当前位置: 仪器信息网 > 行业主题 > >

单纵模紫外纳秒固体激光器

仪器信息网单纵模紫外纳秒固体激光器专题为您提供2024年最新单纵模紫外纳秒固体激光器价格报价、厂家品牌的相关信息, 包括单纵模紫外纳秒固体激光器参数、型号等,不管是国产,还是进口品牌的单纵模紫外纳秒固体激光器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合单纵模紫外纳秒固体激光器相关的耗材配件、试剂标物,还有单纵模紫外纳秒固体激光器相关的最新资讯、资料,以及单纵模紫外纳秒固体激光器相关的解决方案。

单纵模紫外纳秒固体激光器相关的资讯

  • 必达泰克公司半导体泵浦固体激光器获美国专利
    必达泰克公司的半导体泵浦固体激光器近日获得了美国专利 (专利号: US 7,218,655 B2), 为环境温度变化较大时的激光器应用提供了新的选择。 该激光器采用了必达泰克公司自主研发的先进技术,使其在没有致冷/加热控制器的情况下也能在环境温度变化较大的情况下获得稳定的输出,从而避免了带有温度控制系统的激光器所常有尺寸大、功耗高的弊病,使其更适用于如搜索营救时的信号指示、现场检测设备以及激光指示器等应用。该专利可应用于蓝光、绿光等固体激光器上,在拓宽激光器的适用温度范围和延长其使用寿命方面有显著的效果。 美国必达泰克公司一直致力于激光器和微型光纤光谱仪的研发生产,在激光器和光谱仪的研发生产上有着丰富的经验。目前必达泰克公司在激光器和光谱仪方面已获得两项美国专利,并且还有十几项专利正在审核中。美国必达泰克公司,竭诚为您的激光应用服务!
  • 我国投资1.8亿深紫外固态激光项目世界领先
    深紫外全固态激光源指输出波长在200纳米以下的固体激光器,与同步辐射和气体放电光源等现有光源相比具有高的光子流通量/密度、好的方向性和相干性。   中科院自上世纪90年代初开始研究深紫外非线性光学晶体和激光技术,经过20多年努力,在国际上首次生长出可直接倍频产生深紫外激光非线性光学晶体,并发明棱镜耦合技术,率先发展出实用化的深紫外固态激光源,使中国成为当今世界上唯一掌握深紫外全固态激光技术的国家。   中国科学家利用独创、独有的深紫外技术和深紫外激光非线性光学晶体,已成功研制出深紫外激光拉曼光谱仪、深紫外激光发射电子显微镜等8台深紫外固态激光源前沿装备,均为当今世界所独有的科研利器,居深紫外领域国际领先地位。   总投资1.8亿元人民币的深紫外固态激光源前沿装备研制项目,2008年启动实施以来进展顺利,现已研制成功的8台前沿装备还包括深紫外激光光化学反应仪、深紫外激光光致发光光谱仪、深紫外激光自旋分辨角分辨光电子能谱仪、深紫外激光原位时空分辨隧道电子谱仪、基于飞行时间能量分析器的深紫外激光角分辨光电子能谱仪等国际领先水平的仪器设备,另外1台光子能量可调深紫外激光光电子能谱仪研制工作也已基本完成,正在调试之中,多台仪器设备已初步用于前沿科学研究,并表现出优异的性能。   中科院整合麾下理化技术研究所、物理研究所、大连化学物理研究所、半导体研究所科研资源,在财政部专项资金支持下,设立深紫外固态激光源前沿装备研制项目,设计出从“材料-器件-装备-科学研究”完整研发体系。在成功研制8台重大仪器设备的同时,还搭建有深紫外非线性晶体和器件研制平台、深紫外固态激光器研发平台和深紫外应用仪器开发平台,核心器件深紫外晶体及器件已实现小批量生产,为仪器设备后续发展尤其是产业化工作奠定了基础。   深紫外固态激光技术突破是中国新型科学仪器研发的难得机遇。中科院在前期工作基础上,正组织专家进一步调研,一方面,将研制成功的8台仪器设备中技术成熟、具有市场潜力的发展为商品化仪器设备,推动中国高端科学仪器产业化 另一方面,进一步整合人才、技术力量,继续研发新型深紫外科学仪器和设备。
  • 我国成唯一制造实用深紫外全固态激光器的国家
    由中科院承担的深紫外固态激光源系列前沿装备日前通过验收,我国成为世界上唯一能够制造实用化深紫外全固态激光器的国家。   &ldquo 这是我国自主研发高精尖仪器的一个成功范例。&rdquo 9月6日,由中科院承担的国家重大科研装备研制项目&mdash &mdash &ldquo 深紫外固态激光源前沿装备研制项目&rdquo 通过验收,验收委员会给出了如是评价。   该系列前沿装备中的深紫外非线性光学晶体与器件平台、深紫外全固态激光源平台,以及基于这两个平台研制的8台新型深紫外激光科研装备各项既定目标全面完成,使我国成为世界上唯一能够制造实用化深紫外全固态激光器的国家。   中科院院长白春礼表示,该项目是中科院相关研究所和科学家在长期科研工作积累的基础上,协同攻关、自主创新取得的重要成果,也是中科院近年来&ldquo 致力重大创新突破、服务创新驱动发展&rdquo 的具体体现。   开启深紫外时代   项目从一个晶体开始。   这是一种名为氟硼铍酸钾(KBBF)的晶体。上世纪90年代初,在发现硼酸盐系列非线性光学晶体后,中科院院士陈创天的研究团队经过10余年努力,在国际上首先生长出大尺寸KBBF晶体。   KBBF晶体是目前唯一可直接倍频产生深紫外激光的非线性光学晶体,是在非线性光学晶体研究领域中,继硼酸钡、三硼酸锂晶体后的第三个&ldquo 中国产&rdquo 非线性光学晶体。   深紫外非线性光学晶体问世后,如何将其研制成实用化、精密化激光源,则成为一个棘手的问题。   KBBF晶体是层状结构,难以切割,而要做到深紫外倍频又必须切割。为此,陈创天携手激光技术专家、中国工程院院士许祖彦,开始摸索解决办法。   &ldquo 当时中国大陆还没有这方面的实验装置,我们不得不跑到香港科技大学,借用他们的实验室。&rdquo 许祖彦回忆说,两个人窝在实验室里,每天工作到深夜一两点,终于搞出了KBBF棱镜耦合器件。   该器件在国际上首次实现了1064nm激光的6倍频输出,将全固态激光波长缩短至177.3nm,首次将深紫外激光技术实用化、精密化,并已获中、日、美专利。   之后两人密切配合,在国际上首次实现KBBF晶体倍频输出深紫外激光,并最终发展出实用化的深紫外固态激光源(DUV-DPL)。   从此,中国开启了深紫外的时代。   从激光源到8台装备   DUV-DPL的研制成功,不仅使得我国激光科技研究突破了200nm以内的&ldquo 深紫外壁垒&rdquo ,实现了实用化、精密化,还极大推进了我国科研人员在激光科技研究领域的继续深入。   许祖彦形容自己的工作是&ldquo 二传手&rdquo ,&ldquo 跟上游讨论晶体该长成什么样,向下游询问要什么样的激光&rdquo 。   他花了一年多时间,跑了二三十个实验室,&ldquo 推销&rdquo DUV-DPL。   深紫外波段(指波长短于200nm的光波)科研装备目前主要使用同步辐射和气体放电等非相干光源。相对于同步辐射而言,在体积方面,配有KBBF晶体棱镜耦合器件的全固态激光器体积变得很小 在能量分辨率方面,比同步辐射提高5~10倍以上 在光子流密度方面,提高了3~5个量级。   2007年年底,财政部专门设立&ldquo 深紫外固态激光源前沿装备研制&rdquo 项目,对搭建深紫外非线性晶体和器件研制平台、深紫外固态激光器研发平台,以及研制8台新型DUV-DPL科学仪器,予以专项支持。陈创天、许祖彦担任项目首席科学家。   &ldquo 为使仪器保持领先,科研人员必须不断调整技术方案。为此,总体部还设立了一个工程监理部,这在国内的科研项目中很少见。&rdquo 项目总体部总经理、中科院理化所研究员詹文山说。   这样一来,经常要&ldquo 推倒重来&rdquo 。身为&ldquo 二传手&rdquo 的许祖彦深有体会:在5年多的时间里,满足了仪器研制人员变更技术方案的多项技术要求,解决了光源与8台仪器对接的工程问题。   打造自主创新链   如今,这8台科学仪器已经在石墨烯、高温超导、拓扑绝缘体、宽禁带半导体和催化剂等研究中获得了重要结果。   以深紫外激光光发射电子显微镜(PEEM)为例,目前国际上最先进的光发射电子显微镜空间分辨率最高为20nm,而采用全固态激光器后能提高到3.9nm。中科院大连化物所利用这台仪器开展了石墨烯/Ru(0001)表面插层反应原位观测,为石墨烯等光电子材料发展和应用提供了强有力的研究手段。   詹文山透露,目前2mm以下的KBBF晶体已可小批量生产,满足国内市场需求。8台科学仪器中,PEEM正在逐步进行产业化尝试。   &ldquo 晶体&mdash 光源&mdash 装备&mdash 科研&mdash 产业化,深紫外固态激光源前沿装备研制项目打造了一条自主创新链,涵盖了从提出原创科学思想到实现应用成果这一完整的科学价值链,为学科交叉面广、跨度大、探索性和工程性很强的原创性重大科研装备创新积累了经验,也为中科院各业务管理单元合理分工、深度融合、协力创新提供了典型样本。&rdquo 白春礼评价道。   &ldquo 这仅仅是深紫外波段仪器应用的开始。&rdquo 许祖彦透露,项目二期将从物理、化学、材料拓展到信息、资环、生命等领域,开展6台国际领先水平的仪器设备研制工作,继续推动深紫外技术的深度开发。   同时,在一期任务顺利完成基础上,去年中科院理化所联合北京中科科仪等单位,在科技部支持下启动了深紫外仪器设备产业化开发工作,逐步将研制成功的深紫外仪器设备推向市场。
  • 中国建全球唯一可调波极紫外自由电子激光器
    摘要:3月12日,总预算达1.4亿元的国家重大科研仪器设备专项“基于可调极紫外相干光源的综合实验研究装置”在大连正式启动。它将成为国际上唯一一套工作在50~150纳米区间且波长可调的全相干高亮度的自由电子激光器。   对原子、分子的探测是物理化学研究的基础,但由于现有仪器设备的限制,大多数分子和自由基难以被单光子电离,使很多研究无法深入,成为困扰科研工作者的一大难题。   一项旨在解决该难题的实验装置即将在我国建设。3月12日,总预算达1.4亿元的国家重大科研仪器设备专项“基于可调极紫外相干光源的综合实验研究装置”在大连正式启动。它将成为国际上唯一一套工作在50~150纳米区间且波长可调的全相干高亮度的自由电子激光器。   项目总负责人、中科院院士杨学明表示,该装置的研制将极大提升我国在能源等相关基础科学领域的实验水平,并极有希望成为国际上相关领域的一个重要研究基地。   强强联合   项目负责人之一、中科院大连化物所研究员戴东旭介绍说,能源研究中,煤的热解等燃烧过程的中间产物往往以原子、分子、自由基的形式存在,这些微观粒子被电离为离子后才能变成电信号被测试到。因此,对微观粒子的高灵敏度、高时间分辨率和物种分辨的探测和研究至关重要。   但是,大多数分子或自由基的激发电离波长都处于极紫外波段(50~150纳米),而传统激光器产生的基本波长一般在近紫外到近红外波段(300~1000纳米)。这造成了传统激光激发电离微观粒子需要吸收多个光子,其效率和灵敏度会呈几何量级的降低,并且容易把产物打碎。   为解决该问题,科学家提出了利用自由电子激光产生极紫外波段相干光的技术。该技术被认为是探测微观粒子最有效的途径。自由电子激光的波长可涵盖从硬X射线到远红外的所有波段,特别是利用高增益谐波产生(HGHG)技术产生的自由电子激光具有超高峰值亮度、超快时间特性和良好的相干性,应用价值巨大。   但该技术直到近十年才在实验中得到验证。其中,中科院上海应用物理所在几年前建设了我国第一个自由电子激光,并成功进行了相关实验。   而在大连,一位在科研中多年受困于粒子探测难题的科学家坐不住了。他就是以自己研发仪器进行实验而著名的杨学明。杨学明找到上海应用物理所,希望双方能够合作开发新设备。   上海方面通过经验积累后也意识到,有把握将自由电子激光的波长从200纳米降到150纳米以内,并实现波长可调。于是双方一拍即合,经过几年论证,在2011年联合申请了国家自然科学基金委国家重大科研仪器设备专项。   1月20日,上海应用物理所宣布:由该所研究员赵振堂领导的自由电子激光研究团队在国际上率先实现了HGHG自由电子激光大范围波长连续可调。   “在这个项目中,大连化物所和上海应物所是完美结合。”戴东旭表示,上海光源的建成使上海应物所拥有了大科学工程的建设与管理经验,并掌握了大量的关键技术。   从“敢想”到“敢做”   据戴东旭介绍,自由电子激光在进入21世纪之后才开始兴旺发展起来。目前,几家研发自由电子激光的相关单位各有所长,其中一些在波长等指标方面较为领先,技术难度很高,但还没有一家可实现波长可调。   位于合肥的国家同步辐射实验室目前能提供国内真空紫外最好的实验条件,在过去曾协助杨学明课题组做出很好的实验成果。但同步辐射光源毕竟不是激光,在相干性、峰值功率和时间特性上尚存差异。   针对这些问题,大连化物所从实际需求出发提出要求,上海应用物理所在设计中将目标瞄准解决实验中的实际问题。   据悉,该项目的设备将主要由我国自主研发。“这项技术国外也处在发展阶段,有些特殊指标只能自己制造,从国外买设备也需要从头研制。”戴东旭说。   在1.4亿元的项目总预算中,国家自然科学基金委资助1.03亿元用于自由电子激光和实验装置的研制,中科院大连化物所自筹约0.4亿元用于基建和公用设施。该项目的科学目标是研制一套基于HGHG模式的波长可调谐的极紫外相干光源以及利用这一性能优越的光源的实验装置。这也将成为世界上独特的相关基础科学问题的实验平台。   据悉,目前经费已经到位,装置计划将于2015年年底前建成。而且会在全国实现仪器共享,可应用于物理、化学、生物、能源等多个领域。戴东旭说:“装置建成后,以前测不到的将能测到,以前不好的信号将变清晰,以前做不了的实验也敢做了。”
  • DUV-DPL(全固态深紫外激光器)
    在2009年4月9日召开的“2009中国科学仪器发展年会”上,中国科学院理化技术研究所许祖彦院士作题为“DUV-DPL”的大会特邀报告,DUV- DPL为全固态深紫外激光器。   全固态深紫外激光器是我国具有自主知识产权的核心技术,在此项技术研发出来以前,我国科学仪器缺乏实用化、精密化的深紫外激光相干光源,致使我国深紫外激光仪器发展缓慢。全固态深紫外激光器研制的成功,使得我国激光科技研究突破了200nm波段的深紫外壁垒,实现了科学仪器的实用化、精密化。   全固态深紫外激光器(DUV-DPL)作为核心部件可应用在多种光谱仪器上,例如:深紫外激光光电子能谱仪、深紫外激光光谱仪、深紫外激光显微镜、深紫外光化学反应仪、深紫外气溶胶质谱仪等科学仪器。以全固态深紫外激光器为核心部件的科学仪器,其主要功能是:获取新数据,发现新现象,开拓新方向。   全固态深紫外激光器已申请到了中国、日本、美国的专利,就目前情况而言,中科院的专利已垄断了深紫外全固态激光研究的全部领域。这极大推进了我国科研人员在激光科技研究领域继续深入,促进了我国前沿科学、光电子产业发展,为这一技术研究领域在国际上持续保持优势地位奠定了坚实的基础。   深紫外激光器已应用于物理、化学、材料科学等领域,将在在信息、资环、生命等领域应用,这将为各大学科提供全新研究手段,对科研活动起到革命性的推动作用。
  • 我国紫外激光器产业化关键技术取得突破
    清华大学等单位共同承担的“十二五”863计划新材料领域“紫外激光器产业化关键技术及应用”课题取得重要进展,于近日通过技术验收。   课题组解决了厘米级BBSAG晶体生长、非线性晶体超光滑表面加工、工业级应用的全固态激光器整机装配等工艺难点,突破了高光束质量紫外频率变换、非线性光学晶体的寿命及抗损伤、光束指向稳定性等多项关键技术,开发出10-30W不同功率级别的全固态紫外激光器和新型的BBSAG四倍频器件,产品性能达到国外同类产品水平,形成了一套拥有自主知识产权的全固态紫外激光核心技术,并实现了紫外激光器在微加工成套设备上的试用。   课题实施期间,BBSAG晶体生长技术已经转移到福建福晶科技股份有限公司,该公司及下属公司已经实现BBSAG晶体的生产并出口到欧美等发达国家。经过本课题支持,课题组成功研制出最大输出功率达30W的紫外激光器,各项指标均达到甚至超过国际光电子公司紫外高功率激光器指标水平。该课题成果的产业化,将打破国外在紫外激光器市场中的垄断,极大地提升我国激光微加工制造产业的核心竞争力。
  • 美军拟研发拉曼紫外激光器用于生化探测(图)
    美军的生物联合防区外检测系统(JBSDS)。JBSDS是防区外化学与生物威胁监测的应用实例,利用激光雷达(LIDAR)来探测一定距离外的气溶胶。DARPA希望通过LUSTER项目开发出小巧的大功率紫外激光器来实现类似功能。   中新网3月6日电 据中国国防科技信息网报道,美国国防高级研究计划局(DARPA)启动了一项新研究,旨在开发出一种结构小巧、性能可靠的紫外线探测设备。   该研究项目名为&ldquo 战术有效的拉曼紫外激光光源&rdquo (LUSTER)。DARPA向业界寻求设计方案,以开发结构紧致、高效低成本、可灵活部署的深紫外(deep UV)激光生化战剂探测新技术。这种新技术可以节省空间、降低重量和功率需求,也比当前的同类装置要敏感很多。DARPA的目标是:新紫外激光器的体积不超过目前激光器的1/300,同时效率提高10倍。   拉曼光谱分析是利用激光来测量分子振动、从而迅速准确地识别未知物质的方法。紫外激光的波长特别适合进行拉曼分析,但美国国防部当前所使用的战术紫外线探测系统体积庞大、价格昂贵,其性能也有限。   DARPA项目经理丹格林介绍说,目前探测系统的体积和重量太大,需要用卡车运送,而LUSTER项目的目标是开发出具有突破性的化学与生物战剂探测系统,可以单兵携带,并且效率大幅提高,同时,DARPA希望新系统的价格也能在目前探测系统价格基础上&ldquo 抹去几个零&rdquo 。   目前&ldquo 紧凑型中紫外技术&rdquo (CMUVT)项目已经完成,DARPA希望在此基础上研制LUSTER。CMUVT项目研发出了创纪录的高效大功率中紫外线发光二极管,紫外线波长接近LUSTER的紫外光波长。 但发光二极管对化合物识别的灵敏度有限,因此DARPA希望LUSTER项目能够开发出新的激光技术,使其准确度和灵敏度不低于当前昂贵的激光系统,而其稳定性和成本又与发光二极管相当。   格林透露,除了用于探测战场或国内大规模恐怖袭击中可能出现的化学与生物战剂,紫外激光器还有许多其他用途,例如医疗诊断、先进制造和紧凑的原子钟。   LUSTER项目可考虑采用多种不同的技术方法,只要他们能够发出220-240纳米波长的深紫外光,其功率输出大于1瓦,功率转换效率大于10%,导线宽度小于0.01纳米。
  • 中科院在有机近红外固体微纳激光研究方面取得系列进展
    有机固体激光器因其制备简单、价格低廉和易于集成等优势,一直以来备受科研工作者的关注。与无机激光介质相比,有机激光材料来源广泛,并且具有发射光谱宽、受激发射截面积大等特性,近年来在激光显示、生物传感器等应用方面显示出很大的应用前景。在国家自然科学基金委、科技部和中国科学院的支持下,中国科学院化学研究所分子动态与稳态结构国家重点实验室和光化学院重点实验室研究员付红兵课题组近期在设计有机共轭小分子近红外发光材料的基础上,发展了有机固体微纳近红外激光器。  传统无机半导体垂直腔面发射激光器(Vertical Cavity SurfaceEmitting Laser, VCSEL)由上下两层反射腔镜以及夹在中间的活性层材料组成,需要复杂的工艺流程和昂贵的成本。相比较而言,有机半导体材料可以通过低温溶液加工工艺进行激光器谐振腔的构筑。科研人员从1,4-二芳乙烯基苯(DSB)入手,利用溶液自组装的方法制备了六边形微米盘单晶。利用这种微米片状结构所形成的回音壁模式(Whisper Gallery Mode)的光学微腔,通过调控微米片的尺寸,分别实现了单模和多模的激光发射 (Angew. Chem. Int. Ed. 2014, 53, 5863) 进一步基于有机分子的可裁剪性,系统研究并揭示了分子结构—微纳谐振腔—激光性能三者之间的内在关联规律,为高性能有机固体激光器提供了新的设计思路 (J. Am. Chem. Soc. 2014, 136, 16602) 与此同时科研人员把材料体系拓展到有机无机杂化钙钛矿材料,实现了绿光波段的激光发射 (Adv. Mater. 2015, 27, 22)。  最近,研究人员通过把“分子内氢键”引入有机共轭小分子的策略,合成了固体发光量子效率高达15.2%的近红外发光材料?查耳酮衍生物DPHP。由于DPHP的双亲性质,用溶液自组装方法自下而上构筑了有机微米半球的回音壁谐振腔。与此同时,DPHP材料自身超快的辐射速率,避免了在高强度泵浦光下的激子-激子湮灭现象,使得DPHP材料发出的近红外荧光在回音壁腔中实现了光的受激发大,这也是基于非掺杂型有机固体近红外激光的首例报道(J. Am. Chem. Soc. 2015, DOI:10.1021/jacs.5b03051)。文章在线发表后,美国《化学与工程新闻》(C&EN)周刊网站,以Organic Lasers Shine Bright in the Infrared 为题对此工作进行了相关报道并且给予了高度评价:“Easy-to-build hemispheres could prove widely useful for lasing applications”。图1 北京天坛(回音壁)和有机六边形微米盘中光波的回音壁现象图2 有机固体近红外激光器示意图
  • 三项激光器/激光相关设备国标征求意见 涉及紫外、可见、红外光谱范围元件
    p   日前,全国光学和光子学标准技术委员会电子光学系统分技术委员会(SAC/TC103/SC6)秘书处发布关于征求《激光器和激光相关设备 光腔衰荡高反射率测量方法》等3项国家标准(征求意见稿)意见的通知。 /p p   根据通知内容,由全国光学和光子学标准技术委员会、电子光学系统分技术委员会(SAC/TC103/SC6)负责归口的《激光器和激光相关设备光腔衰荡高反射率测量方法》、《激光器和激光相关设备-标准光学元件-第1部分:紫外、可见和近红外光谱范围内的元件》、《激光器和激光相关设备-标准光学元件-第2部分:红外光谱范围内的元件》等3项国家标准已完成,现公开征求意见,截止日期11月17日。 /p p    span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" 近年来随着薄膜沉积技术的发展,光学薄膜,尤其是广泛应用于大型高功率激光装置、干涉引力波探测、激光陀螺、腔增强和腔衰荡光谱测量中的高反射薄膜的性能获得了极大的提高。激光光学系统中需要用到一些反射率很高(高于99.9%甚至99.99%)的反射元件,必须精确测量其反射率(测量重复性精度达到0.001%甚至更低)。 /span /p p span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai"   strong   /strong a title=" " href=" http://www.sac.gov.cn/gzfw/zqyj/201710/P020171023319778323438.rar" target=" _blank" strong 1.《激光器和激光相关设备 光腔衰荡高反射率测量方法》(征求意见稿)及编制说明 /strong /a /span /p p   本标准规定了激光光学元件反射率的测量方法,适用于激光光学元件高于99%的反射率的精确测量。 /p p   基于光腔衰荡技术,本标准的测试方法和流程可实现激光光学元件的高反射率(大于99%,理论上可达100%)测量,且精度高、重复性和再现性好、可靠性高。特别是大于99.9%的反射率的准确测量对发展高性能反射激光元件具有重要意义。 /p p    span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" 目前,激光应用领域越来越多,包括医疗、材料处理、信息技术和计量等等。激光器及激光系统一般要用到光学窗口、反射镜、分光镜和透镜等光学元件,为防止激光损伤,这些光学元件要禁得起激光系统高峰值功率/能量密度的技术要求,这对光学元件提出了更高的制造要求。另外,随着我国光学与光电子产业的迅猛发展,光学元件加工制造形成了相当的产业规模,在满足国内要求的同时,产品正在走向国际化。因此对此类光学元件标准化的要求越来越高。 /span /p p    a title=" " href=" http://www.sac.gov.cn/gzfw/zqyj/201710/P020171023319792051186.rar" target=" _blank" strong 2.《激光器和激光相关设备-标准光学元件-第1部分:紫外、可见和近红外光谱范围内的元件》(征求意见稿)及编制说明 /strong /a /p p   本部分规定了紫外、可见和近红外波段,波长从170nm至2100nm光谱范围内的激光光学元件的要求。适用于激光器和激光相关设备使用的标准光学元件,包括平面、平面球面和球面基片不包括镀膜后的光学元件,透镜和按规定设计由供应商提供的其它标准光学元件。 /p p   本部分的发布可以填补我国用于紫外、可见和近红外光谱范围标准激光光学元件要求的空白 同时,通过规定优先的尺寸和公差,来减少元件的种类,通过标准化的规定,去除贸易壁垒,并通过建立一致的订单标识使备件的供应更加便利。 /p p    a title=" " href=" http://www.sac.gov.cn/gzfw/zqyj/201710/P020171023319805778591.rar" target=" _blank" strong 3.《激光器和激光相关设备-标准光学元件-第2部分:红外光谱范围内的元件》(征求意见稿)及编制说明 /strong /a /p p   本部分规定了近红外到中红外波段,波长从2.1mm至15mm光谱范围内的激光光学元件的要求。适用于激光器和激光相关设备使用的标准光学元件,包括平面、平面球面和球面基片不包括镀膜后的光学元件,透镜和按规定设计由供应商提供的其它标准光学元件。 /p p   本部分的发布可以填补我国用于红外光谱范围标准激光光学元件要求的空白 同时,通过规定优先的尺寸和公差,来减少元件的种类,通过标准化的规定,去除贸易壁垒,并通过建立一致的订单标识使备件的供应更加便利。 /p p   联系地址:北京市海淀区车道沟十号院科技一号楼 兵器标准化所 电光系统分标委秘书处 010-68962373 /p p   邮编:100089 /p p   联系电话:010-6896 2373 /p p   传 真:010-6896 3156 /p p   邮件地址: a href=" mailto:bzsbjw@126.com" bzsbjw@126.com /a /p
  • 激光赛道再添新军 英诺激光A股上市
    7月6日,我国激光产业赛道再添新军,英诺激光(301021)正式登陆创业板。英诺激光本次IPO发行3800万股,发行价格9.46元/股,对应的市盈率和市净率分别为26.48倍和1.59倍;募资总额3.59亿,拟用于固体激光器及激光应用模组生产、营销及技术服务网络中心建设、激光及激光应用技术研究中心建设和企业管理信息化建设及补充流动资金。  激光器+定制模组双向驱动  英诺激光是国内领先的专注于微加工领域的激光器生产商和解决方案提供商,激光器产品包括DPSS调Q纳秒激光器(纳秒固体激光器)、超短脉冲激光器(超快激光器,包括皮秒、飞秒级)和MOPA纳秒/亚纳秒激光器(MOPA光纤激光器),覆盖从红外到深紫外的不同波段,从纳秒到飞秒的多种脉宽。  2018 至2020 年,英诺激光营业收入分别为2.91 亿、3.59 亿和3.39 亿元,除了2020年受疫情影响外,主营业务整体上呈良好增长态势,最近三年复合增长率为6.90%。2021年一季度,公司营业总收入8608.20万元、归母净利润1956.29万元,同比增速分别为100.17%和561.79%。  从营收构成来看,激光器产品和定制激光模组销售是公司主要收入来源。公司激光器产品主要面向激光智能装备集成商,2018至2020年主营业务收入占比分别为69.28%、63.32%和64.84%;定制激光模组主要面向工业制造商、科研机构等终端用户,2018至2020年主营业务收入占比分别为24.17%、30.12%和28.13%。随着新产品的研发、推广以及新客户的开发,公司定制激光模组销售收入呈整体增长态势。  盈利能力上,英诺激光的整体毛利率和净利率水平较高,超过多数国内的可比公司。2018 至2020 年,公司销售毛利率分别为56.91%、50.75%和50.63%,销售净利率分别为21.35%、19.97%和19.35%。  顶尖“高材生”团队  管理团队背景来看,英诺激光是一家“高材生”企业。公司核心技术团队是广东省“珠江人才计划”和深圳市“孔雀计划”重点引进的创新创业团队;董事长暨创始人赵晓杰毕业于华中科技大学光电子工程系,日本分子科学研究所博士后,普林斯顿大学应用研究科学家,该机构也被认为是全球顶级的电化学研究机构;MOPA纳秒/亚纳秒激光技术研发负责人林德教为清华大学博士,英国哈德斯菲尔德大学博士后,曾发表过与激光技术及应用相关的期刊论文70多篇。此外,公司的激光应用技术研发工程师陶沙、混合超快激光技术研发工程师杨昕、激光应用技术研发负责人Jie Zhang等也均拥有知名机构的博士学历背景。  截至2020年12月31日,英诺激光共有研发人员55人,占公司员工总数的16.67%,其中博士15人。2018年-2020年,公司研发投入占比分别为9.19%、10.72%、11.78%,处于行业头部水准。  得益于较强的技术背景和较高的研发投入,英诺激光已成为全球少数同时具有纳秒、亚纳秒、皮秒、飞秒级微加工激光器核心技术和生产能力的厂商之一,同时也是全球少数实现工业深紫外纳秒激光器批量供应的生产商之一,拥有专利124项,其中发明专利34项。  英诺激光的主要产品纳秒紫外激光器,2018年销售量为2633台,约占当年全国销量的21.94%,市占率水平较高。  国产激光器正当时  2018年起全球激光行业周期性下行,目前正处于加速复苏阶段。而国内激光产业自2012年以来,市场规模加速成长,年均复合增速达26.45%。2019 年,我国激光设备市场规模达到658 亿元,全球激光设备市场规模1267 亿元,超过一半以上的激光设备市场在国内。  从发展趋势上看,紫外激光器销量增长明显,现已成为激光微加工的主力机型。紫外光的波长较短,加工时的接触面相对较小,有利于减小热效应影响区,能够有效提升加工精度,应用领域广。根据《2019年中国激光产业发展报告》,国产紫外激光器的出货量从2014年的2300台增长至2018年的15000台,预计2020年出货量有望达到20,000 台,整体增速较高。18年15000台出货量中,纳秒紫外激光器约占八成,是目前激光微加工领域的主力产品。  同时,超快激光器也正蓬勃发展,2017、2018 年两年的增速远超过整体激光设备市场增速。超快激光器短脉宽、大功率,适用于精密加工,未来仍有望成为激光微加工领域新的增长点。  回到公司而言,英诺激光的主力产品便是纳秒紫外激光器,主要竞争对手包括美国光谱物理、美国相干和华日精密激光等。与国际先进企业相比,公司的产品在光束质量M2、最大单脉冲能量和平均输出功率等性能指标上已达到国际先进水平。同时,超快激光器正是英诺激光主要研发布局方向,目前公司部分产品的性能也已达到或接近国际先进水平,该领域主要竞争对手包括美国光谱物理、美国相干等。  公司表示,未来将继续专注于微加工激光器及解决方案的自主研发,在激光器方面进一步丰富产品线,朝更短波长、更窄脉宽、更高功率方向发展。在微加工解决方案方面,积极布局激光技术在生命健康、生物医疗、高效微纳制造等新兴领域的应用,成为全球激光微加工行业的技术引领者之一。
  • 活力激光获千万级A轮融资,专注研发千瓦级半导体激光器系列产品
    近日活力激光科技有限公司(以下简称“活力激光”)宣布完成数千万人民币A轮融资,由亦庄资本独家投资。本轮资金将主要用于研发和生产千瓦级半导体激光器(1千瓦至1万瓦)系列产品,在激光焊接和激光表面处理领域进行推广应用。  活力激光成立于2019年12月,主要专注于高功率半导体激光器的研发、生产和销售,整体技术及生产能力覆盖各种功率、波长和封装形式的半导体激光器,核心产品包括固体激光器泵浦源、千瓦级半导体激光器、以及应用于医疗美容等领域的小功率半导体激光器。公司在深圳宝安设有一处工厂,面积达3500平方米,其中无尘车间2000平米。  目前,活力激光团队规模超70人,核心成员曾任职于JDSU等头部激光器公司。公司创始人兼CEO蔡万绍拥有二十余年半导体激光器研发与生产经验,先后任职于JDSU/Lumentum、Oclaro、西安炬光等公司。  据Emergent Research相关报告数据,2021年全球半导体激光器市场规模为81.9亿美元(约551.9亿人民币),预计2022-2030年间年复合增长率为6.7%。值得一提的是,半导体激光器在医疗保健领域的应用价值高,目前已广泛用于医疗诊断、美容手术和治疗,这一方向也将成为半导体激光器市场增长的重要驱动力,而随着技术的突破,半导体激光器在工业加工领域的直接应用也将被打开,想象空间极大。  全球激光器市场核心玩家包括起步较早的通快、朗美通、恩耐、相干、业纳等国外公司,也有起步较晚但发展较快的锐科、英诺、炬光、长光华芯等国内公司。在成熟的光纤激光器领域,市场竞争相当激烈,从各大上市光纤激光器公司的财报中,可明显看到竞争激烈导致的价格下跌。  蔡万绍告诉36氪,为了避开同质化竞争激烈的细分市场,活力激光以产品创新作为突破口,采用国产芯片,率先在国内开发出878.6nm锁波长窄光谱的半导体激光器,以及1440nm二维点阵激光器,在固体激光器泵浦和激光嫩肤美容领域,打破了国外玩家的垄断,实现国产替代,目前该产品已逐渐放量增长。  “未来3-5年是激光芯片国产替代的重要时间窗口,也是半导体激光器创新发展的关键机遇。”蔡万绍提到,活力激光已经和国内多家激光芯片供应商展开合作,定制开发波长多样化的半导体激光器,包括1550nm(照明应用)、1470nm(医美应用)、780/766nm(碱金属气体激光器泵浦)、405nm/450nm/650nm(加工及照明应用)、以及常见的976nm和808nm激光波长,并同步研发千瓦级半导体激光器,覆盖1千瓦至1万瓦功率,取得了巨大进展。  相对来说,固体激光器的优势应用领域是非金属材料及合金材料的精细加工,光纤激光器的优势应用领域是钢铁材料的大功率激光切割,而半导体激光器凭借高功率、低能耗、高性价比、体积小、重量轻、波长多样性等优势,将在铁、铜、铝等金属材料的激光焊接和激光表面处理领域得到举足轻重的应用。  在蔡万绍看来,如果充分利用半导体激光器的优势展开产品研发布局,有望让半导体激光器在工业加工、医疗美容、照明显示、激光雷达等领域的总体应用量,提升至与光纤激光器、固体激光器同等的水平,逐步构建出三种激光器三分天下的格局。“我们的中期目标是成为国内领先的半导体激光器供应商。”他说。  目前,活力激光客户已覆盖多家激光器、机器视觉、医疗美容等领域上市公司,并在公司成立以来,保持了100%以上的年营收增长率,预计2023年收入将突破亿元关口。
  • 物理所等二维纳米材料锁模全光纤激光器研究获进展
    p   超短脉冲激光具有峰值功率高、作用时间短、光谱宽等优点,在基础科学、医疗、航空航天、量子通信、军事等领域有着广泛的应用。特别是近年快速发展的飞秒光纤激光器由于结构简单、成本低、稳定性高以及便于携带等特点,表现出越来越广泛的应用前景。目前光纤锁模激光器,包括其它类型的固体激光器,要实现稳定的锁模运行,更多时候还得依靠可饱和吸收体,但由于可饱和吸收体所带来的激光损伤及损耗等问题,不仅制约着所能产生的激光脉宽与功率,也会影响到长期运行的可靠性。因此研究发展具有高损伤阈值及低损耗的新型可饱和吸收体,倍受激光专家及材料专家的关注。近十多年来,随着凝聚态物理与材料制备技术的发展,碳纳米管、石墨烯、拓扑绝缘体等材料作为可饱和吸收材料相继成功地应用于激光锁模中,特别是新发展起来的二维纳米材料由于具备窄带隙、超快电子弛豫时间和高损伤阈值等特点,表现出优良的可饱和吸收特性,利用该材料的锁模激光研究也成为人们广泛关注的热点研究内容之一。 /p p   中国科学院物理研究所/北京凝聚态物理国家实验室(筹)光物理重点实验室L07组一直致力于超快激光的研究,近年来针对小型化飞秒激光的发展,先后实现了多类晶体及光纤激光的可饱和吸收被动锁模。通过使用脉冲激光沉积方法将锑化碲拓扑绝缘体材料均匀生长在拉锥光纤的表面所形成的可饱和吸收体,首次实现了光纤激光的混合锁模,得到了70 fs的输出脉冲结果。通过使用具备超短电子弛豫时间的二硫化钨作为可饱和吸收材料,结合减小拉锥光纤的纤芯直径,得到了67 fs锁模脉冲输出,验证了该混合锁模光纤激光具有脉宽更短、定时抖动更低等优点。此外针对暗孤子产生技术的限制,通过理论计算Ginzburg- Landau方程中光纤激光器的增益、损耗、色散和非线性等参数的关系,理论分析了暗孤子脉冲形成的动力学机制,获得了信噪比高达94 dB的结果,实验上实现了最宽光谱的暗孤子脉冲输出。 /p p   最近该研究组与北京邮电大学合作,将二硫化钨作为饱和吸收材料用于光纤激光锁模,进一步实现了脉宽246 fs的锁模脉冲激光输出,据知这是迄今为止过渡金属硫化物全光纤锁模激光器所产生的最短脉宽报道。相关结果发表在新出版的一期Nanoscale(2017, 9: 5806)上,并被该杂志选为Highlights进展作为Inside front cover论文刊出(如图所示),论文第一作者为刘文军,通讯作者为北京邮电大学教授雷鸣及中科院物理所研究员魏志义。 /p p   该项研究获得了科技部“973”项目(2012CB821304)及国家自然科学基金项目(批准号11674036, 11078022 和 61378040)的支持。 /p p   相关论文: /p p   [1] Wenjun Liu, Lihui Pang, Hainian Han, Wenlong Tian, Hao Chen, Ming Lei, Peiguang Yan and Zhiyi Wei, 70 fs mode-locked erbium doped fiber laser with topological insulator, Scientific Reports, 6 (2016) 19997. /p p   [2] Wenjun Liu, Lihui Pang, Hainian Han, Mengli Liu, Ming Lei, Shaobo Fang, Hao Teng and Zhiyi Wei, Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers, Optics Express, 25 (2017) 2950-2959. /p p   [3] Wenjun Liu, Lihui Pang, Hainian Han, Wenlong Tian, Hao Chen, Ming Lei, Peiguang Yan and Zhiyi Wei, Generation of dark solitons in erbium-doped fiber lasers based Sb2Te3 saturable absorbers, Optics Express, 23 (2015) 26023-26031. /p p   [4] Wenjun Liu, Lihui Pang, Hainian Han, Zhongwei Shen, Ming Lei, Hao Teng and Zhiyi Wei, Dark solitons in WS2 erbium-doped fiber lasers, Photonics Research, 4 (2016) 111-114. /p p   [5] Wenjun Liu, Lihui Pang, Hainian Han, Ke Bi, Ming Lei and Zhiyi Wei, Tungsten disulphide for ultrashort pulse generation in all-fiber lasers, Nanoscale, 9 (2017) 5806-5811. /p p style=" text-align: center " img width=" 300" height=" 395" title=" W020170616579709764036.png" style=" width: 300px height: 395px " src=" http://img1.17img.cn/17img/images/201706/noimg/9d1831a1-51e9-41cb-a069-261a0f0bc4cb.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " 图:Nanoscale(2017, 9: 5806)论文被选为该期Inside front cover论文刊出 /p p /p p /p
  • 打破垄断 我国成为第二个掌握固体紫外单光子探测器技术的国家
    一根燃烧的蜡烛1秒钟可以发射出100亿亿个以上的光子,要探测到能量如此小的单个紫外光子一直是世界技术难题。记者昨天获悉,南京大学电子科学与工程学院长江特聘教授陆海为首的研究团队近来获得突破,在国内首先研制出超灵敏度的固体紫外单光子探测器,从而使中国成为继美国之后第二个掌握这一核心技术的国家。   &ldquo 自然界中波长小于280纳米的紫外光几乎为零,所以我们探测它相当于在暗室中探测光,只要发现一个小光点就一定是目标。&rdquo 陆海介绍说,可探测400纳米以下紫外辐射的紫外光探测器,是火焰探测、环境监测、生物医药、空间科学等领域所急需的关键部件,也是关系到国家安全的关键技术,可以用来检测海上油污、卫星遥感监测雾霾等。   光子是光的最小能量量子,也是光作为信息载体的最小传输单位。一根蜡烛1秒钟释放出的超100亿亿个光子中,假设紫外光子只占万分之一,那么在完全不考虑飞行损耗的情况下,1公里以外,面积为1平方厘米的镜头1秒钟只能接收到1000个紫外光子。专门用来捕捉这些&ldquo 小家伙&rdquo 的单光子探测器一直是世界各国研究和竞争的焦点。   陆海举例说,导弹的飞行尾焰中存在像指纹一样的特殊紫外光谱成分,但距离越远能够传输过来的紫外光就越微弱。利用超灵敏度紫外单光子探测器就有可能在上千公里以外探测和分辨出来袭飞弹,为反制或者规避提供宝贵时间。之前,国际上只有美国罗格斯大学、弗吉尼亚大学、通用电气研发中心三家美国单位成功研制碳化硅单光子探测器。而南大研究团队此次获得突破后,跻身成为第四家。   南大研究团队研制出的紫外单光子探测器,基于碳化硅半导体芯片技术,能灵敏捕捉到紫外单光子,并且打破了过去依赖于超低温条件的瓶颈。&ldquo 我们的探测器在150℃下仍能正常工作,这是原来任何单光子探测技术都无法达到的。&rdquo 陆海说。这一突破也引起了国际关注,欧洲的《今日半导体》杂志专门长文报道了南大的这一研究成果。   同时,该探测器有显著的成本优势,有望向民用领域大规模推广,比如高压输电线和高铁供电线路上出现电晕、污闪时,可用其远程检测和定位。&ldquo 目前,紫外火灾报警器用的真空紫外光敏管,综合成本很高。&rdquo 陆海拿出一枚耳钉大小的器件介绍说,未来用如此小的单光子探测器件,不仅造价更便宜,而且防爆、使用寿命更长。   眼下,南大研究团队在该领域的部分研究成果已开始进入产业化阶段。过量的紫外线照射易诱发皮肤癌,韩国三星公司日前发布的Note4手机就装备了微型紫外线传感器,受到消费者欢迎。而南大研究团队正在和华为合作的贴片封装紫外探测器,尺寸比米粒还小,也将安装到手机或智能手环中,藉由它,用户可随时随地检测所处环境的紫外线强度,以及时防护。
  • 400um光纤耦合千瓦半导体激光器
    成果名称 400um光纤耦合千瓦半导体激光器 单位名称 北京工业大学 联系人 李强 联系邮箱 ncltlq@bjut.edu.cn 成果成熟度 □研发阶段 &radic 已有样机 □通过小试 □通过中试 □可以量产 合作方式 &radic 技术转让 &radic 技术入股 &radic 合作开发 □其他 成果简介:   400&mu m光纤耦合千瓦半导体激光头实物图  400&mu m光纤耦合千瓦半导体激光器整机实物图 本项目研发的光纤耦合半导体激光器光纤耦合输出功率大于1000W,光束质量好,耦合光纤芯径400&mu m,光纤耦合效率大于96%,总的电光效率42.99%。样机集成激光模块、电源、冷却、控制等为一体,通过触摸屏实现激光器开关、输出功率设置、状态监测显示。激光器可以放置于机柜上方,也可以与机柜分离放置,适应科研应用及工业加工配合机床或者机械手的应用需求。产品化样机配备了用于激光焊接、激光熔覆的加工头,已进行了不锈钢等材料的激光焊接、激光熔覆加工应用。 本项目研发的高光束质量光纤耦合输出半导体激光器,采用标准的半导体阵列(10mm bar),避免采用特殊的半导体激光器所带来的器件成本增加;采用微光学元件对半导体阵列的发光单元重构、变换,单阵列输出功率高,组合阵列数减少,装配工艺相对简单,降低了制作成本;耦合传输光纤采用高功率石英传输光纤,提高激光器的传输效率和可靠性,满足推广应用的要求。 本项目创新点是采用标准的半导体阵列(10mm bar),通过微光学元件将阵列发光单元重构、变换的新方法,极大提高阵列的光束质量。本项目所研制的400&mu m光纤耦合千瓦激光器中,所使用的每一个半导体阵列都采用了该技术提高了光束质量,使得每个空间合束模块能够获得高功率、高光束质量的激光输出。 该项技术不仅可以应用于半导体激光器的直接应用,而且在用于泵浦源应用时,可以提高泵浦激光的功率密度,可以为提高输出激光的功率和光束质量。可以预期的是,利用该项技术,在现有的400&mu m光纤耦合千瓦激光器的技术基础上,通过合束更多的激光波长,获得2000W,甚至更高的激光输出功率,为工业应用提供更高功率的激光源。而且该项技术应用于泵浦固体激光器、光纤激光器等方面,提高了泵浦光的功率密度,也为实现高性能的固体激光器、光纤激光器等提供更好的技术支持。 应用前景: 输出激光光强分布图 半导体激光器与其他传统的材料加工用大功率激光器如 CO2 激光器、YAG 激光器相比,具有体积小巧,结构紧凑,是灯泵 Nd:YAG 激光器的1/3,光电转化效率高,节省能源,无污染,系统稳定性高,寿命长,维护费用低的特点。 目前大功率光纤耦合半导体激光器用于激光熔覆、激光焊接在中国处于启动阶段,国产光纤耦合半导体激光器,只能将标准半导体阵列激光耦合入大芯径光纤(芯径600&mu m以上光纤),由于激光亮度低,只能用于金属材料的激光熔覆。而本项目研制的400um光纤耦合千瓦半导体激光器,由于光束质量好,可直接用于激光熔覆、激光焊接、切割等领域,代替国外产品。 本项目开发的千瓦级光纤耦合半导体激光器除了具有国内外的半导体激光亮度的基础指标外,还具有其它优点:1. 自主开发,具有完全的自主知识产权;2.采用标准半导体阵列,使整体原材料成本降低20%-25%;3.空间合束组合模块后,进行偏振、波长合束的方法组合,使产业化中方便进行模块化工艺设计,适于大批量生产;4.采用微光学元件对光束进行整形,使装配难度及后端光纤耦合难度降低,从而降低生产成本;可附加多种功能,如指示光、光电探测器等,更灵活适应用于各种行业;5.多个半导体阵列模块可灵活组合,可方便为用户提供多种解决方案。 知识产权及项目获奖情况: 本项目开发的千瓦级光纤耦合半导体激光器受到北京市科学技术委员会首都科技条件平台资助,是自主开发产品,具有完全的自主知识产权。 专利情况: (1)大功率固体激光高效率光纤耦合方法,专利号:CN101122659A (2)激光二极管电极连接装置,专利号:CN100527532C
  • 物理所精密可调谐窄线宽深紫外激光研究获进展
    具有极窄线宽的单纵模深紫外可调谐激光由于其高的光谱分辨率及光子能量,是精密光谱学、紫外光刻、激光同位素分离、高分辨成像等诸多领域具有重要需求的光源,但因其涉及到线宽压窄技术、频率稳定技术、精确调谐技术及波长变换技术等一系列复杂的难题,该激光研究工作极具挑战性。为了获得紫外波短的波长,通常需要借助非线性晶体混频已有成熟激光器件的方案,从而获得该波段的相干辐射。我国科学家在非线性激光晶体研究方面成果显著,以BBO、LBO、KBBF等晶体为代表的紫外及深紫外波段非线性晶体蜚声国际。但是由于不同晶体在通光波段、相位匹配范围、有效非线性系数及光学质量、生长工艺、使用寿命等方面的不同表现,很难有可完全取代其他晶体的&ldquo 全能&rdquo 非线性晶体,不断挖掘新的非线性晶体并结合实用激光器件获得技术指标先进的紫外及深紫外激光,是激光材料及激光技术人员追求的重要内容之一。   针对极窄线宽可调谐深紫外激光的应用研究任务,中国科学院物理研究所/北京凝聚态物理国家实验室(筹)光物理重点实验室魏志义研究组基于他们掺钛蓝宝石激光研究的经验,近年来通过深入系统的研究工作,相继克服了压缩线宽、稳定频率、精调波长、提高增益等技术难题,部分工作已发表于Applied Optics等杂志上【Appl. Opt., 51: 1905(2012)及Appl. Opt., 51:5527 (2012)】。最近,魏志义研究员、滕浩副研究员及博士研究生王睿在进一步成功获得平均功率6.5W、线宽小于0.4pm的可调谐窄线宽纳秒钛宝石激光的基础上,通过与福建物质结构研究所洪茂椿、陈长章、林文雄研究员合作,利用他们最新研制成功的BBSAG (Ba1-xB2-y-zO4SixAlyGaz)晶体四倍频该激光,在195~205nm的深紫外波长范围内获得了线宽小于200MHz、单频稳定性优于50MHz、调谐步长小于50MHz的可调谐窄线宽稳频激光输出,最高输出功率达130mW。图1为波长计测量到的基频光典型线宽结果,图2依次为各阶谐波的调谐曲线,对比BBO晶体,BBSAG在紫外波段不仅倍频效率提高了25%,而且由于近两倍高的光学破坏阈值、更高的硬度及完全不潮解的特性,表现出更加优良的连续稳定运行时间及可靠的线宽稳定性、精确的波长调谐能力,可望作为一种新的紫外非线性晶体,在激光科学技术中发挥重要作用。目前该激光器已在合作单位取得成功应用。   相关结果已发表在Optics Letters 39,2105(2014)上,此项工作得到了中科院知识创性工程方向性项目和国家自然科学基金委重大研究计划项目的资助。  图1 基频光的线宽测量结果   图2 各次谐波的光谱调谐范围,采用BBSAG的四倍频激光的调谐范围约从193~210nm。最高平均功率135mW。
  • 中国深紫外技术独步世界 制成8台前沿仪器装备
    工欲善其事,必先利其器。中国科学家利用独创、独有的深紫外技术和深紫外激光非线性光学晶体,已成功研制出深紫外激光拉曼光谱仪、深紫外激光发射电子显微镜等8台深紫外固态激光源前沿装备,均为当今世界所独有的科研利器,居深紫外领域国际领先地位。   10月27日,中国科学院院士、中科院深紫外固态激光源前沿装备研制项目首席科学家陈创天(左)与实验室科研人员,向媒体展示研制成功的一种光学晶体。中新社发 孙自法 摄   10月27日,中国科学院院士、中科院深紫外固态激光源前沿装备研制项目首席科学家陈创天,展示经过20多年努力,在国际上首次生长出可直接倍频产生深紫外激光非线性光学晶体,以及发明的棱镜耦合技术。中新社发 孙自法 摄   10月27日,中国工程院院士、中科院深紫外固态激光源前沿装备研制项目首席科学家许祖彦(右),在其领衔研发成功国际首创深紫外全固态激光源的实验室与青年科研人员交流。中新社发 孙自法 摄   记者10月27日从中国科学院获悉,总投资1.8亿元人民币的深紫外固态激光源前沿装备研制项目,2008年启动实施以来进展顺利,现已研制成功的8台前沿装备还包括深紫外激光光化学反应仪、深紫外激光光致发光光谱仪、深紫外激光自旋分辨角分辨光电子能谱仪、深紫外激光原位时空分辨隧道电子谱仪、基于飞行时间能量分析器的深紫外激光角分辨光电子能谱仪等国际领先水平的仪器设备,另外1台光子能量可调深紫外激光光电子能谱仪研制工作也已基本完成,正在调试之中。目前,多台仪器设备已初步用于前沿科学研究,并表现出优异的性能。   中科院整合麾下理化技术研究所、物理研究所、大连化学物理研究所、半导体研究所科研资源,在财政部专项资金支持下,设立深紫外固态激光源前沿装备研制项目,设计出从“材料-器件-装备-科学研究”完整研发体系。在成功研制8台重大仪器设备的同时,还搭建有深紫外非线性晶体和器件研制平台、深紫外固态激光器研发平台和深紫外应用仪器开发平台,核心器件深紫外晶体及器件已实现小批量生产,为仪器设备后续发展尤其是产业化工作奠定了基础。   深紫外固态激光技术突破是中国新型科学仪器研发的难得机遇。中科院在前期工作基础上,正组织专家进一步调研,一方面,将研制成功的8台仪器设备中技术成熟、具有市场潜力的发展为商品化仪器设备,推动中国高端科学仪器产业化 另一方面,进一步整合人才、技术力量,继续研发新型深紫外科学仪器和设备。   据介绍,深紫外全固态激光源指输出波长在200纳米以下的固体激光器,与同步辐射和气体放电光源等现有光源相比具有高的光子流通量/密度、好的方向性和相干性。中科院自上世纪90年代初开始研究深紫外非线性光学晶体和激光技术,经过20多年努力,在国际上首次生长出可直接倍频产生深紫外激光非线性光学晶体,并发明棱镜耦合技术,率先发展出实用化的深紫外固态激光源,使中国成为当今世界上唯一掌握深紫外全固态激光技术的国家。
  • 首台纳秒深紫外激光源样机研制成功
    首台纳秒深紫外固态激光源实用化样机研制成功   日前,全球首台纳秒深紫外固态激光源实用化样机在中科院理化技术所研制成功。3月20日,项目总体部总经理詹文山,项目首席科学家、中国工程院院士许祖彦,理化所所长刘新厚等共同见证了第一台样机出所。3月23日,样机顺利运抵中科院大连化学物理研究所,科研人员将完成深紫外激光拉曼光谱仪的整机组装调试。   据专家介绍,2007年12月,“国家重大科研装备研制项目——深紫外固态激光源前沿装备研制”在财政部及中科院计划局、基础局的大力支持下立项。该项目利用中科院在深紫外非线性光学晶体及激光技术研究领域保持国际领先地位的优势,计划研制7台(套)(第一批)具有自主知识产权的国际首创/领先的深紫外固态激光源重大科研装备,建立深紫外科学仪器研制基地,取得从材料到器件到应用的全面优势,引领DUV(深紫外)前沿重大科研装备的突破,使我国在该领域的科学与技术位居国际领先地位,推动物理、化学、材料、信息、生命、资环等领域创建新的科技前沿。   中国科学院理化技术研究所的科研人员经过一年半的努力,终于成功研制出全球首台ns 脉冲177.3 nm深紫外固态激光源实用化样机。通过优化倍频系统及KBBF先进热管理技术,激光输出功率获重大突破,比2006年提高20倍,稳定输出功率达4 mW,最大输出功率为34.7 mW。
  • 基于177.3nm激光的真空紫外光调制反射光谱仪
    CPB仪器与测量栏目最新发文:基于177.3nm激光的真空紫外光调制反射光谱仪,此装置将有望成为高效无损地探测宽禁带半导体材料电子能带结构高阶临界点的有效光学表征手段,并广泛用于超宽禁带半导体材料及其异质结的电子能带结构研究。光调制反射光谱是通过斩波器周期性地改变泵浦光源对样品的照射来测量半导体材料反射率相对变化的一种光谱分析技术。由于所测差分反射率作为能量的函数在材料电子能带结构的联合态密度奇点附近表现出明显的特征,光调制反射光谱已成为研究具有显著电子能带结构的半导体、金属、半金属及其微纳结构和异质结等材料联合态密度临界点的重要实验技术之一。光调制反射光谱中所使用的泵浦激光的光子能量一般要高于被研究材料的带隙,随着第三代宽禁带与超宽禁带半导体材料相关研究和应用的不断深入,需要更高能量的紫外激光作为光调制反射光谱的泵浦光源。目前国际上已报道的光调制反射光谱系统中,配备的泵浦光最大光子能量约5 eV,尚未到达真空紫外波段。因此,迫切需要发展新一代配备高光子能量和高光通量的泵浦光源的光调制反射光谱仪,使其具备探测超宽带隙材料的带隙和一般材料的超高能量临界点的能力。中科院理化所研制的深紫外固态激光源使我国成为世界上唯一一个能够制造实用化深紫外全固态激光器的国家,已成功与多种尖端科研设备相结合并取得重要成果。此文详细介绍了由中科院半导体所谭平恒研究员课题组利用该深紫外固态激光源搭建的国际上首台真空紫外光调制反射光谱仪(图1)的系统设计和构造,将光谱仪器技术、真空技术、低温技术与中科院理化所研制的177.3 nm深紫外激光源相结合,同时采用双单色仪扫描技术和双调制探测技术,有效避免了光调制反射光谱采集中的荧光信号的干扰,提高了采集灵敏度。该系统将光调制反射技术的能量探测范围从常规的近红外至可见光波段扩展至深紫外波段,光谱分辨率优于0.06 nm,控温范围8 K~300 K,真空度低至10-6 hPa, 光调制反射信号强度可达10-4。通过对典型半导体材料GaAs和GaN在近红外波段至深紫外波段的光调制反射信号的测量对其探测能力进行了性能验证(图2)。此装置将有望成为高效无损地探测宽禁带半导体材料电子能带结构高阶临界点的有效光学表征手段,并广泛用于超宽禁带半导体材料及其异质结的电子能带结构研究。该系统基于中科院半导体所承担的国家重大科研装备研制项目“深紫外固态激光源前沿装备研制(二期)”子项目“深紫外激光调制反射光谱仪”,目前已经初步应用于多种半导体材料在深紫外能量范围内的能带结构和物性研究,并入选《中国科学院自主研制科学仪器》产品名录,将有望在推动超宽禁带半导体材料的电子能带结构研究、优化超宽禁带光电子器件的性能方面发挥重要作用。图1. 深紫外激光调制反射光谱仪图2. 177.3 nm(7.0 eV)激光泵浦下的GaAs在1.2 eV至6 eV内的双调制反射光谱及对应能级跃迁
  • 瞬态吸收光谱法测量极紫外自由电子激光脉冲的频率啁啾
    【研究背景】快速发展的自由电子激光(FEL)技术在高光子能量下产生了飞秒甚至阿秒的脉冲,使得X射线能够用于状态选择性和相敏多维光谱分析和相干控制。直接和常规测量现有的极紫外(XUV)和X射线自由电子激光脉冲的光谱相位是充分实现这种非线性相干控制概念的关键,以便为它们与物质的相互作用找到和设置最佳的脉冲参数。自放大自发辐射XUV/X射线自由电子激光脉冲的直接时间诊断工具是线性和角度条纹法,它对脉冲的时间形状(包括啁啾)非常敏感。这些方法依赖于一个时间同步且足够强的外场的可用性。诊断SASE辐射脉冲的时间结构的一个补充途径是测量电子束中FEL激光诱导的能量损失(例如使用X波段射频横向偏转腔(XTCAV)),从中可以重建XUV/X射线发射的时间剖面。对于种子自由电子激光脉冲,两个几乎相同的自由电子激光脉冲的产生及其XUV干涉图的评估允许其光谱时间内容的完整表征。在这项工作中,科学家提出了一种直接测量XUV-FEL频率啁啾的技术,而不依赖于任何额外的外场或种子多脉冲方案。由于所报道的技术提供了对XUV辐射光谱时间分布的目标访问,它是对FEL激光性能敏感的用户实验的原位诊断的理想方法。例如,在这里,我们实验观察到频率啁啾对自由电子激光脉冲能量的系统依赖性(增加啁啾以减少脉冲能量)。【成果简介】由最先进的自由电子激光器(FELs)产生的极紫外(XUV)和X射线光子能量的高强度超短脉冲正在给超快光谱学领域带来革命性的变化。为了跨越下一个研究前沿,精确、可靠和实用的光子工具对脉冲的光谱-时间特性的描述变得越来越重要。科学家提出了一种基于基本非线性光学的极紫外自由电子激光脉冲频率啁啾的直接测量方法。它在XUV纯泵浦探针瞬态吸收几何结构中实现,提供了自由电子激光脉冲时能结构的原位信息。利用电离氖靶吸光度随时间变化的速率方程模型,给出了直接从测量数据中提取和量化频率啁啾的方法。由于该方法不依赖于额外的外场,我们期望通过对FEL脉冲特性的原位测量和优化,在FEL中得到广泛的应用,从而使多个科学领域受益。【图文导读】图1:频率分辨等离子体选通原理图2:等离子体选通效应的数值模拟图3:通过瞬态吸收光谱测量XUV-FEL频率啁啾图4:频率啁啾特性,自由电子激光脉冲能量依赖性分析图5:色散对部分相干自由电子激光场的影响原文链接:Measuring the frequency chirp of extreme-ultraviolet free-electron laser pulses by transient absorption spectroscopy | Nature Communications
  • 世界最大激光器:192束激光点燃人造太阳
    经过10余年设计制造、35亿美元投资,美国建成世界最大激光器   新浪科技讯 北京时间5月7日消息,据美国《连线》杂志网站报道,在劳伦斯利弗莫尔国家实验室(LLNL)国家点火设施(NIF)的科学家,希望利用192个激光器和一个由400英尺长的放大器及滤光器阵列构成的装置,制造出一个像太阳或者爆炸的核弹一样的自维持聚变反应堆(self-sustaining fusion reaction)。最后一批激光器安装完毕后,《连线》网站记者参观了这个点火设施。观看看世界上最先进的科学设备。   1.美国“国家点火装置”   这个大部头看起来可能很像迈克尔贝执导的《变形金刚》中的人物,但是这个大型机器很快就会成为地球上的恒星诞生地。   美国“国家点火装置” 位于加州,投资约合24亿英镑,占地约一个足球场大小。科学家希望该激光器能模仿太阳中心的热和压力。“国家点火装置”由192个激光束组成,产生的激光能量将是世界第二大激光器、罗切斯特大学的激光器的60倍。2010年,192束激光将被汇聚于一个氢燃料小球上,创造核聚变反应,打造出微型“人造太阳”,产生亿度高温。   2.庞大的靶室    庞大的靶室   在庞大的靶室里,192束激光束进入直径是33英尺的蓝色真空室,在那里跟一个胡椒瓶大小的目标物相撞。然后这些光束会以动力较低的红外线的形式,从该仪器的不同部位出来,这个部位跟DVD播放器的内部结构类似。接着激光经过一系列复杂的放大器、过滤器和镜子,以便变得足够强大和精确,可以产生自维持聚变反应堆。   3.包含放射性氢同位素、氘和氚的铍球    包含放射性氢同位素、氘和氚的铍球   这个铍球包含放射性氢同位素、氘和氚。科学家将利用这个系统的192个激光器产生的X射线轰击它。核子熔合的关键是有足够的能量把两个核子熔合在一起,在这项实验中用的是氢核子。由于把两个核子分开的斥力非常强,因此这项任务需要利用极其复杂的工程学和特别多的能量。   例如,在光束进入真空室(包含图片上方的目标物)之前,激光必须通过巨大的合成水晶,转变成紫外线。发射到真空室里的光束会进入一个被称作黑体辐射空腔(hohlraum)的豆形软糖大小的反射壳(reflective shell)里,光束的能量在这里产生高能X射线。从理论上来说,X射线的能量应该足以产生可以克服电磁力的热和压力,这样核子就能熔合在一起了。电磁力促使同位素的核子分开。   4.靶室顶部的起重机和气闸盖    靶室顶部的起重机和气闸盖   在第一张照片的靶室顶上,是用来把底部仪器放入真空室的起重机和气闸盖。如果这个仪器产生作用,它将成为未来发电厂的前身,将提高科学家对宇宙里的力的理解。当常规核试验被禁止的时候,它还有助于我们了解核武器内部的工作方式。   5.精密诊断系统    精密诊断系统   激光束将被发射到精密诊断系统里,以在它进入靶室以前,确定它能正常工作。   6.激光间    激光间   在激光间(laser bay)里眺望,会看到国家点火设施的激光间2号向远处延伸超过400英尺,激光在从这里到达靶室的过程中,会被放大和过滤。过去35年间,科学家在劳伦斯利弗莫尔国家实验室建设了另外3个激光熔合系统,然而它们都不能生成足够达到核子熔合的能量。第一个激光熔合系统——Janus在1974年开始运行,它产生了10焦耳能量。第二项试验在1977年实施,这个激光熔合系统被称作Shiva,它产生了10000焦耳能量。   最后一项实验在1984年实施,这个被称作Nova的激光熔合项目产生了30000焦耳能量,这也是它的制造者第一次相信通过这种方法可以实现核子熔合。国家点火设施科研组制造的这个最新系统有望产生180万焦耳紫外线能量,科学家认为这些能量已经足以在劳伦斯利弗莫尔国家实验室里产生一个小恒星。   7.磷酸盐放大玻璃    磷酸盐放大玻璃   国家点火设施包含3000多块混合着钕的磷酸盐放大玻璃,这是在熔合试验中用来增加激光束的能量的一种基本材料。这些放大玻璃板隐藏在密封的激光间周围的围墙里。   8.技术人员在激光间里安装光束管    技术人员在激光间里安装光束管   技术人员在激光间里安装光束管,激光通过这些管会进入调试间。激光在调试间里会被重新改变运行路线,并重新排列,然后被输送到靶室里。   9.紧急停运盘    紧急停运盘   在整个国家点火设施里,标明激光位置的紧急停运盘(emergency shutdown panels),可在激光发射时,为那些在错误的时间站在错误的地方的科学家和技术人员提供安全保障。   10.光导纤维    光导纤维   光导纤维(黄色电缆部分)把低能激光传输到能量放大器里。然后在通过混有钕的合成磷酸盐的过程中,利用强大的频闪放电管放大。   11.能量放大器    能量放大器   能量放大器隐藏在天花板上的金属覆盖物下面,它含有可增大激光能量的玻璃板。在激光刚刚进入放大玻璃前,灯管把能量吸入玻璃里,接着激光束会获得这些能量。   12.可变形的镜子    可变形的镜子   可变形的镜子隐藏在天花板上覆盖的银膜下面,这种镜子是被用来塑造光束的波阵面,并弥补它在进入调试间前出现的任何缺陷。每个镜子利用39个调节器改变镜子表面的形状,纠正出现错误的光束。你在照片中看到的电线是用来控制镜子的调节器的。   13.激光放大器    激光放大器   激光束在进入主放大器和能量放大器前,较低前置放大器会放大激光束,并给它们塑形,让它们变得更加流畅。   14.便携式洁净室    便携式洁净室   科学家利用一个独立的便携式洁净室(CleanRoom)运输和安置能量放大器和其他元件,这个洁净室就像用来装配微芯片的小室。   15.能量放大器    能量放大器   每个能量放大器都被安装在洁净室附近,然后利用遥控运输机把它们运输到梁线所在处。   16.技术人员校对能量放大器    技术人员校对能量放大器   从照片中可以看到,能量放大器在被放入梁线以前,技术人员正在对它进行校对。   17.模仿NASA的主控室    模仿NASA的主控室   照片中的主控室看起来跟美国宇航局的任务控制中心很相似,这是因为前者是模仿后者建造的。国家点火设施并不是利用这个主控室把火箭发射到外太空,而是设法通过激光,利用它把恒星的能量(核子熔合)带回地球。   18.光束源控制中心    光束源控制中心   光束源控制中心即已知的主控振荡器室,看起来跟数据中心(Server Farm)很像,但是这个控制中心不是利用电脑,而是安装了一排排架子。光束通过光纤前往能量放大器的过程中,看起来就像网络供应商使用的网络。   19.国家点火设施的激光源    国家点火设施的激光源   国家点火设施的激光是从一个相对较小、能量较低,并且比较呆板的盒子里发射出来的。这个激光器呈固体状态,跟传统激光指示器没有多大区别,不过它们发射的光波波长不一样,前者是红外线,后者是可见光。   20.高能灯管    高能灯管   高能灯管(flashlamps)跟照相机里的灯管一样,但是前者的体积超大,它可以用来激发激光。每束光束刚产生时,强度仅跟你的激光指示器发出的激光强度一样,但是它们在二十亿分之一秒内,强度就能曾大到500太拉瓦,大约是美国能量输出峰值时功率的500倍。   这一结果是能实现的,因为该实验室里拥有巨大的电容器,里面储存了大量能量。这个电容器非常危险,当它充电后,这个房间将被封闭,禁止任何人靠近,以免出现高压放电现象,伤着来访的人。   国家点火设施的外面看起来很像《半条命(Half-Life)》的拍摄现场,这种普通的外观掩饰了在里面进行的历史性科学研究。(孝文) 英刊揭秘世界最强激光产生过程(组图)   导读:2009年4月,耗资达35亿美元的美国“国家点火装置”(NIF)正式开始进行相关实验,并计划于2010年最终实现聚变反应。届时会将192束激光同时照射在一个微小的目标上,是迄今世界上性能最强大的激光装置。英国《新科学家》杂志网站13日撰文揭秘世界最强激光产生过程。以下为全文:   “国家点火装置”是美国国家核安全管理局(NNSA)的库存管理计划的关键环节。在受控实验室条件下,“国家点火装置”将进行聚变点火和热核燃烧实验,实验结果将为NNSA提供相关武器生产条件的实验手段。这些条件对NNSA在不开展地下核试验的条件下评估并验证核武库的工作至关重要。“国家点火装置”实验将研究武器效应、辐射输运、二次内爆和点火相关的物理学机理,并支持库存管理计划继续取得成功。“国家点火装置”是目前世界上最大和最复杂的激光光学系统,用于在实验室条件下实现人类历史上的第一次聚变点火。192束矩形激光束将在30英尺的靶室中实现会聚,其中靶室内含有直径为0.44厘米的氢同位素靶丸。发生聚变反应时,温度可达到1亿度,压力超过1000亿个大气压。   以下是“国家点火装置”产生最强激光的几大步骤:   1、安装球形外壳      安装球形外壳   为了产生聚变所必须的高温和高压,“国家点火装置”将汇聚其所有192束激光束同时射向一个氢燃料目标之上。“国家点火装置”呈球形(如图所示),直径约为10米,重约130吨。装置内有一个目标聚变舱,点火实验就发生于目标聚变舱内。整个球体由18块铝材外壳拼接而成,每块外壳均约10厘米厚。球体外壳上正方形窗口就是激光束的入口,而圆形窗口则是用来安装和调节诊断装置,诊断装置共有近100个分片。   2、用调节器调整靶位      用调节器调整靶位  这是目标聚变舱内部的照片。激光束通过外壳上的入口进入目标舱,把将近500万亿瓦特的能量瞄准于位置调节器的尖端。图中右侧的长形带有尖端的物体就是位置调节器,每次实验的目标氢燃料球就置放于尖端之上。当所有激光束全部投入时,“国家点火装置”将能够把大约200万焦耳的紫外线激光能量聚焦到小小的目标氢燃料球之上,它比此前任何激光系统所携带能量的60倍还要多。当激光束的热和压力达到足以熔化小圆柱目标中氢原子的时候,所释能量要比激光本身产生的能量更多。氢弹爆炸和太阳核心会发生这类反应。科学家相信,总有一天通过核聚变而不是核裂变会产生一种清洁安全的能源。   3、将燃料放入燃料舱(圆柱体)      将燃料放入燃料舱(圆柱体)   进入“国家点火装置”的所有192束激光束都将被引向图中这个铰笔刀大小的圆柱体。该圆柱体中将装有聚变实验所使用的目标燃料,目标燃料就是约为豌豆大小的球状冰冻氢燃料。实验时,激光束将通过各自窗口进入目标舱内,从各个方向压缩和加热氢燃料球,希望能够产生自给能量的聚变反应。曾经有不少科学家认为可控核聚变反应是不可能实现的。近年来,科学家找到了一些点燃热聚变反应的方法,美国研究人员找到的方法是利用高能激光。虽然科学家们也尝试了其他种核聚变发生技术,但从已完成的实验效果看,激光技术是目前最有效的手段。除激光外,利用超高温微波加热法,也可达到点燃核聚变的温度。   4、压缩并加热燃料      压缩并加热燃料   所有激光束进入这个金属舱内部时,他们将产生强烈的X光线。这些X光线不仅仅可以把豌豆大小的氢燃料球压缩成一个直径只有人类头发丝截面直径大小的小点,它还能够将其加热到大约300万摄氏度的高温。尽管激光的爆发只能持续大约十亿分之一秒,但物理学家们仍然希望这种强烈的脉冲可以迫使氢原子相互结合形成氦,同时释放出足够的能量以激活周围其他氢原子的聚变,直到燃料用尽为止。在激光点火装置内,一束红外线激光经过许多面透镜和凹面镜的折射和反射之后,将变成一束功率巨大的激光束。然后,研究人员再将该激光束转变为192束单独的紫外线激光束,照向目标反应室的聚变舱中心。当激光束照射到聚变舱内部时,瞬间产生高能X射线,压缩燃料球芯块直至其外壳发生爆裂,直到引起燃料内部的核聚变,从而产生巨大能量。   5、用磷酸二氢钾晶体转换激光束      用磷酸二氢钾晶体转换激光束   激光束在进入目标舱内之前,必须要先由红外线转换成紫外线,因为紫外线对加热目标燃料更为有效。激光转换过程必须要使用磷酸二氢钾晶体。图中的这块磷酸二氢钾晶体重约360公斤。首先将一粒籽晶放入一个高约2米的溶液桶中,经过两个月的培养才可形成如此巨型的晶体。然后将晶体切割成一个个截面积约为40平方厘米的小块。“国家点火装置”共需要大约600多块这样的晶体小块。“国家点火装置”将被用于一系列天体物理实验,但是,它的首要目的是帮助政府科学家确保美国“老年”核武器的可靠性。“国家点火装置”项目的建造计划于上世纪90年代早期提出,1997年正式开始建设。(刘妍)
  • 美国一实验室研发出新型真空紫外激光
    据美国物理学家组织网近日报道,美国托马斯杰斐逊国家加速器实验室的科学家制造出了一种新式真空紫外激光,其亮度是目前最强激光的100倍。   这种激光由该实验室的自由电子激光装置所产生,它能以光子形式发出真空紫外光,光子的能量为10电子伏特,波长为124纳米。之所以称其为真空紫外光是因为其会被空气中的分子所吸收,需要在真空中使用。   该实验室自由电子激光部门副主任乔治尼尔说:“我们首次成功地发出10电子伏特的光子。使用杰斐逊实验室紫外线演示自由电子激光装置上的一个耦合输出镜子,我们将真空紫外线谐振光发送到一个校准的真空紫外线(VUV)光电二极管上,同时,我们测量出,每个微脉冲中的完全相干光的能量为5纳米焦耳。”   这项研究奇迹将为许多以前无法进行的研究打开一扇大门。例如,这种自由电子激光可以用来测定物质的年龄,这些物质存在的时间可能超出了碳元素年代测定法可以测定的年代。放射性碳测定法使科学家能估算很多年龄超过6.2万岁的物质的年代。放射性氪测定法使科学家能测定10万到100万年前的物质,而从自由电子激光器发出的这种10电子伏特的光可以产生亚稳定的氪原子。另外,这种方法有助于研究海洋环流模式,并且绘制出地下水的运动情况,同时测算极地冰的年代。   自由电子激光装置研究项目主管管根威廉姆斯表示:“这种新式激光也是研发能源和环保领域新材料的一个完美工具,在开始这些运用之前,我们仍然还有很多工作要做。”并表示将于明年3月之前再次把激光引入一个实验室中,进行测量和实验。
  • 深紫外激光二极管室温下发射连续波
    由2014年诺贝尔物理学奖获得者、日本名古屋大学材料与系统可持续发展研究所的天野弘领导的一个研究小组,与旭化成株式会社合作,成功地对深紫外激光二极管(波长低至UV-C区)进行了世界上第一个室温连续波激光发射。研究结果近日发表在《应用物理快报》上,代表这项技术朝着广泛应用迈出了一步。  从2017年开始,天野弘研究小组与提供2英寸氮化铝基板的旭化成公司合作,开始开发深紫外激光二极管。起初,向该装置注入足够的电流太困难,阻碍了紫外可见(UV-C)激光二极管的进一步发展。  2019年,天野弘的研究小组使用偏振诱导掺杂技术解决了上述问题,首次制造了一种短波长的UV-C半导体激光器,它可以在短脉冲电流下工作。这些电流脉冲所需的输入功率为5.2W,这对于连续波激光来说太高了,因为功率会导致二极管迅速升温并使激光停止。  研究人员此次重塑了设备本身的结构,将激光器在室温下运行所需的驱动功率降低至仅1.1W。研究人员发现,强晶体应变会阻碍有效电流路径。通过巧妙地剪裁激光条纹的侧壁,他们克服了缺陷,实现了流向激光二极管有源区的高效电流,并降低了工作功率。  这项研究是半导体激光器在所有波长范围内实际应用和发展的一个里程碑。未来,UV-C激光二极管可应用于医疗保健、病毒检测、颗粒物测量、气体分析和高清晰度激光处理,尤其有利于需要消毒手术室和自来水的外科医生和护士们。
  • 激光雷达 lidar
    激光雷达介绍   激光雷达   LiDAR(LightLaser Deteetion and Ranging),是激光探测及测距系统的简称。   用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物 。由发射机 、天线 、接收机 、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。 激光雷达的历史   自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。   随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。   LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(Global PositioningSystem、GPS)及惯性导航系统(InertialInertiNavigation System、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multiple echoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。   激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。   快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。   由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。 LiDAR的基本原理   LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIght Detection And Ranging - LIDAR。   激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。   LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。 激光雷达的妙用   激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。   直升机障碍物规避激光雷达   目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。   直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。   美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。   德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。   法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。   化学战剂探测激光雷达   传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。   俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。   德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9― 11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。   机载海洋激光雷达   传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。   迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。   成像激光雷达可水下探物   美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。 美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。 History and Vision History Velodyne's expertise with laser distance measurement started by participating in the 2005 Grand Challenge sponsored by the Defense Advanced Research Projects Agency (DARPA).A race for autonomous vehicles across the Mojave desert, DARPA's goal was to stimulate autonomous vehicle technology development for both military and commercial applications. Velodyne founders Dave and Bruce Hall entered the competition as Team DAD (Digital Audio Drive), traveling 6.2 miles in the first event and 25 miles in the second. The team developed technology for visualizing the environment, first using a dual video camera approach and later developing the laser-based system that laid the foundation for Velodyne's current products. The first Velodyne LIDAR scanner was about 30 inches in diameter and weighed close to 100 lbs. Choosing to commercialize the LIDAR scanner instead of competing in subsequent challenge events, Velodyne was able to dramatically reduce the sensor's size and weight while also improving performance. Velodyne's HDL-64E sensor was the primary means of terrain map construction and obstacle detection for all the top DARPA Urban Challenge teams. Vision Velodyne's ultimate vision for its LIDAR technology is simple: to save lives. We see the day where this sensor technology is deployed on every vehicle in the world. While traditional LIDAR sensors have relied on fixed electronics and rotating mirrors to deliver a 3-D terrain map, the rotation of an entire array of multiple fixed lasers has proven to be a quantum leap forward in sensing technology. This accomplishment has been termed a "disruptive event" by car safety research groups, who see the technology as a reason to rethink all that we know about vehicle sensors and the safety systems they enable. Until the day when we help eliminate automobile-relatedcasualties, Velodyne plans to market its unique LIDAR technology wherever sophisticated 3-D environment understanding is required: robotics, map capture, surveying, autonomous navigation, automotive safety ystems, and industrial applications. 激光雷达介绍   激光雷达   LiDAR(LightLaser Deteetion and Ranging),是激光探测及测距系统的简称。   用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物 。由发射机 、天线 、接收机 、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。 激光雷达的历史   自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。   随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。   LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(Global PositioningSystem、GPS)及惯性导航系统(InertialInertiNavigation System、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multiple echoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。   激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。   快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。   由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。 LiDAR的基本原理   LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIght Detection And Ranging - LIDAR。   激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。   LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。 激光雷达的妙用   激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。   直升机障碍物规避激光雷达   目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。   直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。   美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。   德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。   法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。   化学战剂探测激光雷达   传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。   俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。   德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9― 11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。   机载海洋激光雷达   传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。   迄今,机载海洋激光雷达已发展了三代
  • 我国光纤激光器实现新突破 优于国际同行
    中国科学院上海光学精密机械研究所先进激光技术与应用系统实验室李建郎研究员课题组“径向偏振光纤激光器”研究工作近日取得突破性进展。该研究组从掺镱光纤激光器中获得2.42瓦高效率、高偏振纯度和高轴对称性的径向偏振激光输出,创造了目前径向偏振光纤激光器研究的最高纪录。   径向偏振光束在离子捕获、生物光镊、高分辨率显微镜技术、电子加速以及高效率高精度金属材料加工等领域有着非常重要的应用,通过固体、气体激光器的输出来直接产生该种光束已经成为国际研究热点领域之一。2006年李建郎等人首次提出利用稀土掺杂的多模光纤作为增益介质来直接输出径向偏振激光的概念,并在掺镱光纤激光器实验中获得了近40毫瓦的径向偏振激光输出(Opt. Lett., 31, 2969, 2006 Opt. Lett., 32, 1360, 2007 Laser Phys. Lett., 4, 814 2007)。继该研究领域被开拓后,以色列魏兹曼研究所(Weizmann Institute of Science, Israel)、美国代顿大学(Dayton University, USA)等研究机构的科学家相继通过努力在掺铒光纤激光器中实现了140毫瓦(斜坡效率约为3%) 的径向偏振激光输出(Appl. Phys. Lett., 93, 191104, 2008 Appl. Phys. Lett., 95, 191111, 2009)。在这些前期研究中,由于寄生振荡等因素的干扰,激光器效率和功率很低,并且存在偏振纯度低以及光束轴对称性差等关键性缺陷,限制了径向偏振光纤激光器技术的进一步实用化。   该课题组李建郎、林迪等经过约一年时间的奋斗摸索,在实验中采用光纤耦合的976nm二极管激光器从端面泵浦1.8米长的多模掺镱双包层光纤。该增益光纤具有低V参量,仅支持光纤基模以及其邻阶模(其中包括TM01模,即径向偏振模)传输。同时增益光纤的一个端面被切成8o斜角以抑制光纤端面之间的寄生振荡。实验采用具有径向偏振选择性的光子晶体光栅镜做为激光器的输出耦合器。实验测得激光器阈值泵浦功率为0.9W,在最大泵浦功率7W 时输出功率达到2.42W,光—光效率为35%(对应的斜坡效率43.8%),激光器波长为1050nm。激光器输出圆环形光斑,且为径向偏振,偏振纯度为96%。   此结果目前已远优于其他国际同行的工作。该研究首次实验证明了径向偏振光纤激光器完全可以达到与同类的固体激光器相比拟的性能指标,从而基本消除了困扰径向偏振光纤激光器发展及应用的技术障碍。
  • 科学家造出全谱段白光激光器,或催生新型光谱学检测手段
    近日,华南理工大学教授李志远团队成功造出一台全谱段白光激光器,其具备光斑明亮、光谱光滑且平坦、大脉冲能量的特点,能覆盖 300-5000nm 的紫外-可见-红外全光谱,单脉冲能量达到 0.54mJ。这样一台全谱段白光激光器的面世,可用于构建全谱段的超快光谱学探测技术,有望将激光技术推至世界领先水平,从而更好地服务于前沿研究。图 | 李志远(来源:李志远)基于本次成果,课题组将进一步构建全谱段的超快光谱学探测设备,届时有望对物质内部多个波段中的物理、化学和生命过程开展超快的精密探测,从而实现高速摄谱的技术能力,进而用于开展二维材料、锂离子电池、化学催化等领域的研究。本次研究中所涉及的光谱学技术,可以覆盖深紫外-可见波段的原子以及分子的电子跃迁吸收谱,也能覆盖近红外波段的半导体带间电子跃迁吸收谱、以及中红外波段的分子振动等。借此可以打造一种崭新的光谱学检测手段,对于那些使用传统手段所无法揭示的新现象和新规律,本次新手段很有希望填补相关空白。(来源:Light: Science & Applications)鉴于光学波段的光子和物质的电磁相互作用强度以及灵敏度,远远超过 X 射线光子与物质原子核、以及内壳层电子的电磁相互作用。而且,即便是 1mJ 量级的全谱段白光飞秒脉冲激光的光子亮度,也远远超过目前同步辐射 X 射线光源的亮度。“因此,全谱段白光激光器在物质科学和生命科学中所发挥的作用,也有望超过传统的同步辐射 X 射线光源。”李志远表示。日前,相关论文以《强紫外-可见-红外全谱段激光器》 (Intense ultraviolet–visible–infrared full-spectrum laser)为题发在 Light: Science & Applications,华南理工大学博士生洪丽红是第一作者,华南理工大学李志远教授、中国科学院上海光学精密机械研究所(上海光机所)李儒新院士担任共同通讯 [7]。图 | 相关论文(来源:Light: Science & Applications)助力解决 Science 125 个待解难题之一据介绍,作为一种崭新的激光光源,超宽带白光激光具有极宽带宽、高光谱平坦度、大脉冲能量、高峰值功率、高时空相干性等五大优点,能极大拓展激光技术的发展和应用范围。而如何构建一台覆盖紫外-可见-红外波段的全谱段白光激光器,同时拥有高峰值功率和高脉冲能量,是一个极具挑战的宏大目标。2020 年,Science 杂志将其列为 125 个前沿重大科学问题之一。主要原因在于,基于目前纯粹单一的激光器技术、二阶非线性变频技术、以及三阶非线性频率展宽技术,远不足以解决这一问题。过去十年,李志远团队基于自主开发的啁啾结构非线性铌酸锂晶体,结合大脉冲能量、高峰值功率的飞秒脉冲激光泵浦,利用二阶和三阶非线性协同作用的原创性物理机制,提升了白光飞秒激光的转换效率、频谱带宽、脉冲能量、光谱平坦度等指标。要想产生全谱段白光飞秒激光,需要达到两个先决条件:带宽超过一个光学倍频程的强泵浦飞秒激光光源,以及具有极大非线性频率上转换带宽的非线性晶体。不过,要想同时满足上述两个条件并非易事。为此,课题组使用光学参量啁啾脉冲放大技术,以及使用由充气空心光纤、纯铌酸锂晶体材料和啁啾极化铌酸锂晶体组成的极宽带非线性变频模块,将飞秒激光技术、二阶非线性变频技术、三阶非线性频率展宽技术加以综合,研制了这款全谱段白光激光器。其中,二阶和三阶非线性效应协同作用的原创性物理机制,是打造本次全谱段白光激光器的秘密。上述机制的好处在于,能够清除二阶非线性或三阶非线性方案中所存在的输出光谱性能不佳的限制。李志远表示:“全谱段白光激光有望成为激光技术发展历史上的一个里程碑,并能很好地回答 Science 杂志 2020 年的 125 个最前沿的科学问题,即人类能否造出与太阳光相似的非相干强激光。”(来源:Light: Science & Applications)让中国学界真正拥有属于自己的实验设备多年来,学界一直渴望产生像太阳光一样的白光激光。紫外-可见-红外全谱段白光激光的产生,则一直是激光技术等待攻克的堡垒,也是李志远团队努力追求的目标。十年来,该课题组历经 8 次阶段性成果的积累,才造出了上述全谱段白光激光器。2014 年,该团队将啁啾调制的概念引入一维铌酸锂晶体的周期设计中。在可调谐近红外光源的帮助之下,设计出多个不同啁啾度的准相位匹配晶体,让二次、三次谐波产生的非线性过程的相位失配,能够在单个晶体中得到补偿,借此实现宽带可调谐三基色光源的同时输出,也拉开了课题组“白光激光”之梦的序幕。2015 年,李志远让学生陈宝琴开展啁啾结构铌酸锂晶体中六次谐波产生的研究。在实验的关键阶段,李志远去现场看学生做实验,结果发现了又圆又白的激光束产生,这完全出乎意料之外。李志远觉察到这是一个“好东西”。仔细分析之后,确定啁啾结构铌酸锂晶体产生了二到八次谐波。在一个固体材料中产生高次谐波,这是一个前所未有的科学发现,也让课题组开始树立“白光激光”的梦想。随后,他们设计了啁啾结构非线性光子晶体,以中红外飞秒脉冲激光为泵浦源,在单块晶体中同时产生了超宽带二到八次谐波。其中,四到八次谐波形成 400-900nm 超宽带可见白光激光,其转换效率达到 18%。2014 年和 2015 年的这两项工作表明:该团队自主研发的铌酸锂晶体二阶非线性方案,可以支持宽带二次谐波产生。同时,也能支持宽带二次谐波和三次谐波产生,甚至支持基于级联三波混频的高次谐波产生,最终可以实现超宽带可见白光激光的产生。而要想产生全谱段白光飞秒激光,就需要继续深挖上述方案的潜能,以便满足产生全谱段激光所需要的苛刻条件:即泵浦激光脉冲带宽要足够宽,非线性晶体材料的准相位匹配带宽要足够大。2018 年,课题组选用更高能量的近红外飞秒脉冲激光作为泵浦源,针对相关泵浦条件设计出一款啁啾结构铌酸锂晶体,这块晶体在不同偏振状态之下,均能同时产生二次谐波和三次谐波。通过此他们首次发现了二阶和三阶非线性协同作用的新物理机制,并证明这一机制能够显著提升相关性能的指标。利用级联二次谐波和三次谐波方案,他们生成了 400-900nm 可见-近红外波段的可调谐白光激光,转换效率达到 30%。这一发现,也促使他们去发现产生白光激光的更优路线,即基于二阶和三阶非线性协同作用产生超连续白光激光的方案。在新路线的指导之下,他们设计出一块能同时产生二到十次谐波的宽带白光非线性晶体材料。针对这款白光非线性晶体材料,他们又采取 45μJ 脉冲能量的 3.6μm 中红外飞秒脉冲激光泵浦的设计方案,借此产生 25dB 带宽、覆盖 350-2500nm 的紫外-可见-红外超连续白光飞秒激光,单脉冲能量为 17μJ,转换效率为 37%。在此基础之上,他们继续优化二阶非线性和三阶非线性协同效应。期间,该团队发现石英玻璃的三阶非线性效应远远优于铌酸锂晶体,而特殊设计的铌酸锂啁啾非线性光子晶体可以同时使用高达十二阶次的准相位匹配。后来,他们利用 0.5mJ 的钛宝石飞秒脉冲激光器泵浦,来对熔融石英-啁啾极化铌酸锂晶体进行泵浦,最终实现 10dB 带宽覆盖 375-1200nm、20dB 带宽覆盖 350-1500nm 的超连续激光,单脉冲能量为 0.17mJ,转换效率为 34%。前面提到,课题组期望实现的白光飞秒激光具有五个高指标。因此,在追求极宽带宽范围的同时,他们还得实现更大的脉冲能量、更高的光谱平坦度。于是,该团队以高能量钛宝石主激光作为泵浦源,针对由熔融石英和啁啾极化铌酸锂晶体组成的级联光模块,对其整体非线性响应进行进一步的操纵,从而显著提高了白光飞秒激光的综合性能。期间,他们利用 3mJ 脉冲能量的钛宝石飞秒激光泵浦,对石英-超宽带白光非线性晶体级联模块进行熔融,基于二阶和三阶非线性协同作用的高效超宽带二次谐波产生方案,实现了 mJ 量级、3dB 带宽覆盖 385-1080nm 的超宽带白光飞秒激光。此外,自 2018 年起课题组联合一家外部公司研制了 3mJ/50 fs/1 kHz 钛宝石飞秒激光器,实现了相关仪器的国产替代。并以此作为泵浦源,和白光非线性变频模块加以结合,从而形成了成熟高效的白光飞秒激光生成方案,借此造出一款白光飞秒激光整机设备。以上成果也促使他们进一步思考:如何产生覆盖一到十次谐波的全谱段白光激光?为此,他们与上海光机所李儒新院士团队合作,提出一款非线性级联装置。这种装置可以满足以下两个条件:一个较强的带宽达到光学倍频的中红外泵浦激光光源;以及一个具有极大非线性频率上转换带宽的非线性晶体。随后,他们基于光学参量啁啾脉冲放大技术,研制出一种中红外飞秒脉冲激光器,它具有 3.5mJ、3.9μm 中心波长,可以起到泵浦激光光源的作用。接着,基于宽带二阶和三阶非线性变频模块,他们获得了光谱范围 25dB 带宽、覆盖 300-5000nm 的全谱段超连续白光飞秒激光。“至此,我们欣喜地发现借助强中红外飞秒激光作为泵浦源已经成功走通了全谱段白光激光产生的道路。”李志远表示。(来源:Light: Science & Applications)总的来说,课题组已经实现了“三高”型白光飞秒激光:大单脉冲能量(第一高)、300-5000nm 的频谱宽度(第二高)、高光谱的平坦度(第三高),基本涵盖了铌酸锂晶体的全部透光范围。接下来,他们将继续与李儒新院士团队合作,朝向更高目标前进,力争实现深紫外-紫外-可见-近红外-中红外-远红外的“三高”全谱段白光飞秒激光。假如可以实现,就能建造比拟同步辐射光源、以及自由电子激光光学波段的全谱段超连续激光光源。“届时,相信我们中国科学界将拥有属于真正自己的研究物质科学和生命科学的实验设备。”李志远最后表示。
  • 199万!华中科技大学超高分辨率激光扫描共聚焦显微镜采购项目
    项目编号:HW20220426、ZCZB-2209-ZH165项目名称:华中科技大学采购超高分辨率激光扫描共聚焦显微镜项目采购方式:竞争性磋商 预算金额:199万元序号货物名称是否接受进口产品单位数量是否为核心产品1超高分辨率激光扫描共聚焦显微镜是套1是指标要求全固体激光器:405nm,功率≥50mW488nm,功率≥20mW561nm,功率≥20mW640nm,功率≥20mW开放式和一体化的激光耦合器,通过单独一根宽光谱、高透过率光纤导出,近紫外到红光区域一体化色差校正,无须调节光纤中心。所有激光谱线均由AOTF控制,可实现连续调节激光强度、高速激光谱线切换、具有快速光闸控制功能,可进行局部的R0I成像、FRAP等实验应用;激光强度调节范围:0.01%-100%,最小调节步进精度0.01%,后期可升级激光器最大可升级9根激光器。附件一华中科技大学采购超高分辨率激光扫描共聚焦显微镜项目采购需求书.docx
  • 我国大功率激光器用标准创新打破国外垄断
    全国大功率激光器应用分技术委员会在武汉成立   曾被国外垄断的大功率激光器技术,通过技术标准创新,现已转化为我国具有完全自主知识产权的尖端产品。11月11日,全国光辐射安全和激光设备标准化技术委员会大功率激光器应用分技术委员会,在湖北武汉东湖国家自主创新示范区成立。   大功率激光器是激光产业的高端核心技术。30年来,我国对大功率气体激光器、大功率固体激光器、高功率激光传输聚焦加工系统、大功率激光加工工艺等,实行了引进、吸收和消化,逐步开发出各种大功率的激光焊接、激光切割、激光打孔、激光表面处理的成套设备。随着这些高新技术的广泛应用,使钢铁、汽车、能源、电子、船舶等支柱产业的技术能力和制造水平得到迅速提升。   然而,与美国、欧盟、日本等国相比,目前我国在大功率激光器的制造水平和应用规模上,尚处在初级研制或小规模生产阶段,尤其是高端的大功率激光器与激光加工成套设备几乎全部依赖国外进口。究其原因,主要是我国的大功率激光器尚未达到生产标准化,难以保证产品质量和提高技术档次,同时也限制了发展规模。因此,大功率激光器应用专业的标准研制,是促进我国激光产业科学发展的攻关大课题。   近几年来,武汉华工激光工程有限公司旗下的科威晶激光技术有限公司,在引进生产大功率激光器的过程中,借助武汉华工激光工程有限公司的自主研发和标准创新,成功地开发出4000瓦轴快流二氧化碳激光器。这项拥有完全知识产权的大功率激光器,入选国家重点新产品计划,今年产销量可望达到120台。从此,国产大功率激光器实现了规模化量产,跻身于世界大功率激光器7大生产企业。   武汉华工激光工程有限公司自主制定的大功率激光器生产标准,达到了国外先进水平。自2008年开始,湖北省和武汉市的质监部门积极支持该公司筹备激光领域的国家级标准化分技术委员会,以此提高我国大功率激光器应用专业的整体水平,缩短与国际先进水平的差距。经国家标准化管理委员会批准,由武汉华工激光工程有限公司申办的全国光辐射和激光设备标准化技术委员会大功率激光器应用分技术委员会,正式落户武汉东湖国家自主创新示范区。   在全国大功率激光器应用分技术委员会一届一次工作会议上,确定北京工业大学激光工程研究院院长左铁钏等25位专家担任该委员会委员,武汉华工激光工程有限公司为该委员会秘书处承担单位。   据了解,作为我国激光领域的首个国家级标准化分技术委员会,将站在行业发展的战略高度,对国内外大功率激光器应用加工设备的相关标准进行对比分析 组织编制大功率激光器应用的标准体系,制定大功率激光器应用技术和安全辐射等基础标准。
  • 上海光机所在孤子锁模光纤激光器研究方面取得进展
    近期,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室与激光技术新体系融合创新中心在孤子锁模光纤激光器研究方面取得进展。研究团队报道了锁模光纤激光器中色散波辐射的物理机制及其时域表征。相关研究成果以“Characterization and Manipulation of Temporal Structures of Dispersive Waves in a Soliton Fiber Laser”为题发表于IEEE光学期刊《光波技术杂志》(Journal of Lightwave Technology)。孤子激光器中的色散波在频域上以凯利边带(Kelly sideband)的形式与孤子一同产生,由S. M. Kelly在1992年首次发现并解释,由孤子脉冲在锁模激光器内的周期性放大和衰减所产生,体现在孤子光谱上为一系列关于中心波长对称分布的光谱边带,是与孤子稳定性密切相关的光波成分。在锁模激光器中,凯利边带的产生是限制孤子脉冲能量的重要因素,往往需要通过一些技术方法加以压制;同时,色散波也可以成为孤子之间长距离相互作用的媒介,影响孤子序列的稳定性。之前绝大多数对于孤子激光器中色散波的实验研究集中在对于其频域特性(即凯利边带)的研究,而对色散波时域结构的研究却十分缺乏,不同激光器参数条件对色散波时域结构的影响尚无完整的理论与实验研究。针对这一问题,研究团队建立了孤子光纤激光器中色散波时域结构的动力学模型,用以分析两个重要因素:一是腔内群速度延迟导致的相位匹配关系变化,二是腔内的增益滤波效应;从而推导出了具有双边指数衰减形式的色散波包络形态。在实验上,团队搭建了单向环形锁模光纤激光器,并通过调节腔内色散(改变腔长 30~110 m)以及腔损耗(0~7 dB),在一定程度上实现了对色散波时频波形的调控与测量。实验结果与理论模型的预测一致。此外,团队也研究了色散波和孤子的响应时间延迟,色散波结构的对称性等色散波特征。这项研究可加深对孤子光纤激光器动力学过程的理解,也为超快光纤激光、光孤子信息处理等应用技术发展提供了一定的参考。相关工作得到了张江实验室建设与运行项目、2021年度博士后创新人才支持计划、中国博后科学基金、上海市2021年度“科技创新行动计划”原创探索项目、国家青年高层次人才项目的支持。图1 色散波产生原理图2 腔色散对色散波衰减速率影响图3 腔损耗对色散波衰减速率影响
  • 先进超快(飞秒、皮秒)激光器
    table width=" 633" cellspacing=" 0" cellpadding=" 0" border=" 1" align=" center" tbody tr style=" height:25px" class=" firstRow" td style=" border: 1px solid windowtext padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果名称 /span /p /td td colspan=" 3" style=" border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign=" bottom" width=" 501" height=" 25" p style=" text-align:center line-height:150%" strong span style=" line-height:150% font-family:宋体" 先进超快(飞秒、皮秒)激光器 /span /strong /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 单位名称 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 中科院物理研究所 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系人 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 168" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 方少波 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 161" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系邮箱 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 172" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" Renee_zlj@126.com /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果成熟度 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" □正在研发& nbsp & nbsp √已有样机& nbsp & nbsp □通过小试& nbsp & nbsp □通过中试& nbsp & nbsp √可以量产 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 合作方式 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" √技术转让& nbsp & nbsp & nbsp √技术入股& nbsp & nbsp & nbsp √合作开发& nbsp & nbsp & nbsp √其他 /span /p /td /tr tr style=" height:304px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 304" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 成果简介: /span /strong /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 激光器被广泛运用于工业、农业、精密测量和探测、通讯与 /span span style=" font-family:宋体" a href=" https://www.baidu.com/s?wd=%E4%BF%A1%E6%81%AF%E5%A4%84%E7%90%86& tn=44039180_cpr& fenlei=mv6quAkxTZn0IZRqIHckPjm4nH00T1Ykmy7WP1K-Pjf3PhRdPynv0ZwV5Hcvrjm3rH6sPfKWUMw85HfYnjn4nH6sgvPsT6KdThsqpZwYTjCEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-TLwGUv3EnHmsrjfsPjT1" target=" _blank" span style=" color:windowtext text-underline:none" 信息处理 /span /a /span span style=" font-family:宋体" 、医疗、军事等各方面,并在许多领域引起了革命性的突破。其中,超快激光器倍受各界追捧。它不仅可以实现加工的“超精细”,还实现了真正意义上的激光“冷”加工;由于超快特性,可以用于更精密的手术;更高的峰值功率,可引雷、放电,快速毁坏目标,导弹拦截、卫星致盲等等。 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 由于飞秒激光的前沿性,是激光产业中高利润的高端产品。国际市场每年飞秒激光相关产值约100 亿美元,国内市场为国外公司垄断,大量外汇流失(10亿美元),同时影响国家安全。 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 中国科学院物理研究所光物理重点实验室从事飞秒激光器研究多年,开发出一系列飞秒激光器及相关科研成果,包括: /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒钛宝石激光振荡器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" TW /span span style=" font-family:宋体" 级飞秒超强激光放大器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 高重复频率飞秒激光放大器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒参量激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 光纤飞秒激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 全固态飞秒激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 全固态皮秒激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 低噪声光学频率梳 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 窄线宽及可调谐激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 同步及延时控制器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 周期量级激光及其CEP锁定 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 用户定制激光器 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 部分产品和指标达到国际领先或国内首次的程度,包括: /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 同步飞秒激光器(国际领先) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒PW超强激光(世界纪录) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 若干全固态飞秒激光(国际首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 紫外波段皮秒激光(国际领先) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 红外波段飞秒激光(国际领先) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 阿秒激光装置(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒光学频率梳(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒参量激光振荡器(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒镁橄榄石激光(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒Cr:YAG激光(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒激光压缩器(国内最短脉宽) /span /p p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 主要技术指标: /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/ea10646a-372a-4205-8429-4a0ef2b8d87e.jpg" title=" 3.png" / /p p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 技术特点: /span /strong /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 超快:国内最短激光脉冲,3.8fs/可见光波段 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 超强:1.16PW峰值功率,当时的世界纪录 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 阿秒:160as/XUV极紫外波段,国内首次实现 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 光梳:稳定度~10-18 /秒,国际同类最高结果之一 /span /p /td /tr tr style=" height:75px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 75" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 应用前景: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 自20世纪60年代问世以来,激光已在工业、医学、军事等众多领域广泛应用。近年,超短脉冲激光即超快激光成为激光领域的先端发展趋势。脉冲越短,激光的精度越高、释放的能量越大。在实验室, a href=" http://laser.ofweek.com/tag-%E6%BF%80%E5%85%89%E8%84%89%E5%86%B2.HTM" target=" _blank" title=" 激光脉冲" span style=" color:windowtext text-underline:none" 激光脉冲 /span /a 已短到飞秒级别(1飞秒等于千万亿分之一秒)。超快激光投入应用,成为人类工具史上的又一“利器”。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 飞秒激光作为最重要的前沿方向,可以完成常规激光无法完成的工作,因此应用更为广泛,需求量巨大。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在加工制造领域:比常规激光更高的精度、更高质量的加工效果。如发动机汽缸、太阳能电池、仿生加工… /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在医疗领域:由于超快特性,可以用于更精密的手术,无痛、高效。近视、老花… /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在国防领域:更高的峰值功率,快速毁坏目标,导弹拦截、卫星致盲。引雷、放电等常规激光所不能。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在科研领域:常规激光远远不能的科学前沿:激光粒子加速、高能物理、光钟…… /span /p /td /tr tr style=" height:72px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 72" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 知识产权及项目获奖情况: /span /strong /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 已经申请相关发明专利23项。包括—— /span /p p style=" text-indent:28px line-height:24px" a title=" 高对比度飞秒激光脉冲产生装置" span style=" font-family:宋体 color:windowtext text-underline:none" 高对比度飞秒激光脉冲产生装置 /span /a span style=" font-family:宋体" (申请号CN201210037173.1) /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 一种全固态皮秒激光再生放大器(申请号CN201210360026.8) /span /p p style=" text-indent:28px line-height:24px" a title=" 飞秒锁模激光器" span style=" font-family: 宋体 color:windowtext text-underline:none" 飞秒锁模激光器 /span /a span style=" font-family:宋体" (申请号CN201410251367.0) /span /p p style=" text-indent:28px line-height:24px" a title=" 基于全固态飞秒激光器的天文光学频率梳装置" span style=" font-family:宋体 color:windowtext text-underline:none" 基于全固态飞秒激光器的天文光学频率梳装置 /span /a span style=" font-family:宋体" (申请号CN201410004852.8) /span /p p style=" text-indent:28px line-height:24px" a title=" 全固态陶瓷锁模激光器" span style=" font-family:宋体 color:windowtext text-underline:none" 全固态陶瓷锁模激光器 /span /a span style=" font-family:宋体" (申请号CN201310349408.5)等 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 曾获得国家自然科学二等奖 /span /p /td /tr /tbody /table p br/ /p
  • 首款可探测紫外自体荧光团的新型双光子显微镜
    中国科学院深圳先进技术研究院生物医学与健康工程研究所研发团队研发了首款短波长激发时间与光谱分辨新型双光子显微镜,该显微镜创新性地采用中心波长为520 纳米的锁模飞秒光纤激光器作为双光子激发光源,可以有效地激发短波长波段荧光团,利用连接光谱仪的时间相关单光子计数模块,可实现荧光光谱和荧光寿命的同时检测。该技术可以实现紫外波段自体荧光的有效激发与探测,极大地拓展了双光子成像技术的应用范围,为无创观测生物样品及生命过程提供了一种新的研究工具。该成果于近日发表于生物医学光学领域知名期刊《生物医学光学快报》上。生物体中,普遍存在着具有内源性荧光团的生物分子,内源性荧光团的三维成像可以在不干扰生物环境的情况下对重要生物过程进行无创体内检查,如代谢变化、形态改变和疾病进展,是组织成像和跟踪细胞代谢过程的有力工具。双光子显微镜具有天然的光学切片能力,无需物理切割就可以实现生物组织的三维高分辨成像。双光子显微镜跟内源性荧光团的结合可以实现活体生物组织无标记成像,对很多生命活动的研究具有非常重要的意义。然而,传统的双光子显微镜是以钛宝石激光器作为光源,只能对可见光波段的内源性荧光团进行探测,很难探测到信息更丰富的短波长荧光团。 深圳先进院郑炜团队首次研制出采用520纳米超快激发源搭建光谱分辨的双光子荧光寿命成像系统,可以有效激发和探测传统双光子显微系统无法成像的一系列短波长荧光团。为了验证该系统的实用性,研究团队首先系统地评估了生物组织中典型的短波内源性荧光团纯化学样品在520纳米激发下的荧光寿命和光谱特性,包括荧光分子酪氨酸、色氨酸、血清素、烟酸、吡哆醇和NADH,以及角蛋白、弹性蛋白和血红蛋白。 随后,研究团队对不同的生物组织进行了成像,包括离体大鼠食管组织和离体大鼠口腔面颊组织。结果表明,该系统可以在不需要任何外加造影剂的情况下,为生物系统提供高分辨率的三维形态信息和物理化学信息。此外,研究人员探索了短波长的内源性荧光团在食管壁中的分布,结果表明,该系统可以很清晰展示食管的不同分层结构。结合寿命和光谱信息,系统可以明确识别食管内部多层结构的不同信号来源,定量区分不同组织成分在食管壁的位置和数量,区分食管分层结构。 最后,研究团队进一步对小鼠皮肤进行了活体三维扫描成像,并基于短波内源荧光团在体内捕获了小鼠耳廓内白细胞的迁移,实现了典型免疫反应微环境中白细胞募集和变形运动的动力学过程的可视化,以及随时间的荧光寿命测量。“紫外荧光强度图像可以显示生物组织的精细结构,紫外荧光寿命信息可以区分红细胞和白细胞,两者结合可以无标记追踪免疫细胞在伤口和正常组织的运动情况,这些结果验证了我们开发的系统在天然组织环境中监测免疫反应的能力。”郑炜介绍。深圳先进院医工所助理研究员吴婷为文章第一作者,深圳先进院医工所郑炜研究员、李慧副研究员,北京大学物理学院施可彬研究员为共同通讯作者
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制