当前位置: 仪器信息网 > 行业主题 > >

激光剥蚀进样光素分析系统

仪器信息网激光剥蚀进样光素分析系统专题为您提供2024年最新激光剥蚀进样光素分析系统价格报价、厂家品牌的相关信息, 包括激光剥蚀进样光素分析系统参数、型号等,不管是国产,还是进口品牌的激光剥蚀进样光素分析系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光剥蚀进样光素分析系统相关的耗材配件、试剂标物,还有激光剥蚀进样光素分析系统相关的最新资讯、资料,以及激光剥蚀进样光素分析系统相关的解决方案。

激光剥蚀进样光素分析系统相关的方案

  • 树木年轮原位分析利器—激光剥蚀-稳定同位素比质谱系统
    英国Sercon质谱公司与英国Swansea大学的科学家合作开发了一套激光剥蚀-燃烧-气相分离-稳定同位素比质谱 系统用于树木年轮中的δ 13C的原位分析,以年为单位重构了过去的气候变化情况。这些数据结合EA-IRMS所得到的δ 13C值就可以高分辨的对在生长季节树叶与树干的分馏的情况进行评价,进而可对一年内δ 13C的变化情况进行研究。
  • 上海凯来:使用激光剥蚀LA-CP-MS和氦气碰撞池分析塑料中的有毒金属Pb
    激光剥蚀固体采样时一种微损技术,可大大减少塑料样品制备时间,样品通量高。这里展示的数据介绍了一个独特的激光剥蚀固体采样方法,显示其作为可行技术能够*的进行Pb等多元素定量分析。
  • 上海凯来:使用激光剥蚀LA-CP-MS和氦气碰撞池分析塑料玩具中的有毒金属As
    激光剥蚀固体采样时一种微损技术,可大大减少塑料样品制备时间,样品通量高。这里展示的数据介绍了一个独特的激光剥蚀固体采样方法,显示其作为可行技术能够*的进行As等多元素定量分析。
  • 上海凯来:使用激光剥蚀LA-CP-MS和氦气碰撞池分析塑料中的有毒金属Hg
    激光剥蚀固体采样时一种微损技术,可大大减少塑料样品制备时间,样品通量高。这里展示的数据介绍了一个独特的激光剥蚀固体采样方法,显示其作为可行技术能够*的进行Hg等多元素定量分析。
  • 上海凯来:使用激光剥蚀LA-CP-MS和氦气碰撞池分析塑料中的有毒金属Cd
    激光剥蚀固体采样时一种微损技术,可大大减少塑料样品制备时间,样品通量高。这里展示的数据介绍了一个独特的激光剥蚀固体采样方法,显示其作为可行技术能够*的进行Cd等多元素定量分析。
  • 上海凯来:使用激光剥蚀LA-CP-MS和氦气碰撞池分析塑料玩具中的有毒金属Cr
    激光剥蚀固体采样时一种微损技术,可大大减少塑料样品制备时间,样品通量高。这里展示的数据介绍了一个独特的激光剥蚀固体采样方法,显示其作为可行技术能够*的进行多元素定量分析。
  • 使用激光剥蚀LA-CP-MS和氦气碰撞池分析塑料中的有毒金属
    激光剥蚀固体采样时一种微损技术,可大大减少塑料样品制备时间,样品通量高。这里展示的数据介绍了一个独特的激光剥蚀固体采样方法,显示其作为可行技术能够*的进行多元素定量分析。
  • 基于激光剥蚀-电感耦合等离子体质谱技术的生物元素成像分析
    生物体内的微量元素具有十分重要的生物功能,也与许多疾病密切相关。现代生物医学的研究亟需能在组织、细胞等不同水平上原位分析生物样品中微量元素的分析方法。本研究建立了激光剥蚀-电感耦合等离子体质谱(LA-ICP-MS)原位分析生物样品的方法。采用线扫描模式和较小的激光输出能量(<1 J/ cm2),得到了鼠脑切片和金纳米颗粒暴露后单细胞的金属元素成像图。LA-ICP-MS 具有空间分辨率高、检出限好、运行成本较低等优势,有望在生物医学研究中得到更广泛的应用,发挥更重要的作用。
  • 飞秒激光剥蚀多接收等离子体质谱分析硫化物中 Pb 同位素组成研究
    开展了利用飞秒激光剥蚀多接收等离子体质谱进行硫化物矿物中Pb 同位素原位微区分析技术研究, 采用高温活化活性炭过滤载气中的Hg, 使得Hg 背景信号降低了48%, 进一步降低检出限, 分析过程的分馏效应及质量歧视效应校正采用内标Tl 和外标NIST SRM 610 相结合方式进行.
  • 基于低分散激光剥蚀系统-电感耦合等离子体飞行时间质谱的快速元素成像
    Fast Elemental Bio-Imaging with Low Dispersion Laser Ablation System Coupled toInductively Coupled Plasma Time-of-Flight Mass Spectrometry基于低分散激光剥蚀系统-电感耦合等离子体飞行时间质谱的快速元素成像
  • 激光剥蚀质谱法直接成像组织切片中的元素分布(英文原文)
    我们提出了一种利用激光剥蚀(LA)质谱(MS)对生物组织中元素进行成像的方法,并与激光剥蚀电感耦合等离子体(LA-ICP)质谱(MS)进行了比较。利用激光的质谱成像(MSI)提供定量数据,将组织中钠的信号丰度与应用于相邻对照组织切片的目标元素的成像定量校准标准所获得的信号丰度进行比较。LA-ICP MSI采用干滴法提供了脑组织和肾脏组织切片中几个基本元素的定量数据。采用两种方法对大鼠外伤性脑损伤模型进行成像,显示撞击区及其周围区域钠、钙的含量。LA MSI被证明是生物组织切片中特定元素定量成像的可行性选择。
  • 钛铁矿的紫外纳秒和飞秒激光剥蚀特性:非基体匹配定量的影响(英文原文)
    使用飞秒激光电感耦合等离子体质谱仪分析钛铁矿中57Fe和49Ti的浓度大约比NIST SRM 610高1.8倍。与193nm准分子激光器相比,257nm 飞秒激光器的元素分离量较小。采用193nm准分子激光剥蚀时,激光能量密度的选择对钛铁矿元素分离有显著影响。与飞秒激光相比,纳秒激光生成的剥蚀坑和沉积气溶胶形貌的扫描电镜图像显示了更大的熔化效应,烧蚀坑周围颗粒沉积面积更大。在纳秒剥蚀坑周围喷出物主要由大滴再凝固的熔融物质组成;然而,在飞秒剥蚀坑周围的喷出物是由形状“粗糙”的微粒团块组成。这是纳秒激光和飞秒激光不同剥蚀机制的结果。使用NIST SRM 610作为193nm准分子LA-ICP-MS和fs-LA-ICP-MS的参考材料,可以对钛铁矿样品进行非基体匹配条件下的定量分析。采用193nm准分子LA-ICP-MS 在12.7 J cm-2高激光能量密度条件和采用fs-LA-ICP-MS对钛铁矿样品中的大部分元素进行分析,得到的结果一致。
  • 使用激光剥蚀与 Agilent 7900 ICP-MS 联用对高纯金属进行定量分析
    激光剥蚀-ICP-MS (LA-ICP-MS) 可用于固体样品和粉末中的元素分析,其中包括地质材料、陶瓷、生物组织和法医样品。本研究使用两种校准策略(基质匹配和非基质匹配)对高纯度金属进行定量分析。LA-ICP-MS 可直接分析固体样品,因此与标准液体样品进样相比,固体样品只需极少的样品前处理步骤。由于无需溶出过程,降低了分析物损失的风险,也避免了引入污染物。但是,由于缺少固体校准标样,LA-ICP-MS 分析可能难以实现精确定量分析。用于固体样品分析的校准标样比用于液体样品分析的校准标样更难以制备,含合适浓度分析物的基质匹配的固体校准标样也比较少见。在金属行业等少数领域中可能已经获得特征明确的基质匹配标准品,因为电弧/火花或辉光放电 (GD) 光学发射光谱 (OES) 等成熟分析技术中使用固体标样。
  • 飞秒激光剥蚀多接收等离子体质谱准确分析地质样品中的铅同位素组成
    开发了利用飞秒激光剥蚀多接收等离子体质谱(fLA-MC-ICPMS)微区原位分析以铜为基体的金属、硅酸盐玻璃及长石等中的铅同位素组成的方法.利用本研究建立的方法对NIST(NIST SRM 610, 612, 614), USGS(BHVO-2G, BCR-2G, GSD-1G)和MPI-DING (GOR132-G, KL2-G, T1-G, StHs60/80-G))标准玻璃中Pb同位素组成进行了准确测定, 结果与参考值在2 s误差范围内完全一致. 此外, 利用本研究的方法对高温炉合成的长石熔融玻璃进行了Pb同位素微区分析, 结果与化学法在误差范围内吻合.
  • 冷冻激光剥蚀电感耦合等离子体质谱法对黄瓜叶片中Ce元素成像的研究
    ?利用带冷冻室的激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)系统,研究了新鲜黄瓜叶片中纳米颗粒(NPs)的空间分布特征,对黄瓜叶片中纳米颗粒的空间分布具有重要意义。冷冻室消除了激光剥蚀过程的热效应,提高了信号的稳定性。因此,与室温下相比,冷冻室中NIST 612和添加琼脂凝胶的相对标准偏差更低。在低温条件下对鲜黄瓜中铈的成像进行了研究。63Cu、66Zn、31P、140Ce和13C在黄瓜叶片的分布信息表明,Ce3+对黄瓜叶片的负面影响比CeO2更大。据我们所知,本研究首次实现了冷冻室中植物Ce的成像,对评估生物组织在自然状态下的环境风险具有重要意义。
  • 激光剥蚀ICP-MS定量成像单个真核细胞中的金、银纳米颗粒(英文原文)
    利用激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)对不同实验条件下培养成纤维细胞中金、银纳米颗粒分布进行空间分辨生物成像。通过优化扫描速度、剥蚀频率和激光能量,获得了较高的空间分辨率。纳米颗粒相对于细胞的子结构是可见的,并且随着孵育时间的增加,纳米颗粒会在核周区域聚集。在矩阵匹配标定的基础上,提出了一种在单细胞水平上定量测定金属纳米颗粒数量的方法。这些结果提供了纳米颗粒/细胞相互作用的见解,并对组织诊断和治疗中分析方法的发展具有启示意义。
  • NWR193激光剥蚀LA-ICP-MS进行U/Th/Pb的地球年代学研究
    激光剥蚀满足了野外地质年代学不断增长的需求,能够在较小的离散区域分析矿物和谷物。激光仪器(NWR193nm快速准分子激光)和ICP-MS仪器的联用,更好的克服误差的来源(例如:质量偏差,常见的铅污染),使得LA-ICP-MS成为研究U/Pb地质年代学的常规的*技术选择。
  • 飞秒激光剥蚀多接收等离子体质谱准确分析地质样品中的铅同位素组成
    开发了利用飞秒激光剥蚀多接收等离子体质谱(fLA-MC-ICPMS)微区原位分析以铜为基体的金属、硅酸盐玻璃及长石等中的铅同位素组成的方法. 研究发现中国国家标准物质研究中心研制的以铜为基体的标准样品GBW02137(青铜)中Pb同位素组成均一(208Pb/204Pb=37.9661± 0.0005 (2 s), 207Pb/204Pb=15.5770± 0.0002 (2 s), 206Pb/204Pb= 17.7462± 0.0002 (2 s)), 可作为原位微区分析黄铜矿、古钱币等含铜基体样品中Pb同位素组成的外部标准物质和监控样品(QC), 为矿床成因研究提供原位微区的Pb同位素地球化学制约, 亦可为利用古钱币、青铜器等中的Pb同位素来研究矿料来源、古代工艺、文化交流等. 利用本研究建立的方法对NIST(NIST SRM 610, 612, 614), USGS(BHVO-2G, BCR-2G, GSD-1G)和MPI-DING (GOR132-G, KL2-G, T1-G, StHs60/80-G))标准玻璃中Pb同位素组成进行了准确测定, 结果与参考值在2 s误差范围内完全一致. 此外, 利用本研究的方法对高温炉合成的长石熔融玻璃进行了Pb同位素微区分析, 结果与化学法在误差范围内吻合.
  • 熔体淬火法和激光剥蚀质谱法测定沉积物中231Pa和230Th皮克每克浓度
    海洋沉积物中的铀、钍和镤放射性核素是了解地球环境演化的重要指标。传统的基于溶液的方法通常涉及同位素稀释制备、浓酸样品消解、柱层析分离和质谱分析,可以对核素浓度较低的同位素(如230,231Pa)进行精确测试分析耗时长、且价格昂贵。在这项工作中,我们建立了一种有效的方法,可以测量海洋沉积物的230,231?Pa,精确到皮克每克浓度的水平,无需净化和富集。我们的方法首先使用熔体淬火技术将少量热分解沉积物(约0.1 - 0.2 g)转化为均匀的硅酸盐玻璃,然后用激光剥蚀进样结合多收集电极电感耦合等离子体质谱法对玻璃进行分析。本研究中制备的同位素峰校准玻璃标准样品支架用于校正测量过程中的仪器分馏。结果表明,该方法能较准确地测定晚更新世典型海相沉积物中U - Th - Pa的浓度,精度可达几个百分点。与传统的基于溶液的方法相比,我们建立的方案大大缩短了样品制备和测量的周期,有利于未来U系列放射性核素在高效和空间分辨率的海洋环境演化过程重建中的应用。
  • 纳秒、飞秒激光剥蚀-高空间分辨率ICP-MS法准确测定硅酸盐玻璃中的多种元素(英文原文)
    尽管LA-ICP-MS有大量的成功应用,但是元素分离仍然是地球科学应用中的主要局限,这种局限在高空间分辨率分析中尤其突出。本研究采用193nm ArF准分子纳秒(ns)激光器和257nm飞秒(fs)激光剥蚀电感耦合等离子体质谱法,研究了硅酸盐玻璃NIST SRM 610和GSE-1G的元素分离和质量载荷效应。与在ns-LA-ICP-MS中观测到的相反,在fs-LA-ICP-MS中,16-24μ m的小粒子的分离效率低于40-60μ m的大粒子分离效率。在193nm准分子激光LA-ICP-MS中观察,硅酸盐玻璃材料NIST SRM 610和GSE-1G中的Li、Na、Si、K、V、Cr、Mn、Fe、Co、Ni、Cu、Rb、Cs和U的分离行为存在显著差异,利用257nm fs-LA-ICP-MS在高空间分辨率下消除了这些差异。此外,与ns-LA-ICP-MS相比,fs-LA-ICP-MS的质量负载效应和与基体相关的质量负载效应也有所降低。除Sb、Pb、Bi外,元素分离与所选的激光通量无关,与ns-或fs-LA-ICP-MS无关。在本研究中,选择24μ m光斑来测试LA-ICP-MS在高空间分辨率下的分析能力。我们使用fs-LA-ICP-MS对MPI-DING、USGS、NIST玻璃样片中的大部分元素的测试数据与参考值具有一致性,误差小于10%。对于ns激光剥蚀分析,其准确性高度依赖于使用的校准策略(传统的外部校准方法或100%氧化物归一化方法)和选择的外部参考物质(NIST SRM 610或GSE-1G)。与193nm准分子LA-ICP-MS相比,fs-LA-ICP-MS中较少的激光诱导元素分离和基体效应使其更适合于高空间分辨率硅酸盐材料的分析。
  • 飞秒激光长石Sr同位素分析方法研究
    纳秒激光剥蚀长石效率很低!激光参数:193nm, 60μ m, 8 J cm-2。纳秒激光剥蚀长石产生大量沉积物,纳秒激光表现出明显的基体依赖,飞秒激光在不同物质之间剥蚀速率比较接近。飞秒激光可以改善透明矿物(如长石)剥蚀效率。飞秒激光-纳秒激光信号强度对比。
  • 257nm飞秒激光氮气条件下对地质矿物中锶同位素原位微区分析方法改进(英文原文)
    激光剥蚀-多接收电感耦合等离子体质谱法(LA-MC-ICP-MS)对地质矿物的n位Sr同位素分析对岩浆源组成和地质过程来说的是一种强大的追踪技术。然而,由于Sr浓度低、同重元素或复杂结构小颗粒干扰,因此在对天然矿物特别是对长石等透明矿物进行分析时87Sr/86Sr比值的准确度和精密度不能令人满意。在这项研究的分析结果表明,飞秒激光对各种样品的剥蚀率(每个脉冲0.08 -0.11μ m)是一致的。但是使用纳秒激光剥蚀效率受地质材料影响相当明显,例如长石和黄铁矿剥蚀率分别为每个脉冲0.144μ m和0.026μ m。此外,由于飞秒激光的剥蚀效率较高,在相同的能量下分析长石中的Sr飞秒激光灵敏度是纳秒激光敏度的3.4倍。飞秒激光的这些优点不仅有利于消除激光剥蚀过程中的基体效应,而且有助于提高透明矿物的分析准确度。我们还证明了在6 - 12mLmin-1 N2条件下,同重元素钙二聚体(CaAr++CaCa+)和Kr+的干扰值分别降低了6.5-11.7和5-12.5。此外,随着N2 (12 mLmin-1)的加入,铷的灵敏度受到抑制,Rb/Sr信号比下降1.47倍。由于加入N2的抑制作用,尤其是对富含铷的长石87Sr/86Sr和84Sr/86Sr比值的准确度和精密度均有提高。结合飞秒激光系统的优点和氮气的加入,改进了原位微区Sr同位素的分析方法。对天然斜长石、高Rb/Sr(0.46)的K-长石和低Sr的斜长石进行分析,87Sr/86Sr比值的准确度和精密度结果令人满意,验证了该方法的可靠性。主要元素Sr和Rb含量不同的四种长石具有均匀的Sr同位素组成,因此可以推荐作为原位微区Sr同位素分析合适的参考材料。本文提出的方法可以为单一矿物提供高空间分辨率的地球化学信息。
  • 激光剥蚀电感耦合等离子体质谱法(英文原文)
    多参数表征单个细胞的全新分析技术可能揭示有关单细胞水平免疫反应异质性的重要信息。本原理验证研究采用激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)方法,同时检测人白细胞表达的24系及活化标志物。这种方法足够敏感,可以准确识别分离的T、B和自然杀伤细胞的亚群。白细胞亚群在未分离的外周血单核细胞制剂中也得到了准确的检测。因此,我们认为LA-ICP-MS是一种适合于评估多种组织抗原在固相生物标本(如组织切片、细胞自旋或载玻片上生长的细胞)中表达的方法。这些结果预示着面向普通用户的基于LA-ICP-MS的生物成像仪器的未来发展。
  • 利用薄层色谱与激光剥蚀电感耦合等离子体质谱法测定原油沥青组分中钒/镍的比例
    提出了一种用飞秒激光剥蚀电感耦合等离子体质谱(fs-LA-ICP-MS)与薄层色谱(TLC)相结合的方法,用于测定原油沥青组分中钒/镍的比例。薄层色谱法是一种简单而快速的分离原油组分的方法,溶剂用量少,并且fs-LA-ICP-MS不需要任何额外的样品制备即可直接分析薄层色谱板。该方法对委内瑞拉原油样品及其分离的沥青质进行了检测。这些结果与传统的使用分离、消解油样用ICP-OES检测沥青质方法的结果相吻合。TLC与fs-LA-ICP-MS的结合提供了快速、可靠的测定沥青质中V/Ni比例的方法,并能在无溶剂交换的情况下即可直接用原油进行检测。
  • 飞秒激光剥蚀多接收等离子体质谱分析硫化物中Pb同位素组成研究
    开展了利用飞秒激光剥蚀多接收等离子体质谱进行硫化物矿物中Pb 同位素原位微区分析技术研究, 采用高温活化活性炭过滤载气中的Hg, 使得Hg 背景信号降低了48%, 进一步降低检出限, 分析过程的分馏效应及质量歧视效应校正采用内标Tl 和外标NIST SRM 610 相结合方式进行. 利用研究建立的方法分析了都龙锡锌铟多金属矿带中的黄铜矿、黄铁矿和闪锌矿中Pb 同位素组成. 结果表明, 该矿区不同硫化物矿物间及同一种硫化物不同颗粒间的Pb 含量差异可达1000 多倍, 黄铁矿具有相对较高的Pb 含量,而闪锌矿的Pb 含量则偏低. 高Pb 含量的黄铁矿具有变化小且相对均一的Pb 同位素组成, 而低Pb 含量的闪锌矿的Pb 同位素组成变化极大, 一方面它可能较易受后期热液叠加作用而改变, 另一方面由于闪锌矿中铅含量较低, 则其中所含微量铀的影响显著加大,因而由铀放射性衰变随时间积累起来的放射成因铅也可能是造成其Pb 含量和同位素组成分布范围较大的原因之一. Pb 含量高于10 ppm 的黄铜矿和闪锌矿颗粒显示了一致的Pb 同位素分布, 而Pb 含量高于100 ppm 的所有硫化物颗粒均具有误差范围内一致的Pb同位素组成, 且与化学法得到的结果误差范围内吻合, 表明本研究方法的数据可靠. 本研究还表明, 只有Pb 含量相对较高的硫化物矿物中的Pb 同位素组成才能较真实地记录其成矿物质来源. 而Pb 含量偏低的硫化物矿物中的Pb 同位素组成则可能受样品中微量铀的影响而具有高放射成因铅同位素比值, 也可能代表了后期交代流体改造后的Pb 同位素组成.
  • NWR213 激光剥蚀 LA-ICP-MS 进行组织的生物医学成像
    激光剥蚀ICP-MS是用于检测、量化并对生物组织切片上的金属离子分布进行成像的最实用、灵敏度高的一种检测技术。而且,随着单克隆抗体的重金属标记的应用发展,它可以同时用于测量蛋白的分布。这项技术上基于组织上的多线扫描的定位。
  • 利用激光剥蚀LA-ICP-MS对患有帕金森症的鼠脑进行微量元素磷成像
    帕金森症怀疑与元素相关的神经毒性脑内多巴胺信号通路中的氧化应激有关。微量元素的同位素特征图像可以提供特定信息的作用神经元退化。详细介绍了一种利用激光的方法烧蚀电感耦合等离子体质谱(LA-ICP-MS)对神经组织中磷进行二维成像。
  • 激光剥蚀电感耦合等离子体质谱鉴别蓝色圆珠笔色痕
    建立了法庭科学中蓝色圆珠笔色痕的激光剥蚀电感耦合等离子体质谱鉴别方法.对95种不同来源的蓝色圆珠笔进行了分析!依据所含金属元素种类的差别将,95种圆珠笔分为34类,其中26类圆珠笔根据元素种类的差别可直接区分!其余8类依据元素间响应值之比进行区分!对字痕载体纸张的考察结果表明了纸张对检测结果无影响.实验结果表明方法重现性良好!精密度10%,与传统分析技术相比!本方法可获得更好的鉴别结果,95种蓝色圆珠笔中有88种可使用该方法有效鉴别.该方法简便快速"精密度良好"对样本宏观无损!适合法庭科学对蓝色圆珠笔鉴定的需要.
  • 利用激光剥蚀LA-ICP-MS对患有帕金森症的鼠脑进行微量元素铁成像
    帕金森症怀疑与元素相关的神经毒性脑内多巴胺信号通路中的氧化应激有关。微量元素的同位素特征图像可以提供特定信息的作用神经元退化。详细介绍了一种利用激光的方法烧蚀电感耦合等离子体质谱(LA-ICP-MS)对神经组织中铁进行二维成像。
  • 利用激光剥蚀LA-ICP-MS对患有帕金森症的鼠脑进行微量元素铜成像
    帕金森症怀疑与元素相关的神经毒性脑内多巴胺信号通路中的氧化应激有关。微量元素的同位素特征图像可以提供特定信息的作用神经元退化。详细介绍了一种利用激光的方法烧蚀电感耦合等离子体质谱(LA-ICP-MS)对神经组织中铜进行二维成像。

厂商最新方案

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制