超高分辨场发射扫描显微镜

仪器信息网超高分辨场发射扫描显微镜专题为您提供2024年最新超高分辨场发射扫描显微镜价格报价、厂家品牌的相关信息, 包括超高分辨场发射扫描显微镜参数、型号等,不管是国产,还是进口品牌的超高分辨场发射扫描显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超高分辨场发射扫描显微镜相关的耗材配件、试剂标物,还有超高分辨场发射扫描显微镜相关的最新资讯、资料,以及超高分辨场发射扫描显微镜相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

超高分辨场发射扫描显微镜相关的厂商

  • 原FEI公司,2016年被赛默飞世尔科技收购,成为赛默飞材料与结构分析(MSD) 电镜事业部,是显微镜和微量分析解决方案的创新者和供应商。 我们提供扫描电子显微镜SEM,透射电子显微镜TEM和双束-扫描电子显微镜DualBeam?FIB-SEM,结合先进的软件套件,运用最广泛的样本类型,通过将高分辨率成像与物理、元素、化学和电学分析相结合,使客户的问题变成有效可用的数据。更多信息可在公司官网上找到:http://thermofisher.com/EM 或扫描二维码,关注我们的微信公众号
    留言咨询
  • 400-878-6829
    帕克(Park)公司的创始人是世界上第一台原子力显微镜发明组的一员,1986年研制了世界首台商用原子力显微镜,一直致力于原子力显微镜技术的开发与应用,帕克(Park)在原子力显微镜的发展过程中一直占有重要的一席之地。本公司作为纳米显微镜和计量技术领域的领导革新者,一直致力于新兴技术的开发。我们的总部遍及中国大陆,宝岛台湾,韩国,美国,日本,新加坡和德国等地,我们为研究领域和工业界提供世界上最精确,最高效的原子力显微镜。我们的团队正在坚持不懈的努力,力求满足全球科学家和工程师们的需求。随着全球显微镜市场的迅速增长,我们将持续创新,不断开发新的系统和功能,确保我们的产品始终得到最有效最快捷的使用!Park产品主要有以下特点: 1.非接触工作模式:全球唯一一家真实实现非接触式测量模式的原子力显微镜厂家,非接触模式使原子力针尖磨损大大降低,延长了探针寿命,提高了测量图像的重复性; 2.高端平板扫描器:所有产品型号均采用的高端平板扫描器,远远优于传统的管式扫描器 3.全球最高的测量精度:Z轴精度可达0.02nm; 4.智能扫描Smartscan:仪器操作极其简单,可实现自动扫描,对操作者无特殊要求,并且有中文操作界面; 5.简单的换针方式:换针非常方便,采用磁拖直接吸上即可,不需调整激光光斑; 6.Park拥有全球最广泛的工作模式:可用于光学,电学,热学,力学,磁学,电化学等方面的研究与测试。
    留言咨询
  • 全国免费销售咨询热线:400-630-7761公司官网:https://www.leica-microsystems.com.cn/徕卡显微系统(Leica Microsystems)是德国著名的光学制造企业。具有160年显微镜制造历史,现主要生产显微镜, 用户遍布世界各地。早期的“Leitz”显微镜和照相机深受用户爱戴, 到1990年徕卡全部产品统一改为“Leica”商标。徕卡公司是目前同业中唯一的集显微镜、图像采集产品、图像分析软件三位一体的显微镜生产企业。公历史及荣誉产品1847年 成立光学研究所 1849年 生产出第一台工业用显微镜 1872年 发明并生产出第一台偏光显微镜 1876年 生产出第一台荧光显微镜 1881年 生产出第一台商用扫描电镜 1887年 生产出第10,000台 1907年 生产出第100,000台 1911年 世界上第一台135照相机 1921年 第一台光学经纬仪 1996年 第一台立体荧光组合 2003年 美国宇航局将徕卡的全自动显微镜随卫星送入太空,实现地面遥控 2005年推出创新的激光显微切割系统:卓越的宽带共聚焦系统。内置活细胞工作站: 2006年组织病理学网络解决方案:徕卡显微系统公司第三次获得“Innovationspreis”(德国商业创新奖): 2007年 徕卡 TCS STED 光学显微镜的超分辨率显微技术超越了极限。 徕卡显微系统公司新成立生物系统部门:推出电子显微镜样本制备的三种新产品 2008年徕卡显微系统公司成为总部设于德国海德堡的欧洲分子生物学实验室 (EMBL) 高级培训中心的创始合作伙伴。徕卡 TCS SP5 X 超连续谱共聚焦显微镜荣获2008年度《科学家》杂志十大创新奖。徕卡显微系统公司凭借 FusionOptics 融合光学技术赢得 PRODEX 奖项,该技术能够形成高分辨率、更大景深、3D效果更佳的图像。推出让神经外科医生看得更清楚、更详细的徕卡 M720 OH5 小巧的神经外科显微镜, 2009年新一代光学显微镜取得独家许可证:Max Planck Innovation 为徕卡显微系统的全新 GSDIM(紧随基态淬灭显微技术的单分子返回)超分辨率技术颁发独家许可证。 2010年远程医疗服务概念奖:徕卡显微系统公司在年度互联世界大会上获得 M2M 价值链金奖,Axeda Corporation 被誉为徕卡获得此奖项的一大助力。Kavo Dental 和徕卡显微系统在牙科显微镜领域开展合作。Frost & Sullivan 公司颁发组织诊断奖:徕卡生物系统公司获得研究和咨询公司 Frost & Sullivan 颁发的北美组织诊断产品战略奖。 2011年学习、分享、贡献。 科学实验室 (Science Lab) 正式上线:徕卡生物系统(努斯洛赫)公司荣获2011年度卓越制造 (MX) 奖:徕卡生物系统公司获得2011年度“客户导向”类别的卓越制造奖。 2012年徕卡显微系统公司总部荣获2012年度卓越制造奖:位于德国韦茨拉尔的徕卡显微系统运营部门由于采用看板管理体系而荣获“物流和运营管理”卓越制造奖。徕卡 GSD 超分辨率显微镜获得三项大奖:《R&D》杂志为卓越技术创新颁发的百大科技研发奖、相关的三项“编辑选择奖”之一、美国杂志《今日显微镜》(Microscopy Today) 颁发的2012度十大创新奖。 2013年徕卡 SR GSD 3D 超分辨率显微镜获奖徕卡生物系统公司和徕卡显微系统公司巩固在巴西的市场地位:收购合作超过25年的经销商 Aotec,推动公司在拉丁美洲的发展。 2014年超分辨率显微镜之父斯特凡黑尔 (Stefan Hell) 荣获诺贝尔奖:斯特凡黑尔因研制出超分辨率荧光显微镜而荣获诺贝尔化学奖。 他与徕卡显微系统公司合作,将该原理转化为第一款商用 STED 显微镜。徕卡 TCS SP8 STED 3X 荣获两大奖项:《科学家》杂志十大创新奖和《R&D》杂志百大科技研发奖均将超分辨率显微镜评定为改变生命科学家工作方式的创新成果之一。日本宇宙航空研究开发机构的宇航员若田光一 (Koichi Wakata) 使用徕卡 DMI6000 B 研究用倒置显微镜在国际空间站进行了活细胞实验。 2015年首台结合光刺激的高压冷冻仪是一项非常精确的技术徕卡显微系统公司收购光学相干断层扫描 (OCT) 公司 Bioptigen: 2016年徕卡显微系统公司独家获得了哥伦比亚大学 SCAPE 生命科学应用显微技术许可证,同时独家获得了伦敦帝国理工学院 (Imperial College) 的斜面显微镜 (OPM) 许可证。徕卡 EZ4 W 教育用体视显微镜获得世界教具联合会 (Worlddidac) 大奖:新的图像注入技术可引导外科医生进行手术:CaptiView 技术可将来自图像导航手术 (IGS) 软件的图像注入显微镜目镜。 2017年全新 SP8 DIVE 系统的推出,徕卡显微系统公司提供了世界上首个可调光谱解决方案,可实现多色、多光子深层组织成像。 徕卡的 DMi8 S 成像解决方案将速度提高了5倍,并将可视区域扩大了1万倍。为获得超分辨率和纳米显微成像而添加的 Infinity TIRF 模块能够以单分子分辨率同时进行多色成像, 由此开启宽视场成像的新篇章。 2018年LIGHTNING 从以前不可见或不可探测的精细结构和细节中提取有价值的图像信息,将传统共焦范围以内和衍射极限以外的成像能力扩展到120纳米。SP8 FALCON(快速寿命对比)系统的寿命对比记录速度比以前的解决方案快10倍。 细胞培养实验室的日常工作实现数字化PAULA(个人自动化实验室助手)有助于加快执行日常细胞培养工作并将结果标准化快速获取阵列断层扫描的高质量连续切片ARTOS 3D ,标志着超薄切片机切片质量和速度的新水平。随着 PROvido 多学科显微镜的推出,徕卡显微系统公司在广泛的外科应用中增强了术中成像能力。 2019年实现 3D 生物学相关样本宽视场成像THUNDER 成像系统使用户能够实时清晰地看到生物学相关模型(例如模式生物、组织切片和 3D 细胞培养物)厚样本内部深处的微小细节。 2020年STELLARIS是一个经彻底重新设计的共聚焦显微镜平台,可与所有徕卡模块(包括FLIM、STED、 DLS和CRS)结合使用。术中光学相干断层扫描(OCT)成像系统EnFocus 2021年Aivia以显微镜中的自动图像分析推动研究工作,强大的人工智能(AI)引导式图像分析与可视化解决方案相结合,助力数据驱动的科学探索。Cell DIVE超多标组织成像分析整体解决方案是基于抗体标记的超多标平台,适用于癌症研究。Emspira 3数码显微镜——启发灵感的简单检查方法该系统荣获2022年红点产品设计大奖, 不仅采用创新的模块化设计,而且提供广泛的配件和照明选项。2022年Mica——徕卡创新推出的多模态显微成像分析中枢,让所有生命科学研究人员都能理解空间环境LAS X Coral Cryo:基于插值的三维目标定位,沿着x轴和y轴对切片进行多层扫描(z-stack)。这些标记可在所有相关窗口中交互式移动具有高精度共聚焦三维目标定位功能的Coral Cryo工作流程解决方案 徕卡很自豪能成为丹纳赫的一员:丹纳赫是全球科学与技术的创新者,我们与丹纳赫在生物技术、诊断和生命科学领域的其他业务共同释放尖端科学和技术的变革潜力,每天改善数十亿人的生活。
    留言咨询

超高分辨场发射扫描显微镜相关的仪器

  • 日立高新超高分辨率场发射扫描电子显微镜SU9000是专门为电子束敏感样品和需最大300万倍稳定观察的先进半导体器件,高分辨成像所设计。新的电子枪和电子光学设计提高了低加速电压性能。0.4nm / 30kV(SE)0.7nm / 1kV(SE)0.34nm / 30kV(STEM)用改良的高真空性能和无与伦比的电子束稳定性来实现高效率截面观察。采用全新设计的Super E x B能量过滤技术,高效,灵活地收集SE / BSE/ STEM信号。
    留言咨询
  • Apero 2-超高分辨场发射扫描电镜【产品描述】Thermo Scientific Apreo 2 SEM高性能场发射扫描电镜搭载独特的实时元素成像功能和先进的自动光学系统,实现灰色区域解析,让您不再忧心显微镜性能,更加专注于研究本身。 Thermo Scientific Apreo 2 SEM具有多功能性和高质量成像性能,即使是磁性样品或是传统意义上成像非常困难的样品也可以实现极佳成像性能。全新Apreo 2 SEM在原有性能基础之上,进一步优化了超高分辨成像能力,并且增设许多新功能提升其高级功能的易用性。Apreo 2 SEM在耐用的SEM平台上引入了SmartAlign(智能对中)技术,不再需要用户手动进行调整操作,而且,FLASH(闪调)自动执行精细调节工作,只需移动鼠标几次,就可以完成必要的透镜居中、消像散和聚焦校正。此外,Apreo 2 SEM是唯一在10 mm分析工作距离下具有1 nm分辨率的SEM,长工作距离不再意味着低分辨成像,有了Apreo 2 SEM,任何用户都可以自信地得到很好的成像效果。 【特点与应用】 全面解析全面的纳米和亚纳米分辨率性能,适用于纳米颗粒、粉末、催化剂、纳米器件、大块磁性样品等材料; 极佳的灵活性非常灵活的处理范围,样品类型广泛,包括绝缘体、敏感材料和磁性样品,收集最重要的数据; SmartAlign技术使用SmartAlign(智能对中)技术,实现光学系统自动调整,减少维护时间; 先进的自动化先进的自动化用于自动图像微调、撤销、用户向导、Maps成像拼接的FLASH(闪调)技术; 实时定量EDS元素信息触手可及,利用ColorSEM技术,提供实时元素面分布成像定量分析,结果获取更加快速、简便; 长工作距离唯一在长工作距离(10 mm)具有高分辨率的性能(1 nm)和优秀的图像质量的SEM产品参数发射源:高稳定型肖特基场发射电子枪分辨率: 型号Apero 2 CApero 2 S末级透镜静电复合高真空15kV0.9nm 0.5nm1kV1.0nm0.8nm500V 1.2nm0.8nm加速电压范围:200 V ~ 30 kV 着陆电压范围:200 eV ~ 30 keV探针电流范围:1 pA ~ 50 nA,连续可调(可选配400 nA)最大水平视场宽度:10 mm WD时为3 mm(相当于最低放大倍率29倍)X-Ray工作距离:10 mm,EDS检出角35°样品室:从左至右为 340 mm 宽的大存储空间,样品室可拓展接口数量12个,含能谱仪接口3 个(其中2个处于180° 对角位置)样品台:五轴优中心全自动马达驱动X=110 mm,Y=110 mm,Z=65 mm,T=-15o~90o,R=360o (连续旋转)多用途SEM样品安装载物台,可同时放置 18 个标准样品座(φ12 mm)最大样品尺寸,直径122 mm,可沿X、Y轴完全旋转时最大样品高度,到优中心点间隔为85 mm最大样品承重 5 kg探测器系统:样品室二次电子探测器ETD镜筒内背散射电子探测器T1镜筒内二次电子探测器T2镜筒内二次电子探测器T3(选配)样品室内IR-CCD红外相机(观察样品台高度)图像导航彩色光学相机Nav-Cam+&trade 样品室低真空二次电子探测器(选配)可伸缩透镜下背散射探测器(选配)控制系统: 操作系统:Windows 10图像显示:24寸LCD显示器,最高显示分辨率1920×1200支持用户自定义的GUI,可同时实时显示四幅图像软件支持Undo和Redo功能
    留言咨询
  • 国仪量子超高分辨场发射扫描电镜SEM5000XSEM5000X是一款超高分辨率场发射扫描电子显微镜,其分辨率达到了突破性的0.6 nm@15 kV和1.0 nm@1 kV。高分辨物镜设计、高压隧道技术(SuperTunnel)以及镜筒工艺升级,实现了低电压分辨率的进一步提升。全新设计的样品仓,扩展接口增加至16个,快速换样仓最大支持8寸晶圆(最大直径208 mm),极大扩展应用范围。高级扫描模式和自动功能增强,带来了更强的性能和更好的体验。产品优势超高分辨率成像,达到了突破性的0.6 nm@15 kV和1.0 nm@1 kV样品台减速和高压隧道技术组合的双减速技术,挑战极限样品拍摄场景高精度机械优中心样品台、超稳定性的机架减震设计,可搭配整体罩壳设计,极大减弱环境对极限分辨率的影响最大支持8寸晶圆(最大直径208 mm)的快速换样仓,满足半导体和科研应用需求应用案例产品参数
    留言咨询

超高分辨场发射扫描显微镜相关的资讯

  • 分辨率最高可达0.6 nm!国仪量子超高分辨场发射扫描电子显微镜SEM5000X
    分辨率最高可达0.6 nm!国仪量子超高分辨场发射扫描电子显微镜SEM5000X#NEWS超高分辨场发射电镜发布近日,国仪量子在2023全国电镜年会期间发布了全新的超高分辨场发射扫描电子显微镜SEM5000X,分辨率达到了突破性的0.6 nm@15 kV和1.0 nm@1 kV,进一步夯实了国产高端电镜发展的基础。深度挖掘用户需求 全新升级实现超强性能国仪量子在服务客户时发现,传统的场发射扫描电镜在拍摄一些特殊样品时会出现成像质量不佳的问题。例如,纳米材料的导电性较差,样品的粒径通常也非常小,观测难度较高。但随着科研水平不断进步,对材料的观测尺度也将不断缩小,观测难度愈发提高。为解决这一难题,国仪量子显微镜研发团队在调研用户需求后,基于深厚的技术储备与产品工程化能力,推出了“挑战极限”的超高分辨场发射扫描电子显微镜SEM5000X。SEM5000X如何“挑战极限”?极限挑战一:挑战超高分辨率SEM5000X在15 kV下分辨率优于0.6 nm,1 kV下分辨率优于1 nm,成功挑战了热场发射扫描电镜的极限分辨率。国仪量子对SEM5000X电子光学系统中的物镜部分做了特殊的改进优化,电透镜和磁透镜的重合度进一步提高,使得色差减小了12%、球差减小了20%,整体上提升了电镜的分辨率。极限挑战二:不惧高难样品在SEM5000X产品设计中,增加了样品台减速模块,采用了高压隧道和样品台减速的组合,实现双减速技术,能够挑战极限样品拍摄场景。极限挑战三:适应复杂环境此外,我们自研了高精度的优中心样品台,采用了超稳定的机架,还额外设计了可屏蔽环境干扰的全包围式屏蔽系统,使SEM5000X能够轻松适应各种复杂环境。产品优势SEM5000X01超高分辨率成像,达到了突破性的0.6 nm@15 kV和1.0 nm@1 kV02样品台减速和高压隧道技术组合的双减速技术,挑战极限样品拍摄场景03高精度机械优中心样品台、超稳定性的机架减震设计,可搭配整体罩壳设计,极大减弱环境对极限分辨率的影响04最大支持8寸晶圆(最大直径208 mm)的快速换样仓,满足半导体和科研应用需求如果您需要一台更高性能,更高分辨率的电镜,那您一定不能错过超高分辨场发射扫描电子显微镜SEM5000X。应用案例展示介孔二氧化硅/1kV(Dul-Dec)/lnlens阳极氧化铝板/10 kV/Inlens芯片/5 kV/BSED-COM肾脏切片/5 kV/BSED-COMP泡沫镍/2 kV/ETD-SE蓝宝石衬底/5 kV/ETD-SE金颗粒/1 kV/Inlens光刻胶/2 kV/ETD-SE磁性粉末/10 kV/Inlens二氧化硅球/3 kV/ETD-SE催化剂/1 kV/ETD-SE波导/1 kV/ETD-SE
  • 460万!北京航空航天大学集成电路科学与工程学院超高分辨场发射扫描电子显微镜
    项目编号:CTIETC-HWZB-2204044项目名称:北京航空航天大学集成电路科学与工程学院超高分辨场发射扫描电子显微镜预算金额:459.9000000 万元(人民币)最高限价(如有):459.9000000 万元(人民币)采购需求:包号招标(采购)内容数量交货期交货地点招标(采购)需求1超高分辨场发射扫描电子显微镜1套合同生效后7个月内完成供货、安装、调试、培训工作。北京航空航天大学学院路校区采购超高分辨场发射扫描电镜1套,主要用于各种半导体样品、MEMS器件、各种材料、化学、物理等样品表面微观结构分析、记录和元素成分定性和定量分析,能够实现对上述类型的不导电样品无需喷镀直接高分辨成像。具体参数见第四章技术需求书。合同履行期限:本项目合同履行期限为自合同生效之日起至供货及相关配套服务全部履约完成本项目( 不接受 )联合体投标。
  • 450万!华南理工大学超高分辨场发射扫描电子显微镜采购项目
    项目编号:0612-2241D2190397项目名称:华南理工大学超高分辨场发射扫描电子显微镜项目预算金额:450.0000000 万元(人民币)最高限价(如有):450.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价/单价最高限价万元(人民币)1超高分辨场发射扫描电子显微镜1台1、主机(包括电子枪、电子光学系统、检测器系统、真空系统)1.1电子枪▲1.1.1高稳定性场发射电子枪,灯丝寿命≥5年,能量色差≤0.3eV1.2 电子光学系统★1.2.1空间分辨率SE:≤0.6nm(@15kV,工作距离≥4mm),≤0.7nm@1kV(@1kV,工作距离≥1.5mm);450合同履行期限:境内货物:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用;境外货物:收到信用证后(180)天内。本项目( 不接受 )联合体投标。

超高分辨场发射扫描显微镜相关的方案

超高分辨场发射扫描显微镜相关的资料

超高分辨场发射扫描显微镜相关的试剂

超高分辨场发射扫描显微镜相关的论坛

  • 场发射扫描电镜和环境扫描电镜有什么不同?

    扫描式电子显微镜的系统在设计上,主要是电子枪 (Electron Gun) 发射电子束组成,经过一组磁透镜聚焦 (Condenser Lens) 聚焦后,用遮蔽孔径 (Condenser Aperture) 选择电子束的尺寸(Beam Size)后,通过一组控制电子束的扫描线圈,再透过物镜 (Objective Lens) 聚焦,打在样品上,在样品的上侧装有讯号接收器,用以择取二次电子 (Secondary Electron) 或背向散射电子 (Backscattered Electron) 成像。[align=center][img]http://www.gdkjfw.com/bdimages/upload1/20181106/1541469521405510.jpg[/img][/align]场发射电子枪分别比钨丝和六硼化镧丝亮10至100倍,电子能量分散仅为0.2-0.3eV,因此使用目前可用的高分辨率扫描电子显微镜。场发射型电子枪具有高达1nm或更小的分辨率。目前,有两种场发射电子枪:冷场发射(FE),热场发射(TF)。当真空中的金属表面经受108V / cm的电子加速电场时,发射相当大量的电子。该过程称为场发射。原理是高电场引起电子潜在无序的肖特基效应,即使屏障的宽度较窄且高度较低,因此电子可以直接“扫过”狭窄的能量屏障并离开阴极。场发射电子从尖锐的阴极尖端发射,因此它们可以非常薄并且高电流密度的电子束可以达到电子枪的热量的数百倍甚至数千倍。选择用于场发射电子枪的阴极材料必须是高强度材料,以承受在高电位置施加到阴极尖端的高机械应力。由于高强度,钨是优选的阴极材料。场发射枪通常是下一个。阳极用于产生拾取电子、,聚焦、和加速电子的功能。由阳极的特殊形状产生的静电场可以聚焦在电子上,因此不再需要Weiss盖或栅极。第一个(顶部)阳极主要目的是改变场发射的提取电压以控制尖端场发射的电流强度,而第二个(下部)阳极主要决定加速电压以将电子加速到所需的能量。为了从非常细的钨尖端场发射电子,金属表面必须完全清洁,其表面上没有任何外来物质原子或分子,即使只有一个外来原子落在表面上,它也会减少电子场发射,所以场发射电子枪必须保持超高真空,以防止原子在钨阴极表面积聚。由于超高真空设备的极高价格,除非需要高分辨率SEM,否则通常较少使用场发射电子枪。冷场发射型的最大优点是电子束直径最小,亮度最高,因此图像分辨率最佳。能量分散最小,因此可以改善低电压操作的效果。为了避免针尖被外来气体吸附,场发射电流减小。并且发射电流不稳定,冷场发射型电子枪必须在10-10托的真空下工作。但是,必须定期将尖端加热到2500K(这个过程称为闪蒸)以除去吸附的气体原子。另一个缺点是发射的总电流最小。热场电子枪在1800K下操作,这避免了大部分气体分子吸附在针尖表面上,因此消除了对针尖闪烁的需要。热模式可以保持更好的发射电流稳定性并且可能很差。在真空(10-9托)下操作。尽管亮度类似于冷型,但其电子能量分布比冷型大3~5倍,并且图像分辨率差,通常较少使用。

  • 超高分辨显微镜及其在生物医学领域的应用

    [align=center][font='times new roman'][size=16px][b]超高分辨[/b][/size][/font][font='times new roman'][size=16px][b]显微镜及其在生物医学领域的应用[/b][/size][/font][/align][align=center][font='times new roman'][size=14px]刘皎[/size][/font][font='times new roman'][sup][size=14px]1[/size][/sup][/font][font='times new roman'][size=14px],[/size][/font][font='times new roman'][sup][size=14px] [/size][/sup][/font][font='times new roman'][size=14px]吴晶[/size][/font][font='times new roman'][sup][size=14px]1[/size][/sup][/font][/align][align=center]1. [font='times new roman']北京大学医药卫生分析中心,北京,[/font][font='times new roman']100191[/font][/align][font='times new roman'][b]摘要[/b][/font][font='times new roman'][b] [/b][/font][font='times new roman']超高分辨显微镜([/font][font='times new roman']Super-Resolution Microscopy[/font][font='times new roman'])作为一类强大的科学工具,可以突破传统光学显微镜的分辨极限,实现对微小结构的高分辨率成像,已经在生物医学领域引起了广泛的关注和应用。本文将探讨超高分辨显微镜的不同类型和原理,介绍[/font][font='times new roman']其[/font][font='times new roman']在生物医学领域的应用[/font][font='times new roman']及展望其未来发展[/font][font='times new roman']。[/font][font='times new roman'][b]Abstract[/b][/font][font='times new roman']Super Resolution Microscopy[/font][font='times new roman'], as a powerful scientific tool, can break through the resolution limit of traditional optical microscopes and achieve high-resolution imaging of small structures. It has attracted widespread attention and application in the biomedical field. This article will explore the different types and principles of Super Resolution Microscopy, introduce their applications in the biomedical field, and look forward to their future development[/font][font='times new roman'].[/font][font='times new roman'][b]关键词[/b][/font][font='times new roman']超高分辨[/font][font='times new roman']显微镜,[/font][font='times new roman']成像技术[/font][font='times new roman'],应用[/font][font='times new roman'][b]1 [/b][/font][font='times new roman'][b]引言[/b][/font][font='times new roman']显微镜的产生和发展对于生命科学研究的进步有至关重要的作用[/font][font='times new roman'],它将微观世界呈现在大家面前,包括微生物的存在、组织细胞结构及生理病理活动等。显微镜技术的不断革新将成像分辨率不断提高,但相当长一段时间内光学成像无法突破一个极限值,即[/font][font='times new roman']xy[/font][font='times new roman']轴横向分辨率约[/font][font='times new roman']200nm[/font][font='times new roman'],[/font][font='times new roman']z[/font][font='times new roman']轴纵向分辨率约[/font][font='times new roman']500nm[/font][font='times new roman'],因此小于这个尺寸的生命活动和结构[/font][font='times new roman'],如病毒、亚细胞结构等,[/font][font='times new roman']是无法清楚地观察到的[/font][font='times new roman']。[/font][font='times new roman']聚焦点的光强会根据点扩散函数([/font][font='times new roman']point spread functio[/font][font='times new roman']n[/font][font='times new roman'],[/font][font='times new roman']PSF[/font][font='times new roman'])而展开[/font][font='times new roman'],[/font][font='times new roman']对于圆形孔径,[/font][font='times new roman']PSF[/font][font='times new roman']呈现为艾里斑([/font][font='times new roman']Airy disk[/font][font='times new roman'])的模式[/font][font='times new roman']。[/font][font='times new roman']激光扫描共聚焦显微镜([/font][font='times new roman']Confocal Laser Scanning Microscopy, CLSM[/font][font='times new roman'])的分辨率取决于[/font][font='times new roman']PSF[/font][font='times new roman']的大小,如果焦点很小,则每个像素[/font][font='times new roman']点[/font][font='times new roman']获取到的信息也很小,从而得到清晰锐利的图像;反之,则结果图像变得模糊。因此,[/font][font='times new roman']CLSM[/font][font='times new roman']成像的[/font][font='times new roman']主要挑战在于实现越来越小的[/font][font='times new roman']PSF[/font][font='times new roman']以获得更好的分辨率。德国物理学家恩斯特[/font][font='times new roman'][/font][font='times new roman']阿贝([/font][font='times new roman']Ernst Abbe[/font][font='times new roman'],[/font][font='times new roman']1840-1905[/font][font='times new roman']年)在[/font][font='times new roman']19[/font][font='times new roman']世纪[/font][font='times new roman']70[/font][font='times new roman']年代首次[/font][font='times new roman']提出阿贝衍射极限,即[/font][font='times new roman']由于衍射效应,[/font][font='times new roman']PSF[/font][font='times new roman']大[/font][font='times new roman']小与[/font][font='times new roman']λ/NA[/font][font='times new roman']成正比([/font][font='times new roman']d=0.61λ/NA[/font][font='times new roman']),其中[/font][font='times new roman']λ[/font][font='times new roman']是光的波长,[/font][font='times new roman']NA[/font][font='times new roman']是物镜最重要的参数[/font][font='times new roman']——[/font][font='times new roman']数值孔径[/font][font='times new roman']。由于可见光波长范围在[/font][font='times new roman']400-760nm[/font][font='times new roman']之间,[/font][font='times new roman']NA[/font][font='times new roman']值最大在[/font][font='times new roman']1.7[/font][font='times new roman']左右,所以分辨率极限在[/font][font='times new roman']200nm[/font][font='times new roman']左右。随着物理学和测量技术的进步,突破衍射极限的显微镜不断涌现,目前公认的超高分辨显微镜主要有三类,包括[/font][font='times new roman']结构照明显微镜([/font][font='times new roman']Structured Illumination Microscopy[/font][font='times new roman'],[/font][font='times new roman']SIM[/font][font='times new roman'])[/font][font='times new roman'],受激发射减耗显微镜([/font][font='times new roman']Stimulated Emission Depletion Microscopy[/font][font='times new roman'],[/font][font='times new roman']STED[/font][font='times new roman']),和[/font][font='times new roman']单分子定位显微镜。单分子定位显微镜包括光敏定位显微镜([/font][font='times new roman']Photoactivation Localization Microscopy[/font][font='times new roman'],[/font][font='times new roman']PALM[/font][font='times new roman'])和随机光学重建显微镜([/font][font='times new roman']Stochastic Optical Reconstruction Microscopy[/font][font='times new roman'],[/font][font='times new roman']STORM[/font][font='times new roman'])[/font][font='times new roman']。[/font][font='times new roman']2014[/font][font='times new roman']年三位科学家[/font][font='times new roman']史蒂芬[/font][font='times new roman'][/font][font='times new roman']霍尔([/font][font='times new roman']Stefan W. Hell[/font][font='times new roman'])[/font][font='times new roman']、埃里克[/font][font='times new roman'][/font][font='times new roman']贝兹([/font][font='times new roman']Eric Betzig[/font][font='times new roman'])和威廉[/font][font='times new roman'][/font][font='times new roman']莫纳([/font][font='times new roman']William E. Moerner[/font][font='times new roman'])因他们在超[/font][font='times new roman']高[/font][font='times new roman']分辨显微镜技术领域的贡献而获得了诺贝尔化学奖。[/font][font='times new roman'][b]2 [/b][/font][font='times new roman'][b]不同类型的超高分辨显微镜[/b][/font][font='times new roman'][b]2.1[/b][/font][font='times new roman'][b] [/b][/font][font='times new roman'][b]结构照明显微镜([/b][/font][font='times new roman'][b]Structured Illumination Microscopy[/b][/font][font='times new roman'][b],[/b][/font][font='times new roman'][b]SIM[/b][/font][font='times new roman'][b])[/b][/font][font='times new roman']SIM[/font][font='times new roman']本质是利用两束激发光在样品上进行干涉,产生明暗交替的莫尔条纹,高空间频率的莫尔条纹会放大激发条纹与样品空间频率不一致的结构,从而将样品中的高频信息整合入收集到的图像中。[/font][font='times new roman']通过投射特殊的光照明模式如格点或条纹光栅,以一定的模式照射样品,引入空间频率信息,采集多个图像并经过复杂的数据处理之后,重建高分辨率图像。由于每个图像都采用不同的结构照明模式,包含了不同的信息,合并后的图像能够展示出比传统显微镜更多的细节[/font][font='times new roman']。[/font][font='times new roman']相比于其他超高分辨成像技术,[/font][font='times new roman']SIM[/font][font='times new roman']最大的优势就是宽场[/font][font='times new roman']成像,速度快,基本可以达到实时观察。[/font][font='times new roman']SIM[/font][font='times new roman']技术的前身可以追溯到[/font][font='times new roman']20[/font][font='times new roman']世纪[/font][font='times new roman']70[/font][font='times new roman']年代初。当时,光学学家特奥多尔[/font][font='times new roman'][/font][font='times new roman']赫普恩([/font][font='times new roman']Theodor [/font][font='times new roman']H?upl[/font][font='times new roman'])首次提出了使用周期性光栅照明来提高显微镜分辨率的想法。这奠定了[/font][font='times new roman']SIM[/font][font='times new roman']技术的基础,尽管当时还没有实际的[/font][font='times new roman']SIM[/font][font='times new roman']显微镜。[/font][font='times new roman']21[/font][font='times new roman']世纪初期,史蒂芬[/font][font='times new roman'][/font][font='times new roman']霍尔([/font][font='times new roman']Stefan W. Hell[/font][font='times new roman'])和埃里克[/font][font='times new roman'][/font][font='times new roman']贝兹([/font][font='times new roman']Eric Betzig[/font][font='times new roman'])等科学家分别独立开发了[/font][font='times new roman']SIM[/font][font='times new roman']的现代版本。[/font][font='times new roman']SIM[/font][font='times new roman']技术开始广泛传播,吸引了生物学家和显微镜专家的关注。它被认为是一种相对低成本的[/font][font='times new roman']超高分辨[/font][font='times new roman']率成像方法,因为它不需要昂贵的激光设备或复杂的样品准备。[/font][font='times new roman'][b]2.2 [/b][/font][font='times new roman'][b]受激发射减耗[/b][/font][font='times new roman'][b]显微镜([/b][/font][font='times new roman'][b]Stimulated Emission Depletion Microscopy[/b][/font][font='times new roman'][b],[/b][/font][font='times new roman'][b]STED[/b][/font][font='times new roman'][b])[/b][/font][font='times new roman']STED[/font][font='times new roman']技术的概念最早由斯德哥尔摩大学的斯蒂芬[/font][font='times new roman'][/font][font='times new roman']霍尔([/font][font='times new roman']Stefan W. Hell[/font][font='times new roman'])提出。他的想法是通过将激发光束与一个特殊的抑制光束结合,从而实现对荧光标记物的光抑制,[/font][font='times new roman']通过受激辐射淬灭光斑外围的荧光分子,[/font][font='times new roman']使其在空间上变得更加紧凑,[/font][font='times new roman']减少[/font][font='times new roman']PSF[/font][font='times new roman']从而提高分辨率。[/font][font='times new roman']我们也叫“甜甜圈”技术。[/font][font='times new roman']STED[/font][font='times new roman']显微镜背后基本思想就是利用非线性光学设计一个低于阿贝衍射极限的更小[/font][font='times new roman']PSF[/font][font='times new roman']。[/font][font='times new roman']分辨率与[/font][font='times new roman']STED[/font][font='times new roman']光强有关,提高[/font][font='times new roman']STED[/font][font='times new roman']光的强度可以使荧光光斑焦[/font][font='times new roman']点中心直径趋于[/font][font='times new roman']0[/font][font='times new roman'],但是实际应用中,光损伤较大,[/font][font='times new roman']STED[/font][font='times new roman']光强不可能无限增加,顾[/font][font='times new roman']其分辨率[/font][font='times new roman']最高[/font][font='times new roman']可达到[/font][font='times new roman']3[/font][font='times new roman']0[/font][font='times new roman']nm[/font][font='times new roman']左右[/font][font='times new roman']。[/font][font='times new roman']目前的[/font][font='times new roman']STED[/font][font='times new roman']只能应用于较薄的组织器官或细胞,光毒性较强,成像厚度有限不太适合活体或活细胞长时间成像。[/font][font='times new roman']STED[/font][font='times new roman']光路较为复杂,对系统稳定性要求较高。[/font][font='times new roman'][b]2.3 [/b][/font][font='times new roman'][b]单分子定位显微镜[/b][/font][font='times new roman']单分子定位显微镜[/font][font='times new roman']中荧光标记的单个分子被分别激发和检测。单分子的中心可以以极高的精度确定从而实现高分辨率,包括光敏定位显微镜([/font][font='times new roman']Photoactivation Localization Microscopy[/font][font='times new roman'],[/font][font='times new roman']PALM[/font][font='times new roman'])和随机光学重建显微镜([/font][font='times new roman']Stochastic Optical Reconstruction Microscopy[/font][font='times new roman'],[/font][font='times new roman']STORM[/font][font='times new roman'])。[/font][font='times new roman']PALM[/font][font='times new roman']的历史可以追溯到[/font][font='times new roman']2006[/font][font='times new roman']年,由埃里克[/font][font='times new roman'][/font][font='times new roman']贝兹([/font][font='times new roman']Eric Betzig[/font][font='times new roman'])和哈拉尔德[/font][font='times new roman'][/font][font='times new roman']赫斯([/font][font='times new roman']Harald Hess[/font][font='times new roman'])提出了单分子定位这一概念。在[/font][font='times new roman']PALM[/font][font='times new roman']中,样品中的分子被标记上特定的荧光染料。这些染料可以通过光激活从一个基态转变到一个激发态,此过程可通过使用激活光(通常是紫外光)来实现。同期[/font][font='times new roman']STORM[/font][font='times new roman']的成像技术也发展起来,代表科学家是华人庄小威。[/font][font='times new roman']STORM[/font][font='times new roman']的工作原理与[/font][font='times new roman']PALM[/font][font='times new roman']类似,是通过特殊的分子标记和随机活性化,实现单分子定位进而实现超高分辨率成像。具有光激活能力的标记物通常在某种光照条件下会发光,但也会在某一时刻被随机地熄灭。这种随机光熄灭是[/font][font='times new roman']PALM[/font][font='times new roman']技术的关键,因为它允许在不同时间点捕获标记物的位置。通过记录标记物的位置,可以得到它们的坐标。这一过程需要在短时间内多次拍摄样品,以获得足够多的数据点。最后,通过将多个标记物的坐标叠加在一起,可以生成高分辨率的图像。这种以成像时间换取空间分辨率的形式,使得[/font][font='times new roman']PALM[/font][font='times new roman']或[/font][font='times new roman']STORM[/font][font='times new roman']的分辨率通常能够达到数十纳米。[/font][font='times new roman'][b]3 [/b][/font][font='times new roman'][b]应用领域和未来发展[/b][/font][font='times new roman']超高分辨显微镜可以探索微观世界的无限可能性,已经彻底改变了科学研究的方式。在细胞生物学领域,它被用于研究[/font][font='times new roman']亚细胞结构,如微丝、微管、肌动蛋白等,[/font][font='times new roman']细胞器[/font][font='times new roman']如线粒体、溶酶体等,[/font][font='times new roman']分子分布和细胞膜动态、观察蛋白质的相互作用;在神经科学领域,它可用于观察神经元的亚细胞结构和突触的细节,有助于解剖和理解神经系统的结构和功能,以及神经系统相关疾病的机制;在癌症研究领域,被用于研究癌细胞的特征、蛋白质分布以及肿瘤微环境,这对于癌症的早期诊断和治疗规划非常重要;在材料科学领域,它被用于研究纳米材料的结构和性质、帮助科学家精确控制和制备纳米结构;在药物研发领域,它可用于研究药物靶标蛋白的定位和与其他分子的相互作用,这对于药物设计和筛选非常重要[/font][font='times new roman'];在微生物领域,对于研究细菌[/font][font='times new roman']结构变化至关重要,规避了电子显微镜无法进行活体成像等弊端,可以更加推进微生物学发展。[/font][font='times new roman']当然,[/font][font='times new roman']超[/font][font='times new roman']高[/font][font='times new roman']分辨成像技术[/font][font='times new roman']也有一定的挑战。超高分辨成像技术[/font][font='times new roman']通常需要高度复杂的设备和精密的校准,这使得其设备成本相对较高,[/font][font='times new roman']再加上样本制备的困难,[/font][font='times new roman']限制了其广泛应用。[/font][font='times new roman']样品准备在超高分辨成像中具有重要作用,新的标记技术和荧光探针的发展将提高成像的灵敏度和特异性[/font][font='times new roman'],[/font][font='times new roman']开发更友好、无损伤的样品准备方法,以减少对样品的干扰[/font][font='times new roman'],[/font][font='times new roman']甚至[/font][font='times new roman']包括无标记成像技术以减少样品标记的需求。开源软件和自动化工作流程将使超高分辨成像技术更易于使用和共享,促进科学研究的进展。[/font][font='times new roman']超高分辨技术通常对于三维成像和大样本的深度成像有限制,需要克服分辨率和深度之间的权衡。[/font][font='times new roman']同时超高分辨[/font][font='times new roman']成像的时间分辨率还可以继续提升[/font][font='times new roman']。[/font][font='times new roman']虽然[/font][font='times new roman']目前[/font][font='times new roman']SIM[/font][font='times new roman']和[/font][font='times new roman']minflux[/font][font='times new roman']更适合[/font][font='times new roman']观察[/font][font='times new roman']活细胞[/font][font='times new roman']动态过程,但时间分辨率的提高仍然是一个挑战,特别是对于极短时间尺度的现象[/font][font='times new roman'],[/font][font='times new roman']这将使科学家能够更深入地探索微观世界,并获得更多信息。[/font][font='times new roman']随着技术的不断进步,[/font][font='times new roman']超高分辨[/font][font='times new roman']成像有望在[/font][font='times new roman']包括临床医学[/font][font='times new roman']等[/font][font='times new roman']更多领域得到广泛应用[/font][font='times new roman'],未[/font][font='times new roman']来如果能实现超高分辨的动物甚至人的[/font][font='times new roman']活体成像,减少样品固定和处理的需求,允许观察生物过程的实时发生[/font][font='times new roman']将会更有现实意义[/font][font='times new roman']。[/font][font='times new roman']并且在科学研究的需求下,[/font][font='times new roman']多模态[/font][font='times new roman']或多尺度[/font][font='times new roman']成像将[/font][font='times new roman']与[/font][font='times new roman']不同[/font][font='times new roman']的[/font][font='times new roman']超高分辨[/font][font='times new roman']技术相结合,[/font][font='times new roman']例如,结合光学成像和质谱成像[/font][font='times new roman'],[/font][font='times new roman']从分子水平到组织水平[/font][font='times new roman']提供[/font][font='times new roman']生命活动[/font][font='times new roman']更全面的信息。[/font][font='times new roman']也可以[/font][font='times new roman']发展高通量的样品处理和成像技术,以便更快速地获得大规模的数据。[/font][font='times new roman']超高分辨[/font][font='times new roman']成像生成的数据量巨大,处理和分析这些大数据需要强大的计算资源和高效的算法。数据存储和传输也是挑战。[/font][font='times new roman']超高分辨[/font][font='times new roman']成像数据可能受到噪声和伪迹的影响,这需要高级的图像处理技术来减少其影响,以获得准确的图像。数据分析通常需要复杂的算法和数学模型,需要专业知识和技能。对于某些应用,如神经科学中的活体成像,需要实时数据分析,这增加了挑战。深度学习和人工智能技术[/font][font='times new roman']有望[/font][font='times new roman']在数据分析中发挥越来越重要的作用,[/font][font='times new roman']实现[/font][font='times new roman']自动处理和解释图像数据。发展实时数据分析技术,使科学家能够在数据采集过程中获得及时反馈。开发更易用的高级图像处理工具,使非专业用户也能够进行数据分析。结合不同成像技术和数据源的信息,以提供更全面的信息。开发自动化和高通量的数据分析工作流程,以应对大规模数据的挑战。促进数据共享和开放科学,以促进合作和加速科学研究的进展。未来,随着计算能力的提高和新技术的引入,[/font][font='times new roman']超高分辨[/font][font='times new roman']成像数据分析将变得更加强大和高效。这将有助于更深入地理解微观世界,并在生物学、医学、材料科学等领域推动创新和发展。[/font][font='times new roman']总的来说,尽管[/font][font='times new roman']超高分辨[/font][font='times new roman']成像面临一些挑战,但其前景充满希望。未来的发展将使这一领域更加强大,有望在科学研究和实际应用中提供更多的机会和洞察力。[/font][font='times new roman'][b]4 [/b][/font][font='times new roman'][b]结论和展望[/b][/font][font='times new roman']超高分辨显微镜的成像原理基于破解传统显微镜的分辨极限,通过结构照明、图像重建[/font][font='times new roman']和单分子成像等策略,实现对微小结构的高分辨率成像。这一技术的应用领域包括生物学、材料科学、纳米技术和医学等,有望推动科学研究的进一步发展。超高分辨显微镜已经在生物医学领域取得了显著的突破,使研究人员更深入地理解细胞和分子结构。然而,仍然存在挑战,包括样品准备和数据分析的复杂性。未来,我们可以期待更多技术的发展,以进一步提高分辨率和扩大应用领域。[/font][font='times new roman']随着技术的不断发展,我们可以期待更多超分辨显微镜技术的突破,如更高分辨率、更高灵敏度和更快成像速度。超分辨显微镜的应用也将继续扩展到新的领域,如药物研发、个性化医学和环境科学。它将为我们提供更多工具来解决生物学的重要问题,如疾病机制、药物研发和生态系统健康。总之,超分辨显微镜技术的未来展望是光明的,它将继续推动科学研究向前迈进,揭示微观世界的微小奥秘,为改善生活质量和解决全球挑战做出贡献。这个领域的不断创新将激发更多科学家的热情,共同追求更深入的科学知识和更广泛的应用。[/font][font='times new roman'][b]参考文献[/b][/font][font='times new roman']Hell[/font][font='times new roman'] [/font][font='times new roman']S [/font][font='times new roman']W[/font][font='times new roman'].[/font][font='times new roman']Far-field[/font][font='times new roman'] [/font][font='times new roman']optical[/font][font='times new roman'] [/font][font='times new roman']nanoscopy[/font][font='times new roman'][J][/font][font='times new roman'].[/font][font='times new roman']Science[/font][font='times new roman'],[/font][font='times new roman']2007[/font][font='times new roman'],[/font][font='times new roman']316(5828)[/font][font='times new roman']:[/font][font='times new roman']1153-1158[/font][font='times new roman']Hell[/font][font='times new roman'] [/font][font='times new roman']S W[/font][font='times new roman'],[/font][font='times new roman']Wichmann J[/font][font='times new roman'].[/font][font='times new roman']Breaking[/font][font='times new roman'] [/font][font='times new roman']the diffraction[/font][font='times new roman'] [/font][font='times new roman']resolution[/font][font='times new roman'] [/font][font='times new roman']limit[/font][font='times new roman'] [/font][font='times new roman']by stimulated[/font][font='times new roman']-[/font][font='times new roman']emission[/font][font='times new roman']-[/font][font='times new roman']depletion fluorescence[/font][font='times new roman'] [/font][font='times new roman']microscopy[J][/font][font='times new roman'].[/font][font='times new roman']Optics[/font][font='times new roman'] [/font][font='times new roman']Letters[/font][font='times new roman'],[/font][font='times new roman']1994[/font][font='times new roman'],[/font][font='times new roman']19(11)[/font][font='times new roman']:[/font][font='times new roman']780-782[/font][font='times new roman']Dani A[/font][font='times new roman'],[/font][font='times new roman']Huang B[/font][font='times new roman'],[/font][font='times new roman']Bergan J[/font][font='times new roman'],[/font][font='times new roman']et[/font][font='times new roman'] [/font][font='times new roman']a1[/font][font='times new roman'].[/font][font='times new roman'] Super-resolution[/font][font='times new roman'] [/font][font='times new roman']imaging of chemical synapses[/font][font='times new roman'] [/font][font='times new roman']in the brain[J][/font][font='times new roman'].[/font][font='times new roman']Neuron[/font][font='times new roman'],[/font][font='times new roman']2010[/font][font='times new roman'],[/font][font='times new roman']68(5)[/font][font='times new roman']:[/font][font='times new roman']843[/font][font='times new roman']—[/font][font='times new roman']856[/font][font='times new roman']PATTERSON[/font][font='times new roman'] [/font][font='times new roman']G[/font][font='times new roman'],[/font][font='times new roman']DAVIDSON[/font][font='times new roman'] [/font][font='times new roman']M[/font][font='times new roman'],[/font][font='times new roman']MANLEY[/font][font='times new roman'] [/font][font='times new roman']S[/font][font='times new roman'],[/font][font='times new roman']et[/font][font='times new roman'] [/font][font='times new roman']al[/font][font='times new roman']. [/font][font='times new roman']Superresolution[/font][font='times new roman'] imaging using single-molecule localization[/font][font='times new roman'][J][/font][font='times new roman'].[/font][font='times new roman']A[/font][font='times new roman']nnual Review of Chemistry[/font][font='times new roman'],[/font][font='times new roman']2010[/font][font='times new roman'],[/font][font='times new roman']6[/font][font='times new roman']1:345-367[/font]

超高分辨场发射扫描显微镜相关的耗材

  • 高分辨率扫描探针显微镜配件
    高分辨率扫描探针显微镜配件是欧盟革命性的高分辨率扫描探针显微镜,SPM显微镜, 它具有目前世界上最为紧凑的机构构成,同时可作为扫描探针显微镜和原子力显微镜使用。高分辨率扫描探针显微镜配件有不同类型的纳米定位平台,包括各种扫描位移台,以确保用户大面积扫描样品,扫描探针显微镜具有最佳的多功能性,可提供EFM, MFM, STM, Phase Imaging, CAFM, KPM 等诸多模式供用户使用。 高分辨率扫描探针显微镜配件特色双光学样品观察(正置和倒置)扫描尺度高达 250 μm全自动样品拾取X-Y 扫描尺寸100 x 100μm (高压模式) 10 x 10 μm (低压模式)高电压模式闭环分辨率: 2 nm高电压模式开环分辨率: 0.2 nm闭环线性: 0.1%.Z 方向扫描尺寸:10 μm (高压模式)1 μm (l低压模式)分辨率: 0.16 nm (高压模式), 0.02 nm (低压模式)高分辨率扫描探针显微镜配件特色 适合样品大小: 可容纳不同结构的直径最高达到30mm的样品。扫描探针显微镜控制系统: 数字控制器和模拟反馈系统,具有高分辨率和低噪音的特点。扫描探针显微镜,SPM显微镜采集软多窗口应用的基于Windows 系统开发的软件,控制所有的硬件工作。
  • PAINT 超高分辨显微镜纳米标尺
    产品特点:GATTA-PAINT 系列纳米标尺是适用于各种定位技术的超高分辨显微镜的理想标尺。因为采用DNA PAINT技术实现亮暗转换,GATTA-PAINT 纳米标尺几乎不会淬灭。此外,标尺的设计中包含了三个荧光发射点,可以获取到醒目的图像。荧光标记间的距离有如下几个尺寸:20nm, 40nm, 80nm。每种距离都有如下几种颜色可供选购:红色(ATTO 647N),绿色(ATTO 542)或蓝色(Alexa Fluor 488),或者红/绿组合(ATTO 655/ ATTO 542)纳米标尺,AFM纳米标尺,原子力显微镜纳米标尺,共聚焦显微镜纳米标尺,超高分辨显微镜纳米标尺,SIM纳米标尺,STED纳米标尺,STORM纳米标尺,电镜纳米螺旋标尺,金纳米螺旋标尺,显微镜亮度灵敏度标尺,显微镜纳米标尺技术参数:
  • 扫描电镜专用场发射电子源9215736
    场发射电子源921 5736 ,这个型号的场发射灯丝,适用于原厂H机型。场发射扫描电子显微镜其实它是电子显微镜的一种,扫描电镜是介于透射电镜和光学显微镜之间的一种微观形貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。广泛用于生物学、医学、金属材料、高分子材料、化工原料、地质矿物、商品检验、产品生产质量控制、宝石鉴定、考古和文物鉴定及公安刑侦物证分析。可以观察和检测非均相有机材料、无机材料及在上述微米、纳米级样品的表面特征。优点:1、有较高的放大倍数,20-30万倍之间连续可调;2、有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;3、试样制备简单,目前的扫描电镜都配有X射线能谱仪(EDS)装置,这样可以同时进行显微组织形貌的观察和微区成分分析。大束科技是一家以自主技术驱动的电子显微镜系列核心配件研发制造的供应商和技术服务商。目前公司主要生产电子显微镜的核心配件离子源、电子源以及配套耗材抑制极、拔出极、光阑等销往国内外市场,此外,还为用户提供定制化电子显微镜以及电子枪系统等的维修服务,以及其他技术服务和产品升级等一站式、全方位的支持。在场发射电子源(电子显微镜灯丝)、离子源以及电镜上的高低压电源、电镜控制系统研发制造等领域等均具有优势。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制