当前位置: 仪器信息网 > 行业主题 > >

测报灯准确了解害虫发生期

仪器信息网测报灯准确了解害虫发生期专题为您提供2024年最新测报灯准确了解害虫发生期价格报价、厂家品牌的相关信息, 包括测报灯准确了解害虫发生期参数、型号等,不管是国产,还是进口品牌的测报灯准确了解害虫发生期您都可以在这里找到。 除此之外,仪器信息网还免费为您整合测报灯准确了解害虫发生期相关的耗材配件、试剂标物,还有测报灯准确了解害虫发生期相关的最新资讯、资料,以及测报灯准确了解害虫发生期相关的解决方案。

测报灯准确了解害虫发生期相关的论坛

  • 到底什么原因会导致检测报告或验证报告中数据的不准确?

    1.检测和计算粗心大意检测是一个需要专注的过程,稍有疏忽,就容易出现差错。而随着手机的普及,检测过程中,检测人员在检测后的数据计算过程中接听手机的现象非常普遍,如此以及其他的粗心造成检测失误的案例也时有发生。检测和计算过程中粗心大意造成的检测失误虽不常见,但一旦出现这种情况,将直接导致检测结果出现差错。2.对可疑数据不敏感一般而言,每一种物质都有其自身特性,其检测数据应在一定范围,如,苯板的导热系数不可能为0,采用不同铝合金建筑型材和普通单层玻璃的建筑外窗不可能达到保温窗的要求等等。当检测人员或检测报告的批准人员发现不符合一般规律的可疑数据时,应对可疑数据进行复核,并查清是否仪器设备有问题或检测人员操作失误。能够正确判断数据是否可疑,是建立在对被检测产品的理论和检测实践有大量积累的基础上,这也是一个成熟的检测人员,检测报告审核、批准人员应有的基本素质,没有长期训练,是不可能敏感地察觉检验数据可疑的。3.临界值的处理有偏差在检测过程中,由于测量不确定度的存在,可能会导致检测项目在临界值的判断时有偏差。例如:涂层厚度,对于普通装饰用铝塑板,由于涂层厚度相对较小,测量时“0”点的精确校准对于处在标准规定的临界状态的产品而言显得尤为重要。如果用普通标准基板进行调0,则可能出现(1-2)um的偏差,这将可能导致产品由“合格”滑向“不合格”边缘。对于普通装饰用铝塑板,可以将产品除去涂层,在其裸露的基材上进行调0,以保证结果的准确客观性。因此,对于有临界值的检测结果,应组织由不同检测人员或者仪器设备进行多次的比对试验,确保检测结果科学公正。4.对标准理解有偏差检测是一项很严谨的工作,个别检测人员对于标准的理解和使用不正确也直接影响了检测结果的准确性。例如:氟碳涂层普通装饰板检测,GB/T22412-2008规定,对于氟碳涂层普通装饰用铝塑板,其涂层性能的检测应按照GB/T17748-2008进行。试验中往往容易将“普通装饰用”的概念先入为主,而忽略了“其为氟碳涂层”的事实,导致采用检测标准不正确,最终导致检测结果失效。5.新上岗检测员缺乏有效监督近年来,许多检测机构开展了新一轮的扩张,使得有经验的检测人员严重缺乏,个别实验室新进人员仅仅通过几个月的培训就上岗开展检测工作,这类检测员对检测不太熟练,对异常数据缺乏敏感,而又对这类人员缺乏有效的监督,使得他们出现错误的可能性远远超过成熟员工。因此,使用经验不足而又缺少监督的新上岗检测员,潜在风险较大。因此,要按照实验室认可准则的要求,对使用在培人员应有足够的监督。实验室在使用新上岗人员或转岗人员时,除应考核上岗外,检测时实验室监督员应加强监督,防止出现检测失误。

  • 【原创】氘灯检查波长准确度的方法

    氘灯检查波长准确度的方法目前国际上普遍使用的标准有汞灯﹑标准滤光片等,这些标准都有比较丰富的光谱峰。但是对咱们普通实验室来说,买一个汞灯或滤光片可以说是很奢侈的,再说也是没有必要的。因为一般实验室的紫外分光光度计都是送检的,计量院出具检定证书的,所以平时自己做个期间核查什么的,就没有必要用这些东西了。下面介绍一种简单的,利用仪器自身光源就能进行波长准确度检查的方法。波长准确度定义:仪器显示的波长数值与单色光的实际波长值之间的误差。利用氘灯的两个特征吸收峰656.1nm,486.02nm。俺以UV-2550为例进行说明。1.3.1 F线测定方式:能量记录范围:0 (低)~100 (高)波长范围:660 (开始)~650 (结束)扫描速度:中等采样间隔: 自动选择仪器参数表 设置测定参数如下:灯:D2 (氘灯) 检测器:PM PM 增益:2 狭缝宽:0.2 采样间隔:自动UV2550 峰的波长应该在 655.8 nm ~ 656.4 nm. 1.3.2 C线再次用相同的步骤对测定氘灯的另一个特征峰:记录范围:0 (低) ~ 10 (高)波长范围:490 (开始) ~ 480 (结束)本例中,UV2550峰的波长应该在485.7 nm ~ 486.3 nm, 操作及谱图波长准确度利用氘灯的特征峰的波长进行检查,仪器本身光源D2灯检查656.1nm,486.02nm波长的准确度选用仪器的波长扫描功能测定波长准确度时,宜用扫描速度慢,响应时间小,这样可以避免附加误差。要特别注意采样间隔的设定,为了准确得到峰值波长的数据,建议采用0.1nm的采样间隔.现在普遍采用氘灯的C线和F线来检定仪器的波长准确度,[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=103616]资料[/url]

  • 【原创大赛】关于可燃气体检测报警器检定稀释装置的准确度指标的商讨

    关于可燃气体检测报警器检定稀释装置的准确度指标的商讨 依据JJG693-2011《可燃气体检测报警器》,可燃气体检测报警器检定装置,主要应由国家标准气体物质和稀释装置组成。用稀释装置稀释高浓度的气体标准物质,以适应不同量程的可燃气体检测报警器。所谓稀释装置实际上就是通过自动控制电路,控制多个高准确度的流量控制装置,按比例输出稀释气和标准气,构成所需组份和浓度。JJG693-2011要求稀释装置流量示值误差不大于±1%,重复性应不大于±0.5%。 因为该稀释装置是开环控制的,也就是说没有去对稀释配制的检定用气的浓度进行测量,然后去调节流量控制装置。所以其稀释配制得到的浓度,除依赖用于稀释的高浓度标准气体物质的不确定度外,就取决于流量控制装置的置流量示值误差。所以我认为对于稀释配气装置的准确度指标,应该给出流量控制装置的置流量示值误差。至于配制得到的气体的不确定度,可由稀释配气装置使用者,据所需配的组份和标准气体的不确定度去评定。 例如:用浓度为C1的标准气体(U=2%,k=2),稀释为浓度为C2的检定用气。其稀释的数学模型为: C2= (C1·V1)/ V2 (1) 式(1)中:V1和 V2分别是为所需标准气体和稀释气体的体积,在稀释配气装置中由流量控制装置给出。 因为该数学模型为纯积商型式,所以可以用相对标准不确定度的方和根合成,并得到相对的合成标准不确定度。

  • 你了解高频发生器吗?

    高频发生器一般包括电源、振荡器和工作线圈,有些仪器还有功率稳定线路和阻抗匹配单元。高频发生器的作用是产生高频磁场供给等离子体能量。频率多为27 ~ 50MHz,最大输出功率通常是2 ~ 4 Kw。除了这些,你还了解高频发生器哪些吗?欢迎回答

  • 请问怎么保证监测数据的准确性和监测报告5天之内出具?

    我单位的上级机关发了一个红头文件,里面是这样描述的“废水样品具体参照HJ493-2009《水质 样品的保存和管理技术规定》执行”、“环境监测机构应在样品保存期内尽快完成监测分析工作,并在完成监测分析工作后5日内完成环境监测报告编制并通知环境监察机构”,可是我查了一下HJ493-2009国标,发现pH保存时间为12小时,总磷用硫酸酸化保存时间为24小时,氨氮用硫酸酸化保存时间为24小时,可是实际上我们的化验人员,一是根本不可能在24小时之内就做完pH、总磷、氨氮化验,客户送来样品都是下班前也就是傍晚4、5点钟,碰上星期五送来,隔上一个双休日,根本不可能在24小时内完成;二是化验人员做完化验,根本不会马上抄写原始记录。他们喜欢累积原始记录,一起抄写,且原始记录的上交拖啊拖啊,一直到,一、二星期后再交给我。我想请教各位高人,这种情况下,怎么保证监测数据的准确性,怎么保证监测报告能在5天之内出具?

  • 臭氧发生器与UV紫外灯

    有没有接触过这两种杀菌装置,搜集了一些资料,这两种杀菌装置的作用原理都不一样的,但我们公司现在用的UV紫外灯据说他的杀菌原理就是会激发一部分臭氧出来以达到杀菌的原理.我就有点不明白了,不过似乎好像有一种臭氧的发生器就是紫外灯,但是问过公司的人,他们都说,这就是UV紫外灯,不是臭氧发生器,这是什么个情况嘞~~~~

  • 【求助】求助:样品溶液在氢化物发生器?

    我最近用氢化物法测样品中Hg的含量时,当样样品溶液在氢化物发生器中混合后导入气液分离器时,产生了大量气泡,如同泡沫一般,且不易破碎。严重时泡沫会进入塑料导气管内,甚至冲入石英管中,从而导致测量很不准确,甚至实验失败。还有就是背景吸收很大。请问各位dx,这是什么原因,怎样才能消除泡沫的干扰?谢谢!!!

  • 关于可燃气体检测报警器检定稀释装置的准确度指标的商讨

    关于可燃气体检测报警器检定稀释装置的准确度指标的商讨

    关于可燃气体检测报警器检定稀释装置的准确度指标的商讨 依据JJG693-2011《可燃气体检测报警器》,可燃气体检测报警器检定装置,主要应由国家标准气体物质和稀释装置组成。用稀释装置稀释高浓度的气体标准物质,以适应不同量程的可燃气体检测报警器。所谓稀释装置实际上就是通过自动控制电路,控制多个高准确度的流量控制装置,按比例输出稀释气和标准气,构成所需组份和浓度。JJG693-2011要求稀释装置流量示值误差不大于±1%,重复性应不大于±0.5%。 因为该稀释装置是开环控制的,也就是说没有去对稀释配制的检定用气的浓度进行测量,然后去调节流量控制装置。所以其稀释配制得到的浓度,除依赖用于稀释的高浓度标准气体物质的不确定度外,就取决于流量控制装置的置流量示值误差。所以我认为对于稀释配气装置的准确度指标,应该给出流量控制装置的置流量示值误差。至于配制得到的气体的不确定度,可由稀释配气装置使用者,据所需配的组份和标准气体的不确定度去评定。 例如:用浓度为C1的标准气体(U=2%,k=2),稀释为浓度为C2的检定用气。其稀释的数学模型为: C2= (C1·V1)/ V2 (1) 式(1)中:V1和 V2分别是为所需标准气体和稀释气体的体积,在稀释配气装置中由流量控制装置给出。 因为该数学模型为纯积商型式,所以可以用相对标准不确定度的方和根合成,并得到相对的合成标准不确定度。即:http://ng1.17img.cn/bbsfiles/images/2012/09/201209200500_391975_1626275_3.jpg 同样取包含因子k=2,故经稀释后检定用气体的扩展不确定度为: U=2.6%,k=2。 而且当稀释的组份不同时,由于数学模型不同,经稀释后检定用气体的扩展不确定度也不同。 但现在有的稀释配气装置生产者,直接给出其稀释配气装置的配气不确定度为±1%(因为他给出时有“±”号,我们只能按误差限来理解),不知是否欠妥? 虽说不确定度的最大特点是“不确定”,但人们还是应该,实际上人们也正是这样努力,尽可能多地去发现能认识的不确定度源,将其尽可能恰当地评定出来。 版友们:你们说是吗?

  • 脉冲信号发生器

    脉冲信号发生器QA2系列函数信号发生器拥有比传统函数发生器更杰出的性能。稳定的输出频率,低失真度和微小的频率解析度都是这个系列产品的优秀特性。QA2系列系列包含有QA212D和QA206D产品两种,其中QA212D标准输出120MHz正弦波,25MHz脉冲波和方波,其他波形均为1MHz;QA206D标准输出60MHz正弦波,12MHz脉冲波和方波,其他波形均为0.5MHz。1. 采用DDS和可编程逻辑器件技术,双通道,实时500MSa/s采样率,16bits垂直分辨率,独特功能可以提高测试效率和测量置信度。2. 晶体振荡基准,频率精度高,分辨率高,任意模拟标量调制信号,矢量调制信号,逻辑信号产生。3. 多种内置函数信号产生(包括正弦,三角,锯齿, 方波,脉冲, 噪声, 直流等)。4. 优越的小失真,方便的存贮调用功能,可以设置精确的方波占空比及斜波对称度。5. 1ppm信号频率高度稳定,-120dBc/Hz相位噪声低达,波形失真小。6. 波形存储深度达56K样本/通道。7. USB连接PC端GUI界面,操控简洁自如。8.具备扫描和猝发脉冲模式,可调整扫描时间和扫描宽度。9.丰富的模拟和数字调制能力,以及图形显示功能。(AM,MASK,FM,MFSK,PM,MPSK调制和外部计频功能。) 10. 体积小(20*12.8*4.4CM),重量轻(0.9KG),方便携带。支持的波形有如下所示:非调制波形:周期波:正弦波,方波,三角波,脉冲波,斜波,直流,伪随机二进制序列,高斯白噪声,任意波:高斯脉冲,心电图,指数下降,指数上升,半正失曲线,D洛伦兹曲线,洛伦兹曲线,Sinc函数,负斜波,用户自定义波形调制波形:AM调幅,MASK幅移键控,FM调频,MFSK 频移键控,PM 调相,MPSK相移键控[/s

  • 【求助】求助:样品溶液在氢化物发生器?

    我最近用氢化物法测样品中Hg的含量时,当样样品溶液在氢化物发生器中混合后导入气液分离器时,产生了大量气泡,如同泡沫一般,且不易破碎。严重时泡沫会进入塑料导气管内,甚至冲入石英管中,从而导致测量很不准确,甚至实验失败。还有就是背景吸收很大。请问各位dx,这是什么原因,怎样才能消除泡沫的干扰?谢谢!!!

  • 减少农药使用的必然手段—昆虫信息素的应用

    目前在农业生产上对于害虫的基本防治手段主要还是依赖于化学农药,但是长期无节制地使用农药带来了许多副作用,一是害虫抗药性的产生,致使用药量和用药浓度不断增加,成本逐年提高,防治日益困难;二是破坏生态平衡,在防治害虫的同时,大量天敌被杀伤,造成次要性害虫的猖獗为害;三是污染环境,大量农药残留于农作物、土壤和江河湖海中,又通过食物链的形式富集于人体,对人类造成再次危害。因此,目前国内外有关研究部门均在努力探索和研究害虫防治的新途径、新技术,这些研究包括:新型、高效、低毒、低残留的化学杀虫剂的研制;天敌昆虫和微生物农药的利用;昆虫绝育技术和昆虫激素的应用;其中,利用昆虫激素,特别是利用昆虫性信息素进行害虫防治的研究正日益受到人们的关注和重视。 信息素是生物体之间起化学通讯作用的化合物的统称, 是昆虫交流的化学分子语言。包括:利它素、利己素、协同素、集合信息素、追踪信息素、告警信息素、疏散信息素、性信息素。在自然界中,害虫雌成虫在性成熟后,会释放一种叫性信息素的化合物, 它释放至空气中后随气流扩散,刺激雄虫触角中的化学感觉器官,引起雄性个体性冲动及引诱雄虫向释放源定向飞行,并与释放雌成虫交配以繁衍后代。因此,昆虫性诱剂产品是仿生高科技产品,通过诱芯释放人工合成的性信息素化合物,并缓释至田间,引诱雄蛾至诱捕器,并用物理法杀死雄蛾,从而, 破坏其交配,最终达到防治的目的。昆虫性信息素在害虫防治上的应用1.茶叶害虫主要有:茶叶小绿叶禅,茶尺蠖,茶叶毛虫。2.蔬菜害虫主要有:斜纹夜蛾,小菜蛾,甜菜夜蛾,棉铃虫,美洲斑潜蝇,蓟马,黄曲条跳甲,白粉虱,大豆食心虫,豆荚螟,瓜实蝇,果实蝇等。 还有其他的一系列的害虫,假如这些害虫都不是采用化学农药的使用,其中的农残就不会存在,而采用昆虫性信息素这一特有的化合物,使昆虫集合在一起,用物理的方法统一杀死,这样我们就吃不到带有虫子的橘子,含有农药残留的茶叶和蔬菜,对人的身体安全和整个的生态保护起到巨大的作用。虫性信息素的应用前景利用昆虫性信息素进行大量诱杀防治,目前主要在鞘翅目、直翅目、同翅目等害虫中应用较多,鳞翅目昆虫中的透翅蛾科以及菜蛾科的种类也有较高的实用价值;而迷向防治则干扰成虫交配前的化学通讯为主要手段,不产生抗药性。昆虫性信息素是利用个体昆虫对化学物质产生反应而被杀,不会产生后代,故无抗性发生。具有种特异性,即专一性、对益虫、天敌不会造成危害。可与其它管理方法组合,是昆虫综合管理(IPM)方法之一。昆虫性信息素作为同种异性昆虫之间生殖阶段的化学通讯工具,其化学结构的高度复杂性和特殊性是昆虫种间生殖隔离的重要保证,因此,不同昆虫之间的性信息素相互不能替代,也不会引起混淆,这在昆虫的区域性调查、植物检疫以及诱杀防治等方面具有很大的实用价值。利用昆虫性信息素进行虫情侦查并用以指导大田的防治工作已日趋成熟,在生产上得到了较大面积的推广应用,也取得了明显的效果,与传统的黑光灯诱蛾预测法比较,性诱测报具有专一性强、准确性高、方法简便、成本低廉和安全可靠、不杀伤天敌等优点。相信随着绿色农业的大力发展,昆虫性信息素的应用前景必将更加广阔。欢迎各位回帖,回帖有奖,提出建议者给予加分!

  • 填补空白!中智科仪发布数字脉冲延迟发生器“STC810”

    [b]导读:[/b]中智科仪(北京)科技有限公司最近成功自主研发出STC810八通道数字延迟脉冲发生器,该产品以10ps延迟精度和35ps超低抖动性能脱颖而出,打破了国外技术垄断,为我国高端科研仪器自主创新树立了里程碑。STC810拥有8个独立高精度延时通道,采用了软件、触屏和旋钮操控模式相结合,同时配备多功能接口以适应多元化需求。这一技术突破填补了国内关键设备空白,极大提振了我国自主创新信心。STC810的成功为我国科技自主发展树立了榜样,鼓舞着更多企业积极从事科技创新,共同推动我国科研装备产业向更高层次迈进。[b]正文:[/b]在当前信息化、智能化社会中,精准的时间和信号控制技术作为众多高科技领域发展的基石,在通信、雷达探测、医学成像等重要应用中发挥着不可或缺的作用。然而,在我国市场上,高端数字延时脉冲发生器这一关键设备长期以来被美国厂家的数字延迟脉冲发生器所主导。虽然国内部分企业也投入研发同类型产品,但在核心技术指标上,如延时精度与外触发抖动等方面仍难以达到与该厂家相媲美的水平。然而,为打破国际垄断局面,实现高端数字仪器设备国产化替代的目标,中智科仪(北京)科技有限公司的研发团队历经艰辛攻关,成功推出了自主研发的台式数字延迟脉冲发生器——STC810。这款专为科研工作者精心打造的产品,在性能和人机交互体验方面都取得了显著的进展。中智科仪自主研发的STC810八通道数字延迟脉冲发生器,内置八个独立可调延时输出通道,使用户能够轻松灵活地调节延迟时间、脉冲宽度以及频率等多种参数,以满足多元化应用场景需求。在核心性能方面,STC810以卓越的10ps延时精度挑战,同时将外触发抖动降低至35ps,达到了国际一流水准,充分体现了我国在该领域的自主研发实力和技术进步。STC810摒弃了传统的数码管显示模式,采用了先进的彩色触摸屏界面设计,大大提升了操作便捷性和直观性,使得实验过程中的参数设置更为高效、准确。通过自主研发的智能软件控制系统,STC810进一步简化了实验操作流程,无论是调整延迟、设置脉冲宽度还是频率,都能迅速响应,从而极大地提高了科研工作的效率。值得一提的是,STC810还具备分频处理功能,能在外部触发模式下实现70纳秒内的超短内置延迟,并支持低至0.25V的触发阈值,兼容上升沿和下降沿触发,同时适应高阻抗和低阻抗环境下的稳定运行。通过多功能输出端口的设计,确保了STC810能够在各种复杂的应用场景下发挥出色作用,真正实现了与国际标准比肩的精准同步延时能力。为了全面剖析“STC810”八通道数字延迟脉冲发生器的研发历程、技术创新及市场前景,我们特意与中智科仪(北京)科技有限公司的研发部负责人进行了一场深度对话,共同探讨了国产同类产品目前所遭遇的挑战以及蕴含的发展机遇。通过深入挖掘“STC810”的研发故事及其关键技术突破,我们揭示了这款产品如何成功应对国际竞争压力,实现对高端市场的突破,并为我国科研领域的自主可控提供了强有力的支撑,同时也展示了国产科学仪器在追求卓越性能与便捷操控上的不懈努力与创新成果。[b][color=#ff0000]以下视频链接是与研发负责人探讨STC810数字延迟发生器发展历程与背后故事的对话:[/color][/b][color=#ff6428][/color][align=center][img]https://5-img.bokecc.com/comimage/D9180EE599D5BD46/2024-02-26/80AAE928A6F7E3C83F35109F9F77F2A8-1.jpg[/img][/align][back=url(&][/back][font=Arial, Helvetica, sans-serif][size=12px][color=#ffffff]00:00[/color][/size][/font][font=Arial, Helvetica, sans-serif][size=12px][color=#ffffff]/[/color][/size][/font][font=Arial, Helvetica, sans-serif][size=12px][color=#ffffff]05:50[/color][/size][/font][back=url(&]B[/back][font=web][size=24px][color=#ffffff]T[/color][/size][/font][size=12px][color=#dddddd][back=rgba(51, 51, 51, 0.5)]高清[/back][/color][/size][size=12px][color=#dddddd][back=rgba(51, 51, 51, 0.5)]正常[/back][/color][/size][font=&]以下链接是华中科技大学强电磁工程与新技术国家重点实验室借助中智科仪STC810数字延迟脉冲发生器用于等离子体诊断的时序系统控制的应用分享的文章:[/font][url=https://www.cis-systems.com/newsinfo/6601160.html]STC810数字延迟脉冲发生器用于等离子体诊断的时序系统控制-中智科仪(北京)科技有限公司 (cis-systems.com)[/url][font=&]以下链接是上海交通大学航空航天学院光学精细成像实验室借助中智科仪STC810数字延迟脉冲发生器用于测试激光器触发与火焰动态拍摄的应用分享的文章:[/font][url=https://www.cis-systems.com/newsinfo/6795239.html]STC810八通道数字延迟脉冲发生器用于激光同步触发与火焰动态拍摄-中智科仪(北京)科技有限公司 (cis-systems.com)[/url][b]结论[/b]:通过深入听取研发工程师对STC810数字延迟脉冲发生器从最初构思到最终实现的全程回顾,以及分享的产品在开发过程中所遭遇的各种技术难关及其克服经历,结合当前我国高端设备自主研发所面临的挑战与机遇,我们有充分理由认为,国产数字延迟脉冲发生器未来的发展路径将尤为强调核心技术的自主突破、市场疆域的有力拓展和应用领域的深层次挖掘,具体体现在以下几个核心层面:1. 核心技术自主可控: 持续投入研发,提升脉冲产生、精确延时等关键技术的自主研发能力,实现核心部件和整机系统的全面自主可控。2. 高性能产品持续创新: 瞄准国际先进水平,研制更高精度、更稳定、更具灵活性和智能化的新型数字延迟脉冲发生器产品,满足不同行业领域对精密时序控制的高端需求。3. 应用场景不断拓宽: 不断探索并进入新的应用场景,如量子计算、超快激光、高速通信、粒子加速器等领域,提供定制化解决方案和服务。4. 市场竞争力增强: 通过技术创新与品质升级,提高国产设备在国内外市场的份额和影响力,积极参与国际竞争,树立国产品牌形象。5. 产学研深度融合: 加强与高校、科研院所及产业界的协同合作,推动科技成果快速转化,共同构建完善的产业链条,支撑行业的长远健康发展。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 保证蒸汽流量计准确计量的方法

    蒸汽流量计在安装、选型和使用过程中遇到的问题,为保证蒸汽流量的准确计量提出以下建议:  一、蒸汽的密度补偿要科学准确  为了正确计量蒸汽的质量流量,必须考虑蒸汽压力和温度的变化,通过流量积算仪对蒸汽密度进行补偿。测量蒸汽温度的铂电阻一定要规范安装:测温铂热电阻插入管道中心位置、铂热电阻安装在流量计下游的5倍管径处、安装铂热电阻的管道位置采取保温措施等,确保测得的温度数值准确。在蒸汽压力的测量中一定要注意,如果采用引压管引压,必须进行零点迁移(因为引压管内冷凝水的重力作用会使压力变送器测量到的压力与实际压力之间出现一定的差值,引起密度补偿的误差),也可在流量积算仪内进行修正。压力变送器安装在蒸汽流量计下游的4倍管径处,压力变送器前的阀门、密封垫应完好畅通,以保证蒸汽压力的准确测量。如果采用设定压力、温度进行补偿,所设定的数值应力求接近实际,否则误差很大,一般不建议采用。-  在流量积算仪中要正确设定蒸汽流量计的运行状态,这对蒸汽费用的正确计算至关重要。对于蒸汽状态不好明确判断的使用场合,建议采用智能型流量积算仪,配合铂电阻、压力变送器进行温度、压力补偿,这样所计量的蒸汽质量流量最准确。  二、蒸汽流量计上下游直管段的正确安装  对于传统的涡街流量计,其前后安装直管段要求分别为20倍管径和5倍管径(这是流量计的前面无阀门等障碍物的技术要求;有障碍物还要增加直管段,具体见厂家的说明书)。如果上下游直管段不够,就会导致管道内蒸汽流动未充分发展,在流速分布剖面发生畸变。用户可通过在蒸汽流量计前安装流动调整器或增加直管段来调整管道的流速分布,使蒸汽流量计处的流体为充分发展状态。对于一些大口径蒸汽流量计,满足上下游直管段的安装要求更为重要。  三、蒸汽流量计的量程比要合理  量程比是指一个流量计在能确保给定的准确度范围内,所能测量的最大流量和最小流量之比。用户要根据自己的实际使用量选择流量计,理论上待选蒸汽流量计的量程要完全覆盖用户的使用量程。超过流量上限和低于流量下限使用都会造成蒸汽流量计计量的严重不准。比如:实际平均流量为5t/h的涡街蒸汽流量计,一般应选择口径为150mm的涡街流量计,但是当流量降低到0.3t/h或超过15t/h时,流量计就会出现严重计量失准。  四、现场存在的振动和电磁干扰应避免  蒸汽计量中应用最多的涡街流量计受设计原理的影响,对机械振动比较敏感,计量结果易受振动干扰,应对蒸汽流量计前后管段作可靠的支撑设计,加装振动缓冲部件,如管道振动不可避免,应选用抗干扰能力相对强的蒸汽流量计(如气体超声波流量计、智能式涡街流量计、差压式流量计等)。如果蒸汽流量计现场存在振动干扰,就会对在用的涡街蒸汽流量计产生低频率的脉冲信号影响,蒸汽流量计就会将这些脉冲作为流量信号传递给流量积算仪,形成累计流量,导致部分涡街蒸汽流量计在一段时间不用蒸汽的情况下仍然会有一定量的数值累计。这就是“不用汽而流量计走字”的原因,因此蒸汽用户在不用蒸汽的情况下,也要与供汽单位共同记好表底,防止蒸汽流量计“空跑”。  五、定期依法检定很重要  《计量法》和GB17167-2006《用能单位能源计量器具配备和管理通则》中明确说明:强制检定的计量器具和能源计量器具应定期检定,凡经检定不符合要求的计量器具一律不准使用。蒸汽流量计必须定期检定,这是保证蒸汽流量正确计量的前提。因此,广大用户每年都要将使用的蒸汽流量计等送到当地法定计量技术机构进行计量检定。如果蒸汽流量计检定合格,而实际使用却感觉

  • 怎样准确量取2毫升挥发性溶液?

    今天较了一下实验室的微量注射器,25微升到100微升都还准,但1毫升的注射针(不算微量了)越往上测得越低,到1毫升时,只有980微升。怎样才能准确量取1毫升和两毫升有机溶剂(挥发的,不能用移液枪)?总不能用100微升注射器取10次和20次吧,那多次量取的误差加起来也不少吧?

  • 空气发生器和氢气发生器的简单维护

    单位于2023年中引进的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],经过一年的使用,近期我们遭遇了基线噪声异常升高的问题。起初,该仪器的基线噪声维持在30以内,但近期却攀升至约80,这对实验结果的准确性和可靠性构成了直接影响。通过全面检查,我们初步判断问题主要源自空气发生器和氢气发生器。 在日常操作中,我们的注意力主要集中在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]主体上,而对作为辅助设备的空气和氢气发生器则缺乏足够的关注和维护。这两台设备作为仪器购置时的赠品,往往未随附详细的操作和维护手册,导致我们在日常维护上存在盲点。尽管我们注意到空气发生器有排水提示,并偶尔执行排水操作,但这并未能显著改善基线噪声问题。 深入排查后,我们发现硅胶和分子筛作为空气发生器内部的关键元件,可能因长时间使用而失效。首次尝试更换这些部件时,我们遇到了不小的困难,由于长期未进行维护,部件的紧固度增加,最终不得不采取拆解整机的措施。 [img=,690,387]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161513222052_7429_5979722_3.jpg!w690x387.jpg[/img] [img=,690,1226]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161513257761_2690_5979722_3.jpg!w690x1226.jpg[/img] 在厂家的远程指导下,我们成功拆除了老化的硅胶和分子筛,发现其颜色已显著变为粉红色,这进一步证实了我们的判断。随后,我们按照厂家提供的指南,将这些耗材置于烧杯中,在200摄氏度的环境下烘烤约3分钟,以恢复其吸附性能。 完成烘烤并等待其冷却至室温后,我们重新安装了这些部件,并开机测试。令人欣慰的是,基线噪声明显下降至约40,虽然尚未达到最初的使用状态,但这一显著改善足以证明定期维护空气发生器和氢气发生器的重要性,特别是针对硅胶和分子筛等易耗品的及时更换,对于确保实验结果的准确性至关重要。未来,我们将加强对所有实验设备的全面维护管理,以确保科研工作的顺利进行。

  • 【原创】氘灯验证波长准确度的扫面图

    【原创】氘灯验证波长准确度的扫面图

    现在很多仪器都用氘灯的特征波长来验证仪器的波长准确度,现上一张氘灯波长准确度的扫描图,以供各位版友参考。[img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008042046_234277_1634661_3.jpg[/img][b][size=4][font=宋体] [/font][/size][/b][size=4][font=宋体]波长扫描功能参数设置[/font][/size][size=4][font=宋体]测量方式: E [/font][/size][size=4][font=宋体] [/font][/size][size=4][font=宋体]波长范围: 480nm[/font][/size][size=4][font=宋体]~[/font][/size][size=4][font=宋体]660nm[/font][/size][size=4][font=宋体][/font][/size][size=4][font=宋体]取样间隔: 0.1nm[/font][/size][size=4][font=宋体][/font][/size][size=4][font=宋体]换灯点: 800nm扫描速度:中速[/font][/size]

  • 【原创】如何判断氘灯扣背景是否准确?

    [size=4]各位高手,请教一个火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法的问题。我们实验室在做土壤镍测定的时候,拿环保部标样研究所的ESS系列做测试时,总是偏高很多。通过单点带曲线、消解液添加回收、改变波长等方式都不奏效。后书上说背景吸收可能会引起结果偏低,我就尝试用氘灯扣背景的方式进行了测试,确实背景值挺高的,但经过这样一扣,测得的值又偏低了。看了资料上面有讲到氘灯扣背景[size=3][font=宋体]容易出现校正不足或校正过渡的现象,但如何判断是否校正准确呢? [size=4]测值情况如下: ESS-1标准范围:27.8~31.4; 我们实验室测定时,未进行背景校正前测值:36.4~37.2;背景校正后测值:24.7~25.7;[/size][/font][/size][/size]

  • 【讨论】利用氘灯的656.1nm校准波长的准确度有多少?

    如题。因为很多带氘灯的仪器,在开机自检时,都会自动用656。1nm来校准波长。不知道,用氘灯的656.1nm校准波长的波长准确度有多少呢?+-0.1nm?或者有什么根据。看看大家有什么看法http://ng1.17img.cn/bbsfiles/images/2010/10/201010251942_253953_1786353_3.gif

  • 广东力学计量仪器提高检定结果准确性

    力学计量仪器检定会越来越科学,也会进一步提高检定结果的准确性,相关工作人员更要重视,明确检定等相关规定,严格按照标准进行,华品计量在力学仪器检定过程中也要统一计量方法,重视计量仪器的正确使用,进一步为高效性、合理性的检定做保证,提高力学计量仪器检定的有效性力学计量:万能材料试验机、电子式万能试验机、混凝土性能试验仪器、建筑工程质量检测器组、电动抗折试验机、气动测试仪、机械式拉力表、管形测力计、工作用测力仪、液压式张拉机(千斤顶)、丝网张力计、各种硬度计(布氏、洛氏、维氏、表面洛氏、显微维氏、里氏、邵氏)、风速计、机械式转速表、电子计数式转速表、纺织品性能试验仪器(色牢度、起毛起球等)摆锤式冲击试验机、悬臂梁式冲击试验机、磨擦试验机、振动试验台、模拟运输试验台、纸箱抗压试验机等。压力仪表:液体压力计、差压计、数字压力计、压力传感器、压力变送器、压力控制器、压力校验仪、压力发生器、精密压力表、各种工作用压力表、气压表、压力真空表、耐破仪等。质量(砝码):F2级、M1级(5级)砝码,测量范围:1mg-30kg;高精度质量测试。

  • 群脉冲发生器使用注意事项

    群脉冲发生器使用注意事项:  群脉冲发生器是精密高压仪器,为确保您的人身安全及预防对我们测试装备的破坏,请在使用时遵守群脉冲发生器使用注意事项下预防措施:  (1) 在存放爆炸物区及禁火区请勿使用该设备,否则可能引起爆炸或火灾;  (2) 佩带人工心脏起搏器的人员请勿使用该设备或在该设备运行时靠近本设备操作区,以免造成危险;  (3) 本机为高压设备,进行被试品摆放、接线及改变试验配置时,请务必注意应在高压断开及切断试品电源的情况下进行,防止因电源外露带来的触电危险;  (4) 相对湿度超过75%时,请停止使用群脉冲发生器设备进行试验。  (5) 注意使用群脉冲发生器时应保证设备接地状况良好,严格按照IEC61000-4-4或GB/T17626.6标准要求进行试验配置,以保证试验结果的一致性和可重复性。  群脉冲发生器设备内部存在高压,未经厂方同意或指导请勿随意拆卸或敞开机壳工作,防止对设备和人员造成不必要的伤害。

  • PH3/O2/CO2传感器在稻谷仓储中消灭害虫的应用

    说到“粮仓”、“粮库”,首先映入你脑海的画面是什么?是高高的仓房内堆满了粮食?还是工作人员拿着温度计在测量仓库中的温度?今天,工采网小编带你走进中心粮库,看信息技术如何让粮仓变得“高大上”。[url=http://news.isweek.cn/wp-content/uploads/2019/03/GTI545.jpg][img=GTI545,450,300]http://news.isweek.cn/wp-content/uploads/2019/03/GTI545-450x300.jpg[/img][/url]储粮看似简单,实则复杂。粮食的储藏,对温度、湿度、水分都有极高的要求。以前,储粮主要依靠主观经验,而现在依靠信息技术,一切都变得有规可循。[url=http://news.isweek.cn/wp-content/uploads/2019/03/7370104.jpg][img=7370104,450,300]http://news.isweek.cn/wp-content/uploads/2019/03/7370104-450x300.jpg[/img][/url]智慧粮仓里面到处都是传感器,取代了以往传统的温度计,悬挂于仓顶的传感器能将粮仓内的温度、湿度实时传送到监测平台。充氮气调储粮技术是国际公认的绿色储粮技术之一,是一种集杀虫、防虫、抑霉、保鲜于一体的绿色安全储粮技术。与常规储粮相比,充氮气调储粮能有效地防治储粮害虫,解决了常规储粮对熏蒸药剂的单一依赖、害虫抗性增强以及由此导致的用药量增加、害虫防治难度加大的难题,为储粮害虫抗性治理提供了新方法。该技术的基本原理是向粮堆充入浓度为99.5%的高纯度氮气,通过使用专用设备把粮仓内的氧气置换出来,使储粮环境长期保持高氮浓度(96%以上)、低氧浓度(4%以下)或绝氧状态,在此气体浓度下将导致储粮害虫缺氧窒息死亡,并具有抑制霉菌繁殖作用,从而达到保持粮食品质,确保粮食安全储存的目的。[url=http://news.isweek.cn/wp-content/uploads/2019/03/30aIM797.jpg][img=30aIM797,388,582]http://news.isweek.cn/wp-content/uploads/2019/03/30aIM797.jpg[/img][/url]每个粮仓外墙上都安装的充氮气调储量控制柜,用来接收控制平台的指令。利用该技术,储粮保管成本可节省50%以上。减小了对传统熏蒸药剂技术的依赖,让仓库保管员的健康有了更多保障。粮食储藏最主要的是除虫处理。磷化铝是我国粮食部门过去推广应用的一种很有效的储粮灭虫剂 ,广泛用于粮仓的储粮灭虫当遇水或吸湿后即可潮解 ,放出毒性剧烈的磷化氢气体。粮库化验员在取样化验及保管员进库测温度、湿度和检查粮情、虫情时会接触磷化氢气体 ,有的因缺乏安全卫生知识而引起磷化氢中毒。为探讨熏蒸时粮仓内磷化氢浓度以及熏蒸后降至国家卫生标准以下的时间,需要对熏蒸后仓内磷化氢气体浓度变化及O2、CO2等气体环境浓度进行监测 。鉴于药物熏蒸的方式对粮食品质和操作人员的安全都会造成极大的风险,所以这种熏蒸的方式逐渐被淘汰,取而代之的是气调储粮原理。通过在粮仓内架设氮气流通管道,使得仓内的每颗粮食都将在氮气中“呼吸”。充入氮气把粮仓里的氧气置换出来,使整个粮仓保持绝氧状态,起到抑制害虫生长的作用,保持粮食品质,达到绿色储粮的标准。气调储粮造成的农作物损害小,人员操作简便平安,从而得到迅速普及,该技术是利用人工调整储粮仓房内发生缺氧或无氧,阻止有害生物的新陈代谢活动,达到控制虫害的孳生和蔓延、抑制霉菌繁殖、降低粮食呼吸及生理代谢强度和延缓粮食品质陈化的目的。ISweek工采网根据智慧粮仓实际情况,制定了一套专门针对粮仓PH3/O2/CO2三种气体检测的方案,广泛应用于智慧粮仓的气体监控设备上,能精确提供粮仓熏蒸后室内残留的PH3气体浓度、以及人员是否能安全进入的O2\CO2环境浓度。PH3/O2/CO2三种气体检测,主要是PH3传感器使用磷化氢传感器[url=https://www.isweek.cn/217.html]PH3-A1[/url]和[url=https://www.isweek.cn/218.html]PH3-B1[/url],氧气传感器使用荧光原理的Lox-02[url=https://www.isweek.cn/214.html]荧光氧气传感器[/url](O2浓度范围0-25%),以及[url=https://www.isweek.cn/1282.html]CO2传感器[/url]MINIR(CO2浓度范围0-5%)可以提供完美的检测方案。[url=http://news.isweek.cn/wp-content/uploads/2019/03/r3g553.jpg][img=r3g553,401,300]http://news.isweek.cn/wp-content/uploads/2019/03/r3g553-401x300.jpg[/img][/url]粮仓内壁这些通风装置都会根据系统指令,自动运行。如果温度过高、湿度过大,或者仓内气体浓度未达到安全范围,系统将自动开启智能通风系统进行调节,有效保障粮食储存的安全。智慧粮仓内温湿度检测推荐使用[b][url=https://www.isweek.cn/1908.html]温湿度传感器模块[/url]HTG3535CH[/b]和[b][url=https://www.isweek.cn/69.html]温湿度传感器HTU21D[/url][/b] ,可以有效监测智慧粮仓内温湿度情况。“智慧粮仓”以传感器技术、计算机技术、多媒体技术和大规模储存技术为基础,以网络为纽带,运用海量粮库信息对粮库(仓)进行多分辨率、多尺度、多时空和多种类的数字化描述,并利用数字信息系统作为工具支持,完善人们对储粮的管理。

  • 影响定量分析结果准确性的因素

    色谱定量分析中,每个操作步骤和每个色谱条件的选择都会对色谱定量分析结果的准确性产生影响,稍有不慎,就会使定量分析结果产生较大的误差,甚至会得到完全错误的结果。下面就影响色谱定量分析结果准确性的几个主要因素进行详细讨论。  一、样品制备  被分析的样品确定后,首先要把其中的欲测组分转化成能用色谱进行分析的实验用样品,这一过程称为样品制备。在样品的制备过程中,欲测组分不能发生任何损失。如要将欲测组分转变成另一便于色谱分析或检测的形态时,可将不能气化的欲测组分通过衍生化转变成可以气化的形态,以便于气相色谱的分析;也可将没有紫外吸收的欲侧组分通过衍生化转变成有紫外吸收的形态,以便于液相色谱的紫外检测器检侧等.这些转变一定要是定量的,最好转化率达到l00%(转化率达不到l00%时,一定要知道准确的转化率,以便最后计算欲测组分的含量).在选择提取或溶解欲侧组分的溶剂时,对于气相色潜分析要考虑这一溶剂应能气化,气化温度要低于欲测组分的分解温度,气化后的气体不与色潜柱中的固定相发生化学反应;对于液相色谱分析要考虑这一溶剂应与液相色谱的洗脱液互溶,而且不与洗脱液和色谱住中的面定相发生化学反应。在用液相色谱分析时,最好选用所选择的洗脱液作为溶剂来溶解或提取被分析样品中的欲测组分,这样可以避免溶剂峰的于扰。  在样品制备过程中,要同时考虑将被分析的样品中,可能下扰欲测组分定量的物质尽可能的分离出去。当欲测组分含量很低时,还要考虑通过样品制备使欲测组分在试验样品中的含量得以提高(即通过样品制备,将欲测组分加以富集)。以便于最后的色潜分析。  样品制备过程中,影响色谱定量分析结果准确性的七要因素是被分析样品中的欲测组分是否能100%定量地转入到制备好的,可用于色谱分析的实验用样品中去,这可用回收率试验来检验,即可用已知量的欲测组分,用样品制备的同样方法处理,将这一欲测组分制备成可用于色谱分析的实验用样品,再定量测定欲测组分的量。将这一侧定结果与原来取的已知量相比,即可得到这一样品制备方法的回收率。当祥品制备方法的回收率较低时,宜用标准加入法定量,这样可以补偿欲侧组分在祥品制备过程中的损失,使色谱定量分析结果更加准确、可靠。  实验用样品制备好后的贮存是否妥当,也是影响色潜定量分析结果准确性的又一个因素。贮存条件选择不好,可能会使欲测组分的浓度由于溶剂的挥发而发生变化;也可能由于欲测组分的分解、氧化或其他化学反应而使欲测组分的浓度发生变化口这些变化都能够使色谱定量分析结果产生错误。  样品制备过程和贮存过程中产生外界物质的沾污,也可能影响欲测组分的测定.特别是周围环境中存在着大量欲测组分时,沾污将严重影响定量分析结果的准确性,这点在侧定痕量组分时需要特别注意。  实验用样品制备好后应该尽可能立即进行色谱定量分析,减少实验用样品的贮存时间。在必须贮存时,一定要注意贮存的条件,低温、干燥、避光等条件是贮存样品的必要条件。用标准加入法定量时,也可补偿贮存时样品发生的一些变化,使定量分析的结果更加准确,可靠。  样品制备常涉及的操作有:溶解(或提取)、浓缩、萃取、预分离、衍生化等,这些操作都有可能使欲侧组分含量和形态发生变化。因此要进行样品制备的条件实验,研究这些操作对欲测组分含量和形态的影响,以便选择最佳的样品处理条件,尽可能减小欲测组分含量和形态的变化(当然衍生化就是要使欲侧组分形态发生变化,但这一变化一定是要定量的)口同时要研究样品制备过程中欲测组分含量和形态变化的规律及变化大小,以便在最后数据处理时对这一系统误差一样品制备误差加以定量校正,对祥品制备的详细讨论可参见本丛书《色谱分析样品处理》一书。  二、进样技术  当色谱定量分析采用归一化法、内标法和标堆加入法时,进样的误差可以被这些方法本身所具有的特性所消除,即进样产生的误差不会影响最后的定量分析结果。但是,采用标准曲线法(即外标法)作定量分析时,进样的误差(即进样的准确性和重复性)将直接影响定量分析结果的误差(即定量分析结果的准确性和重复性)。  进样对标准曲线法定量分析误差的影响主要有以下两个因素:一个是进样装置的准确度和精度;另一个是色谱分析人员对进样技术掌握的熟练程度。  在气相色谱定量分析中,对于气体样品进样,大都采用定量进样阀定体积进样,准确性和重复性较好,进样精度优于0.5%。若采用医用注射器定体积进样,准确性和重复性都较差,进样精度约为5.0%,对于液体和固体样品,一般用溶剂溶解和稀释后,用微量注射器定体积进样,其准确性和重复性决定于所用注射器的质量,刻度读数的准确度和进样量大小,进样精度一般约为2.0%。在用注射器进样时,插针的快慢、进针的位置、深度和操作人员的熟练程度都将影响进样的准确性和重复性。对于沸程宽的液体徉品.取样、进样要快,但拔针要慢,以防止难挥发的组分在拔针时还没完全进入柱子而随拔针时跑出,引起进样的误差。气化室的温度要足够高(一般比柱温高50~100℃),以保证所有组分瞬间气化,但要注意在高温时样品可能在气化室内裂解或发生化学反应引起误差。  在使用注射器进样时要经常注意进样品的橡胶垫在多次注射后的漏气问题,由于漏气也会造成样品的损失,所以要经常检查。  在高压液相色谱定量分析中,多采用六通阀进样。这是因为高压液相色谱进样一般是在高压下进行,进祥量大小由定量进样管决定。准确性和重复性都较好,进样精度也优于0.5%。当高压液相色谱采用微量注射器通过隔膜进样时,往往要停流进样,否则由于柱压太高,针内样品很难完全进入柱子,时有泄漏,这时的进样准确性和重复性都较差。高压液相色谱的进样还可以使用微量注射器通过六通阀进行,这时可避免隔膜进样的缺点。如只有5μL进样管而要进1μL样品时。可用微量注射器通过六通阀进行。此时进样量的准确性和重复性取决于微量注射器的质量和刻度读数的精度,进详精度约为2.0%。  在平板色谱中。标准曲线法定量分析的长要误差来自于点祥。平板色谱点样器有手动点样器和自动点样器。手动点样器有微量注射器、定容毛细管点样器等,点样量的准确性和重复性约在 2.0~4.0%。自动点样器可由微处理器控制,点样量的准确性和重复性都很好,点样量的精度优于1.0%。

  • 抗生素残留检测仪如何保障检测结果准确

    抗生素残留检测仪如何保障检测结果准确

    抗生素残留检测仪如何保障检测结果准确  抗生素残留检测仪保障检测结果准确的方法有以下几点:  使用前应认真阅读说明书,了解操作流程和注意事项。  严格按照说明书要求进行操作,避免误操作影响检测结果。  注意仪器的保养和维护,保证其正常运转。  对于不同的样本和试剂,应按照说明书要求进行操作,避免交叉污染和干扰。  检测结果仅作为参考依据,最终判定仍需依赖于权威部门的检测结果。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/11/202311280936454078_1766_6098850_3.jpg!w690x690.jpg[/img]

  • 哪些原因会导致涡街流量计测量不准确?

    哪些原因会导致涡街流量计测量不准确?  我们平常在使用涡街流量计的时候会发现测量不准,那今天小编就来跟大家说说涡街流量计测量不准都是由哪些原因造成的。涡涡街流量计照成误差的原因。  第一点:涡街流量计旋涡发生体迎流面堆积的影响。 如果被测流体中存在黏性颗粒,便可能会逐渐堆积在旋涡发生体迎流面上,使其几何形状和尺寸发生变化,因而流量系数也相应变化,因此在使用中要注意清理。  第二点:温度对测量的影响。温度变化对测量体几何尺寸变化的影响有两部分组成,一是旋涡发生体宽度发生变化引起的;另一个是管道内经变化引起的。消除此影响一般是对K系数进行修正。目前一些厂家的流量计已对温度的影响在软件中进行固定温度修正和实时温度修正。  第三点:涡街流量计配管内经与流量计内经不一致造成的影响。  第四点:选型方面的问题。实际选型应选择尽可能小的口径,以提高测量精度,例如,一条涡街管线设计上供几个设备使用,由于工艺部分设备有时候不使用,造成目前实际使用流量减小,实际使用造成原设计选型口径过大,相当于提高了可测的流量下限,工艺管道小流量时指示无法保证,流量大时还可以使用,因为如果要重新改造有时候难度太大.工艺条件的变动只是临时的。可结合参数的重新整定以提高指示准确度。  第五点:安装方面的问题。主要是涡街流量计传感器前面的直管段长度不够,则影响测量精度,例如:传感器前面直管段明显不足,由于FIC203不用于计量,仅仅用于控制,故目前的精度可以使用相当于降级使用。  第六点:参数整定方向的原因。产品参数错误导致仪表指示有误。参数错误使得二次仪表满度频率计算错误,满度频率相差不多的使得指示长期不准,实际满度频率大干计算的满度频率的使得指示大范围波动,无法读数,而资料上参数的不一致性又影响了参数的最终确定,最终通过重新标定结合相互比较确定了参数,解决了此类问题。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制