当前位置: 仪器信息网 > 行业主题 > >

储水桶式地表径流测量系统

仪器信息网储水桶式地表径流测量系统专题为您提供2024年最新储水桶式地表径流测量系统价格报价、厂家品牌的相关信息, 包括储水桶式地表径流测量系统参数、型号等,不管是国产,还是进口品牌的储水桶式地表径流测量系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合储水桶式地表径流测量系统相关的耗材配件、试剂标物,还有储水桶式地表径流测量系统相关的最新资讯、资料,以及储水桶式地表径流测量系统相关的解决方案。

储水桶式地表径流测量系统相关的资讯

  • 国家地表水水质自动监测系统介绍
    p   实施地表水水质的自动监测,可以实现水质的实时连续监测和远程监控,及时掌握主要流域重点断面水体的水质状况,预警预报重大或流域性水质污染事故,解决跨行政区域的水污染事故纠纷,监督总量控制制度落实情况。 /p p   及时、准确、有效是水质自动监测的技术特点,近年来,水质自动监测技术在许多国家地表水监测中得到了广泛的应用,我国的水质自动监测站(以下简称水站)的建设也取得了较大的进展,环境保护部已在我国重要河流的干支流、重要支流汇入口及河流入海口、重要湖库湖体及环湖河流、国界河流及出入境河流、重大水利工程项目等断面上建设了100个水质自动监测站,监控包括七大水系在内的63条河流,13座湖库的水质状况。 /p p   现有100个水站分布在25个省(自治区、直辖市),由85个托管站负责日常运行维护管理工作。其中:(1)位于河流上有83个水站,湖库17个 (2)位于国界或出入国境河流有6个,省界断面37个,入海口5个,其他42个。目前还有36个水质自动站正在建设中,水站仪器设备更新项目也在实施中。 /p p    strong 地表水质自动监测站仪器配置与运行方式 /strong /p p   水质自动监测站的监测项目包括水温、pH、溶解氧(DO)、电导率、浊度、高锰酸盐指数、总有机碳(TOC)、氨氮,湖泊水质自动监测站的监测项目还包括总氮和总磷。以后将选择部分点位进行挥发性有机物(VOCs)、生物毒性及叶绿素a试点工作。 /p p   水质自动监测站的监测频次一般采用每4小时采样分析一次。每天各监测项目可以得到6个监测结果,可根据管理需要提高监测频次。监测数据通过公外网VPN方式传送到各水质自动站的托管站、省级监测中心站及中国环境监测总站。 /p p   为充分发挥已建成的100个国家地表水质自动监测站的实时监视和预警功能,经研究定于2009年7月1日在互联网上发布国家水站的实时监测数据。 /p p   每个水站的监测频次为每4小时一次,按0:00、4:00、8:00、12:00、16:00 20:00、24:00整点启动监测,发布数据为最近一次监测值。 /p p   每个水站发布的监测项目为pH、溶解氧(DO)、总有机碳(TOC)或高锰酸盐指数(CODMn)及氨氮(NH3-N)共5项。执行《地表水环境质量标准》(GB3838—2002)中相应标准,对每个监测项目的结果给出相应的水质类别。总有机碳(TOC)目前没有评价标准。 /p p   为使水质状况表达容易理解,按水质类别将水质状况分为优(I、II类水质)、良(III类水质)、轻度污染(IV类水质)、中度污染(V类水质)及重度污染(劣V类水质)。 /p p style=" text-align: center " 评价指标在GB3838-2002标准中的标准限值 /p p style=" text-align: right "   单位:mg/L /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/f5b6ff1f-72b5-4ba2-a8c7-44bd05995212.jpg" title=" QQ截图20171027153506.jpg" / /p p   水质自动监测站为在线连续监测设备,在仪器故障检查维修、日常维护校准时将出现数据缺失现象。水质自动监测站在日常运行中也会经常受到停电、洪水、断流、雷击破坏、通讯中断等意外影响,造成水站暂停运行。目前部分水站的仪器设备已运行8~9年,已超过使用寿命,造成故障率较高或停止运行,目前已列更新计划,年底前实施完毕。 /p p    strong 主要监测指标含义 /strong /p p   pH:表征水体酸碱性的指标,pH值为7时表示为中性,小于7为酸性,大于7为碱性。天然地表水的pH值一般为6~9之间,水体中藻类生长时由于光合作用吸收二氧化碳,会造成表层pH值升高。 /p p   溶解氧(DO):代表溶解于水中的分子态氧。水中溶解氧指标是反映水体质量的重要指标之一,含有有机物污染的地表水,在细菌的作用下有机污染物质分解时,会消耗水中的溶解氧,使水体发黑发臭,会造成鱼类、虾类等水生生物死亡。在流动性好(与空气交换好)的自然水体中,溶解氧饱和浓度与温度、气压有关,零度时水中饱和氧气含量可14.6mg/L,25℃为8.25 mg/L。水体中藻类生长时由于光合作用产生氧气,会造成表层溶解氧异常升高而超过饱和值。 /p p   高锰酸盐指数(CODMn):以高锰酸钾为氧化剂,处理地表水样时所消耗的量,以氧的mg/L来表示。在此条件下,水中的还原性无机物(亚铁盐、硫化物等)和有机污染物均可消耗高锰酸钾,常被作为地表水受有机污染物污染程度的综合指标。也称为化学需氧量的高锰酸钾法,以别于常作为废水排放监测的重铬酸钾法的化学需氧量(COD)。 /p p   总有机碳(TOC):代表水体中有机物质含量的另一项综合指标。采用燃烧水样中的有机物,通过测定生成的二氧化碳(CO2)含量,以C元素的量来表示总有机碳的含量。对于化学成分相同的水样,总有机碳与高锰酸盐指数存在一定的相关性。 /p p   氨氮(NH3-N):氨氮以溶解状态的分子氨(又称游离氨,NH3)和以铵盐(NH4+)形式存在于水体中,两者的比例取决于水的pH值和水温,以含N元素的量来表示氨氮的含量。水中氨氮的来源主要为生活污水和某些工业废水(如焦化和合成氨工业)以及地表径流(主要指使农田使用的肥料通过地表径流进入河流、湖库等)。 /p p    strong 应用实例 /strong /p p   随着国家水质自动监测系统的运行,充分发挥了实时监视和预警功能。在跨界污染纠纷、污染事故预警、重点工程项目环境影响评估及保障公众用水安全方面已经发挥了重要作用。 /p p   2002年在浙江-江苏的跨省污染纠纷处理过程中,自动站的连续监测数据在监督企业污染治理和防止超标排放方面发挥了重要作用。 /p p   长江干流重庆朱沱和宜昌南津关水质自动监测站在2003年5~6月三峡库区蓄水期间,共取得库区上下游2520个水质实时数据,为管理部门的决策提供了有力的依据。 /p p   淮河干流淮南、蚌埠及盱眙站成功地全程监视了2001~2006年淮河干流大型污染团的迁移过程,为沿淮自来水厂及时调整处理工艺,保证饮水安全提供了依据,为环境管理及时提供了技术支持。 /p p   汉江武汉宗关自动监测站自建立以来,每年对汉江水华的预警监测都发挥了重要作用,及时通知武汉市主要饮用水处理厂提前做好处理,保障水厂出水达标。 /p p   2007、2008、2009年太湖蓝藻预警监测期间,太湖沙渚、西山和兰山嘴水质自动监测站开展了加密监测,通过水质pH、溶解氧等藻类生长的水质特异性指标预测判断水体的藻类生长状况,为饮用水水质预警提供了大量实时数据,发挥了重要作用。 /p p   2008年四川汶川特大地震发生后,中国环境监测总站立即通过水质自动监测系统远程查看灾区水质状况,将灾区7个水质自动监测站的监测频次由原来的4小时一次调整为2小时一次,在第一时间分析了地震灾区地震前后水质状况,并将灾区水质无明显变化的情况及时向国务院抗震救灾总指挥部上报,并编制《汶川大地震后相关国家水质自动监测站水质监测结果》,每天在互联网上发布自动监测结果,为保障灾区饮用水安全,稳定灾区群众发挥了重要作用。 /p p   2008年北京奥运会期间,利用北京密云古北口自动站(密云水库入口)、门头沟沿河城自动站(官厅水库出口)、天津果河桥自动站(于桥水库入口)、沈阳大伙房水库及上海青浦急水港自动站等国家水质自动监测站对城市的饮用水源实施严密监控,每日以《奥运城市地表水自动监测专报》形式上报环境保护部,为奥运期间饮水安全提供了技术保障。 /p
  • LI-2100 | 内陆山区径流稳定同位素的气候与景观控制
    水,我们生活中无处不在的重要元素。它润泽着大地,孕育着生命。然而,水的旅程并不仅仅局限于地表,它通过蒸发和降水,与大气、植被形成了紧密的互动。而这种互动的背后隐藏着一系列的谜题,需要科学家们通过不断研究来揭示。水同位素研究便是一种重要的手段,通过分析水中的同位素元素,科学家们能够了解水的来源、循环和变化。水同位素研究为科研人员提供了一种宝贵的工具,帮助他们更好地了解水、植被和气候之间的复杂关系。一起来了解一下,来自西北师范大学的研究团队,用全自动真空冷凝抽提系统(LI-2100,北京理加联合科技有限公司)做的相关研究。水资源是制约干旱区社会发展的主要自然资源,山区是内陆干旱区重要的水源涵养区,山区冰川积雪融水对干旱区淡水供应至关重要。随着气候变暖,冰川积雪融化加速,地表蒸散发增强,降水变异性加剧,气候变化将增强山区河流水文过程的复杂性。水稳定同位素是深入了解区域水文过程的有效方法,研究内陆山区径流同位素时空变化的主要控制因素,对认识内陆山区水文过程变化,合理调配干旱区水资源至关重要。基于此,在本研究中,来自西北师范大学的研究团队监测了中亚干旱区典型的内陆山区流域-西营河流域不同水体同位素数据(地表水、降水、地下水以及积雪融水)和相关水文气象数据,结合相关气象观测数据及植被覆盖指数(NDVI),评估气候和景观对内陆山区径流稳定同位素的影响。研究可以为厘清内陆山区径流稳定同位素的控制机制提供更全面的参考。01 不同水体稳定同位素组成西营河流域不同景观区域气象要素和水体稳定同位素特征。(a)不同景观区域气温、相对湿度以及降水量的变化;(b)不同水体稳定同位素在不同景观区域的组成特征,P为降水,R为径流,M为积雪融水,G为地下水;(c)~(e)不同水体δ2H与δ18O的关系,(c)为冰川-灌丛区,(d)为中高覆盖度草地-森林区,(e)为低覆盖草地-裸地区。02 不同景观区域的径流同位素组成西营河流域不同景观区域径流同位素随NDVI指数以及海拔的变化特征。03 气候对山区径流同位素的影响西营河不同景观区域气象要素与降水稳定同位素的相关性分析,(a)降水δ18O与温度,(b)降水δ18O与相对湿度,(c)降水δ18O与降水量04 自然和人为景观变化对径流稳定同位素的影响西营河流域不同景观区域LEL的变化,LELs为局地蒸发水线。(a)冰川-灌丛区(GSARs),(b)中高覆盖草地-林地区(MHGFARs),(c)低覆盖草地-裸地区(LGBARs)。X轴和Y轴上的柱状统计图代表δ18O和δ2H的分布曲线。西营河流域海拔变化对降水稳定同位素的相关性分析,(a)径流δ18O与海拔,(b)降水δ18O与海拔。西营河降水(a)和径流(c)d-excess的变化,以及西营水库入口(b)和出口(d)处径流水线的变化。研究结论本研究利用典型内陆山区流域不同水体稳定同位素数据,结合相关气象观测数据和植被覆盖(NDVI)数据,为进一步了解内陆山区流域径流稳定同位素变化特征及其控制机制提供了依据。在内陆山区流域,气候和景观特征会随海拔而产生显著差异。因此,我们认为,在内陆山区,径流同位素组成及其控制因素需要做进一步更深入的研究。本研究强调了气象要素以及地表景观的空间差异对内陆山区流域径流稳定同位素的控制过程。这些结果有利于全面认识内陆山区径流稳定同位素的控制机制。1、气象要素通过控制径流的蒸发过程和补给源同位素特征来控制径流同位素变化;2、在植被覆盖度较低的区域,地表景观特征通过改变补给源同位素特征来控制着径流同位素组成;3、在植被覆盖度较高的区域,地表植被覆盖通过控制蒸发过程来影响径流稳定同位素。
  • 水桶超期服役易生细菌 缺行业标准“不破不废”
    夏日来临,不少家庭都会订购桶装水。近日,细心的青岛市民侯先生发现了,家中新送来的桶装水水桶又脏又旧,材质发软,一看竟用了4年多,担心超水桶“期服役”,对身体有害。可厂家却回应称,水桶并无使用寿命,放心使用即可。对此,业内人士称,桶装水水桶的使用年限的确缺乏国家标准和行业标准,出于成本考虑,企业多采用自然淘汰旧桶,不破损就不报废。   使用了4年的水桶还在装水   据侯先生介绍,他家喝的一直是崂山大桶水,天气转热后,饮水量大增,几乎一周就要一桶水。上周,送水工又送来了一桶水,侯先生发觉这次送来的桶装水水桶又脏又旧,材料很软,明显变形。一瞧生产日期,竟是2007年6月份的,已经用了4年多。   “再好的塑料都会老化,更别说整天风里来雨里去的水桶,老化的速度更快,都说水桶的使用年限不超过3年。”侯先生担心使用了“超期服役”的水桶,“会释放出对人体有害的有毒物质。”   对此,厂家回应称,国家对于水桶的使用年限没有具体规定,“使用寿命一说并不可靠。”   水站 水桶不破就一直用   随后,记者走访了江西路、南京路等多个送水站,对桶装水水桶的使用情况进行了调查。在江西路上的一个送水站,水站出售水桶有两种,价格分别是12元和15元,两种水桶的外观无明显区别,瓶底也都印有PC材料的标志。   在南京路一家送水站,有的水桶虽然还能装水,但是桶壁已磨损得相当严重。然而,记者询问水桶的使用年限时,老板却连说,“水桶没有保质期,只要不破损,想用多久用多久,绝无质量问题。”   业内 成本考虑 水桶采用自然淘汰   青岛一家桶装水生产企业负责人李先生介绍称,“正规水厂的水桶使用的是100%全新食品级PC材料生产,然而,水桶的使用年限的确缺乏明确的国家标准或是行业标准。”   “一般来说,企业也不会按照生产日期批量淘汰水桶,而是"不破不报废"的自然淘汰更换新桶,使用时长为一个月至几年不等。”李先生称,这主要是考虑到成本因素,正规企业采购水桶的成本就在40元左右,算上折旧费等等,频繁更换水桶,企业根本负荷不了 此外,还有一个原因就是以寿命为标准挑拣淘汰水桶很麻烦,所以,“企业只会淘汰自然破损的水桶。”   提醒 “超期服役”水桶易生细菌   “合格的饮用水水桶有"保质期",一般来说,差不多3年左右就应该报废了。”业内人士李先生称,水桶在不断周转使用中,会有磨损、破碎,尤其是桶嘴位置,时间一久,密封性变差,很容易进入空气,导致桶内的水细菌超标。   “此外,如果水桶在高温下暴晒,还会导致PC材料发生变化,致使析出更多的有害物质,渗入水中,还会危害饮用者的身体健康。”李先生称。
  • 浙江大学研制出植物可穿戴径流传感器
    最近,浙江大学生物系统工程与食品科学学院IBE团队刘湘江、应义斌,信息与电子工程学院汪小知和农业与生物技术学院胡仲远,为植物联合发明一款穿戴式“电子皮肤”。时至今日,通过穿戴电子设备监测心率、脉搏等,已经成为健康管理的重要一环。  这种植物可穿戴茎流传感器,通过将柔性穿戴电子技术应用到植物体表,成功在自然生长状态下,首次持续监测草本植物体内水分的动态传输和分配过程。同时,科研人员还发现植物果实生长与光合作用不同步的现象,这不仅改变人们长期以来对植物生长发育过程的基本认识,更将为作物高产育种及栽培技术研发提供新的思路。  这项研究,近日刊发在《先进科学》上。  柔性传感器实现植物生理监测  众所周知,血液是维持人体生命活动的重要物质,通过血液循环能够把人体所需要的各种营养物质,运输到各个组织和器官。  植物也有类似也“血液”的物质,被称为茎流,是植物在蒸腾作用、渗透势等内外部压力下茎秆中产生的上升液流。茎流也是植物水分、养分、信号分子运输的载体。因此,实现对茎流的长期实时监测就能够探究植物生长过程水养分分配、信号传导以及植物对环境的响应机制等奥秘。  然而,现有的茎流检测方法多为大型侵入式探测器,在测量时会对植物造成物理伤害,而且仪器体积大限制了它们在草本植物上的应用。很长一段时间内,科学界没有一种方法可以在自然生长状态下长期监测植物茎流。  为了解决这一难题,来自浙江大学的智能生物产业装备创新团队(IBE)、智能传感与微纳集成团队、蔬菜种质创新与分子设计育种团队开展了跨学科交叉研究,针对植物茎秆特殊的生理特性,利用芯片级的微纳加工工艺,制备了一种植物可穿戴式茎流传感器。  这款传感器薄如蚕翼,厚度仅0.01毫米,重0.24克,如同“纹身”一样,能贴附在植物茎秆表面进行茎流监测。  另一个工程难题是避免传感器对植物生理产生影响。研究团队通过特殊设计,使得植物正常生长发育所需的阳光、氧气、水和二氧化碳能够自由通过传感器,实现了传感器与植物的长期“和平共处”,最终实现在自然生长状态下长期观察茎流的目的。  “这项工作为今后研制植物可穿戴传感器提供新的研究范式。”汪小知介绍,未来如何针对特定植物表面结构和生理特性,设计制备可穿戴传感器,如何评估传感器对植物生长和生理的影响,都可以从他们的研究中找到技术路径。  发现西瓜生长竟在夜晚生长  工欲善其事必先利其器,有了这么好的检测“传感器”,科研团队开展了一系列丰富的研究。  浙大科研人员在西瓜茎干上几个关键位点部署了茎流传感器,长期无损的观察了水分在西瓜叶片、果实、茎秆等不同器官上的动态分配情况。通过对茎流数据的分析,研究团队首次发现了西瓜果实生长与光合作用不同步的现象。  西瓜果实绝大部份是水(95%左右),然而径流传感器测量发现:在白天只有极少部分水被运输入果实用于生长(5%),绝大部份水被叶片蒸腾作用消耗掉 但是到了夜间,几乎所有的水分都被运输到果实,绝对茎流量相对日间增加了10倍。  “白天积累的光合产物导致的渗透势差应该是夜晚径流激增的主要原因。同时,夜晚没有蒸腾作用消耗水分,促使大量径流输入到西瓜果实,从而实现了果实的重量增加与体积膨大” 胡仲远表示,这一发现也间接证明西瓜果实生长主要在夜间。  这一发现改写了对于植物果实生长的传统认识。教科书中一般认为,植物生物量积累主要靠光合作用,而夜间以消耗生物量的呼吸作用为主。  这个反常识性的发现不仅具有重要的科学价值,同时具有良好的应用前景。浙大科研团队表示,水是珍贵的农业资源,基于茎流对西瓜等耐旱作物体内水分运输和抗旱机理的解析,将为全球干旱地区的农业生产、节水灌溉、抗旱作物选育提供了新理论依据和技术支持。  该研究受到国家自然科学基金、国家重点研发计划、浙江省重点研发计划的支持。
  • 北京黑水厂自来水灌四品牌桶装水 卫生恶劣
    日前,记者接到线索称,在大兴区北臧村镇皮各庄二村存在一个桶装水生产企业--北京福品源饮用水厂。记者应聘进入这家企业进行暗访调查发现,其为逃避上级检查和即将到来的3· 15媒体监督,改为夜里偷着开工。   该厂生产的4个不同品牌的、号称来自玉泉山水系等产地的产品,都是由村内自来水加工而成,且在生产过程中卫生条件恶劣。该厂不仅卫生许可证已过期,产品的QS码(食品生产许可证)也"张冠李戴",套用了其他厂家的信息。   2月18日中午,记者根据线索人提供的信息,来到大兴区北臧村镇皮各庄二村这家名叫"北京福品源饮用水厂"的企业。令人吃惊的是,这家企业和记者在2013年12月30日前后曝光的一家生产假冒伪劣酱油、醋、料酒的调味品企业,仅有一墙之隔。   北京福品源饮用水厂位于村北的一条胡同内,厂子的铁门破旧生锈且紧闭着,院里养了一只大狗,听见生人的脚步,会不住吠叫。院外并未悬挂任何标识。   听到有人叫门,一名自称姓李的五十多岁男子(以下简称李老板)开了门。"我们厂子正招工呢。"李老板介绍说,真正的老板不在,他是替人看管这个厂子(事后证实,他就是该厂的法人代表),这里的活儿很简单,就是灌装桶装水,每天早上7点半上班,到下午5点半左右下班。   面对记者的应聘,李老板并未过多怀疑,只是问了下是哪里人,甚至没有问姓名,关于身份证明、食品生产企业必需的健康证类证件都未提及。   "这两天镇里派人正检查呢,你要是想在这里干活,今天晚上来试一下。"李老板说,隔壁有家调味品生产企业,因为造假问题在春节前被政府部门关停,"他们不光到那家老厂子查,还到这里查,连相邻的其他厂子也查。"为躲避政府部门的检查,他决定从当晚开始夜间开工。   在李老板的办公室内,贴有一张该厂的产品调价通知,写着每桶水的售价:京洲麦饭石1.8元、京洲山泉2元、一品京洲3元、京洲香山(纯)6元、京洲香山(矿)6.5元、奥滢5元。李老板称,除京洲香山是从别的厂子拉过来的,剩下的都是在这里生产。   2月18日下午5点多,李老板带着记者来到车间,这里机器正轰鸣着工作,车间内只有三名工人。两名女工和一名40岁左右的男子正在干活。   李老板说,那名男子姓张,是车间主任(下称张师傅),其中一名女工是老张的媳妇(下称孔大姐),另一名女工姓刘(以下简称小刘),厂子里一共就这几名工人,另外还有两名专门送货的司机。   生产过程   1 刷桶   一池水最少洗出500个桶   张师傅带着记者观摩了一遍厂里的生产流程,贴标-刷桶-包装。如果旧有包装齐全,则直接开始刷桶。碰上收来的桶贴着其他厂子的标,则要揭下来开始换标。   在对一些集中收来的水桶换标时,记者看到,这里聚集了全国各地的四五十个品牌的水桶,既有名牌,也有一些只写着一个手机号作为联系方式、生产地址语焉不详的杂牌。   在两个放满水的深约1米、长1.5米、宽1米的池子里,扔着几个回收来的水桶。小刘和孔大姐正在进行刷洗。张师傅看着记者试刷了一个,马上就开始纠正:"这样刷太慢,要是计件的话,你一天能挣几个钱呀?"   只见张师傅拿起一只水桶,左手摁着桶身,右手用刷子和毛巾围着桶随意擦了几下,然后朝桶里面灌了些水,使劲一摇晃,桶口朝下,将水倒出,"只要桶内没有绿毛就行。"张师傅在一分钟内刷了四五个桶。   记者询问清洗池内是否放了消毒液、洗涤灵之类的消毒液体。小刘说,根本不用放。   她称,虽然有时这些回收来的桶内会有苍蝇、烟头之类的东西,但都是用这里的水简单清洗一下。只有碰上油污较多实在刷不掉的水桶,才使用洗涤灵。而且,无论清洗多少桶,一天都不会换水,只是在下班时才会放掉。   在2月22日夜里,小刘在刷桶时发现,一个桶底部有两个指甲盖大的铁锈,怎么也刷不掉,最后还是放进了待灌装的水桶中,"实在刷不掉的只能这样。"   清洗出的桶,大家只是随意地放在地上,随着清洗出来的水桶越来越多,堆得越来越高,桶就四处东倒西歪,和地上散落的垃圾接触到。   此外,刷洗时,灌进桶里的脏水根本来不及完全倒出来。在灌装时,这些残留的污水大多就会和新水混在一起。   在卧底的六天内,记者统计,最少的一晚刷了约500个桶,最多的一晚刷出约800个桶,而水一直未换。   净化车间 一直没用过   清洗完水桶后,记者以为下一步就是将桶拿到车间烘干消毒。在紧挨着灌装水龙头的地方,有一个写着"千级净化车间""风淋室"的小房子,还有一个窗口写着"水桶出口"字样,但这里却从来没有将桶放进去净化过。   "这都是摆设,做个样子,从来没有用过。"女工小刘说,她来这个厂子一年多时间,也并不知道这个所谓的净化车间是干什么用的。   对此,李老板解释说,这是一台自动灌装设备,已经坏了,所以搁置不用。对于桶装水产品的消毒问题,李老板说,生产出来的水都是已经消过毒了。至于如何消的毒,他并未作过多解释。   2 水源   所用水都是村里自来水   清洗完水桶之后,下一步就是拿到灌装车间直接装水,然后包装贴上防伪码。   李老板毫不讳言,生产所用的水源是村里的自来水,因为怕气温低水管被冻上,这些日子村里每到晚上7点多就会停水,"幸亏我老早在罐里存好了水。这是村里打的180米的深层水源,我们再经过细沙、活性炭、树脂等几道程序的过滤之后,就可以灌装了。"   记者看到,储水车间内有8个约2米高、直径1.5米的储水罐,里面储存有大量自来水。据张师傅说,正常情况下,这8个罐可以灌出500桶水。要是村里自来水停水早了,就只能灌500桶,停得晚了,就可以多灌几百桶。   这些自来水加工出来的水,在桶上的标签上,则写着"来自玉泉山水系"、"天然饮用水"等字样。   3 净化   滤网用了4年多 一直不换   作为新人的记者,在连续几天内都被要求学习灌装。   记者看到,储水车间内竖着4个写着活性炭、树脂字样的白色长条形细高罐体。据张师傅说,这些都是厂里的水处理设备,将水在这里过滤一遍进行软化,然后再流到灌装水的水管中。   记者询问有没有对里面的活性炭、滤网之类进行更换,张师傅说,他在这里干了四年多,从来没有换过。   就此问题,一家在怀柔深山里有生产基地的名牌桶装水外资企业销售负责人王先生解释说,生产纯净水的滤网等设备需要定期更换清洗,只有这样才能保证水质不会出现问题。   且生产桶装水不光是设备的问题,还有重要的是水源。"小型工厂也可以花钱买到设备,但水源选择地要求在周围一公里内是没有人烟的,如此才不会存在污染问题,而且开采的应是深层地下水。"王先生说,不具备条件的企业只能在一些居民区使用自来水或者开采浅表层水源使用,号称矿泉水,其实都是欺骗性宣传。
  • 德国罗威邦PTV1000 原水快速过滤出水浊度监测
    Lovibond德国罗威邦水质分析 PTV1000 自来水原水快速过滤出水浊度监测应用在水源为地表水或受地表水影响的自来水厂中,浊度监测对于保证消毒效率非常重要。Lovibond 新一代 智能在线浊度仪 PTV 1000 在原水快速过滤出水浊度监测中表现出色。荷兰一家自来水厂在长期试验中证实了这一点。原文作者Dr. Heribert Hohmann,Process Technology大部分欧洲国家相关法规(德国,DVGW 技术规则)规定自来水浊度不得超过 0.2 或 0.3 NTU。水的浑浊度会大大削弱消毒效果,包括臭氧消毒。因此过滤系统(快速过滤)通常安装在水处理过程中各个消毒阶段的上游,以减少颗粒负载。在这种过滤阶段,浊度的监测通常是连续的,因为快速过滤器通常十分稳定可靠,出水浊度值远低于 0.1 NTU。Lovibond PTV 1000 智能在线浊度仪非常适合此项超低量程测量任务。PTV 系列的开发团队利用在技术理念、产品设计、光学和应用工程方面 20 多年的经验,开发出创新系统,让用户从日常浊度监测的所有不适中解脱出来。PTV 系列智能在线浊度仪带有特殊除气泡装置(专利保护),清洁维护频率低,水样流速低,并使用 T-CALplus 校准包(Formazin),确保校准液无气泡,快速校验仪器,且用户无需接触化学物质。对于 Lovibond 来说,自然资源的节约和保护与测试结果安全性、可靠性同样重要:PTV 系列智能在线浊度仪的极低耗水特性独1无二。在线浊度仪应用广泛,种类很多。有些仪器适用于监测原水或较高浊度水,尽管技术参数写明测量下限是 0 NTU(理论上不存在),在测试 1 NTU 以下浊度时拟合度不太理想。不过,只要测量值仍然低于饮用水条例 (1 NTU) 要求的浊度范围内,这种弱点通常被认为是可以容忍的。PTV 1000 可准确测定远低于 0.5 NTU 的浊度范围,安全、可靠、实时。Lovibond 在荷兰的合作伙伴在 Gouda 附近的水厂安装了一台 PTV 1000 智能在线浊度仪,将 PTV 1000 的测量结果与实验室测量结果和已安装的其他制造商的浊度计进行了比较。从安装操作、维护和稳定性方面进行了评估。PTV1000 进水压力低,在大气压 (24/7) 下保持进水阀开启,并控制为低流速 60-80 ml/min,此时出水将从排水阀每隔 20-30 秒排出。由于供水时的水压波动较大,为 PTV 1000 安装了一个额外的稳压器,保证进水流量以及测量的浊度值保持非常恒定。该装置通过现有的 0/4-20 mA 模拟接口连接到控制室以显示趋势曲线。可以通过触摸屏或应用程序配置和监控 PTV 1000。 实际测试表明 PTV 1000 具有以下优点 :耗水量极低 - 每月可节省 7 吨水!可靠且极稳定的测量结果仪表结构简单,维修时可轻松拆卸测量模块免维护/低维护,3 个月测试期间无需清洁使用手机或平板电脑上的应用程序轻松读取和更改设置高性价比测量准确性和稳定性在测试期间,测量值与实验室测量值进行了比较,结果非常吻合,偏差始终在先前定义的公差范围内。 水厂检测值旧图:波动的测量值PTV1000 检测值图:非常稳定的测量值上图显示了使用 PTV 1000 前后的典型测量过程。两图基线都是 0.02 NTU,旧图非常明显地显示了浊度测量干扰(测量值的波动,例如由于气泡、压力波动、冷凝、污染等)。PTV 1000 的测量图排除信号干扰,同时显示信号动态,对测量值的评估更清晰明了。除了快速过滤器出水浊度检测,PTV 系列智能在线浊度仪还可用于自来水厂内水处理过程。下图显示了 2020 年春季/初夏在德国测量的渗滤液监测的典型过程。PTV1000 德国自来水厂渗滤液监测图
  • 【新品推介】HHitech和泰Medium EDI系列全触屏一体式纯水/超纯水系统
    HHitech和泰Medium EDI系列全触屏一体式纯水/超纯水系统现已上市发售!Medium EDI 系列,以城市自来水为水源,系统每小时产水量:45-90升,配备全新5.0寸触摸屏控制系统,采用标准的双级反渗透系统工艺(双泵双膜+中间水箱)及EDI技术及模块,可方便快速的连续生产电导率稳定在1-5μs/cm的Ⅲ级纯水、10MΩ.cm(25℃)以上且TOC30ppb*的Ⅱ级纯水、及18.2MΩ.cm(25℃)的超纯水,出水水质完全符合GB/T 6682-2008、GB/T33087-2016、ASTM、CAP、CLSI、EP和USP制定的水质标准。特点与优势全新5.0寸彩色触摸屏动画式菜单,系统信息一览无遗,实现指尖触控的操作新体验3路水质和2路流量监控二级RO、EDI、UP超纯水3路水质实时监控,无需取水即可查看水质2路高精度定量(10-999999ml)、定质(0~18.25MΩ.cm)取水功能优化的标准双级反渗透系统采用双泵双膜及过渡水箱,使系统能耗更低、废水更少,产水质量更稳定先进的EDI技术及模块以优化的运行成本为您提供始终如一的10MΩ.cm(25℃)以上且TOC30ppb*的Ⅱ级纯水全新的一体化超纯化组件优化升级柱体结构,增加交换容量,大限度地降低运行成本,采用原装进口陶氏DOW 树脂,确保产水达18.2MΩ.cm 和较少的TOC 析出内置双水箱内置20升PE水箱和15升压力水桶1只,省却了外置水桶的不便,节省更多实验空间USB接口及存储卡自动记录一年的运行数据,可设定时间范围通过USB接口进行完整的数据导出,整机符合 GLPMedium EDI 纯水机系列Medium EDI 超纯水机系列
  • 地表水采测分离这些技术细节你注意了吗?
    p   国家地表水手工断面采测分离作为我国监测事权上收的重要工作,正在如火如荼的开展,工作的重要性不言而喻,但是成功的关键还是要注重细节。 /p p   2018年1月-3月,中国环境监测总站对各采样公司的采样和现场监测的操作规范性,以及分析测站的质量管理体系运行情况进行了质控检查,发现了一些容易忽略的细节问题,望引起大家的注意。 /p p   1、现场河宽、河深的勘测问题 /p p   一个断面的垂线数和分层数需要根据实际河宽、河深计算确定,随着季节变化,河流或者湖库的宽度深度会有较明显的变化,如果只是死板的依据计划采样,不进行实际勘测,数据就不能反映实际情况,参考性降低。 /p p   2、石油类采样量问题 /p p   石油类采样确实是考验采样技术的重点和难点,也是现场发现问题较多的项目,采样器设计不合理操作困难时有发生,多次反复采样、一次性打水过满、再次采样不更换采样瓶,这些现象都将影响数据的代表性。 /p p   3、采水曝气和沉降问题 /p p   用排空式采水器时从上口倾倒水样、沉降时忽略防尘、沉降后灌装BOD5时出水口在水面上、虹吸管入口端没有固定措施,这些不当行为都为数据带来偏差。铜、铅、锌、镉、铁和锰,指的是溶解态含量,采样后在现场需立即用0.45微米的微孔滤膜过滤,部分采样人员对此规定不熟悉,与其他常规项目同样自然沉降30分钟后再过滤,影响数据的准确性。 /p p   4、温度计位置摆放问题 /p p   部分冷藏箱温度计紧挨冰块放置,不能反映保温性能最差处温度情况,导致温度失真,影响冷藏效果。 /p p   5、记录的填写问题 /p p   部分采样人员认为系统里已经上传了数据,不需要再填写现场记录,部分分析测站也有记录未及时填写或填写不规范的现象,这些记录的缺失和不规范填写将会影响监测数据的溯源。 /p p   6、平行样分装问题 /p p   采集现场平行样时应等体积轮流分装成两份,并分别加入保存剂,禁止装完一份样品再装另一份样品。 /p p   7、电导率数据报出问题 /p p   电导率随温度变化而变化,温度每升高1℃,电导率增加约2%,通常规定25℃为测定电导率的标准温度。 /p p   当测试设备不具有温度修正功能时,需将测定值修正到25℃时的值 若设备具备温度修正功能,需要核实此功能是否开启。 /p p   8、汞的实验室分析问题 /p p   汞的样品分析过程中实验用水、试剂、比色管、消解过程和仪器残留均会带来污染,实验人员应尤其注意操作细节的规范性,避免沾污,并控制实验室空白。 /p p   这些细节问题,希望大家在今后的工作中能够重视,加强培训和学习,更好的做好采测分离工作,确保采测分离的数据质量。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201803/noimg/d7b049bb-2c40-4960-bea0-d204b3b5c4e2.jpg" title=" 采样船.webp.jpg" / img src=" http://img1.17img.cn/17img/images/201803/noimg/bd593431-4a59-4547-bce0-14e04bb359bc.jpg" title=" 采样瓶.webp.jpg" / /p
  • 土壤呼吸 | 2018–2019年大兴安岭北部近地表土壤冻融期森林土壤CO2和CH4通量
    高纬度苔原和针叶林、中纬度阔叶林和草原、高山和 高原地区普遍存在季节性、昼夜性甚至持续数小时的冻融循环。北半球近55%的陆地面积经历季节性冻融,土壤冻融循环持续时间从几天到150天不等。频繁的冻融循环改变了土壤微生物群落结构和代谢,加速土壤有机质的分解,并以温室气体(如CO2、CH4和N2O)或溶解有机碳(DOC)的形式排放。这些过程已成为生态学、冻土学和生物地球化学研究的重点。冻融循环对地表土壤CO2和CH4通量的影响备受关注。一项研究发现,积雪对冬季土壤呼吸的影响是短暂的,厚度变化对CO2通量影响小。了解活动层过程对多年冻土区土壤CO2和CH4动态的响应和反馈至关重要。冻融循环频率和持续时间对高寒地区土壤碳通量具有重要调控作用。不同生态系统在融化期具有较高的CO2和CH4通量,研究表明,在近地表土壤冻结期间CO2通量达到峰值,随后显著下降。春季融化期(20-30天)的甲烷通量占全年总量的11%。本研究在内蒙古自治区大兴安岭生态系统国家野外观测研究站(NFORS-DXAE)进行。该地区具有典型的大陆性季风半干旱气候,多年平均气温为-4.4°C,年蒸发潜力800-1200毫米,年降水量450-550毫米,其中60%集中在7月和8月,降雪期为9月至次年5月,平均降雪厚度约30厘米。实验地块位于海拔820米的北坡落叶松林,主要乔木为兴安落叶松和白桦,平均胸高10 cm,平均树高10±4.90 m。主要灌木为杜香,平均株高0.31±0.07 m,平均植被盖度39±8%。土壤为棕色针叶林土,土层厚度30-40 cm(包括10 cm的腐殖质层),有机质含量42.74±0.92 gkg&minus 1。根据2009-2011年地温数据,活动层厚度为0.5至2.0 m。图1. 内蒙古自治区大兴安岭生态系统国家野外科学观测研究站研究区位于中国东北大兴安岭北部。由于测量系统配套设施通道数量和长度有限,样地被划分为4个子区。为保证测量的可靠性和代表性,样地被划分为16个5×5 m的子区。每个子区随机选择4个子样。在每个子区放置一个点来测定土壤呼吸速率。为此,将一个高10 cm、直径20 cm的PVC土环的一端压入土壤5cm深,并清除表面废弃物。PVC土环在土壤呼吸测量前一周铺设,整个测试过程中PVC土环保持静止。由于该区域降雪较大,为防止土壤呼吸室受到降雪和吹雪的影响,在观测点安装了1×1 m的挡雪设备,并定期或根据需要清除积雪,避免积雪对呼吸室观测的影响,确保观测点仪器环境的安全。本研究采用动态室法观测土壤表面的CO2和CH4通量,使用激光气体分析仪以及SF-3000 系列多通道土壤气体通量测量系统(北京理加联合科技有限公司)进行多通道、长期、连续土壤呼吸观测。土壤CO2通量计算的标准闭合时间为2分钟(120秒),为保证CH4通量测量的准确性,将测量时间延长至3分钟(180秒)。与其他类型的仪器和设备相比,该仪器可实现多点、长时间进行测量,测量数据可实时传输和显示,便于研究人员观察数据的稳定性,快速发现数据采集中的异常。图2. 研究中使用的表层土壤温室气体连续观测系统。图3. 本研究实验地块落叶松林土壤表面CO2通量的月变化。图4. 2018年10-11月和2019年4-5月本研究落叶松林实验地块土壤表面甲烷吸收速率的日变化。图 5. 2018 年 10-11 月和 2019 年 4-5 月本研究根河试验地块甲烷吸收率的月变化。注:(a) CH吸收率的月变化(误差线表示一个标准差);(b) 地表土壤解冻期土壤 CH吸收率变化的箱线图(上边缘表示最大值,下边缘表示最小值)。表1. 2018年10-11月和2019年4-5月根河试验地土壤表面CO2通量、CH4吸收速率、土壤表面温度和土壤表面水蒸气浓度的最佳拟合方程。图 6. 2018 年 10 月至 11 月和 2019 年 4 月至 5 月土壤表面 CO2 流出和CH4 吸收与土壤表面温度和土壤表面水蒸气浓度(气室内)的拟合图。本研究发现,东北大兴安岭森林土壤 CO2 通量呈现单峰型日变化。2018 年 11 月底和 2019 年 4 月初,观测到的 CO2 和 CH4 通量分别小于100 和 &minus 0.1 nmolm&minus 2s&minus 1。在近地表土壤融化期(4 月至 5 月),春季 CO2 释放峰值短暂。土壤冻融循环显著改变了 CO2 的释放速率和 CH4 的吸收速率,但并未显著改变土壤 CO2 和 CH4 通量的日变化模式。在春季近地表土壤冻融期观测到间歇性的土壤 CO2 和 CH4 通量羽流。土壤温度和水分含量波动显著影响近地表土壤冻融期 CO2 和 CH4 通量的变化。这些特征大部分可以通过气室内土壤温度和土壤表面水蒸气的变化来解释。此外,土壤呼吸的 Q10 值在近地表土壤冻融期最大,对土壤温度变化敏感。近地表土壤冻融期累积的 CO2 和 CH4 通量对这些冬季总量的贡献最大。考虑到持续的气候变化可能会极大地改变中国东北森林生态系统的年碳通量(汇或源),更准确地测量、预测和评估未来土壤 CO2 和 CH4 通量的时间模式非常重要。
  • 中国环境状况公报:十大水系水质一半污染
    水安全问题正在成为中华民族的&ldquo 心腹之患&rdquo 。新华社记者为此深入调研,从即日起连续两天播发系列报道,以期引起全社会的高度重视。   这是红色的警讯&mdash &mdash   全国十大水系水质一半污染 国控重点湖泊水质四成污染 31个大型淡水湖泊水质17个污染 9个重要海湾中,辽东湾、渤海湾和胶州湾水质差,长江口、杭州湾、闽江口和珠江口水质极差&hellip &hellip   记者近期深入全国多个省市调研后了解到,伴随人口增加、经济发展和城市化进程加快,水资源短缺、水环境污染、水生态受损情况触目惊心,水安全正在成为新时期经济社会发展的基础性、全局性和战略性问题。   京津冀人均水资源仅286m3   &ldquo 每天早晨先把水缸、水桶添满,洗菜水不敢倒,留着冲厕所。&rdquo 今年下半年的一段时间,北京市通州区马驹桥镇温馨家园等多个小区分时段停水,居民刘女士让儿子特意买几个桶专门储水。   水厂表示,今年雨水少,区域内新楼盘入住人口增加,地下水位降低,供水严重不足。   马驹桥的这一幕,是日趋严峻的城市缺水状况的缩影。   &ldquo 水资源严重短缺、水环境严重污染、水生态严重受损,三者交互影响、彼此叠加。&rdquo 环境保护部等七部门组成的联合调研组在对京津冀地区生态环境保护问题开展调研后,如此评价当前京津冀地区的水安全。   史上,京津冀土肥水美。而今,呈现在调查者眼中的是怎样的情景呢?   &mdash &mdash 人均水资源仅286立方米,远低于国际公认的人均500立方米的&ldquo 极度缺水标准&rdquo 。地下水严重超采,形成了全国最大的地下水漏斗区   &mdash &mdash 地表水劣V类(丧失使用功能的水)断面比例达30%以上,受污染的地下水占三分之一   &mdash &mdash 平原区河流普遍断流,湿地萎缩,功能衰退。   海河,流经京畿,滋养一方。但2013年调查,其主要支流皆重度污染,Ⅲ类以上污染水超过60%。   全国六成地下水水质较差极差   京津冀如此,全国亦然。《2013中国环境状况公报》显示,全国地表水总体轻度污染,其中黄河、淮河、海河、辽河、松花江五大水系水质污染,全国4778个地下水监测点中,约六成水质较差和极差。   再看湖泊。同一份公报显示,国控重点湖泊中,水质为污染级的占39.3%。31个大型淡水湖泊中,17个为中度污染或轻度污染,白洋淀、阳澄湖、鄱阳湖、洞庭湖、镜泊湖赫然在列,滇池水质重度污染。而且,大量天然湖泊消失或大面积缩减,&ldquo 第一大淡水湖&rdquo 鄱阳湖和&ldquo 气蒸云梦泽&rdquo 的洞庭湖湖面大幅缩小,&ldquo 水情即省情&rdquo 的湖北湖泊面积锐减、湿地萎缩。   现实是沉重的&mdash &mdash 全国657个城市中,有300多个属于联合国人居署评价标准的&ldquo 严重缺水&rdquo 和&ldquo 缺水&rdquo 城市。   趋势是严峻的&mdash &mdash 水污染已由支流向主干延伸,由城市向农村蔓延,由地表水向地下水渗透,由陆地向海域发展。   &ldquo 目前,全国年用水总量近6200亿立方米,正常年份缺水500多亿立方米。随着经济社会发展和全球气候变化影响加剧,水资源供需矛盾将更加尖锐。&rdquo 水利部水资源管理司副司长陈明说。   世界银行在一份报告中发出警告:用水需求与有限供给之间差距的扩大,以及大面积污染造成的水质恶化,有可能在中国引发一场严重的缺水危机。这一警告,绝非危言耸听,它正在变成现实威胁。   湖北经济学院院长吕忠梅,从事环境法研究30多年。她一针见血地指出:&ldquo 雾霾大范围发生,人们经常碰到,因此被称作国家的&lsquo 心肺之患&rsquo 。而水安全问题,正在构成中华民族的&lsquo 心腹之患&rsquo 。&rdquo   &ldquo 扭曲的义利观&rdquo 是重要动因   河北沧县小朱庄村村民朱建勇,看到从地下抽上来的水散发着异味,并呈铁红色,惊慌莫名。村里一家养殖场的主人称,数百只鸡因饮用这样的水相继死亡。   监测显示,村子附近的建新化工厂不仅向河流排污,还向周边沟渠倾倒废渣。这个发生在去年4月的生态事件,虽已过去一年多,但村民至今想来,仍心有余悸。   &ldquo 过去我们沧州挖几米深就能得到地下水,而现在一些地方要深入地下几百米才能抽到水,有时即使抽到也是污染水。&rdquo 当地一位基层干部说。   只顾眼前利益、注重一己之私&mdash &mdash &ldquo 扭曲的义利观&rdquo 是造成耗水过度、水质污染的重要社会心理动因。   盲目拉高速度、片面追求GDP&mdash &mdash &ldquo 被污染的政绩观和发展观&rdquo 是危害水安全的重要现实&ldquo 推手&rdquo 。   环境保护部环境规划院副院长兼总工王金南说:&ldquo 在水环境形势极其严峻的海河流域,各地都在发展钢铁、煤炭、化工、建材、电力、造纸等高耗能、高污染产业,只顾发展,不管环境。&rdquo   水污染加剧多半是人为因素造成的,正是由于人们向大自然无度索取,使得本已稀缺和变脏的水,变得更稀缺、更脏。   根据《全国水资源综合规划》,在全国主要江河湖库划定的6834个水功能区中,有33%的水功能区化学需氧量或氨氮现状污染物入河量超过其纳污能力,且为其纳污能力的4-5倍,部分河流(段)甚至高达13倍。
  • 清华大学钢桶无损测量系统购置项目公开招标
    清华大学钢桶无损测量系统购置项目公开招标。该项目预算380万元,为退役形成的标准放射性钢桶无损检测系统的设计、制造,主要实施内容包括调研、关键设备选型、设计、制造和安装调试等。详情如下:清华大学钢桶无损测量系统购置项目项目编号:BIECC-22ZB0308/清设招第2022055号预算金额:380万元(人民币)采购需求:本项目为退役形成的标准放射性钢桶无损检测系统的设计、制造,主要实施内容包括调研、关键设备选型、设计、制造和安装调试等。在对桶装放射性废物进行外运及交接前,需详细描述桶内废物信息,包括废物质量、污染核素、活度浓度、废物包活度、α核素总活度、废物包表面污染水平、废物包最大γ剂量率等。因此,需对装有低放废物的钢桶进行非破坏性测量。具体要求详见招标文件第四章。序号设备/部件名称单位数量1高纯锗γ谱仪系统1套2废物桶表面剂量率测量系统1套3称重及测量旋转台1套4废物桶吊装装置1套5电气及控制系统1套6监控摄像系统1套7测量及控制软件系统1套合同履行期限:2022年10月1日前完成交付、2022年10月31日前完成安装、调试、标定工作。本项目不接受联合体投标。获取招标文件:时间:2022年5月12日至2022年5月19日,每天上午9:30至11:30,下午13:30至16:30。地点:北京市海淀区学院路30号科大天工大厦A座608室(北四环学院桥东北角)方式:本项目不接受现场购买,只接受电汇或网银购买标书售价:¥500元,本公告包含的招标文件售价总和提交投标文件截止时间、开标时间和地点:提交投标文件截止时间:2022年6月02日14点00分开标时间:2022年6月2日14点00分地点:北京市海淀区学院路30号科大天工大厦A座511会议室(北四环学院桥东北角)对本次招标提出询问,请按以下方式联系:1. 采购人信息名称:清华大学地址:北京市海淀区清华大学,邮编100084联系方式:左老师010-897960402. 采购代理机构信息名称:北京国际工程咨询有限公司地址:北京市海淀区学院路30号科大天工大厦A座611联系方式:王蕾蕾、杨梦雪 010-823735323. 项目联系方式项目联系人:王蕾蕾、杨梦雪电话:010-82373532附件:招标公告-0308清华大学钢桶无损测量系统购置项目.docx
  • 990万!某生态环境监测中心站求购地表水自动监测系统
    p   湖北诚诺项目管理有限公司受湖北省生态环境监测中心站的委托,就其湖北省生态环境监测中心站2020年湖北省地表水自动监测系统运行维护项目组织公开招标,欢迎符合条件的投标人参加投标。 /p p    strong 一、项目概况 /strong /p p   1、采购人:湖北省生态环境监测中心站 /p p   2、项目名称:湖北省生态环境监测中心站2020年湖北省地表水自动监测系统运行维护项目 /p p   3、招标编号:HBCN-202006-078 /p p   4、招标内容:本次采购共分2个包。采购内容:一包:地表水水质自动监测站及联网管理平台改造升级 二包:湖北省地表水自动监测运维检查。采购清单详见第四章。 /p p   5、采购总预算价:990万元,其中一包:940万元,二包:50万元。超预算价做废标处理。 /p p   6、关于多包的规定:本项目只能投一个包,不可多包投标。   /p p    strong 二、招标文件获取方式 /strong /p p   (1)发售时间、地点及发售方式:招标文件从2020年6月3日至2020年6月9日(上午8:30-12:00,下午14:30-17:00,节假日除外)在湖北诚诺项目管理有限公司现场公开出售 地址:武汉市洪山区欢乐大道9号正堂时代写字楼1006室,招标文件费为每套人民币400元,售后不退,不办理邮寄。 /p p   (2)报名购买招标文件时需提供资料:营业执照副本、组织机构代码证副本、税务登记证副本或三证合一的营业执照副本 中国裁判文书网截图 信用信息查询记录截图(信用中国、中国政府采购网) 近三年没有重大违法记录的承诺书 法定代表人证明或法定代表人授权委托书及身份证。 /p p   (上述资料验原件留复印件,复印件上需加盖公章并装订成册)。 /p p    strong 三、招标公告期限 /strong /p p   2020年6月3日上午8:30起至2020年6月9日17:00止 /p p    strong 四、投标文件的递交截止时间和开标时间及地址 /strong /p p   递交投标文件截止时间及开标时间:2020年6月28日下午14:30整(北京时间) /p p   递交地点:湖北诚诺项目管理有限公司 /p p   地 址:武汉市洪山区欢乐大道9号正堂时代写字楼1005室,届时敬请参加投标的代表携带法人代表授权书及被授权人身份证(原件)出席开标仪式。 /p p    strong 五、采购人联系方式: /strong /p p   采购单位:湖北省生态环境监测中心站 /p p   地 址:湖北省武汉市武昌区八一路338号 /p p   联 系 人: 彭丹 /p p   电 话:027-87883881 /p p    strong 六、代理机构联系方式 /strong /p p   代理机构:湖北诚诺项目管理有限公司 /p p   地 址:武汉市洪山区欢乐大道9号正堂时代写字楼1006室 /p p   联 系 人:张全雷 /p p   电 话:17702724456 027-88721008 /p
  • 赛多利斯新纯水系统即将惊艳亮相China-Pharm
    赛多利斯新纯水系统即将惊艳亮相China-Pharm 2012年 9月24日 10:00-10:30赛多利斯科学仪器有限公司将在第十七届中国国际医药(工业)展览会暨技术交流会(China-pharm2012)上召开新一代的纯水机arium Advance RO和一体机arium comfort I的新产品发布会。 赛多利斯是实验室产品和服务的整体解决方案提供者,纯水机是现代实验室装备的重要部分,赛多利斯多年来一直致力于系列产品的开发,不断用创新的理念推出更符合行业需求的顶级产品。此次新产品发布会上将举行新产品的揭幕仪式并对新纯水系统中革命性技术的运用及由此给您带来的安全、便利等诸多优势做现场介绍。例如,赛多利斯此次在纯水机的主要创新之一在于,应用生物制药一次性技术的理念将一次性灭菌袋代替传统的储水桶用于储水,从而帮您有效降低了污染的可能,也省掉了定期消毒、清洗的麻烦。 欢迎大家准时莅临国家会议中心一层大厅德国展团3009赛多利斯科学仪器有限公司的展台感受我们的现场活动。亲临现场的前30位观众将会获得精美U盘一个,先到先得。同时与我们的新产品拍照更有机会参加&ldquo 赛多利斯,赛之旅&rdquo 活动,具体详情请届时查看公司相关宣传资料。 制作 赛多利斯科学仪器(北京)有限公司 电话:010-80426424 传真:010-80426488 联系人:于小姐 Email: ssilsb@sartorius.com Web: www.sartorius.com.cn 持打印出来的本邮件亲临现场的前30位观众,将会获得精美U盘一个,先到先得。同时与我们的新产品拍照更有机会参加“赛多利斯,赛之旅”活动,具体详情请届时查看公司相关宣传资料。
  • 张承青电镜实验室环境约稿[3]:低频电磁屏蔽实践
    为促进电子显微学研究、电镜应用技术交流,打破时空壁垒,仪器信息网邀请电子显微学领域研究、技术、应用专家,以约稿分享形式,与大家共享电子显微学相关研究、技术、应用进展及经验等。同时,每期约稿将在仪器信息网社区电子显微镜版块发布对应互动贴,便于约稿专家、网友线上沟通互动。专家约稿招募:若您有电子显微学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:yanglz@instrument.com.cn)。本期将分享张承青老师为大家整理的关于电镜实验室环境对电镜的影响的系列约稿经验分享,以下为系列之三,以飨读者。(本文经授权发布,分享内容为作者个人观点, 仅供读者学习参考,不代表本网观点)系列之三 低频电磁屏蔽实践《低频电磁屏蔽实践》一文第一稿于2007年11月完成,曾被不知名朋友鼓捣到百度上置顶数年(未署名),本篇主要内容来自该文。此次经补充修改,第一次署名。孔乙己有名言:偷书不算偷,我抄自己的当然更不算啦。怕产生误解,特此说明一下。这里我们讨论一下低频电磁屏蔽的机理及推导计算(以下不加说明均指磁路分流法),和在实际工作中必须要加以注意的事项。对“感生反相电磁场法”感兴趣的朋友,请参见本系列之五《几种改善电磁环境方法比较》。许多“专业文献”在分析低频电磁屏蔽机理的机理时套用了中高频电磁屏蔽的理念和计算方法,致使计算和设计与实际结果偏差很大。有些中高频电磁屏蔽理念被盲目照搬到低频领域,造成不少误解、产生不少浪费和失误。众所周知,电磁波是磁场-电场交替传播的,既有电性又有磁性。所以往往很自然地推导出电磁波既可以用电场来度量,也可以用磁场来度量。可是这必需要做具体讨论。实际上泛泛谈论“电磁波”对讨论基本物理原理而言固然没错,但实际工作中,还必须结合频率来考虑。在频率趋于0时(频率等于零时,那就是直流磁场啦),电磁波的磁场分量趋强,电场分量渐弱;在频率升高时,电场分量趋强而磁场分量减弱。这是一个渐变的过程,没有一个明显的转变点。一般从零到几千赫兹时,用磁场分量可以较好地表征、度量和计算,所以一般我们用“高斯”或“特斯拉”做场强的单位;而在100kHz以上时,用电场分量表征比较好,这时就用伏特/米来做场强的单位。对于低频电磁环境,直截了当从减弱磁场分量入手应该是一个好办法。下面重点讨论屏蔽体内体积为40~120m3,屏蔽前磁场强度在0.5~50mGauss p-p(毫高斯 峰-峰值) 范围的低频(0~300Hz)电磁场屏蔽的实际应用(一般电镜实验室环境大致就是这样的)。考虑到性价比,屏蔽体材料如无特殊情况,一般应选择低碳钢板 Q195(旧牌号为A3)。 我们先来建立一个数学模型:1.计算式推导因为低频电磁波的能量主要由磁场能量构成,所以我们可以使用高导磁材料来提供磁旁路通道以降低屏蔽体内部的磁通密度,并借用并联分流电路的分析方法来推导磁路并联旁路的计算式。这里有以下一些定义:Ho: 外磁场强度Hi: 屏蔽内空间的磁场强度Hs: 屏蔽体内磁场强度A: 磁力线穿过屏蔽体的面积 A=L×WΦo:空气导磁率Φs:屏蔽材料导磁率Ro: 屏蔽内空间的磁阻Rs: 屏蔽材料的磁阻L: 屏蔽体长度W: 屏蔽体宽度h: 屏蔽体高度(亦即磁通道长度) b: 屏蔽体厚度由示意图一可以得到以下二式Ro=h/( A×Φo)=h/(L×W×Φo) (1)Rs=h/(2b×W+2b×L)Φs (2)由等效电路图二可以得到下式Rs= Hi×Ro/(Ho- Hi) (3)将(1)、(2)代入(3),整理后得到屏蔽体厚度b的计算式(4) b=L×W×Φo(Ho-Hi)/ (W+L) 2Φs Hi (4)注意:在(4) 式中磁通道长度h已在整理时约去,在实际计算中Φo、Φs 、Ho、Hi等物理单位也将约去,我们只需注意长度单位一致即可。由(4)式可以看出,屏蔽效果与屏蔽材料的导磁率、厚度以及屏蔽体的大小有关。屏蔽材料导磁率越高、屏蔽材料越厚则磁阻越小、涡流损耗越大,屏蔽效果越好;在导磁率、厚度等相同的情况下,屏蔽体积越大屏效越差。因为整体材料的涡流损耗比多层叠加(总厚度相同)的涡流损耗要大,所以如无特殊情况不宜选用薄的多层材料而选用厚的单层材料。2.计算式校验我们用(4)式计算并取Φo=1, L=5m,W=4m,Φs=4000,计算结果与实测数据(收集这些数据花了好几个月呢)对照比较(参见表1),发现差别很大:表1厚度(mm) 场强(%)1.5234568外磁场强度100100100100100100100实测内磁场强度60~6545~50~35~27~22~168~12计算内磁场强度18.513.99.266.945.564.633.47注:1.外磁场强度为5~20mGaussp-p。 2.为便于比较将计算数值及实测数值都归算为百分数。 3.实测值系由不同条件下的多次测试折算而得。由于各次的测试条件不完全相同,所以只能取其大约平均数。事实上,由于各种因素的影响,试图建立一个简单的数学模型直接去分析和计算低频电磁屏蔽的效果是相当困难的。通过分析,发现计算与实测相比偏差较大主要有两方面的原因。并联分流电路的函数关系是线性的,而在磁路中,导磁率、磁通密度、涡流损耗等都不是完全线性关联,许多参数互为非线性函数关系(只是在某些区间线性度较好而已)。我们在推导磁路并联旁路的机理时,为避免繁杂的计算,忽略或近似了一些参数,简化了一些条件,把磁路线性化后计算。这些因素是造成计算精度差的主要原因。另一方面,商品低碳钢板的规格一般为1.22m×2.44m,按一个长×宽×高为5×4×3m3的房间来算,焊接缝至少五六十条,即便是全部满焊,焊缝厚度也往往小于钢板的厚度。另外屏蔽体上难免有开口和间隙,这些因素造成的共同结果就是:屏蔽体磁阻增大,整体导磁率下降。用并联分流电路的分析方法推导出的磁路屏蔽计算式必须加以修正才能接近实际情况。3.修正后的计算公式在(4)式基础上,我们引入修正系数μ,且考虑到空气导磁率近似为1,得到(5)式b=μ〔L×W(Ho-Hi)/ (W+L) 2Φs Hi 〕 (5)μ在3.2~4.0之间选取。屏蔽体体积小、工艺水平高可取小值,反之取较大值为好。我们用(5)式取μ=3.4计算出的结果与实测数据对照比较(参见表2),啊哈,这下吻合度基本可以满意。表2厚度(mm)场强(%)1.5234568外磁场强度100100100100100100100实测内磁场强度60~6545~50~35~27~22~168~12计算内磁场强度62.947.231.523.618.915.711.8注:其它情况与表1相同。必须指出的是,多次测试数据表明,虽然(5)式计算结果与多次的现场实测结果吻合度较高,但后来也发现个别相差较大的实例,究其原因是属于现场施工的问题。以下是在现场施工中可能发生的几种情况:1.个别部位(如门)用了薄钢板;2.钢板没有连续焊接且拼接缝过大;3.钢板焊缝深度不足,焊缝处导磁率变小,形成多处“瓶颈”;4.屏蔽体在设备基础部位开口过大且波导口处理不当;5.随意缩短波导管的长度或加工时有偷工减料现象;6.波导管壁厚过小;7.屏蔽体多点接地致使屏蔽材料中有不均匀电流;8.屏蔽体与电源中性线相连。一两处小小疏忽就会造成屏蔽效果严重劣化。这有点类似于“水桶理论” :水桶的容量取决于最短的那块木板。对于这类隐蔽项目,质量往往由工艺保证。所以在选择一个可靠的施工单位、严格遵照设计工艺要求、加强现场施工监理、实施分阶段验收等方面,都是一定要引起高度注意的。屏蔽体的开口设计:设计一个屏蔽体,一定会碰到开口问题。常见开口设计的理论方法大多难以在低频磁屏蔽设计中直接应用。下面以一个房间的屏蔽设计为例来讨论。1.小型开口房间内安装的被屏蔽设备,一般都需要供应动力、能源和冷却水等等。这些辅助设施大多位于屏蔽室之外,通过进出水管、进排气管和电缆连接进来。我们可以将这些管道和电缆适当集中,统一经由一个或数个小孔穿过屏蔽体。小孔可用与屏蔽体相同的材料做成所谓 “波导口”,长径比为一般认为至少要达到3~4﹕1(现场条件允许的话长些更好)。例如小孔直径为80mm,则长度至少为240~320mm。2.中型开口空调的通风口、换气扇的进排气口等直径(或者正方形、长方形的边长)一般在400~600mm左右,这样算来波导口的长度将达到1200~2400mm,这在实际施工中是无法承受的。这时可以用栅格将原来的开口分隔为几个同样大小的小口。例如将一个400×400mm的进风口分隔为九个等大的栅格,则长度由1200~1600mm减少为400~530mm(栅格增加的风阻很小,可以忽略不计)。设计和加工时注意以下几点:1)栅格的材料与屏蔽体相同,不要随意减小材料的厚度;2)栅格的截面尽量接近正方形;3)在长度可以接受的情况下,尽量减少栅格的数量,以减少加工难度和风阻;4)栅格各处都要连续焊接,以免磁阻增大;5)各个开口接缝处,可以增加硅钢板就,以增加导磁性。3.可关闭的大型开口一般房间的门窗等开口都在1m×2m以至更大,这时应该依照门窗(均为与屏蔽体同样的材料制成)关闭后的非导磁间隙来设计波导口。设门窗关闭后的非导磁间隙为5mm(这在技术上并不困难,个别难以处理的地方可以加道折边),则波导口的长度为15~20mm。考虑到间隙是狭长的,这个长度尽量长些为好。注意这里的波导口并不是只由门窗的框构成,在所有的非导磁间隙处都要有一定厚度的折边,保证波导口的长度。为保证特殊情况下的安全撤离,屏蔽室的门框应特别加强,屏蔽门最好向外开启。下面有一个实际设计的例子:房间的长、宽、高分别为5米、4米和3.3米,原磁场强度x=10mGauss,y=8mGauss,z=12mGauss,试设计一低频电磁屏蔽,要求屏蔽体内任一方向的磁场强度小于2mGauss。参见图三。1.选用商品低碳钢板,Φs=4000,规格为1.22m×2.44m;2.按照(5)式分别从x、y、z三个方向来计算钢板厚度:μ取3.8,L×W分别以条件所给的长、宽、高代入,且与x、y、z等方向的原磁场强度对应。bx=3.8〔3.3m×4m×(10mGauss -2mGauss)/(4m+3.3m) 2×4000×2mGauss〕 =3.43mmby=3.8〔3.3m×5m×(8mGauss -2mGauss)/(5m+3.3m) 2×4000×2mGauss〕 =2.83mmbz=3.8〔5m×4m×(12mGauss -2mGauss)/(4m+5m) 2×4000×2mGauss〕 =5.28mm (若取长宽分别为10、6米,则可计算得b=2280/56000=8.91mm)全部钢板厚度至少为6mm(为防止环境磁场变化留有裕量亦可选用8~10mm),单层。全部焊缝要求连续焊接,并尽量使焊缝深度接近母材厚度。3.波导口处理(略。参见屏蔽体的开口设计)。以上实例完工后检测,完全达到设计要求。需要注意的是:由于磁屏蔽不能改善DC干扰环境,在需要改善DC电磁干扰环境时,需与具有消除DC功能的主动式消磁器配合使用。另有一种情况,对于电源线、变压器等产生电磁干扰的,也用铁管铁盒套住,是不是也可以改善呢?千万不要!多地多处的多次测试证明,电源线用铁管套住后磁场往往不会减少反而增大,似乎可以解释为这是加大了“源”的体积,提高了磁场发散效率。2020.10张承青作者简介作者张承青,退休前在某电镜公司工作多年,曾经做过约两千个(次)电镜环境调查、测试,参与多个电镜实验室设计及改造设计规划,在低频电磁环境改善和低频振动改善等方面有些体会,迄今仍在这些方面继续探索。附1:张承青系列约稿互动贴链接(点击留言,与张老师留言互动): https://bbs.instrument.com.cn/topic/7655934_1附2:张承青系列约稿发布回顾拟定主题发布时间文章链接序言 电镜实验室环境对电镜的影响2020年10月13日链接系列之一 电子显微镜实验室环境调查的必要性2020年10月15日链接系列之二 电镜实验室的电磁环境改善2020年10月20日链接系列之三 低 频 电 磁 屏 蔽 实 践2020年10月22日链接系列之四 主动式低频消磁系统2020年10月27日链接系列之五 几种改善电磁环境方法比较2020年10月29日链接系列之六 低频振动环境改善2020年11月3日链接系列之七 谈谈电子显微镜的接地2020年11月5日链接系列之八 温度湿度和风速噪声2020年11月11日链接… … … … … … 附3:相关专家系列约稿安徽大学林中清扫描电镜系列约稿
  • 《国家地表水水质自动监测站运行维护管理实施细则(试行)》等六项文件印发
    p   为推动完善国家地表水水质自动监测监测技术和管理体系的建设,规范地表水水质自动监测站运行维护的管理及实施技术要求,中国环境监测总站制定了《国家地表水水质自动监测站运行维护管理实施细则(试行)》、《地表水水质自动监测站站房及采排水技术要求(试行)》、《地表水水质自动监测站安装验收技术要求(试行)》、《地表水水质自动监测站运行维护技术要求(试行)》、《地表水自动监测仪器通信协议技术要求(试行)》和《地表水自动监测系统通信协议技术要求(试行)》六项文件。 /p p   详情如下: /p p style=" line-height: 16px "    img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / span style=" text-decoration: underline color: rgb(0, 112, 192) font-family: arial, helvetica, sans-serif font-size: 16px " a style=" font-size: 12px text-decoration: underline font-family: 宋体, SimSun color: rgb(0, 112, 192) " href=" https://img1.17img.cn/17img/files/202004/attachment/afc5d779-dd64-4a4a-8405-30b6cde758f4.pdf" title=" 附件1:国家地表水水质自动监测站运行维护管理实施细则(试行).pdf" 附件1:国家地表水水质自动监测站运行维护管理实施细则(试行).pdf /a /span /p p   本细则规定了运维机构在水站运维中应履行的相关职责和义务,适用于国家地表水环境质量监测网水质自动监测站(以下简称国控水站)的运行管理。各省(区、市)对本行政区域内的省控、市控水站的运行管理可参照执行。 /p p style=" line-height: 16px "    img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / span style=" text-decoration: underline font-family: 宋体, SimSun color: rgb(0, 112, 192) font-size: 16px " a style=" font-size: 12px text-decoration: underline font-family: 宋体, SimSun color: rgb(0, 112, 192) " href=" https://img1.17img.cn/17img/files/202004/attachment/be01f875-df8a-42a9-ab71-5aef6876ff0f.pdf" title=" 附件2:地表水水质自动监测站站房及采排水技术要求(试行).pdf" 附件2:地表水水质自动监测站站房及采排水技术要求(试行).pdf /a /span /p p   本要求明确了地表水水质自动监测站站房及采排水单元建设、验收及运行维护等技术要求。本规范适用于固定式、简易式、小型式和水上固定平台等地表水水质自动监测站站房及采排水的建设、验收及运行维护。 /p p style=" line-height: 16px "    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / span style=" font-size: 12px text-decoration-line: underline font-family: 宋体, SimSun color: rgb(0, 112, 192) " a style=" color: rgb(0, 112, 192) " href=" https://img1.17img.cn/17img/files/202004/attachment/bd4f0c85-7ec6-450c-bb94-cdd65900b29c.pdf" title=" 附件3:地表水水质自动监测站安装验收技术要求(试行).pdf" 附件3:地表水水质自动监测站安装验收技术要求(试行).pdf /a /span /p p style=" margin-bottom: 10px line-height: 1.5em "   本要求明确了水质自动监测站系统组成、仪器设备安装条件核查、仪器设备安装、系统调试、试运行、验收、档案与记录等技术要求,适用于固定式、简易式、小型式、水上固定平台和浮船式等地表水水质自动监测站的安装、调试、试运行及验收。 /p p style=" line-height: 16px "    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / span style=" text-decoration-line: underline font-size: 12px font-family: 宋体, SimSun color: rgb(0, 112, 192) " a href=" https://img1.17img.cn/17img/files/202004/attachment/8d0c4a25-f52e-4cb1-8dac-9d91aa8b9d6b.pdf" title=" 附件4:地表水水质自动监测站运行维护技术要求(试行).pdf" style=" color: rgb(0, 112, 192) " 附件4:地表水水质自动监测站运行维护技术要求(试行).pdf /a /span /p p   本要求明确了固定式、简易式、小型式和浮船式水质自动监测站(以下简称水站)运行维护、质量保证与质量控制措施和运行记录等技术要求。 /p p style=" line-height: 16px "    img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / span style=" font-size: 12px text-decoration: underline font-family: 宋体, SimSun color: rgb(0, 112, 192) " a style=" font-size: 12px text-decoration: underline font-family: 宋体, SimSun color: rgb(0, 112, 192) " href=" https://img1.17img.cn/17img/files/202004/attachment/babb9d8e-9c54-441a-bcb0-4e1139f37b07.pdf" title=" 附件5:地表水自动监测仪器通信协议技术规定(试行).pdf" 附件5:地表水自动监测仪器通信协议技术规定(试行).pdf /a /span /p p   本技术要求明确了地表水自动监测站点现场数据采集传输仪与在线监测仪器之间的数据传输通信方式及通信过程,制定了监测设备之间交互通信的技术实现方式, 定义和规范了相关的名词定义及信息编码, 适用于固定式,简易式,小型式,水站固定平台和浮船式等地表水自动监测站现场端设备数据采集及远程控制的通信要求。 /p p style=" line-height: 16px "    img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / span style=" font-size: 12px text-decoration: underline font-family: 宋体, SimSun color: rgb(0, 112, 192) " a style=" font-size: 12px text-decoration: underline font-family: 宋体, SimSun color: rgb(0, 112, 192) " href=" https://img1.17img.cn/17img/files/202004/attachment/7c440661-b1dd-4851-aabf-e69a698a95a6.pdf" title=" 附件6:地表水自动监测系统通信协议技术规定(试行).pdf" 附件6:地表水自动监测系统通信协议技术规定(试行).pdf /a /span /p p   本技术要求明确了地表水水质自动监测站与数据监测运维管理平台之间的数据传输通信方式及通信过程,制定了远程平台和现场端交互通信的技术实现方式, 定义和规范了相关的名词定义及信息编码, 适用于固定式,简易式,小型式,水站固定平台和浮船式等地表水自动监测站现场和对应的数据监测运维管理平台数据交互及远程控制的通信要求。 /p
  • 精馏分离学科创始人余国琮院士逝世
    中国共产党的亲密朋友,忠诚的爱国民主人士,第七届、八届全国政协常务委员,政协天津市第九届委员会副主席,民进中央第五届、六届、七届常委,民进天津市第四届、五届、六届委员会副主委,第七届委员会主委,第八届、九届委员会名誉主委,中国科学院院士,著名化工专家,天津大学教授余国琮同志因病医治无效,于2022年4月6日12时在天津逝世,享年100岁。余国琮同志1922年11月出生于广东省广州市,1943年毕业于西南联合大学化工系,1945年起先后在美国密歇根大学、匹兹堡大学攻读硕士、博士学位,毕业后在匹兹堡大学任教,1949年在美国参加留美科学工作者协会并担任第一届理事,1950年入选美国科学家名录,同年夏冲破重重阻力,毅然返回祖国,在北方交通大学唐山工学院化工系工作,是首批留美归来学者之一。1952年起在天津大学化工系工作,1953年加入中国民主促进会,历任天津大学化工机械教研室主任,化工系、机械系副主任,化学工程研究所所长、名誉所长,天津大学化工学院名誉院长,精馏技术国家工程研究中心技术委员会主任。1991年当选为中国科学院院士。余国琮同志是我国精馏分离学科创始人、现代工业精馏技术的先行者、化工分离工程科学的开拓者,长期从事化工分离科学与工程研究,在精馏技术基础研究、成果转化和产业化领域做了系统性、开创性工作。他提出了较完整的不稳态蒸馏理论和浓缩重水的“两塔法”,解决了重水分离的关键问题,为新中国核技术起步和“两弹一星”突破作出了重要贡献。他面向我国经济建设重大需求,开展大型工业精馏塔新技术研究,奠定了现代精馏技术的理论基础,形成了“具有新型塔内件的高效填料塔技术”,完全打破了国外技术的垄断,有力促进了我国石化工业跨越式发展。他致力于化工基础理论研究,提出汽液平衡组成与温度关系理论的“余-库”方程,开创了计算传质学新研究领域,引领了化工分离学科领域发展。他是我国杰出教育家,是我国首批博士生导师,多年来坚持在教学一线教书育人,先后培养了博士生、硕士生近百人,为我国化工领域输送了大批专业人才。曾获得全国科学大会奖、国家科技进步奖、何梁何利基金科学与技术进步奖、国家级教学成果一等奖等奖项,并荣获全国五一劳动奖章和全国优秀科研工作者、天津市特等劳动模范等荣誉称号。余国琮同志的一生是爱国的一生、奋斗的一生、奉献的一生。他热爱祖国、追求进步,为人师表、治学严谨,严于律己、平易近人,把毕生精力献给了党和人民的伟大事业。他的逝世,使我们失去了一位化工泰斗和慈祥的师长,是我国化工界、高等教育界和天津大学的重大损失。我们将化悲痛为力量,学习弘扬余国琮同志的高尚品德和行为风范,继续把天津大学的各项事业推向前进,为加快建设中国特色、天大品格的世界一流大学而努力奋斗!遵照余国琮同志本人及家属意愿,丧事一切从简。告别仪式定于4月8日(星期五)上午9时在天津市第一殡仪馆滨河厅举行。特此讣告。
  • 维赛仪器推出水位测量新品– Level Scout 水位跟踪者
    作为世界上知名的水质和流速流量测量仪器的供货商,维赛仪器(YSI)致力于水资源和环境生态保护事业。在不断推出针对地表水测量的水质、水量和流速仪器的同时,YSI推出了针对地下水水位测量的仪器 —— Level Scout 水位跟踪者。进一步丰富了YSI的产品线,为水环境的测量、监测、研究等领域的用户提供了新的工具。 Level Scout应用高精度的水位压力传感器技术,具有测量准确,坚固可靠等优点。其水位量程高达210米,误差仅为全量程的± 0.05%(水位高于3米时)。并具有两种大气压补偿装置可供选择:透气式补偿和非透气式配合气压记录仪(可选)。外壳可以选用钛合金或316号不锈钢,IP68防护等级。可储存多达600,000个数据记录,内置电池寿命可达三年。并可以线性、线性平均、事件触发、对数式多种方式进行采样。接口久经野外工作环境的考验,结实而耐用,可持续多年自动运行。 YSI Level Scout 数据监控软件用于管理数据,可同时运行、监控传感器达16套,通过串行接口或多路网络接口实现数据通信。通过简单地设置,实时或预设采集和显示数据;同时显示数据表格和图形;测量数据易于导出,可转换成Excel等格式等。 应用领域:地下水监测、水资源管理、研究、测井和含水层测量、土壤蒸气提取测试以及明渠、槽位等的测量。
  • 地表水总磷现场检测前处理介绍
    一、总磷及其前处理介绍水体富营养化造成的水生态系统问题是地表水等常见危害。而水体富营养化主要是磷、氮等物质促使藻类和其他水生生物繁殖迅猛,使水体透明度、溶解氧等指标异常,造成地表水水质超标,引起生态危害。生态环保部公布的《全国地表水质量状况》中指出总磷也是我国地表水主要污染指标之一。环保总站引发的《地表水总磷现场前处理技术规范(试行)》通知指出:总磷在测试前需先进行样品处理后再采集检测总磷指标。而原水处理参照的重要指标就是浊度值。例如一般水体,当遇到藻类聚集先进行63微米过滤筛网然后根据浊度值选择自然沉降或者离心操作。当浊度低于200NTU自然沉降处理30min而后取上清液;介于200~500NTU自然沉降处理60min而后取上清液;大于500NTU进行2000rpm离心处理2min而后取上清液;感潮河段浊度值200NTU以下选用自然沉降处理30min而后取上清液,浊度200NTU以上用2000rpm离心处理1min而后取上清液。 二、总磷样品浊度测试步骤仪器:WZB-175型便携式浊度仪和DGB-401型多参数水质分析仪试剂:浊度标液、总磷工作试剂包、总磷校准液样品:上清液WZB-175浊度测试流程如下:DGB-401总磷测试流程:三、仪器介绍雷磁WZB-175和DGB-401便携式仪器可对地表水浊度、总磷等进行精|准有效测量。其中WZB-175便携式浊度仪符合国标GB 1075和ISO7027标准要求,采用LED光源,量程高达1000NTU;DGB-401内置总磷、总氮、氨氮、COD等多参数检测功能等,两款仪器详情如下WZB-175便携式浊度仪WZB-175便携式浊度计依据ISO 7027 、HJ 1075等标准进行设计,采用850 nm红外LED光源,通过比率校正的方式,有效降低颜色对于浊度测量的干扰。外观新颖,小巧便携,使用方便,可以广泛应用于地表水、工业用水、饮用水、饮料、景观水、游泳池水、废水等样品的浊度检测。 【主要特点】● LED光源,采用850 nm波长,满足ISO 7027和HJ 1075标准;● 采用散射-透射光测量原理,多方向接收散射光信号,比率校准,自动色度补偿;● 量程自动切换,自动调零;● 支持零点和最多6点校准;● 支持平均测量功能;● 支持存储2000组测试数据,符合GLP规范;● 支持USB通讯,支持连接PC进行数据采集;● 支持电池供电和USB供电,支持电源管理,支持自动关机;● IP65防护等级,良好防水防尘性能;● 配套提供浊度校准溶液。 【技术参数】型号技术参数WZB-175光源850 nm LED,满足ISO 7027标准测量范围(0~20.00)NTU,(20.0~200.0)NTU,(200~1000)NTU分辨率0.01 NTU,0.1 NTU,1 NTU示值误差±6%重复性±0.5%零点漂移±0.5% FS/30min示值稳定性±0.5% FS/30min防护等级 IP65尺寸(mm),重量(kg)220×100×80, 0.8 DGB-401型多参数水质分析仪 【主要特点】● 内置420nm、470nm、620nm、700nm四个LED光源,寿命长,精度高;● 采用分光光度法,内置高低化学需氧量(COD)、氨氮、总磷、总氮5个检测项目,检测项方法直接调用,无需进行波长选择;● 支持单点和多点校准,支持用户编辑校准曲线;● 支持吸光度和浓度两种测量方式;● 支持两种读数方式:Smart-Read功能(智能判别终点),Cont-Read功能(连续测量); ● 每个检测项目可存储测量结果各200套,符合GLP规范,支持数据查阅、删除和打印;● 支持USB通讯,支持连接PC进行数据采集;● 支持电池供电和USB供电,支持电源管理功能,可设置自动关闭光源和自动关机;● IP65防护等级,良好防水防尘性能;● 支持固件升级,支持恢复出厂设置,允许功能扩展和应用拓展。 【技术参数】测量参数测量方法光源波长测量范围(mg/L)示值误差重复性低COD重铬酸钾法470nm0.0~150.0mg/L±8%3%高COD重铬酸钾法620nm150.0~1500mg/L±8%3%氨氮纳氏试剂法420nm0.000~4.000mg/L,可扩展至 300mg/L±10%3%总磷钼酸盐分光光度法700nm0.000~1.000mg/L,可拓展至25.00mg/L±10%3%总氮过硫酸盐氧化法420nm0.000~30.00mg/L,可扩展至300mg/L≤10mg/L:±1 mg/L;>10mg/L:±5%;3%
  • 紫金矿业污染门新进展:六价铬浮出水面
    比想象严重得多的紫金矿业污染事件,并没有因为其董事长陈景河的公开道歉而停息,相反,昨日证监会的正式立案调查和广东省环保厅的特急函件,让该事件再次升级。   昨日晚间,紫金矿业董事会发出公告,称于7 月19 日接到中国证监会《立案调查通知书》(编号:闽证监立通字1003 号),公司因涉嫌信息披露违规一案被立案调查。   《第一财经日报》同时获悉,7月18日,广东省环保厅向福建省环保厅发出特急函件,指出近日来,福建省棉花滩水库出水与广东省大埔青溪电站水体混合后铜含量明显增加,已超出渔业水质标准,对两省跨界河段产生明显影响,导致梅州境内河段渔业养殖面临较大风险。   而同在7月18日和19日,陈景河分别通过本报和上杭县电视台向社会表达深深歉意。他表示,将杜绝此类污染事件重演,并将承担起应有的责任,“对受到的任何处罚没有任何怨言,只有深深歉意。”   不过,这一歉意似乎难以阻止污染事态的继续蔓延,不仅紫金矿业在信息披露上的“隐瞒”和“迟迟作为”遭到监管部门立案调查,而临近省份广东省的特急函件也显示出,紫金山铜矿的污染范围正从福建省扩大到广东省。   更值得注意的是,据了解,根据广东省相关区域受污染情况的调查,发现此前从未被媒体提及的一种物质“六价铬”进入到紫金污染事件的新范围。   调查显示,7月份紫金矿业的渗漏污水已影响到福建、广东两省跨界河段水质,其中大埔青溪断面含毒物质“六价铬”浓度接近三类标准。   根据《辞海》,“六价铬”对人体健康有害,可影响人体代谢过程,使蛋白质变性,干扰某些酶系统功能,并有致突变和致癌作用。   记者注意到,从7月3日发生紫金矿业污染事件以来,上杭县政府及紫金矿业的对外宣传中,均未提及“六价铬”。
  • 岛津应用:地表水中喹诺酮类抗生素残留的检测方案
    喹诺酮类(Quinolones)是一类含有4-喹诺酮母核的化学合成抗菌药,它的抗菌谱广、抗菌活性强,广泛应用于畜牧、水产等养殖业中。然而,喹诺酮类药物有潜在的致癌性和遗传毒性,同时还容易使病菌产生耐药性。近年来,喹诺酮类抗生素在环境水体中的出现、迁移及潜在的生态危害已成为国际上环境领域研究的热点之一,建立准确适用的分析方法则是研究环境中抗生素分布及其环境行为与风险的基础。由于环境介质的复杂性和多样性,目前尚无环境中抗生素类污染物的标准分析方法。 高效液相色谱-串联质谱联用技术是近些年来发展很快的分析技术,具有很高的选择性和灵敏度,对复杂基质中的抗生素类残留具有很强的定性能力,准确度高,是目前超痕量残留分析的首选方法。本方案建立了一种使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8030联用测定地表水中14种喹诺酮类抗生素的方法。该方法在7.0 min 之内完成14种目标物的分离分析,且精密度高,标准曲线宽,校准曲线的相关系数均在0.999以上。在地表水中检测到萘啶酸,含量为9.17 ng/L,萘啶酸的加标回收率在80.8% ~96.2%之间。该方法具有分析速度快、灵敏高的特点,适合大规模环境水体喹诺酮类抗生素污染现状的调研工作。 了解详情,敬请点击《超高效液相色谱三重四极杆质谱联用法测定地表水中的喹诺酮类抗生素残留》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以&ldquo 为了人类和地球的健康&rdquo 为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • EZ1009 六价铬分析仪在地表水站的应用
    EZ1009 六价铬分析仪在地表水站的应用哈希公司背景介绍铬是环境风险较高的重金属元素之一,特别是六价铬,具有致癌致畸毒性和生物富集性。健康的自然水体中六价铬本底值非常低,一般不具有环境风险和健康风险。冶金、皮革制造等工业活动是引起水体中六价铬超标的主要原因之一,此外水体酸化也会导致土壤中六价铬成分析出,从而引起六价铬超标。桂林是以山水闻名的旅游城市,工业虽少,但地处西南酸雨带, 六价铬在部分流域依然是重点关注参数。在桂林几处地表水站安装有 EZ 系列六价铬分析仪。应用情况客户现场安装的是 EZ1009 标准版本:量程 0-500ppb、1 路进样、1 路 mA 输出,水样在前端进行沉淀预处理。现场六价铬每小时测试一次,由运维商定期更换试剂并进行校准。日常数据一般小于 10ppb,偶尔由于降雨会增加水样浊度,进而导致结果偏离日常值。水样经前端水泵打入集成样品管,由仪器自带样品经蠕动泵吸入。试剂除必需成份外还配有纯净水用于管路冲洗。目前已应用一年半的时间,运维商主要工作为定期添加试剂及更换备件。需要注意的是样品的预处理,本案例中仅采用简单的静置沉淀处理,难以解决汛期水样浊度及色度上升带来的浊度干扰,建议可采用微滤预处理以消除类似干扰。现场安装示意图如图 1 所示。▲ 图1 现场安装图▲ 图2 现场部分时间监测数据现场数据表明,该地地表水六价铬指标大多数情况满足《地表水环境质量标准》(GB3838-2002)中I类水要求,少数情况下满足II类水标准。对于水中六价铬含量的波动,EZ1009能够较为准确的进行监测反馈,这也体现了其优异的性能。总结EZ1009 六价铬分析仪能够实现地表水六价铬的在线监测需求。客户现场情况表明EZ1009 性能稳定、维护量少,能够在较短的时间内提供准确的数据。整体而言,其优异的性能得到了客户的认可。END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取便携乐扣弹跳杯哦!
  • 项目案例|在线水中颗粒计数器opc-2300在某地表水厂稳定运行
    项目案例|在线水中颗粒计数器在某地表水厂稳定运行在线水中颗粒计数器在某地表水厂的稳定运行,犹如一位勤勉的哨兵,时刻守护着水质的纯净与安全。这款精密的仪器,以其高效的颗粒检测能力和稳定的运行性能,为水厂的水质监测提供了强有力的技术支持。 在这家地表水厂中,在线水中颗粒计数器发挥着至关重要的作用。它运用光阻法原理,能够迅速而准确地检测出水中各种大小的颗粒物的数量和颗粒大小,从而帮助水厂及时掌握水质状况,确保出厂水的安全卫生。 该计数器的稳定运行,得益于其精密的制造工艺和严谨的质量控制。从设计到生产,每一个环节都经过了严格把关,确保产品能够在恶劣的工业环境中长期稳定运行。此外,该计数器还具备自动校准和故障诊断功能,能够在出现问题时及时发出警报,为水厂的维护人员提供便利。 在线水中颗粒计数器的稳定运行,不仅提高了水厂的水质监测效率,还为水厂的节能减排做出了贡献。传统的水质监测方法往往需要耗费大量的人力和物力,而在线颗粒计数器则能够自动完成检测任务,降低了人力成本。同时,由于它能够实时监测水质状况,水厂可以根据实际情况调整处理工艺,减少不必要的能源消耗和污染物排放。 总的来说,在线水中颗粒计数器在某地表水厂的稳定运行,为水厂的水质监测提供了有力保障,同时也推动了水厂的节能减排工作。在未来,随着技术的不断进步和应用领域的不断拓展,相信这款仪器将在更多领域发挥重要作用。
  • 赛默飞:提供完整解决方案提高地表水监测质量
    p   地表水作为人类生活用水的重要来源之一,关系着人们的饮用水安全和国民经济的可持续发展。有效地检测地表水环境对于水资源的保护工作意义重大,地表水的各项检测数据可以反映出地表水的污染情况,也是环境监测的重要指标。近日生态环境部发布的四项国家环境保护标准征求意见稿中就有一项是《地表水监测技术规范》,这意味着国家可能有新的标准发布。那么,目前我国地表水的检测现状是什么样的?未来又将如何发展呢?为了帮助相关用户学习、了解地表水的分析方法与检测技术的最新进展等内容,仪器信息网特别策划了“ strong 地表水检测与分析技术进展 /strong ”专题,并邀请到赛默飞世尔科技(中国)有限公司水质分析仪器产品经理步万里就相关问题发表看法。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/43c3bdde-7427-4a70-a21e-c36a5d37927e.jpg" title=" 产品经理步万里.png" alt=" 产品经理步万里.png" / /p p style=" text-align: center " 步万里:赛默飞世尔科技,水质分析仪器产品经理 /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:请您介绍一下地表水检测与分析技术的相关情况、主要检测内容和行业现状。 /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 步万里: /strong /span 目前地表水检测依据的主要技术标准是《地表水环境质量标准》(GB 3838-2002),涉及的监测项目共109项。其中主要的测量参数如下表,标黄的是必测项目,蓝色的是选测项目。 /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" margin-left: 10px border-collapse: collapse border: none " align=" center" tbody tr style=" height:2px" class=" firstRow" td width=" 151" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 常规五参数 /span /strong strong /strong /p /td td width=" 435" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" span style=" background-color: rgb(255, 255, 0) " strong span style=" background: rgb(255, 255, 0) font-size: 12px line-height: 115% font-family: 微软雅黑, sans-serif " pH /span /strong strong span style=" background: rgb(255, 255, 0) font-size: 12px line-height: 115% font-family: 微软雅黑, sans-serif " 、电导率、溶解氧、浊度、水温 /span /strong /span strong /strong /p /td /tr tr style=" height:1px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 1" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 营养盐及有机污染物 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 1" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:yellow background:yellow" 高锰酸盐指数 span COD sub Mn /sub /span 、化学需氧量 span COD sub Cr /sub /span 、氨氮、总磷、总氮 /span /strong strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 、 span style=" background:aqua background:aqua" 硝酸盐氮 /span /span /strong /p /td /tr tr style=" height:2px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height: 115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 无机阴离子 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:aqua background:aqua" 氰化物、氟化物、硫化物、氯化物、硫酸根 /span /strong /p /td /tr tr style=" height:2px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height: 115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 重金属类 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:aqua background:aqua" 铜、铅、锌、镉、砷、汞、六价铬、铁、锰、钴、镍、锑 /span /strong /p /td /tr tr style=" height:2px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height: 115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 有机类污染物 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:aqua background:aqua" 石油类、阴离子表面活性剂、以及苯、卤代烃、芳香烃等 span 18 /span 种挥发性有机物 /span /strong /p /td /tr tr style=" height:2px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height: 115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 细菌学指标 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:aqua background:aqua" 粪大肠菌群 /span /strong /p /td /tr tr style=" height:2px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height: 115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 其它 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:aqua background:aqua" 叶绿素、藻密度 /span /strong /p /td /tr /tbody /table p   《地表水自动监测技术规范(试行)》(HJ 915-2017)则定义了地表水水质自动监测系统建设、运行和管理等方面的技术要求。 /p p   关于地表水监测行业的情况,最近几年地表水监测行业发展迅速。2015年,国务院办公厅发布了《生态环境监测网络建设方案》,明确提出坚持全面设点、全国联网、自动预警、依法追责,形成政府主导、部门协同、社会参与、公众监督的生态环境监测新格局 2016年,环保部发布了《“十三五”国家地表水环境质量监测网设置方案》,新增1795个国控断面,调整后新国控断面(点位)共2767个,包括河流断面2424个,湖库点位343个,共监测1366条河流和139座湖库。据我了解,现在全国从事在线自动水质监测仪器生产企业约300家,有近200家的产品拥有CCEP认证。 /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:目前在地表水相关检测项目中哪些值得重点关注?检测的特点和难点在哪里? /strong /span /p p    strong span style=" color: rgb(255, 0, 0) " 步万里: /span /strong 目前在地表水的检测中我认为有高锰酸钾指数、COD sub Cr /sub 和重金属测量这3个项目值得重点关注。 /p p   高锰酸盐指数:市场上大部分为两种测量原理,高锰酸盐氧化-比色法和高锰酸盐氧化-电位滴定法两种,后者更接近国标法《水质-高锰酸盐指数的测定》GB 11892-89。但目前考核高锰酸盐指数数据时,使用葡萄糖还是草酸钠会得出完全不同的结果,因此急需国家对此方法做一定程度的明确规定。 /p p   COD sub Cr /sub :主要是废液的二次污染问题,目前是根据新标准HJ 35X-2019来进行废液分离,但如何判定清洗废液是否完全无害还没有统一的标准,在数次清洗后,我们发现清洗废液仍能检测出痕量重金属,因此建议此检测项目使用独立的废液回收系统。 /p p   重金属测量:由于现有技术的局限性,目前的难点是如何找到测量准确度、运维成本小的方法,且能够满足国标要求。以阳极溶出伏安法为例,用这种方法检测重金属存在维护量大,试剂有毒有害,运行不稳定等技术成熟度的问题。 /p p   span style=" color: rgb(0, 112, 192) " strong  仪器信息网:贵公司在地表水检测方面可以提供哪些产品组合和解决方案?相比于同类产品,优势在哪里? /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 步万里: /strong /span 赛默飞世尔科技作为科学服务领域的世界领导者,始终以帮助客户“使世界更健康、更清洁、更安全”为使命。在地表水检测方面赛默飞有多款仪器可以满足需求,并且可以提供完整的地表水监测方案: /p p style=" text-indent: 2em " strong 6800微型水质在线自动监测系统 /strong ,占地仅需1平米,可测量五参数和高锰酸盐指数、氨氮、COD sub Cr /sub 、总铜、总镍、六价铬、总磷、总氮、氰化物等参数。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C395497.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/965278ba-7a12-41c8-b4a6-7ad901e50ec8.jpg" title=" 6800_300.jpg" alt=" 6800_300.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C395497.htm" target=" _blank" strong 6800微型水质在线自动监测系统 /strong /a /p p style=" text-indent: 2em " strong 3106 COD化学需氧量自动监测仪 /strong ,可自动切换量程,无需重复校准 IP66防护等级。 /p p style=" text-align:center" a href=" https://www.instrument.com.cn/netshow/C235904.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/a055647e-b9a8-4bfc-bb57-8fc0b7126529.jpg" title=" 在线 Orion 3106 COD.jpg" alt=" 在线 Orion 3106 COD.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C235904.htm" target=" _blank" strong 3106 COD化学需氧量自动监测仪 /strong /a /p p style=" text-indent: 2em " strong 3131 高锰酸盐指数自动监测仪 /strong ,氧化还原电位滴定法,不受浊度计色度的影响 油浴加热,安全、均匀 双高精度注射泵,1/10000精度。 /p p style=" text-align:center" a href=" https://www.instrument.com.cn/netshow/C414758.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/65ba7005-38d0-4a7c-a430-5928b8bd8808.jpg" title=" 3131.png" alt=" 3131.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C414758.htm" target=" _blank" strong 3131 高锰酸盐指数自动监测仪 /strong /a /p p style=" text-indent: 2em " strong 3150 总磷/总氮水质在线自动监测仪 /strong ,可自动切换量程 可灵活配置总磷、总氮单参数或二合一 定量准确,不受样品色度、浊度干扰。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C396581.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/a9ee1662-9b8a-44fc-afa4-18ece49c0e3a.jpg" title=" 3150.jpg" alt=" 3150.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C396581.htm" target=" _blank" strong 3150 总磷/总氮水质在线自动监测仪 /strong /a /p p style=" text-indent: 2em " strong 2240 氨氮自动监测仪 /strong ,氨气敏电极法测量原理,不受水样浊度和色度的影响 测量范围最高可达1000mg/L 采用标准加入法自动进行校正,适用于低浓度或背景复杂样品。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C220173.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/2f915c3d-814c-4dfe-85c6-f718a9f91fe3.jpg" title=" 2240.jpg" alt=" 2240.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C220173.htm" target=" _blank" strong 2240 氨氮自动监测仪 /strong /a /p p style=" text-indent: 2em " strong 8010cX 氨氮自动监测仪 /strong ,水杨酸分光光度法原理 可自动切换量程,且无需新校准 高精度注射泵保障了高精度测量 IP65防护等级。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C340805.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/debbbd89-2cde-449d-9b63-29ef3bc15c4a.jpg" title=" 8010.jpg" alt=" 8010.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C340805.htm" target=" _blank" span & nbsp 8010cX 氨氮自动监测仪 /span /a /p p style=" text-indent: 2em " strong 3300重金属水质在线自动监测仪 /strong ,可自动切换量程 定量准确,不受样品色度、浊度干扰。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C414760.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/5c37245d-5a68-429e-9e67-ed6b06305048.jpg" title=" 3150.jpg" alt=" 3150.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C414760.htm" target=" _blank" strong span 3300重金属水质在线自动监测仪 /span /strong /a /p p style=" text-indent: 2em " strong MPC 20在线多参数通用控制器 /strong ,可同时测量常规五参数、水中油、叶绿素、蓝绿藻、UV全光谱等参数 IP65防护等级。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/a90a8649-20d0-4cd2-a92c-1a45472a895f.jpg" title=" MPC 20 正面.jpg" alt=" MPC 20 正面.jpg" / /p p style=" text-align: center " img style=" " src=" https://img1.17img.cn/17img/images/202007/uepic/77478974-1f45-463e-9712-de3175b53ce6.jpg" title=" MPC 20 下.jpg" / /p p style=" text-align: center " strong span MPC 20在线多参数通用控制器 /span /strong /p p   span style=" color: rgb(0, 112, 192) " strong  仪器信息网:生态环境部在6月1日发布了《地表水监测技术规范(征求意见稿)》,原《地表水和污水监测技术规范》(HJ/T 91-2002)中涉及 /strong /span span style=" color: rgb(0, 112, 192) " strong 地表水监测的部分将会废止,您觉得新标准实施后将会带来怎样的变化?请问从厂商角度会怎么应对呢? /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 步万里: /strong /span 此次《征求意见稿》内容更新了地表水监测项目分析方法、完善了监测数据处理、质量控制与质量保证,这些对仪器的测量性能和稳定性都提出了更高的要求,这些都会促进厂商改进仪器的设计,以满足将来新的现场要求。 /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:您觉得在地表水检测与分析技术方面,未来的发展趋势有哪些?会出现哪些新的需求? /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 步万里: /strong /span 我认为地表水自动监测站和分析仪器未来的发展趋势是主机更加紧凑、小型化 试剂使用量减少、维护量减少 为了应对上面提到的新法规带来的变化,未来相关仪器会增加自动质控功能、废液分离功能等。 /p p   随着技术和市场的发展,将会涌现更多创新技术,以提高分析仪器/系统的智能化、网络化、无人化。检测方面可能会新增测量参数,如水中油、叶绿素、藻密度等。 /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 小结: 此次仪器信息网就地表水检测与分析技术方面的问题咨询了步万里经理,他和我们分享了在地表水检测中需要关注的检测项目,以及《地表水监测技术规范(征求意见稿)》将给仪器厂商和市场带来的变化。面对标准上对测量性能和稳定性要求的提升,厂商们也在积极跟进,升级相关检测仪器的性能来满足地表水检测的需要。他还对地表水检测技术的发展做了展望,预测随着环境的变化以及对地表水质要求的提高,未来在检测项目中可能会出现新增的测量参数。 /span /p
  • 东润案例 | 万华化学污水处理厂膜池出水浊度在线监测
    从2009年开始,东润仪表就与万华化学建立了伙伴关系,并在2013年成为万华化学水质在线分析仪器、液位仪表的优质合格供应商。截至目前,东润已为烟台万华、宁波万华、四川万华、福建万华等分子公司提供了数千台套磁翻板液位计、水质分析集成系统,同时于2023年成为万华国产水质传感器框架合作伙伴。东润非常重视和万华的每一个合作项目,专门成立“万华专研中心”,提供7*24小时的专业售前、售后技术支持,与万华同仁协同创新、并肩作战,使东润更有机会创造出更有竞争力的、卡脖子的产品,为万华生产自动化和企业数字化建设提供优质的产品和服务,实现降本增效、和合发展。今天分享,东润助力万华化学污水处理厂膜池出水浊度在线监测项目案例。客户背景和挑战(1)膜池出水浊度测量,当膜反冲洗时,出水中会存在大量细密气泡,浊度测量瞬间超标,反冲洗后气泡持续时间长,导致出水浊度无法测量,通过重力或离心等方法都无法消除气泡对浊度测量的干扰。(2)正常测量值0.1 NTU,膜反冲洗时,气泡影响,测量值大于20NTU,无法实现稳定的浊度测量。(3)客户前期购买的某进口品牌浊度,带离心式消泡器,依然无法正常测量。(4)现场为防爆场所,需满足二区防爆等级。带来价值(1)现场已投用,无故障不间断工作2年, 完全消除气泡干扰。 (2)实现多通道测量,给客户极大节省成本投入。解决方案(1)定制超声波消泡解决方案,并设计交替式工作方式,实现连续式长期工作,并延长超声波的使用寿命。(2)定制双通道和三通道测量方案,实现两路或三路水样的交替测量。(3)整体采用正压防爆柜设计,实现二区防爆的等级。
  • “闻”出水果成熟度的仪器问世
    不是每个人拍拍西瓜或闻闻菠萝就能知道它是否成熟了。德国科研人员日前开发出一种高科技仪器,可以马上“闻”出水果的成熟度。不过其目标用户并不是普通消费者,而是大宗水果批发商。   德国弗劳恩霍夫分子生物学和应用生态学研究所日前发表公报说,该所与德国其他一些科研单位合作研制了这种特殊的仪器,其核心技术是用金属氧化物气敏传感器去检测水果释放出的特殊气味,最后分析判断出水果的成熟度。   这种仪器的具体工作过程是,先用高分子分离柱将待测水果的气味提纯,再让带有这一气味的气体通过温度达300至400摄氏度的传感器,传感器内的金属氧化物可与气味进行反应,最后仪器根据反应状态自动分析出水果的成熟度。   初步试验显示,这种仪器与食品实验室中专用测量仪的检测效果一样精确。研究人员表示,尽管这种仪器上市后售价将达到上千欧元,但要比食品实验室的测量仪便宜许多,且效率更高。
  • 直饮水入厨房不是梦 建设标准应先行
    打开龙头就能喝的直饮水,是欧美发达国家上世纪的产物。奥运会后,北京正从中等发达城市向国际城市的高端形态即世界城市大步迈进。前行中,作为一座水资源匮乏的国际大城市,如何在水质的提升上取得突破,在市民生活品质的提高中彰显城市品质,值得我们深思和探讨。   墙边的摆钟响了,马亿纹拿上水桶,走出门按下电梯按钮,“又得去打水了”。   马亿纹家住水上华城,是崇文区中高档的社区。小区自来水供应一直正常,可每天下午4点,她都会到楼下的自助售水机买上5升水,以免傍晚时排长队。   “家里的自来水,洗衣、做饭没问题,就是烧开后有水垢,白白的漂在杯子里,看着就不舒服。”为了解决家里的喝水问题,马亿纹费尽了脑筋。   最初,她在水壶里放麦饭石吸水垢,效果不明显 接着家里开始喝桶装水,2、3天一桶水,费用高不说,有时打电话要水,一等就是半天,不方便 后来,小区里有了自动售水机,虽然水价比桶装水便宜且随买随有,可每天要下楼自己提水,还是麻烦。   “要是家里的水,打开龙头就能像纯净水一样喝,那多好!”看着脚边装满水足足5斤重的水桶,马亿纹有些无奈,更有些期盼。   市民要求过高?   马亿纹并非突发奇想,她儿子在国外读书,这种打开龙头接水就能喝的生活,在欧美发达国家已有几十年的历史,早已不是什么新鲜事儿。   “北京自来水管网中的水能直接喝。”2008年3月21日,市水务局局长程静做客北京城市服务管理广播。在访谈中,他表示北京自来水加工采用了先进的活性炭、臭氧等技术,水质完全达到国家规定的106项检测标准。对于这样的检测标准,用水利部一些官员的话说,甚至“是完全符合欧盟要求的”。   一方面,权威部门说我们的自来水是符合欧盟标准的直饮水 另一方面,部分市民却依旧花钱买桶装水喝。难道是市民要求过高了?   就在北京自来水管网水质达到直饮标准的消息传开后,有一位网友在博客中写下了这样一段话:在水厂的出水口,北京自来水是清清之身……经过九曲十八弯的长途跋涉,经过粗粗细细陈年旧管来到我家时,它已经变得灰头土脸……把水烧得滚开,白色漂浮物仍旧潇洒飘舞……   网友的话虽有偏颇之处,但也说出了自来水由出厂到入户间的现实差距――由于种种原因,自来水直接喝可能不卫生,烧开后水碱多、口感差,与人们期望的既安全又可口的直饮水有差距。   “我们不建议家里(自来水)直接饮用,不是因为自来水本身水质有问题,而是因为部分老楼房的户内供水管线生锈和高位水箱不干净,可能会造成二次污染,生着喝可能不太卫生。”梁莉有些无奈。   梁莉是北京市自来水集团宣传部的负责人。她所在的单位,负责供给首都近2000万人的市政用水。她的“无奈”,主要是因为造成自来水二次污染的供水设施多由小区自建并负责后期维护,设施权属不在自来水集团,使得后续维护工作“力不从心”。对于自来水加热后出现的水垢,梁莉认为,除了二次污染外,还和北京自来水的水源近年来多为地下水有关。地下水与河湖地表水源相比硬度较高,但经过处理后,北京自来水水质硬度还是符合国家供水标准的,“市民完全可以放心饮用”。   “很明显,供需双方在市政供水标准上是‘不合拍’的。”一位不愿具名的水务专家分析认为,这主要是由于目前自来水价格由政府确定,供水企业又处于垄断地位,只要供水水质符合国家标准和当地政府要求,如何以最低的成本完成供水任务,便成为了企业最核心的追求。   这本无可厚非,但以达标供给为导向的生产模式,使得供水企业忽视了用户的现实需求,造成了供需双方诉求间的错位。   应由谁来担责?   作为一个公共产品提供者,供水企业应以市民需求为生产导向,在供水达标的基础上进一步开创性工作,提供更好的产品。这不仅是市场经济的基本要求,也是以人为本理念在市政服务领域的必然要求。   记者在调查中发现,满足市民需求,需要解决的主要是两个层次的问题:一是明确老旧管线和二次供水设施归属,厘清市政企业与小区管理单位间的责任与义务,确保自来水入户水质与出厂时一样,满足市民家中饮用水“安全”层次的需求。二是以目前市场上被市民普遍接受的桶装水为标杆,进一步提升水质硬度处理标准,满足市民家中饮用水“可口”层次的需求。   “市民为家中流出的每一滴自来水向自来水集团付费,对于无偿使用小区自建设施盈利多年的企业来说,后期的维护、更换责无旁贷。”专家表示,现在需要的就是政府部门进一步明确企业职责的决心。   不过,为居民家中提供更高品质的直饮水,到底是否还应由市政系统承担,业界多年来却一直有争议。   反对方的主要理由是,一个成年人一天正常的饮用水量为3升左右,按一家3口计算,一天也不过10升水,仅占家庭总用水量的5%。由于屋内供水管网单一,如果自来水都按纯净水标准处理,那居民洗澡也得用纯净水,势必会造成浪费。   事实上,要避免浪费,最好的办法就是让直饮水走一条单独的管道。但对北京市政系统而言,这套与自来水管网等长的全新管道,即便抛开施工难度不说,高昂的建设成本也足以让供水企业望而却步。在权衡成本与收益后,“直饮水”三个字渐渐淡出了水务系统的大小文件。   富贵园模式   马亿纹家往北2公里,有个名叫富贵园的小区。开发商来自广东,在发现北京水质较南方偏硬后,在铺设自来水管时,又多埋了一路管线。   2004年,小区建成后,物业公司把市政自来水进行二次处理后,用这条预埋在自来水管旁的管线,向近2000户居民提供纯净水入户服务。每吨水40元,价格是市政自来水的10倍。   有需求就有供给,这就是市场的作用。   85岁的许嘉增夫妇,是小区里的第一批住户。在老人厨房的水池边,有一个倒U形的银色细水管。“这就是纯净水的龙头。”说着老人打开龙头,用电热水壶接了一壶水。1分钟后水开了,不锈钢的壶胆内,没有一点水垢。   说到这直接入户的纯净水,老两口还闹过一次笑话。   5年前,刚搬到新家不久,老人就听说打开家里水龙头就可以直接喝上纯净水,甭提多高兴。可是没几天,小区物业贴通知说,纯净水40元一吨,这下老两口就嘀咕了,“这水怎么这么贵?”   1个月后,对门邻居算的一笔账,让老人家彻底改了主意。以桶装纯净水为例,一桶水18.9升,每桶12元,每吨价格就是635元 而小区纯净水,每吨只有40元,两者相差15倍。   5年来,小区纯净水从未断过水,水质也一直不错。每个月不足10元的水钱,让老两口心里乐呵呵的。   小区物业同样高兴:新建小区纯净水管道铺设费用在整个建筑成本中微乎其微,而且在卖房时已算入房价,等于是用户自己掏钱铺的管线 净水设备虽然先期由物业公司垫付,但按每吨40元的收费,按小区居民每户、每天使用10升水计算,一年的水费就有近30万元,基本上就是一套净水设备的钱。   “这管线和设备正常用,二三十年都没什么问题,期间只要业主们都喝(纯净水),我们肯定不赔钱。”物业负责人信心满满。   直饮水入户、桶装纯净水、家庭净水器、小区纯水站饮水成本比较   计算标准:以一家三口,每人每天喝水3升计算,一年全家饮用水总量为3285升。   1、直饮水入户,每吨水水价为40元,一年费用为131.4元。   2、桶装纯净水,一桶水18.9升水价12元,一吨水635元,一年费用为2085.98元。   3、家庭净水器,基本水价为自来水水价,每吨水4元,加上滤芯每年更换一个和机器折旧(按10年计算)成本300元,一年费用为313.14元。   4、小区纯水站,1元5升水,每吨200元,一年费用为657元。   好买卖为何没人做?   富贵园小区的直饮水、自来水双入户模式,与近年来城市供水中比较时兴的分质供水理念类似。   简单说,就是让可直接饮用的直饮水、用于洗涤的普通自来水,以及可用于浇花、冲厕的中水分管独立运行,使水资源达到分质使用的效果。按理说,赔钱的买卖没人做,可像富贵园这样赚钱的直饮水入户模式,在北京并没有被广泛复制,原因何在?   有关专家认为,主要是由于制度设计上的缺失,使直饮水入户的投资建设与后期运营主体积极性不高。从富贵园的模式可以看出,小区开发商是投资建设的最佳主体,物业公司则承担后期运营职责。但从全市范围来看,直饮水管道和自来水管道不同,并非硬性的建筑要求。对于房子不愁卖的开发商而言,自然不会主动增加建筑成本预埋分质供水管线了。   对于接手小区管理的物业公司来说,在分质供水管线缺失的情况下,要赚钱就得先投钱,当利润被管线成本占去大半时,物业公司积极性自然不高。至于那些老旧平房区,建设运营的主体则是天然缺失。   建设标准应先行   奥运会后,北京市正从中等发达城市,向国际城市的高端形态即世界城市昂首迈进。对于水资源匮乏的北京城而言,不断提升饮用水品质,应该是建设宜居城市的必然要求。   “多年来,政府部门仅仅是以‘安全’来要求供水企业。”有专家认为,正是由于标准过低,使得供水企业只是简单地追求如何以最低的成本,来完成安全供水的任务,而未考虑用户对于自来水品质的要求,最终造成了供给与需求间的差距。所以,在推进直饮水入户工作中,政府主管部门不仅要算经济成本账,也要多算些社会效益账。   专家建议,政府主管部门可以通过制定地方标准,督促开发商在小区开发中配建分质供水管道,“就如当年推广小区建设中水设施一样”。   2001年,为进一步推广小区中水设施建设,市政市容委、市规划委、市住建委联合发文要求:“建筑面积5万平方米以上,或可回收水量大于150立方米/日的新建居住区和集中建筑区,必须建设中水设施。”建设标准的前行,使得2003年以后建设的住宅小区大都配置了中水回收处理设施。   对于直饮水管网也是一样。在已建成小区,街道办事处、社区居委会可以牵头组织,充分发挥财政资金的先期带动作用,大力促进物业公司开展纯净水入户服务 在非成片无物业管理的小区,应充分利用自来水集团作为企业的优势,借鉴成片小区物管企业的经验,在区域中心建设纯净水处理站,通过市场化收费实现资金平衡。   除去富贵园小区由开发商提供直饮水入户服务外,还有一些成功的事例。   北京奥运会期间,颇受好评的奥运村直饮水工程,是以中科院生态环境研究中心具有独立知识产权的核心技术为支撑的,他们专门成立了技术推广平台,希望能让更多的普通市民喝上直饮水。   截至目前,他们已经在环保部、科技部、中华全国总工会、中移动的办公大楼,以及天河人家、北师大宿舍区等居民小区安装了几十套直饮水设备――1套设备可满足1000户居民的饮水需求。   广阔的市场、成功的模式、合理的利润,在政府主导、市场为主、分区实行的模式下,对于北京居民来说,逐步实现直饮水入户已经有了一个良好的开始。   名词解释   分质供水   分质供水是指在一套供水系统里,除了设有正常供水的自来水和热水管道外,还有一条独立的专门供应居住人群直接饮用水的管道。这条管道系统采用先进的水净化工艺,对小区内的市政自来水进行深层净化,同时运用独特的双路循环供水再生灭菌的保鲜措施,使管道形成一个全封闭循环系统,从根本上排除了净化水被二次污染的可能,保证居住者可以从入户净水龙头上随时无限量的饮用到纯净水。同时,市政自来水管线依旧供水,保障居住者日常生活用水。   直饮水   直饮水或称之为活化水,采用独特碘触酶技术和高分子分离膜装置进行过滤,杀死其中的病毒和细菌并过滤掉自来水中异色、异味、余氯、臭氧硫化氢、细菌、病毒、重金属,阻挡悬浮颗粒改善水质,同时保留对人体有益的微量元素,达到完全符合世界卫生组织公布的直接饮用健康水的标准。   纯净水   纯净水是采用离子交换法、反渗透法、精微过滤及其他适当的物理加工方法进行深度处理后产生的水。通常是指其水质清纯,不含任何有害物质和细菌,如有机污染物、无机盐、任何添加剂和各类杂质,有效地避免了各类病菌入侵人体,其优点是能有效安全地给人体补充水分,具有很强的溶解度,因此与人体细胞亲和力很强,有促进新陈代谢的作用。
  • 2012年下半年发布仪器新品:实验室常用设备类
    实验室常用设备主要涉及样品前处理、实验室家具、提供合成/反应所需环境以及为实验室提供所需耗材等。据统计,样品检测有61%的时间都花费在样品前处理上,检测人员对进行样品前处理的实验室常用设备要求越来越高,仪器厂商也在不断地加大研发投入。2012年下半年,仪器信息网实验室常用设备新品申报数量总计20台。从新品创新点来看,安全性、便捷性、使用的舒适性是这些仪器的共同特点。   安全性方面看:海能出品的SH220N石墨消解仪加热石墨表面抗氧化处理,并采用新的隔热技术,使产品更耐用、更安全 TANK微波消解仪独特的消解罐密封槽放气孔设计,使罐内超压时自动泄气,保证安全   舒适性方面看:ELGA LabWater出品的PURELAB flex系列纯水机采用独特的手柄取水设计,如移液器般易于操作 广州仪科推出的欧洲之星控制型200置顶式搅拌器具有无线遥控功能,能够远程操作   便捷性方面看:济南盛泰电子科技有限公司出品的STC-301自动液液萃取仪,自动化程度高,用时短,萃取过程无需放气,萃取结束可自动清洗 莱伯泰科出品的Sepaths全自动柱膜通用固相萃取仪,整套系统可以同时自动完成1-12个相同或者不同样品的处理,处理样品量大,自动化程度高。   更多详细情况请见如下介绍:   纯水系统 Dura 12/24/超纯水系统 上市时间 2012年9月 上海和泰仪器有限公司   上海和泰仪器有限公司推出的这款Dura 12/24/超纯水系统,采用双级反渗透工艺,在不同水源情况下,也能确保产水品质稳定。并采用全新的卡隼式接口预处理组件,只需轻轻旋动就能实现耗材的轻松更换。该纯水系统除内置10L的储水装置外,还可加配外置水桶,满足用户的不同水量需求。并具有故障自动检测,自动诊断功能,可实现水质超标报警、污水报警、水满报警、耗材终结报警等。 PURELAB flex 系列纯水机 上市时间 2012年8月 ELGA LabWater   ELGA LabWater出品的PURELAB flex系列纯水机,独特的取水手柄设计,如移液器般易于操作,从逐滴到定量自动取水的设计,可帮助实验室人员从几毫升到上百升连续取水都可以一键操作。灵活的取水手柄取水端设有一个易于阅读的数字显示屏,可瞬时显示水纯度的各个参数(电阻率、电导率,总有机碳,温度等等),PURELAB flex的检测装置设置在出水口循环回路中,使客户取水水质与面板显示完全契合。   混合/分散设备欧洲之星控制型200置顶式搅拌器 上市时间 2012年10月 广州仪科实验室技术有限公司   广州仪科实验室技术有限公司出品的欧洲之星控制型200置顶式搅拌器与IKA(艾卡)的上一代产品相比,不仅具有速度显示与过载保护的功能。而且还配备了移动无线控制器且具有扭矩变化趋势显示功能,TFT显示屏、RS232和USB接口。通过USB接口将无线移动控制设备连接至电脑上进行在线更新。无线控制器可与顶置式搅拌器分离,遥控操作,实现主机可在通风橱或安全柜中进行工作,控制过程无需打开防护罩。 IKA T25数显型分散机 上市时间2012年10月 广州仪科实验室技术有限公司   广州仪科实验室技术有限公司出品的IKA T25 数显型分散机与本公司上一代产品相比或者与市场上其他同类产品相比,配置了数字显示器,多种分散刀具可供选择,以满足更多的应用需求 快式接口便于分散刀具的互换 马达过载保护,增加仪器使用寿命。该款产品既可在真空状态下使用,也可以在压力下处理样品,用于医疗诊断样品的制备、污水均质处理、实验室反应器等多个领域。   制样消解设备 SH220N 石墨消解仪 上市时间:2012年10月 海能仪器   海能出品的SH220N石墨消解仪导热石墨表面经过特殊抗氧化工艺处理,在长期高温加热的情况下,不会产生掉粉、脱粒、破损等被氧化现象 新型隔热技术的应用使得整体无隔热材料外露,使得整机工作时壳体温升很小,工作时炉温高达450℃但外壳仅为30℃ 应用海能自主开发的嵌入式软件控温技术,控温精确、稳定、均匀 同时增加加热元件检测技术,实现对加热元件实时监测,如有异常系统自动报警提示,使整机更智能化。 TANK微波消解仪 上市时:2012年7月 海能仪器   海能仪器出品的TANK微波消解仪采用光纤温度传感技术,显著提高了安全性和准确性 独特的消解罐密封槽放气孔设计,使罐内超压时自动泄气,保证安全 变频双磁控技术,解决了双磁控管加热时的干扰问题,能够精确控制磁控管单元的功率输出,使每个磁控管可以在低功耗下安全工作 COT实时温压异常监控系统实时监测腔内声音频率,当出现异常频率时,立刻关闭微波输出,保障使用安全。   分离萃取设备 STC-301 自动液液萃取仪 上市时间:2012年9月 济南盛泰电子科技有限公司   济南盛泰电子科技有限公司出品的STC-301自动液液萃取仪采用电脑程序设定萃取流程,利用间歇式抽真空和全封闭气路循环原理,让有机相和水相在萃取瓶中充分混合均匀,模拟人工的萃取过程,自动化程度高,用时短,而且萃取过程无需放气,萃取结束可自动清洗,减轻人员劳动强度防止有害气体的吸入。可广泛应用于环境保护、疾控中心、供排水、高校、厂矿企业等各类化学实验室需要萃取处理的场所。 Sepaths Sepaths全自动柱-膜通用固相萃取仪 上市时间:2012年7月 莱伯泰科有限公司   莱伯泰科有限公司出品的Sepaths全自动柱膜通用固相萃取仪,整套系统可以同时自动完成1-12个相同或者不同样品的固相萃取柱的活化、样品过柱(过膜)、清洗、氮气干燥、洗脱等操作,处理样品量大,自动化程度高 该产品采用红外传感器,可以检测溶剂液位,对萃取膜片或萃取柱进行浸泡,增强洗脱效果。广泛应用于应用水、地表水、地下水、食品、饮料等液体样品或固体半固体样品提取液中痕量有机物萃取和富集。   由于实验室设备种类繁多,因此本网只针对用户关注较高和申报类型较集中的纯水系统、微波消解仪、混合分散设备、分离萃取设备等做详细介绍,产品介绍排名不分先后。 2012年上半年实验室常用设备盘点请见以下链接:http://www.instrument.com.cn/news/20120730/080793.shtml   关于申报新品   凡是“网上仪器展厂商”都可以随时免费申报最新上市的仪器,所有经审批通过的新品将在仪器信息网“新品栏目”、“网上仪器展”、“仪器信息网首页”等进行多方位展示 一些申报材料齐全、有特色的新品还将被推荐到《仪器快讯》杂志上进行刊登 越早申报的新品,将获得更多的展示机会。自2006年开通以来,“新品栏目”已经累计发布了超过2000台最新上市的仪器,是广大用户查找最新上市仪器,了解最新技术进展的首选平台。
  • 岛津应用:地表水中四环素类抗生素残留的检测方案
    四环素类抗生素(Tetracyclines, TCs)是临床上重要的一类抗感染药物,对革兰氏阳性和阴性细菌、立克次氏体等均有抑菌作用,其作用机理主要是和30S核糖体的末端合,干扰细菌蛋白质的合成。常用的四环素类抗生素有:四环素、金霉素、土霉素、强力霉素等。在畜禽生产中四环素类抗生素被广泛作为药物添加剂,这对环境造成潜在威胁。由于残留的抗生素可导致耐药菌,引起了人们对抗生素在环境中的分布、转归及对环境生物、生态系统和人类健康产生的危害等一系列问题的关注。由于环境介质的复杂性和多样性,目前尚无环境中抗生素类污染物的标准分析方法。 高效液相色谱-串联质谱联用技术是近些年来发展很快的分析技术,具有很高的选择性和灵敏度,对复杂基体中的药物残留具有很强的定性能力,而且准确度高。本方案建立了一种使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8040联用测定地表水中的四环素类抗生素残留量的检测方法。该方法在5 min之内完成7种目标物的分离分析,且标准曲线宽,校准曲线的相关系数均在0.999以上。对10 &mu g/L、50 &mu g/L和100 &mu g/L混合标准溶液进行精密度实验,连续6次进样保留时间和峰面积的相对标准偏差分别在0.021%~ 0.208%和1.165% ~ 3.731%之间,仪器精密度良好。该方法具有分析速度快、灵敏高的特点,适合大规模环境水体四环素类抗生素污染现状的调研工作。 了解详情,敬请点击《超高效液相色谱三重四极杆质谱联用法测定地表水中的四环素类抗生素残留》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以&ldquo 为了人类和地球的健康&rdquo 为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • 用总有机碳TOC方法优化饮用水营养物去除工艺
    难题:饮用水中的硝酸盐美国环保局(EPA)乃至公众担心饮用水中的营养物质(例如含氮和磷的物质)含量过高,会危及公共健康,这就使得水处理厂必须改进处理工艺。对致力于满足法规规定的氮含量限值的水处理厂来说,如何降低来自径流、肥料、污水、发电厂、化学品厂的含氮化合物的浓度始终是个难题。当饮用水中的含氮量过高时,配水系统就会被富营养化,成为细菌的滋生地。硝酸盐危害婴儿、孕妇、酶缺乏症患者的健康,降低他们的血液送氧能力1,2。美国环保局规定的饮用水中的硝酸盐浓度限值为10 ppm,亚硝酸盐浓度限值为1 ppm2。工农业生产的废物和人类的排泄物排放到环境中,地表水和地下水中的硝酸盐含量越来越高,例如在美国加州的地下水井中就检测到高浓度的硝酸盐。因此,脱硝(脱氮)就成为水处理工艺的一个重要环节。方法:生物脱硝脱硝是通过添加碳源(也称为电子供体,例如源流中的甲醇、乙醇、MicroC® 、乙酸、糖浆、碳等),将硝酸盐还原成氮气的过程3。生物脱硝是其中一种脱硝方法,就是用厌氧细菌来消化碳源,从而降低硝酸盐含量3。与常规过滤和泥浆脱硝相比,生物脱硝有诸多优点,例如生物脱硝可以在连续过程中进行,且无需去除固体颗粒。生物脱硝对能源的需求极低,占用的工作面积小,还可以通过提高碳源的利用率来不断优化脱硝工艺。当细菌消耗掉硝酸盐之后,氮气便从水处理池中排出,就可以对脱硝后的水进行最终处理,然后将其送到配水系统中。这种生物处理方法也可以用来去除其它污染物,如铬酸盐、高氯酸盐、硒等。解决方案:TOC分析法的优势生物脱硝的关键在于优化碳源的用量。世界卫生组织在关于去除硝酸盐的文献中说,“控制碳源用量对工艺操作至关重要,可以使用在线型分析仪来监测处理后的水中的残留物浓度”4。在进行脱硝时,如果用碳量不够,就无法将硝酸盐全部还原成氮气,还会在水中留下大量的亚硝酸盐和氮氧化物。相反,如果用碳量过高,细菌就会进而分解水中其它化学物质,例如分解硫酸盐,产生硫化氢气体,不但气味难闻,还会造成有害后果。如果出水中有大量的细菌或碳,就会提高生物需氧量(BOD,Biological Oxygen Demand),增加有机消毒副产物(DBP,Disinfection Byproduct)的前体。最理想的情况是用碳量刚好能维持细菌的活性。因此,碳源使用的优化对于实现高效脱硝、节约成本、提高工艺效率来说至关重要。TOC分析仪在监测进水中的硝酸盐和出水中的硝酸盐/亚硝酸盐的含量时,能够给出给定碳源的除氮量。用TOC分析仪进行脱硝后的监测,能够以非专属的方法来快速测量碳源的除氮效率。生物脱硝的工艺流程如图1所示。TOC在线分析法能够实时显示用碳量和除氮量之间的关系变化和偏差。此分析法不仅可以保证水中的硝酸盐和有机物含量降到最低,还能节省操作设备所需的时间、资源、化学品、资金。连续监测法允许操作人员根据情况变化来及时调整工艺,而无需将样品送到第三方实验室进行分析,因而具有省时省力的优点。图1:生物脱硝流程示意图采用TOC在线分析法后,就不必再根据出水中的硝酸盐/亚硝酸盐的浓度来猜测碳源的使用效率。用此方法来监测脱硝结果还有一大优点,就是能够同下游水处理厂的工艺相匹配。对饮用水进行TOC分析,有助于水厂达到美国环保局对TOC去除率、DBP监测、工艺优化的规定指标。随着社会对经济饮用水的需求不断提高、水资源相对减少、人们的污染防范意识越来越强,水处理厂有必要优化工艺,以便高效去除水中的营养物质和有机污染物。参考文献“Rolling Revision of the WHO Guidelines for Drinking-Water Quality: Nitrates and nitrites in drinking-water.” July 2004. World Health Organization.“Consumer Factsheet on: NITRATES/NITRITES.” US EPA. http://www.epa.gov/ogwdw/pdfs/factsheets/ioc/nitrates.pdfNeethling, J.B. “Tertiary Denitrification Processes for Low Nitrogen and Phosphorus.” November 2010. Water Environment Research Foundation. “Water Treatment Processes for Reducing Nitrate Concentrations.” World Health Organization: Water Sanitation Health. http://www.who.int/water_sanitation_health/dwq/chemicals/en/nitrateschap6.pdf◆ ◆ ◆联系我们,了解更多!
  • 地表水检测移动实验室仪器配置及监测项目一览
    p   随着我国对地表水现场检测的需求不断扩大,地表水快速检测移动实验室在检测过程中的重要性逐渐显现,因此对地表水快速检测移动实验室的采样、检测仪器等相关设备也引起了高度重视。作为地表水采样与检测一体化的移动实验室平台,制定统一、规范的地表水快速检测移动实验室用于地表水现场采样与检测等显得尤为必要。 /p p   日前,全国移动实验室标准化技术委员会发布关于通知,对《地表水快速检测移动实验室通用技术规范》征求意见。本标准由全国移动实验室标准化技术委员会提出并归口,起草单位为青岛佳明测控科技股份有限公司,合作单位为中国环境监测总站、青岛市环境监测中心、上海安杰环保科技股份有限公司、山东正泰希尔专用汽车有限公司。 /p p   我们国家目前已经建立了《地表水环境质量标准》、《移动实验室通用要求》、《地表水自动监测技术规范》等标准,但是没有移动实验室地表水监测的专业性标准,本标准参考了以上标准,根据地表水的相关规定,做了相关规范,填补了地表水检测移动实验室没有技术规范的空白。 /p p   标准中明确了地表水快速检测移动实验室仪器设备配置参考及地表水快速检测移动实验室监测项目。其中,地表水快速检测移动实验室可参考地表水快速检测移动实验室监测项目来选配仪器设备。详细内容如下: /p p style=" text-align: center " strong 地表水检测移动实验室配置仪器设备 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 39" p style=" text-align:center " 序号 /p /td td width=" 157" p style=" text-align:center " 检测类别 /p /td td width=" 480" p style=" text-align:center " 仪器设备 /p /td /tr tr td width=" 39" rowspan=" 2" p style=" text-align:center " 1 /p /td td width=" 157" rowspan=" 2" p style=" text-align:center " 采样器、样品采集、存储类 /p /td td width=" 480" p style=" text-align:center " a href=" https://www.instrument.com.cn/Consumables/s_82.htm" target=" _blank" 聚乙烯塑料桶 /a 、 a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" 单层采水瓶 /a 、 a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" 直立式采水器 /a 、 a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" 在线自动监测设备 /a /p /td /tr tr td width=" 480" p style=" text-align:center " a href=" https://www.instrument.com.cn/Consumables/s_81.htm" target=" _blank" 硬质玻璃瓶 /a 、 a href=" https://www.instrument.com.cn/Consumables/s_82.htm" target=" _blank" 聚乙烯瓶 /a 等容器、 a href=" https://www.instrument.com.cn/Consumables/s_82.htm" target=" _blank" 无菌瓶 /a 等容器、 a href=" https://www.instrument.com.cn/list/main/03.shtml" target=" _blank" 车载冰箱 /a /p /td /tr tr td width=" 39" p style=" text-align:center " 2 /p /td td width=" 157" p style=" text-align:center " 试验类 /p /td td width=" 480" p style=" text-align:center " a href=" https://www.instrument.com.cn/Consumables/s_81.htm" target=" _blank" 烧杯 /a 、 a href=" https://www.instrument.com.cn/Consumables/s_81.htm" target=" _blank" 试管 /a 、 a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" 试剂盒 /a 、 a href=" https://www.instrument.com.cn/Consumables/s_81.htm" target=" _blank" 容量瓶 /a 、 a href=" https://www.instrument.com.cn/Consumables/s_81.htm" target=" _blank" 量筒 /a 、 a href=" http://移液枪" target=" _blank" 移液枪 /a 、 a href=" https://www.instrument.com.cn/Consumables/s_81.htm" target=" _blank" 移液管 /a 等 /p /td /tr tr td width=" 39" p style=" text-align:center " 3 /p /td td width=" 157" rowspan=" 3" p style=" text-align:center " 检测仪器类 /p /td td width=" 480" rowspan=" 3" p style=" text-align:center " a href=" http://五参数分析仪" target=" _blank" 五参数分析仪 /a 、 a href=" https://www.instrument.com.cn/zc/1687.html" target=" _blank" 高锰酸盐指数分析仪 /a 、 a href=" http://氨氮分析仪" target=" _blank" 氨氮分析仪 /a 、 a href=" https://www.instrument.com.cn/zc/319.html" target=" _blank" 总磷分析仪 /a 、 a href=" https://www.instrument.com.cn/zc/319.html" target=" _blank" 总氮分析仪 /a 、 a href=" https://www.instrument.com.cn/zc/35.html" target=" _blank" 可见/紫外分光光度计 /a 、 a href=" https://www.instrument.com.cn/zc/24.html" target=" _blank" 离子色谱仪 /a 、 a href=" https://www.instrument.com.cn/zc/1158.html" target=" _blank" 气相分子吸收光谱仪 /a 、 a href=" https://www.instrument.com.cn/zc/39.html" target=" _blank" 原子发射光谱仪 /a 。 a href=" https://www.instrument.com.cn/zc/1650.html" target=" _blank" 重金属分析仪等在线自动监测仪 /a 、 a href=" https://www.instrument.com.cn/zc/646.html" target=" _blank" 重金属分析系统 /a 、 a href=" https://www.instrument.com.cn/zc/293.html" target=" _blank" 电感耦合等离子体质谱仪ICP-MS /a 、 a href=" https://www.instrument.com.cn/zc/24.html" target=" _blank" 离子色谱仪 /a 、 a href=" https://www.instrument.com.cn/zc/1.html" target=" _blank" 气相色谱仪 /a 、 a href=" https://www.instrument.com.cn/zc/290.html" target=" _blank" 气相色谱-质谱联用仪 /a 、 a href=" https://www.instrument.com.cn/zc/290.html" target=" _blank" 气相色谱-飞行质谱联用仪 /a 、 a href=" https://www.instrument.com.cn/zc/143.html" target=" _blank" 培养箱 /a 等。 /p /td /tr tr td width=" 39" p style=" text-align:center " 3 /p /td /tr tr td width=" 39" p style=" text-align:center " 3 /p /td /tr /tbody /table p   地表水快速检测移动实验室仪器设备选择原则:a) 根据使用的实际需求选择合适的仪器设备。 b) 有限选用主流分析方法的仪器设备  c) 仪器设备宜便捷、小型化。 /p p style=" text-align: center " strong 地表水快速检测移动实验室监测项目 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 44" valign=" top" p style=" text-align:center " & nbsp /p /td td width=" 280" valign=" top" p style=" text-align:center " strong 必测项目 /strong strong /strong /p /td td width=" 314" valign=" top" p style=" text-align:center " strong 选测项目 /strong strong /strong /p /td /tr tr td width=" 44" valign=" top" p style=" text-align:center " 河 流 /p /td td width=" 280" valign=" top" p style=" text-align:center " 水温、pH、溶解氧、高锰酸盐指数、化学需氧量、BOD5、氨氮、总氮、总磷、铜、锌、氟化物、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、 br/ & nbsp & nbsp & nbsp 石油类、阴离子表面活性剂、硫化物和粪大肠菌群 /p /td td width=" 314" valign=" top" p style=" text-align:center " 总有机碳、甲基汞,根据纳污情况由各级相关环境保护主管部门确定 /p /td /tr tr td width=" 44" valign=" top" p style=" text-align:center " 集中式饮用水源地 /p /td td width=" 280" valign=" top" p 水温、pH、溶解氧、悬浮物②、高锰酸盐指数、化学需氧量、BOD5、氨氮、总磷、总氮、铜、锌、氟化物、铁、锰、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、石油类、阴离子表面活性剂、硫化物、硫酸盐、氯化物、硝酸盐和粪大肠菌群 /p /td td width=" 314" valign=" top" p 三氯甲烷、四氯化碳、三溴甲烷、二氯甲烷、1,2-二氯乙烷、环氧氯丙烷、氯乙烯、1,1-二氯乙烯、1,2-二氯乙烯、三氯乙烯、四氯乙烯、氯丁二烯、六氯丁二烯、苯乙烯、甲醛、乙醛、丙烯醛、三氯乙醛、苯、甲苯、乙苯、二甲苯③、异丙苯、氯苯、1,2-二氯苯、1,4-二氯苯、三氯苯④、四氯苯⑤、六氯苯、硝基苯、二硝基苯⑥、2,4-二硝基甲苯、2,4,6-三硝基甲苯、硝基氯苯⑦、2,4-二硝基氯苯、2,4-二氯苯酚、2,4,6-三氯苯酚、五氯酚、苯胺、联苯胺、丙烯酰胺、丙烯腈、邻苯二甲酸二丁酯、邻苯二甲酸二(2-乙基己基)酯、水合肼、四乙基铅、吡啶、松节油、苦味酸、丁基黄原酸、活性氯、滴滴涕、林丹、环氧七氯、对硫磷、甲基对硫磷、马拉硫磷、乐果、敌敌畏、敌百虫、内吸磷、百菌清、甲萘威、溴氰菊酯、阿特拉津、苯并(a)芘、甲基汞、多氯联苯⑧、微囊藻毒素-LR、黄磷、钼、钴、铍、硼、锑、镍、钡、钒、钛、铊 /p /td /tr tr td width=" 44" valign=" top" p style=" text-align:center " 湖泊水库 /p /td td width=" 280" valign=" top" p 水温、pH、溶解氧、高锰酸盐指数、化学需氧量、BOD5、氨氮、总磷、总氮、铜、锌、氟化物、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、石油类、阴离子表面活性剂、硫化物和粪大肠菌群 /p /td td width=" 314" valign=" top" p style=" text-align:center " 总有机碳、甲基汞、硝酸盐、亚硝酸盐,其它 br/ & nbsp & nbsp & nbsp 根据纳污情况由各级相关环境保护主管部门确定 /p /td /tr tr td width=" 44" valign=" top" p style=" text-align:center " 排污河(渠) /p /td td width=" 280" valign=" top" p style=" text-align:center " 根据纳污情况,参照表中工业废水监测项目 /p /td td width=" 314" valign=" top" p style=" text-align:center " & nbsp /p /td /tr /tbody /table p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制