当前位置: 仪器信息网 > 行业主题 > >

土壤水分温度动态监测系统

仪器信息网土壤水分温度动态监测系统专题为您提供2024年最新土壤水分温度动态监测系统价格报价、厂家品牌的相关信息, 包括土壤水分温度动态监测系统参数、型号等,不管是国产,还是进口品牌的土壤水分温度动态监测系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合土壤水分温度动态监测系统相关的耗材配件、试剂标物,还有土壤水分温度动态监测系统相关的最新资讯、资料,以及土壤水分温度动态监测系统相关的解决方案。

土壤水分温度动态监测系统相关的资讯

  • 免费试用丨Plover 便携式土壤水分、温度和电导率测量系统
    科学研究可以带领人类探索更多未知的领域,而完成一项研究离不开科研仪器的“加持”,高效精准的仪器设备将为研究人员的探索之路助一臂之力。 自2021年《政府采购进口产品审核指导标准》发布以来,国家支持重大科研设施和仪器设备国产化的力度不断提升,各省市也相继发布支持政策,在保障科研需求的前提下,优先购置国产仪器。 但购置仪器不是一件小事,哪款设备能满足需求?哪款设备性价比高?采购前的持续观望、谨慎研究,只为找到能够更好满足科研需求的设备。 如何更深入地了解一款仪器设备?当然是“用起来”。 为提升用户对国产仪器品牌的了解,解决大家的“采购”之忧,普瑞亿科将招募“产品试用官”,开展一系列国产仪器免费试用活动,让有科研需求或购买意向的用户朋友们亲身体验到国产设备的优势,同时试用官真实的试用报告,也可以给予正在观望的用户非常有价值的参考建议,诚挚邀请大家参与活动,成为我们的“产品试用官”。 本期我们将招募“Plover便携式土壤水分、温度和电导率测量系统”产品试用官,为了让用户亲身感受到产品强大的性能和配置,普瑞亿科将开放3台Plover设备,面向有研究、测试需求的用户,推出15天免费试用活动,无需观望等待,试用后觉得合适您再购买。Plover 便携式土壤水分、温度和电导率测量系统 Plover便携式土壤水分、温度和电导率测量系统是基于“真时域反射”(TureTDR® )技术的土壤三参数测量系统。该系统通过激发并测量高频(~1.5GHz)电磁波的运移时间进行土壤水分和电导率的测量,同时输出土壤温度。其它测量技术因采用低频测量信号,测量过程中存在严重的水和离子极化现象,因而对盐度异常敏感;而基于TureTDR® 技术的Plover土壤三参数测量系统更大限度克服了上述问题,对土壤中的含盐量及各种土壤类型不敏感,可更大限度提高土壤水分和电导率测量的准确性,并进一步拓展该系统的使用场景。 Plover可以实现便携式测量,通过安卓APP手机或平板进行操作并实时记录。该便携式土壤三参数测量系统能为农业、林业、草业、生态等科研和生产场景的土壤含水量便携测量提供稳定可靠数据。15天免费试用即日起至12月31日 可拨打电话详细咨询 试用结束后,可联系工作人员归还产品,也可成为我们的“产品推荐官”,推荐下一位新用户参与试用活动(将新用户联系方式提供给工作人员即可)。1、当新用户正式开始试用产品,即推荐成功,我们将给予“推荐官”200元现金奖励;2、如果新用户试用后决定购买产品,“推荐官”将再获得1500元现金奖励。 活动结束后,我们将在普瑞亿科公众号以推送的形式展示所有试用用户的使用体验,并发起投票活动,票数前三位用户将分别获得600元、400元、200元现金奖励。*该活动最终解释权归北京普瑞亿科科技有限公司所有
  • 上海卢湘仪设计离心机法测量土壤水分特征曲线
    土壤水分特征曲线可反映不同土壤的持水和释水特性,也可从中了解给定土类的一些土壤水分常数和特征指标,研究土壤水分特征曲线具有重大意义。笔者获悉,近期,上海卢湘仪离心机仪器有限公司研发了一款测定土壤pF曲线专用离心机——H1400pF土壤用高速冷冻离心机,该离心机的成功研发将可助攻于农业科技领域的发展。一、产品简介 土壤检测离心机,用于土壤含水量对应的pF(水势)值的曲线测试,是表达土壤水势和土壤水分含量关系。 二、产品特点 土壤水分特征曲线通常采用压力膜(室)和离心机等方法进行测定。离心机法比其他方法操作简单、省时,可测定较宽的吸力范围,广泛应用于土壤水分动态模拟。这款离心机用于测量土壤含水量对应的pF(水势)值。 三、离心机设计 上海卢湘仪设计了特有的土壤水特性曲线专用水平转子,达到水平转子在测试中的转速14000转/分,相对离心力25220*g ,设计有接水器、过滤板、过滤膜、离心套筒、离心上盖、密封圈等,土壤离心机转子设计保正了在做测定土壤水特性pf曲线数据时高速旋转无渗漏,有效保证了所收集的水准确无误,使计算参数和依据得到了保证。 为了避免因空气和转子在高速旋转时产生温升过高而造成水分挥发损失,离心机设置制冷系统和温度调节系统,使工作腔温度恒定在4度左右,可根据客户需求进行调整温度。电气方面采用变频交流调速,电脑控制,离心机设有门盖,不平衡,超温,超速安全保护措施,保证高速旋转下的安全性。据相关工作人员表示,该离心机是卢湘仪技术团队倾力打造的一款离心机产品,具有多方面的技术优势。 四、离心操作方法 操作离心机前首先检查离心机电源,打开离心机总开关,取出转子上4组离心筒组件,准备土壤,准备水、天平、打开离心套筒组件,根据使用说明书要求安装稀释好的土壤,称重配平,安装离心套筒组件,检查4个组件对称放置,关上离心机门盖,设置参数,启动离心机,离心机倒计开始运转时间为0停机,打开门盖,取出离心完的离心套筒,取出接水器,将水倒入并记录水量。 五、土壤水分特征曲线概念不同质地土壤水分特征曲线有所不同 土壤水的基质势(或土壤水吸力)随土壤含水量的变化而变化,其关系曲线称为土壤水分特征曲线,英文名称为soil water characteristic curve。 一般,该曲线以土壤含水量Q(以体积百分数表示,比如土壤含水量为10%,那么在横坐标上就是对应的数字10)为横坐标,以土壤水吸力S(以大气压表示)为纵坐标。有了横坐标和纵坐标就可以绘制出不同土壤的水特性曲线图了。 六、研究土壤水分特征曲线的意义 土壤水分对植物的有效程度最终决定于土水势的高低,而不是自身的含水量。如果测得土壤的含水量,可根据土壤水分土特征曲线查得基质势值,从而可判断该土壤含水量对植物的有效程度。 土壤水分特征曲线可反映不同土壤的持水和释水特性,也可从中了解给定土类的一些土壤水分常数和特征指标。曲线的斜率倒数称为比水容量,是用扩散理论求解水分运动时的重要参数。曲线的拐点可反映相应含水量下的土壤水分状态,如当吸力趋于0时,土壤接近饱和,水分状态以毛管重力水为主;吸力稍有增加,含水量急剧减少时,用负压水头表示的吸力值约相当于支持毛管水的上升高度;吸力增加而含水量减少微弱时,以土壤中的毛管悬着水为主,含水量接近于田间持水量;饱和含水量和田间持水量间的差值,可反映土壤给水度等。故土壤水分特征曲线是研究土壤水分运动、调节利用土壤水、进行土壤改良等方面的最重要和最基本的工具。 关于上海卢湘仪离心机仪器有限公司 上海卢湘仪离心机仪器有限公司是中国一家获得美国FDA认证的专业离心机企业,生产历史悠久、技术力量雄厚、生产设备精良、检测设备齐全。其以设计精巧、造型新颖、工艺精良而闻名,生产的离心机产品质量可靠、性能稳定、规格齐全,广泛应用于高等院校,科研单位,生物制药,医疗,石油化工等领域。 经过四十多年的发展,卢湘仪已先后设计生产各种领域的离心机产品,本次研发生产的H1400pF土壤用高速冷冻离心机是一款专业测定土壤pF曲线的离心机产品,该产品将对于农业发展以及教学方面具有重要意义。
  • 莱恩德新品-土壤水分检测仪,提高农业生产效率
    点击此处可了解更多产品详情:土壤水分检测仪  土壤水分检测仪是一种先进的科学仪器,适用范围广泛,能够准确测量各种类型的土壤中的水分。该仪器功能强大,能够帮助人们更好地了解土壤的水分含量。    土壤水分检测仪的测量精度高,使用方便,可以大大提高农业生产的效率。它还可以测量不同深度的土壤水分分布情况,更好地了解土壤的水分变化特征。此外,土壤水分检测仪还配备了空气温湿度传感器和空气温度传感器,可以实时监测土壤温湿度和空气温湿度,为农业生产提供更全面的数据支持。    首先,土壤水分检测仪能够高精度地测量土壤中微小的水分含量,帮助农民、园艺师等专业人士制定科学的灌溉计划,确保作物的生长健康。    其次,土壤水分检测仪通过多种传感器和算法的结合,能够准确判断土壤的干湿程度,帮助人们在适当的时候进行灌溉,避免因灌溉不足或过度浪费资源或影响作物生长。    此外,土壤水分检测仪还具有实时显示和记录数据的功能,用户可以直观地了解土壤水分状况及变化趋势,对于科学管理土壤水分和提高水分利用效率很有帮助。    最后,土壤水分检测仪具有便携、易操作等特点,便于使用者在田地、花棚等多种环境中进行测量,且不需要专业知识也能完成工作。土壤水分检测仪是一种高效、准确的土壤水分检测仪器,可以大大提高农业生产的效率和质量,受到了广泛的应用和认可。莱恩德新品-土壤水分检测仪,提高农业生产效率
  • “土壤水分监测仪器比测研究”成果验收会召开
    7月30日,水利部水文局在京组织召开了"土壤水分监测仪器比测研究"项目成果验收会。来自国家防办、国家防汛抗旱指挥系统工程建设项目办公室、河海大学、南京水利水文自动化研究所、辽宁省水文水资源勘测局、安徽省水利科学研究院,参加比测的7个仪器厂家的专家和代表30多人参加了会议。水利部水文局林祚顶副局长出席会议并讲话。   林祚顶副局长指出,我国干旱灾害发生频繁,对工农业生产及人民生活带来的影响和损失大,今年西南五省区的特大干旱得到了党和国家领导人的高度重视。水利部十分重视抗旱减灾工作,目前正在抓紧组织编制《抗旱规划》,由国家防办和水利部水文局共同组织的《全国抗旱监测规划》也已经编制完成并通过审查。目前土壤墒情监测以及相关监测仪器设备应用研究工作还十分薄弱,特别是土壤水分自动监测仪器的可靠性、稳定性等试验研究尚未系统开展。为此,自2009年4月起,受国家防办委托,水利部水文局组织开展了土壤水分监测仪器比测研究,选择在辽宁省朝阳水文站和安徽省五道沟水文水资源实验站,共7个厂家12种产品参加了比测。在经过长达一年的野外比测以及室内检测和成果分析基础上,取得试验成果,项目研究对加强旱情监测工作,提高墒情监测仪器和监测数据的可靠性,为抗旱减灾提供科学、合理、可靠的信息支持具有重要的现实意义。   与会专家和代表听取了项目工作组的汇报,进行了认真的质询与讨论。专家认为,该项目组织严密,提交的验收材料文档齐全,采用的比测方法科学合理,提出的评估指标符合生产应用需求,推荐的产品可供水利部门优选使用。与会专家一致同意,项目通过验收。鉴于目前土壤水分传感器及相关技术尚不十分成熟,建议继续加强对土壤水分监测仪器和技术的应用研究。
  • 美国SPECTRUM发布新产品TDR350 土壤水分温度电导率三参数测定仪
    美国SPECTRUM发布新产品TDR350 土壤水分温度电导率三参数测定仪。该土壤三参数测定仪具体介绍如下:TDR土壤水分温度电导率三参数测定仪TD350利用可靠的时域反射技术,能够对土壤水分变化全量程的进行精确测量。通过新的功能改进,能够为优化草皮提供精准测量和更加稳定的性能表现。能够对土壤EC进行测量,修正土壤水分读数。一键获取土壤水分读数,多种探针长度可以让您更好的测量目标区域数据。 TDR土壤水分温度电导率测定仪TD350产品特点:提高土壤水分测量精度(体积含水量)能够测量EC值测量草皮表面温度行业独家背光显示内部集成蓝牙和GPS模块能够保存超过50000条含有GPS的测量记录使用改进后的伸缩固定支架,调整探杆长度。6435 TDR 350 complete with case整套设备 TDR土壤水分温度电导率测定仪TD350可选附件红外温度传感器行业独家设计将土壤水分仪与红外温度测量相结合,使困难的测量变得更见快捷,简单容易实现。能够与TDR350很方便的连接高度准确的瞬时红外温度测量,能够读到冠层或土壤表面的温度温度数据与土壤水分、地理信息相结合无需测量土壤水分也可以得到目标温度能够快速准确的测量冠层表面的热量和萎蔫胁迫3676T TDR350红外温度传感器 TDR土壤水分温度电导率测定仪TD350中国总代理:南京铭奥仪器设备有限公司
  • 我国三年内将布设1500套土壤水分观测仪
    记者从中国气象局综合观测司在河南郑州召开的2009年自动土壤水分观测站建设工作会议上获悉,中国气象局拟用3年时间,在现有的1500个人工测墒点建成以自动土壤水分观测仪为主,以便携式土壤水分观测仪为辅的全国土壤水分自动观测网,以满足现代农业气象业务和干旱监测服务的需求。老农业气象观测员眼中“一把尺子一杆秤,牙一咬、眼一瞪”的传统农业气象观测方式,将随着一批科技含量高、全自动化运行的现代观测仪器的使用而发生质的改变。   土壤水分贮存量及其土壤温度变化规律的监测,是农业气象、生态环境及水文环境监测的基础性工作之一。掌握土壤水分变化规律,对农业生产、干旱监测预测和其他相关生态环境监测预测服务和理论研究都具有重要意义。多年来,气象部门的干旱监测一直使用土钻和烘干的人工测量方法,观测频率为每月3次或6次。近年来,随着气候变暖,我国干旱问题日益突出,干旱发生频次和程度明显增加,严重威胁农业生产,阻碍经济发展,对生态环境造成巨大影响。特别是去冬今春河南、山东等地以及目前东北地区发生的严重干旱,使决策部门和公众对农业气象观测的自动化提出了更加迫切的要求。   “建设一个疏密均匀且能有效监测干旱发生情况和作物生长实际土壤水分环境的全国土壤水分观测网,将可实现全国土壤墒情监测数据实时传输和实时显示,实现单个站点的连续时间土壤水分变化监测,以及结合云图、降雨等气象资料,实现区域性干旱预警等功能。”中国气象局综合观测司副司长胡雯说,“此举将达到及时监控农田干旱程度、科学灌溉和有效利用水资源的目的,大大提高和改进农业气象观测水平和农业气象服务的能力,为生态农业、高效农业提供有力的保障。”   根据相关安排,中国气象局今年将首先在华北、黄淮地区冬小麦(资讯,行情)主产区和西南干旱易发区域优先开展自动土壤水分观测站建设。同时,在31个省(市、区)每省配备3套便携式土壤水分观测仪,开展移动土壤水分观测试验示范。
  • 2100 | 不同土壤水分条件下土壤水与植物茎木质部水的同位素偏差研究
    【摘要】土壤含水量的时空异质性影响着土壤水和植物茎木质部水的同位素组成。然而,土壤水分条件对广泛报道的土壤水-植物茎木质部水同位素偏差的影响尚缺乏系统地评估。为此,本研究连续两年在两个土壤水分条件不同的样地测定了柠条茎木质部水和土壤水的δ2H和δ18O值(利用全自动真空冷凝抽提系统LI-2100,北京理加联合科技有限公司)提取土壤和植物茎木质部中的水分,然后进行同位素测量)。结果表明,在较湿润的样地1,茎木质部水与土壤水在两年中都表现出明显的同位素偏差(两者的重叠率式中,下标“s”代表柠条茎木质部样本,abw和bsw分别是2018-2019年每个月份土壤水线的斜率和截距。(4) 重叠面积法评估植物-土壤水同位素偏差利用R软件中的SIBER(Stable Isotope Bayesian Ellipses)模型计算了植物茎木质部水和土壤水的重叠面积,最后给出两者的重叠面积与茎木质部水面积的比值(%)。较高的比值意味着植物茎木质部水与土壤水同位素重合度高。【结果】图1 研究期间植物水和土壤水δ18O和δ2H值的标准椭圆(95% 置信区间)。图2 样地1-2土壤水-茎木质部水分lc-excess差值(Δlc-excess)及茎水SW-excess值。图3 不同吸力下土壤水分类型示意图及样地1-2水分特征曲线。图4 植物水和不同移动性的土壤水δ18O和δ2H值的标准椭圆(95% 置信区间)。图5 土壤含水量与(a)Δlc-excess和(b)SW-excess的关系。【结论】植物茎木质部水-土壤水同位素偏差是一个复杂的问题,涉及水分提取方法、植物生理和土壤水分动态等多个方面。前人的研究已经为植物茎水同位素异质性、水分提取方法和同位素分馏如何影响同位素偏差提供了令人信服的证据,但这些影响因素均不能为本研究结果提供合理的解释。本研究在两个土壤水分条件不同的采样点,连续两年对灌木种柠条茎木质部水和土壤水进行取样。结果发现湿润样地(样地1)在丰水年或干旱年以及干旱样地(样地2)在丰水年均发生了茎水-土壤水同位素偏差,而样地2在干旱年份,柠条茎木质部水与土壤水在δ2H-δ18O双同位素空间上高度重合。此外,样地1茎木质部水与土壤束缚水同位素趋于一致,进一步支持“两个水世界”假说。样地2土壤含水量与Δlc-excess呈正相关,与SW-excess呈负相关。这些研究结果表明,土壤水-植物茎木质部水同位素偏差极有可能与土壤含水量驱动的土壤水同位素异质性密切相关。该研究也提出了一些需要解决的问题。该试验是在自然条件下进行的,目前的数据限制了我们进一步明晰水分提取技术和植物茎水同位素异质性是否会对同位素偏差产生影响。尽管这些解释并不能完全适用于本研究,但仍然不能排除这些因素对本研究的潜在影响,有必要在未来研究中全面地加以考虑。无论如何,我们的研究有助于更深入地了解植物在不同水分条件下如何利用水分,并有助于预测它们对水文气候变化的响应。
  • 抚顺建6个土壤水分观测站 以大数据信息服务三农
    11月16日,记者从抚顺市气象局获悉,该市已顺利完成了抚顺县后安镇、清原满族自治县大孤家镇和新宾满族自治县永陵镇3个新型自动土壤水分观测站的建设任务。至此,全市自动土壤水分观测站总数达到6个,观测站网布局更加合理,气象大数据信息将更好地为“三农”服务。  此次自动土壤水分观测站建设采用了自动土壤水分观测仪,该观测仪由传感器、采集器、监测计算机、数据中心服务器四部分组成,能够实现对各土层的土壤体积含水量、重量含水率、相对湿度、浅层地温、草温等要素的连续、自动观测,通过GPRS通信技术每小时上传一次数据资料。  与常规的土壤观测方式相比,自动土壤水分观测仪可在同一地点连续不间断测量,测量水分值的范围广、灵敏度高,设备仪器具有安装工程量小、不扰动土壤、易于维护、测量精度较高的特点。  目前,新建的3个自动土壤水分观测站顺利通过调试,投入试运行,标志着抚顺市土壤水分观测已步入了24小时不间断的全天候监控时代。
  • 河南首批自动土壤水分观测站在平顶山试点
    经过前期的选址、土壤水分常数的测定等充足的准备工作,10月12~15日,由河南省气象局和市气象局共同筹建的自动土壤水分观测站相继在平顶山市新华区滍阳镇西滍村及各县(市)进行最后的仪器安装、调试。至此,该市7家自动土壤水分观测站建设全部完成,彻底改变了传统的、落后的人工土壤水分观测工作,标志着平顶山市气象现代化建设又上了一个新的台阶,对服务全市粮食生产具有重大意义。   该市位于河南省中部,地处伏牛山和黄淮平原的过渡地带,属于半干旱、半湿润的大陆性季风气候区域,降水的年际变化及季节变化较大,加之受复杂地形、地貌的影响,干旱发生频繁,对农业生产影响严重。多年来,气象部门始终把对为农业生产服务放在气象服务的第一位,通过高科技的技术手段,观天测雨,趋利避害,为我市农业生产保驾护航。土壤水分观测是气象为农业服务的基础性工作之一。   土壤水分的监测,就是通过连续的、定点的土壤水分含量的测定,掌握土壤墒情的动态变化,为农业生产服务提供第一手实况资料。但是,由于受技术条件的限制,我国在土壤水分观测设施和技术方面长期处于落后的人工操作状态,这不仅不能适应目前气象现代化建设的要求,也不能满足为农业生产服务的需求。为此,由河南省气象科学研究所和中国电子科技集团公司第二十七研究所共同研究开发了自动土壤水分观测仪。经过前期的实验研究,目前已进入面对全国进行推广、安装阶段。根据中国气象局部署,河南省作为全国现代农业气象业务服务建设试点省,要率先安装并投入业务化运行;平顶山市是先期试点单位之一。   这次自动土壤水分监测站建设,由中国气象局投资,河南省气象局和平顶山市气象局共同承建。首期分别在新华区、鲁山县、舞钢市等县(市、区)建立7个监测站,总投资约65万元。今后根据服务需求,还将逐渐增加观测点密度,扩大观测区域覆盖面,以便全面掌握全市各地土壤水分含量情况及土壤水分变化情况,更好地服务于农业生产。
  • 中国气象局购入100套土壤水分速测仪
    面对我国粮食主产区旱情的持续发展情况,为了准确测定土壤墒情,掌握农田旱情分布状况,科学指导抗旱,中国气象局统一向多个省、市、区气象部门配发自动土壤水分观测设备。   近日,首批100套GStar-S406土壤水分速测仪已在中国气象局气象探测中心上海物资管理处的土壤水分检测实验室一次性全部通过性能检测,已陆续发至各地投入农田干旱调查服务。该批设备是由河南省气象科学研究所和中国电子科技集团公司第27研究所共同研制,可测80厘米深度以内的各层土壤含水量,并具有GPS定位及地温测量功能,可方便进行土壤墒情调查。
  • ATAGO发布全新产品土壤水分测定仪
    ATAGO(爱拓)发布全新产品:PAL-Soil迷你数显土壤水分测定仪 该产品的成功上市,标志着ATAGO(爱拓)仪器将从食品检测工具扩大到了农业、水文、环境和水土等新领域,掀开公司发展的新篇章。 随着科学研究的发展和生产技术的进步水分的定量分析已被列为各类物质理化分析的基本项目之一,作为各类物质的一项重要的质量指标。根据不同形式试样中的不同水分含量提出了测定水分的不同要求。土壤水分测定仪是土壤的一个重要物理参数,它对于植物的生长具有重要的意义,同时土壤水分状况对于降雨产流有重要的影响,也是企业生产中重要的控制指标之一。土壤水分测定仪将会是对园林业、种植业、环境水文等研究工作中检测的迫切需求。ATAGO(爱拓)土壤水分测定仪能够对土壤水分进行实时监测。 土壤水分的多少有两种表示方法,一种是以土壤含水量表示,分重量含水量和容积含水量,二者可以通过土壤容重来换算;另外一种则是用土壤水势来表示,土壤水势的负值则是土壤水吸力。而ATAGO(爱拓)土壤水分测定仪则是利用甘油的吸收水性,通过检测甘油水溶液(甘油与水的比率为5:3)折光率的下降来计算土壤的含水量。 便携、快速的特征使土壤水分测定仪(PAL-Soil)在实验室、田间或者现场中应急检测中独具优势;产品体积小、重量轻、操作方便,且一次性检测时间仅需10分钟,最快检测时间小于1分钟;具有双标度显示功能,能显示重土壤水分和土壤体积含水率。 访问日本ATAGO(爱拓)中文网站,您将获得更多信息 …查看详细仪器价格、技术资料并订购,请致电联系我们: http://www.atago-china.com更多关于新产品的详细信息,请留意ATAGO(爱拓)中文官方网站的信息更新
  • 【恒美】土壤水分测定仪多少钱一台-新品
    点击此处可了解更多产品详情→土壤水分测定仪 土壤水分测定仪是一种用于测量土壤中水分含量的仪器。在农业生产中,精确测量土壤水分含量对于保证作物生长所需的水分和营养供给,提高作物产量和品质具 有 重市要面意上义有。多种类型的土壤水分测定仪,价格也因品牌、型号、功能等因素而异。一般来说,市面上的土壤水分测定仪价格在几百元至数千元之间。以下是一些可能影响土壤水分测定仪价格的因素: 1.品牌和型号:知名品牌的土壤水分测定仪通常价格较高,而一些普通品牌的仪器则相对便宜。此外,不同型号的仪器功能不同,价格也会有所差异。 2.技术类型:土壤水分测定仪的技术类型也是影响价格的因素之例一如。,一些采用频域反射(FDR)技术的仪器相对较便宜,而采用时域反射(TDR)技术相对较昂贵。3.测量精度:不同的土壤水分测定仪测量范围和精度也有所不同,价格也会因此受到影例响如。一些仪器只能测量土壤表层的水分含量,而另一些仪器则能够测量土壤不同深度的水分含量,后者通常价格更高。 4.功能和附加特点:一些高级的土壤水分测定仪可能具有更多的功能和附加特点,例如能够与计算机或智能手机连接,能够记录数据或提供实时监测等,这些功能也会增加仪器的价格。 总之,在购买土壤水分测定仪时,需要根据自己的实际需求和预算进行选择。同时,需要注意仪器的测量范围、精度、技术类型 以及功能和附加特点等因素,以确保选购到适合自己使用的土壤水分测定仪。
  • 【莱恩德新品】使用土壤水分测定仪为农业生产提供科学依据
    点击此处可了解更多产品详情:土壤水分测定仪  土壤水分是植物生长的必要条件之一,而且对于土壤生物活动、土壤质地和土壤肥力等方面也有重要影响。通过对土壤水分的分析,可以了解土壤中水分的含量和分布情况,从而为农业生产提供科学依据。例如,根据土壤水分分析结果,可以确定灌溉量和灌溉时间,以及施肥和耕作等管理措施,以最大限度地提高农作物的产量和品质。    使用土壤水分测定仪,仪器最重要的一个优势是,机身小巧易携带,检测人员可以随身携带到野外进行水分检测,采用的是FDR频域反射原理,该原理的方便之处就是可以快速的检测土壤的水分含量,还有温湿度等等数据,对不同土地进行不一样的检测,让农户朋友对自己土地的每一寸都有一个准确的认知,这样的话才更好进行因地施肥,是非常值得推广使用的一款仪器。【莱恩德新品】使用土壤水分测定仪为农业生产提供科学依据
  • 物联网土壤墒情监测系统-关注土壤-发展农业
    物联网土壤墒情监测系统-关注土壤-发展农业【FT-TS600】土壤含水量是农业生产中的重要信息,快速准确地测定农田土壤含水量,不仅对研究土壤含水量和作物生长发育期对我来说意义重大,而且还可以按照科学的灌溉时间调节,实现自动灌溉精细化,节约宝贵的水资源,更好地发展农业生产。  FT-TS600土壤墒情监测站是一款高度集成、低功耗、可快速安装、便于野外监测使用的高精度自动气象观测设备。  该设备支持有线、GPRS、蓝牙等传输方式,免调试,可快速布置,广泛应用于农业、林业、地质、高校、科研等方面。主要针对土壤水分含量和土壤温度进行监测,通过水分传感器和温度传感器测量土壤的体积含水量(VWC)和温度值。同时,根据用户需求,可以扩展配置土壤电导率、土壤PH、空气温度、空气湿度、太阳辐射、雨量等气象传感器。技术参数  1)土壤水分:测量范围:0-100%,精度:±3%,探针长度:5.5cm,探针直径:3mm,探针材料:不锈钢  2)土壤温度:测温范围 -40+125℃,测量精度±0.5℃,分 辨 率:0.1℃  3)土壤电导率:测量范围 可选量程:0-5000us/cm,10000us/cm,20000us/cm,测量精度0-10000us/cm范围内为±3% 10000-20000us/cm范围内为±5%,分辨率0-10000us/cm内10us/cm, 100000-20000us/cm内50us/cm(选配)  4)土壤PH:测量范围:0-14 分辨率:0.1 测量精度:±0.2%(选配)  5)空气温度:测量原理二极管结电压法,-40℃~85℃(±0.3℃)(选配)  6)空气湿度:测量原理电容式,0~100%RH(±2%RH)(选配)  7)太阳辐射:测量原理光电效应,0-2000W/m2(0.1W/m2)(选配)  8)光学雨量:测量原理光电式,0~4mm/min(选配)  9)数据存储:不少于50万条   10布设时间:1人,不大于30分钟完成布设   11)生产企业具有ISO质量管理体系、环境管理体系和职业健康管理体系认证  12)生产企业具有和土壤墒情软件注册证书  13)生产企业为3A级信用企业
  • 土壤墒情参数监测传感器有哪些?怎么用?
    墒,指土壤适宜植物生长发育的湿度。墒情,指土壤湿度的情况。土壤湿度是土壤的干湿程度,即土壤的实际含水量。土壤墒情直接影响着农作物的生长质量和速度。除了土壤墒情,土壤温度、土壤电导率以及土壤氮磷钾、土壤PH值等参数也对作物的生长起着十分重要的作用。土壤温度对作物生育和土壤中微生物活动以及各种养分的转化、土壤水分蒸发和运动都有很大影响。在一定的温度范围内,土温越高,作物的生长发育就越快;土温过低,微生物活动减弱,有机质难于分解,农作物的根系呼吸降低,造成作物养分缺乏,生长变缓。土壤电导率用于描述土壤盐分状况,它包含了反映土壤质量和物理性质的丰富信息。例如:土壤中的盐分、水分、温度、有机质含量和质地结构都不同程度影响着土壤电导率。有效获取土壤的电导率值,对于确定各种田间参数时空分布的差异有重大意义。土壤中微量元素的含量较低或者较高都不利于对植物的生长。比如向土壤中过量施入磷肥时,磷肥中的磷酸根离子与土壤中的钙、镁等阳离子结合形成难溶性磷酸盐,既浪费磷肥,又破坏了土壤团粒结构,致使土壤板结。土壤酸碱度是土壤重要的基本性质之一,是土壤形成过程和熟化陪肥过程的一个指标。植物能够在很宽的范围内正常生长,但不同的植物有着不同的生长pH值。 那如今有哪些可以测量土壤墒情参数传感器,如何使用呢? 1、土壤水分传感器土壤水分传感器是一款高精度、高灵敏度的测量土壤水分的传感器。通过测量土壤的介电常数,可测量土壤水分的体积百分比,符合目前国际标准的土壤水分测量方法,能直接稳定地反映各种土壤的真实水分含量。2、土壤温度水分电导率三合一变送器土壤温度水分电导率三合一变送器是观测和研究盐渍土的发生、演变、改良以及水盐动态的重要工具。通过测量土壤的介电常数,能直接稳定地反映各种土壤的真实水分含量。可测量土壤水分的体积百分比,是符合目前国际标准的土壤水分测量方法。3、土壤PH传感器 土壤PH传感器器,用于测量土壤PH值该变送器精度高,响应快,输出稳定,适用于各种土质。可长期埋入土壤中,耐长期电解,耐腐蚀,抽真空灌封,完全防水。可广泛应用于土壤酸碱度的检测、精细农业、林业、地质勘探、植物培育、水利、环保等领域酸碱度的测量。4. 土壤参数速测仪 土壤参数速测仪可以实时精确检测显示土壤中多种成分,例如:土壤温湿度、土壤电导率以及土壤氮磷钾等成分,通过检测的数据来进行改善土壤,达到监控植物养料供给的目的,让农作物处于较佳的生存环境,从而提高产量。 5、多土层土壤参数监测仪 多土层土壤参数监测仪是一款能够测量多土层土壤参数的传感器。能够针对不同层次的土壤电导率、水分含量以及温度状态进行动态观测,此检测仪可检测3层土壤电导率温湿度状态,可检测5层土壤电导率温湿度状态。6、管式土壤墒情监测仪 管式土壤墒情监测仪是一款以介电常数原理为基础的传感器。能够针对不同层次的土壤水分含量以及温度状态进行动态观测,此检测仪可检测3层土壤温湿度状态,可检测5层土壤温湿度状态,可快速、全面的了解集土壤墒情信息。测量方法:土壤水分传感器、土壤温度水分电导率三合一传感器、土壤PH传感器的测量方法:(1)速测法:选定合适的测量地点,避开石块,确保钢针不会碰到坚硬的物体,按照所需测量深度抛开表层土,保持下面土壤原有的松紧程度,紧握传感器垂直插入土壤,插入时不可左右晃动,一个测点的小范围内建议多次测量求平均值。(2)埋地测量法:垂直挖直径20cm的坑,按照测量需要,在既定的深度将传感器钢针水平插入坑壁,将坑填埋严实,稳定一段时间后,即可进行连续数天,数月乃至更长时间的测量和记录。土壤参数速测仪测量方法:长按“开关键”,在需要测量的地方,将传感器合金探针垂直插入土壤,再按一下“开关键”即可开始测量。如下图所示:多土层土壤参数监测仪测量方式: 垂直挖直径20cm的坑,在既定的深度将传感器钢针水平插入坑壁,将坑填埋严实,稳定一段时间后,即可进行连续数天,数月乃至更长时间的测量和记录。式土壤墒情监测仪测量方法:管式土壤墒情监测仪采用分层设点的观测结构,地面配置一个温度观测点,地下土壤每隔10cm配置一个土壤温湿测点,观测相对应范围内的土壤温湿度。如图所示:
  • 土壤墒情监测仪在墒情监测中立下了汗马功劳
    土壤墒情监测仪在墒情监测中立下了汗马功劳。随着现在环境保护意识的越来越强,减少化肥的使用可以有效改善土壤的状况,通过土壤墒情监测,可以提高灌溉水和化肥使用的有效率,在保证农作物水充足的前提下,最大限度的节约灌溉水和化肥的使用,节约灌溉水和化肥,对于环境保护方面也有重要的意义。通过这款WX-TZSQ60土壤墒情监测仪可以快速的测定土壤含水量,以往依靠经验来预测的生产方式已逐步被淘汰,因此这款系统能被大范围应用,能够满足科研、生产、教学等相关工作需求。它主要针对土壤水分含量和土壤温度进行监测,通过水分传感器和温度传感器测量土壤的体积含水量和温度值。土壤墒情监测仪是一款集土壤温湿度采集、存储、传输和管理于一 体的自动监测系统。在不同介电系数物质中的频率变化测得各土层的湿度,利用高精度数字温度传感器,测量各层土壤温度。可实现多参数环境监测。根据用户需求选配,具体选配,这款设备在农业、林业、环境保护、水利、气象等行业中立下了汗马功劳,值得选择。推荐阅读:便携式移动气象站——实现智慧农业、林业、城市的重要工具
  • 【来因科技】土壤养分检测仪是提高农产品质量的关键
    如果农户朋友想要了解土壤养分含量情况的话,是需要借助相关检测仪器来进行检测的,土壤检测仪也是目前被广泛应用于农业行业生产中的检测仪器,检测仪器可以检测出土壤中的氮磷钾以及中微量元素含量,我们也都知道农作物的生长是依托于土壤,做好土壤肥料养分的检测,才是平衡土壤养分,提高农产品质量的关键。土壤养分检测仪报价请点击查看→https://www.instrument.com.cn/netshow/SH104395/product-C2705-0-0-1.htm来因科技土壤养分检测仪器可检测土壤元素、肥料元素、作物元素、植株元素以及土壤水分、土壤温度、土壤ph、土壤盐分等土壤环境。土壤中速效N、P、K等多种养分一次性同时浸提测定。在正常熟练程度下,测土壤铵态氮、磷、钾三项要20分钟(含土样前处理及药剂准备),测肥料氮、磷、钾三项需50分钟左右,微量元素单项检测需20分钟左右,土壤水分、温度、ph、盐分可即时显示。而且操作简单,操作步骤全部内置,新手不用担心不会操作,根据仪器的提示一步一步的进行即可,是土壤检测“居家必备”好帮手。
  • 高精度土壤养分快速检测仪
    高精度土壤养分快速检测仪(高精度土壤養分快速檢測儀)是由山东云唐生产研发的用于测定土壤中养分含量的仪器,目前采购模式均为单一来源采购 。咨询客服均有优惠!山东云唐智能科技有限公司旗下另有山东云泽精密仪器有限公司、山东蓝虹光电科技有限公司,一共只此三家,其余皆不属于云唐公司体系,请知晓!高精度土壤养分快速检测仪如何指导土壤修复要想进行土壤的污染修复工作,就要了解土壤,对土壤进行全方位的检测,土壤团粒结构特别不稳定,容易受到外界环境比如施肥的影响,我们现在使用的化肥大部分都是酸性的,这样的土地上作物是无法健康成长的,土壤养分检测仪可以检测土壤中的各种成分,了解土壤的养分状况,从而依据作物的种植种类数据进行对比分析,找出合理的施肥用料配方,依据配方对土壤进行改良,从而提升作物产量。在农业生产中,肥料不是用的越多越好,过量施肥容易造成土壤污染,土壤酸碱化及板结化严重,所以在了解了土壤情况以后,应该减少化肥使用,增施有机肥,尤其是肥料中的各种元素搭配,避免单一肥料造成的土壤养分不均衡现象,实现作物平衡施肥、减少了肥料的浪费,真正实现农业的可持续发展。高精度土壤养分快速检测仪使用必要性测土施肥对农业发展的帮助作用很大,能实现科学种田的良性发展模式,是山东云唐智能科技新推出的高智能测土施肥仪器,使用安卓智能操作系统,四核处理器,配有7寸液晶屏幕,操作简单,大大减少了操作失误的问题,内置各种作物测土配方施肥功能,可对百余种全国农业、果树、 经济作物的目标产量科学计算推荐施肥量,指导农业生产。农民是测土配方施肥技术的执行者和落实者,也是受益者。检验测土配方施肥的实际效果,及时获得农民的反馈信息,不断完善管理体系、技术体系和服务体系。同时,为科学地评价测土配方施肥的实际效果,必须对一定的区域进行动态调查。测土配方施肥技术宣传培训是提高农民科学施肥意识,普及技术的重要手段。农民是测土配方施肥技术的使用者,迫切需要向农民传授科学施肥方法和模式 同时还要加强对各级技术人员、肥料生产企业、肥料经销商的系统培训,逐步建立技术人员和肥料商持证上岗制度。测土配方施肥是以养分归还(补偿)学说、同等重要律、不可代替律、肥料效应报酬递减律和因子综合作用律等为理论依据,以确定没养分的施肥总量和配比为主要内容。为了补充发挥肥料的大增产效益,施肥必须怀选用良种、肥水管理、种植密度、耕作制度和气候变化等影响肥效的诸因素结合,形成一套完整的施肥技术体系。作物生长发育需要吸收各种养分,但严重影响作物生长,限制作物产量的是土壤中那种相对含量最小的养分因素,也就是最缺的那种养分(最小养分)。如果忽视这个最小养分,即使继续增加其他养分,作物产量也难以再提高。只有增加最小养分的量,产量才能相应提高。经济合理的施肥方案,是将作物所缺的各种养分同时按作物所需比例相应提高,作物才会高产。高精度土壤养分快速检测仪特点 1、可检测土壤及化肥、有机肥(含叶面肥、水溶肥、喷施肥等)、植株中的速效氮、速效磷、有效钾、全氮、全磷、全钾、有机质、酸碱度、含盐量,钙、镁、硫、铁、锰、硼、锌、铜、氯、硅等各种中微量元素以及铅、铬、镉、汞、砷等各种重金属含量。2、内置传感器接口,配备FDR传感器,可测土壤水分含量、土壤环境温度、土壤电导率。3、安卓智能操作系统,采用更加高效和人性化操作,仪器标配wifi联网上传、4G联网传输、GPRS无线远传,快速上传数据。4、内置作物专家施肥系统,可对百余种全国农业、果树、经济作物的目标产量计算推荐施肥量,依据施肥配方科学指导农业生产。5、内置植物营养诊断标准图谱,根据各农作物营养缺失的图片,进行叶面对比,诊断丰缺。6、采用双联排多通道设计,一次性可快速检测12个样品,所有检测项目可实现所有通道同时检测,极大提升检测效率,降低检测成本。7、比色槽部分采用标准1cm比色皿,无机械位移及磨损,光路测试定位精确,有效屏蔽外光干扰,保证检测结果优于国标要求。8、仪器具有4G内存,可长期存储数据,并配有上传平台,无需数据线,数据可直接无线上传,方便进行数据管理和数据长期分析。9、仪器内置新一代高速热敏打印机,检测完成可自动打印检测报告和二维码。10、高灵敏7寸电容触摸屏,高清晰高交互显示,大程度降低传统仪器的繁琐操作和失误。11、每个通道均配置四波长冷光源,所有光源实现恒流稳压,保证波长稳定。 硅半导体作为信号接收系统,寿命长达10万小时级别。重现性好,准确度高。12、高强度PVC工程塑料手提箱设计,坚固耐用,便于携带,供电方式为交直流两用,可野外流动测试配套成品药剂。
  • SU-LFH土壤环境测试及分析评估系统设备中标上海海洋大学
    上海海洋大学(Shanghai Ocean University)是上海市人民政府与国家海洋局、国家农业部共建的农林类高等院校。前身为始建于1912年的江苏省立水产学校,1952年更名为上海水产学院,1985年更名为上海水产大学,2008年更名为上海海洋大学。截至2014年5月,上海海洋大学有浦东新区沪城环路校区、杨浦区军工路校区、杨浦区民星路校区3个校区,主校区沪城环路校区占地约1600余亩,规划建设面积58.6万平方米。学校设有12个学院,设置47个本科专业及方向,有博士后科研流动站2个、一级学科博士学位授权点3个、一级学科硕士学位授权点10个。学校有全日制普通本专科生12800余人、研究生2800余人。 上海海洋大学是国家海洋水质监测和土壤污染监测的重点学校,2013年4月份,我公司为上海海洋大学提供SU-LFH土壤环境测试及分析评估系统设备1批,为土壤污染监测提供了安全保障。SU-LFH土壤环境测试及分析评估系统设备功能特点:※数字线路,高度智能程序,人性化设计,全部中文菜单显示操作流程和测试状态。※配备国际标准RS232接口,内置式电子时钟、内置式存储芯片,外设各种高精度专业测试传感器,不锈钢结构耐腐蚀。※ 可以测试并显示年、月、日、小时、分钟、土壤水分、温度、硬度、紧实度、大气温度、腐蚀性有毒液体温度、土壤及化肥中的氮、磷、钾、有机质、酸碱度、腐殖酸、盐分, 随机配备《土壤多参数数据采集系统软件》和《土壤养分测试及分析评估系统》软件,可对70多种农业、果树、经济作物的土壤氮、磷、钾、有机质、酸碱度、含盐量、微量元素、矿物质需求量进行数据分析,为用户在化肥使用量,土壤酸碱度、含盐量的评估、调节,水肥控制几个方面的决策提供数据参考,处理结果采用标准OFFICE文档格式存档备案或者打印、远程发送。※测试数据上传给微机,自动进入软件系统,生成数据库,自行设计绘制各种数据的工作曲线,用户可以根据自己工作需要,按照曲线关系验证土壤水分、硬度、紧实度温度及养分间的关联性。测试数据可更接发送电子邮件?实现数据资源共享和远程监控。※配备TDR高精度水分传感器、PT100高精度温度传感器、土壤硬度、紧实度传感器。※使用者购买后即可开箱使用。用户配备该系统设备后,基本具备一个微型基层土壤分析及配方施肥实验室的功能。主要技术参数:一、水分部分测量参数:土壤容积含水量单 位:%(m3/m3)量 程:0~100%(m3/m3)精 度:0~50%(m3/m3)范围内为±2%(m3/m3)测量区域:90%的影响在围绕中央探针的直径3cm、长6cm的圆柱体内稳定时间:通电后约1秒响应时间:响应在1秒内进入稳态过程工作电压:12V—24V DC工作电流:50~70mA,典型值50 mA输出信号:4~20mA标准电流环密封材料:ABS工程塑料探针材料:不锈钢电缆长度:标准长度5m 遥测距离:小于1000米二、温度测试部分测试范围:-60℃-99℃精度:±0.5℃ 灵敏度:0.1℃测试深度:20cm三、紧实度(硬度)测试部分测量深度:0-450mm测量范围:0-500kg;0-50000kpa测量精度:以公斤为单位:1kg,以压强为单位:100kp环境温度:-55℃-90℃ 四、土壤成分测试部分(一)养分测量技术指标:(1)稳 定 性:A值(吸光度)三分钟内飘移小于0.003(2)重 复 性:A值(吸光度)小于0.005(3)线性误差:小于3.0%(4)灵 敏 度:红光≥4.5 ×10-5 蓝光≥3.17×10-3(5)波长范围:红光620±4nm 蓝光440±4nm(6)抗 震 性:合格(注:技术指标均高于国家标准)(二)PH值(酸碱度)测量技术指标: (1)测试范围:1~14 (2)误 差:±0.1(三)盐量(电导)测量技术指标:(1)测试范围:0.01%~1.00% (2)相对误差:±5%
  • 土壤肥力检测仪
    土壤肥力检测仪(Soil fertility tester)——YT-TR05土壤肥力檢測儀山东云唐智能科技有限公司自主研发,目前采购模式均为单一来源采购,咨询客服均有优惠!山东云唐智能科技有限公司旗下另有山东云泽精密仪器有限公司、山东蓝虹光电科技有限公司,一共只此三家,其余皆不属于云唐公司体系,请知晓!土壤肥力检测仪特点:1、可检测土壤及化肥、有机肥(含叶面肥、水溶肥、喷施肥等)、植株中的速效氮、速效磷、有效钾、全氮、全磷、全钾、有机质、酸碱度、含盐量,钙、镁、硫、铁、锰、硼、锌、铜、氯、硅等各种中微量元素以及铅、铬、镉、汞、砷等各种重金属含量。2、内置传感器接口,配备FDR传感器,可测土壤水分含量、土壤环境温度、土壤电导率。3、安卓智能操作系统,采用更加高效和人性化操作,仪器标配wifi联网上传、4G联网传输、GPRS无线远传,快速上传数据。4、内置作物专家施肥系统,可对百余种全国农业、果树、经济作物的目标产量计算推荐施肥量,依据施肥配方科学指导农业生产。5、内置植物营养诊断标准图谱,根据各农作物营养缺失的图片,进行叶面对比,诊断丰缺。6、采用双联排多通道设计,一次性可快速检测12个样品,所有检测项目可实现所有通道同时检测,极大提升检测效率,降低检测成本。7、比色槽部分采用标准1cm比色皿,无机械位移及磨损,光路测试定位精确,有效屏蔽外光干扰,保证检测结果优于国标要求。8、仪器具有4G内存,可长期存储数据,并配有上传平台,无需数据线,数据可直接无线上传,方便进行数据管理和数据长期分析。9、仪器内置新一代高速热敏打印机,检测完成可自动打印检测报告和二维码。10、高灵敏7寸电容触摸屏,高清晰高交互显示,大程度降低传统仪器的繁琐操作和失误。11、每个通道均配置四波长冷光源,所有光源实现恒流稳压,保证波长稳定。 硅半导体作为信号接收系统,寿命长达10万小时级别。重现性好,准确度高。12、高强度PVC工程塑料手提箱设计,坚固耐用,便于携带,供电方式为交直流两用,可野外流动测试配套成品药剂。土壤肥力检测仪是云唐智能科技厂家生产的YT-TR05型号仪器,是一款综合性全项目的土壤环境分析检测系统,检测精度达到农业大学进行课题试验的标准和要求,而且采用智能安卓操作系统,智能化程度高,人机互动性强,配有7寸液晶屏幕,可以清楚的看到操作的过程和检测的内容。仪器也内置了操作视频,可以帮助用户完成检测过程的学习,厂家提供包教包会的服务,可以比较全面的解答用户的疑问和使用过程中的问题。土壤肥力检测仪不仅对测土配方的不断深化有着非常重要的意义,而且在农业的增产方面以及增收方面,都有着非同小可的作用。在各个农业地区,要广泛应用,并开展有关测土配方施肥的重要行动,让他们可以有序、合理的进行施肥。有助于提高耕地的质量在我国土壤肥料检测体系的土壤肥料化验室是非常重要的一个角色,可以分析和研究土壤的样品,不仅可以保障耕地的肥效,还可以改善土壤的质量。
  • 什么是温室大棚环境监测系统?
    温室大棚不但阳光通透,还具有保温的作用,它能在不适宜植物生长的季节培育植物,也可增加其产量。在现代化的温室大棚中,可使用具有控制温湿度、光照等条件的设备,实现用电脑自动控制创造植物所需的环境条件。什么是温室大棚环境监测系统?山东仁科测控温室大棚环境监测系统是在传统农业的基础上融合了物联网和传感器技术,采用信息化、自动化等技术,利用各类传感器采集大棚内温度、湿度、光照、土壤水分、co2等环境信息,通过网络将数据上传到控制中心,管理人员可实时实时查看大棚内的环境状况;当监控数值高于或低于限制时,系统会自动调控大棚内的湿帘风机、喷淋滴灌、内外遮阳等设备,智能的对大棚进行加水、补光、排风等操作。1、在大棚内部署多种要素传感器实时监测环境状况。气象多要素百叶盒传感此传感器采用高灵敏度的探头,它将多种传感器探头安装在百叶盒内,可同时采集温湿度、光照、二氧化碳、气压等因素,具有体积小,重量轻,测量范围宽,传输距离远等特点,盒体美观,防水性能好,安装方便。土壤水分传感器通过测量土壤的介电常数,使用国际标准的土壤水分测量方法,即可直接稳定地反映出各种土壤的真实水分含量,是观测和研究盐渍土的发生、演变、改良以及水盐动态的重要工具,具有性能稳定、灵敏度高的特点 。2、数据处理端将采集到的数据整合处理,发送到监控后台。环境监控主机在系统中起到传输数据的作用,它支持RS485有线、GPRS、以太网等传输方式,将传感器采集到的数据实时上传至用户的电脑或云平台,设备具有超限报警的功能,当数值超限,其会以屏幕轮显的方式播放超限信息或声光报警的方式告知管理者。M88工控模块起到智能化调整的作用,如检测到土壤的湿度过低,它就可以调控喷淋滴灌设备进行灌溉补水,目的是把环境维持在一定的数值内,保证植物的健康生长。若棚内安装了摄像头,可以使用网络视频字符叠加器,它能将监测数据和视频叠加在一个画面显示,还可设置画面中显示数据的数量,并且叠加后也不影响原来的视频质量。3、通过多种方式查看,都了解大棚内的实时环境状况,帮助用户更好的管理大棚。在大棚内安装LED显示大屏,把数据调整上屏上显示,在棚内工作的人员可实时了解棚内情况。平台界面用户通过电脑登录云平台查看数据很方便,数据显示有数字和曲线2种方式,也可查阅历史数据为科学种植提供依据;平台具有报警功能,若数值超限,会给管理者发送告警信息或拨打告警电话。手机端管理就更方便了,它不受时间地点的限制,可随时随地登录微信公众号山东仁科设备平台查看棚内实时环境状况,在植物不同的生长周期设置不同的上下限数值,为植物的良好生长提供适宜的环境。温室大棚环境监测系统充分发挥物联网技术并应用在农业生产中,为实现温室大棚的精细化管理,为实现农作物的高产、优质、高效、生态、安全提供了帮助。
  • 1395万!中国林业科学研究院沙漠林业实验中心生态系统定位观测研究站植物水分和沙尘监测类仪器采购项目
    一、项目基本情况项目编号:NMGZZ-172-2024024项目名称:中国林业科学研究院沙漠林业实验中心生态系统定位观测研究站植物水分和沙尘监测类仪器购置项目预算金额:1295.000000 万元(人民币)最高限价(如有):1295.000000 万元(人民币)采购需求:高精度水势控制组件、高精度内外水势测量组件、双向泵系统、土壤水分温度电导率三参数传感器、蒸渗软件、土壤水势传感器、溶液自动取样模块、产流仪模块、空气温湿度仪、土壤水分监测系统、地下水水位自动监测仪、树干液流观测系统、气象站、台站数据信息在线采集系统、数据存储处理展示系统(具体内容详见设备清单)。合同履行期限:签订合同后60日历天内完成本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年07月12日 至 2024年07月18日,每天上午9:00至12:00,下午15:00至18:00。(北京时间,法定节假日除外)地点:巴彦淖尔市公共资源交易中心(http://ggzyjy.bynr.gov.cn)方式:;电子版(PDF或者word)版请到http://ggzyjy.bynr.gov.cn网站的交易信息栏目下载,专有格式(BMZF)招标文件请登录交易平台会员系统的“领取招标节点”下载。售价:¥0.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国林业科学研究院沙漠林业实验中心     地址:磴口县巴彦高勒镇团结路        联系方式:苏先生13947893308      2.采购代理机构信息名 称:内蒙古九正项目管理有限公司            地 址:内蒙古自治区巴彦淖尔市王府花园南门商业楼1号三楼            联系方式:安全15374805949            3.项目联系方式项目联系人:苏先生电 话:  13947893308
  • 土壤生态环境测试及分析评价系统设备
    土壤生态环境测试及分析评价系统设备【山东云唐】Equipment of soil ecological environment test and analysis evaluation system近年来,随着施肥报酬递减、土壤退化、面源污染、生态环境破坏等问题的凸显,有机肥的利用价值重新得到重视,进入商品化生产,并开发出有机无机混合肥、生物有机肥、复合微生物肥等多种有机类肥料产品。我国有机肥基础资源丰富,发展和推广有机肥已经成为提高废弃资源利用率、农业生产节本增效、耕地培肥和发展可持续农业的有效途径。土壤生态环境测试及分析评价系统设备仪器特点:1、可检测土壤及化肥、有机肥(含叶面肥、水溶肥、喷施肥等)、植株中的速效氮、速效磷、有效钾、全氮、全磷、全钾、有机质、酸碱度、含盐量,钙、镁、硫、铁、锰、硼、锌、铜、氯、硅等各种中微量元素以及铅、铬、镉、汞、砷等各种重金属含量。2、内置传感器接口,配备FDR传感器、环境传感器,可测土壤水分含量、土壤环境温度、土壤电导率、空气温度、空气湿度、露点、大气压力、光照度、二氧化碳。3、安卓智能操作系统,采用更加高效和人性化操作,仪器标配wifi联网上传、4G联网传输、GPRS无线远传,快速上传数据。4、内置作物专家施肥系统,可对百余种全国农业、果树、经济作物的目标产量计算推荐施肥量,依据施肥配方科学指导农业生产。5、内置植物营养诊断标准图谱,根据各农作物营养缺失的图片,进行叶面对比,诊断丰缺。6、采用精密旋转比色池设计,光源一致性更加精确保证检测精度。一次性可快速检测12个样品,极大提升检测效率,降低检测成本。7、比色槽部分采用标准1cm比色皿,无机械位移及磨损,光路测试定位精确,有效屏蔽外光干扰,保证检测结果优于国标要求。8、仪器具有4G内存,可长期存储数据,并配有上传平台,无需数据线,数据可直接无线上传,方便进行数据管理和数据长期分析。9、仪器内置新一代高速热敏打印机,检测完成可自动打印检测报告和二维码。10、高灵敏7寸电容触摸屏,高清晰高交互显示,大程度降低传统仪器的繁琐操作和失误。11、每个通道均配置四波长冷光源,所有光源实现恒流稳压,保证波长稳定。 硅半导体作为信号接收系统,寿命长达10万小时级别。重现性好,准确度高。12、高强度PVC工程塑料手提箱设计,坚固耐用,便于携带,供电方式为交直流两用,可野外流动测试配套成品药剂。
  • 环保领域创新专项启动 这些土壤监测技术你得知道
    土壤是人类赖以生存的物质基础,是人们触手可及的常见物质,也是构成世界的重要自然要素之一。随社会的发展和科技的进步,人类对土壤的开发和利用达到了空前的高度,同时对土壤的破坏、对环境的污染也日趋严重。 国家发改委日前着手启动实施环保领域创新能力建设专项。针对我国农田土壤污染日趋严重、威胁农产品安全的问题,组建农田土壤污染防控与修复技术国家工程实验室 针对我国石油、化工、冶炼、矿山等污染场地对人居环境和生态安全影响日益突出的问题,组建污染场地安全修复技术国家工程实验室。  下面就和大家唠唠那些土壤污染和土壤监测技术。  土壤污染  1、土壤污染及其特性  土壤污染物包括:1无机物(重金属、酸、盐、碱等) 2有机农药(杀虫剂、除莠剂等) 3有机废弃物(生物可以降解和生物难以降解的有机废物) 4化学肥料 5污泥、矿渣和粉煤灰 6放射性物质 7寄生虫、病原菌和病毒。近半个世纪以来,我国农业生产中使用的农药、化肥,城市周边、工矿区、交通线附近的 As、Cd、Pb、Hg等重金属污染,已使土地不堪重负。  土壤污染的特点是:隐蔽性和滞后性,土壤污染比空气污染、水体污染更加隐蔽 区域性,比较集中在某一范围 不可逆性、累积性和难恢复性,通常情况下,不具备和水体相同的自净能力,某些污染在不断积累,重金属、POPs等一旦进入土壤,会长期存在,不断积累。如六六六和滴滴涕在我国已经禁用20多年,至今在土壤和农作物中仍有很高的检出率和检出浓度。  2、土壤污染的危害  (1)加剧土地资源的短缺。中国人均耕地面积0.10hm2,仅相当于世界水平的1/4,一些地区甚至低于联合国粮农组织提出的人均0.05hm2的最低保证线。据推测,中国国土面积的一半有不同程度的污染,其中耕地重金属污染程度为12%,国土酸雨污染程度为29%。有资料显示,目前中国受Cd、As、Cr、Pb等重金属污染的耕地面积近2000万hm2,占耕地总面积的1/6。20世纪90年代,据农业部门调查,在中国人均耕地面积日趋减少的同时,全国受污染农田面积已达 0.1亿hm2。  (2)导致农作物减产或污染。仅以土壤重金属污染为例,全国每年因重金属污染导致粮食减产1000多万t,被污染的粮食多达1200万t,合计经济损失至少200亿元。江西省某县44%的耕地受到重金属污染,并形成670hm2的“镉米”区。  (3) 导致农产品出口受阻。在东部经济快速发展地区的土壤中已检出60余种有机污染物,其中近1/3属于生物难降解的持久性微量有毒有害有机物。土壤污染对中国农产品的出口已造成严重影响。2003年前5个月,辽宁省玉米出口较去年同期下降56.5%,蔬菜出口下降9.6%,其原因均为污染物超标。  (4)直接或间接影响人体健康。研究表明,土壤和粮食污染与一些地区某些疾病发病率之间有明显的关系。由粮食含镉量超标导致的“痛痛病”症状已开始出现,一些污灌区居民肝脾肿大,癌症发病率比对照区高十几倍。  土壤污染检测  1、冲洗法完成检测工作  冲洗法的色谱分离技术是气相色谱法技术,它和分离化工成品较相符,其工作原理是色谱中气相和固定液之间不同成分拥有不同的分配系数,当成分在气化条件下会在整个色谱柱中运转,经过气化处理以后会被多次分配,因为各个分解程度不同,我们可以经过科学分析他们在色谱柱中的运转速度,对各种农药残留进行采集和分析。  2、高效液相色谱法  高效液相色谱检测方法是在典型液相色谱的基础上发展而来的,高效液相色谱法是一种创新分离技术。经过多年发展,高效液相色谱在检测环境中已经成为一种普遍的检测方法,而且高效液相色谱法的检测范围较广,它可以对大气、水体、土壤污染进行综合性的分析,而且还可以对药物残留以及杀虫剂等污染物质进行检测。高效液相色谱法,可以针对土壤污染隐藏性和潜伏性等特点进行全面分析,帮助检测人员高效快速的完成土壤污染检测。但是高效液相色谱法也有缺点,那就是其分析成本较高、液相色谱仪价格较高,日常维修费用高,所以说要想完善高效液相色谱技术,就必须克服这几项缺点。  3、AFS检测方法  AFS检测方法也就是现在所说的原子荧光光谱法,荧光光谱法和其他技术相比综合了原子吸收以及原子发射光谱的优点,是一项较为优秀的痕量分析技术,它的优点就是仪器结构较为简单,灵敏度较高、对气相干扰很少、分析多元素速度较快,所以说AFS检测方法被广泛的应用在土壤污染检测中。AFS检测方法缺点,某些元素对酸度要求较为苛刻、鉴定元素相对较少以及应用范围较为狭隘等方面,所以说要想使得AFS检测方法得到广泛推广,就必须改进AFS检测方法的缺点。  4、TG土壤检测方法  TG 土壤检测方法是一种测量物质和温度关系的一种热分析技术,它具有操作简单、准确性高、快速灵感的优点。环境领域检测的研究关系到生态环境的改善程度,在可持续发展过程中起到决定性作用。TG土壤检测方法是通过检测化学转化过程,有利于分析污染性气体的形成,对防止和控制转化具有指导意义。  5、其他的土壤检测方法  在土地生态系统处理过程中,不同环境中的氧化还原也会影响各种污染物的存在情况,处理效率会对土地生态系统带来直接影响,所以需要对氧化还原环境积极了解以及科学调控。热重分析法是通过热天平来对温度进行控制,对物质质量以及温度进行有效控制。热分析技术,操作简单、精确度较高以及反应速度较快。因为环境污染越来越严重,所以现代人对土壤检测技术的要求越来越苛刻,要想完善土壤检测技术,就必须针对土壤污染检测技术的缺点进行改进,让土壤污染检测手段可以更广泛的应用到现代农业中,让土壤检测技术成为现代化农业的重要组成部分。  6、无线传感器网络技术  无线传感器的监控体系主要用于土壤参数稳定性低而且位置差异大的监测。我国通过吸收国外关于无线传感器网络技术,并结合我国实际情况自主研发,取得了一定的成效。目前无线传感器网络技术在农田土壤信息收集上得到了很好的应用。近几年我国研发了微型无线传感器网络节点,目的就是使用农田的土壤的监测,具有很强的稳定性和抗干扰性的同时还具有耗电低的特点,其最强大优越性在于长周期连续工作。无线传感器网络技术已被应用于农田科学施肥管理、偏远地区或恶劣环境的土壤监测,得到了行业内的认可。  7、高光谱遥感技术  上世纪80年代,成像光谱技术开始被应用于土壤监测,通过应用的不断深入和扩展,技术被迅速的认可和完善并得到广泛应用。主要用于分析土壤成分、特性和运动过程等,在精确施肥、土地资源勘查、土壤质量评价、土壤环境监测以及土壤学研究方面都起到至关重要的作用。例如:自2003年起,中国科学院利用遥感技术对青藏高原的表层土壤水分进行分析和推算,为生态区保护和土壤环境监测提供了有力的数据基础。高光谱感光技术利用精细的光谱分析法反映出土壤光谱中极细微的差别和特征,以辨别土壤性质和成分。目前看,我国土壤监测行业虽然很热衷于高光谱遥感技术的应用,但还存在很大的难点,这需要技术研发人员的不断努力,研发出高精的科学监测设备。  总结  土壤污染具有隐藏性和潜伏性、可逆性差以及难治理的特点,所以说及早的用土壤检测技术发现土壤污染,就可以及时采取相应的措施,避免土壤污染情况的发生。从具体的修复技术来讲,不同的土壤类型、和污染程度、污染物成分等都需要选择有针对性的修复技术来进行有效治理。这就需要建立完备的土壤修复技术规范,管理方法和法律法规。
  • 环境监测总站1852万仪器大单揭晓
    采购人名称:中国环境监测总站   项目名称:三峡工程生态与环境监测系统监测设备能力建设项目   招标编号:0701-114140080024/01/02/03/04/05   采购内容:生态与环境监测系统监测设备   采购方式:公开招标   招标公告日期:2011年9月30日   定标日期:2011年11月23日   采购内容:   招标编号:0701-114140080024/01(第一包):实验室大型设备   中标人名称及中标金额(人民币):哈尔滨海洁科技发展有限公司 3,660,000.00 序号 货 物 名 称 数 量(台/套) 是否可采购进口产品 1 气相色谱—三重四极杆质谱联用仪 1 是 2 DNA 遗传分析系统 1 是 3 原子荧光光度计 1 否 原子吸收分光光度计 1 否 4 流动注射水质分析仪 1 是   招标编号:0701-114140080024/02(第二包):实验室小型设备   中标人名称及中标金额(人民币):北京圣海通科技有限公司 3,657,800.00 序号 货物名称 数量(台/套) 是否可采购进口产品 1 氮气、氢气、空气一体发生器 1 否 2 全自动固相萃取系统 1 是 旋转蒸发仪 1 是 紫外光分光光度计 1 否 3 旋转蒸发仪 1 否 生物安全柜 1 否 实验室用高压蒸汽灭菌器 1 否 梯度PCR仪 1 是 酶标仪 2 是 超低温冰箱 1 否 液氮罐 5 否 4 紫外光分光光度计 4 否 红外测油仪 3 否 实验室纯水器 4 否 电子天平 2 否 悬浮物抽滤装置 4 否 5 紫外光分光光度计 1 否 电子天平 2 否 人工气候箱 1 否 恒温干燥箱 1 否 数显振荡机 1 是 大容量通用台式离心机 1 是 火焰光度计 1 否 凯氏定氮仪 1 是 6 火焰光度计 1 是 土样粉碎机 1 否 多面手型自动电位滴定仪 1 是 7 电子天平 10 否 电子天平 7 否 电子天平 2 否 8 电源控制器 5 否 温湿传感器 5 否 UPS电源 4 否 9 土样粉碎机 1 否 多面手型自动电位滴定仪 1 是 10 微型光纤光谱仪 1 是 双通道温度记录仪 10 否 11 营养盐自动分析仪 1 是   招标编号:0701-114140080024/03(第三包):现场监测设备   中标人名称及中标金额(人民币):北京圣海通科技有限公司 5,655,800.00 序号 货物名称 数量(台/套) 是否可采购进口产品 1 便携式多参数测定仪 3 是 2 差分GPS(基准站、移动站、手簿) 2 是 便携式pH/溶解氧/电导率测试仪 1 是 3 便携式测油仪 1 是 噪声统计分析仪 4 否 便携式多参数分析仪 4 否 烟气分析仪 4 是 不透光烟度计 4 否 皂膜流量计 4 否 4 GPS 5 否 5 余氯检测仪 6 否 6 GPS 5 否 便携式电导率 10 是 便携式酸度计 10 是 便携式溶氧仪 7 是 全球定位仪 7 否 便携式盐度计 2 是 便携式浊度仪 7 是 7 土壤水分、温度速测仪 1 是 土壤养分速测仪 1 否 土壤水分测量系统 1 是 土壤取样器 1 是 8 土壤养分速测仪 2 否 土壤取样器 4 否 海拔罗盘仪 2 是 土壤原位pH计 1 是 水分速测仪 1 是 土壤类型识别器 2 是 9 GPS手持机 4 是 10 全尺寸便携式等比例水质自动采样器 4 是 11 土壤水分速测仪 2 是 土壤团粒分析仪 1 是 双环入渗仪 1 是 便携式土壤pH计 2 否 土壤剖面水分水势测量系统 1 否 地表径流自动采样装置 1 是 全自动便携式光合仪 1 是 植物水势仪 1 是 12 地下水位、电导率、温度三参数 自动监测与记录仪(套件) 1 是 剖面土壤水分测量系统 1 是 剖面土壤水分/盐分/温度动态测量仪 1 是 便携式EC计 4 是 土壤水分温度盐分速测仪 1 是 土壤水分特征曲线测定仪 1 是 土壤养分速测仪 1 否   招标编号:0701-114140080024/04(第四包):气象水文及光学仪器设备   中标人名称及中标金额(人民币):北京圣海通科技有限公司 5,552,000.00 序号 货物名称 数量(台/套) 是否可采购进口产品 1 便携式超声波水深仪 2 是 摄像机 1 是 2 摄像机 1 是 激光测距仪 2 否 数码相机 1 否 数码相机 2 否 红外监控数码照相机 50 否 望远镜 1 是 望远镜 2 是 镜头:超长焦定焦镜头 1 是 中焦变焦镜头 1 是 标准变焦镜头 1 是 防抖微距镜头 2 是 3 超声波流量计 12 否 4 野外自动气象监测站 8 否 六要素自动气象站 5 否 5 暗视野显微镜(带摄像装置) 2 是 6 激光测距仪 2 是 显微镜 6 是 解剖镜 7 否 数码相机 10 否 旋杯式流速仪 5 否 7 体式显微成像系统 1 是 声学多普勒流量剖面仪 1 是 8 地下水位自动监测与记录仪 1 是 自动气象观测场 1 否 9 激光超声波树木测高测距仪 4 是 电子测树仪 2 是 测径仪 2 是 小型自动气象站 2 是 手持气象站 2 是 电子计数器 2是 冠层分析仪 1 是 植物生长测量仪 6 是 10 小型便携自动气象站 2 是 顶喷式人工降雨模拟器 1 否 11 无人值守自动观测系统 2 否 12 CTD系统 1 是 13 碳通量分析系统 1 是 涡度相关仪 1 是   招标编号:0701-114140080024/05(第五包):办公用品   中标人名称及中标金额(人民币):北京燕禹水务科技有限公司 426,020.00 序号 货物名称 数量(台/套) 是否可采购进口产品 1 笔记本电脑 2 否 笔记本电脑 3 否 激光打印机 1 否 扫描仪 1 否 彩色激光多功能一体机 1 否 2 笔记本电脑 7 否 笔记本电脑 7 否 台式电脑 2 否 3 数据作图电脑 1 否 数据存储服务器 1 否   招标代理机构名称:中技国际招标公司   采购代理机构地址:北京市丰台区西三环中路90号通用技术大厦   采购代理机构联系方式:联系人:陈建勇、李彤   电话:63348558/63348561 传真: 63373570
  • 检测土壤含元素的机器设备:新智能型土壤养分检测仪新品上市
    检测土壤含元素的机器设备:云唐新智能型土壤养分检测仪新品上市Uusi ?lyk?s maaper?n ravinteiden ilmaisin土壤污染导致生物品质不断下降,我国大多数城市近郊土壤都受到了不同程度的污染,有许多地方粮食、蔬菜、水果等食物中镉、铬、砷、铅等重金属含量超标和接近临界值。此外,土壤污染除影响食物的卫生品质外,也明显地影响到农作物的其他品质。有些地区污灌已经使得蔬菜的味道变差,易烂,甚至出现难闻的异味 农产品的储藏品质和加工品质也不能满足深加工的要求。随着经济全球化的不断深入,在100多个国家内有机农业生产方式得到了广泛推广,其面积与种植人数也越来越多。当前,我国有机产品主要为植物类产品,动物性产品较少,野生采集产品增长速度最快。其中主要出口品种包含有机茶、有机大豆等。截至2010年底,我国从事有机产品认证的认证机构都已达到26家,发放证书4 800张,获得认可的企业超过4 000家,有机产品认证面积在260万公顷以上。功能多、测试项目齐全:1、土壤养分:●铵态氮、硝态氮、速效磷、速效钾、有机质、全氮、pH值、含盐量、水分、碱解氮等十项;●中微量元素:钙、镁、硫、铁、锰、硼、锌、铜、氯、硅、钼等。2、肥料养分:●单质化肥中的氮、磷、钾;●复(混)合肥及尿素中的铵态氮、硝态氮、磷、钾、缩二脲;●有机肥中速效氮、速效磷、速效钾、全氮、全磷、全钾、有机质,各种腐植酸、微量元素(钙、镁、硫、铁、锰、硼、锌、铜、氯、硅、钼)等。3、植株养分:●植株中的氮素、磷素、钾素;硝酸盐、亚硝酸盐;钙、镁、硫、铁、锰、硼、锌、铜、氯、硅、钼等项。4、烟叶养分:全氮、全磷、全钾、还原糖、水溶性总糖、硼、锰、铁、铜、钙、镁等20项。5、土壤、肥料重金属:铅、铬、镉、砷、汞、镍、铝、氟、钛、硒等十余种重金属。6、食品(水果、蔬菜等):硝酸盐、亚硝酸盐、重金属(铅、铬、镉、砷、汞、镍、铝、氟、钛、硒)等项。 7、水质:●铵态氮、硝酸盐、亚硝酸盐、磷、钾、硬度、PH、铁、铜、锰、锌、硼、氯、硫、硅、钼等。技术指标: 1.电源:交流 220±22V 直流 12V+5V(仪器标配内置锂电池也可用车载电源)2.功率: ≤5W 3.量程及分辨率:0.001-99994.重复性误差: ≤0.02%(0.0002,重铬酸钾溶液) 5.仪器稳定性:一个小时内漂移小于0.3%(0.003,透光度测量)。仪器开机预热5分钟后,三十分钟内显示数字无漂移(透光度测量);一个小时内数字漂移不超过0.3%(透光度测量)、0.001(吸光度测量);两个小时内数字漂移不超过0.5%(0.005,透光度测量)。6.线性误差: ≤0.1%(0.001,硫酸铜检测)7.灵敏度:红光≥4.5 ×10-5 蓝光≥3.17×10-3 绿光≥2.35×10-3 橙光≥2.13×10-38.波长范围 :红光:680±2nm 蓝光:420±2nm 绿光:510±2nm;橙光:590±4nm9.PH值(酸碱度): (1)测试范围:1~14 (2)精度:0.01 (3)误差:±0.110.含盐量(电导):(1)测试范围:0.01%~1.00% (2)相对误差:±5%11.土壤水分技术参数水分单位:﹪(g/100g);含水率测试范围:0-100﹪;误差小于0.5%12.土壤中速效N、P、K三种养分一次性同时浸提测定、科学推荐施肥量(农业部速测行业标准起草者)13.肥料中氮(N)、磷(P)、钾(K)等养分同时、快速、准确检测(专利技术)14.测试速度:测一个土样(N、P、K)≤30分钟(含前处理时间,不需用户提供任何附件)15.同时测8个土样≤1小时(含前处理时间)16.仪器尺寸:43×34.5×19cm, 主机净重:5.1kg
  • 土壤墒情速测仪对农业的影响
    水是地球的生命之源,万物生长都离不开水,包括植物也一样,之所以能在土壤中生长,不光是因为土壤中有养分存在,也是因为土壤中有水的存在,这是植物生长所必须的基本条件之一。地球上有很多地质形态,有湿地、有沼泽、有黑土地、也有沙漠,其中沙漠中因为严重缺少水分,所以几乎没有植物的存在,通过这个现象我们也可以看出水分对土壤的重要性。  在现代农业的生产中,检测、监测土壤水分是一项不可忽略的重要工作,在这项工作共发挥亮点作用的就是我们河南云飞科技发展有限公司研发生产的土壤墒情速测仪,该仪器可以帮助我们快速、精准的测量出土壤中的水分含量,并其将模拟信号直接转化为可读的数字信号。  土壤墒情速测仪是一款便携式的测量土壤水分的仪器,方便携带。土壤墒情速测仪可以通过GPS定位系统掌握土壤的墒情(水分)的分布状况,为差异化的节水灌概提供科学的依据,同时精确的供水也有利于提高作物的产量和品质。  通过土壤墒情速测仪的检测结果,我们就可以根据作物生长对水分的要求来进行土壤含水量的调整,达到作物生长理想的水分要求。如果是在农业物联网系统中,我们也可以通过土壤墒情速测仪对土壤水分进行长期定时监测,发现土壤水分已有偏差,就可以通过系统自动执行对土壤水分调节,并且除了在PC端之外我们也可以在现场仪器上读取数据。
  • 什么是农业四情监测系统?
    农业的未来,在于农业科技的不断进步。党的十八大以来,农业科技进步贡献率逐年提高,科技兴农为推进农业供给侧结构性改革注入了强劲动能,成为推动农业高质量发展、开创农业现代化建设新局面的重要抓手。农业生产越来越有“科技范儿”,特别是“互联网+农业”发展态势良好。“互联网+农业”是集数字化感知、智能化决策、智慧化管理为一体的智慧农业。与过去农业生产中存在严重的资源浪费相比,智慧农业改变过去单一的作业模式,针对不同环境进行定制化的作业,从而减少资源浪费,提高生产效率。借助互联网与物联网技术,智慧农业构建了集环境监控、调节为一体的农业四情监测系统,可对不同的农业生产环境及对象进行监测监管,通过传感器监测环境的物理参数,对土壤、虫情、气象等生产环境状况进行实时动态监控。这些新技术的应用大大改善农产品品质,使其符合市场需求,可以实现供给与需求的有效对接,促进农业生产精细化、高效化、现代化发展。农业四情监测系统(墒情、虫情、气候、苗情)由终端设备(管式土壤墒情监测仪、虫情测报仪、气象站、视频监控)、农业四情测报平台组成。该系统可对农业大田的土壤墒情状况(土壤温度、土壤水分、土壤PH值等)、病虫状况(病虫种类、病虫数量等)、气候状况(空气温度、湿度、雨量、光照度、二氧化碳、风速风向等环境参数)进行系统监测和管理,通过GPRS/4G或网口将数据上传至测报平台,管理人员可远程实时查看各环境参数数据及趋势,节省人力,并根据数据反馈作出相应调整,以保证农作物良好的生长态势,助力农业生产。土壤墒情监测:土壤墒情监测是水资源合理利用、水资源科学管理和抗旱救灾决策最重要的基础工作。土壤墒情实时监测系统收集旱作农业、牧业的墒情信息,收集农业和环境干旱的信息,给农户提供指导农牧业灌溉,分析干旱的形成及分布发展和抗旱救灾决策提供准确的信息,使之作出科学的决策,以便及时给有条件的灌区防水灌田,以提高农作物的产量,增加农民的收入。智能虫情监测:远程掌握田间虫情,无公害诱捕杀虫;智能虫情监测系统首要运用现代光、电、数控技术、无线传输技术等构建出一套害虫生态监测及预警系统。该系统集害虫诱捕和拍摄、环境信息搜集数据传输、数据分析于一体,自动完成诱虫,杀虫,虫体分散,拍照,运输,收集,排水等系统作业。气象环境监测:通过现场的气候设备,能够实时的对农业场景内的进行监测。提高了农业出产对自然环境危险的应对才能,使弱势的传统农业成为具有高功率的现代工业。灾情、苗情监测:通过对农田进行农业物联网传感器布局,对整个农种过程中的耕种、施肥、采摘、包装等各个环节进行视频监控,树立规范化作业规范。随着人工智能、大数据、物联网等在农业领域的应用越来越多,科技的进步,为农业发展按下“快进键”。 农业四情监测系统可以帮助农民有效改善农业生态环境、提高农业生产水平。并在保障农业生态环境友好的前提下,努力提高农业的经济效益和社会效益。
  • 中科院地理所刘远团队揭示基质可用性调和不同土壤剖面SOC矿化的温度响应
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达24篇。 今天与大家分享的是中国科学院地理科学与资源研究所刘远团队在调查基质可用性(根系分泌物)的变化如何影响不同土壤剖面中土壤有机碳(SOC)矿化的温度响应(Q10)方面取得的进展,在该项研究中,研究团队利用PRI-8800对SOC矿化率进行高频测量,为研究结果提供了有力的数据支撑。 土壤有机碳(SOC)矿化是导致大量碳从土壤流失到大气中的一个主要过程,而温度会极大地影响这一过程。预计在下个世纪,底土和表土都将经历类似程度的变暖。气候变暖预计会产生土壤碳-气候正反馈,从而加速气候变化。这种正反馈的大小在很大程度上取决于不同深度SOC矿化的温度敏感性(Q10)。因此,更好地了解不同深度的Q10变化及其内在机制,对于准确预测气候变化情景下的土壤碳动态至关重要。尽管在理解全球变暖对底土碳动态影响方面取得了进展,但对于Q10在土壤剖面不同深度的变化方式仍未达成共识。 为了更好地理解气候变化背景下土壤碳动态,刘远团队从三个地点采集了土壤剖面的土壤样品,包括四个深度区间(0-10厘米,10-30厘米,30-50厘米和50-70厘米):两个地点具有典型的矿物质土壤,一个地点是埋藏土壤。研究团队在实验室中使用这些土壤来探讨随着土壤深度的增加SOC矿化的Q10对底物可利用性变化的响应。葡萄糖是一种容易获得的底物,因为它是根分泌物的重要组成部分。土壤在10-25°C的温度下孵育,以0.75°C的温度间隔进行了24小时。然后,在孵育1天后,通过高频率连续测量SOC矿化速率,避免了底物限制和微生物群落的变化对结果的影响,估算Q10。 值得注意的是,针对SOC矿化速率的测量,研究团队使用的是由北京普瑞亿科科技有限公司研发的PRI–8800全自动变温培养土壤温室气体在线测量系统,该系统允许在一定时间内逐步提高孵育温度并与SOC矿化速率的高频测量同步进行,为该项研究提供了更准确的Q10估计。图1:不同土壤深度和不同站点下,控制组(CK)和底物添加组(S+)的土壤有机碳(SOC)矿化的温度响应,使用指数拟合表示。站点:Liangshui(LS)、Huinan(HN)和Hongyuan(HY)。***代表P0.001的显著差异。图2 a:在控制组(CK)和底物添加组(S+)中,土壤有机碳(SOC)矿化速率(R22)在22°C下随深度增加的变化。b:不同站点下不同土壤深度的底物可利用性指数(CAI);c:在CK和S+处理中,SOC矿化的温度敏感性(Q10)随深度增加的变化;d:不同站点下不同土壤深度中CK和S+处理之间Q10的差异(ΔQ10)。 研究结果表明,在典型的矿质土壤中,Q10随深度的增加而降低,但在埋藏土壤中,Q10则先降低后增加。不出所料,在不同的土壤深度,基质的添加会明显增加Q10;但是,增加的幅度(ΔQ10)随土壤深度和类型的不同而不同。出乎意料的是,在典型的矿质土壤中,表土中的ΔQ10比底土中的高,反之亦然。ΔQ10与土壤初始基质可用性(CAI)呈负相关,与土壤无机氮呈正相关。总体而言,气候变化情景下基质可用性的增加(即二氧化碳浓度升高导致根系渗出物增加)会进一步加强SOC矿化的温度响应,尤其是在无机氮含量高的土壤或氮沉积率高的地区。 相关研究成果以“Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles”为题在线发表于期刊《Journal Of Soils And Sediments》上(中科院三区Top,IF5 =3.8)。相关论文信息:Liu Y, Kumar A, Tiemann L K, et al. Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles[J]. Journal of Soils and Sediments, 2023: 1-15.原文链接:https://doi.org/10.1007/s11368-023-03602-y 截至目前,以PRI-8800为关键设备发表的相关文章已达24篇,分别发表在10余种影响因子较高的国际期刊上——数据来源:https://sci.justscience.cn/ 很荣幸PRI-8800可以为这些高质量学术研究贡献一份力量,感谢各位老师对普瑞亿科产品的支持和信任。如果您成功发表文章,并且在研究过程中使用了普瑞亿科的国产仪器设备,请与我们公司联络,我们为您准备了一份小礼物,以感谢您对国产设备以及普瑞亿科的信任和支持! 自2018年上市以来,PRI-8800全自动变温培养土壤温室气体在线测量系统得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达23篇。 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。可设定恒温或变温培养模式;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;150ml样品瓶,25位样品盘;大气本底缓冲气或钢瓶气清洗气路;一体化设计,内置CO2 H2O模块;可外接高精度浓度或同位素分析仪。 为了更好地助力科学研究,拓展设备应用场景,普瑞亿科重磅推出「加强版」PRI-8800——PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统。 1)原状土冻融过程模拟:气候变化改变了土壤干湿循环和冻融循环的频率和强度。这些波动影响了土壤微生物活动的关键驱动力,即土壤水分利用率。虽然这些波动使土壤微生物结构有少许改变,但一种气候波动的影响(例如干湿交替)是否影响了对另一种气候(例如冻融交替)的反应,其温室气体排放是如何响应的?通过PRI-8800 Plus 的冻融模拟,我们可以找出清晰答案。 2)湿地淹水深度模拟:在全球尺度上湿地甲烷(CH4)排放的温度敏感性大小主要取决于水位变化,而二氧化碳(CO2)排放的温度敏感性不受水位影响。复杂多样的湿地生态系统不同水位的变化及不同温度的变化如何影响和调控着湿地温室气体的排放?我们该如何量化不同水位的变化及不同温度的变化下湿地的温室气体排放?借助PRI-8800 Plus,通过淹水深度和温度变化的组合测试,可以查出真相。 3)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800 Plus程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。 除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800 Plus的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。 PRI-8800 Plus除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。 4)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800 Plus可以通过手动调整土壤含水量的做法,并在PRI-8800 Plus快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800 Plus的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。 5)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。 6)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。1.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.2.Ma X, Jiang S, Zhang Z, et al. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.3.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.4.Mao X, Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.5.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.6.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biology and Biochemistry, 2022, 167: 108589.7.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.8.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.9.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.10.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.11.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.12.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.13.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.14.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.15.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. 2018.Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.16.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.17.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.18.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.19.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.20.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.21.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.22.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.23.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.24.Liu Y, Kumar A, Tiemann L K, et al. Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles[J]. Journal of Soils and Sediments, 2023: 1-15.
  • ASD | 利用短波红外波段通过干燥过程分割来估计土壤含水量
    利用短波红外波段通过干燥过程分割来估计土壤含水量 土壤水分是直接影响蒸发、入渗和径流等多种环境过程的重要因素。而且,土壤水分在农业蒸散与粮食安全、湿地退化、干旱、陆气界面的能量交换等相关研究领域发挥着重要的作用。地面测量能够提供易于校准和长时间连续获取的数据,但该种方法仅针对单个小区域,难以支持空间变化研究或实地研究。基于水和土壤介电特性的巨大差异,微波遥感被广泛应用于大空间尺度的土壤水分监测,但不适用于精准农业等多种研究。热遥感可以根据地表温度来估算土壤水分,但热遥感信号不单受到土壤含水量(SMC)的影响,湿度、风速、大气条件等其他参数也会影响估计结果。而光学遥感由于其精细的空间分辨率和利用诸如MODIS、Landsat系列和Sentinel任务等卫星数据进行大尺度监测潜力之间的平衡而引起了诸多关注。目前已经提出了许多指标和模型来阐明反射率特征随SMC的变化,并利用实验室、实地、机载和卫星数据从窄带和宽带的反射率来估计SMC。这些方法/指标主要针对从饱和到风干的各级SMC;然而,作者发现饱和到风干的单一关系映射会导致准确估计的错误印象。在整个干燥过程中,光谱反射率特征和SMCs之间的回归关系不一致导致对相对较低的SMCs估计的精度较低。基于此,在本研究中, 来自南京大学、康奈尔大学和河南农业大学的研究团队提出了一种分割方法以更准确的估计SWC。作者监测了代表不同土壤特性的三种土壤样品的整个干燥过程,并通过蒸发速率变化确定其过渡点(如高SWC的阶段1干燥和低SWC的阶段2干燥)。建立了SMC估计指数,即短波归一化指数(SNI),基于辐射传输模型支持干燥过程中的SNI指数趋势。图1 实验装置示意图。利用ASD Fieldspec® Pro光谱仪进行光谱辐射亮度采集。【结果】 图2 a) 三种土壤样品蒸发速率变化与干燥时间的关系,b) 干燥过程中三种土壤在2150 nm处的反射率变化。 c) 三种样品蒸发速率导数的最大值确定干燥阶段分割点。 图3 三种样品砂/土壤含水量与光谱反射率之间的线性和对数回归的R2,a) 石英砂,b) 圬工砂,c) 伊萨卡土壤,d) 模拟大气透射率。在 a)、b) 和 c) 中,黑色虚线标记为1680 nm和2150 nm。图4 a) 显示了SMC估计的验证结果。 b)、c) 和 d) 显示了三种样品的 建模曲线(实线)、回归曲线(虚线)和验证数据集(空心圆圈)。图5 a)SMC估计值和测量值关系图,其中SMC估计值使用SNI2在线性回归中计算,Bwater 在1980 nm处评估。 图 b)、c) 和 d) 显示了三种样品的建模曲线(实线)、回归曲线(虚线)和验证数据集(空心圆圈)。【结论】利用单一回归关系和单一指数估计整个干燥过程的SMC对所有土壤类型并不是有效的。该研究证明了利用现有方法估计SMC结果不准确,以及在分割干燥过程中估计SMC的基本原理。监测整个干燥过程中3种不同土壤样品的光谱反射率和重量,将其分为两个阶段用于训练和验证。此外,基于辐射传输模型研究不同干燥阶段所提出指数和光通过水的路径长度之间的关系,并支持了经验方法建立的回归关系,尤其是对路径长度相对较短的土壤。结果表明,在分割思想下,SMC估计值和测量值之间的相关性明显提高,尤其是在SMC较低的情况下(阶段2干燥过程)。蒸发速率变化决定了干燥过程的分割过渡点,所有的土壤类型并不是一个特定的SMC值;因此,理解蒸发和SMC变化导致的光谱反射率变化之间的关系是极其重要的。例如,在实际使用中,石英砂阶段2干燥可以忽略,但它却是伊萨卡土壤干燥的重要组成部分。SN1/SN2指数结合可以有效估计三种样品的SMC。对于阶段1干燥,利用SNI1指数在1680 nm和2150 nm处的反射率预测SMC是有效的。在阶段2干燥中,尽管使用1930-2150 nm组合的SNI2指数实现了最佳相关性,但作者认为1980 nm比1930 nm更适合实地应用。这种波段选择是为了避免强烈的大气水汽吸收,以确保足够的地面反射辐射到达飞机或卫星传感器。相对于将阶段2干燥视为阶段1干燥延续的指标,相关关系显著改善。作者得到了如下结论:1.干燥过程分割对从光谱反射率数据准确估计SMC是很有必要的,尤其是对于具有较长阶段2干燥过程的土壤。例如本研究中的伊萨卡土壤。对于与伊萨卡土壤相似的土壤,基于整个干燥过程的SMC估计可能会导致阶段1或阶段2干燥的偏差,这取决于哪个阶段有更多的训练集。2. 由于石英砂中光通过水的路径长度相对较长,因此当SMC较高时,SNI具有独特的特征。在圬工砂或伊萨卡土壤中,half-logistic型的SNI曲线不同于线性关系。当光程较长时,拟合关系应由线性回归变为对数回归。3. 在阶段2干燥过程中,利用现有卫星系统常用的光谱波段组合难以准确估计SMC;使用高光谱数据可以获得更高的精度,可以提供近强水吸收波段的数据,如1930 nm。虽然由于大气水汽的吸收,1930 nm不能在实验室外有效地使用,但稍微偏离中心的波长(如1980 nm)仍然比水吸收波段范围外的波长表现更好。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制