 3c)。 实验结果表明,用 DDT 分子修饰的 CuBr 对 C2+ 的法拉第效率高达 72%,乙醇-乙烯比接近 1.1。DDT 在 CuBr 上的吸附会阻碍 Br 的迁移和 CuBr 的完全还原,从而在催化过程中形成独特的 Br 掺杂 Cu 硫醇界面,且界面稳定性高。同时,DDT 的吸附抑制了氢和甲烷的产物选择性。在 Cu 中引入 Br- 可以稳定高价态 Cu,从而提升对乙醇的选择性。这一策略将有助于其他复杂电子-质子转移过程的电催化系统的设计。
  • 仪器表征,科学家先进表征揭示电催化CO₂还原新突破!
    【科学背景】电化学还原一氧化碳(CORR)作为一种无碳酸盐的潜在方法,利用可再生电力生产乙烯引起了广泛关注。乙烯作为重要的化工中间体,其制备过程一直受到选择性和能效的限制。传统的碳-碳偶联反应在碱性条件下虽然有效,但同时也伴随着碳酸盐形成导致的CO2利用效率低问题。而在酸性电解质中进行CO2RR虽然能一定程度上解决了碳酸盐生成问题,但却面临能量效率不高的挑战,特别是在乙烯选择性方面表现不佳。为了解决这些问题,科学家们致力于减弱水解离过程,目的是抑制竞争的氢析出反应,进而提高CO2RR的选择性和能效。然而,初步的实验结果表明,减缓水解离过程并非一劳永逸的解决方案,因为使用重水代替普通水反而导致对乙烯的选择性进一步降低,这引发了新的思考和探索方向。有鉴于此,悉尼大学化学与生物分子工程学院李逢旺教授, 中国科学技术大学,合肥微尺度物质科学国家研究中心及化学物理系曾杰教授(国家杰青)联合多伦多大学David Sinton 和 Edward H. Sargent院士合作探索了促进水吸附并降低水解离能量壁垒的新方法。通过将强电子受体7,7,8,8-四氰基喹啉二甲烷(TCNQ)引入铜催化剂表面进行分子修饰,研究团队实现了显著的乙烯产率提升。修饰后的催化剂表现出75%的乙烯法拉第效率,比未修饰的铜催化剂高出1.3倍。在膜电极组件系统中,实现了32%的全电池能量效率,对应乙烯电合成的能量成本为154 GJ t-1。关键的创新在于,TCNQ修饰不仅增强了铜与水分子的相互作用,促进了水解离过程,还降低了CO到乙烯途径中关键中间体的氢化能量壁垒,从而显著提高了乙烯的选择性。通过一系列原位表征和密度泛函理论(DFT)计算,研究进一步揭示了修饰催化剂的作用机制。【科学亮点】(1)实验首次探索了使用7,7,8,8-四氰基喹啉二甲烷(TCNQ)对铜催化剂进行分子修饰,以提高CO电还原产乙烯的效率和选择性。(2)实验通过在流动电池中测试修饰后的催化剂,发现其乙烯法拉第效率达到75%,比未修饰的铜催化剂高出1.3倍。此外,在膜电极组件(MEA)系统中,实现了32%的全电池能量效率,对应的乙烯电合成能量成本为154 GJ t-1。(3)通过一系列原位表征和密度泛函理论(DFT)计算,揭示了TCNQ修饰如何增强铜与水分子的相互作用,降低了关键中间体*CHCOH到*CCH的氢化能垒,从而提高了CO到C2H4的选择性。【科学图文】图1:水解离对CORR产品分布的影响。图2. Cu-100TCNQ催化剂的表征。图3. TCNQ修饰铜电催化剂的CORR性能。图 4:TCNQ修饰铜催化剂促进C2H4形成的机理研究。【科学结论】本文探索利用强电子受体修饰铜催化剂以激活水解离过程,从而提升CO到C2H4途径的效率和选择性。通过这一设计原则,研究展示了铜与7,7,8,8-四氰基喹啉二甲烷(TCNQ)的相互作用如何增强水分子的吸附和解离能力,进而降低了关键中间体*CHCOH到*CCH的氢化反应能垒。这些发现不仅在实验层面证实了修饰催化剂在电化学还原反应中的潜力,而且通过密度泛函理论(DFT)计算提供了理论支持。此外,通过流动电池和膜电极组件系统的实际性能评估,显示出高达75%的C2H4法拉第效率和32%的能量效率,这为碳中和和可持续化学品生产提供了有前景的路径。这项工作不仅拓展了催化剂设计的思路,还为实现高选择性和能效的多碳产品生产提供了新的理论和实验基础。原文详情:Liang, Y., Li, F., Miao, R.K. et al. Efficient ethylene electrosynthesis through C–O cleavage promoted by water dissociation. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00568-8
  • 绿色化工新突破!电催化一氧化氮高效合成氨
    近日,中国科学院大连化学物理研究所催化基础国家重点实验室理论催化创新特区研究组肖建平研究员团队和碳基资源电催化转化研究组汪国雄研究员团队在电催化一氧化氮还原反应(eNORR)合成氨研究方面取得新进展,在Cu6Sn5合金催化剂上实现了96.9%的氨法拉第效率和安培级电流密度。图片来源于大连化学物理研究所氮氧化物(NOx)的转化处理是一种缓解环境和能源问题的方法。氨作为一种重要的化学物质,可用于肥料、炸药和硝酸等的制备,还可作为燃料。eNORR合成氨相较于传统的哈伯法,是一种更绿色更经济的去中心化合成氨的策略。  图片来源于大连化学物理研究所本工作中,肖建平团队基于自主开发的图论和反应相图分析算法(ACS Catal. ,2021),通过基于描述符的方法初步筛选出铜锡合金具有高eNORR合成氨活性,汪国雄团队进一步合成了Cu6Sn5合金并验证了其具有安培级的合成氨活性。NO电催化实验表明,Cu6Sn5催化剂比Cu和Sn具有更高的活性和选择性,在更广泛的电压范围内也表现出很高的合成氨选择性,在电压为-0.23V vs. RHE时,得到流动池中的氨产率达到10mmolcm-2h-1,法拉第效率为96.9%,并且在大于600mAcm-2时,保持稳定运行135小时。电化学能垒计算表明,Cu6Sn5催化剂比Cu和Sn上生成氨的能垒更低,而且证明Cu6Sn5合金上各产物决速步能垒的大小关系(NH3N2ON2H2)。合作团队基于自主研发的碱性膜电解器件技术(Nat. Nanotechnology ,2023),在总电流为400A时,Cu6Sn5合金上NO电还原产氨速率达到2.5molh-1,展现出了应用潜力。相关研究以“Electrochemical synthesis of ammonia from nitric oxide using a copper-tin alloy catalyst”为题,于近日发表在《自然—能源》(Nature Energy)上。该工作的第一作者是我所05T8组博士研究生井会娟和523组博士研究生邵加奇。以上工作得到国家重点研发计划、国家自然科学基金、中国科学院洁净能源创新研究院合作基金、中国科学院B类先导专项“功能纳米系统的精准构筑原理与测量”、榆林创新院人工智能科技专项等项目的资助。文章链接:https://doi.org/10.1038/s41560-023-01386-6 小科普:氨,化学式NH3,是一种无色、有刺激性气味的气体。氨的用途很广泛,是合成肥料、硝酸(制造炸药的原料之一)、药物的重要原料,而且它还是一种高能量密度(一定空间或质量物质中储存能量的大小)的零碳能源载体,且相对易储存。传统工业上合成氨主要通过一种叫做哈伯法的制备方法在高温高压下进行,能耗较大且产生污染。科学家一直在探索新的合成路线,用可再生能源发电作为驱动力,通过电化学催化的方式合成氨是目前较有应用前景的方式之一。
  • 文献解读丨八面体SnO₂单晶在宽电化学窗口内高效电催化还原CO₂制甲酸
    本文由天津大学一碳化工课题组所作,第一作者为刘海博士,文章发表于Journal of Materials Chemistry A(J. Mater. Chem. A, 2021, 9, 7848–7856)。 将CO2作为一种资源,通过电化学方法利用可再生能源产生的电能将其转化为化工原料与高附加值产品具有巨大的应用前景,有助于实现“碳中和”的长远目标。CO2电化学还原产物有多种,其中两电子还原产物甲酸的路线具有100%的原子经济性和较高的技术经济价值。锡基材料由于价格低廉、无毒和高甲酸选择性等特点而被广泛用作CO2电催化还原制甲酸的催化剂。其存在的一个重要问题是仅能在特定的操作电位下实现高的甲酸选择性,这显然不利于实际CO2电解到甲酸的生产过程,阻碍了该技术的工业化应用。 CO2还原产物的准确定量检测对于催化剂的性能评价至关重要,连续在线检测技术的发展为开发高效的CO2还原电催化剂提供了有效的检测手段。利用岛津在线监测气相色谱系统,通过搭建密封CO2电催化还原电解系统,可实时、准确检测反应过程中气相还原产物的浓度,快速评价催化剂的性能,为设计合成高效的CO2转化电催化剂提供了重要依据。 GC-2014C 在线监测色谱系统 文献解析图一. 扫描电镜(a, b)和HAADF-STEM (c-f)电镜图 首先通过改性水热法合成了暴露(111)和(332)高能晶面的八面体单晶SnO₂纳米粒子。从图一可以看出,两种SnO₂纳米粒子形貌和尺寸均一,且表面由不同的台阶位和平台位等缺陷位组成。 图二. 电催化还原CO2性能表征:(a, b) H-cell (c, d) Flow cell. 图二表明暴露高能晶面的SnO₂呈现出了高的CO₂催化活性和选择性。在流动性电解池(Flow cell)测试中,暴露(111)晶面的SnO₂更是实现了超过500 mA cm-2的甲酸分电流密度以及87.8%的甲酸法拉第效率,超过了工业化指标要求。 图三. DFT计算结果: (a) SnO₂不同晶面组成示意图;(b-c) 反应中间体自由能和吸附能。 DFT计算(图三)和原位Raman光谱(图四)的表征结果表明在高能晶面上有利于*OCHO中间体(生成甲酸的关键中间体)的吸附,而不利于*HCOOH生成物的吸附,从而打破了SnO₂中普通 (110)晶面上固有的中间产物在催化剂表面吸附的尺度依赖关系(Scaling relationship),从而促进了甲酸的生成。图四. 原位Raman表征: (a) 原位Raman示意图;(b-d)不同电位下的原位Raman光谱。 图五. CO₂电化学转化与氯碱工业的耦合技术: (a) 电解装置示意图;(b-d) 电解产物分布图。 在传统的CO₂电催化还原过程中,阳极反应为氧析出反应(OER),该反应需要较高的过电位且产物为低价值的氧气。为了解决这一问题,作者利用廉价的海水作为电解液,与工业上成熟的氯碱技术相结合,将阳极的OER反应替换为氯析出反应(CER),从而大大提高了实际工业应用经济性。图五表明在CO₂还原-耦合CER的电解池中,SnO₂(111)催化剂在宽的电流密度范围下实现了80%的甲酸选择性和接近60%的Cl₂选择性,并表现出了较长时间的操作稳定性。这一重要结果为CO₂还原到甲酸的工业化提供了应用前景。 对上述实验进行总结,本工作通过水热法合成了暴露(332)和(111)高能晶面的的八面体SnO2单晶。它们在~500 mV的电化学窗口内表现出了很高的CO2催化活性和80%以上的高甲酸选择性。结合气体扩散电极,可以实现超过500 mA cm-2的高甲酸分电流密度。密度泛函理论(DFT)计算和原位拉曼光谱研究表明,在高能晶面上有利于*OCHO物种的吸附而不利于HCOOH*的结合,从而有利于在宽的电势范围内生成甲酸。同时,这些八面体的SnO2与氯碱电解槽实现了耦合,可同时高效地生产甲酸和Cl2。而应用自动在线进样分析检测产物的Shimadzu GC-2014C设备,为以上实验中产物的检测提供有效助力。 关联仪器:GC-2014C 文献题目《Highly efficient CO2 electrolysis within a wide operation window using octahedral tin oxide single crystals》 使用仪器GC-2014C 作者Hai Liu, a Yaqiong Su,b, c Siyu Kuang,a Emiel J. M. Hensen,b Sheng Zhang,*a Xinbin Ma*aa Key Laboratory for Green Chemical Technology of Ministry of Education,Collaborative Innovation Centre of Chemical Science and Engineering, School ofChemical Engineering and Technology, Tianjin University, Tianjin 300072, China.E-mail: xbma@tju.edu.cn sheng.zhang@tju.edu.cnb Laboratory of Inorganic Materials and Catalysis, Department of ChemicalEngineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlandsc School of Chemistry, Xi' an Key Laboratory of Sustainable Energy Materials Chemistry,MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of CondensedMatter, State Key Laboratory of Electrical Insulation and Power Equipment, Xi' anJiaotong University, Xi' an 710049, China 声明 1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。3. 文中涉及最优,最佳类描述,限于实验组别对比结果。4. 本文内容非商业广告,仅供专业人士参考。
  • 第二届“环境催化与环境材料”主题网络会议即将召开
    随着化石燃料的燃烧和人类活动的加剧,地球的生态环境日益恶化,人类赖以生存的空气、水和土壤面临者日益严重的环境问题。大气出现二氧化碳快速增长、臭氧空洞、酸雨面积扩大等问题;江河湖海等水体遭受着氮、磷等化学品的污染,造成水体富营养化,形成了赤潮、蓝藻等污染现象;生长粮食的土壤也受到重金属污染和农药、化肥等难降解化学品污染的威胁。环境污染造成物种多样性急速下降,物种灭绝加快;全球气候变暖,气候异常;污染物伴随着生态循环进行全球迁移;人类食品安全受到威胁,癌症、传染病高发。人类发展不能以损害环境为代价,只有经济、社会、资源和环境保护协调发展,追求可持续发展,才能在以发展为核心的前提下实现资源的永续利用。环境催化应运而生,环境催化是指利用催化剂来控制造成环境污染化合物的排放的化学过程,包括应用催化剂生产少污染的产物及能减少废物排放和无副产污染物的新的化学过程,表现在污染预防方面的催化技术应用和污染末端治理方面的催化技术。环境催化剂指用直接或间接的方式方法处理有毒、有害物质(通常是含有毒、有害的气体或液体),使之无害化或减量化,以保护和改善周围环境所用的催化剂,如汽车尾气净化催化剂、工业环保催化剂等。环境催化本质上是希望从微观的原子、分子水平上,研究宏观的环境现象与变化的化学机制及其防治途径,重点研究污染物在环境中的化学转化和效应,深入开展管端控制的过程化学和材料化学研究以寻找更加高效的控制方法和材料。仪器信息网联合面向工业催化领域创新成果产业化的公共服务平台(2020年工信部批建)将于2021年10月28日组织召开第二届“环境催化与环境材料”主题网络会议,邀请业内著名环境催化和环境材料研究学者、检测分析专家等,针对环境催化和环境材料研究应用及检测分析的前沿热点和关键技术进行探讨,为环境催化领域的研发应用与检测分析搭建交流平台,促进催化领域科研人员间的互动交流,促进我国环境催化及环境材料领域的发展。会议主题包括但不限于:气体/污水/固体颗粒物等污染物消除、光催化、绿色催化、节能减排、能源转化及资源化等。报告主题及报告嘉宾:有机半导体可见光催化环境净化、绿色能源和肿瘤治疗探索——朱永法(清华大学 教授)典型挥发性有机污染物VOCs净化与消除研究进展——李新勇(大连理工大学 教授)国仪量子EPR/ESR、比表面及孔径分析技术在环境催化领域的创新应用——方青(国仪量子(合肥)技术有限公司 EPR高级应用工程师)大孔基高效炭烟净化催化剂研究——韦岳长(中国石油大学(北京) 教授)环境与能源光催化研究进展与挑战——董帆(电子科技大学 教授)常温下VOCs高效催化氧化——黄海保(中山大学 教授/主任)NOx的催化脱除——刘志明(北京化工大学 教授)半导体复合材料的设计、制备及提升光电催化性能的研究——王其召(长安大学/西北师范大学 教授)赤泥/粉煤灰改性材料在废水有机物处理中的应用——徐东彦(青岛科技大学 教授/博士生导师)点击报名链接或扫描二维码参会报名:https://www.instrument.com.cn/webinar3/meetings/hjch2021/扫码报名
  • 福建物构所串联电催化CO2制乙烯研究取得进展
    将CO2通过电化学方法转化为高附加值的C2+产物如乙烯,不对于“碳达峰”和“碳中和”目标的顺利实现具有积极推动作用,并能减轻人类对化石燃料的过度依赖,然而,目前电催化CO2制乙烯受限于单一活性位点的多电子转移过程和缓慢的C-C耦合步骤,仍面临活性低、选择性差等问题。   近日,中国科学院福建物质结构研究所结构化学国家重点实验室研究员曹荣、黄远标设计出有效的串联催化策略来提升还原CO2制乙烯的选择性,通过将非贵金属单原子Ni高效催化CO2RR产CO和Cu纳米催化剂可以进行CO-CO耦合的优势有效结合,进行串联催化来提升CO2RR制乙烯的选择性。研究在卟啉基三嗪框架中心锚定Ni单原子(PTF-Ni)及其表面负载Cu纳米颗粒,制备出非贵金属基的串联电催化剂PTF(Ni)/Cu,催化时单原子Ni高效将CO2还原为中间体CO,生成的CO立即被临近的Cu纳米催化剂进行C-C耦合反应高效转化为乙烯。因此,与非串联催化剂PTF/Cu (卟啉中心无金属原子的三嗪框架)主要产甲烷相比,乙烯的法拉第效率提高了5倍 (-1.1V vs. RHE),由9.6% 提高到57.3%,优于目前已经报导的大多数电催化剂。此外,PTF(Ni)/Cu表现出良好的稳定性,连续电解11h后仍能保持约91%的初始活性。原位红外实验、对比实验一氧化碳电还原和理论计算表明,PTF(Ni)有利于增加Cu纳米颗粒表面的*CO活性中间体,进而提升C-C耦合的概率,并且明显降低了生产乙烯所需要的能量,因此实验通过串联催化,提升了CO2转换为乙烯的活性。该工作为进一步提升电催化CO2产附加值高的多碳产物的选择性提供了新策略。  此外,近年来该团队致力于设计多孔框架材料应用于CO2催化转化研究,取得了系列进展(Angew. Chem. Int. Ed. 2021, 60, 17108 Angew. Chem. Int. Ed. 2021, 60, 20915 Angew. Chem. Int. Ed. 2020, 59, 23641 Sci. China Chem. 2021, 64,1332;ACS Energy Lett. 2020, 5, 1005 ACS Materials Lett. 2021, 3, 454 Small 2021, 2004933 Small 2020, 2005254 CCS Chem. 2019, 1, 384 Appl. Catal. B: Environ. 2020, 271, 118929)。   相关研究成果发表在Angewandte Chemie International Edition上,并被选为Hot Paper。研究工作得到国家重点研发计划、国家自然科学基金项目、中科院青年创新促进会优秀会员项目等的资助。  论文链接
  • 【HORIBA学术简讯】催化剂、电催化、光催化、陶瓷 领域 | 2021年第38期
    “学术简讯”栏目旨在帮助光谱技术使用者时时掌握新发表的科学研究前沿资讯。我们将每周给您推送新增学术论文:包括但不限于主流期刊Nature index、ACS、RSC、Wiley、Elsevier等。帮助您了解全球范围用户使用 HORIBA 光谱技术的新动态,为您的科学研究提供新思路,激发学术灵感。如您对本栏目有任何建议,欢迎留言。本周我们推荐5篇前沿学术成果,针对催化剂、电催化、光催化、陶瓷领域,涉及拉曼、荧光技术。催化剂电催化光催化陶瓷更多光学光谱文献,欢迎访问Wikispectra 文献库。
  • 先进表征技术解析钙钛矿氧化物的电催化潜力!
    【研究背景】电催化是能源转换和减排的关键技术,因其在可再生能源的高效利用中成为研究热点。然而,当前电催化剂的性能和成本仍然存在显著挑战,尤其是在催化机制的理解和实际应用方面。为了应对这些问题,新加坡南洋理工大学Xiong Wen (David) Lou教授团队深入探讨了钙钛矿氧化物作为电催化剂的潜力,研究其在氢生成反应(HER)、氧生成反应(OER)和氧还原反应(ORR)等关键反应中的机制。在研究中,发现钙钛矿氧化物因其可调的组成和结构,展现出良好的催化活性和稳定性。这些研究不仅揭示了钙钛矿氧化物的反应机制,还总结了影响其催化活性的关键因素。此外,科学家们应用了多种先进的表征技术,以深入理解催化过程中的结构演变。综述的结果显示,尽管钙钛矿氧化物在电催化领域取得了显著进展,但仍需解决催化剂设计中的复杂性和实际应用中的低效性。因此,未来的研究应致力于结合理论计算和实验表征,优化钙钛矿氧化物的催化性能,为可持续能源技术的发展提供新的路径。【表征解读】本文通过多种先进的表征手段深入探讨了钙钛矿氧化物的电催化机制。首先,利用X射线光电子能谱(XPS)和X射线吸收光谱(XAS)等仪器,作者发现了钙钛矿氧化物在电催化反应过程中表面化学状态的变化,从而揭示了其催化活性与表面组成之间的密切关系。通过对氧气演化反应(OER)过程的研究,作者特别关注了钙钛矿氧化物在反应前后的表面结构演变,发现在OER过程中表面会出现一定程度的浸出和重构现象。针对钙钛矿氧化物在氧还原反应(ORR)中的特殊表现,作者通过原位拉曼光谱表征了其微观机理,得到了在反应过程中氧化物表面活性位点的动态变化。这一发现深入挖掘了钙钛矿氧化物的催化特性,指出了其反应机制中的关键步骤,如吸附、反应中间体的生成及最终产物的释放。在此基础上,作者通过透射电子显微镜(TEM)和扫描电子显微镜(SEM)对钙钛矿氧化物的形貌及微观结构进行了细致观察,结果显示高质量的多晶颗粒具有优异的催化性能,进一步证明了其结构与性能之间的关联性。同时,结合高通量理论计算,作者能够预测不同金属元素的B位对催化性能的影响,从而为材料的设计提供了重要依据。总之,经过XPS、XAS、拉曼光谱、TEM和SEM等多种表征手段的综合分析,作者深入理解了钙钛矿氧化物在电催化中的行为,进而开发了新型钙钛矿氧化物材料。这些新材料展示了在氧气和氢气演化反应中的潜在应用,最终推动了电催化技术的进步,尤其是在可再生能源的高效利用和存储方面的应用。通过这项研究,作者为钙钛矿氧化物的电催化剂设计提供了新的视角和方法,促进了电催化领域的进一步发展。【图文解读】图1. 电催化的前景。图2. 电催化中钙钛矿氧化物的示意图。图3. 钙钛矿氧化物的氧气演化反应机制。图4. 影响钙钛矿氧化物氧气演化反应的关键因素。图5. 钙钛矿氧化物在氧还原反应中的应用。图6. 钙钛矿氧化物在氢气演化反应中的应用。图7. 钙钛矿氧化物在其他反应中的应用。图8. 钙钛矿氧化物的表征和研究框架。【科学启迪】本文提供了对钙钛矿氧化物在电催化反应中的应用及其机制的深入分析,揭示了影响催化活性的多个关键因素。这些发现强调了钙钛矿氧化物的组成和结构可调性,使其在多种反应中展现出良好的催化性能,特别是在氧演化反应(OER)、氢演化反应(HER)和氧还原反应(ORR)中。这一特性不仅为设计高效的电催化剂提供了新思路,也为材料科学领域带来了启示,推动了催化剂开发的进程。此外,本文提出了先进的表征技术和研究框架,有助于系统性地理解催化机制,促进理论计算与实验研究的结合。这种方法论的创新使得研究者能够更精准地探索催化反应的本质,从而设计出更具商业价值的催化剂。总体而言,钙钛矿氧化物的研究不仅促进了可再生能源的应用,也为应对全球能源和环境挑战提供了新的解决方案,具有重要的科学意义和应用前景。这些启示将引导未来在电催化和相关领域的研究,推动绿色技术的发展。参考文献:Jia-Wei Zhao et al. ,Structural evolution and catalytic mechanisms of perovskite oxides in electrocatalysis.Sci. Adv.10,eadq4696(2024).DOI:10.1126/sciadv.adq4696
  • 中国科大在电催化界面过程成像分析上取得新进展
    近日,中国科大环境科学与工程系在电催化界面动态过程的原位成像分析方面取得进展,研究成果以“Plasmonic imaging of the layer-dependent electrocatalytic activity of two-dimensional catalysts”为题发表于Nature Communications上(Nature Communications 2022,13: 7869)。   污染物的电催化转化是水污染控制技术的重要方法。纳米催化剂的表界面是电催化反应发生的场所,因此在微观上理解电催化反应过程,建立纳米催化剂结构与催化转化性能的构效关系是提高催化剂活性的关键。传统电催化研究通过电极电流密度和催化产物,评估催化剂性能,难以在微纳尺寸上原位实时分析单个催化剂的活性分布或反应动态过程。 图1.单个二硫化钼纳米片的充电和催化过程成像分析示意图   针对上述问题,刘贤伟教授课题组博士生赵小娜和周晓丽博士通过表面化学调控,充分发挥了表面等离子体成像技术对电极表面电荷密度高度敏感的特性,原位成像分析了层状二维电催化材料的充电电荷密度分布和电催化界面电荷交换过程。该方法消除了电极表面充放电流的干扰,分别定量了催化剂表面的充电和氧化还原电流分布,结合课题组前期发展的表面等离子激元原位蚀刻技术(Chem, 2021, 7: 1626-1638),发现了二硫化钼催化性能和层数之间的依赖性,建立了催化剂导电性和电催化性能之间的关系。该研究对于设计新型高效污染控制电催化纳米材料具有重要的意义。 图2.单个二硫化钼纳米片随层数变化的电催化过程   该项工作得到了国家自然科学基金的资助,也获得了环境科学与工程系陈洁洁教授课题组在量化计算方面的支持。
  • 第四届能源与环境催化会议在长沙正式召开
    第四届能源与环境催化会议”重新启动,会议于2022年8月15-16日召开,我们在长沙等待与您相聚! 中教金源展品一览: 一、GPPCM微型光热催化微反系统;二、CEL-PECRS2000全自动光电催化流动反应系统;三、PCRD300-12光化学反应仪及气体分配仪;四、CEL-PF300-T9氙灯光源系统(高端一体);五、GC7920全自动系统气相色谱;六、HPRS-PEC250光催化光电反应釜;七、CEL-NP2000-2(10)A强光光功率计;八、CEL-GPRT100鼎式光催化反应釜;
  • Nature Catalysis:最新二维电催化材料研究进展
    p style=" text-align: justify "   二维材料独特的各向异性和电子性能引起了人们对其基本电化学和广泛的应用领域的极大兴趣。从2D材料原型——石墨烯开始,对其他超薄层结构的广泛研究逐渐出现。其中包括过渡金属二硫代化合物TMDs、层状双氢氧化物LDH、金属碳化物和氮化物(MXenes)以及单元素化合物的黑磷族。随着可持续能源的发展得到全球的关注,评估各种二维纳米材料在这些领域的有效性已成为当务之急。电催化技术是未来清洁能源转化技术的核心,主要通过析氢反应(HER)、氢氧化反应(HOR)、氧还原反应(ORR)、析氧反应(OER)和二氧化碳还原反应(CO2RR)实现。而二维纳米材料可作为昂贵的铂基催化剂的经济替代品。 /p p style=" text-align: justify "   【成果介绍】 /p p style=" text-align: justify "   最近新加坡南洋理工大学的XinyiChia与布拉格化工大学的MartinPumera教授以”Characteristics and performance of two-dimensional materials for electrocatalysis“为题在Nature catalysis上发表综述,主要讨论了这些二维材料的相似之处,并强调了它们在电化学和电催化性能上的差异。介绍了工业重要反应中与能源有关的电催化二维材料的研究进展。 /p p style=" text-align: justify "   【图文导读】 /p p style=" text-align: justify "   1. 2D材料的结构 /p p style=" text-align: justify "   二维材料独特的各向异性和电子性能引起了人们对其基本电化学和广泛的应用领域的极大兴趣。从2D材料原型——石墨烯开始,对其他超薄层结构的广泛研究逐渐出现。文章主要探讨了超薄2 D纳米材料的结构、电催化性能及其影响因素,包括石墨烯、单或一些层次化的过渡金属(TMD),如金属氧化物、水滑石(类)、六角氮化硼(h-BN), g-C3N4, MXenes,黑磷等,其结构如图1所示。 /p p style=" text-align: justify " & nbsp /p p style=" text-align: center " img title=" 111111111111.webp.jpg" alt=" 111111111111.webp.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/46566102-1ac7-4757-bab6-7787b308ae47.jpg" / /p p style=" text-align: center "   图1 二维材料结构构型示意图. (a)石墨烯 (b)氮化硼 (c) g-C3H4 MoS2的两种物相(d)2H型, (e)1T型 黑磷的两种物相(f)三方晶系, (g)正交晶系. (h)MXenes, 以Ti3AlC2为例。 /p p style=" text-align: justify "   2. 二维电极材料的电化学稳定性 /p p style=" text-align: justify "   由于材料在使用过程中可能会发生化学或结构变化,因此了解二维电极材料的稳定性对于二维纳米材料的应用是必不可少的。电极的稳定性是由其固有的电化学性质和催化反应倾向来决定的,即取决于电解液的选择和应用的电位窗口。如Bonde[1]等首先报道了酸性条件下MoS2和WS2进行HER反应后,通过XPS观察到催化剂表面形成了MoO3,SO42-等氧化产物。最近有相关报道VIB族元素化合物在电位区间为1.0~1.2V(vs. Ag/AgCl)易被氧化成高价金属离子。此外,不同的非金属元素也影响着TMDs的稳定性,如报道了VIB族元素化合物的氧化峰电位符合WSe2& lt mose2& lt ws2 & lt MoS2的规律。因此在研究TMDs此类材料中,应着重关注电极材料的电化学稳定性。 p style=" text-align: justify "   由于石墨烯、g-C3N4、MXene等具有较高的还原电位,在ORR、HER、OER、CO2RR的电位区间都难以被氧化还原,因此这些材料具有广泛的电化学反应窗口。 /p p style=" text-align: justify "   文献信息 /p p style=" text-align: justify "   [1] Hydrogen evolution on nano-particulate transition metal sulfdes. (Faraday Discuss. 140, 219–231 (2009).) /p p style=" text-align: justify "   原文链接: /p p style=" line-height: 16px " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a title=" bonde2009.pdf" href=" https://img1.17img.cn/17img/files/201812/attachment/0f62cb46-d16a-4d4d-8df0-95918f65443e.pdf" target=" _blank" textvalue=" Hydrogen evolution on nano-particulate transition metal sulfdes" & nbsp Hydrogen evolution on nano-particulate transition metal sulfdes /a /p p style=" text-align: justify "   3. 二维材料的电子转移 /p p style=" text-align: justify "   电催化剂的电子转移强弱直接决定了催化反应的速率快慢。而电催化剂的各向异性、电子和表面特性已经被发现在电子转移(HET)中显示出重要的意义。二维材料中,如TMDs的边缘和基面具有明显的电子转移特性。以MoS2为例,如图2,以电化学探针进行检测边缘与基面的活性,发现边缘的反应速率常数远高于基面的反应速率常数,因而边缘原子的活性高于基面原子的活性。除了TMDs以外,石墨烯也显示相同的规律。如图3,氧化石墨烯表面含氧基团数量影响着石墨烯的电子转移,含氧官能团比例越高,电子转移速率越差。此外,异质元素掺杂也会改变二维材料的电子传递特性。如氮掺杂石墨烯可以提高其电子转移速率,由过渡金属掺杂的TMDs也同样能够引起电子传递变化。 /p p style=" text-align: justify " & nbsp /p p style=" text-align: center " img title=" 222222222.webp.jpg" alt=" 222222222.webp.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/a377e54d-320a-4733-9c49-a736b1f531c6.jpg" / /p p style=" text-align: center "   图2 影响二维材料电子传递的各向异性效应. (a)MoS2的边缘和基面示意图, 插图:宏观辉钼矿晶体 MoS2(b)底面与(c)边缘面. /p p style=" text-align: justify " & nbsp /p p style=" text-align: center " img title=" 3333333333333333.webp.jpg" alt=" 3333333333333333.webp.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/ff003f31-27f0-435f-a46d-d5d923bb6910.jpg" / /p p style=" text-align: center "   图3 影响二维材料电子传递的表面特性 /p p style=" text-align: justify "   4.二维电催化材料的研究进展 /p p style=" text-align: justify "   材料的传质效应、各向异性和本征活性决定了二维材料的电催化效率。电催化中的各向异性因子建立在二维材料不同的催化位点。电催化剂体系中材料的内在活性是通过火山图关系来评价的,火山图关系是根据Sabatie原理进行定量描述的。理想情况下,高活性的催化剂与反应中间体的结合既不应太强烈也不应太弱。催化剂载体的选择也属于催化剂的设计范围,选择一个合适的载体可以优化催化剂的活性。 /p p style=" text-align: justify "   从传质效应上看,由于界面反应物种类(H+或OH-)的快速消耗和气态产物的生成阻碍了反应速率,因此良好的传质对于高活性催化剂是至关重要的。在二维催化剂中,相邻薄片之间的间隙存在二维通道,可以有利于提高液相和气相之间的传质效果。如图4,将间隔物结合到MoS2纳米薄片中,产生了开放的通道,增大物质传达的表面积及改善离子扩散,整体增强HER的催化性能。 /p p style=" text-align: justify "   & nbsp /p p style=" text-align: center " img title=" 444444444.webp.jpg" alt=" 444444444.webp.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/b2311091-5db0-4639-be2a-48caf0f09a83.jpg" / /p p style=" text-align: center "   图4传质效应影响二维材料的电催化性能 /p p style=" text-align: justify "   从各向异性上看,二维材料的各向异性因子对其催化性能的影响表现在活性的边缘面和惰性的基面。二维材料边缘上的原子所处的化学环境与基体平面不同,基体平面一般具有饱和配位,而基体平面具有较大的非饱和配位倾向。由于边缘位点对二维材料的催化活性起着重要作用,因此优化边缘结构以提高其性能变得至关重要。在HER电催化中,2H-TMDs的催化活性位点主要来自于边缘面原子。如合成具有双陀螺形貌的介孔MoS2结构(图5),可以获得高比例的外露边缘位置,从而增强了MoS2的HER活性。此外,也有相关报道关于通过提高边缘位点及导电性来改善1T-TMDs的HER活性。总之,提高二维材料的边缘活性位点数量,有利于提高二维材料的电催化活性。 /p p style=" text-align: justify " & nbsp /p p style=" text-align: center " img title=" 555555555555.webp.jpg" alt=" 555555555555.webp.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/7bd7f2cf-707b-453a-8efd-35920f27f312.jpg" / /p p style=" text-align: center "   图5 各向异性效应影响二维材料的电催化性能 /p p style=" text-align: justify "   从本征活性上看,引入掺杂剂或官能团等可以最大限度地提高二维材料催化的内在活性。由于边缘是二维材料的催化活性位点,在边缘掺杂或附着官能团可以增强其催化活性。而基底位掺杂或功能化也同样可以调节惰性基底平面的内在活性。如由于吡啶氮被认为是中间COOH*形成CO的活性吸附位点,因此N掺杂石墨烯可以表现出优异的CO2RR催化活性(图6)。此外,缺陷工程是一种提高活性位点固有活性的方法。表面结构缺陷包括配位数低的边缘 所以才会出现悬空键和原子空位。如由于金属空位可以提高了邻近金属中心的原子价态,从而有利于提高OER活性,而利用等离子体技术处理CoFe-LDHs可以导致Co、Fe和O出现多个空位,这些空位是可以降低水的吸附能同时提高OER活性。 /p p style=" text-align: justify " & nbsp /p p style=" text-align: center " img title=" 66666666666.webp.jpg" alt=" 66666666666.webp.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/0ccc76a4-e8d4-4a91-a345-5066f093a19d.jpg" / /p p style=" text-align: center "   图6本征活性影响二维材料的电催化性能 /p p style=" text-align: justify "   【总结与展望】 /p p style=" text-align: justify "   二维材料丰富的电化学特性为其在能源催化中的应用提供了新的机遇。尽管二维材料具有多样性,但其最终的电催化性能和电荷转移性能取决于各向异性和表面特性。二维材料在ORR、HER、OER和CO2RR电催化中取得了巨大的成功,其中边缘面为主要的催化活性中心。 /p p style=" text-align: justify "   提高二维材料的电催化活性主要从以下几个方面进行:①改变二维纳米结构来增加活性边缘位点的密度 ②异质元素掺杂二维材料或与官能团结合、或引入缺陷增强催化活性 ③改善二维材料电子转移能力提高材料催化活性,如使用合适的催化剂基底材料。展望未来,二维纳米材料领域充满了各种可能性。通过集成两种或两种以上的材料来开发混合2D材料,可以创建新的复合结构,以显示出独特的性能和针对特定应用的定制属性。各向异性和表面特性可以作为设计不同化合物的指导原则。 /p p style=" text-align: justify "   【文献链接】 /p p style=" line-height: 16px " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a title=" 1212121.pdf" href=" https://img1.17img.cn/17img/files/201812/attachment/4901c2e3-062f-4ae5-a435-f30cd6f2f33f.pdf" target=" _blank" textvalue=" Characteristics and performance of twodimensional materials for electrocatalysis" Characteristics and performance of twodimensional materials for electrocatalysis /a /p p & nbsp /p p & nbsp /p p & nbsp /p p & nbsp /p p /p /p
  • 岛津赞助首届“丝绸之路”能源催化青年学者研讨会
    日前,以“促进可持续发展的能源催化科学与技术”为主题的第一届“丝绸之路”能源催化科学与技术青年学者研讨会在西安交通大学召开,本届研讨会旨在加强“丝绸之路”沿线高校能源催化科学与技术交流与合作,为中西部及国内其他地区的优秀青年催化工作者提供一个相互学习和交流的平台,展示各位学者在能源催化及相关领域取得的最新研究成果和进展,深入探讨能源催化领域所面临的机遇、挑战及未来发展方向,促进能源催化研究的自主创新及应用转化。岛津公司参加并赞助本次会议。 来自中国科学院、天津大学、中国科学技术大学、California Institute of Technology、北京化工大学、北京理工大学、陕西师范大学、兰州大学、四川大学、黑龙江大学、新疆大学、西北师范大学、重庆大学、西北大学和西安交通大学等近三十所知名大学、科研机构等约80余名师生参加本次会议,其中有14位长江学者、杰青、优青、中组部青拔、青年千人和中科院“百人计划”在内的专家学者。研讨会围绕光催化、热催化、功能材料合成与应用、表界面催化等前沿领域展开演讲,全面展示了各自在能源催化及相关领域取得的最新研究成果和进展。研讨会现场传真 西安交通大学王铁军副校长作了开幕式致辞,他鼓励青年学者要坚持、执着,在相关领域做出新贡献,其中还特别提到岛津公司的科学家田中耕一先生获得诺贝尔奖的故事,勉励与会者在科研工作中要有坚持的精神。在大会报告环节,来自天津大学的杰青巩金龙教授做了题为“氢能转化催化剂表界面调控”的报告,北京化工大学的杰青孙晓明教授做了题为“纳米阵列电极的构筑及其电化学应用”的报告,中国科学技术大学的杰青黄伟新教授做了题为“金催化作用的敏感性”的报告,长江学者、陕西师范大学刘忠文教授做了题为“CO2氧化乙苯脱氢催化剂设计”的报告。光电催化作为一个主要的议题,多位学者就高效光电催化剂合成策略、形貌控制,及在清洁能源转化和环境污染治理两大领域的应用方面进行了集中报告,同时与会专家还就光电催化材料的未来发展方向也进行探讨。 岛津积极参与本次大会,设有展台,通过样本、易拉宝、会议手册宣传页的方式展示岛津最新产品和解决方案。 其中备受与会者关注的《岛津分析仪器在人工光合成中的应用文集》详细展示了GC、GCMS、HPLC和UV等分析仪器在人工光合成反应产物分析中的应用,如:“使用GC-BID进行CO2诱导反应生成CO的分析”;“使用GC-BID进行CO2诱导反应生成甲酸的分析”;“使用GCMS测定同位素标记的CO2来确认反应机理”;“HPLC测定甲酸和甲醛”;“HPLC测定反应中生成的过氧化氢”。 同时还展示了大型分析仪器SPM、XRD、QYM等在人工光合成催化剂表征中的应用,如:“使用SPM对半导体光催化剂进行光辐照原位分析”;“使用XRD对痕量半导体光催化剂粉末进行分析”;“使用QYM对超分子络合物光反应产物的评估”。分析仪器在能源催化及相关领域的研究中起到至关重要的作用,也是与会专家关注的热点,会议期间有不少专家前来岛津展台咨询各类分析仪器的最新产品信息。岛津展台传真 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 美国麦克仪器助杂化二维超薄结构电催化还原CO2研究取得重要进展
    近日,中国科技大学合肥微尺度物质科学国家实验室谢毅教授和孙永福特任教授课题组在杂化二维超薄结构的合成及应用领域取得重要进展。该课题组设计了一种杂化模型体系用来研究金属表面氧化物对其自身金属电催化性能的影响,该结果以“Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel” 为题发表在Nature上(2016, 529, 68-72, DOI 10.1038/nature16455)。 通过电催化过程将CO2还原成碳氢燃料分子不仅有助于降低CO2的负面影响,而且还可以获得甲烷、甲酸、甲醇等燃料。然而,电还原CO2过程的一个瓶颈是如何将高稳定性的CO2活化,这往往需要非常高的过电位;而过电位的存在不仅浪费大量的能源,还往往导致还原产物选择性的降低。 已有报道显示金属电极通常具有较高的电还原CO2活性,尤为有趣的是通过金属氧化物还原得到的金属比通过其它方法制备的金属催化活性要高,甚至能将CO2的还原电位降低到热力学的最小值。但是金属表面氧化物对其自身金属电还原性能的影响机制还不清楚,这主要是因为以前制备的催化剂中含有大量的微结构如界面、缺陷等,这些微结构的存在很容易掩盖住表面金属氧化物对其自身金属催化性能的影响。 为了揭示金属表面氧化物对其自身金属电还原CO2性能的影响,谢毅教授、孙永福特任教授课题组构建了一种杂化模型材料体系, 即数原子层厚的金属/金属氧化物杂化超薄结构。以六方相Co为例,他们通过配体局限生长的方法制备了4原子层厚的Co/Co氧化物杂化结构。电化学比表面积矫正的Tafel斜率和法拉第转换效率结果揭示出局限在超薄结构中的表面Co原子比块材中的表面Co原子在低的过电位下具有更高的本征催化活性和更高的产物选择性,Co原子层的部分氧化进一步增加了其本征催化活性,进而在只有0.24 V的过电位下于40 h内获得10 mA cm-2的稳定电流和90%的甲酸选择性。本工作展示了金属原子在位于特定的排列方法和氧化价态时,可能具有更高的催化转化活性,即超薄二维结构和金属氧化物的存在提高了催化还原CO2的能力。该工作有助于让研究者重新思考如何获得高效和稳定的CO2电还原催化剂,也对推动电催化还原CO2机理研究具有重要的意义。 文中催化剂的CO2吸附性质是通过美国麦克仪器公司的经典仪器ASAP 2020获得,通过对比四种催化位点下催化剂的CO2吸附性能,有力的佐证了文中论点。全文链接:http://www.nature.com/nature/journal/v529/n7584/pdf/nature16455.pdf。
  • 岛津XPS助力湖南大学电催化与电合成实验室高影响因子文章发表:Ir单原子催化剂超低电位甲醇氧化
    Angewandte chemie影响因子:16.6设计Ir-C4单原子催化剂,实现了超低电位( 1.23V),以生产氢气和其他增值化学品,同样需要克服高过电位。近期,团队通过在高温聚合物电解质膜电解槽(HT-PEME)中将热催化与电催化相结合,开发了集成式热催化-电催化耦合反应体系,通过将醇类热化学脱氢与电化学氢泵相结合成功实现了热电耦合催化乙醇脱氢制备乙醛(PNAS., 2023, e2300625120)、热电耦合催化甲醇脱氢制备高纯氢气和CO(JACS., 2024, 146, 14, 9657-9664)以及低电位甲醇。相关研究表明,在HT-PEME中将热催化与电催化相耦合能够有效增强催化反应的速率和选择性,热电耦合能够相互协同促进。由于反应体系复杂,缺乏直接表征手段,目前缺乏直接证据证明热催化与电催化的相互协同。基于这一挑战,项目团队设计了Ir-C4单原子催化剂,实现了超低电位(图2. 热-电耦合催化甲醇氧化反应制氢体系的具体催化路径在HT-PEME中,施加电位之后甲醇在Ir-C单原子催化剂上由电促进热催化反应生成H2和CO,之后H2和CO在Ir-C单原子发生氧化反应,阴极发生氢析出反应生成H2。图3 Ir-C相关催化剂的EXAFS表征图4. Ir-C单原子催化剂、Ir颗粒催化剂XPS谱学测试通过EXAFS、XPS分析测试表明,Ir-C催化剂中的Ir主要是以单原子的形式存在,无Ir纳米颗粒。同时由于Ir原子与C载体之间的强相互作用,使Ir原子的电子结构发生了很大的变化,从而出现缺电子性质(Ir+)。特殊的几何结构和电子结构可能赋予Ir-C SACs具有优异的甲醇反应性。图5.Ir-C SACs和参比样品的甲醇氧化性能测试及在线产物分析如图5所示,当电解槽加热到80/100℃时,MOR的起始电压已低至0.4 V,随着温度的升高,MOR的起始电压逐渐降低。在160℃时,起始电压低于0.1 V,与理论平衡电位非常接近。研究结果表明,由于热和电化学耦合催化,甲醇可以被Ir单原子催化剂在超低电位( 0.1 V)下氧化。然而,同样条件下的Pt/C和Ir-C NP,其起始电位仍然很高,分别为0.3 V和0.4V。Ir-C SACs相比Pt位点和Ir颗粒位点的优异性能,证明了在热电化学耦合作用下IrC4位点独特的低电位甲醇氧化能力,表明其有巨大的Pt基催化剂替代能力。Ir(0.3)-C SACs在0.4 V(200℃)下的质量活度达到1.8 A mg-1Ir,比Ir-C NP和Pt/C分别高出约52倍和40倍。阴极HER对Ir(0.3)-C SACs(比Ir-C NP高3.3倍)的产氢率为0.2 ml min-1。质量比产氢速率最高达到18.3 mol H2h&minus 1gIr-1,与Ir-C NP和Pt/C相比,分别高出54倍和31倍。上述结果表明,得益于热学和电化学的耦合催化,Ir-C SACs的MOR和相应的产H2速率都表现出了显著的活性。阳极可以检测到CO、CO2、CH4和少量的H2证实热化学过程CH3OH → CO + 2H2,此外,超高的HOR和COOR活性证明了电化学氧化过程。本文的研究为热电耦合催化反应过程中热场-电场相互协同作用提供了直接证据,突破了以往关于MOR在Ir SACs上无活性的结论。该工作为设计高效催化反应和新型催化剂提供了指导。相关工作得到了岛津-KRATOS公司相关设备的大力支持。文献题目《Ultra-low-Potential Methanol Oxidation on Single-Ir-Atom Catalyst》使用仪器岛津AXIS SUPRA作者Liyuan Gong, Xiaorong Zhu, Ta Thi Thuy Nga, Qie Liu, Yujie Wu, Pupu Yang, Yangyang Zhou, Zhaohui Xiao, Chung-Li Dong, Xianzhu Fu, Li Tao*, Shuangyin Wang*State Key Laboratory of Chem/Bio-Sensingand Chemometrics, College of Chemistry and ChemicalEngineering, Hunan University, Changsha, Hunan 410082, P.R. China 全文链接https://onlinelibrary.wiley.com/doi/10.1002/anie.202404713
  • 免费参会!10.25环境催化材料主题会议
    免费参会!10月25日环境催化材料进展与应用随着工业化的迅猛发展,工业生产和能源消耗产生的废气种类越来越多,排放量也越来越大,由此产生的酸雨、光化学烟雾、温室效应等导致大气环境日益恶化。以发展源头治污防污、减少生产过程中污染物排放和实现废物资源化为使命的环境催化技术成为全球关注的热点。仪器信息网将于2022年10月25日举办“环境催化材料进展与应用”主题网络会议,为环境催化领域的研发应用与检测分析搭建交流平台,促进催化领域科研人员间的互动交流,促进我国环境催化及环境材料领域的发展。会议日程报告时间演讲题目报告人14:00-14:30半导体复合材料的设计、制备及提升光电催化性能研究王其召长安大学/西北师范大学 教授14:30-15:00岛津epma技术特点及其在汽车尾气催化材料中的应用廖鑫岛津企业管理(中国)有限公司 EPMA产品专员15:00-15:30尖晶石衍生化功能材料的构建机器催化转化特性研究李新勇大连理工大学 教授15:30-16:00利用赤泥制备催化材料及用于废水有机物处理的研究徐东彦青岛科技大学 教授/博士生导师参会方式报名链接:https://insevent.instrument.com.cn/t/kLa 或扫描下方二维码扫码参会赞助参会请扫码联系
  • 大连化物所开发单原子合金材料促进电催化CO2还原的C-C偶联
    近日,中国科学院大连化学物理研究所太阳能研究部太阳能制储氢材料与催化研究组研究员章福祥团队设计合成了一种单原子铋修饰铜合金催化剂,用于电催化CO2还原。该催化剂展现出优异的C-C偶联功能,显著提高了多碳(C2+)产物的法拉第效率。太阳能光催化技术是实现太阳能至化学能转化的重要方式之一,而高效助催化剂的开发是实现高效光化学转化的重要一环。近期,章福祥团队致力于通过电催化剂的优化设计,开发高效光催化助催化剂,在电催化水氧化、电催化析氢和电催化氧还原等催化剂设计合成方面取得系列进展。 电催化还原CO2(CO2RR)制备燃料或化学品,不仅可实现CO2的资源化利用而且可用于绿色氢能的液态储存,可为太阳能光催化制储氢一体化技术奠定基础。该领域的文献调研发现,单原子合金(SAA)作为一种具有特殊电子结构的单原子催化剂,虽已被用于CO2RR制备C1产物,但尚未有实验结果证明其可用于高效制备C2+产物。 本工作设计合成了一种单原子铋修饰铜合金催化剂(BiCu-SAA)。研究发现,该催化剂具有显著的C-C耦合促进作用。与纯铜催化剂相比,BiCu-SAA催化剂显著提高了C2+产物选择性以及FE(C2+)/FE(C1)比率。一系列原位红外、XAS等表征和理论计算结果表明,单原子铋修饰可有效调节铜的电子结构,促进CO2活化和C-C偶联步骤,解释了获得较高C2+产物选择性的原因。 相关研究成果以Single Atom Bi Decorated Copper Alloy Enables C-C Coupling for Electrocatalytic Reduction of CO2 into C2+ Products为题,发表在《德国应用化学》上。研究工作得到国家重点研发计划、国家自然科学基金、中科院战略性先导科技专项(A类)“变革性洁净能源关键技术与示范”以及北京光源机时等的支持。南开大学和中国科学技术大学的研究人员参与研究。大连化物所开发单原子合金材料促进电催化CO2还原的C-C偶联
  • 吉林大学材料学院能源化学研究综述:MOFs衍生的过渡金属单原子电催化剂用于高效氧还原反应
    电化学储存与转换系统主要包括金属离子电池、双离子电池、超级电容器、金属-空气电池和燃料电池等。后两种是清洁、安全、可靠的能源装置,具有环境友好、能量密度高、原料来源丰富、工作时间长等优点。氧还原反应(ORR)作为燃料电池的阴极反应,具有缓慢的反应动力学。因此,需要电催化剂来增强反应过程。近年来,过渡金属单原子电催化剂(TM-SACs)因其优异的催化活性(FeCoMnCuNi)、低成本和优异的稳定性而蓬勃发展。由于单原子在制备过程中容易团聚,因此载体材料的选择对于TM-SACs的形成尤为重要。载体也会影响催化反应中的电子输运和物质输运过程。MOFs具有结构可调、改性方法多样等优点,在TM-SACs的制备方面具有很大的潜力。图1. 基于MOFs的TM-SACs的制备策略和表征方法02成果展示金属有机骨架材料(Metal-organic frameworks, MOFs)由于其独特的结构和组成,在燃料电池和金属-空气电池的氧还原反应中得到了广泛的应用。近年来,以MOFs为前驱体或模板制备过渡金属单原子电催化剂(TM-SACs)的研究取得了很大进展。近期,吉林大学材料科学与工程学院郑伟涛团队对MOFs衍生的TM-SACs的制备方法和表征手段进行概述,并在此基础上归纳了TM-SACs的结构与性能的关系 (图1)。该综述旨在阐明大量的最新研究进展,来指导高活性、高负载量、高稳定性的TM-SACs的实现。第一作者为吉林大学材料科学与工程学院硕士生宋可心,通讯作者为张伟教授和郑伟涛教授。03图文导读1.ORR反应机制与优化原则ORR的反应过程如图2所示。由于反应条件的不同,导致酸性和碱性条件下的反应机制存在一定的差异。研究表明,酸性条件下较差的ORR性能主要是由于反应过程中吡啶-N质子化为吡啶-N-H结构,所以可以通过以下方式改善酸性条件下的ORR性能:1)防止质子和吡啶-N在酸性环境中快速结合;2) 增加本征活性和活性位点的数量。然而,在碱性条件下,大多数研究证明吡啶-N在催化过程中起着积极的作用。因此,增加吡啶-N的含量和增加金属活性中心数量是改善碱性条件下ORR性能的重要手段。此外,O2分子在活性位点上的吸附方式主要分为以下三种:Griffiths模式、Pauling模式和Yeager模式。不同的吸附模式也对催化机制产生一定的影响。图2.(a)酸性条件下ORR反应示意图。(b)碱性条件下ORR反应示意图。(c)O2在金属活性位点的三种吸附模式示意图2. 单原子催化剂的表征手段由于SACs的金属的尺寸很小,对表征技术提出了更高的要求。电镜技术和谱学技术的有效结合可以实现SACs的定性和定量分析。球差电镜利用其超高的空间分辨率可以直接观察到单原子的存在。结合EELS和EDS可以准确地确定材料的元素分布,有利于结构分析和物相识别。谱学技术,如(原位)X射线精细结构分析、穆斯堡尔光谱、红外光谱、原位拉曼光谱和原位漫反射红外傅里叶变换光谱(DRIFTS),有助于准确表征SACs并探究催化机理。这些表征技术从不同角度证实了SACs的存在,形成了完整的SACs表征体系。表征技术如图所示:图3.(a)FeSAC@FeSAC-N-C的不同放大倍数的像差校正STEM图像和EDS图像。(b)Co-pyridinic N-C的不同放大倍率的像差校正STEM图像和EELS光谱。(c) Co(mIm)-NC(1.0)催化剂的亮场STEM图像、HAADF-STEM图像和相应的EELS光谱图像。(d) Co(mIm)-NC(1.0)催化剂的亮场STEM图像、HAADF-STEM图像和相应的EELS光谱图像图4.(a)不同电位下Au L3边和Cu K边的XANES光谱和EXAFS拟合分析.(b)不同电位下的Pt1-N/C的XANES光谱和EXAFS拟合分析3. 基于MOFs制备TM-SACs的五大策略由于MOFs独特的空间结构,是制备TM-SACs的良好前驱体。在这一部分中,详细总结了使用MOFs制备TM-SACs的五种策略,并探讨了TM-SACs的结构特征和性能之间的相关性。所有这些策略都集中于如何保护过渡金属原子在热解过程中不发生团聚。由于MOFs后处理的方式不同,保护机制也存在一些差异。根据保护机制的不同,本部分将其分为以下五种策略:1) 表面限域策略:由于MOFs提供高度分散的金属位点,是制备TM-SACs的理想前驱体或模板。通过使用牺牲金属(SMs)的“空间栅栏”效应,可以调整过渡金属之间的距离,从而有效地避免高温下过渡金属原子的聚集。因为SMs的熔点相对较低,它们在热解过程中挥发。根据过渡金属的掺杂数量,主要可分为以下几类:1)单金属掺杂;2) 双/多金属掺杂。图5.(a)Fe掺杂ZIF-8衍生催化剂的合成过程示意图和不同粒径的Fe掺杂ZIF-8的SEM图像。(b)ZIF-8前驱体中Fe掺杂量对催化剂结构和活性影响示意图。(c)NC吸附铁离子的模型催化剂示意图及反应路径图。(d)通过调节Zn/Co的摩尔比制备Co-SAC/N-C的示意图。(e)负压热解法制备三维石墨烯骨架上的SACs示意图2) 空腔限域策略:利用MOFs独特的空腔结构优势,对金属前驱体进行封装。这种封装效应可以最大程度地减少热解过程中金属前驱体的聚集。对于ZIF结构,ZIF-8是一个具有菱形十二面体结构的三维空间纳米笼,由锌离子和二甲基咪唑配体组装而成。其具有孔径为3.4Å、空腔直径为11Å的空腔结构,金属前驱体可封装在里面来实现金属前驱体的空间隔离。高温碳化后,ZIF-8变成氮掺杂碳骨架,为金属位点的负载提供了载体。常见的金属前驱体可分为以下几类:1)金属无机化合物,如金属盐和金属氢氧化物;2) 金属有机化合物,如乙酰丙酮化合物和二茂铁;3) 金属大环化合物,如酞菁、卟啉和菲咯啉。图6.(a)Mn-SAS/CN催化剂的制备示意图和原位XANES光谱。(b)基于Kirkendall效应制备的(Fe,Co)/N-C催化剂示意图。(c)基于ZIF-8前驱体制备C-Cu(OH)2@ZIF-8-10%-1000的原理图。(d)Fe-ISA/CN催化剂制备示意图。(e)微孔限制和配体交换法制备Co(mIm)-NC催化剂示意图3) 外层保护策略:对MOFs的外层采取一些保护措施,以避免在热解过程中结构坍塌和金属原子的聚集。未热解MOFs表面的金属离子呈现高度分散的单原子态。但是在热解后由于单个原子的高比表面能,会发生团聚,这大大降低了金属活性位点的利用效率。此外,高温热解后,MOFs的孔结构坍塌,不利于催化剂传质过程和更多活性位点的暴露。因此,应采取措施对MOFs的外层进行保护,以促进高密度TM-SACs的形成,并保持热解后结构的稳定性。常用的保护策略主要分为以下两类:1)有机化合物(如表面活性剂、酶和聚合物)的保护策略;2) 主客体策略。图7. (a)原位约束热解法制备核壳结构的Co-N-C@surfactants催化剂示意图。CoN2+2活性位点构型和反应自由能演化图。(b)酚醛树脂辅助策略制备核壳结构1.0-ZIF-67@AF催化剂示意图。(c) CoNi-SAs/NC催化剂制备示意图。(d)配体交换策略制备C-AFC© ZIF-8催化剂示意图。(e) Fe-SAs/NPS-HC催化剂制备示意图4)相扩散策略:湿化学合成法通常用于制备以MOFs为前驱体的TM-SACs,即金属前驱体的合成在溶剂中完成。此外,由于单原子与其载体之间的弱相互作用,单原子在随后的制备和催化反应过程中不可避免地会团聚。如果使用MOFs衍生的碳载体作为前驱体,金属原子在高温下的扩散特性将被捕获并在碳载体上还原。这种强烈的相互作用可以提高催化剂的高温稳定性,也为TM-SACs的制备提供了一条新的途径。相扩散策略主要分为以下两种方法:1)球磨法(固相扩散法);2) 气相扩散法。图8.(a)固相合成法制备Fe掺杂ZIF-8的原理图。(b) M15-FeNC-NH3催化剂制备示意图。(c) Fe-N/C催化剂制备的示意图及ORR性能曲线。(d)气相扩散法制备Cu-SAs /N-C催化剂示意图。(e)金属氧化物热扩散法制备Cu ISA/NC催化剂原理图和Cu-N3-C、Cu-N3-V自由能演化图5)双模板策略:模板策略可以通过模板本身的空间约束效应来控制合成材料的形态、结构和几何尺寸。MOFs是合成TM-SACs的最佳前驱体或模板。外来模板的引入可以对MOFs的形态和尺寸进行一定的限制。三维骨架上的金属原子可以得到很好的保护,有效地避免了热解过程中单个原子的团聚。根据热解后是否需要额外繁琐的步骤去除外来模板,这种双模板策略主要分为以下两类:1)一步模板法:PS和盐模板法;2) 多步骤模板法:介孔SiO2、SiOX和有序介孔硅。图 9.(a)利用KCl模板制备了SCoNC催化剂的制备图和不同放大率的HAADF-STEM图像。(b)PS模板法制备具有分级多孔结构的FeN4/HOPC催化剂的制备示意图。(c)PS模板法制备Fe/Ni-NX-OC催化剂示意图04小结MOFs材料的优异特性为高负载量、高稳定性、高催化活性的单原子催化剂的制备提供了丰富的平台。目前还有许多需要解决的问题,主要包括以下几个方面:1)充分发挥MOF材料的结构多样性的优势,探索一些新的策略来制备TM-SACs。目前主要以ZIF结构为主来制备TM-SACs,可以充分挖掘其他结构的MOF材料来进行制备。2)TM-SACs的单原子活性位点通常以TM-N4为主,这种配位结构被认为具有良好的ORR活性。对活性中心的配位结构进行调整,可以使得它们的活性得到进一步提高。目前已有的调整方式主要包括构建双原子活性中心、引入非金属(S,P,B)、纳米粒子与单原子协同催化、构建客体基团等。3)提高过渡金属单原子的负载量。催化剂的活性与催化位点数目和本征活性息息相关。对于TM-SACs,在合成过程中最大程度地避免单原子的聚集,提高过渡金属的利用效率,将MOF前驱体中的金属位点最大程度地转变为TM-NX结构。 4)实现TM-SACs的大规模制备和通用策略制备。金属浓度过高会导致单原子催化剂在制备过程中极易发生团聚, 并且由于不同种类的金属的配位环境和物理化学性质不同,难以实现制备策略的通用化。因此,开发一种新的策略去实现TM-SACs的大规模制备和通用化制备显得尤为重要。5)利用先进的表征手段和原位技术,在原子水平上对催化剂的结构进行剖析,从而探究结构与性能的关系。这些技术为MOF材料为目标明确的TM-SACs的设计提供了指导。6)结合理论计算去探究TM-SACs的氧还原反应动力学和最佳反应路径,确定催化剂的真实活性位点和反应过程的决速步。这为催化剂的结构设计提供了理论支撑,从而更好地提高TM-SACs的性能。
  • 158万!广东工业大学催化及能源材料实验室设备采购项目
    项目编号:0724-2101D25N6043项目名称:广东工业大学催化及能源材料实验室设备采购项目(二次)采购方式:公开招标预算金额:1,576,900.00元采购需求:合同包1(新能源方向实验室设备):合同包预算金额:1,576,900.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他专用仪器仪表往复振荡摇床2(台)详见采购文件39,200.00-1-2其他专用仪器仪表高压视窗反应釜1(台)详见采购文件68,000.00-1-3其他专用仪器仪表行星式球磨机1(台)详见采购文件26,000.00-1-4其他专用仪器仪表高气密性自动在线光催化分析系统1(套)详见采购文件154,200.00-1-5其他专用仪器仪表多通道光催化反应系统(核心设备)1(套)详见采购文件135,000.00-1-6其他专用仪器仪表光电催化反应系统1(套)详见采购文件81,000.00-1-7其他专用仪器仪表旋转蒸发仪套装1(套)详见采购文件51,790.00-1-8其他专用仪器仪表水焊机1(台)详见采购文件8,300.00-1-9其他专用仪器仪表电化学工作站2(套)详见采购文件120,000.00-1-10其他专用仪器仪表四探针电阻率仪1(台)详见采购文件25,000.00-1-11其他专用仪器仪表扣电一体式恒温充放电检测系统1(台)详见采购文件107,500.00-1-12其他专用仪器仪表振实密度仪1(台)详见采购文件14,000.00-1-13其他专用仪器仪表热压机1(台)详见采购文件30,000.00-1-14其他专用仪器仪表铝塑膜成型机1(台)详见采购文件36,000.00-1-15其他专用仪器仪表手动切片机1(台)详见采购文件8,500.00-1-16其他专用仪器仪表手套箱(单工位)1(台)详见采购文件140,000.00-1-17其他专用仪器仪表多用途微波化学合成仪1(台)详见采购文件124,000.00-1-18其他专用仪器仪表冷冻干燥机1(台)详见采购文件35,910.00-1-19其他专用仪器仪表双光束紫外可见分光光度计积分球1(台)详见采购文件84,800.00-1-20其他专用仪器仪表十万分之一电子天平1(台)详见采购文件38,800.00-1-21其他专用仪器仪表万分之一电子天平1(台)详见采购文件16,900.00-1-22其他专用仪器仪表气相色谱仪2(台)详见采购文件216,000.00-本合同包不接受联合体投标合同履行期限:60天
  • 全球催化领域“奥运会”ICC 2016在京举行(组图)
    仪器信息网讯 2016年7月3-8日,第十六届国际催化大会(ICC 2016)在北京国家会议中心举行,来自50多个国家的近3000人出席了本次会议。本次大会主题为“可持续发展的催化科学研究与技术”(“Catalysis for the Sustainable Development of the World”),大会主席由中国科学院大连化学物理研究所李灿院士担任。火爆现场  国际催化大会(International Congress on Catalysis, ICC)起始于1956年的美国费城,每四年举行一次,因与奥运会同步,国际学术界誉之为催化领域的奥运会。六十年来,国际催化大会在催化领域产生了巨大 影响,有力推动了世界催化科学和技术的发展,已成为催化领域规模最大、水平最高、影响最广的国际学术会议。本次会议是国际催化大会在我国的首次亮相,将有助于提升我国催化领域的国际知名度,加速我国催化科技的发展。分会场现场  本次会议包括5个大会报告、2个获奖报告、18个主题报告、81个邀请报告和200余个口头报告,另外还有约1800篇的墙报展示。会议分为6个平行会场,会议内容主要涉及能源催化、催化材料、催化理论、环境催化、工业催化、光电催化、催化化学合成、生物质转化、氧化反应、碳催化等相关领域。  本次国际催化大会涉及到了许多催化相关的科学分析仪器,包括化学吸附仪、激光粒度仪、比表面积分析仪等,许多相关国内外知名仪器厂商也借此契机在大会展区纷纷亮相,向广大客户展示其新产品、新服务和新想法。这些厂商包括:麦克仪器、大昌华嘉、精微高博、美国康塔、赛默飞、贝士德、美国ALTAMIRA等。美国麦克仪器公司大昌华嘉商业(中国)有限公司北京精微高博科学技术有限公司美国康塔仪器公司 赛默飞世尔科技(中国)有限公司贝士德仪器科技(北京)有限公司美国ALTAMIRA INSTRUMENTS公司
  • 珀金埃尔默携金属催化剂痕量残留检测方案倾情赞助第十七届全国青年催化学术会议
    2018年8月17至20日,由中国化学会催化专业委员会主办,中国科学院兰州化学物理研究所、兰州大学、中石油石化院兰州化工研究中心承办,兰州理工大学、西北师范大学协办的第十七届全国青年催化学术会议,在甘肃省兰州市召开。本届会议的主题为“产学研与均多相融合发展的催化科学与技术”,吸引了来自国内外高校和科研院所以及工业界的1500多位青年催化工作者参加会议。大会现场催化剂是多种工业制造过程中必不可少的技术,而催化剂中最重要的活性组分主要由各种金属及其氧化物组成,金属的种类及含量都会对催化剂的效用产生极大的影响。另外,在使用过程中,也需要对催化剂的成分进行检测以便保证其在生产过程中发挥应有的功效。珀金埃尔默公司为催化剂行业相关客户提供多种应用方案,供您参考:下载地址:利用SP-ICP-MS 对单壁碳纳米管中残留金属进行分析:https://www.instrument.com.cn/netshow/sh100168/s893863.htmPerkinElmer油品分析全面解决方案:https://www.instrument.com.cn/netshow/sh100168/s875497.htm石化行业仪器分析产品与服务:https://www.instrument.com.cn/download/shtml/893860.shtml本届会议设1个主会场和6个分会场,围绕“催化反应化学/工业催化/环境催化”、“催化材料/纳米催化/能源催化”、“催化作用机制/表面化学/理论计算”、“光催化/光电催化/电催化”、“催化剂设计/制备”、“绿色催化/均相催化/生物催化”等主题进行了交流,珀金埃尔默公司作为全球范围内享有盛誉的尖端分析仪器和解决方案供应商,在大会设立展位同与会嘉宾积极交流。展台交流
  • 283.4万!浙江福立等中标广东工业大学催化及能源材料实验室设备采购项目
    一、项目编号:0724-2101D25N6043二、项目名称:广东工业大学催化及能源材料实验室设备采购项目三、采购结果合同包1(催化方向实验室设备):供应商名称供应商地址中标(成交)金额广州市诚屹进出口有限公司广东省广州市广州高新技术产业开发区科研路2号自编4栋3061,342,130.00元合同包2(新能源方向实验室设备):供应商名称供应商地址中标(成交)金额广州市诚屹进出口有限公司广东省广州市广州高新技术产业开发区科研路2号自编4栋3061,491,820.00元四、主要标的信息合同包1(催化方向实验室设备):货物类(广州市诚屹进出口有限公司)品目号品目名称采购标的品牌规格型号数量(单位)单价(元)总价(元)1-1其他专用仪器仪表催化剂评价装置(核心产品)昆仑永泰KLYT2010CP1(套)459,800.00459,800.001-2其他专用仪器仪表原位红外真空吸附系统上海零露PY-IR-Ⅱ1(套)165,000.00165,000.001-3其他专用仪器仪表高温高压微型反应装置昆仑永泰KLYT20-CP1(台)262,000.00262,000.001-4其他专用仪器仪表气相色谱仪浙江福立GC9720 Plus1(台)186,000.00186,000.001-5其他专用仪器仪表催化剂评价微型反应系统昆仑永泰非标定制1(台)172,000.00172,000.001-6其他专用仪器仪表多通道水质快速测定仪同奥TR-69001(台)29,800.0029,800.001-7其他专用仪器仪表BOD测定仪同奥TDR-50Z1(台)21,500.0021,500.001-8其他专用仪器仪表生化培养箱同奥TR-1501(台)7,680.007,680.001-9其他专用仪器仪表自动固相萃取仪艾维欧YGC-81(套)30,000.0030,000.001-10其他专用仪器仪表圆形氮吹仪艾维欧YGC-12D1(台)8,350.008,350.00合同包2(新能源方向实验室设备):货物类(广州市诚屹进出口有限公司)品目号品目名称采购标的品牌规格型号数量(单位)单价(元)总价(元)2-1其他专用仪器仪表往复振荡摇床IKAHS 260 basic2(台)18,900.0037,800.002-2其他专用仪器仪表高压视窗反应釜岩征YZWR-1001(台)67,500.0067,500.002-3其他专用仪器仪表行星式球磨机深圳济通PBM-2A1(台)21,200.0021,200.002-4其他专用仪器仪表高气密性自动在线光催化分析系统泊菲莱Labsolar-6A1(套)150,000.00150,000.002-5其他专用仪器仪表多通道光催化反应系统(核心设备)泊菲莱PCX50C Discover1(套)125,000.00125,000.002-6其他专用仪器仪表光电催化反应系统泊菲莱PEC2000A1(套)75,900.0075,900.002-7其他专用仪器仪表旋转蒸发仪套装IKA+IKA+长城科工贸RV10+VACSTAR digital + DLSB-5/20B1(套)51,200.0051,200.002-8其他专用仪器仪表水焊机今典605TH1(台)8,250.008,250.002-9其他专用仪器仪表电化学工作站广东鼎诚DC-EC-13002(套)46,000.0092,000.002-10其他专用仪器仪表四探针电阻率仪宁波瑞柯FT-3311(台)24,400.0024,400.002-11其他专用仪器仪表小型纽扣电池封装测试仪科晶MSK-1102(台)7,840.0015,680.002-12其他专用仪器仪表扣电一体式恒温充放电检测系统新威MIHW-200-160H1(台)106,000.00106,000.002-13其他专用仪器仪表振实密度仪宁波瑞柯FT-100E-21(台)13,600.0013,600.002-14其他专用仪器仪表热压机科晶HP-1001(台)29,600.0029,600.002-15其他专用仪器仪表铝塑膜成型机科晶MSK-1201(台)35,000.0035,000.002-16其他专用仪器仪表手动切片机科晶MSK-T101(台)8,290.008,290.002-17其他专用仪器仪表手套箱(单工位)VigorLG1200/750TS1(台)130,000.00130,000.002-18其他专用仪器仪表多用途微波化学合成仪北京祥鹄XH-8000plus1(台)123,000.00123,000.002-19其他专用仪器仪表冷冻干燥机上海叶拓YTLG-12A1(台)34,200.0034,200.002-20其他专用仪器仪表双光束紫外可见分光光度计积分球北京普析DIS150-11(台)82,800.0082,800.002-21其他专用仪器仪表十万分之一电子天平赛多利斯Secura-225D1(台)37,800.0037,800.002-22其他专用仪器仪表万分之一电子天平赛多利斯BCE224i-1CCN1(台)16,600.0016,600.002-23其他专用仪器仪表气相色谱仪浙江福立GC9790II2(台)103,000.00206,000.00
  • 咱们约吗?卓立汉光受邀参加全国太阳能光化学和光催化会议
    北京卓立汉光仪器有限公司光谱事业部受邀参加 2016年第十五届全国太阳能光化学和光催化会议,该会议将全面展示中国太阳能光化学、光催化及太阳能电池领域所取得的最新进展及成果,本次会议将是我国太阳能光化学、光催化及太阳能电池科研工作者的一次盛会。 会议时间:2016年8月21-24日 会议地点:山东大学我司在现场设有展位,随时欢迎您的莅临!我司能够为您提供的优质产品:大会报告内容抢先看:时间:2016年8月21日主持人:赵进才10:30-11:10孟庆波中国科学院物理研究所高效有机无机杂化钙钛矿太阳能电池研究11:10-11:50李朝升南京大学光电极材料探索及光电催化分解水的性能研究午餐(12:00-13:30)主持人:林原14:00-14:40王心晨福州大学石墨相氮化碳光催化14:40-15:20张纯喜中国科学院化学研究所从自然光合作用到人工光合作用
  • 157万!广东工业大学催化及能源材料实验室设备采购项目(三次)
    项目编号:0724-2101D25N6043项目名称:广东工业大学催化及能源材料实验室设备采购项目(三次)采购方式:公开招标预算金额:1,576,900.00元采购需求:合同包1(新能源方向实验室设备):合同包预算金额:1,576,900.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他专用仪器仪表往复振荡摇床2(台)详见采购文件39,200.00-1-2其他专用仪器仪表高压视窗反应釜1(台)详见采购文件68,000.00-1-3其他专用仪器仪表行星式球磨机1(台)详见采购文件26,000.00-1-4其他专用仪器仪表高气密性自动在线光催化分析系统1(套)详见采购文件154,200.00-1-5其他专用仪器仪表多通道光催化反应系统(核心设备)1(套)详见采购文件135,000.00-1-6其他专用仪器仪表光电催化反应系统1(套)详见采购文件81,000.00-1-7其他专用仪器仪表旋转蒸发仪套装1(套)详见采购文件51,790.00-1-8其他专用仪器仪表水焊机1(台)详见采购文件8,300.00-1-9其他专用仪器仪表电化学工作站2(套)详见采购文件120,000.00-1-10其他专用仪器仪表四探针电阻率仪1(台)详见采购文件25,000.00-1-11其他专用仪器仪表扣电一体式恒温充放电检测系统1(台)详见采购文件107,500.00-1-12其他专用仪器仪表振实密度仪1(台)详见采购文件14,000.00-1-13其他专用仪器仪表热压机1(台)详见采购文件30,000.00-1-14其他专用仪器仪表铝塑膜成型机1(台)详见采购文件36,000.00-1-15其他专用仪器仪表手动切片机1(台)详见采购文件8,500.00-1-16其他专用仪器仪表手套箱(单工位)1(台)详见采购文件140,000.00-1-17其他专用仪器仪表多用途微波化学合成仪1(台)详见采购文件124,000.00-1-18其他专用仪器仪表冷冻干燥机1(台)详见采购文件35,910.00-1-19其他专用仪器仪表双光束紫外可见分光光度计积分球1(台)详见采购文件84,800.00-1-20其他专用仪器仪表十万分之一电子天平1(台)详见采购文件38,800.00-1-21其他专用仪器仪表万分之一电子天平1(台)详见采购文件16,900.00-1-22其他专用仪器仪表气相色谱仪2(台)详见采购文件216,000.00-本合同包不接受联合体投标合同履行期限:60天
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制