当前位置: 仪器信息网 > 行业主题 > >

毫米级恒温程控提拉涂膜机

仪器信息网毫米级恒温程控提拉涂膜机专题为您提供2024年最新毫米级恒温程控提拉涂膜机价格报价、厂家品牌的相关信息, 包括毫米级恒温程控提拉涂膜机参数、型号等,不管是国产,还是进口品牌的毫米级恒温程控提拉涂膜机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合毫米级恒温程控提拉涂膜机相关的耗材配件、试剂标物,还有毫米级恒温程控提拉涂膜机相关的最新资讯、资料,以及毫米级恒温程控提拉涂膜机相关的解决方案。

毫米级恒温程控提拉涂膜机相关的资讯

  • 《Smart Materials and Structures》:用于毫米尺度3D物体操纵的喇叭状粘附结构
    对于毫米尺度3D物体的操纵技术在电子转印、精密装配、微机电系统等领域具有重要的应用前景。传统的基于机械夹持的抓取方案(如镊子等)需要针对不同特征的物体进行专门的设计和定制。例如,普通的尖头镊子难以夹持球体,需要在镊子末端设计专门的环形结构,并且具有环形结构的镊子无法夹持直径小于环形的球体。此外,对于平放在基底表面上的薄片状脆性物体(如硅片等)来说,因其无特殊的可夹持特征,使用镊子等工具难以将其从基底表面夹持住。目前,对于毫米尺度的不同形状和尺寸的3D物体进行可控抓取操纵的通用性技术方案仍然面临挑战。近日,清华大学机械工程系摩擦学国家重点实验室的田煜教授课题组提出了一种毫米尺度的喇叭状可控粘附结构及其力学调控方法。喇叭状粘附结构由面投影微立体光刻技术(nanoArch S130,摩方精密)和多步浇铸的工艺方案制备而成,对于多种曲率表面具有良好的自适应接触性能。喇叭状可控粘附结构能够通过接触界面的范德华力作用和负压作用达到~80 kPa的粘附强度,通过外力调控屈曲失稳与基底表面主动脱附,从而实现对于多种三维物体的可控抓取和操纵。该项研究成果以“Trumpet-shaped controllable adhesive structure for manipulation of millimeter-sized objects”为题发表在国际知名期刊《Smart Materials and Structures》上。该研究工作由清华大学机械工程系摩擦学国家重点实验室的博士生李小松完成。原文链接:https://iopscience.iop.org/article/10.1088/1361-665X/ac262f图1 喇叭状可控粘附结构制备工艺流程图。(a)由面投影微立体光刻技术直接制备得到的蘑菇状结构;(b)通过浇铸得到阴模模具;(c)阴模模具浇铸PU并脱泡;(d)将PDMS球面按压模具得到凹面结构;(e)脱模后的喇叭状结构(dp = 1 mm, h = 1 mm, dt = 1.8 mm, θ =60º);(f)喇叭状结构的扫描电镜照片。图2 喇叭状粘附结构的粘附性能典型测试力曲线和对应的接触状态演化规律。(a)附着测试模式和(b)脱附测试模式对应的典型法向力测试曲线;(c)附着测试模式和(d)脱附测试模式对应的接触界面状态演化过程;(e)附着测试模式下喇叭状粘附结构的粘附力和预载荷之间的关系;(f)脱附测试模式下喇叭状粘附结构的粘附力和剪切距离的关系。图3 基于内聚力模型的喇叭状可控结构的有限元仿真与界面法向应力演化规律机理。(a)接触-脱附测试过程;(b)接触-卸载-剪切测试过程;(c)接触-卸载-扭转过程中喇叭状粘附结构的变形行为;(d)附着测试过程和(e)脱附测试过程中接触界面法向应力的演化规律,其中紫色的箭头表示法向应力分布的变化方向。图4 喇叭状可控粘附结构对不同大小、不同形状、不同质量、不同材质物体的操纵效果。(a)集成喇叭状粘附结构的操作器;(b)喇叭状粘附结构抓取、转移和释放物体的典型操作步骤;喇叭状粘附结构用于转移多种毫米尺度(c)平面物体和(d)曲面物体的展示;(e)喇叭状粘附结构用于操纵LED灯珠完成THU字样柔性电路装配的展示;(f)喇叭状粘附结构用于水下环境操纵曲面物体的展示。
  • 用于毫米尺度3D物体操纵的喇叭状粘附结构
    对于毫米尺度3D物体的操纵技术在电子转印、精密装配、微机电系统等领域具有重要的应用前景。传统的基于机械夹持的抓取方案(如镊子等)需要针对不同特征的物体进行专门的设计和定制。例如,普通的尖头镊子难以夹持球体,需要在镊子末端设计专门的环形结构,并且具有环形结构的镊子无法夹持直径小于环形的球体。此外,对于平放在基底表面上的薄片状脆性物体(如硅片等)来说,因其无特殊的可夹持特征,使用镊子等工具难以将其从基底表面夹持住。目前,对于毫米尺度的不同形状和尺寸的3D物体进行可控抓取操纵的通用性技术方案仍然面临挑战。近日,清华大学机械工程系摩擦学国家重点实验室的田煜教授课题组提出了一种毫米尺度的喇叭状可控粘附结构及其力学调控方法。喇叭状粘附结构由面投影微立体光刻技术(nanoArch S130,摩方精密)和多步浇铸的工艺方案制备而成,对于多种曲率表面具有良好的自适应接触性能。喇叭状可控粘附结构能够通过接触界面的范德华力作用和负压作用达到~80 kPa的粘附强度,通过外力调控屈曲失稳与基底表面主动脱附,从而实现对于多种三维物体的可控抓取和操纵。该项研究成果以“Trumpet-shaped controllable adhesive structure for manipulation of millimeter-sized objects”为题发表在国际知名期刊《Smart Materials and Structures》上。该研究工作由清华大学机械工程系摩擦学国家重点实验室的博士生李小松完成。原文链接:https://iopscience.iop.org/article/10.1088/1361-665X/ac262f图1 喇叭状可控粘附结构制备工艺流程图。(a)由面投影微立体光刻技术直接制备得到的蘑菇状结构;(b)通过浇铸得到阴模模具;(c)阴模模具浇铸PU并脱泡;(d)将PDMS球面按压模具得到凹面结构;(e)脱模后的喇叭状结构(dp = 1 mm, h = 1 mm, dt = 1.8 mm, θ =60º);(f)喇叭状结构的扫描电镜照片。图2 喇叭状粘附结构的粘附性能典型测试力曲线和对应的接触状态演化规律。(a)附着测试模式和(b)脱附测试模式对应的典型法向力测试曲线;(c)附着测试模式和(d)脱附测试模式对应的接触界面状态演化过程;(e)附着测试模式下喇叭状粘附结构的粘附力和预载荷之间的关系;(f)脱附测试模式下喇叭状粘附结构的粘附力和剪切距离的关系。图3 基于内聚力模型的喇叭状可控结构的有限元仿真与界面法向应力演化规律机理。(a)接触-脱附测试过程;(b)接触-卸载-剪切测试过程;(c)接触-卸载-扭转过程中喇叭状粘附结构的变形行为;(d)附着测试过程和(e)脱附测试过程中接触界面法向应力的演化规律,其中紫色的箭头表示法向应力分布的变化方向。图4 喇叭状可控粘附结构对不同大小、不同形状、不同质量、不同材质物体的操纵效果。(a)集成喇叭状粘附结构的操作器;(b)喇叭状粘附结构抓取、转移和释放物体的典型操作步骤;喇叭状粘附结构用于转移多种毫米尺度(c)平面物体和(d)曲面物体的展示;(e)喇叭状粘附结构用于操纵LED灯珠完成THU字样柔性电路装配的展示;(f)喇叭状粘附结构用于水下环境操纵曲面物体的展示。官网:https://www.bmftec.cn/links/10
  • 半导体情报,科学家首次开发射频毫米波段的高性能忆阻器!
    【科学背景】记忆电阻器(memristor)是一种能够在电气应力作用下实现两个或多个非易失性电阻状态的设备,近年来被提出用于解决射频开关的挑战。这种效应最早在1960年代的硒铋合金中被报道,随后在包括金属氧化物和二维层状材料在内的许多其他材料中得到观察。通过改变材料的原子或电子结构,memristor能够实现不同的电阻状态,如高电阻态(HRS)和低电阻态(LRS)。尽管最初主要用于存储应用,memristor目前被提议用于数据加密、能效数据计算(如实现向量矩阵乘法引擎和人工神经网络的电子神经元)、以及射频数据传输开关等领域。针对射频应用,memristor的主要优势在于其非易失性,无需额外能量来维持其导电状态,与传统的p-i-n二极管开关相比,后者需要大量直流电流来维持其状态。最新的memristor技术基于相变材料,如GeTe或GeSbTe,通过控制加热器来实现晶态和非晶态之间的转变,从而切换设备的HRS和LRS。这些设备在50 GHz的频率下已有工业展示,并且在学术演示中能够达到高达109个循环的耐久性,但其集成到大型电路中需要精细的热设计,并可能引入不需要的寄生电容。针对RF mmWave应用的多层hBN memristor的开发,沙特阿卜杜拉国王科技大学Mario Lanza教授团队通过使用不同的电极材料展示了多个设备的射频性能和一致性行为。通过一种增强导电性的方法,作者成功地实现了RLRS低于10 Ω(最低可达4.5 Ω),并展示了2,000个循环的耐久性。作者的设备在高达260 GHz的频率下表现出低于2 dB的损耗和超过30 dB的隔离度,从等效电路模型中提取的截止频率为7 THz。此外,作者还报告了在120 GHz时串-并联配置中超过35 dB的隔离度的射频mmWave开关电路。【科学亮点】(1)首次开发了适用于射频毫米波(mmWave)应用的多层氮化硼(hBN)记忆电阻器。这些电阻器展示了在高达260 GHz频率下的射频性能,并通过不同电极材料验证了其稳定的行为。(2)通过采用一种新型的导电性增强方法,成功实现了低于10 Ω的低阻态电阻(RLRS),最低可达4.5 Ω。这种方法使得设备能够经受2,000个循环的使用测试,表现出良好的耐久性。(3)射频性能方面,这些设备展示了在频率高达260 GHz时低于2 dB的插入损耗和超过30 dB的隔离度。通过等效电路模型分析,提取的截止频率高达7 THz,显示出在超高频领域的潜力。(4)作者还报道了在120 GHz时串-并联配置中超过35 dB的隔离度的射频mmWave开关电路,突显了这些记忆电阻器在复杂电路中的实际应用潜力。【科学图文】图1: Au-hBN-Au器件的物理和直流特性。图2:通过脉冲写入-验证协议增强射频RF应用的低阻态low-resistance state,LRS性能。图3:Au–多层hBN–Au开关的毫米波性能。【科学结论】本文开发了多层氮化硼记忆电阻器作为射频毫米波应用中的关键组件。传统射频开关技术在高频率(如120 GHz)下存在插入损耗和隔离度方面的限制,而本研究通过精确控制低阻态电阻,利用脉冲偏置协议实现了9.3 ± 3.7 Ω的优异性能。这种方法不仅提高了射频开关的操作频率,还显著降低了信号传输过程中的能量损失。此外,作者展示了在21个设备中一致的双极性切换特性,证明了多层氮化硼在记忆电阻器中的可靠性和稳定性。这些成果不仅推动了射频毫米波技术的前沿,还为未来高速数据传输、增强现实和物联网等应用领域提供了新的解决方案。通过这些研究,作者不仅拓展了记忆电阻器在射频领域的应用潜力,还为探索更高频率、更低能耗的射频开关提供了有力支持。原文详情:Pazos, S., Shen, Y., Zhang, H. et al. Memristive circuits based on multilayer hexagonal boron nitride for millimetre-wave radiofrequency applications. Nat Electron (2024). https://doi.org/10.1038/s41928-024-01192-2
  • 国产77吉赫兹毫米波芯片封装天线测距创纪录
    记者从中国电科38所获悉,在2月17日召开的第68届国际固态电路会议(ISSCC 2021)上,该所发布了一款高性能77GHz(吉赫兹)毫米波芯片及模组,在国际上首次实现两颗3发4收毫米波芯片及10路毫米波天线单封装集成,探测距离达到38.5米,刷新全球毫米波封装天线最远探测距离纪录。  该款芯片在24毫米×24毫米空间里实现了多路毫米波雷达收发前端的功能,创造性地提出一种动态可调快速宽带chirp信号产生方法,并在封装内采用多馈入天线技术,大幅提升了封装天线的有效辐射距离,为近距离智能感知提供了一种小体积和低成本解决方案。  此次发布的封装天线模组包含两颗77GHz毫米波雷达芯片,该芯片面向智能驾驶领域对核心毫米波传感器的需求,采用低成本CMOS(互补金属氧化物半导体)工艺,单片集成3个发射通道、4个接收通道及雷达波形产生等,主要性能指标达到国际先进水平,在快速宽带雷达信号产生等方面具有特别优势,芯片支持多片级联并构建更大规模的雷达阵列。基于扇出型晶圆级封装是封装天线的一种主流的实现途径,国际上的大公司都基于该项技术开发了集成封装天线的芯片产品。  下一步,中国电科38所将对毫米波雷达芯片进行进一步优化,根据具体应用场景提供一站式解决方案。  ISSCC被认为是集成电路领域的“奥林匹克盛会”,于1953年由发明晶体管的贝尔实验室等机构发起成立,在60多年历史中,众多集成电路史上里程碑式的发明都在这里首次亮相。
  • 毫米波人体安检成像仪
    table width=" 624" cellspacing=" 0" cellpadding=" 0" border=" 1" align=" center" tbody tr style=" height:25px" class=" firstRow" td style=" border: 1px solid windowtext padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果名称 /span /p /td td colspan=" 3" style=" border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign=" bottom" width=" 491" height=" 25" p style=" text-align:center line-height:150%" strong span style=" line-height:150% font-family:宋体" 毫米波人体安检成像仪 /span /strong /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 单位名称 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 491" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 同方威视技术股份有限公司 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系人 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 168" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 郭伟红 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 161" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系邮箱 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 162" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" guoweihong@nuctech.com /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果成熟度 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 491" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" □正在研发& nbsp & nbsp □已有样机& nbsp & nbsp □通过小试& nbsp & nbsp □通过中试& nbsp & nbsp √可以量产 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 合作方式 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 491" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" □技术转让 & nbsp & nbsp & nbsp □技术入股& nbsp & nbsp & nbsp □合作开发& nbsp & nbsp & nbsp √其他 /span /p /td /tr tr style=" height:169px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 624" height=" 169" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 成果简介: /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/c4183dd1-a57f-42b6-9685-f6ba7738ee21.jpg" title=" 18.jpg" style=" width: 300px height: 400px " width=" 300" vspace=" 0" hspace=" 0" height=" 400" border=" 0" / /p p style=" text-indent:28px line-height:150%" span style=" font-family:宋体 color:black" 毫米波人体安检成像仪利用毫米波对平常衣物的穿透能力进行成像,从而确定被检查人体体表是否藏匿嫌疑物品,具有扫描成像速度快,全面检测,安全可靠,隐私保护,自动识别违禁品等特点。该仪器在重建算法、目标识别方法、收发阵列结构等核心技术和系统集成技术方面实现了突破和自主创新,图像质量和危禁品检出能力等关键技术指标达到了国际先进水平。该成果产品结构设计巧妙,占地面积比国外同类产品都小,无需对现有的安检通道进行改造即可使用,同时其人性化设计带来良好的用户体验,静止 /span span style=" font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:black" 2 /span span style=" font-family:宋体 color:black" 秒完成扫描,无需特殊移动,是一款极具市场竞争力的产品。 /span /p p style=" text-indent:28px line-height:150%" span style=" font-family:宋体 color:black" 毫米波人体安检成像仪的研制不仅带动了技术进步,提升了创新能力,也为填补国内技术空白,打破国外技术垄断、拉低国外同类产品售价奠定了基础。产品已在民航、海关、监狱等领域形成试用,并获得了欧盟 /span span style=" font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:black" CE /span span style=" font-family:宋体 color:black" 认证,通过了欧洲民航会议( /span span style=" font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:black" the European Civil & nbsp Aviation Conference /span span style=" font-family:宋体 color:black" , /span span style=" font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:black" ECAC /span span style=" font-family:宋体 color:black" )认证标准 /span span style=" font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:black" 1 /span span style=" font-family:宋体 color:black" 和标准 /span span style=" font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:black" 2 /span span style=" font-family:宋体 color:black" ,其中标准 /span span style=" font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:black" 2 /span span style=" font-family:宋体 color:black" 为欧洲安检设备( /span span style=" font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:black" Security Scanners /span span style=" font-family:宋体 color:black" , /span span style=" font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:black" SSc /span span style=" font-family:宋体 color:black" )认证中的最高标准,也是国内首次通过欧盟民航委员会 /span span style=" font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:black" ECAC /span span style=" font-family:宋体 color:black" 标准认证的人体安检产品。 /span /p /td /tr tr style=" height:75px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 624" height=" 75" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 应用前景: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 毫米波人体安检成像仪主要应用于公共安全领域,具体可应用与机场、轨道交通、公共赛事、民用产品、海关边防、高风险建筑等场所的人体安全检查。毫米波人体安检成像仪的推出将为大规模人群安全检查提供了一条安全可行的技术路线,其图像质量和危禁品检出能力均达到了国际先进水平,可与国外已有优秀仪器如美国L-3 Communication公司的ProVision、英国Smith Group公司的Eqo等分庭抗礼,具有进入国际市场的潜力。毫米波人体安检仪已于2016年实现了最终用户的销售,同时产品已形成年产量100 台/套,年产值1.28亿元的规模,未来将实现年销售收入1.5亿元人民币的市场规模,预期经济效益显著。 /span /p /td /tr tr style=" height:72px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 624" height=" 72" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 知识产权及项目获奖情况: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 毫米波人体安检成像仪具有全部的自主知识产权,对核心技术、系统和核心部件、图像算法等申请了国内发明专利36项,获得授权16项,申请国外发明专利23件,获得授权4件。2012年同方威视承担了国家重点科学仪器设备开发专项“毫米波成像探测仪研制及产业化示范”,并于2017年顺利通过技术验收。2016年“毫米波人体安全检查系统”获得国际发明展览会“发明创业奖· 项目奖”金奖。2016年“毫米波全息人体按键成像技术”通过教育部的科学技术成果鉴定,鉴定委员会认为该项目在国际上首次提出并实现了近场精确毫米波全息成像,总体技术达到了国际领先水平。 /span /p /td /tr /tbody /table p br/ /p
  • 第四场研讨会 | 如何结合等离子FIB刻蚀和激光烧蚀,更高效完成毫米级半导体失效分析
    主题:Faster mm-scale Semiconductor Failure Analysis byCombining Plasma FIB Milling and Laser Ablation 演讲人:Jozef Vincenc Obona 博士Jozef Vincenc Obona 是TESCAN ORSAY HOLDING公司半导体市场部的产品营销总监,获得Slovak Academy of Sciences (Slovakia) 低温电子学博士学位。他有多年从事半导体失效分析(生产线前端、后端和封装应用)的经验,并与半导体行业领袖一直保持沟通。他在FIB-SEM方面拥有超过13年的工作经验,在西班牙萨拉戈萨的阿拉贡纳米科学研究院(Instituto de Nanociencia de Aragon)、荷兰格罗宁根大学(University of Groningen)以及特温特大学(University of Twente)进行了5年的超短激光脉冲处理应用研究,拥有3项专利并发表了52篇论文。时间段1:3月24日, 下午4:00 –5:00 (北京时间)时间段2:3月25日, 上午2:00 –3:00 (北京时间)长期以来,提高性能和降低功耗是电子器件设计的基本要求,这需要通过器件构件(晶体管、存储单元等)的小型化、信号通路的减少(将多个组件集成在一个先进封装中)以及优化其它组件(包括显示器、射频、微机电系统和电池)来实现。开发新产品是一件非常具有挑战性的工作,快速失效分析(FA)有助于确定缺陷的基本原因并向研发人员提供有效的反馈,以保证产品的上市时间和可靠性。对封装、先进封装、显示器、射频、微机电系统以及电池进行快速失效分析时,往往需要在样品表面以下几百微米甚至于几毫米寻找缺陷位置。由于样品结构的特殊性,需要对样品进行大面积的刻蚀以制备出截面才能够对特定的缺陷位置进行分析。因此,近10年来等离子FIB被普遍使用在这个过程中并受到了行业的广泛认可。然而,近年来随着器件结构越趋复杂、缺陷深度显著增加以及必须更快速获得分析结果等原因,对等离子FIB的能力提出了更高的要求。使用激光烧蚀可以将前期制样速度提升数千倍,因此将激光烧蚀技术加入到等离子FIB工作流程中不仅可以更快获得高质量的分析结果,同时也开启与实验室中不同类型设备协同合作的新篇章。在本次研讨会上,将为您介绍 TESCAN 样品大体积制备的工作流程。使用不同尺寸的要求苛刻的样品进行演示,样品包括复杂器件和不导电硬质材料,您可以看到非常灵活的工作流程。我们将为您展示如何结合超高分辨扫描电镜成像系统快速进行没有伪影的样品制备并揭示样品的真实细节。点击“我要报名”立即报名参会吧!说明:为了让更多的用户可以参与到本次研讨会中,每一场研讨会都有两个时间段可供选,内容相同,与会者可自行选择报名参加其中一个时间段的研讨会。
  • “干涉式毫米波成像辐射计关键技术研究”课题通过验收
    2009年12月29日,“十一五”863对地观测与导航领域专题课题验收会在北京举行,由中科院空间科学与应用研究中心承担的“干涉式毫米波成像辐射计关键技术研究”课题通过验收。   该课题为“十一五”本领域首批立项的专题课题之一,主要目标是针对当前地球静止轨道气象卫星对微波/毫米波有效载荷的迫切需求,开展以分时采样综合孔径技术为核心的关键技术攻关,以解决真实孔径系统天线口面过大以及传统综合孔径系统单元天线数目过多的问题。在当前全球气候变化加剧、灾害性天气现象频发的大背景下,开展此项研究具有特别意义。   在课题执行过程中,以吴季研究员为首的空间中心研究团队提出了圆环阵列自旋扫描的方案,在简化系统复杂度、提高运动机构稳定性以及定标可行性上具备明显的优势,并最终形成了自主知识产权,成功进行了外场成像实验。   在课题验收会上,与会评审专家一致认为,课题组在50~56GHz的氧气吸收峰频段成功验证了干涉式综合孔径辐射计体制的可行性,达到了目前国内干涉式辐射计技术的最高频率,并突破了多项具备国际水平的关键技术,包括:分时采样体制下干涉式综合孔径辐射计关键性能指标的分析方法 稀疏天线阵列与分时采样方式的联合优化设计方法 毫米波接收机前端噪声互耦抑制方法 多时延数字相关技术 分时采样干涉式综合孔径系统的整体定标技术等。研究成果有力支持了未来在我国下一代风云四号静止轨道气象卫星上实施综合孔径大气温度探测仪的可行性与必要性。地球静止轨道(GEO)具有大覆盖以及实时性等特点,而微波/毫米波段观测则具有全天候全天时的优势,两者的结合能够实现对整个天气变化动态过程的连续有效观测,为数值天气预报提供高时间分辨率的观测数据,满足短期预报甚至即时预报的要求。   本课题成果已获“十一五”863重点项目的后续支持,在该成果的基础上进一步研制一台全尺度地面样机,为本成果最终进入工程型号应用奠定基础。
  • 中国毫米波技术成功商业化,人体安检方式即将开启新时代
    p style=" text-align: justify text-indent: 2em margin-bottom: 10px " 近日,人民网发文称,中国科学院上海微系统与信息技术研究所自主研发的“毫米波合作式目标人体三维成像安检仪”项目,已在科技部、中科院的联合支持下成功商业化,人体安检方式即将开启新时代。 /p p style=" text-align: justify text-indent: 2em margin-bottom: 10px " 目前,我国大部分地区的安检方式都以“金属探测门+手检” span style=" text-indent: 2em " 为主。这种安检方式的缺点显而易见:只能探测金属、手检耗时长、无法探测小型危险品、存在安检盲区等等。 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/89f8d9d3-63ec-480b-8643-21a9a5311667.jpg" title=" 5b6b9793a6422.jpg" alt=" 5b6b9793a6422.jpg" / /p p style=" text-align: justify text-indent: 2em margin-bottom: 10px " span style=" text-indent: 2em " /span br/ /p p style=" text-align: justify text-indent: 2em margin-bottom: 10px " 毫米波 (millimeter wave )指的是波长为1~10毫米的电磁波,它位于微波与远红外波相交叠的波长范围,因而兼有两种波谱的特点。毫米波人体成像技术是目前全球安防领域最先进技术,它本质上是一种雷达技术。它克服了“金属探测门+手检”的缺点,可以在不接触人体的情况下,检测出在衣物覆盖下藏匿于人体各部位的物品,对金属非金属都有效果,并可以通过图像得到物品的形状、大小等信息,是新一代、更安全的安检系统。 /p p style=" text-align: justify text-indent: 2em margin-bottom: 10px " 毫米波安检设备其实在欧美已有几十年的应用历史,但其核心技术一直掌握在国外少数几家公司手中。安防领域较为特殊,对自主可控性要求较高,且国外设备价格昂贵,毫米波安检技术迫切需要国产化。 /p p style=" text-align: justify text-indent: 2em margin-bottom: 10px " 为了不被“卡脖子”,在国家科技部仪器重大专项的支持下,项目组历经十年研发,在“十二五”期间,成功突破了毫米波TR FEM 芯片及封装技术、毫米波阵列SIP技术、多核多线程硬件加速技术等关键技术,并生产出了原型样机。此后,在中国科学院、中国科学院上海微系统与信息技术研究所、中科创星的政策和资金支持下,项目完成了科研成果转化。日前,我国自主研发的毫米波安监系统已在G20峰会外围、马来西亚吉隆坡航站楼、新疆乌鲁木齐高铁站、海南三沙市清澜港等典型场景实现了示范应用。 /p p br/ /p
  • 第六届“国际多孔材料表征:从埃到毫米”研讨会成功举行
    拥有超过15年历史、由著名的Rutgers University的 Alexander Neimark教授担任主席的 &ldquo 国际多孔材料表征:从埃到毫米&rdquo 研讨会(CPM)在新泽西成功举办5次之后,首次在南佛州美国康塔仪器公司总部所在地举办。 本次研讨会由美国康塔仪器公司承办,由著名的Rutgers University的 Alexander Neimark教授和美国康塔仪器公司应用总监Dr. Matthias Thommes担任主席,于4月30日至5月2日在著名的Delary Beach举办。研讨会共有8个大会邀请报告、37个口头报告和90余板报,一百多名来自世界各地的科学工作者齐聚一堂探讨多孔材料结构表征、流体传质、材料功能化中的理论、计算及实验问题。 该研讨会为业内科研工作者提供了专业高效的交流平台,详情请见 http://cpm6.rutgers.edu/forum.html. 会后,70余名资深专家应邀参观了位于Boynton Beach的美国康塔仪器公司总部。通过与公司研发、应用相关部门的交流增进了对仪器生产、研发的了解,Alexander Neimark教授等人盛赞美国康塔仪器公司在精确表征物理吸附、化学吸附方面做出的努力,为严谨的科学研究提供了有力保证。
  • 徕卡三维激光扫描仪助力冬奥雪车雪橇赛道毫米级测量
    2022年北京冬奥会赛程过半之际,我们见证了来自世界各地的运动员勇于挑战、超越自我;我们在场馆内外各个角落看到了志愿者、工作人员默默无闻、辛勤付出;在我们看不见的地方,还有更多人为冬奥奉献青春、保驾护航… … 接下来一起来了解徕卡RTC360与冬奥会结下的不解之缘。国家雪车雪橇中心是2022年北京冬奥会的比赛场地之一,它位于北京市延庆区西大庄科村,将举办冬奥会雪车、雪橇以及钢架雪车项目的比赛,是目前国内唯一一条符合冬奥会标准的雪车、雪橇赛道。由于外形仿如一条盘旋在山脉顶部的巨龙,于是北京冬奥组委也给它取了一个好听的名字—“雪游龙”。其全程长达1975米、垂直落差为121米、共有16个弯道。图片来源:张家口崇礼区人民政府官网国家雪车雪橇中心于2017年2月结束赛道选址工作,历时两年半的时间,于2019年11月完成主体工程的建设,它是北京市冬奥工程竞赛场馆中设计难度最高、施工难度最大的新建场馆,由于雪车、雪橇赛道拥有空间复杂双曲面结构,运动员最高速度可达到140km/h,离心力超过5G,比赛危险系数高,因此赛道的每一个角度、每一个曲面都需要精细到毫米级。在竣工测量工作中,北京市测绘院克服了一系列技术难题,采用徕卡RTC360三维激光扫描与极坐标测量相结合的方式进行数据采集,测绘数据达到精度指标要求,按期完成了竣工测量任务。图集1:徕卡RTC360现场扫描工作照图集2:雪车雪橇赛道点云全貌及局部点云截图北京市测绘院技术人员表示:“能够参与冬奥建设非常自豪,有一种使命感和荣誉感,由于赛道多为异形建筑,为能够圆满完成本次任务,创新采用徕卡RTC360三维激光扫描仪,一方面徕卡RTC360扫描精度高,以往外业串测这种异形建筑位置可能不准确,而使用扫描仪可以全面的掌握整个赛道信息,不会出现丢漏或数据不准确现象。另一方面徕卡RTC360作业效率非常高,整个赛道共采集320站,耗时2天半,正因为如此才能在短时间内完成赛道的竣工测量,徕卡RTC360在本项目的成功应用,为开展其他复杂异形建筑的竣工测量探索了技术路径。”屏幕前,我们看到一场场精彩赛事不断上演,本次与北京冬奥会“零距离接触”,徕卡RTC360用自己的方式——“精准如需”为冬奥建设贡献着力量。
  • 高压下的奇迹!美伯克利大学Nature:利用干式低温光学恒温器揭秘氢化物超导体中的迈斯纳效应
    文章名称:Imaging the Meissner effect in hydride superconductors using quantum sensors期刊:Nature IF 64.8文章链接:https://www.nature.com/articles/s41586-024-07026-7 压力的存在能够直接改变微观相互作用,为凝聚相和地球物理现象的探索提供一个强大的调谐旋钮。兆巴(1 Mbar=100 GPa)压力区域的研究极具前沿代表,科学家们可在该压力区域研究高温超导材料的结构与相变。然而,在该高压环境中,许多传统的测量技术都失败了。针对此问题,美伯克利大学的N.Y.Yao教授团队利用干式封闭循环桌面式光学低温恒温器(attocube attoDRY800)突破性的在兆巴压力下以亚微米空间分辨率对金刚石砧单元内局部实现磁力测量的能力。相关研究内容以《Imaging the Meissner effect in hydride superconductors using quantum sensors》为题,在国际SCI期刊《Nature》上发表。该课题组将浅层氮空位色心直接植入铁砧中(见图1),选择与氮空位色心固有对称性相兼容的晶体切割,以实现在兆巴压力下的功能。文章中对最近发现的氢化物超导体CeH9进行了表征。通过同时进行磁学测量和电输运测量,观察到超导性的双重特征:迈斯纳效应的抗磁特性和电阻急剧下降到接近于零。通过局部映射抗磁响应和通量捕获,直接对超导区域的几何形状进行成像,在微米尺度上显示出明显的不均匀性(见图2d)。图1:兆巴压力下的NV色心传感测量。1a为样品加载示意图显示CeH9在两个相对的砧之间压缩。图2:CeH9的局部抗磁性。2a,2b: 同一个样品中两个不同位置处,在零场冷却到温度T 值得指出的是,该团队利用干式封闭循环桌面式光学低温恒温器(attocube attoDRY800)搭载实验所需的共聚焦荧光显微镜对NV色心进行了测量,见图3。该研究工作将量子传感带到兆巴边界,并使超氢化物材料合成的闭环优化成为可能。 图3:本实验的设备硬件与校正。3a: 用于产生磁场的设备包括一个定制的电磁铁,位于低温恒温器的电磁屏蔽外。3b:在样品S1的四个位置的不同冷却条件下的校准。3c: 样品S1的共聚焦荧光图像。3d: 在桌面式光学低温恒温器attoDRY800真空罩内部的图像显示DAC,冷指和热连接。 attoDRY800桌面式光学低温恒温器(见图4)是由德国attocube公司研发的一款干式闭循环低温恒温器,光学平台与系统冷头高度耦合,系统可提供4K到室温的变温环境。设备具有极低的震动噪音,已在国内外课题组广泛应用于量子通信、量子点发光、半导体材料、二维材料等研究领域。根据典型实验所需,该产品设计了几种标准真空罩方便用户进行拉曼、荧光等常见的测量手段对材料进行光-电-磁物理性质的变温测量。图4. attoDRY800桌面式光学低温恒温器- 可以选配低温物镜,低温位移台以及其他定制配置。 attoDRY800桌面式光学低温恒温器已经在北京大学,半导体所,国家纳米科学中心等单位顺利运行,持续助力各个课题组的科研工作。图5为常见的的低温物镜兼容真空罩,该真空罩内可配置attocube特有的低温消色差物镜以及纳米精度位移台。如果实验(例如光纤量子通信与open cavity等实验)需要更复杂的实验设计,我们可以根据用户的技术要求和偏好定制桌面上的真空罩。图5:常见配置-低温物镜兼容真空罩。 attoDRY800主要技术特点:☛ 光学平台和闭式循环低温恒温器完美地结合在一起☛ 提供无光学平台配置:全新一代独立光学低温恒温器attoDRY800xs☛ 宽温度范围(3.8 K…300 K),自动温度控制☛ 用户友好、多功能、模块化☛ 与低温消色差物镜兼容,数值孔径大于0.8☛ 可定制真空罩,标准样品空间:75mm直径。☛ 与典型光学桌的高度相同☛ 包含36根直流电线图6:全新一代独立光学低温恒温器attoDRY800xs- 冷头与光学面包板高度集成。 attoDRY800桌面式光学低温恒温器 部分发表文献:[1]. N.Y.Yao et al. Imaging the Meissner effect in hydride superconductors using quantum sensors. Nature 627, 73–79 (2024)[2]. Liying Jiao et al. 2D Air-Stable Nonlayered Ferrimagnetic FeCr2S4 Crystals Synthesized via Chemical Vapor Deposition. Advanced Materials 2024[3]. Yohannes Abate et al. Sulfur Vacancy Related Optical Transitions in Graded Alloys of MoxW1-xS2 Monolayers. Adv. Optical Mater. 2024, 2302326[4]. Pablo P. Boix et al. Perovskite Thin Single Crystal for a High Performance and Long Endurance Memristor. Adv. Electron. Mater. 2024, 2300475[5]. Mauro Valeri et al. Generation and characterization of polarization-entangled states using quantum dot single-photon sources. 2024 Quantum Sci. Technol. 9 025002[6]. Ajit Srivastava, et al Quadrupolar–dipolar excitonic transition in a tunnel-coupled van der Waals heterotrilayer. Nature Materials 22, 1478–1484 (2023)[7]. Hanlin Fang et al. Localization and interaction of interlayer excitons in MoSe2/WSe2 heterobilayers. Nature Communications 14 : 6910 (2023) [8]. S. Kolkowitz et al. Temperature-Dependent Spin-Lattice Relaxation of the Nitrogen-Vacancy Spin Triplet in Diamond, Phys. Rev. Lett. 130, 256903,2023[9]. Yunan GAO, et al. Bright and Dark Quadrupolar Excitons in the WSe2/MoSe2/WSe2 Heterotrilayer. Phys. Rev. Lett. 131, 186901,2023[10]. Tim Schrö der, et al. Optically Coherent Nitrogen-Vacancy Defect Centers in Diamond Nanostructures. Phys. Rev. X 13, 011042 , 2023 attoDRY800桌面式光学低温恒温器 部分国内用户单位:相关产品1、低震动无液氦磁体与恒温器-attoDRYhttps://www.instrument.com.cn/netshow/SH100980/C377018.htm
  • 中国科大在毫米波频率综合器芯片设计领域取得重要进展
    近日,中国科大微电子学院胡诣哲与林福江课题组设计的一款基于全新电荷舵采样(Charge-SteeringSampling, CSS)技术的极低抖动毫米波全数字锁相环(CSS-ADPLL)芯片入选2023 Symposium on VLSI Technology and Circuits(以下简称VLSI Symposium)。VLSI Symposium是超大规模集成电路芯片设计和工艺器件领域最著名的国际会议之一,也是展现IC技术最新成果的橱窗,今年VLSI Symposium于6月11日至16日在日本京都举行。该论文第一作者为我校微电子学院博士生陶韦臣,胡诣哲教授为通讯作者。   极低抖动毫米波频率综合器芯片是实现5G/6G毫米波通信的关键核心模块,为毫米波通信提供精准的载波信号。此研究提出的电荷舵采样技术,将电荷舵采样和逐次逼近寄存器型模数转换器(SAR-ADC)进行了巧妙的结合,构建了一种高鉴相增益,高线性度且具有多bit数字输出的数字鉴相器。CSS-ADPLL的结构十分紧凑(如图1所示),由电荷舵鉴相器(CSS-PD)、SAR-ADC、数字滤波器和数控振荡器组成,具有优异相位噪声性能,较快的锁定速度并消耗极低的功耗。 图1.论文提出的电荷舵采样全数字锁相环(CSS-ADPLL)架构   测试结果表明,该芯片实现了75.9fs的时钟抖动与–50.13dBc的参考杂散,并取得了-252.4dB的FoM值,为20GHz以上数字锁相环的最佳水平,芯片核心面积仅为0.044mm2。该研究成果以“An 18.8-to-23.3 GHz ADPLL Based on Charge-Steering-Sampling Technique Achieving 75.9 fs RMS Jitter and -252 dB FoM”为题由博士生陶韦辰在大会作报告。 图2.CSS-ADPLL相位噪声与参考杂散测试结果   该研究工作得到了科技部国家重点研发计划资助,也得到了中国科大微电子学院、中国科大信息科学技术学院支持。
  • 华为终于向“仪器圈”出手了!这次是为了毫米波/太赫兹?
    p style=" text-indent: 2em text-align: justify " strong span style=" text-indent: 2em " 3月31日,华为技术有限公司(下称“华为”)新增对外投资企业中电科仪器仪表有限公司(下称“中电科仪”),华为持股比例为8%, /span /strong span style=" text-indent: 2em " 认缴出资额达6606.6743万元人民币,认缴出资时间是今年4月30日。 /span /p p style=" text-indent: 2em text-align: justify " strong 中电科仪致力于微波/毫米波测量、光电测量、通信测量、基础测量和毫米波/太赫兹 /strong strong 等 /strong 电子测试领域前沿技术的探索和研究。据悉, strong 此前华为就在关注毫米波/太赫兹技术,在2020年1月12日天津举办的“‘太赫兹光谱与测试应用研讨’暨‘太赫兹光谱与测试工作组’成立大会”( a href=" https://www.instrument.com.cn/news/20200113/520591.shtml" target=" _blank" span style=" color: rgb(84, 141, 212) " 相关链接:太赫兹技术“未来可期”“太赫兹光谱与测试工作组”正式成立 /span /a ),就有华为相关工作人员出席,并就太赫兹在通信及雷达领域的应用提出相关问题。此次华为入股中电科仪,或与其通信布局相关,获取最新的毫米波/太赫兹通信技术。 /strong /p p style=" text-indent: 2em text-align: justify " 工商信息显示,与华为一同入股中电科仪的还有7位股东,分别是中国电子科技集团公司第四十一研究所(10%)、中电科投资控股有限公司(8.72%)、合肥中电科国元产业投资基金合伙企业(有限合伙)(8.00%)、蚌埠思仪发展企业管理中心(有限合伙)(7.95%)、国家军民融合产业投资基金有限责任公司(2.46%)、中电电子信息产业投资基金(天津)合伙企业(有限合伙)(2.46%)以及蚌埠思仪创新企业管理中心(有限合伙)(1.88%),公司原唯一股东中国电子科技集团有限公司的持股比例下降至50.54%。这八位股东入股后,中电科仪的注册资本从5亿元人民币增加至8.258亿元,增幅65.17%。 /p p style=" text-indent: 2em text-align: justify " 中电科仪2020年度工作报告介绍,公司在2019年营收、净利润同比增长超25%,货币资金达22.72亿元,2020年的工作目标是实现营收34亿元、净利润3.19亿元等经营目标。 /p h1 label=" 标题居左" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: left margin: 0px 0px 10px " span style=" font-size: 20px " strong 关于毫米波/太赫兹 /strong strong /strong /span /h1 p style=" text-indent: 2em text-align: justify " 毫米波和太赫兹所覆盖的电磁频谱是低频段常用电磁频谱的几百倍,在高频段电磁波的波长短,具有带宽上的巨大优势和波长短的特性,因此在通信、雷达、成像、检测等领域具有高宽带、高速率、高精度、高分辨率等特点,在高速无线通信、自动驾驶汽车、无损探测、机器人视觉、航空航天等方面有广阔的应用前景。 /p h1 label=" 标题居左" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: left margin: 0px 0px 10px " span style=" font-size: 20px " strong 关于中电科仪器仪表有限公司 /strong /span /h1 p style=" text-indent: 2em text-align: justify " 中电科仪是中国电科集团下属二级企业,本部位于青岛,公司致力于微波/毫米波测量、光电测量、通信测量和基础测量等电子测试领域前沿技术的探索和研究,拥有自主知识产权的、覆盖高中低端的、系列化的电子测量仪器和元器件产品,以及“量身定做”的自动测试解决方案。 /p
  • 2008年中英/欧洲毫米波与太赫兹技术学术研讨会召开
    10月20日,为期三天的2008年中国—英国/欧洲毫米波与太赫兹技术学术研讨会在电子科技大学隆重召开。来自中英等国的近100名专家学者和会议代表齐聚我校,纵论毫米波与太赫兹的研究现状和发展趋势,探讨国际毫米波与太赫兹科学技术研究的重大科学问题和前沿进展。       本次会议由英国伦敦皇家协会和中国国家留学基金委发起,由电子科技大学主办。会议同时得到了IEEE的相关技术支持。会议旨在加强毫米波与太赫兹在相关研究领域的技术交流与合作,促进相关成果的转化和技术创新。会议主要议题包括对太赫兹源以及太赫兹的传输发射、模式转换、无线技术的相关研究的研讨和对毫米波与太赫兹的相关技术应用的交流。   会议主席由电子科技大学副校长熊彩东、伦敦大学玛丽女王学院陈晓东教授共同担任,电子科技大学刘盛纲院士担任大会国际顾问委员会主席。     熊彩东副校长代表电子科技大学对会议的召开表示热烈祝贺。他说,此次会议汇集了中英以及欧洲等国在毫米波和太赫兹研究领域的许多专家,会议的召开对推进电子科技大学在毫米波和太赫兹领域的研究以及促进中英和欧洲各国在毫米波和太赫兹研究领域的发展提供了很好的平台。   刘盛纲院士表示,太赫兹技术是当前科学界的一个前沿研究领域,由于其潜在的巨大科学价值和应用价值,现已受到世界各国的高度重视。此次会议的召开对促进中英两国以及中欧各国在毫米波与太赫兹相关领域的交流和合作,加快该领域的科学研究发展、人才交流、培养和科技成果转化将有重要意义。刘院士介绍了电子科技大学在太赫兹领域的研究成果,并希望他们能尽情感受成都,了解成电。   在本次会议上,电子科技大学刘盛纲院士、英国斯特拉斯克莱德大学艾伦菲尔普斯教授等8位毫米波与太赫兹研究领域的专家分别围绕太赫兹科学技术的最新研究进展、发展趋势、应用前景等做了特邀报告。另有40多名专家学者还以口头报告和张贴报告等形式汇报了其在毫米波和太赫兹领域的研究进展和最新探索。本次会议采取了报告和研讨相结合的交流方式,共收到论文50余篇,论文内容涵盖毫米波与太赫兹相关理论及技术应用、前沿研究和学科前景等,反映了当前毫米波和太赫兹领域的最新研究与最新成果。   会议期间,与会专家们参观了电子科技大学物电学院工艺实验室等相关研究机构。   据了解,太赫兹(Terahertz,简称THz)波是指频率在(0.1-10)THz (1THz=1012 Hz, 或波长为30微米-3毫米)范围内的电磁波。它的频谱极宽,覆盖了各种包括凝聚态物质和生物大分子在内的转动和集体振动频率。因此,THz科学技术有很重要的学术研究价值,在国民经济和国防建设领域有着极其重要的应用前景。   从1992年开始,刘盛纲院士就指出在我国发展太赫兹科学技术的必要性和紧迫性,并坚持不懈地为推动我国太赫兹科学技术的发展而努力。2005年11月,受国家科技部、中国科学院、自然科学基金委员会共同委托,刘盛纲院士作为会议执行主席主持召开了以“太赫兹科学技术的新发展”为主题的第270次香山科学会议,这次会议是我国太赫兹研究发展的一个里程碑,标志着我国太赫兹科学技术的起步。目前刘盛纲院士是中国电子学会太赫兹专家委员会主任,是公认的我国太赫兹科学研究的倡导人、学术带头人和学术领导人。
  • 多功能振荡器:恒温快,控温好结构合理,体积小巧
    A1230全自动多功能振荡仪符合GB/T17623、DL/T703、DL/T429.4标准 ,A1230主要用于绝缘油气相色谱检测中的振荡脱气、油中水溶性酸测定中的恒温、定时、振荡,还可用于石油、化工、医药、生化等科研生产单位试验中的恒温、定时振荡。仪器特点采用双CPU微型计算机控制。温度超值自 动停止加热。仪器故障自诊断。液晶显示,无标识按键。恒温快,控温好结构合理,体积小巧。技术参数温度控制:室温~100℃温控精度:室温~50℃±0.2℃ 50℃~100℃±0.3℃振荡频率:275±3次/分振荡幅度:35mm每次振荡样品数量:8支100ml注射器 4个250ml三角瓶自定义:0~99分钟内任意设定振荡、静止时间±10秒 0~99℃内任意设定温度噪  音: <40分贝工作电源:AC220V±10%,50Hz功 率:800W显示方式:液晶显示环境温度:5~40℃相对湿度:≤85%外形尺寸:500mm×350mm×370mm重 量:30.5kg
  • 对生命进行远程控制:无线生物工程学成为医学研究的前沿领域
    据英国《新科学家》周刊网站近日报道,随着纳米技术、生物技术以及无线通讯技术等领域的迅猛发展和交叉融合,现在,科学家们已经能够使用无线电信号来对细胞、药品甚至动物等进行控制了。尽管远程无线控制医学这一前沿领域可能面临着安全性等问题,但是,其发展潜力和蕴藏的好处都让人不容小觑。   无线生物工程学方兴未艾   美国纽约州立大学水牛城分校的阿诺德普拉勒制造出的线虫看起来与其他蠕虫毫无二致,体长约为1毫米。接着,当普拉勒打开一个磁场,这些滑溜的、不断蠕动的蠕虫会停止动作,随后,在犹豫了片刻之后,接着开始向后退。然后,普拉勒将磁场关闭,再打开,一遍又一遍地重复这个动作,蠕虫会随着他的拍子跳舞,协调一致地前后移动。   这些都是可以进行远程控制的蠕虫。此前,普拉勒和同事已经将纳米大小的接收器植入线虫头部的神经细胞中。无论何时,只要该接收器探测到高频磁场,神经细胞就会通电,蠕虫也因此会转动。   普拉勒的远程控制蠕虫仅仅只是个开始。目前,生物学家们正在研究对其他宿主进行控制 也在研究将接收器植入离子通道、DNA片段和抗体中。他们的目标是使用比无线电更小的电波来控制活体细胞。   这个方兴未艾的无线电远程医学技术融合了纳米技术、生物技术和无线电物理学技术,该领域目前正在为研究人员提供一个强大的研究工具,而且也在创造一类新科学:科学家们将其称为无线生物工程学或者电磁药理学。不管叫什么名字,该领域目前正吸引着很多科学家为之而倾倒,而且,其应用潜力也非常大。   美国西北大学的物理学家贝纳尔多巴尔别利尼-阿米德去年帮助美国国家科学基金会组织了一场与这个课题有关的研讨会。巴尔别利尼-阿米德指出,一个新的医学领域正慢慢向我们走来。很多疗法,包括基于免疫系统、基因甚至干细胞的疗法都有潜力被远程控制。   与传统药物需要经过几小时才会起作用而且会一直停留在身体里不同,使用无线方法激活的药物几乎能立刻起作用或者随时关闭。美国洛克菲勒大学的萨拉史坦利表示:“使用无线电场能诱导细胞提供具有治疗效果的蛋白质,而采用其他方法做到这一点的成本很高。”   他所在的研究团队也已经找到了使用无线电波来控制胰岛素的生产和释放的方法。我们甚至能够大胆设想:下一代用智能手机应用程序激活并起作用的药物距离我们并不遥远了。巴尔别利尼-阿米德说:“纳米无线系统在医学治疗领域拥有巨大的应用潜力。”   电磁场能“遥控”体内细胞   在很多疗法中,科学家们和医生都会使用强大的磁场来作为治疗手段。例如,名叫经颅磁刺激(TMS)的技术通过诱导大脑内的电流来工作,鉴于其具有一定的疗效,使用该技术治疗抑郁症在美国已经获批。   但是,TMS并非一种十分精确的方法,而且,目前,很多科学家正在研发其他专门使用磁场进行疾病治疗的方式。2005年,加拿大蒙特利尔综合理工大学纳米机器人实验室的西尔万马特尔就想出了一个点子:使用磁感应细菌来制造“迷你型”的药物递送系统。   马特尔的具体想法是,使用一种名为MC-1的菌株作为小拖船。MC-1会沿着地球磁场的磁力线游动——它们使用嵌入身体内名为磁小体的结构中的氧化铁粒子链来感应地球的磁场。马特尔解释道:“每个磁小体就像一根指南针或者一个纳米导航系统。”   2007年,马特尔的团队将细菌同大小为其数倍的塑料小珠连接在一起,并且使用由一台MRI扫描仪产生的、由计算机控制的磁场证明,细菌会遵循精确的路线行进,并且,将它们身上负载的东西铺展在特定的目标上。随后,该研究团队用像细胞一样的胶囊(脂质体)替换下这种塑料小珠子,接着,再让脂质体胶囊负载抗癌药物,该计算机控制的磁场能引导该脂质体胶囊通过血管到达肿瘤所在地。   科学家们已经使用这种方法,引导了很多同纳米尺度的磁体依附在一起的抗癌药物阿霉素通过一只实验老鼠的肝脏的动脉到达肿瘤。科学家们认为,最新方法可以让健康的细胞尽量少暴露在强大的药物下,因此,在治疗时副作用应该可以达到最低。马特尔团队目前正在研究如何使用这一方法治疗直肠癌。   科学家们表示,这一方法真的好处多多,电磁场或许可以通过操控身体内细胞的生物化学特性,从而直接干预身体内的这些内部细胞。这样的无线控制方法提供的精确度很少有药物能够做到。   2002年,美国麻省理工学院的约瑟夫雅各布森领导的科研团队证明了这一点。在研究中,他们认识到,金属纳米粒子能够像天线一样并从以无线电频率振动的磁场那儿吸收能量。这些能量可以被转化为热,而且,雅各布森还认为,这或许对触发细胞内部的生物化学变化非常有用。   随后,他和同事决定用DNA来测试这一想法。他们制造出了DNA片段,其中的碱基对相互依附在一起形成一个像束发夹一样的圆环。接下来,他们让一个个金纳米粒子依附到每个DNA片段上。当他们打开一个高频磁场时,来自于纳米粒子的热量会破坏这些碱基对之间的链接,而且,这个束发夹一样的圆环也会弹开。随后,他们将磁场关闭,分子冷却下来,链接也重新形成。这个循环能够一遍一遍地重复进行,而且,雅各布森也表示,它或许会成为一个有用的工具,可以用它来控制基因的功能。   普拉勒则认为,这种方法还有其他用途:打开和关闭细胞壁上的小孔。这些以蛋白质为基础的小孔调节着离子进出细胞的通道,如果能对这一关键的过程进行很好的控制,会有非常大的用处。   作为美国加州大学伯克利分校的博士后研究员,普拉勒已经研究了一个名为TRPV1的离子通道,疼痛感应神经元中经常会发现这个离子通道。在身体体温为正常的37摄氏度时,这个离子通道是关闭着的,但是,如果温度上升到43摄氏度,TRPV1会打开,而且,钙离子会通过该通道,触发一个会制造出热感的神经脉冲。具体到人体上,辣椒等产生的灼热感也同TRPV1通道脱不了干系。   刚开始,普拉勒考虑使用一个红外激光器来打开该通道,但随后,他无意中看到了雅各布森的研究。他说:“我开始思考另外一个方法,那就是我们能够使用温度来直接刺激TRPV1。”计算结果显示,单个纳米粒子无法聚集到足以打开离子通道那么多的能量。但是,他推断,固定到嵌入有TRPV1的细胞膜上的一小撮纳米粒子提供的热量足以将小孔加热到43摄氏度。   为了测试这一想法,普拉勒和同事修改了位于细胞膜内的TRPV1附近的一个蛋白质,使得该蛋白质同几个由铁锰制成的磁纳米粒子依附在一起。随后,事情果然按照普拉勒他们所想象的那样进行:他们打开一个强大的40兆赫兹的磁场,在短短的10秒钟内,通道的温度上升了6摄氏度,并且,细胞壁上的小孔张开了。   普拉勒的团队使用秀丽隐杆线虫(现代发育生物学、遗传学和基因组学研究重要的模式材料)进行了同样的测试。他们将他们制造出的TRVP1天线系统添加到线虫对热敏感的“鼻子”内,果然不出所料,当鼻子内经过修改的神经细胞探测到磁场时,线虫避开了对它们来说像热源一样的事物。   科学家们几个月前才开始关注这个开关并研究这个开关的应用前景(《科学》杂志第336期第604页)。由美国洛克菲勒大学的杰弗瑞弗里德曼领导的科研团队制造出了经过遗传修改的细胞,在这些细胞中,由TRVP1通道释放出的钙离子触发了胰岛素的产生。接着,科学家们直接将铁纳米粒子添加到TRVP1通道内,并将细胞直接注射进入实验老鼠体内。当他们开启一个以无线电频率震动的磁场时,实验老鼠的血糖浓度下降,这意味着胰岛素已经生成并开始在老鼠体内“发威”。   弗里德曼的团队甚至想出了方法让细胞制造出自己的铁纳米粒子,他们的方法就是赋予细胞合成铁蛋白(铁蛋白是一种将铁原子收集成簇的蛋白质)所必需的遗传机制。科学家们表示,他们也可以对这一方法稍作改变,使用其来远程触发诸如依靠钙离子的肌肉收缩等过程。它甚至可以用来处理大脑内的肿瘤,这里的肿瘤很难对付,因为血脑屏障让血液中的大分子无法进入大脑中。   史坦利表示,他们可以通过修改病人自己的干细胞,制造出一种对无线电信号做出反应的重组抗体,而且,他们也可以将其植入中央神经系统中以递送治疗抗体。普拉勒表示:“很多无线控制方法都有望通过这种方法或者其他方法来实现,这很酷。”   如果这类远程加热方法能起作用,那么,这种方法也不必破坏铁通道中的蛋白质或者伤害附近的分子。普拉勒认为,其中一个原因在于它使加热过程变得更有效。如果他能够在接下来的研究中,找到方法减少提高离子通道的温度所耗费的时间,那么,让附近的分子受到影响的热能也会相应减少。为此,他正在设计更好的纳米大小的热吸收器。   无线拉伸细胞可诱使肿瘤细胞凋亡   科学家们发现,除了可以使用热来对细胞进行远程控制之外,还有其他方法也能对细胞进行远程控制。美国哈佛医学院的唐因格伯进行的研究表明,细胞会通过使用自己身体的扭转来相互交流。他的团队发现,他们可以仅仅通过采用特别的方式来拉伸细胞,从而改变细胞内的基因活动的模式甚至触发细胞自杀——也就是所谓的细胞凋亡。   因格伯的研究团队采用的方法是,将具有磁性的纳米小珠依附到整联蛋白上,整联蛋白是一种出现在细胞的外膜内的蛋白质,其会将纳米小珠锚定到细胞的外基质上。打开一个磁场会对塑料小珠施加一种力,这个力会拖动整联蛋白并将细胞拉变形。   2007年,因格伯就已经证明,他能够将细胞拖成扁平的形状,而且,当磁场关闭时,细胞会死亡。他表示:“这表明,我们可以通过磁场的关闭这种方式来控制细胞的命运。”而且,他和他的团队也已经发现,让一个干细胞变形可以决定它会发育成为哪类身体组织。因格伯解释道:“力学在发育过程中和基因一样重要。”   使用磁场拖拉细胞也能影响我们的免疫系统。在另外一套实验中,因格伯团队让磁性纳米粒子依附到肥大细胞表面的抗体受体上,这种抗体受体会对特定抗原产生过敏免疫反应。在一个磁场中,纳米粒子形成一簇,将这些抗体受体聚拢到一起,其采用的方式与抗原依附于其上一样。在一般情况下,这个聚簇行为会触发一系列的生物化学事件,导致组织胺释放出来——这是一种免疫反应。结果表明,磁场是这一切事件背后的幕后推手。因格伯说:“磁场在这方面表现得非常好。”   因格伯表示,这样通过无线触发方法释放出的组织胺可以更好地控制炎症。组织胺影响血管扩张、肌肉收缩以及肠道内的胃酸分泌。它也能像神经传递素一样影响人的清醒和睡眠状态。而且,这种聚簇效应也能同细胞表面的其他分子结合在一起以制造抗癌药物,例如,制造能触发肿瘤细胞死亡的抗癌药物。   目前,普拉勒打算厘清一个问题,那就是,这种远程加热技术是否能通过激活动物嗅球内特定的神经元(嗅球是大脑内与处理气味有关的组织)来刺激老鼠的触觉。实际上,也就是通过这种方法,让老鼠“闻到”并不存在的物质。去年,他的团队接受了美国国立卫生研究院(NIH)提供的130万美元的资助来研发这项技术。他说:“嗅觉提供了一个大的实验场地,因为嗅球能够从外面送达,因此,递送纳米粒子相对来说也比较容易。”   细胞自身或许就拥有无线机制   要想对细胞进行无线控制,小磁铁可能并非最好的接收器。据《科学美国人》杂志报道,早在2007年,美国加州大学伯克利分校的物理学家亚历克斯策特尔就已经证明,纳米管完全可以作为无线电接收机来使用:可以被当做一个配备了放大器和谐调器的天线来使用。   为了制造出一个能对无线电波做出反应的纳米管,策特尔团队在该碳纳米管的尖端施加了一个电荷。当出现无线电波时,电荷会在管内制造出振动,这种振动能被转化回来成为一个震动的电磁信号。通过改变碳纳米管的长度可以改变其共振频率——策特尔发现,采用这种办法能让纳米管与特定的无线电频率保持一致。策特尔甚至也证明,他的碳纳米管无线电接收机能够通过播送与披头士乐队齐名的沙滩小子乐队的歌曲《Good Vibrations》来重复产生传送信号。在纳米管接收器的音频输出那儿,很容易看到这种谐调。   策特尔宣称,纳米收音机可以被“轻松嵌入一个活细胞中,届时,科学家们可以制造出一个与大脑或肌肉功能接口的装置,用无线电控制在血管中游动的器件也将不再只是梦想”。   然而,甚至纳米无线电接收机可能也并不是必须要有的。科学家们表示,细胞或许拥有自己的无线机制。2009年,法国免疫学家、2008年诺贝尔生理学或医学奖获得者之一吕克蒙塔尼断言,DNA分子可以使用无线电波来传送信息,他之所以做出这一判断是因为,他找到了从富含细菌的水中传来的无线电信号,而且,即使当细胞被杀死时,只要他们的DNA完好无损,信号就会保持。   不过,很少有科学家接受这个观点。但是,去年,美国西北大学的物理学家阿兰维多姆计算出,这样的信号可能源于细菌染色体内的DNA环周围的电子,此前,科学家们就认为,循环的电荷能产生电磁波。维多姆指出,人们很早就知道,有些古老的细菌能够通过导电的纳米线将其同电网相连。维多姆预测道:“那么,或许会有很多现代细菌会使用无线电来做事。”   安全问题首当其冲   然而,尽管一切看上去都很美好,这项技术的应用潜力似乎也非常大,但是,我们仍然不能忽视可能会存在的问题。其中一个关键的挑战是,如何将所有这些功能(包括感应无线信号并将其变成有用的反应)整合为一个安全的集成系统。很多科学家们也认为,手机等发射出的电磁信号对细胞具有危险的影响,其会改变基因表达甚至诱发癌症。因此,迄今为止,无线生物工程学这一理念还存在诸多争议。   安全问题则紧随其后。今年2月,西雅图信息安全测试公司McAfee的主管巴纳比杰克表示,他找到了一种方法,可以用无线信号探测糖尿病患者所携带的胰岛素泵,同时控制这些胰岛素泵。他随后进行的初步研究也证明,依靠无线连接的胰岛素递送系统、起搏器、除纤颤器有可能受到黑客的攻击或者被修改。有鉴于此,美国政府问责局目前正着手进行调查,以弄清楚是否应该为医疗设备工业制定更加严苛的安全规则,研究报告预计今年出炉。   显然,不管是无意的还是有意为之的,任何这样的干扰和破坏都会带来令人担忧的问题。巴尔别利尼-阿米德表示:“我们应该关注纳米世界内计算机和通讯领域的安全问题。未来的医用无线纳米设备必须包含更加严谨的安全机制。”   科学家们也表示,尽管面临着一定的风险,但是,我们应该花大力气来解决目前面临的挑战。这是值得的,因为,无线生物工程学具有非常巨大的应用潜能。
  • 首套毫米波太阳射电观测仪器研制成功 未来应用场景广泛
    近日,山东大学空间科学研究院空间电磁探测技术实验室(LEAD),在该校攀登计划创新团队、基金委重大项目课题和面上等项目支持下,研制成功国际首台套工作在35-40GHz的毫米波太阳射电频谱观测系统。该系统是根据山东大学攀登计划创新团队首席科学家陈耀教授提出的科学目标和研制规划,由空间科学研究院空间电磁探测技术实验室主任、机电与信息工程学院副教授严发宝带领实验室成员自2017年底开始攻克多项关键技术难题而完成。相应主要学术论文以《毫米波宽带太阳射电频谱仪》为题在《天体物理学杂志增刊》在线发表。据悉,该文为美国天文学会(AAS)旗下系列期刊上发表的为数很少的太阳射电观测仪器技术类科研论文。太阳耀斑爆发是灾害性空间天气的主要源头,所产生的高能量粒子与强电磁辐射可直接威胁人类空间设施与深空探测等太空活动安全,还会增加导航误差、导致中断通信等。通过自主研制太阳微波辐射探测仪器可获得一手科学数据,可开展耀斑爆发机理和粒子加速机制等方面的科学研究,还可助力空间灾害预警预报,为太空活动安全提供保障。传统太阳射电仪器专注于18GHz以下,在18GHz以上仅有少数频点的探测装备,而对于耀斑物理的研究还需要在更高频段部署观测仪器,以获得辐射频谱的完整测量。为填补毫米波频段观测数据空白,团队于2017年底开始提议和研制35-40GHz频域的地基太阳射电频谱观测系统。该仪器实现了35-40GHz范围内5GHz带宽的扫描观测,系统噪声系数~300K,系统线性度0.9999,时间分辨率为5ms~1.3s(~134ms, 默认),频率分辨率为153kHz。该仪器样机目前已常规运行两年有余,积累了大量观测数据,并有望在即将到来的第25周太阳活动峰年观测到更多耀斑爆发数据。在仪器研制过程中,团队突破了毫米波高精度探测、GHz采样数据并行实时处理、宽带信号的平坦度处理等系列关键技术,先后在中国科学、RAA、PASJ等国内外期刊发表多篇学术论文,基于仪器实现方法等授权国家发明专利4项,并获得了国家自然科学基金委重大项目课题、面上项目以及学校攀登计划创新团队的支持。
  • 标准即将到来,产业化还会远吗?——访毫米波太赫兹产业发展联盟秘书长刘海瑞
    p style=" text-align: justify text-indent: 2em " 太赫兹(THz)作为一种极具潜力的技术,在药物检测、癌症诊断、标记物识别、安检安防、航空航天复合材料无损检测、飞机涂层、文物检测等多个领域具有广阔的应用前景。 strong 目前,太赫兹技术正处于产业化的初始阶段,急需通过产业化推动太赫兹技术的进一步发展。 /strong /p p style=" text-align: justify text-indent: 2em " strong 2019年4月,为顺应国家和行业对毫米波太赫兹技术产业化的强烈需求,毫米波太赫兹产业发展联盟正式成立。 /strong /p p style=" text-align: justify text-indent: 2em " 那么联盟成立一年多的时间,目前情况如何?又做了哪些工作?起到了怎样的作用? /p p style=" text-align: justify text-indent: 2em " 太赫兹技术的产业化情况如何?在哪些领域有望更快实现产业化? /p p style=" text-align: justify text-indent: 2em " 毫米波太赫兹安检作为有望率先实现产业化的应用,目前存在哪些问题?国内的相关企业情况如何? /p p style=" text-align: justify text-indent: 2em " 针对以上问题, strong 近日仪器信息网特别采访了毫米波太赫兹产业发展联盟秘书长刘海瑞,请他就以上问题以及毫米波太赫兹技术未来的发展谈谈自己的看法。 /strong /p p style=" text-align: justify text-indent: 2em " 以下是采访详细视频: /p script src=" https://p.bokecc.com/player?vid=6A9D31F807E7A7F59C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p style=" text-align: center" br/ /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 237px height: 264px " src=" https://img1.17img.cn/17img/images/202012/uepic/0020b2ee-69a0-4d32-a5be-7de95e2f7c08.jpg" title=" 企业微信截图_20201210134245.png" alt=" 企业微信截图_20201210134245.png" width=" 237" height=" 264" / /p p style=" text-align: justify text-indent: 2em " strong 关于刘海瑞 /strong /p p style=" text-align: justify text-indent: 2em " 博士、中国信息通信研究院高级工程师。本科、硕士毕业于北京航空航天大学电子工程学院,电磁场与微波技术专业。博士毕业于北京邮电大学,物理电子学专业。博士期间,前往英国卢瑟福阿普尔顿实验室交流访问一年。博士毕业后,进入北京邮电大学信息与通信工程学院博士后流动站工作。出站后进入中国信息通信研究院泰尔终端实验室工作。 /p p style=" text-align: justify text-indent: 2em " 刘海瑞博士主要从事毫米波、太赫兹固态电子电路的研究。进入中国信通院后,依托研究院的行业优势,主要从事新技术、新领域的平台建设。毫米波太赫兹产业联盟的秘书处工作,是自身专业与信通院优势的交叉融合,也是自我发展的从新定位,希望携手志同道合之士,为产业发展添砖加瓦。 /p
  • 日媒:日企量产100毫米氧化镓晶圆 将于今年内开始供应
    据日经中文网6月16日报道,由日本电子零部件企业田村制作所和AGC等出资成立的Novel Crystal Technology在全球首次成功量产以新一代功率半导体材料“氧化镓”制成的100毫米晶圆。将于2021年内开始供应晶圆。客户企业可以用支持100毫米晶圆的现有设备制造新一代产品,有效运用过去投资的老设备。报道指出,在日本政府的半导体战略中,功率半导体被视为日本企业保持国际竞争力的领域之一。功率半导体材料目前处于过渡期,现在的主流材料是硅,碳化硅(SiC)和氧化镓等材料的开发不断推进。此次成功实现晶圆量产化的氧化镓有望在相关竞争中占据优势。报道还称,这次氧化镓成功量产对客户企业也有好处,由于可以用支持100毫米晶圆等的现有设备来生产半导体,能够控制住设备投资。日本半导体厂商拥有过多的老式生产设备,这些设备有望得到有效利用。此外,Novel Crystal Technology还计划2023年供应150毫米晶圆。根据Novel Crystal Technology官网介绍,该公司于2019年成功开发出高质量2英寸(50.8毫米)氧化镓外延片,并于2019年初开始生产销售。但由于成本不相匹配而没有功率器件的量产线,该晶圆的用途仅限于研发。这次,该公司成功开发高品质β型氧化镓100mm外延片,这使得在100毫米生产线上制造氧化镓功率器件成为可能。
  • 毫感科技获数千万Pre-A轮融资,聚焦4D高分辨率毫米波雷达
    2024年1月,4D高分辨率毫米波雷达研发商苏州毫感科技有限公司(以下简称“毫感科技”)已完成数千万元Pre-A轮融资。本轮融资由欣柯创投领投。天眼查信息显示,自2021年7月成立至今,毫感科技已累计完成三轮融资。欣柯创投表示,期待与毫感科技共同见证4D毫米波雷达在自动驾驶领域的全面普及。毫感科技产品定位于高通道数的4D成像雷达芯片,主要专注在两个方向。一个是高性能的MMIC,主要适用于前向的探测,提供高分辨率以及长距离的探测;另一个是高集成度的SOC,可降低成本,作为前向或者环视雷达,应用于辅助驾驶、自动泊车等。4D成像雷达是一种延伸的毫米波技术,能够在高速公路和复杂的城市场景中,探测距离达300米的各种物体。对比传统雷达,4D成像雷达增加了对目标高度维度数据的探测和解析,在探测距离、速度、水平角三个维度之上还能给出俯仰角信息,可以实时追踪物体的运动轨迹,更具备“成像”能力。此外,从目前来看,对比激光雷达,4D成像雷达的成本优势也较为突出。基于上述这些优势,业界针对L2+级别智能驾驶,已经逐步出现“弱硬件强算法”的4D成像雷达视觉方案替代“强硬件弱算法”的激光雷达方案的声音。当然,也有不少业内人士表示,随着自动驾驶往更高级别发展,仍需要激光雷达进行加持,未来多传感器融合方案将是必然。尽管当前整个4D成像雷达市场仍处于发展的早期,但是由于汽车行业竞争越来越激烈,降本增效压力也变得愈发突出,这也进一步促进4D成像雷达市场以飞快的速度成长。事实上,回顾刚刚过去的2023年,不难发现毫米波雷达赛道的热情就一路高涨,这也直接反映在资本市场上。据不完全统计,算上最新获得融资的毫感科技,从2023年以来,国内至少已有10家4D毫米波雷达企业获得融资,已披露融资总额远超十亿元。值得一提的是,2023年8月,国内“激光雷达第一股”禾赛科技CEO李一帆还出手投资了4D雷达新创公司傲图科技,可见该细分市场的热度不一般。从全球范围看,像是高级辅助驾驶巨头Mobileye近几年一直在大力研发4D成像雷达芯片以及系统方案,特斯拉2023年也在HW4.0上面安装了自研的4D成像雷达模组。2023年以来,包括吉利、红旗、长安、上汽、比亚迪、理想等多家车企宣布定点或上车4D毫米波成像雷达。
  • 全球海平面正以每年3.1毫米“惊人速度”上升
    根据22日欧盟哥白尼海洋环境监测中心发布的一份关于全球海洋的最新报告显示,过去两年记录的北极冰层范围已达到历史最低水平,自1979年至2020年以来,平均每10年下降近13%,海冰减少的面积相当于6个德国的面积。  这份发表在同行评审的《运行海洋学杂志》上的年度“哥白尼海洋环境监测中心第5期海洋状况报告”借鉴了来自30多个欧洲机构的120多名科学家的分析,提供了一份关于全球海洋和欧洲地区海洋的当前状况、自然变化和持续变化的全面、先进的科学报告。今年的关键审查显示出气候变化带来的前所未有的影响。  报告显示,海洋正在发生前所未有的变化,这对人类福祉和海洋环境都有巨大影响。世界各地的表层和亚表层海水温度都在上升,海洋变暖和陆冰融化导致海平面继续以惊人的速度上升:地中海每年上升2.5毫米,全球每年上升3.1毫米。  据估计,北冰洋变暖占全球海洋变暖总量的近4%。巴伦支海(北极的一小部分)的平均海冰厚度减少了近90%,这导致从极地盆地进口的海冰减少。  报告认为,在北海,寒潮和海洋热浪的极端变化与比目鱼、欧洲龙虾、海鲈鱼、红鲻鱼和可食用螃蟹的捕获量的变化有关。农业和工业等陆上活动造成的污染正在导致海洋富营养化,影响脆弱的生态系统。  报告还显示,在过去十年中,地中海的海洋变暖和盐度增加加剧。在地中海,威尼斯连续发生了4次创纪录的洪水事件(2019年11月),地中海南部的海浪高度高于平均水平(2019年)。  从1993年到2019年,全球平均海温以每年0.015摄氏度的速度上升,从1955年到2019年,黑海的氧气水平(氧气库存)以每年0.16摩尔/平方米的速度下降。  报告负责人卡琳娜冯舒赫曼博士总结了海洋的国际形势,指出除了进行定期监测外,还需要不断改进最先进的海洋知识及开发和提供新产品。
  • 大兴机场已用上高端“毫米波”,常见的安检仪器都过时了么?
    p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 前一段时间,大兴机场正式投运,许多网友被机场内的高科技设备刷屏了。这些高科技的设备不仅提升了旅客的乘机效率,还提高了机场整体的安全性。 /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 自1970年的道森机场劫机事件后,安检设备便开始被广泛使用,主要目的就是防止乘客把各种武器,枪械带上飞机。安检设备作为保证旅客安全的核心设备,一直是各界研发的重点,其也随着科技的发展不断迭代、更新。近期投运的大兴机场就已全面上线先进的CT型行李/物品检查系统和毫米波人体安全检查仪,小编就来盘点一下,目前生活中常见的安检仪器都有哪些优缺点: /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(255, 255, 255) background-color: rgb(84, 141, 212) font-size: 20px " strong style=" text-indent: 2em " span style=" color: rgb(255, 255, 255) background-color: rgb(84, 141, 212) font-family: 宋体, SimSun " 手持金属探测仪 /span /strong /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 手持式金属探测仪是生活中最为常见的安检仪器,从机场地铁到工厂考场,都能看到它们的身影。其主要是利用电磁感应原理,探测仪会产生周期性变化的磁场,在空间中产生涡旋电场,涡旋电场在遇到金属时,会形成涡电流,可以被探测仪检测到,由此判断人体是否携带金属。 /span /p p style=" text-align: justify text-indent: 0em " span style=" font-family: 宋体, SimSun " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 197px height: 197px " src=" https://img1.17img.cn/17img/images/201910/uepic/6c1fe052-6ce3-464c-8b17-ac406f6399ae.jpg" title=" ac6eddc451da81cb4320e80d5366d0160824312f.jpg" alt=" ac6eddc451da81cb4320e80d5366d0160824312f.jpg" width=" 197" height=" 197" / /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 手持式金属探测仪的价格 strong 优势非常明显,且方便小巧 /strong ;但其劣势也显而易见, strong 检测精度不高、只能检测金属、人工检测效率低等 /strong 。 /span /p p style=" text-indent: 2em text-align: justify " strong span style=" font-family: 宋体, SimSun " br/ /span /strong /p p style=" text-indent: 2em text-align: justify " span style=" background-color: rgb(84, 141, 212) color: rgb(255, 255, 255) font-size: 20px " strong span style=" color: rgb(255, 255, 255) background-color: rgb(84, 141, 212) font-family: 宋体, SimSun " 行李X光安检机 /span /strong /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 行李X光安检机在生活中也很常见,广泛应用于火车站、地铁站、飞机场等场所的行李检查。其是利用X光射线穿透物品,将穿透物品所得信号传送到处理器上进行信号处理,最后传输到控制器把信号在显示视器上显示出来,安检员可以根据显示出来的图像进行判断物品是不是为违禁物品。按照国家的标准:有机物呈现出橙色,金属和无机物呈现出蓝色,混合物呈现出绿色。如果显示出黑色就是不能够穿透的物品。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 353px height: 235px " src=" https://img1.17img.cn/17img/images/201910/uepic/59c3ebbd-a673-47de-9e15-0c4ec98fd842.jpg" title=" 行李X光.JPG" alt=" 行李X光.JPG" width=" 353" height=" 235" / /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 行李X光安检机是目前应用最广泛的行李安检仪器,适合于多种场所的 strong 连续检测,穿透力强 /strong ,但其对 strong 细小危险品的图像分辨率不足,不能作层面分析,有一定的局限性 /strong 。 /span /p p style=" text-indent: 2em text-align: justify " br/ /p p style=" text-indent: 2em text-align: justify " span style=" color: rgb(255, 255, 255) background-color: rgb(84, 141, 212) font-size: 20px " strong span style=" color: rgb(255, 255, 255) background-color: rgb(84, 141, 212) font-family: 宋体, SimSun " 金属安检门 /span /strong /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 金属安检门是另一个生活中非常常见的安检仪器,其工作原理与手持式金属探测仪类似,但安检门探测是由区域划分,比较常见的为六区、八区。还有更高的如十二区、二十八区及三十二区等,数值越大,通过的人员身体所携带的金属物品位置就会标准的越详细。 /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 126px height: 298px " src=" https://img1.17img.cn/17img/images/201910/uepic/ee4bc9f3-df9c-4cda-96c3-f6f77115ae74.jpg" title=" 安检门.JPG" alt=" 安检门.JPG" width=" 126" height=" 298" / /p p br/ /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 当被检人员通过时,安检门通过红外对射感应器对身体进行探测,探测到身体上带有金属物品的位置相应的区域报警灯就会报警闪烁,并发出警报声音。 /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 一般的安检门都会检测出≥10g的金属,只要身体上携带大于10g的金属是都会被检测到。安检门 strong 只是检测到是否携带金属,对于非金属和其他危险品无法检测 /strong ,具体是否是危险物品, strong 还要进一步通过手检来完成,安检效率低 /strong 。 /span /p p style=" text-indent: 2em text-align: justify " br/ /p p style=" text-indent: 2em text-align: justify " span style=" color: rgb(255, 255, 255) background-color: rgb(84, 141, 212) font-size: 20px " strong span style=" color: rgb(255, 255, 255) background-color: rgb(84, 141, 212) font-family: 宋体, SimSun " CT型行李物品检查系统 /span /strong /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " CT型行李物品检查系统是目前较为先进的行李安检仪器,也是 strong 大兴机场全面使用的行李物品检查系统 /strong 。 /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 它的原理与医院使用的CT检查仪类似,其不仅能够提供过机行李的彩色高清二维图像、CT切片图像和三维立体图像,还可以利用过机物品密度和有效原子序数等信息,实现对多种违禁品的自动预警识别、判图查验。 /span /p p style=" text-align: justify text-indent: 0em " span style=" font-family: 宋体, SimSun " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 296px height: 202px " src=" https://img1.17img.cn/17img/images/201910/uepic/1858fcc2-134e-4de4-801c-3fa1fe95b1f2.jpg" title=" CT安检.JPG" alt=" CT安检.JPG" width=" 296" height=" 202" / /p p br/ /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 目前CT型行李物品检查系统 strong 价格相对较高 /strong ,因此应用普及度不高,目前主要应用于机场、海关、车站等其他敏感场所,相比于行李X光安检机,它 strong 对危险品的检出率更高 /strong 。 /span /p p style=" text-indent: 2em text-align: justify " br/ /p p style=" text-indent: 2em text-align: justify " span style=" color: rgb(255, 255, 255) background-color: rgb(84, 141, 212) font-size: 20px " strong span style=" color: rgb(255, 255, 255) background-color: rgb(84, 141, 212) font-family: 宋体, SimSun " 违禁品(爆炸物、毒品、化学战剂)探测仪 /span /strong /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 很多乘客也已经发现,进入机场时,会有安检人员用一个“纸片”在每个人的行李上划过,但它到底是什么呢? /span /p p style=" text-align: justify text-indent: 0em " span style=" font-family: 宋体, SimSun " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 215px height: 215px " src=" https://img1.17img.cn/17img/images/201910/uepic/882a7b3d-f4d4-4d34-8df1-c688fb4ff46a.jpg" title=" 84fcf883-56c1-4338-8583-d892124ba096.jpg!w300x300.jpg" alt=" 84fcf883-56c1-4338-8583-d892124ba096.jpg!w300x300.jpg" width=" 215" height=" 215" / /p p br/ /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 其实,这个“纸片”是一种试纸,把特定的物质吸附到上面,基于离子迁移谱(IMS)技术,可以识别超过40种危险品,检测速度快。但违禁品探测试纸 strong 必须直接与违禁物蒸汽或微粒接触 /strong 才能被检出,因此也存在一些不足, strong 不适用于远距离检测 /strong 。 /span /p p style=" text-indent: 2em text-align: justify " br/ /p p style=" text-indent: 2em text-align: justify " span style=" color: rgb(255, 255, 255) background-color: rgb(84, 141, 212) font-size: 20px " strong span style=" color: rgb(255, 255, 255) background-color: rgb(84, 141, 212) font-family: 宋体, SimSun " 毫米波人体安检成像仪 /span /strong /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 毫米波人体安检成像仪利用毫米波对平常衣物的穿透能力进行成像,从而确定被检查人体体表是否藏匿嫌疑物品,具有扫描成像速度快、全面检测、安全可靠、隐私保护、自动识别违禁品等特点。 /span /p p style=" text-align: justify text-indent: 0em " span style=" font-family: 宋体, SimSun " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 282px height: 191px " src=" https://img1.17img.cn/17img/images/201910/uepic/498a1c6d-1d93-4aa1-a5f4-15e87abd89f4.jpg" title=" 毫米波.JPG" alt=" 毫米波.JPG" width=" 282" height=" 191" / /p p style=" text-indent: 2em " span style=" font-family: 宋体, SimSun text-align: justify text-indent: 2em " 毫米波人体安检成像仪的优势非常明显, strong 不仅可以探测金属,还可以探测非金属、爆炸物等,且具有比较好的图像对比度和空间分辨能力,可以显示隐匿物的位置和形状,相比X光安检仪,毫米波对人体无害,易被公众接受 /strong 。 /span /p p style=" text-indent: 2em " strong span style=" font-family: 宋体, SimSun text-align: justify text-indent: 2em " 大兴机场现已全线使用毫米波人体安检成像仪,可以为旅客提供更安全的乘机体验 /span /strong span style=" font-family: 宋体, SimSun text-align: justify text-indent: 2em " 。 /span /p p br/ /p
  • 太赫兹安检产业化迎重大突破,十五年孕育将开花结果——访毫米波太赫兹产业联盟副理事长胡伟东
    p style=" text-indent: 2em text-align: justify " 太赫兹(THz)波段位于微波和红外之间,处于电子学向光子学的过渡区域,具有穿透性强、带宽大、光子能量低等独特优势,在药物检测、癌症诊断、标记物识别、安检安防、航空航天复合材料无损检测、飞机涂层、文物检测等多个领域具有广阔的应用前景,被多国定义为“改变未来世界十大技术之一”。 /p p style=" text-indent: 2em text-align: justify " 以2005年在北京举行的第270次香山科学会议为起点,我国太赫兹科学与技术研究的深度、广度和学术队伍都得到迅速发展,并取得了一批重要成果,特别是毫米波太赫兹安检领域,技术已逐渐成熟,在机场、地铁、医院等公共场所已经开始了实际的应用,毫米波太赫兹安检将成为该领域最早实现产业化的应用。据推测,2025年全球毫米波太赫兹安检产品市场将达到600亿美金。 /p p style=" text-indent: 2em text-align: justify " 胡伟东,北京理工大学毫米波与太赫兹技术北京市重点实验室博士生导师,首都师范大学教育部太赫兹重点实验室外聘教授,毫米波太赫玆产业联盟副理事长,主要研究领域是毫米波/太赫兹空间探测与遥感技术。承担国家自然科学基金重大科学仪器项目、“十二五”民用航天太赫兹成像重大项目,国防重大项目等,目前已有三项成果通过部级鉴定,填补国内空白。2011年获中华人民共和国国防科学技术进步奖,排名第一;2012年,研制国内第一部220GHz太赫兹雷达,并取得良好实验结果,2016年在敦煌和新疆率先开展了太赫兹雷达远距离探测研究。 /p p style=" text-indent: 2em text-align: justify " 毫米波太赫兹安检技术作为最有希望率先实现产业化的技术,目前发展状况如何?目前应用情况如何? /p p style=" text-indent: 2em text-align: justify " 毫米波太赫兹安检还有多久能够实现真正意义的产业化? /p p style=" text-indent: 2em text-align: justify " 2020年是毫米波太赫兹安检产业化的“元年”,有哪些标志? /p p style=" text-indent: 2em text-align: justify " 未来毫米波太赫兹安检国内外市场情况如何? /p p style=" text-indent: 2em text-align: justify " 今年新冠疫情及中美关系,对毫米波太赫兹安检领域造成了哪些影响? /p p style=" text-indent: 2em text-align: justify " 针对以上问题,仪器信息网特别采访了北京理工大学博导/毫米波太赫玆产业联盟副理事长胡伟东,请他就以上问题分享了其观点和想法。 /p p style=" text-indent: 2em text-align: justify " 以下是采访详细视频: /p script src=" https://p.bokecc.com/player?vid=73605031426541E29C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script
  • 2006年第31届红外、毫米波与第14届太赫兹联合国际会议在沪隆重召开
    2006年9月18日上午,由中科院上海技术物理研究所、东南大学、上海市对外文协等单位主办的IRMMW-THz 2006红外、毫米波与太赫兹电子学国际会议隆重拉开帷幕,今起,包括诺贝尔奖得主、著名科学家K.Vonkliting在内的500多位国内外红外、太赫兹及其毫米波领域的知名专家将聚会上海,围绕“红外、太赫兹和微波成像”、“红外、太赫兹和微波天文学、大气和环境科学应用”等热点问题开展交流、探讨。他们之中有IEEE高级会员、美国、俄罗斯、中国等多个国家的科学院或工程院院士、联合国发展计划总署 (UNDP) 高级科学顾问、大功率毫米波发生器与许多重要器件、仪器设备的发明人等,几乎代表了世界红外、微波、太赫兹领域的精英。   红外、毫米波与太赫兹国际会议是红外、毫米波与太赫兹领域内最具权威性的国际系列性年度会议。1974年第一届红外与毫米波国际会议在美国召开,1993年第一届太赫兹国际会议在德国召开,此后在各自的领域内都产生了巨大的影响。自2004年起,相关领域的科学家决定将这两个国际会议合并召开。合并后的会议涉及领域更广泛,科技内涵更深刻,成为国际上规模大,影响大的系列学术会议。其涉及内容与人类在通讯、信息、能源、航天、航空、遥感、遥控、安全、预警和监测等高新技术活动密切相关,因此一直受到科学家、产业界以及各国政府的高度重视。   本次会议得到了中国自然科学基金会、中国科学院、上海市对外文化交流会以及中国物理学会、电子学会、光学学会的大力支持和赞助。还得到了美国电气和电子工程师协会 (IEEE) 的支持。   相关新闻:上海技物所成功申办第31届红外、毫米波和太赫兹国际会议   上海技物所成功争得第31届红外、毫米波和太赫兹国际会议的主办权   经国务院及中国科学院的批准,在上海技物所领导及中科院院士沈学础的努力下,上海技物所成功争得了“第31届红外、毫米波与太赫兹国际会议”(2006年)的主办权。   红外、毫米波与太赫兹国际会议是红外与光电技术研究领域最高级别的国际系列性会议,一直受到各国科学家的高度重视,在该领域具有深远的影响。大会的成功申办,是中国红外毫米波与太赫兹发展的难得机遇。   红外、毫米波与太赫兹都是电磁波谱的一部分。其辐射包括相干辐射的产生、传播和接收构成了内容十分丰富,用途特别广泛的研究领域。与航空、航天、遥感、遥控、预警、监测等一系列有关国防、国家安全、国民经济以及人民生活的重大技术应用密切关联,是国际学术界、产业界和各国政府十分重视和关注的科技领域。我国在红外与毫米波的科技应用上目前距离国际先进水平还有相当的差距。
  • 国家重点项目“主动光学亚毫米波望远镜”验收
    2月28日,国家自然科学基金重点项目“大口径主动光学亚毫米波/毫米波望远镜方案及关键技术研究”项目技术验收会在南京天文光学技术研究所召开。会议邀请了国家自然科学基金委、南京大学、紫金山天文台、新疆天文台、国家天文台的领导和专家,南京天光所崔向群院士、所长朱永田、党委书记张丽萍和项目组相关人员参加了此次会议。   项目组长李国平研究员代表项目组报告了“大口径主动光学亚毫米波/毫米波望远镜方案及关键技术研究”项目的执行情况,以及在技术创新、专利和文献、人才培养、国际交流与合作等方面取得的成果。项目测试专家组组长紫金山天文台左营喜研究员报告了现场测试结果。专家组对项目预期研究的内容、实验结果和相关技术资料进行了认真审查,并现场考察了实验样机和面板检测装置。专家认为在“大口径主动光学亚毫米波/毫米波望远镜方案及关键技术研究”项目中所取得技术成果将为我国建造高精度大口径亚毫米波/毫米波望远镜提供重要的关键技术支持。   会上,朱永田所长代表天光所感谢与会专家对项目取得成果的肯定,以及国家自然科学基金委一直以来对研究所在天文新技术、关键技术研究等方面的大力支持。同时,朱所长也表示在已取得的成果基础上我们还需进一步工程化研究,为该项成果的实际应用做好准备。   大口径主动光学亚毫米波/毫米波望远镜方案及关键技术的研究是为我国能在未来有技术能力建造30米口径亚毫米波(观测波长可达0.2毫米)和100米口径毫米波望远镜(观测波长可达3毫米)做好技术准备。在研究过程中,研制出了一套适用于亚毫米波的实验样机,单块面板(650mmX650mm)面形优于5微米,并在国内首次实现了四块面板拼接,共相精度达到12微米 首次提出了可用于射电望远镜反射面检测的激光法线偏差测量方法 并在国内首次自主研制了分辨率达10纳米量级机电式微位移促动器。
  • 应用材料公司新技术助力碳化硅芯片制造商加速导入200毫米晶圆
    2021 年 9 月 8 日,加利福尼亚州圣克拉拉——应用材料公司今日宣布推出多项全新产品以帮助世界领先的碳化硅 (以下简称SiC) 芯片制造商从150毫米晶圆量产转向200毫米晶圆量产,使每个晶圆的芯片数产出近乎翻倍,可满足全球对于卓越的电动车动力系统日益增长的需求。SiC 电力半导体能够将电池电量高效转化为扭力,从而提升车辆性能并增大里程范围,因此需求旺盛。SiC 的固有特性使其比硅更坚硬,但也存在自然缺陷,可能导致电性能、电源效率、可靠性和良率的降低。因此需要通过先进的材料工程来对未经加工的晶圆进行优化方可量产,并在保证尽可能减少晶格破坏的前提下构建电路。应用材料公司集团副总裁、 ICAPS事业部总经理 Sundar Ramamurthy表示:“为了助力计算机革新,芯片制造商转而将希望寄托于不断扩大晶圆尺寸,通过显著增加芯片产出来满足增长迅速的全球需求。现如今,又一波革新初露端倪,这些革新将受益于应用材料公司在工业规模下材料工程领域的专业知识。”Cree公司总裁兼 CEO Gregg Lowe表示:“交通运输业的电气化势头迅猛,借助 Wolfspeed 技术,我们将能够藉此拐点领导全球加速从硅向碳化硅转型。通过在更大的 200毫米晶圆上交付最高性能的碳化硅电源器件,我们得以提升终端客户价值,满足日趋增长的需求。”Lowe 还说道:“应用材料公司的支持将有助于加速我们在奥尔巴尼的 200毫米工艺制程的技术验证,我们的莫霍克谷晶圆厂的多项设备安装也在紧锣密鼓进行中,两者助力之下,转型进展迅速。不仅如此,应用材料公司的 ICAPS 团队眼下正在开发热注入等多项新技术,拓宽并深化了我们之间的技术协作,使我们的电力技术路线图得以快速发展。”全新 200毫米 SiC CMP 系统SiC 晶圆表面质量对于 SiC 器件制造至关重要,因为晶圆表面的任何缺陷都将传递至后续各层次。为了量产具有最高质量表面的均匀晶圆,应用材料公司开发了 Mirra® Durum™ CMP* 系统,此系统将抛光、材料去除测量、清洗和干燥整合到同一个系统内。这一新系统生产的成品晶圆表面粗糙度仅为机械减薄SiC 晶圆的五十分之一,是批式 CMP工艺系统的粗糙度的三分之一。为助力行业向200毫米大尺寸晶圆转型,应用材料公司发布了全新的Mirra® Durum™ CMP系统,它集成抛光、材料去除测量、清洗和干燥于一身,可量产具有极高质量表面的均匀晶圆 热注入提升 SiC 芯片性能和电源效率在 SiC 芯片制造期间,离子注入在材料内加入掺杂剂,以帮助支持并引导大电流电路内的电流流动。由于 SiC 材料的密度和硬度,要进行掺杂剂的注入、精确布局和活化的难度非常之大,同时还要最大程度降低对晶格的破坏,避免性能和电源效率的降低。应用材料公司通过其全新的 VIISta® 900 3D 热离子注入系统为150毫米和200毫米 SiC 晶圆破解了这一难题。这项热注入技术在注入离子的同时,能够将对晶格结构的破坏降到最低,产生的电阻率仅为室温下注入的四十分之一。应用材料公司全新VIISta® 900 3D热离子注入系统可向200毫米和150毫米碳化硅晶圆注入和扩散离子,产生的电阻率仅为室温下注入的四十分之一
  • 372万!广东工业大学计划采购毫米波矢量信号发生器等设备
    一、项目基本情况项目编号:M4400000707016896001项目名称:毫米波矢量信号发生器等设备采购采购方式:公开招标预算金额:3,720,000.00元采购需求:合同包1(毫米波矢量信号发生器等设备):合同包预算金额:3,720,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他专用仪器仪表低频网络分析仪1(台)详见采购文件230,000.00-1-2其他专用仪器仪表毫米波矢量信号分析仪1(台)详见采购文件930,000.00-1-3其他专用仪器仪表毫米波矢量信号发生器1(台)详见采购文件1,370,000.00-1-4其他专用仪器仪表毫米波网络分析仪1(台)详见采购文件1,190,000.00-本合同包不接受联合体投标合同履行期限:自合同签订之日起至质保期满之日二、申请人的资格要求:1.投标供应商应具备《政府采购法》第二十二条规定的条件,提供下列材料:1)具有独立承担民事责任的能力:在中华人民共和国境内注册的法人或其他组织或自然人, 投标(响应)时提交有效的营业执照(或事业法人登记证或身份证等相关证明) 副本复印件。分支机构投标的,须提供总公司和分公司营业执照副本复印件,总公司出具给分支机构的授权书。2)有依法缴纳税收和社会保障资金的良好记录:提供投标截止日前6个月内任意1个月依法缴纳税收和社会保障资金的相关材料。 如依法免税或不需要缴纳社会保障资金的, 提供相应证明材料。3)具有良好的商业信誉和健全的财务会计制度:供应商必须具有良好的商业信誉和健全的财务会计制度(提供2021年度财务状况报告或基本开户行出具的资信证明) 。4)履行合同所必需的设备和专业技术能力:按投标(响应)文件格式填报设备及专业技术能力情况。5)参加采购活动前3年内,在经营活动中没有重大违法记录:参照投标(报价)函相关承诺格式内容。 重大违法记录,是指供应商因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚。(根据财库〔2022〕3号文,“较大数额罚款”认定为200万元以上的罚款,法律、行政法规以及国务院有关部门明确规定相关领域“较大数额罚款”标准高于200万元的,从其规定)2.落实政府采购政策需满足的资格要求: 无。3.本项目的特定资格要求:合同包1(毫米波矢量信号发生器等设备)特定资格要求如下:(1)供应商未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为”记录名单;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间。(以资格审查人员于投标(响应)截止时间当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(http://www.ccgp.gov.cn/)查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料)。(2)单位负责人为同一人或者存在直接控股、 管理关系的不同供应商,不得同时参加本采购项目(或采购包) 投标(响应)。 为本项目提供整体设计、 规范编制或者项目管理、 监理、 检测等服务的供应商, 不得再参与本项目投标(响应)。 投标(报价) 函相关承诺要求内容。(3)本采购包不接受联合体投标。三、获取招标文件时间: 2022年11月30日 至 2022年12月07日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取四、提交投标文件截止时间、开标时间和地点2022年12月21日 09时30分00秒 (北京时间)递交文件地点:电子投标文件递交至广东省政府采购网https://gdgpo.czt.gd.gov.cn/开标地点:广州市越秀区环市中路316号金鹰大厦10楼会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.本项目采用电子系统进行招投标,请在投标前详细阅读供应商操作手册,手册获取网址:https://gdgpo.czt.gd.gov.cn/help/transaction/download.html。投标供应商在使用过程中遇到涉及系统使用的问题,可通过020-88696588 进行咨询或通过广东政府采购智慧云平台运维服务说明中提供的其他服务方式获取帮助。2.供应商参加本项目投标,需要提前办理CA和电子签章,办理方式和注意事项详见供应商操作手册与CA办理指南,指南获取地址:https://gdgpo.czt.gd.gov.cn/help/problem/。3.如需缴纳保证金,供应商可通过"广东政府采购智慧云平台金融服务中心"(http://gdgpo.czt.gd.gov.cn/zcdservice/zcd/guangdong/),申请办理投标(响应)担保函、保险(保证)保函。4.潜在投标人请同时在广东省机电设备招标有限公司广咨电子招投标交易平台网站(www.gzebid.cn)进行网上注册。网上注册:具体操作方法请浏览“广咨电子招投标交易平台平台服务办事指引网上注册指南”。咨询方式:网站客服(QQ):3151435402,热线电话:400-150-3001。5.本项目开标方式为云平台“远程电子开标”,供应商无须到开标现场,有关注意事项如下:(1)本项目供应商需上传电子投标文件并取得云平台回执、开标当天登陆供应商的账号(在投标截止时间前)。(2)供应商在投标截止时间后提示的时间内使用CA在自己的账号上解密电子投标文件,解密完成后进行电子签章确认。 6.项目事宜联系邮箱:gmetb3@163.com七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:广东工业大学地 址:广州市广州大学城外环西路100号联系方式:020-393400322.采购代理机构信息名 称:广东省机电设备招标有限公司地 址:广州市越秀区环市中路316号金鹰大厦13楼联系方式:020-83543065(邮箱:gmetb3@163.com)3.项目联系方式项目联系人:陈工、罗工电 话:020-83543065(邮箱:gmetb3@163.com)广东省机电设备招标有限公司2022年11月30日
  • 勤卓科技发布勤卓小型可程式恒温恒湿试验机-40~﹢100° 新品
    勤卓科技小型可程式恒温恒湿试验机-40~100°适用于仪器仪表材料、电工、电子产品、家用电器、汽摩配件、化工涂料、各种电子元器件及其他相关产品零部件在高温、低温环境下贮存、运输、使用时的适应性试验,考核其各项性能指标恒温恒湿试验机技术参数:温湿度控制系统:韩国原装进口&ldquo TEMI&rdquo 温湿度控制系统温度范围 0℃、-20℃、-40℃、-60℃、-70℃~+100℃(+150℃)湿度范围 20%~98%RH(可按客户要求定做)温度均匀度 &le ± 2℃温度波动度 &le ± 0.5℃湿度偏差 +2/-3% RH升温速率 &ge 2-3℃/min(可按客户要求定做)降温速率 &le 1℃/min(可按客户要求定做)延伸产品 交变湿热试验箱,恒定湿热试验箱,高低温湿热交变试验箱勤卓科技小型可程式恒温恒湿试验机-40~100°产品特点:1、采用镜面不锈钢内胆,四周半圆弧易于清洁,箱内搁板间距可调。2、采用双重门结构,隔热性能好。内门采用全钢化玻璃门,打开外门,观察内情况时不影响箱内温度。3、高精度、大容量湿度发生器。确保湿度控制发生快、精度高、波动小。4、原装法国&ldquo 泰康&rdquo 全封闭压缩机,配置延时启动。高、低压力多重保护。恒温恒湿试验机规格尺寸:型号 温度范围 湿度范围 内箱尺寸(W*H*D) 外箱尺寸(W*H*D)CK-80G -20~150℃ 20~98% 400*500*400mm 970*1360*970mmUK-150G -60~150℃ 20~98% 500*600*500mm 1070*1450*1070mmJK-225G -70~150℃ 20~98% 500*750*600mm 1070*1610*1180mmCK-408G -20~150℃ 20~98% 600*850*800mm 1170*1710*1280mmLK-800G -40~150℃ 20~98% 1000*1000*800mm 1670*1950*1280mmUK-1000 -60~150℃ 20~98% 1000*1000*1000mm 1670*1950*1700mmH:0~150 ℃ C:-20~150 ℃ L:-40~150 ℃ U:-60~150 ℃ J:-70~150勤卓科技小型可程式恒温恒湿试验机-40~100°构造原理※内、外箱材质 内箱:SUS#304不锈钢(厚1MM);※外箱:冷扎钢喷塑处理或SUS#304纱面不锈钢※保温材质 硬质聚胺脂发泡+玻璃棉※制冷系统 法国泰康全封闭式压缩机/环保冷媒※安全保护装置 压缩机过热,过流,超压,加热加湿空焚,箱内起温,缺水报警系统※电源配置 3ф5W380VAC± 10%或2ф3W220VAC± 10%※标准配置 观察窗(双层中空钢化玻璃)一个;ф50mm测试孔(位于左连)一个;试样架二套(高度可调);箱内照明灯(荧光灯)一个;移动工作轮四个;加湿水箱一个※选购件 通讯接口、记录仪、内置玻璃门或操作孔恒温恒湿试验机控制器说明:※TEMI880彩色触摸式智能可程式温湿度控制器:※原装韩国进口,中英文液晶显示LCD触摸式面板,画面对谈式输入数据, 温湿度同时可程控,背光灯17段可调,曲线显示,设定值/显示值曲线。可分别显示多种警报,故障发生时可通过屏幕显示故障,消除故障,消除误操作。多组PID控制机能,精密监控功能,且以数据形式显示于屏幕上。TEMI300液晶显示薄膜按键式:※原装韩国进口,薄膜按键式数据输入,温湿度同时可程控器,英文表示及3.1〞 LCD液晶显示控制器售后服务:本产品国内免费上门安装调试,免费送货;产品完全免费保修一年,终身服务。查看更多关于高低温交变试验箱的信息请浏览我们的公司网站或来电垂询,我们将竭诚为您服务,谢谢您!※可满足以下标准GB2423.1-89低温试验方GB2423.2-89高温试验方法GB2423-93试验D6交变湿热试验方法IEC68-2-30试验方法※控制方式与特色:平衡调温调湿控制系统BTHC,以P.I.D.方式控制SSR,使系统之加热加湿量等于热湿损耗量,故能长期稳定的使用创新点:一台精密的试验设备,让您的产品稳中获胜.散热孔加装过滤棉,内置过滤器.高速循环散热系统.温湿度精度可达± 1° .均匀渗透到产品每一个缝隙中 勤卓小型可程式恒温恒湿试验机-40~﹢100°
  • 7008万 四创电子毫米波云水探测仪重大专项获批
    2013年11月19日,安徽四创电子股份有限公司发布关于国家重大科学仪器设备开发专项项目立项的公告。公告全文如下:   本公司董事会及全体董事保证本公告内容不存在任何虚假记载、误导性陈述或者重大遗漏,并对其内容的真实性、准确性和完整性承担个别及连带责任。   安徽四创电子股份有限公司(以下简称&ldquo 公司&rdquo )近日收到国家科学技术部批复的国家重大科学仪器设备开发专项项目立项的通知。公司申请的&ldquo 多波段主被动毫米波云水探测仪开发和应用&rdquo 项目已批准立项。   一、项目概述   项目名称:多波段主被动毫米波云水探测仪开发和应用   项目实施主体:本公司   项目总体目标:攻克双频毫米波测云、多通道微波辐射计探测、多参数信息融合处理等关键技术,开发W波段大功率速调管、毫米波双频共面天线等部件。通过系统集成,在项目中期,研制形成具有一定功能Ka/W波段双频毫米波测云仪和多通道毫米波辐射计成套仪器样机。公司获得该国家重大科学仪器设备开发专项将有助于公司形成具有自主知识产权、功能健全、质量稳定可靠的多波段主被动毫米波云水探测仪。   项目经费预算:项目总预算7,008.46万元,其中国家专项拨款3,132.00万元,公司自筹资金3,876.46万元。根据《关于开展国家重大科学仪器设备开发专项2013年度项目组织工作的函》(国科财函20132号)规定,项目前半段主要由承担单位自筹经费实施,国家专项经费资助10% 通过中期评估确认后,再主要由国家专项经费给予支持。截至目前,公司尚未收到该笔专项经费。   项目建设周期:5年(2013年10月&mdash &mdash 2018年10月)   该项目实施不需经董事会、股东大会批准。该项目不构成公司的重大资产重组。该项目牵头单位是本公司,实施过程中将与其他单位实施项目合作。   二、项目风险提示   1. 项目在工程化实现和市场存在一定的不确定性。   2. 项目建设期较长,存在技术先进性水平变化的风险。   3. 若项目未通过国家中期评估确认,后半段的国家专项经费拨款金额将进行调整。   特此公告。   安徽四创电子股份有限公司董事会   二O一三年十一月十九日
  • 毫米波太赫兹安检仪器评奖活动 投票通道开启!为您心仪的仪器投一票吧!
    section powered-by=" xiumi.us" style=" margin: 10px 0px padding: 0px max-width: 100% box-sizing: border-box color: rgb(51, 51, 51) text-align: center " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " letter-spacing:=" " white-space:=" " background-color:=" " text-align:=" " justify-content:=" " overflow-wrap:=" " break-word=" " section style=" margin: 0px padding: 0px 10px 0px 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: auto vertical-align: top min-width: 10% height: auto " section powered-by=" xiumi.us" style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important justify-content: center display: flex flex-flow: row nowrap " section style=" margin: 0px padding: 8px 0px 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 289.531px vertical-align: top border-style: solid border-width: 2px border-radius: 0px border-color: rgb(249, 110, 87) flex: 0 0 auto height: auto align-self: flex-start " section powered-by=" xiumi.us" style=" margin: 0px 0px -8px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important transform: translate3d(8px, 0px, 0px) text-align: right justify-content: flex-end " section style=" margin: 0px padding: 6px 16px 6px 10px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 285.531px vertical-align: top border-width: 0px background-color: rgba(229, 65, 24, 0.247059) box-shadow: rgb(0, 0, 0) 0px 0px 0px " section powered-by=" xiumi.us" style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important font-size: 17px text-align: center " p style=" margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% box-sizing: border-box clear: both min-height: 1em overflow-wrap: break-word !important " 投出您宝贵的一票,即可下载 /p p style=" margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% box-sizing: border-box clear: both min-height: 1em overflow-wrap: break-word !important " “毫米波太赫兹安检白皮书抢先版” /p /section /section /section /section /section /section /section /section p br/ /p p style=" text-indent: 2em text-align: justify " 毫米波太赫兹安检技术日益成熟,在地铁、机场、医院、会展等应用场景开展了多种试用和应用,其产业化发展将迎来快速增长。为了加强技术交流,分享科技成果,促进企业产品推广,进一步焕发市场活力,联盟举办 “2020年度毫米波太赫兹安检仪器产品评奖”活动。 /p p style=" text-indent: 2em text-align: justify " 本次大奖评选活动投票环节的时间为10月-11月,设置了 strong 入围奖、特等奖、专项奖等多个奖项 /strong 。评选方式分为“网络评选”和“专家评审”两个部分,其中“网络评选”即为大众在网上为自己最喜爱的产品投票的总数, strong 网络选票在评选中的权重为20% /strong 。此外,各产品系列中, strong 网络总得票数获得第一的即获得相应产品系列年度最佳人气奖项 /strong 。 /p p style=" text-indent: 2em " br/ /p p style=" text-indent: 0em text-align: center " span style=" font-size: 20px color: rgb(227, 108, 9) " strong 产品介绍(排名不分先后) /strong /span /p p style=" text-align: center " strong br/ /strong /p p style=" text-align: center " strong No.1& nbsp 被动式太赫兹人体安检系统 /strong /p p style=" text-align: center " strong 江苏亨通太赫兹技术有限公司 /strong /p p style=" text-indent: 2em text-align: justify " 被动式太赫兹人体安检系统,采用被动式扫描成像技术,突破快速扫描、微弱信号检测、人工智能识别等关键技术,实现对人体的非接触式、无停留隐匿物检测,实现非接触式安检防疫一体化,一人一档管理便于回看与追溯。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/202010/uepic/5846525d-5c1c-47cb-a62c-a794ad2c0a82.jpg" title=" 1.png" width=" 146" height=" 194" style=" width: 146px height: 194px " / & nbsp img src=" https://img1.17img.cn/17img/images/202010/uepic/9d1818e5-2b77-4c7f-a89d-abc486faf250.jpg" title=" 4.png" width=" 259" height=" 195" style=" width: 259px height: 195px " / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202010/uepic/fb19521e-8458-4229-8c41-e2acfdf7ac0f.jpg" title=" 3.png" width=" 215" height=" 160" style=" width: 215px height: 160px " / & nbsp img src=" https://img1.17img.cn/17img/images/202010/uepic/af4bfa19-f833-44c5-a699-bec3fb20174c.jpg" title=" 2.png" width=" 285" height=" 159" style=" width: 285px height: 159px " / /p p style=" text-align: center " strong br/ /strong /p p style=" text-align: center " strong No.2& nbsp ZHS-4毫米波人体安检设备 /strong /p p style=" text-align: center " strong 欧必翼太赫兹科技(北京)有限公司 /strong /p p style=" text-indent: 2em text-align: justify " 本产品采用逆圆柱扫描模式(天线阵列不动,被检人低速旋转)工作,360度全方位扫描,成像速度快,检出率高,误报率低,可组网工作,适合政府部门、企事业单位内保需要。 /p p style=" text-align: center" img style=" width: 171px height: 301px " src=" https://img1.17img.cn/17img/images/202010/uepic/9b1912d3-da75-4d50-8656-ea1434169f17.jpg" title=" 6.png" width=" 171" height=" 301" / & nbsp & nbsp img src=" https://img1.17img.cn/17img/images/202010/uepic/60b7fe58-d799-4166-a6bc-45c61b6e3418.jpg" title=" 5.png" width=" 179" height=" 300" style=" width: 179px height: 300px " / /p p br/ /p p style=" text-align: center " strong No.3& nbsp 太赫兹人体安检系统 TeraSnap B03 /strong /p p style=" text-align: center " strong 博微太赫兹信息科技有限公司 /strong /p p style=" text-indent: 2em " span style=" text-align: justify text-indent: 2em " TeraSnap B03由博微太赫兹公司自主研制,主要针对轨道交通等行业客流量大、通行效率要求高、环境空间有限等条件下所面临的安检需求,在已有产品研发经验与技术积累的基础上,积极研制新一代的太赫兹人体安检系统。 /span /p p style=" text-align: center" img style=" width: 228px height: 173px " src=" https://img1.17img.cn/17img/images/202010/uepic/164866ab-6403-4ec2-9978-a605be247ab6.jpg" title=" 2.png" width=" 228" height=" 173" / & nbsp & nbsp img src=" https://img1.17img.cn/17img/images/202010/uepic/11c99a97-5e00-46b5-b2cf-4af7c725e2d9.jpg" title=" 1.png" width=" 308" height=" 174" style=" width: 308px height: 174px " / /p p style=" text-align: center" img style=" width: 252px height: 192px " src=" https://img1.17img.cn/17img/images/202010/uepic/da1feeec-73f9-4403-9b07-18b267f2a8d7.jpg" title=" 4.png" width=" 252" height=" 192" / & nbsp & nbsp img src=" https://img1.17img.cn/17img/images/202010/uepic/12360c92-6fb8-432d-ac8c-dd656cdf7ae3.jpg" title=" 3.png" width=" 290" height=" 193" style=" width: 290px height: 193px " / /p p br/ /p p style=" text-align: center " strong No.4& nbsp 被动式THz人体安检仪 /strong /p p style=" text-align: center " strong 北京航天易联科技发展有限公司 /strong /p p style=" text-align: justify text-indent: 2em " 被动接收人体自身辐射的太赫兹波,实时监测隐匿在衣物内的各类违禁品的被动式THz人体安检仪可实现无辐射、非接触、不停留的快速安检,安检过程视频可视化,智能识别金属、非金属等各类违禁品,并实现实时分级报警,特别适用于公共交通、公共场所等安防领域。 /p p style=" text-align: center" img style=" width: 242px height: 212px " src=" https://img1.17img.cn/17img/images/202010/uepic/cf1b7f9a-42d9-4114-8966-e00b3750d815.jpg" title=" 6.png" width=" 242" height=" 212" / & nbsp & nbsp img src=" https://img1.17img.cn/17img/images/202010/uepic/85b758d9-db02-4f55-93a2-2b1f04e9cf6f.jpg" title=" 7.png" width=" 292" height=" 197" style=" width: 292px height: 197px " / /p p style=" text-align: center" img style=" width: 138px height: 236px " src=" https://img1.17img.cn/17img/images/202010/uepic/4631e638-f9f8-4b2b-8dde-3678f9590ecf.jpg" title=" 5.png" width=" 138" height=" 236" / & nbsp img src=" https://img1.17img.cn/17img/images/202010/uepic/5c662a83-ab36-4aab-857d-be3456503b93.jpg" title=" 8.png" width=" 411" height=" 238" style=" width: 411px height: 238px " / /p p style=" text-align: justify " br/ /p p style=" text-align: center " strong No.5& nbsp E波段主动式毫米波人体安检仪 /strong /p p style=" text-align: center " strong 中国电子科技集团公司第十四研究所 /strong /p p style=" text-align: justify text-indent: 2em " T-safe X2型毫米波人体安检仪由“中国雷达工业发源地”中国电科十四所自主研发,采用E波段毫米波信号对人体进行三维成像检查,图像分辨率高,危险品识别准确,是目前国内已量产的工作频段最高的主动式毫米波人体安检仪。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/202010/uepic/90981b17-565f-42de-9a26-365c72b75040.jpg" title=" 1.png" width=" 182" height=" 309" style=" width: 182px height: 309px " / & nbsp & nbsp img src=" https://img1.17img.cn/17img/images/202010/uepic/aaf76c68-1378-488d-84ae-49152189bfd8.jpg" title=" 2.png" width=" 231" height=" 308" style=" width: 231px height: 308px " / /p p style=" text-align: center" img style=" width: 245px height: 257px " src=" https://img1.17img.cn/17img/images/202010/uepic/019c472b-d7d3-44b7-8d04-78807b341339.jpg" title=" 3.png" width=" 245" height=" 257" / & nbsp & nbsp img src=" https://img1.17img.cn/17img/images/202010/uepic/2281bff2-9f33-4ef4-95fb-c5196300886a.jpg" title=" 4.png" width=" 205" height=" 258" style=" width: 205px height: 258px " / /p p br/ /p p style=" text-align: center " strong No.6& nbsp 毫米波人体安全检查仪MW1000AA /strong /p p style=" text-align: center " strong 同方威视技术股份有限公司 /strong /p p style=" text-align: justify text-indent: 2em " MW1000AA毫米波人体安全检查仪是同方威视技术股份有限公司自主研发制造的新型人体安检仪。系统采用安全的主动式毫米波技术,以非接触方式对体表进行快速查验,可自动探测出藏匿于衣物下及人体体表的嫌疑物。 /p p style=" text-align: center" img style=" width: 381px height: 204px " src=" https://img1.17img.cn/17img/images/202010/uepic/34c741f4-b2f1-4c98-838b-444daae6b6f3.jpg" title=" 8.png" width=" 381" height=" 204" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202010/uepic/35d40399-5b68-49c2-9757-d6d68e4c6f38.jpg" title=" 6.png" width=" 346" height=" 193" style=" width: 346px height: 193px " / img src=" https://img1.17img.cn/17img/images/202010/uepic/1fd8364b-9332-45b2-a3c1-1821789757db.jpg" title=" 7.png" width=" 260" height=" 194" style=" width: 260px height: 194px " / /p p br/ /p p style=" text-align: center " strong No.7& nbsp 太赫兹人体安全检查仪TH1800B /strong /p p style=" text-align: center " strong 同方威视技术股份有限公司 /strong /p p style=" text-align: justify text-indent: 2em " TH1800B太赫兹人体安全检查仪是同方威视技术股份有限公司推出的新型人体安检仪。产品通过太赫兹波可穿透一般衣物的特性对人体体表进行远距离、非接触式查验,能够快速、有效地探测出藏匿于体表衣物下的多种金属、非金属嫌疑物。 /p p style=" text-align: center" img style=" width: 242px height: 182px " src=" https://img1.17img.cn/17img/images/202010/uepic/0e810143-1f88-42d6-aeca-15e8970e3473.jpg" title=" 2.png" width=" 242" height=" 182" / & nbsp img src=" https://img1.17img.cn/17img/images/202010/uepic/ffbc6a25-e2df-4f0b-9693-76dd3adf8876.jpg" title=" 5.png" width=" 372" height=" 179" style=" width: 372px height: 179px " / /p p style=" text-align: center" img style=" width: 269px height: 153px " src=" https://img1.17img.cn/17img/images/202010/uepic/760913ae-9c5f-43f6-a17e-e1cc77f10ee2.jpg" title=" 3.png" width=" 269" height=" 153" / & nbsp img src=" https://img1.17img.cn/17img/images/202010/uepic/9cd7411c-157e-42e2-9e7e-cf0b2daf0028.jpg" title=" 4.jpg" width=" 379" height=" 127" style=" width: 379px height: 127px " / /p p br/ /p p style=" text-indent: 2em " 查看以上产品详情,请点击「毫米波太赫兹产品推荐手册——安检产品篇」 /p p style=" line-height: 16px text-indent: 2em " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / span style=" color: rgb(0, 102, 204) font-size: 16px text-decoration: underline " a style=" color: rgb(0, 102, 204) font-size: 16px text-decoration: underline " href=" https://img1.17img.cn/17img/files/202010/attachment/d781e3b6-fb40-4d02-8791-c64f323aaabb.pdf" title=" 毫米波太赫兹产品推荐手册——安检篇.pdf" 毫米波太赫兹产品推荐手册——安检篇.pdf /a /span /p p style=" line-height: 16px text-indent: 2em " br/ /p p style=" line-height: 16px text-indent: 0em text-align: center " strong style=" color: rgb(227, 108, 9) font-size: 20px text-align: center white-space: normal " 投票方式 /strong /p section powered-by=" xiumi.us" style=" margin: 5px 0px 0px padding: 0px max-width: 100% box-sizing: border-box color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " overflow-wrap:=" " break-word=" " section style=" margin: 0px padding: 0px 5px max-width: 100% box-sizing: border-box word-wrap: break-word !important font-size: 15px color: rgb(249, 110, 87) line-height: 1.3 letter-spacing: 1px " p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 211px height: 204px " src=" https://img1.17img.cn/17img/images/202010/uepic/2502e52e-6306-4b1a-9874-91de96f2a86d.jpg" title=" 二维码.jpg" alt=" 二维码.jpg" width=" 211" height=" 204" / /p p style=" margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% box-sizing: border-box clear: both min-height: 1em overflow-wrap: break-word !important text-align: center " strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important " 扫二维码|参与投票 /strong /p /section /section p br/ /p section powered-by=" xiumi.us" style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box color: rgb(51, 51, 51) text-align: center " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " letter-spacing:=" " white-space:=" " background-color:=" " text-align:=" " justify-content:=" " font-size:=" " overflow-wrap:=" " break-word=" " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 23px vertical-align: top height: auto " section powered-by=" xiumi.us" style=" margin: 8px 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important height: 3px background-color: rgb(132, 35, 35) " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " svg viewbox=" 0 0 1 1" style=" float:left line-height:0 width:0 vertical-align:top " /svg /section /section /section /section /section section powered-by=" xiumi.us" style=" margin: 0px 0px 10px padding: 0px max-width: 100% box-sizing: border-box color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " overflow-wrap:=" " break-word=" " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important text-align: center font-size: 14px color: rgb(140, 140, 140) line-height: 1.6 letter-spacing: 2px " p style=" margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% box-sizing: border-box clear: both min-height: 1em overflow-wrap: break-word !important text-align: center " 投票开始,选出您心目中的最佳产品吧! /p /section /section p br/ /p p style=" line-height: 16px text-indent: 2em " br/ /p section powered-by=" xiumi.us" style=" margin: 10px 0px padding: 0px max-width: 100% box-sizing: border-box color: rgb(51, 51, 51) text-align: center " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " letter-spacing:=" " white-space:=" " background-color:=" " text-align:=" " justify-content:=" " overflow-wrap:=" " break-word=" " section style=" margin: 0px padding: 0px 10px 0px 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: auto vertical-align: top min-width: 10% height: auto " section powered-by=" xiumi.us" style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important justify-content: center display: flex flex-flow: row nowrap " section style=" margin: 0px padding: 8px 0px 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 289.531px vertical-align: top border-style: solid border-width: 2px border-radius: 0px border-color: rgb(249, 110, 87) flex: 0 0 auto height: auto align-self: flex-start " section powered-by=" xiumi.us" style=" margin: 0px 0px -8px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important transform: translate3d(8px, 0px, 0px) text-align: right justify-content: flex-end " section style=" margin: 0px padding: 6px 16px 6px 10px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 285.531px vertical-align: top border-width: 0px background-color: rgba(229, 65, 24, 0.247059) box-shadow: rgb(0, 0, 0) 0px 0px 0px " section powered-by=" xiumi.us" style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important font-size: 17px text-align: center " p style=" margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% box-sizing: border-box clear: both min-height: 1em overflow-wrap: break-word !important " 投出您宝贵的一票,即可下载 /p p style=" margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% box-sizing: border-box clear: both min-height: 1em overflow-wrap: break-word !important " “毫米波太赫兹安检白皮书抢先版” /p /section /section /section /section /section /section /section /section
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制