当前位置: 仪器信息网 > 行业主题 > >

热电发电效率性能评价系统

仪器信息网热电发电效率性能评价系统专题为您提供2024年最新热电发电效率性能评价系统价格报价、厂家品牌的相关信息, 包括热电发电效率性能评价系统参数、型号等,不管是国产,还是进口品牌的热电发电效率性能评价系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热电发电效率性能评价系统相关的耗材配件、试剂标物,还有热电发电效率性能评价系统相关的最新资讯、资料,以及热电发电效率性能评价系统相关的解决方案。

热电发电效率性能评价系统相关的资讯

  • 日本ADVANCE-RIKO公司推出最新热电器件发电效率特性评价装置PEM/Mini-PEM
    日本ADVANCE-RIKO公司推出最新热电器件发电效率特性评价装置PEM/Mini-PEM 随着热电材料领域研究的深入,人们尤其是工业界对热电器件热电转换效率更为关注。为了适应这个重要的需求。日本advance-riko公司在推出著名的热电材料评价装置ZEM-3.ZEM=5等设备后适时推出最新热电器件发电效率特性评价装置PEM/Mini-PEM。该产品推出后在日本等国收到广泛好评。在此基础上近来通过我司开始在中国推出该类设备。希望大家来电垂询。详见我司网站上的技术资料。
  • 《Science》!热电转换效率测量系统PEM助力客户文章登上顶级期刊
    导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电转换技术是利用材料的塞贝克效应与帕尔贴效应将热能和电能进行直接转换的技术,包括热电发电和热电制冷。这种技术具有系统体积小、可靠性高、不排放污染物、适用温度范围广等特点。热电器件可以实现热能和电能的直接转换,在废热回收和固态制冷领域具有重要的研究价值,对热电发电器件的能量转换效率进行测量是评价热电材料和器件性能的重要基础。 热电材料性能指标的关键在于能源转换效率,其由材料的无量纲热电性能优值(ZT值)决定。由ZT值的定义式(ZT = (Sσ/κ)T)可知,在给定温度T下,高性能热电材料应具有大的塞贝克系数S、高的电导率σ和低的热导率κ。然而,这些热电参数相互之间具有强烈的耦合关系,使得热电材料的性能优化具挑战性,调控这些强烈耦合的复杂热电参数是提高材料ZT值和热电转换效率的关键。随着热电材料领域的研究越来越受重视,不断涌现出了诸多提升ZT值的有效策略:优化载流子浓度以提高电导率;调整电子能带结构、晶体结构、相结构等优化电传输性能;通过引入点缺陷、位错、晶界、纳米沉淀物等进行多尺度分层架构设计以降低热导率;探索和开发具有本征低热导率特性的新材料体系;通过高通量及基于基因计算等预测潜在热电材料等。近日,北京航空航天大学材料科学与工程学院赵立东教授团队与南方科技大学、清华大学及武汉理工大学的科研团队合作,通过掺杂Pb,显著提高了p型SnSe晶体室温附近的电传输性能。该工作以《Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments》为题目发表在《Science》上。 以往研究中,多选用窄带隙或半金属材料作为热电制冷材料,赵立东教授课题组则主要开发宽带隙热电材料,利用各向异性调和电输运与热输运的矛盾。该研究通过在动量空间和能量空间同时作用的多价带协同传输策略,实现了p型SnSe晶体热电性能的显著提升;并制备了基于SnSe晶体材料的热电器件,测试其温差发电性能(大发电量及功率),还实现了大温差的电子制冷。这一研究表明SnSe基晶体材料在温差发电和电子制冷方面有巨大潜力,使用p型SnSe晶体制备的器件,其制冷性能达到了使用传统BiTe基材料商用器件的70%(210K温差下),但SnSe基热电材料具有成本低、重量轻且储量更加丰富等优势,具备十分巨大的应用价值。图1. 使用PEM-2测得的温差发电器件性能:电压(A)和输出功率(B)以上工作中,材料的电导率、塞贝克系数使用日本Advance Riko公司生产的塞贝克系数/电阻测量系统ZEM-3测得,热电转换器件(TEG)的发电量、输出功率及热电转换效率使用日本Advance Riko公司生产的热电转换效率测量系统PEM-2测得。图2. 使用PEM-2测得的温差发电器件的转换效率 日本Advance Riko公司已专业从事“热”相关技术和设备的研究开发近60年,并一直走在相关领域的前端,为各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国公司将日本Advance Riko公司的新先进热电材料测试设备:小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及大气环境下热电材料性能评估系统F-PEM引进中国。2018年7月,Quantum Design中国与日本Advance Riko达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本Advance Riko先进的热电相关设备介绍到中国。目前,所有中国用户购买的日本Advance Riko热电产品,均由Quantum Design中国公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国公司在日本Advance Riko公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。参考文献:[1] Qin Bingchao et al., Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments, Science 30 Jul 2021: Vol. 373, Issue 6554, pp. 556-561[2] 《Science》刊发北航赵立东教授课题组在电子制冷材料研究上的新进展,北京航空航天大学新闻网[3] 南科大何佳清团队在Science发表SnSe热电材料和器件重要成果,南方科技大学新闻网 关注Quantum Design China微信公众号,在对话框中输入“热电”了解更多信息。
  • 全能!单腿器件能测,多偶也能测!助您实现热电发电器件的精准测量!
    导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电器件可以实现热能和电能的直接转换,在航空航天、低品位热回收和固态制冷领域具有重要的研究价值。 热电转换技术是利用材料的塞贝克(Seebeck)效应与帕尔贴(Peltier)效应将热能和电能进行直接转换的技术,包括热电发电和热电制冷。这种技术具有系统体积小、可靠性高、不排放污染物、适用温度范围广等特点。随着研究的深入,特别是对热电半导体输运机制的深入理解及新的调控机理及制备手段的应用,热电材料的性能得到了长足的进步,研究重点也逐渐从侧重基础的材料研究向侧重应用的器件研究转移。热电器件可按用途简单分为热电发电器件(TEG)及热电制冷器件(TEC),一般由n型和p型的热电材料通过热并联和电串联的形式构成,其工作原理见图1。随着航空航天、物联网及低品位热回收等领域的发展,热电发电器件的性能越来越受到人们关注,除了用于制备器件的热电材料本身的zT值这一重要因素外,器件的结构(形状、尺寸、连接方式)以及界面材料等都对器件性能有重要影响,因此,对于发电器件性能的准确测量从而改善器件的设计及制造工艺成为科研工作者的迫切需求。图1、热电发电器件与制冷器件的工作原理日本Advance Riko公司推出的小型热电转换测量系统Mini-PEM(图2)可以测量单腿器件的热电转换效率,该设备为目前商用的可以测量单腿器件热电转换效率的测量系统,热端温度高达500℃,可以测量器件在不同温差条件下的发电量、热流量及大转换效率。在近期的工作中,科研工作者使用小型热电转换测量系统Mini-PEM测量了碲化铋基热电材料制备的单腿发电器件。图2、小型热电转换效率测量系统Mini-PEM碲化铋基热电材料是目前应用广的热电材料,其具有优异的热电性能,且能在近室温附近表现出佳性能,国内外大量的科研团队对于提升其性能进行了大量深入的研究。近日,来自清华大学的研究团队使用放电等离子体烧结法,对碲化铋合金的制备工艺的改良进行了研究。该团队在原料中加入过量碲单质,随后控制放电等离子体烧结温度在共晶点上循环升降。采用此工艺能有效降低晶粒的界面自由能,促进晶粒的快速长大,从而减弱了块体内部晶界对载流子的散射作用,显著改善了电学性能提升了功率因子(PF);在伴随共晶液相的挤出过程中引入大量位错。同时还可形成大量二相,进一步增加了位错密度。这些结构能有效增强声子散射,从而降低晶格热导率(κL)。终,优化工艺参数和组分的p型(Bi,Sb)2Te3材料的ZT值达到1.46,较常规放电等离子体烧结得到的商用(Bi,Sb)2Te3材料提升了50%,采用该材料制备的单腿器件的热电转换效率提升超过80%[1]。图3、单腿器件结构图及实物照片(a),热电转换效率(η)与电流(I)的关系:经过4次SPS循环的Bi0.4Sb1.6Te3.2(b),1C样品:1次循环(c),商用(Bi,Sb)2Te3:标准球磨-烧结制备(d),经过4次SPS循环的Bi0.4Sb1.6Te3.2的理论值(e)作为发电热电材料,p型Bi2Te3基热电材料性能高,但高性能的n型材料相对缺乏,为解决这一问题,科研工作者进行了多种尝试。来自南方科技大学的科研团队在n型Bi2Te3材料中复合过量的碲(Te)单质,通过烧结使碲单质熔化流出,在基体中引入位错。此外,还复合掺杂了锑(Sb)元素,使材料中同时存在多种缺陷,从而达到了降低热导率的目的,显著提高zT值。使用Bi1.8Sb0.2Te2.7Se0.3 + 15 wt% Te 的n型热电腿和Bi0.5Sb1.5Te3的p型热电腿制备的热电转换器件,实现了3.7W的大输出功率及6.6%的转换效率[2]。与上述研究不同,此工作中科研工作者制备了由70对π形结构组成的器件(图4),器件尺寸30 mm×30 mm×3.8 mm,值得注意的是,本工作的发电量及热电转换效率是由日本ADVANCE RIKO公司生产的热电转换测量系统PEM-2测得的。图4、载流子局域化示意图(a),n型Bi2(TeSe)3的zT值与温度的关系曲线(b),热电器件的输出功率(c),热电转换效率(d)热电转换测量系统PEM-2支持多种器件尺寸,热端高温度可达800℃,测量在惰性气体(Ar)中进行。为了模拟热电发电器件在真实工况中的使用,Advance Riko公司新近推出了大气环境下热电材料性能评估系统F-PEM,该系统可在大气环境下,对负荷温差的器件的发电量及热流量进行测量,计算热电转换效率。该系统还可以长时间运行热循环测试,从而测试商用组件在负载和温度下的耐久性。图5、热电转换效率测量系统PEM-2(a),大气环境下热电材料性能评估系统F-PEM(b)此外,上述两篇文章中材料的电输运性能(电导率σ、塞贝克系数S)均使用日本Advance Riko公司生产的塞贝克系数/电阻测量系统ZEM-3(图6)测得。图6、塞贝克系数/电阻测量系统ZEM-3延伸阅读日本Advance Riko公司已专业从事“热”相关技术和设备的研究开发近60年,并一直走在相关领域的前端,为各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国公司将日本Advance Riko公司的新先进热电材料测试设备:小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及薄膜厚度方向热电性能评价系统ZEM-d引进中国。2018年7月,Quantum Design中国与日本Advance Riko达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本Advance Riko先进的热电相关设备介绍到中国。 目前,所有中国用户购买的日本Advance Riko热电产品,均由Quantum Design中国公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国公司在日本Advance Riko公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。 参考文献:[1] H. Zhuang et al. / Thermoelectric Performance Enhancement in BiSbTe Alloy by Microstructure Modulation via Cyclic Spark Plasma Sintering with Liquid Phase. Adv. Funct. Mater. 2021, 2009681[2] B. Zhu et al. / Realizing Record High Performance in n-type Bi2Te3-Based Thermoelectric Materials. Energy Environ. Sci., 2020, 13, 2106-2114
  • 【热电资讯】热电转换效率测量系统PEM-2成功落户深圳市清洁能源研究院
    导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电转换技术是利用材料的塞贝克效应与帕尔贴效应将热能和电能进行直接转换的技术,包括热电发电和热电制冷。这种技术具有系统体积小、可靠性高、不排放污染物、适用温度范围广等特点。热电器件可以实现热能和电能的直接转换,在废热回收和固态制冷领域具有重要的研究价值,对热电发电器件的能量转换效率进行测量是评价热电材料和器件性能的重要基础。 近日,我司在深圳市清洁能源研究院成功交付使用了热电转换效率测量系统PEM-2。该设备可测量热电材料产生的电量及热电转换效率η(通过产生的电量和热流来获得)。为尽快满足用户的科研需求,Quantum Design中国公司调集技术力量,在满足防疫要求的前提下与用户紧密合作,顺利完成了设备的安装工作,所有技术指标均符合要求,设备正式交付使用。热电材料能够实现热能与电能的直接转换,具有重要的实用价值,热电转换效率是衡量热电材料这种转换能力的一个重要指标,对热电材料的产业化具有重要的指导意义,热电转换效率测量系统PEM-2是能有效测量该指标的仪器。PEM-2主机外观Quantum Design中国公司工程师为客户介绍设备热电转换效率测量系统PEM-2通过高精度的红外线金面反射炉可快速完成性能评估和耐力测试,可以实现热穿透测量,加热过程中,通过气缸加载可以保持接触表面的热阻稳定。在测试过程中,仅通过设置软件即可自动完成温度稳定性的判断、自动调节热电发电模块的负载以及自动控制温度测量,操作十分便捷。PEM-2支持3种样品尺寸,分别为20 mm×20 mm、30 mm×30 mm、40 mm×40 mm,用户可以根据自己的研究需要选择样品单元的大小。40 mm×40 mm样品单元PEM-2自推出以来,广受热电领域科研工作者的关注,目前国内装机量已近10台。近期,南方科技大学物理系讲席教授何佳清团队在n型Bi2Te3材料中复合过量的Te单质,通过烧结使Te单质熔化流出,在基体中引入位错。此外,还复合掺杂了Sb元素,使材料中同时存在多种缺陷,从而达到了降低热导率的目的,显著提高ZT优值。使用此材料制备的热电转换器件,实现了3.7 W的大输出功率及6.6%的转换效率,相关成果以“Realizing Record High Performance in n-type Bi2Te3-Based Thermoelectric Materials”为题在Energy & Environmental Science发表[1]。该工作中热电转换器件的大输出功率(Pmax)及转换效率(η)均使用PEM-2测得。热电转换效率测量系统PEM-2为日本Advance Riko, Inc.生产。日本Advance Riko公司已专业从事“热”相关技术和设备的研究开发近60年,并一直走在相关领域的前端,为各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国公司将日本Advance Riko公司的新款先进热电材料测试设备:小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及大气环境下热电材料性能评估系统F-PEM引进中国。2018年7月,Quantum Design中国与日本Advance Riko达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本Advance Riko先进的热电相关设备介绍到中国。目前,所有中国用户购买的日本Advance Riko热电产品,均由Quantum Design中国公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国公司在日本Advance Riko公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。 参考文献:[1]. Bin Zhu, Xixi Liu, Qi Wang, Yang Qiu, Zhong Shu, Zuteng Guo, Yao Tong, Juan Cui, Meng Gu and Jiaqing He, Realizing Record High Performance in n-type Bi2Te3-Based Thermoelectric Materials, Energy & Environmental Science 2020, 13, 2106-2114 关注Quantum Design China微信公众号,在对话框中输入“热电”了解更多信息。
  • 【热电资讯】厚度方向热电性能评价系统ZEM-d正式开放免费样品测试预约
    日本ADVANCE RIKO公司50多年来专业从事“热”相关技术和设备的研究开发,一直处于相关领域的技术前沿。2018年初,Quantum Design中国子公司与日本ADVANCE RIKO公司就新先进热电材料测试技术开展合作,将小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及大气环境下热电材料性能评估系统F-PEM引进中国。 2018年中下旬,Quantum Design中国子公司与日本ADVANCE RIKO正式达成合作协议,作为其热电材料测试设备在中国的代理商继续深度合作,并将日本ADVANCE RIKO的相关设备引入到中国大陆、香港和澳门地区进行进一步推广。2019年,在日本ADVANCE RIKO公司的通力支持下,Quantum Design中国子公司在北京建立了部分热电设备示范实验室和用户服务中心,更好地为中国热电技术的发展提供设备支持和技术服务。 日本ADVANCE RIKO公司塞贝克系数与电阻测量系统ZEM系列在全球销售量超过300台,广获全球科研及工业用户的赞誉,成为热电材料领域应用广泛的测试设备。2019年,在此前的成功基础上,ADVANCE RIKO公司推出了专门用于评价聚合物厚度方向上热电性能的全新设备ZEM-d。 与之前ZEM系列产品(ZEM-3/ZEM-5)不同,新型号ZEM-d主要测量聚合物薄膜厚度方向上的塞贝克系数和电阻率,可以测量的样品薄为10 μm。此外,ZEM-d与采用激光闪光法测量薄膜的热扩散率/导热系数测量方向一致,其测量结果可广泛应用于薄膜热电材料的性能评价。 为更好服务国内热电材料研究领域的客户,满足客户体验需求, Quantum Design中国子公司与日本ADVANCE RIKO公司携手推出 厚度方向热电性能评价系统ZEM-d免费样品测试活动。活动时间自即日至2020年5月15日止,如您有样品测试需求,欢迎通过官方微信平台(QuantumDesignChina、电话010-85120280或邮箱info@qd-china.com联系我们,公司将有专人对接,与您协调具体的样品测试工作。
  • 【热电资讯】新一代小型热电转换效率测量系统Mini-PEM成功落户中国科学院物理研究所
    导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电转换技术是利用材料的塞贝克效应与帕尔贴效应将热能和电能进行直接转换的技术,包括热电发电和热电制冷。这种技术具有系统体积小、可靠性高、不排放污染物、适用温度范围广等特点。热电器件可以实现热能和电能的直接转换,在废热回收和固态制冷领域具有重要的研究价值,对热电发电器件的能量转换效率进行测量是评价热电材料和器件性能的重要基础。近期,我们在中国科学院物理研究所成功交付使用了小型热电转换效率测量系统Mini-PEM。该设备可测量热电材料产生的电量及热电转换效率η(通过产生的电量和热流来获得)。为尽快满足用户的科研需求,Quantum Design中国子公司调集技术力量,在满足防疫要求的前提下与用户紧密合作,顺利完成了设备的安装工作,所有技术指标均符合要求,设备正式交付使用。热电材料能够实现热能与电能的直接转换,具有重要的实用价值,而热电转换效率是衡量热电材料这种转换能力的一个重要指标,对热电材料的产业化具有重要的指导意义,目前小型热电转换效率测量系统是能有效测量该指标的仪器。Quantum Design中国子公司工程师为客户介绍设备传统的热电转换效率测量方法是将所制得的样品(p型或n型)与标准(n型或p型)材料结合制备成器件,通过对器件进行测试得出转换效率。近年来,ADVANCED RIKO公司创新性地研发了全新的小型热电转换效率测量系统Mini-PEM,其能以单腿器件为样品,通过测试样品的热流及发电量再结合理论计算得到热电转换效率,并且对该类产品申请了。Mini-PEM的样品连接方式近期Mini-PEM用户,昆明理工大学材料学院教授葛振华、冯晶等通过将Ru纳米粉体掺杂至商业碲化铋中,实现了细晶强化。通过晶界对电子和声子的散射,有效提高了塞贝克系数,降低了热导率。材料在425K的ZT值达到0.93。使用Mini-PEM对单腿n型碲化铋的热电转换效率进行了表征,相比纯商业样品提升了91%。相关研究成果以Simultaneous Enhancement of Thermoelectric Performance and Mechanical Properties in Bi2Te3 via Ru compositing为题发表在化工领域期刊Chemical Engineering Journal上[1]。该工作中,材料的高温塞贝克系数和电阻率是采用日本ADVANCE RIKO公司生产的塞贝克系数/电阻测量系统ZEM-3测得的;单腿样品的热电转换效率是使用日本ADVANCE RIKO公司生产的小型热电转换效率测量系统Mini-PEM测得。另外,材料在室温(291K)的载流子浓度与载流子迁移率使用Quantum Design公司研发的综合物性测量系统PPMS测得。日本ADVANCE RIKO公司成立近60年来专业从事“热”相关技术和设备的研究开发,并一直走在相关领域前端,为各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国子公司将日本ADVANCE RIKO公司的先进热电材料测试设备:小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及大气环境下热电材料性能评估系统F-PEM引进中国。2018年7月,Quantum Design China与日本ADVANCE RIKO达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本ADVANCE RIKO先进的热电相关设备介绍到中国。目前,所有中国用户购买的日本ADVANCE RIKO热电产品,均由Quantum Design中国子公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国子公司在日本ADVANCE RIKO公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。 参考文献:【1】Y-K. Zhu, J. Guo, L. Chen, S-W. Gu, Y-X. Zhang, Q. Shan, J. Feng, Z-H. Ge,Simultaneous Enhancement of Thermoelectric Performance and Mechanical Properties in Bi2Te3 via Ru compositing, Chemical Engineering Journal (2020)
  • ADVANCE RIKO发布聚合物薄膜厚度方向热电性能评价系统ZEM-d新品
    聚合物薄膜厚度方向热电性能评价系统ZEM-d日本ADVANCE RIKO公司塞贝克系数与电阻测量系统ZEM系列在全球销售量超过300台,广获全球科研及工业用户的赞誉,成为热电材料领域“标杆型”测试设备。2019年,在此前的成功基础上,ADVANCE RIKO公司推出了专门用于评价聚合物厚度方向上热电性能的全新设备ZEM-d。与之前ZEM系列产品(ZEM-3/ZEM-5)不同,新型号ZEM-d主要测量聚合物薄膜厚度方向上的塞贝克系数和电阻率,可以测量的样品最薄为10μm。此外,ZEM-d与采用激光闪光法测量薄膜的热扩散率/导热系数测量方向一致,其测量结果可广泛应用于薄膜热电材料的性能评价。ZEM-d测量原理现存测试方法ZEM-d(厚度方向测量)电阻率测量原理塞贝克系数测量原理ZEM-d技术参数测量参数 塞贝克系数,电阻率温度范围 最高200℃(样品表面)样品尺寸 截面:Φ20mm(Max),长度:0.01-20mm测量氛围 空气或惰性气体软件界面创新点:ZEM-d主要测量聚合物薄膜厚度方向上的塞贝克系数和电阻率,可以测量的样品最薄为10μ m。 此外,ZEM-d与采用激光闪光法测量薄膜的热扩散率/导热系数测量方向一致,其测量结果可广泛应用于薄膜热电材料的性能评价。 聚合物薄膜厚度方向热电性能评价系统ZEM-d
  • 《EES》!热电转换效率测量设备助力客户铜基热电材料研究取得重要进展
    导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多级利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电转换技术是利用材料的塞贝克效应与帕尔贴效应将热能和电能进行直接转换的技术,包括热电发电和热电制冷。这种技术具有系统体积小、可靠性高、不排放污染物、适用温度范围广等特点。热电器件可以实现热能和电能的直接转换,在废热回收和固态制冷领域具有重要的研究价值,对热电发电器件的能量转换效率进行精确测量是评价热电材料和器件性能的重要基础。 热电转换技术是一项基于半导体材料的新能源技术。基于材料的塞贝克效应和帕尔贴效应,该项技术能够实现温差发电和通电制冷的效果,其分别在工业废热回收利用和电子制冷领域有着重要的应用。相比于传统能源转换技术,热电转换技术具有器件尺寸高度可控、可靠性高、无运动部件、无污染和无噪音等优势。热电材料性能指标的关键在于能源转换效率,其由材料的无量纲热电性能优值(zT值)决定。随着热电材料领域的研究越来越受重视,不断涌现出了诸多提升zT值的有效策略:优化载流子浓度以提高电导率;调整电子能带结构、晶体结构、相结构等优化电传输性能;通过引入点缺陷、位错、晶界、纳米级沉淀物等进行多尺度分层架构设计以降低热导率;探索和开发具有本征低热导率特性的新材料体系;通过高通量及基于基因计算等预测潜在热电材料等。类金刚石化合物是从单质Si及闪锌矿半导体等金刚石结构物质衍生而来,具有金刚石结构的四面体结构。四元类金刚石材料Cu2CdSnSe4[1]和Cu2ZnSnSe4[2]等的热电性能逐渐受到重视,其zT值在700K及850K分别达到了0.65及0.95。此后,多种类金刚石结构化合物的性能得到研究,许多体系的ZT值超过了1。近期,重庆大学周小元团队与其合作者通过在Cu3SbSe4中加入CuAIS2(1&minus 6wt%)的方法提高了材料的电输运性能、降低了晶格热导率,同时材料的热稳定性和力学性能也得到了提升,给热电器件(TEG)的制作与应用带来了益处,该工作以《High Thermoelectric Performance and Compatibility in Cu3SbSe4-CuAlS2 Composites》为题,发表在能源与环境科学领域顶级期刊《Energy &Environmental Science》 (EES)上[3]。实验结果表明,Cu3SbSe4-CuAIS2复合材料在300 - 723 K的温度范围内平均zT值为0.77,峰值可以达到1.8,均为已公开报道的最高值。 图1. 300-723K温度区间内Cu3SbSe4 and Cu3SbSe4-5 wt% CuAlS2zT值与温度的关系(a)、本工作与其他公开报道的铜基-类金刚石热电材料的zT值比较(b)使用p型Cu3SbSe4-5% CuAlS2制成的单腿器件,其热电转换效率达到了3.3%(ΔT=367K)。图2. p-type Cu3SbSe4-5% CuAlS2单腿器件的转换效率(a)及发电量(b)与温度的关系值得注意的是,本文中单腿器件的转换效率及发电量测量是在Advance Riko公司的小型热电转换效率测量系统Mini-PEM上进行的,Quantum Design中国做为日本Advance Riko, Inc.公司的合作伙伴,很荣幸高性能的小型热电转换效率测量系统Mini-PEM可以助力本研究的发表。 日本Advance Riko公司已专业从事“热”相关技术和设备的研究开发近60年,并一直走在相关领域的前端,为世界各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国公司将日本Advance Riko公司先进的热电材料测试设备:小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及大气环境下热电材料性能评估系统F-PEM引进中国。2018年7月,Quantum Design中国与日本Advance Riko达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本Advance Riko先进的热电相关设备介绍到中国。目前,所有中国用户购买的日本Advance Riko热电产品,均由Quantum Design中国公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国公司在日本Advance Riko公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。 参考文献:[1] M. Liu et al., A wide-band-gap p-type thermoelectric material based on quaternary chalcogenides of Cu2ZnSnQ4 (Q=S, Se), Appl. Phys. Lett. 94, 202103 (2009)[2] M. Liu et al., Improved Thermoelectric Properties of Cu-Doped Quaternary Chalcogenides of Cu2CdSnSe4, Advanced Materials, Volume21, Issue37[3] Y. Huang et al., High thermoelectric performance and compatibility in Cu3SbSe4–CuAlS2 composites, Energy Environ. Sci., 2023, Advance Article
  • 【热电资讯】QD中国北京实验室引进小型热电转换效率测量系统Mini-PEM样机并正式开放预约体验
    2019年3月22日,Quantum Design中国引进日本ADVANCE RIKO公司小型热电转换效率测量系统Mini-PEM在北京样机实验室成功完成安装并对外开放。Quantum Design中国此次建立的Mini-PEM样机实验室,可对相关领域感兴趣的科学工作者提供真机体验平台。欢迎广大学者预约真机体验。小型热电转换效率测量系统Mini-PEM可以通过自动测量热流量和发电量来获得热电转换效率,电量是通过四探针法获得;热流是通过热流计获得。Mini-PEM体积更为小巧,操作更为简单,集成化设计可实现对小型材料块体方形2-10mm x 1-20mmH测量。可广泛应用于:发电量和热流量测量、热电材料模块的热电转换效率计算、单一热电材料发电量及热流测量、热电材料性能和寿命评估等各个方向。 热电材料能够实现热能与电能的直接转换,具有重要的实用价值,而热电转换效率是衡量热电材料这种转换能力的一个重要指标,对热电材料的产业化具有重要的指导意义,目前小型热电转换效率测量系统是能有效测量该指标的仪器。传统的热电转换效率测量方法是将所制得的样品(p型或n型)与标准(n型或p型)材料结合制备成器件,通过对器件进行测试得出转换效率。而近年来,ADVANCED RIKO公司创新性生产出了小型热电转换效率测量系统Mini-PEM,其能以单臂材料为样品,通过测试样品的热流及发电量结合理论计算得到热电转换效率,并且对该类产品申请了。
  • 电力行业《发电用煤智能采制样系统技术要求与性能验收方法》等标准研讨会在三德科技成功召开
    6月19日~21日,电力行业标准修订研讨会在三德科技总部成功召开。本次会议由西安热工研究院有限公司、国网湖北省电力有限公司电力科学研究院主办,三德科技承办,会议内容主要预审《DL/T 747发电用煤智能采制样系统技术要求与性能验收方法》、《DL/T 520火力发电厂入厂煤检测试验室技术导则》、《DL/T 567.6火电厂燃料试验方法 第6部分:飞灰和炉渣可燃物和碳含量测定方法》、《DL/T 567.7火力发电厂燃料试验方法 第7部分:灰及渣中硫的测定和燃煤可燃硫的计算》四项标准,来自西安热工院、国网湖北电科院、华电电科院、大唐集团、华能集团、国家能源集团、华电集团以及业内头部企业代表等全国各地30余位权威专家参会,三德科技总经理朱青、产品总监张明庆等出席。标准修订的意义在于不断提高标准的科学性、权威性和适用性,促进相关领域的发展和进步。此次研讨会的成功召开,有助于提高电力行业的产品质量和技术水平,可以推动行业向规范化、标准化和高质量发展的方向迈进,从而推动整个产业升级和技术创新。基于此,研讨会上,与会代表们对标准修编草案内容逐条逐字进行了认真讨论,并根据实际情况给出了具体的优化意见与建议,确保标准的准确性和实用性。三德科技作为国内领先的煤炭采样、采制对接、制样、样品输送、样品存查、化验全环节无人化系统和燃料管控、煤场管理系统的研发、制造、销售、实施、运维供应商,截至目前,已累计参与起草制订国家/行业产品技术标准12项。
  • 光焱科技 携手 台积电慈善基金会 捐赠屋顶光伏发电系统
    「将爱送出去!」光焱科技 携手 台积电慈善基金会 捐赠屋顶光伏发电系统光焱科技股份有限公司与台积电慈善基金会合作,向一社福机构-启智学园捐赠一套屋顶光伏组件发电系统,每月售电收益全数做为此学园运营费用补贴。日前,台积电慈善基金会向光焱科技颁发了感谢状证书,肯定了光焱科技在热心公益事业、履行社会责任等方面做出的贡献。未来,公司努力发展的同时,也将持续投身社会公益活动,承担更多企业社会角色责任和义务,不断彰显企业「将爱送出去」的价值取向。台积电慈善基金会介绍为了更进一步整合公司资源与同仁自发性的志工服务,发挥更具体的社会影响力,台积公司于2018年6月14日正式成立台积电慈善基金会,由张淑芬女士担任董事长,根据台积电企业社会责任政策与联合国永续发展目标的使命,定义出慈善基金会的四大主轴: 照护独老、推广孝道、关怀弱势、保育环境,为创建美好社会而努力。光焱科技股份有限公司介绍光焱科技股份有限公司专注于太阳光模拟器与量子效率测量技术,从事光学分析仪器的研发、规模化生产并提供全方位解决方案及服务,在太阳能电池、钙钛矿电池、新型材料研究等领域的研发上取得多项重大突破及优越成果。中科院、国家纳米科学中心、北京大学、劳伦斯伯克利国家实验室、德国埃尔朗根-纽伦堡大学、印度理工学院等国际一流的科研单位皆为光焱科技长期合作客户。
  • 热电领域,多篇Science:热电转换测量系统持续助力客户获取关键数据!
    导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多级利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电器件可以实现热能和电能的直接转换,在航空航天、低品位热回收和固态制冷领域具有重要的研究价值。 随着航空航天、物联网及低品位热回收等领域的发展,热电发电器件的性能越来越受到人们关注,除了用于制备器件的热电材料本身的zT值这一重要因素外,器件的结构(形状、尺寸、连接方式)以及界面材料等都对器件性能有重要影响,因此,对于发电器件性能的准确测量从而改善器件的设计及制造工艺成为科研工作者的迫切需求。 日本Advance Riko公司新推出的小型热电转换测量系统Mini-PEM(图1)是一款既可以测量单腿器件,也可以测量多对器件的商用热电转换效率测量系统。该系统热端温度可高达500℃,可以测量器件在不同温差条件下的发电量、热流量及最大转换效率。图1、小型热电转换效率测量系统Mini-PEM 赵立东教授课题组Science碲化铋基热电材料(BiTe)在室温附近具有优异的热电性能,被广泛应用于低温区的制冷及发电,是目前极具前瞻性的热电材料体系,但Te元素的稀缺性(地壳内含量:0.005ppm)使其广泛应用受到限制,因此寻找新的材料体系对于热电材料的广泛应用非常重要。来自北京航空航天大学的赵立东教授课题组对于SnSe体系进行了深入的研究,在2021年的工作中【Science 373 (2021) 556-561】通过掺杂Pb,显著提高了p型SnSe晶体室温附近的电传输性能,并制备了基于SnSe晶体材料的热电器件,测试了其温差发电性能(最大发电量及功率),还实现了大温差的电子制冷。这一研究表明了SnSe基晶体材料作为温差发电和电子制冷材料的巨大潜力,使用p型SnSe晶体制备的器件,其制冷性能达到了使用传统BiTe基材料商用器件的70%(210K温差下),且SnSe基热电材料具有成本低、重量轻且储量更加丰富的优势,具备巨大的应用潜力[1]。2023年,该课题组通过在SnSe中引入Cu填充Sn空位,有效地提高了载流子迁移率,基于获得的高性能SnSe晶体搭建的热电器件在发电和制冷都表现出优异的性能。发电器件(TEG)在300K温差下能够实现最高12.2%的发电效率,制冷器件(TEC)在室温及高温下也均实现了优异的制冷性能[2]。近期,该课题组通过物理气相沉积的方法制备了PbSe晶体,以及在PbSe晶体中额外引入微量的Pb,观察到了PbSe晶格中的本征Pb空位被填补,其对应的点缺陷散射被削弱,从而显著增加了载流子迁移率。基于获得的高性能N型PbSe晶体在发电与制冷都表现出优异的性能。如图2A所示,单腿器件在420K温差下能够实现 ~ 11.2%的发电效率;如图2B所示,与该课题组2023年开发的高性能P型SnSe晶体(Science 380(2023)841-846)搭配制备的Se基热电制冷器件在热端温度(Th)为室温下能够实现 ~ 73.3 K的制冷温差,其制冷性能优于Bi2Te3基等材料制成的制冷器件[3]。图2、热电转换效率对比图(A);制冷器件温差对比图(B)该工作以《Grid-plainification enables medium-temperature PbSe thermoelectrics to cool better than Bi2Te3》为题,发表在《Science》上,其中单腿发电器件的发电量及转换效率均使用Mini-PEM测得。与上述工作不同,如果样品为多对p-n结构,ADVANCE RIKO公司则提供热电转换测量系统PEM-2用于发电量及转换效率的测量。热电转换测量系统PEM-2支持多种器件尺寸(最大40mm×40mm),热端最高温度可达800℃,测量在惰性气体(Ar2)中进行。图3、热电转换效率测量系统PEM-2 何佳清教授课题组Science近期,来自南方科技大学何佳清教授课题组的科研工作者,首次发现并验证了空穴载流子捕获和释放机制和其对材料电性能的调控作用,以及调控材料本证铅空位形态的赝纳米结构对材料热输运的抑制作用。课题组在碲化铅材料中构造了大量的纳米级空位团簇,这些团簇在材料中产生了大量的应力和应变,使材料的晶格热导率显著降低了,并且更加有利于热电材料的高服役。同时,热电器件结构设计和转换效率的提升,也有助于推动热电发电器件的发展和应用[4]。该工作以《Pseudo-nanostructure and trapped-hole release induce high thermoelectric performance in PbTe》为题,发表在《Science》上,其中热电发电器件的转换效率使用PEM-2测得。图4、使用PbTe制备的热电发电器件的热电性能延伸阅读日本ADVANCE RIKO公司已专业从事“热”相关技术和设备的研究开发近60年,并一直走在相关领域的前沿,为世界各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国公司将日本ADVANCE RIKO公司先进热电材料测试设备:小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及薄膜厚度方向热电性能评价系统ZEM-d引进中国。2018年7月,Quantum Design中国与日本ADVANCE RIKO达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本ADVANCE RIKO先进的热电相关设备介绍到中国。目前,所有中国用户购买的日本ADVANCE RIKO热电产品,均由Quantum Design中国公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国公司在日本ADVANCE RIKO公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。 参考文献[1] Qin Bingchao et al., Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments, Science 30 Jul 2021: Vol. 373, Issue 6554, pp. 556-561[2] Liu Dongrui et al., Lattice plainification advances highly effective SnSe crystalline thermoelectrics, Science 380, 841–846 (2023)[3] Qin Yongxin et al., Grid-plainification enables medium-temperature PbSe thermoelectrics to cool better than Bi2Te3, Science 383, 1204–1209 (2024)[4] Jia Baohai et al., Pseudo-nanostructure and trapped-hole release induce high thermoelectric performance in PbTe, Science 384, 81–86 (2024)相关产品1、小型热电转换效率测量系统-Mini-PEMhttps://www.instrument.com.cn/netshow/SH100980/C283294.htm2、热电转换效率测量系统-PEMhttps://www.instrument.com.cn/netshow/SH100980/C283291.htm
  • 创元开始代理日本真空理工公司热电特性评价装置ZEM-3
    创元开始代理日本真空理工公司热电特性评价装置ZEM-3 近日王道元院长/董事长受国内SPS客户的委托拜访了日本著名高科技公司------日本真空理工公司(Ulvac-riko、Inc.)。该公司是王道元博士曾经过工作过的Ulvac公司的子公司,历史悠久技术先进。很多和材料有关的设备都非常受国内同行的青睐。热电特性评价装置ZEM-3就是其中一种。对于研究热电材料的科学家来说ZEM-3是不可或缺的试验装置。ZEM-3可以精确地测定半导体材料、金属材料及其他热电材料(BiTe, PbTe, Skutterudites等)的Seebeck系数及电导率。该产品在该领域处于No.1的地位。主要原理和特点如下该装置由高精度,高灵敏度温度可控的红外线金面反射炉和控制温度用的微型加热源构成。通过PID程序控温,采用四点法的方式精确测定半导体材料及热电材料的Seebeck系数及电导率、电阻率。试样与引线的接触是否正常V-1装置可以自动检出。希望大家感兴趣。请参阅有关资料。 该公司有很多材料相关的产品,下面几个值得关注1. 钢板用高速热处理试验装置CAS系列该装置搭载着红外线金面反射炉可以实现高速加热,急速冷却。本装置适用于薄钢板,厚钢板,不锈钢板,电磁钢板等,及凡用钢板过程热处理仿真试验。2. 发电效率特性测定装置PEM系列 该装置对于热发电模块最大可施加500℃ 的温度差,通过流过模块的线性热流Q,求得发电电力P和 热电转换效率n的测量装置。3. 光触媒测定仪PCC-2本仪器是对光触媒机能的活性度,持续性及相对防污染等性能的测试设备。用于氧化氮成膜条件和稳定性研究与开发。
  • 南方科技大学何佳清团队再发Science,高熵热电材料研究取得重要进展!
    当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多级利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电转换技术是利用材料的塞贝克效应与帕尔贴效应将热能和电能进行直接转换的技术,包括热电发电和热电制冷。这种技术具有系统体积小、可靠性高、不排放污染物、适用温度范围广等特点。热电器件可以实现热能和电能的直接转换,在废热回收和固态制冷领域具有重要的研究价值,对热电发电器件的能量转换效率进行精确测量是评价热电材料和器件性能的重要基础。热电转换技术是一项基于半导体材料的新能源技术。基于材料的塞贝克效应和帕尔贴效应,该项技术能够实现温差发电和通电制冷的效果,其分别在工业废热回收利用和电子制冷领域有着重要的应用。相比于传统能源转换技术,热电转换技术具有器件尺寸高度可控、可靠性高、无运动部件、无污染和无噪音等优势。温差发电可应用于深空探测中的放射性同位素温差发电电源,如“好奇号”火星探测器,“旅行者1号”行星探测器都通过使用放射性同位素热电发生器来发电。电子制冷具有无噪声、无振动、不需制冷剂、体积小、重量轻等特点,且工作可靠,操作简便,易于进行冷量调节,常用于耗冷量小及空间狭窄的场合,如电子设备和无线电通信设备中重要元件的冷却,这对于未来通讯、物联网、5G芯片的微型电子器件等领域的精确温控具有重要意义。热电材料性能指标的关键在于能源转换效率,其由材料的无量纲热电性能优值(ZT值)决定。由ZT值的定义式(ZT = (Sσ/κ)T)可知,在给定温度T下,高性能热电材料应具有大的塞贝克系数S、高的电导率σ和低的热导率κ。然而,这些热电参数相互之间具有强烈的耦合关系,这使得热电材料的性能优化极具挑战性,调控这些强烈耦合的复杂热电参数是提高材料ZT值和热电转换效率的关键。随着热电材料领域的研究越来越受重视,不断涌现出了诸多提升ZT值的有效策略:优化载流子浓度以提高电导率;调整电子能带结构、晶体结构、相结构等优化电传输性能;通过引入点缺陷、位错、晶界、纳米级沉淀物等进行多尺度分层架构设计以降低热导率;探索和开发具有本征低热导率特性的新材料体系;通过高通量及基于基因计算等预测潜在热电材料等。南方科技大学何佳清团队将高熵稳定的策略用于协同调控材料的电、热传输性能,并成功应用于n型硒化铅基热电材料,通过解耦电热传输机制实现了热电性能的大幅提升,相关成果发表在《Science》上[1]。在近期的工作中,何佳清团队再进一步,将这一优化策略扩展应用到p型碲化锗基(GeTe)热电材料中。相关工作以《High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics》为题发表于《Science》上[2]。在由高熵稳定获得的极低晶格热导率基础上,通过调控电子局域化程度,避免了无序引入对电子传输的影响,从而使高熵碲化锗基材料的电性能得到了显著提升。这种电性能和热性能的协同优化,极大地提高了材料的热电优值,同时还实现了极高的器件转换效率,有利于高熵稳定概念在高性能热电材料开发中的应用。在碲化锗基材料中锗原子位置人为地引入多种原子,从而实现高熵策略。使用原位差分相衬扫描透射电子显微术(DPC-STEM)来表征材料中引入多种元素后带来的电子转移和重排,发现在纯的碲化锗材料中,锗和碲原子之间的电子存在很强的耦合效应,而通过多元素固溶的高熵碲化锗能够稳定晶体结构,锗原子会从菱形的偏离中心位置向几何中心位置移动,从而实现不同原子之间耦合电场的解耦效应,在极低晶格热导率的前提下优化了材料的电性能,从而提高了材料的热电优值(zT)[3]。图1. 碲化锗基热电材料(Ge0.61Ag0.11Sb0.13Pb0.12Bi0.01Te)的电导率(A)、塞贝克系数(B)、功率因子PF(C)、热导率(D)、晶格热导率(E)、热电优值zT(F)与温度(T)的关系工作中分别使用Ge0.61Ag0.11Sb0.13Pb0.12Bi0.01Te以及其他商用材料制作了单级及分段器件(TEG)并对其热电转换效率进行了测量,分别高达10.5%与13.3%。图2. (A) Ge0.61Ag0.11Sb0.13Pb0.12Bi0.01Te的zT值与温度(T)的关系(以及与其他工作的比较)(B) 本工作中制成的多个器件的热电转换效率与温差(ΔT)的关系(以及与其他工作的比较)本工作中材料的高温电输运性能(塞贝克系数S及电导率σ)使用日本Advance Riko公司生产的塞贝克系数/电阻测量系统ZEM-3测得,发电器件的发电量及热电转换效率使用日本Advance Riko公司生产的热电转换效率测量系统PEM-2测得。日本Advance Riko公司已专业从事“热”相关技术和设备的研究开发近60年,并一直走在相关领域的最前端,为世界各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国公司将日本Advance Riko公司的最新先进热电材料测试设备:小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及大气环境下热电材料性能评估系统F-PEM引进中国。2018年7月,Quantum Design中国与日本Advance Riko达成协议,作为其热电材料测试设备在中国的独家代理商继续合作,携手将日本Advance Riko最先进的热电相关设备介绍到中国。目前,所有中国用户购买的日本Advance Riko热电产品,均由Quantum Design中国公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国公司在日本Advance Riko公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。参考文献:[1] B. Jiang et al., High-entropy-stabilized chalcogenides with high thermoelectric performance, Science 371, 830–834 (2021)[2] B. Jiang et al., High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics, Science 377, 208–213 (2022)[3] 南科大何佳清团队在Science发表高熵热电材料研究论文,南方科技大学新闻网
  • 1160万!北京理工大学量子材料全温区热电性能测量系统采购项目
    一、项目基本情况项目编号:BMCC-ZC23-0843项目名称:北京理工大学量子材料全温区热电性能测量系统采购预算金额:1160.000000 万元(人民币)采购需求:名称数量简要项目描述备注量子材料全温区热电性能测量系统1套用于量子功能材料在2K-300K温度区间的热电性能研究。主要包括量子材料在无外加磁场以及外加磁场条件下的电导率、热导率、塞贝克系数、Hall效应、热电转换效率等热电相关研究;用于测量量子材料在300K-1000K温度区间的热电性能研究。具体内容详见招标文件本项目接受进口产品投标。其他:投标人应对招标文件中“第七章 采购需求及服务需求”中所有内容进行投标,不得将其中的内容拆开投标,否则其投标将被拒绝。合同履行期限:自合同生效之日起至本项目服务内容全部结束。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年12月04日 至 2023年12月11日,每天上午9:00至11:30,下午13:00至17:00。(北京时间,法定节假日除外)地点:线上报名(具体方式详见“六、其他补充事宜”)。方式:本项目只接受电汇或网银购买招标文件(具体方式详见“六、其他补充事宜”)。售价:¥200.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京理工大学     地址:海淀区中关村南大街5号        联系方式:林老师,010-68917981      2.采购代理机构信息名 称:北京明德致信咨询有限公司            地 址:北京市海淀区学院路30号科大天工大厦B座17层1709室            联系方式:张昕昕、朱思菲 010-82370045、18519514673(开机时间:工作日北京时间上午9:00-11:30,下午1:00-17:30) bjmdzx@vip.163.com            3.项目联系方式项目联系人:张昕昕、朱思菲电 话:  010-82370045、18519514673(开机时间:工作日北京时间上午9:00-11:30,下午1:00-17:30)
  • 工程热物理所在集成先进热管理的零排放太阳能分光谱发电技术研究中获进展
    能源转型是实现碳中和的主要路径,以清洁的可持续能源替代化石能源发电是最有效措施之一。太阳(6000 K)和太空(3 K)相对地球是取之不尽、用之不竭的巨大热源和冷源。针对太阳能,科学家开发出光伏、光热发电等技术。光伏发电由于成本低、布置简单等优点,成为太阳能发电市场的主力。而传统光伏电池只能利用与其带隙能匹配的小部分太阳光谱能,大部分光谱能以热能形式损失掉。这些损失掉的能量使光伏电池温度大幅增加,降低了光伏效率,并大幅减少电池的使用寿命。因此,如何提升光伏电池全光谱利用效率和对电池进行有效的热管理,成为制约光伏领域发展的瓶颈。 近些年发展的利用大气窗口向太空散发热量的日间辐射冷却技术为光伏电池热管理提供了新途径。研究人员采用多节电池及聚光分光谱技术,一方面改进光谱与带隙能的匹配性以减小电池热化损失,另一方面将分离的光谱能通过热电材料加以利用,提高全光谱的利用效率。新型的热管理技术降低光伏电池温度,并为热电材料提供低于环境温度的冷端温度。该技术可以高效开发来自太阳和太空的清洁电力,理论上不会产生任何排放并且不需要额外能量输入。该技术在低聚光比条件下可以达到高聚光比条件下传统光伏电池的发电效率,且能够24小时运行并实现夜间0.4%的等效发电效率(基于AM1.5太阳辐照度),颇具潜力。 该成果以工程热物理所为第一单位发表在Advanced Science上。研究工作得到欧盟地平线2020科技创新计划专项行动、南京未来能源系统研究院、英国帝国理工大学的支持。 工程热物理所在集成先进热管理的零排放太阳能分光谱发电技术研究中获进展
  • 发展中的双面光伏发电
    什么是双面光伏?通过超越全球能源发电容量的吉瓦数(GW),双面光伏正慢慢找到成为主流的方向。并且,越来越多收集到的组件性能数据都有助于获得更可靠的效率增益预测。我们在本文中尝试概括叙述了双面光伏领域中的当前研究、亟待解决的疑问以及技术开发等问题。相见于“另一面”过去二十年间,光伏(PV)已发展成为一种成熟的技术,因此很难再有大幅度的效率提升。如今主要依靠缩减投资和运营成本来实现降低平准化度电成本(LCOE),而非通过技术进步提高 PV 电池的能源输出。然而,能显著提高 PV 电池效率的比较可靠的方法是将组件的背面也用于发电。因此,在不扩大组件占地的情况下,可同时利用反射或漫射的阳光进行发电。人们似乎已对双面光伏的巨大潜能达成了共识。但是,在能量输出增益的模拟和测量方法尚未普遍建立的情况下,通过双面 PV 组件预测的效率增长有着很大差异;这取决于假设的系统设置、地点和表面反照率以及所用的模拟算法。 双面光伏发电如何作用?其主要理念很简单。除了用 PV 组件的一面来收集太阳光线外,还可通过背面采集来自多个角度的反射和散射光线以生产更多电力。除了对背面材料和内部互联进行相应调整外,电池技术和几何结构均以经验证的单面组件原理为基础。也就是说,在未来 10 年内,双面 PV 很可能从一个发展远景顺利转变为被广泛应用的技术,且预计世界市场占有率将高达 30-50%。 发展中的双面光伏发电优化会对另一面的性能产生负面影响。因此,为双面 PV 电厂寻求理想设置是一个复杂的挑战。由于倾角是组件效率的一个重要因素,前后面的理想角度可以不同。 另一个参数则是组件的长度和各排组件之间的距离,即地面覆盖率(GCR)。适应太阳光束入射角度的高 GCR 值通常可提高一个发电厂的效率。但即使对单面PV 发电厂而言,较高的 GCR 值也会在太阳高度角较低的早晨或傍晚时分发生相互遮挡的情况。对于双面光伏发电厂,遮挡则是一个更大的问题。理想状态是在各排组件之间有足够的空间形成一个大小适合的表面,使地面反射不被遮挡。可是这将降低地面覆盖率和电厂的单位面积输出。 与组件设置相关的参数还包括建筑高度和扭力管。扭力管的作用是跟踪 PV 组件,因此应将双面组件放置于更高的位置,从而对更多来自地面的多角度的反照辐射光线进行转化;但建设成本也将由此增加。这一概念也同样适用于为了避免安装件构成遮蔽而修改扭力结构。 尽管早在 20 世纪 60 年代便已对双面 PV 电池进行了研究和开发,其被广泛使用的时代仍未到来。市场观察员们的普遍解释是,与单面系统相比,双面系统缺少可信赖的产量增益计算方法。因此,投资者们继续观望,因无法完全知晓准确的效率提升,而犹豫是否以更大的规模推动双面系统。即便在大数据和机器学习的年代,组件背面的太阳能辐射模拟仍是一项复杂的任务。因此,全世界的公司和研究机构持续对各种不同潜在相关参数及其对能量输出的影响进行调查研究。除了符合其他标准外,这些研究项目还覆盖了:● 地面反照率的影响● 背板材料● 系统设置和组件的几何结构● 测量背面的太阳能辐射● 系统设置&组件几何结构在单面 PV 组件中,被转化为电力的太阳光束直接来自天空。与之相反,双面组件的背面则收集在阴影迷宫、地面纹理和结构型障碍中穿行的光线。而对一面太阳辐照度进行优化会对另一面的性能产生负面影响。因此,为双面 PV 电厂寻求理想设置是一个复杂的挑战。由于倾角是组件效率的一个重要因素,前后面的理想角度可以不同。另一个参数则是组件的长度和各排组件之间的距离,即地面覆盖率(GCR)。适应太阳光束入射角度的高 GCR 值通常可提高一个发电厂的效率。但即使对单面PV 发电厂而言,较高的 GCR 值也会在太阳高度角较低的早晨或傍晚时分发生相互遮挡的情况。对于双面光伏发电厂,遮挡则是一个更大的问题。理想状态是在各排组件之间有足够的空间形成一个大小适合的表面,使地面反射不被遮挡。可是这将降低地面覆盖率和电厂的单位面积输出。 与组件设置相关的参数还包括建筑高度和扭力管。扭力管的作用是跟踪 PV 组件,因此应将双面组件放置于更高的位置,从而对更多来自地面的多角度的反照辐射光线进行转化;但建设成本也将由此增加。这一概念也同样适用于为了避免安装件构成遮蔽而修改扭力结构。
  • 塞贝克系数/电阻测量系统助力Fe-Al-Si系热电模块研究,为物联网硬件供电提供新材料!
    导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电转换技术是利用材料的塞贝克效应与帕尔贴效应将热能和电能进行直接转换的技术,包括热电发电和热电制冷。这种技术具有系统体积小、可靠性高、不排放污染物、适用温度范围广等特点。热电器件可以实现热能和电能的直接转换,在废热回收和固态制冷领域具有重要的研究价值,对热电发电器件的能量转换效率进行测量是评价热电材料和器件性能的重要基础。 物联网( IoT ,Internet of Things )即“万物相连的互联网”,是互联网基础上延伸和扩展的网络,通过将射频识别、红外感应器、全球定位系统、激光扫描器等信息传感设备与互联网结合起来而形成的一个巨大网络,实现在任何时间、任何地点,人、机、物的互联互通。目前常用纽扣电池(coin cell)为物联网硬件供电,但由于高昂的更换费用及低可回收性,纽扣电池并不是一种理想电源。其他能量收集技术中,太阳能(solar cell)是一个可行方案且已经在某些领域中得到应用;另一种被广泛看好的技术为热电转换。如何将周围环境中的低温废热(473K)有效回收并转换为电能是热电转换技术能否大规模应用的关键。目前商用的热电转换模块(TEG)多使用Bi-Te基热电材料,但Bi及Te均为稀有元素且Te元素的毒性限制了其大规模应用,据测算,地壳中的全部Te元素无法满足百万兆别物联网硬件的供电,因此亟需寻找一种环境友好且可以大量生产的热电材料。与Bi-Te基热电材料相比,在473K以下有着良好热电转换表现的热电材料选择并不多,曾有报道指出,Mg-Sb基热电材料可部分应用于低温废热回收。近日,来自日本国立材料研究所(NIMS)及茨城大学(Ibaraki University)的研究人员使用低成本的Fe-Al-Si基热电材料(FAST)制备了热电转换模块,并对其热电转换特性进行了研究。分别使用两种方法制备的Fe-Al-Si基热电材料,并使用多种检测手段对其电学特性及热电转换性能分别进行了表征。图1 电导率(a, b);塞贝克系数(c, d);功率因子(e, f)与温度的关系(a, c, e: n-type b, d, f: p-type) 在进行了材料电输运特性的测试后科研人员随后采用了下图中的步骤制备了热电转换模块(TEG),并对其热电转换性能进行了测试。 图2 热电转换模块(TEG)制备流程经测试,使用Fe-Al-Si基热电材料制备的热电转换模块,其在室温及小温差条件(~5K)下的开路电压及输出功率数值均符合预期,并使用其为蓝牙通讯模块供电以验证其可靠性,更多测试结果请参考原文[1]。图3 热电转换模块(TEG)的开路电压及输出功率 以上工作中,材料的电导率、塞贝克系数使用日本Advance Riko公司生产的塞贝克系数/电阻测量系统ZEM-3测得,热电转换模块(TEG)的开路电压及输出功率使用日本Advance Riko公司生产的小型热电转换效率测量系统Mini-PEM测得。日本Advance Riko公司已专业从事“热”相关技术和设备的研究开发近60年,并一直走在相关领域的前端,为各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国公司将日本Advance Riko公司的先进热电材料测试设备:小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及大气环境下热电材料性能评估系统F-PEM引进中国。2018年7月,Quantum Design中国与日本Advance Riko达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本Advance Riko先进的热电相关设备介绍到中国。目前,所有中国用户购买的日本Advance Riko热电产品,均由Quantum Design中国公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国公司在日本Advance Riko公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。 参考文献:[1]. Yoshiki Takagiwa, Teruyuki Ikeda, and Hiroyasu Kojima, Earth-Abundant Fe−Al−Si Thermoelectric (FAST) Materials: from Fundamental Materials Research to Module Development, ACS Appl. Mater. Interfaces 2020, 12, 43, 48804–48810
  • 水力发电系统检修攻略:选对检修工具,提前下班不是梦!
    清洁能源:水力发电江河水流一泻千里,其中蕴藏着巨大能量,把天然水能加以开发利用转化为电能,即水力发电。水力发电无污染,是环境友好的发电方式,目前我国的水力发电主要分布在长江、黄河、澜沧江等流域,尤其是我国西南地区。水力发电主要利用势能,借助水位落差原理,将水能转换为机械能,并最终转化为电能并通过输电线路完成电能输送。在整个发电、输电和用电的过程中,任何一个环节出现故障,都可能导致整个供电系统的瘫痪,因此水力发电系统的整个过程都需要定期巡检,以保证用电稳定与安全!1水力发电机水通过管道或压力钢管流动并推动涡轮叶片转动,从而转动发电机。水力发电机是水力发电站的核心设备,其一旦出现故障或非正常运转,将直接降低发电效率,造成设备损毁、安全事故等重大问题。随着水力发电量的日益增加,水力发电机的负荷显著增强。为了保证水力发电供电系统的稳定运行,要选择一款能不影响运行的巡检设备,能非接触检测的红外热像仪就是一个不错的选择!水力发电机组一般由水轮机、发电机、调速器、励磁系统、冷却系统和电站控制设备等组成。菲粉们可以选择FLIR T800系列高清红外热像仪,用户在检测水力发电机组各个设备的过程中,可以在安全距离范围内,看清细节,精准定位故障点!搭配双视场镜头,用户无需更换镜头就可直接切换视场角,观察远处大坝情况,定期检查坝墙是否有裂缝、空隙和分层等。真实应用案例一四川某水电站使用FLIR T系列热像仪对厂内设备巡检时发现,主机房中的1号机调速器2个伺服电机温度分布不均匀,发现其中一台外表温度达39.2℃,比旁边的一台高出7.4℃,疑似出现故障,及时提醒了运维人员关注该台设备。在发生故障前定位问题,避免事故的发生2输电设备检测电能无法储存,因此生产出来的电能要及时输送到千家万户,为了保证电能顺利输送到用电设备,承载电力的各个设备也要定期巡检!比如:★ 箱式变压器 可以选择FLIR Exx手持式红外热像仪进行定期温度检测,有助于轻松地检查并监测每个变压器外表的温度分布,轻松找到隐藏的电气故障和机械磨损迹象,以便立即开始维修。真实应用案例二位于四川省岷江支流的某水电站,在使用FLIR红外热像仪检测的过程中,发现主变压器出现异常:1号主变低压侧中异常温度Sp1⾼ 达65.8℃,⽐ 正常温度Sp2、Sp3⾼ 40℃左右,明显出现异常。后据现场工程师检测发现,该异常温度点是由于绝缘胶垫⽼ 化所致。幸好及时发现,才没有造成更大的停机风险。★ 变电站 变电站包含了输送电能过程中最典型的设备,包括变压器、断路器、开关和继电器等。用户可以选择FLIR T1K高清红外热像仪进行电气检查,远处和近距离的设备零部件均能看清状况。真实应用案例三四川青衣江干流某中型水电站,在使用FLIR T系列红外热像仪对升压站进行日常检测时发现,高压线塔接头处出现温度异常,初步猜测是接触不良导致,为用户检修提供了很好的方向。还有输电过程中的MV断路器、输电线路等,都可以选择上述FLIR产品进行检测。3水力发电系统的整体监控水力发电整个系统受环境因素的影响较大,很可能出现难以预料的自然损害,因此无论是发电设备,还是输电设备,亦或是用电设备,都最好能实现7*24小时的实时监控,这样就可以及时发现问题、解决问题,避免重大事故的发生!真实应用案例四位于黑龙江双鸭山某水电站,以发电为主,兼顾防洪、灌溉及旅游综合功能,其利用FLIR A系列固定式红外热像仪,对水轮发电机内部的定子端部进行实时在线监测,当检测到被测区域出现高温等温度异常,就会触发后台报警提示,第一时间提示现场运维人员进行核查处理,为水电站安全稳定运行保驾护航。选择使用FLIR监控用红外热像仪,当出现温度异常点时,可以自动触发警报,大大节省了人力物力和时间!比如FLIR A500f/A700f高级智能传感器就非常适合全天候不间断地进行状态监测、周边环境安全管理等。其采用IP67防护等级的保护外壳,可承受-30至50°C的工作温度,可安全地用于具有挑战性的环境条件,非常适合水力发电厂周围的环境。A500f/A700f热像仪集高分辨率热成像、边缘计算和工业物联网(IIoT)功能于一身,可轻松与新的网络或现有网络集成。这样用户在整个水力发电系统都可方便集成A500f/A700f热像仪,构建一个强大的24小时监控预警解决方案!FLIR各个型号的红外热像仪都可帮助电力公司保护资产、提高安全性最大限度地延长正常运行时间并最小化维护成本水力发电作为成本低、污染小的清洁能源将成为未来电能的一大主力因此水力发电系统的检修及维护工作影响着整体发电质量和效率
  • 水力发电系统如何保障居民用电稳定?这三个位置是关键
    水力发电作为可再生的清洁能源,其本质是将水能转化为电能的过程,利用水位高低落差产生具有冲击力的水流,在水流的冲击作用下带动装置中的水轮机旋转,再由发电机转化为电能。此时发出的电力由于电压较低,无法输送给距离较远的用户,因此就需要变压器将电压增高,最后将适合家庭应用的电压输送到各个家庭。水力发电产生的电能要及时输送到千家万户为保证整个电气系统的正常运营定时巡检必不可少选择一款省时省力省心的检测工具尤为重要今天小菲就来给大家推荐几款在电气系统的重要位置检测时比较适合的FLIR产品1预防性检测变压器,避免停机风险电力变压器主要用于输配电线路,改变交流电压大小以适应不同用户的需要。它是电力系统中非常重要的一环,其中主变高压套管是变压器中重要且容易出问题的部件。如何才能快速扫描检测繁多的变压器套管,FLIR T800系列热像仪是个不错的选择!拥有它,检测人员可在设备运行的过程中检测,及时发现潜在隐患,避免突然停机。FLIR T860拍摄到变压器套管将军帽发热异常FLIR T860拥有卓越的测量精度,其热灵敏度为30℃时<40 mK(24°镜头),搭配640×480像素的红外分辨率,能生成清晰的热图像。其还可搭载FLIR FlexView双视场镜头,无需更换镜头就可以瞬间从广域视场切换到长焦视场,在远距离和近距离检测中都能获得优质的热图像,检测人员可站在安全距离范围内放心检测!2看见高压局放的声音,保障输电稳定高压电气设备的局部放电对绝缘设备的破坏要经过长期、缓慢的发展过程才能显现。通常情况下局部放电是不会立刻造成绝缘体穿透性击穿,但是却有可能使机电介质的局部发生损坏。如果局部放电存在的时间过长,在特定的情况下会导致绝缘装置的电气强度下降,对于高压电气设备来讲是一种隐患。为了保障输电过程稳定,电力巡检员们需要定期对高压设备进行检查,FLIR Si124系列声像仪是个不错的巡检助手!Si124内置124个麦克风,其接收频率范围在2kHz至65kHz(范围可调整),涵盖了较宽范围的可听声和超声波,这样工作人员可以轻松过滤掉工作环境中的背景噪声,大面积扫描检测到更远距离的高压电力电气设备的常见故障,比如表面放电、浮动放电和空气中放电,让用户能够准确地查明声音来源,区分问题,定位故障!2巡查变电站设备,保证用电安全变电站是电力系统中变换电压、接受和分配电能、控制电力的流向和调整电压的电力设施。为了把水能转换的电能输送到较远的地方,必须把电压升高,变为高压电,到用户附近再按需要把电压降低,这种升降电压的工作靠变电站来完成。作为用电过程中关键的一环,变电站的巡检尤为重要,任何一个环节的差错,都可能导致产生的电能浪费,严重的还会引发爆炸事故。为了保证用电安全,变电站的日常巡检必不可少!FLIR Exx系列高级红外热像仪(除E54外),配备了UltraMax® 高清图像增强技术,集成一键式电平/跨度区域调节功能,让热图像拥有更高的对比度,用户可以查看更多图像细节,因此能够帮助您发现异常热点,排查电气系统故障,在造成严重损坏前预防问题。其还能够搭配使用FlexView双视场镜头,让用户实现了瞬间从广域视场切换到长焦视场而无需更换镜头,不仅大大简化了工作流程,还能保障工作人员的安全,一举多得!双视场镜头一秒切换,快速检测目前我国已形成十三大水电基地未来常规水电开发重点在云南、四川、西藏等西南地区主要集中在金沙江、雅砻江、大渡河、澜沧江、雅鲁藏布江等水电基地为了保证水力发电产生的电能不浪费变电、输电和用电的过程要减少故障
  • 【热电资讯】新一代塞贝克系数/电阻测量系统-ZEM-3连续成功落户西湖大学、上海交通大学
    导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电转换技术是利用材料的塞贝克效应与帕尔贴效应将热能和电能进行直接转换的技术,包括热电发电和热电制冷。这种技术具有系统体积小、可靠性高、不排放污染物、适用温度范围广等特点。近期,我司在西湖大学理化公共实验平台及上海交通大学材料学院连续成功交付使用了新一代塞贝克系数电阻测量系统-ZEM-3。该设备可实现金属或半导体材料的热电性能评估以及塞贝克系数和电阻的测量。其特的红外金面加热炉(高1000℃)和控制温差的微型加热器可实现温度的控制;整个测量过程由计算机全自动控制,能够在指定的温度下执行测量,允许自动测量消除背底电动势;并且ZEM-3还可实现欧姆接触自动检测功能(V-I曲线),不仅可以用创的适配器来测量薄膜,也可定制高阻型。Quantum Design中国子公司 工程师在为客户介绍设备 这两台设备于疫情期间运抵国内,为保证用户的科研使用需求,Quantum Design中国子公司调集技术力量,在满足学校防疫要求的前提下与用户紧密合作,于近日顺利完成了设备的安装培训工作,所有技术指标均符合要求,设备正式交付使用。西湖大学的设备已进入校设备共享平台,对校内外用户开放共享。目前,所有中国用户购买的ZEM系列产品,均由Quantum Design中国子公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国子公司在日本Advance Riko公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。 西湖大学理化公共实验平台网站截图 该设备为日本Advance Riko, Inc.生产。日本Advance Riko公司成立近60年来专业从事“热”相关技术和设备的研究开发,并一直走在相关领域的前端,为各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国子公司引进日本Advance Riko公司的:小型热电转换效率测量系统Mini-PEM、热电转换效率测量系统PEM、塞贝克系数/电阻测量系统ZEM及大气环境下热电材料性能评估系统F-PEM等一系列先进热电材料测试设备。2018年7月,Quantum Design 中国子公司与日本Advance Riko达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本Advance Riko先进的热电相关设备介绍到中国。延伸阅读:为更好服务国内热电材料研究领域的客户,满足客户体验需求, Quantum Design中国子公司与日本Advance Riko公司携手推出厚度方向热电性能评价系统ZEM-d 免费样品测试活动。活动时间自即日至2020年9月30日止,如您有样品测试需求,欢迎通过留言、官方微信平台、电话010-85120280或邮箱info@qd-china.com联系我们,公司将有专人对接,与您协调具体的样品测试工作。
  • 科学岛团队在碲化铋合金热电性能调控方面取得新进展
    近日,中科院合肥物质院固体所秦晓英研究员团队在近室温碲化铋热电材料热电性能优化研究方面取得了系列进展。相关工作发表在工程技术类期刊Chemical Engineering Journal上。   热电技术作为解决能源问题的有效途径,近年来引起广泛关注。热电技术可实现热能与电能的直接相互转换,具有纯固态、无噪音、无运动部件等优点,在深空探测、废热发电利用(能量回收),如汽车尾气热量回收发电以提升燃油效率等领域已经实现了重要应用。但是,当前N型碲化铋的热电优值ZT和能量转换效率较低,这限制了其商业应用。   针对当前唯一实现商用化的Bi2Te3热电材料,固体所研究人员通过向Bi2Te2.7Se0.3 (BTS)基体中复合无机MnSb2Se4 (MSS) 纳米颗粒,实现材料功率因子(PF)的提高和热导率的显著下降。研究结果表明,功率因子的增加是由于能量过滤效应引起的塞贝克系数的增强;而降低的热导率主要来源于MSS纳米粒子和位错对声子散射的增强。BTS/0.50wt%MSS复合样品的最大热电优值ZT高达1.23 ( 345K),在300-473K温区内的平均ZT达到了1.15,分别比基体BTS提高48%和42%。同时,复合样品的维氏硬度提高了17%,力学性能较好。该研究表明,加入过渡金属硒化物(如MSS)为改善BTS热电性能和力学性能提供了新思路(Chem . Eng. J, 467, 143397(2023))。   此外,研究人员通过复合体系设计与性能调控,向BTS基体复合介观尺度导电聚合物聚苯胺(PANI)纳米粒子,构建介观尺度的载流子输运调控和声子散射(阻隔)基元,研究和探讨超低热导率导电聚合物基元对BTS基复合体系晶格热导率、热电势及PF等的影响。研究发现,复合体系的晶格热导率在300 K时降低了49%,这主要是由于聚合物包裹体增强了声子散射。此外,无机/有机边界处形成的界面势产生了能量过滤效应,导致复合体系的热功率提高8%。1.5wt%BTS基复合样品的最大ZTmax 达到1.22 (345 K) (Chem . Eng. J, 455, 140923(2023))。   以上研究工作通过研究第二相基元种类、尺度、浓度和不同组合等对热电性质的影响,揭示其影响规律和内在机理,为设计和制备高性能n型BTS热电材料提供科学依据,同时也为其他体系热电材料的性能提升提供借鉴和参考。   上述工作得到国家自然科学基金和安徽省自然科学基金以及合肥物质院院长基金的支持。
  • 国家级太阳能发电研发中心落户南京
    如何将太阳能光伏发电设备大规模接入国家电网,并保证其稳定运行?记者从国家电网公司国网电力科学研究院(即南瑞集团)获悉,他们正在筹建国家能源太阳能发电研发(实验)中心,这个中心的职责,就是攻克我国大规模太阳能发电并网应用技术的一系列“瓶颈”。   眼下,作为新能源的太阳能发展迅猛,近5年全球太阳能光伏产业年均增长49.5%。目前太阳能光伏发电系统分独立运行和并网运行两种。前者需要有蓄电池储能,系统造价很高;而后者是将太阳能光伏发电连接到国家电网,不仅可以省去蓄电池,大幅度降低造价,而且具有更高的发电效率和更好的环保性能,是太阳能光伏产业的发展趋势。   但一个棘手的问题是,太阳光会随着季节、昼夜、天气变换时强时弱,导致光伏发电输出的剧烈波动和不可控制性。该中心重点要“攻克”的,就是解决太阳能光伏发电并网运行后给电网的规划设计、运行控制和管理带来的各种影响:如怎样保证接入点的电能质量问题,如何针对太阳能光伏电站的分布进行变电站、线路的建设和改造,如何针对太阳能光伏电站出力的随机性来确定系统的各种备用容量,如何确定一个地区所能允许接入的最大太阳能光伏电站装机容量等等。   另外,光伏发电在我国尚处于起步推广阶段,设备生产厂家众多,产品质量良莠不齐。目前国内尚未形成规范的太阳能发电综合检测能力,无法确保并网产品质量,给电网安全稳定带来隐患。针对这一问题,该中心正在建设国家级太阳能发电研究检测中心,制定太阳能发电的并网检测标准,对太阳能发电产品和光伏电站进行入网检测。   据介绍,建成后的国家能源太阳能发电研发(实验)中心,将通过对并网理论及规划、并网运行和控制、系统测试与标准规范等重大课题的研究,逐步建成完善的太阳能发电接入电网基础研究能力、完善的光伏系统并网试验检测环境和光伏电站并网性能移动检测能力,打造出世界上第一个具备光伏发电并网适应性测试的动模试验平台,最终建成世界一流的太阳能发电技术研究与检测中心。   目前,该中心已经得到国家电网公司、国家能源局的批准。该中心在边建设、边研究、边检测的过程中,已为国家“金太阳工程”和国家电网公司风光储输示范工程建设提供了多项技术支撑。据悉,国家能源太阳能发电研发(实验)中心一期工程,最迟明年6月建成并投入运行。
  • 风力发电系统国家重点实验室成立
    近日,国家科技部组织专家来杭对&ldquo 风力发电系统国家重点实验室&rdquo 进行了验收。据悉,落户于杭州临平钱江经济开发区的实验室是浙江省首个也是唯一一个依托企业建设的国家重点实验室。实验室依托浙江省大型清洁能源企业浙江运达风电股份有限公司建立,于2010年12月17日获国家科技部批准建设。   程时杰院士等七位各学科国家重点实验室主任组成的专家组一致认为,实验室完成了建设计划任务书规定的任务,实现了建设目标,同意通过验收。   据悉,实验室紧密围绕风力发电的关键共性技术问题开展研究 凝练了风力发电机组的总体设计技术、控制技术、检测和试验技术、海上风电关键技术等四大研究方向 建设了半物理仿真试验平台、6MW全功率试验平台、变桨系统试验平台 开展了超低风速风电机组、海上风电机组、风电控制技术和并网技术等相关基础理论与应用技术研究,并取得了突出的成就,为我国风电技术产业的发展做出了积极的贡献。
  • 陕西师范大学导入日本ADVANCE-RIKO公司热电特性评价装置ZEM-3已验收完毕
    陕西师范大学导入日本ADVANCE-RIKO公司热电特性评价装置ZEM-3已验收完毕 陕西师范大学导入创元公司代理的日本ADVANCE-RIKO公司热电特性评价装置ZEM-3,已在该大学安装验收完毕。日本ADVANCE-RIKO公司是世界著名材料物性试验装置生产厂家之一。该公司是世界上首次推出这类设备的公司。数据可靠性能稳定。自进入中国以来深受热电领域广大用户喜爱。清华大学和中国科学院硅酸盐研究所等多次导入该装置。该装置主要原理和技术参数见如下彩页。欢迎来电垂询! 电阻率/温差电动势测试系统 型号:zem-3 描述热力发电是一种通过热电效应材料产生电力的方法,由j.t.seebeck德国物理学家在1821年发现的。面对当前的全球由二氧化碳排放以及化学材料消耗而导致的温室效应,热电转变器件引起了注意,因为可以有效利用余热。为了迎合这种急迫的需求,advance riko公司为这些材料和器件开发了特性评估装置 特点●一台仪器可以用来同步测量温差电动势和电阻率。●仪器允许测量6到22mm长的棱柱或圆柱型试样。●试样支架采用独特的接触式平衡机构,保证测量的高重现性●v-i标绘测量能够用来判断引线是否紧密的接触了试样。●系统能够自动检查两个探针是否和试样达到了欧姆级接触,而且能够发现并找出最佳电流用来测定电阻率而不受热传递的影响。●测量由计算机控制,能够实现在等温差的一组温度值下自动测量,并消除有害电动势和接触电阻。●测量原始数据以text文档格式保存。 测量原理 棱柱形或圆柱形试样以垂直方式放置在加热炉的上下底座上,当试样被加热后,保持在一个指定的温度时,由底座的加热器再来加热以提供一个温度梯度,热电系数的测量是通过由挤压在试样侧面的热电偶测量上下温度t1和t2,随后测量同组两根热电偶丝的热电动势de。电阻率由dc四线法测得,一个恒定的电流i流过试样的两端,通过对两根导线之间热电动势值做减法,以测量和判定在同组热电偶丝之间的电压跌落dv。 参数规格●温度范围 -80℃(到100℃(l规格)50℃(到800℃(m8格)50(到1000℃(m10规格)●温度设定范围 测温步数和温度采样测量步数:最大125步●测量方法 温差电动势:静态直流法 电阻率:四电极法●气氛 低压氦气●样品尺寸 2-4mm正方形或直径2-4mm,长6-22mm(最大)●导线间距 4,6,8mm●电源供应 200vac,单相,40a(m8,m10规格) 100vac,单相,20a(l规格,m8和m10规格)●冷却水需求 自来水,水压大于1.5kgf/cm2流量大于7l/min p规格si80ge20烧结块体测试样例
  • 光伏发电站运维“秘籍”:FLIR红外热像仪为各个环节保驾护航!
    随着各国政府对可再生能源的支持力度不断加大,以及光伏技术的持续进步和成本的降低,光伏发电在全球能源结构中的地位将越来越重要。为了提高光伏电站投资方的收益,要尽可能提高电站的发电量。一座光伏电站的发电量会受到很多因素影响,比如:光伏组件、逆变器、电缆的质量、组件安装朝向、倾角、灰尘阴影遮挡、光伏组件与逆变器配比系统方案、电网质量等。除了安装前需要注意的问题光伏电站的定期巡检同样很重要西班牙的Abertura光伏电站就安装了27台FLIR红外热像仪日夜保护着9公里长的周边区域同时工作人员也会手持热像仪对大片光伏电板进行巡检今天小菲就来给大家说下FLIR红外热像仪在光伏电站的应用一起来瞧瞧吧~光伏发电板出现热斑,缩短使用寿命光伏板热点可能源于阴影、污垢或微裂纹。当阳光照射到光伏发电板上时,它应该会转化为电能。但是,如果一个光伏发电板的电阻异常升高,面板的这一部分就会变热。使用FLIR E5拍摄到的热斑使用FLIR红外热像仪能及时检测到异常热点。热点会导致光伏发电板退化更快甚至可能起火。因此,工作人员要定期清洁光伏组件表面,确保其表面干净无故障,避免灰尘或污垢影响发电效率。检查输电组件,确保物尽其用影响光伏发电效率的还有电量运输问题,连接松动会导致腐蚀、能量损失和系统寿命缩短。因此要定期检查光伏组件、支架和连接线路,检查是否有损坏、松动或腐蚀的情况,及时维修或更换。特别是检查组件中的电池片,确保没有破损或裂纹。汇流箱红外图像还要对光伏发电站的逆变器、电气设备、光伏汇流箱、直流和交流配电柜等设备进行安全检测和温度监测,以保障光伏发电系统的安全有序运行。升压站隔离开关红外图像全新FLIR Ex Pro系列红外热像仪就非常适合光伏电站的检测,3.5英寸触摸屏搭配一键式电平/跨度区域调节功能,让问题区域更加明显。全新的屏幕注释功能让用户可以及时记录检测结果,避免后续遗忘。智能监测,降本增效光伏电站点多面广、量大分散。如果每天都人工巡查,可能面临着效率较低、运维环节复杂、运维数据采集难等问题。幸好正处数据时代背景之下,光伏电站可以选择FLIR A700固定安装式红外热像仪对光伏电站进行7*24小时的实时监控,这样就可以对电站所相关的各类数据进行实时采集、分析,及时对故障问题提供预警及警报。在整个环节中大幅提高了设备运行的保障度和人员的安全性。您还可以FLIR A700搭配载人飞机对光伏电站进行大面积、快速巡查,这种正在开发的高速检测方法每小时可覆盖2平方公里,使其能够在短短几个小时内获得大规模太阳能发电场的准确读数。高效率的检测,可以让电力公司节省了80%的成本!FLIR A700FLIR A700固定安装式红外热像仪具有精确检测和识别制造和工业等过程中热问题所需的强大监控能力。其能提供多视场角镜头选项、同时查看多个图像流、电动调焦控制,可选通过 Wi-Fi 传输压缩辐射测量图像流。A700机身小巧,符合GigE Vision和GenICam标准,能简化与现有监控系统的集成。光伏电站的发电量不仅取决于光伏电站自身的发电性能,也与后期运行维护密切相关,正确的运维不仅可以提高发电量,还可以提高设备和电站的使用寿命。
  • 生态环境部印发《关于做好2023—2025年发电行业企业温室气体排放报告管理有关工作的通知》
    关于做好2023—2025年发电行业企业温室气体排放报告管理有关工作的通知各省、自治区、直辖市生态环境厅(局),新疆生产建设兵团生态环境局:为加强企业温室气体排放数据管理工作,建立健全数据质量管理长效工作机制,现将2023—2025年发电行业企业温室气体排放报告管理有关工作要求通知如下。  一、工作任务各省级生态环境部门要依据《碳排放权交易管理办法(试行)》有关规定,组织开展发电行业企业温室气体排放报告管理有关工作。石化、化工、建材、钢铁、有色、造纸、民航等行业企业温室气体排放报告管理有关工作安排另行通知。  (一)确定并公开年度名录发电行业纳入全国碳排放权交易市场的年度重点排放单位名录(以下简称名录),包括经最近一次核查结果确认以及上年度新投产预计年度排放量达到2.6万吨二氧化碳当量(综合能源消费量达到1万吨标准煤)的发电行业(分类代码见附件,自备电厂视同发电行业)企业或其他经济组织。  对因停业、关闭或者其他原因不再从事生产经营活动而停止排放温室气体,或经核查上两年度温室气体排放均未达到2.6万吨二氧化碳当量的排放单位,省级生态环境部门要组织现场核实确认,向其书面告知应履行的碳排放配额清缴义务、完成时限等事项,并在确认其完成相应义务后从名录中移出。  各地应于每年12月31日前确定下一年度名录向我部报告,并通过管理平台向社会公开。  (二)组织制订2023年度数据质量控制计划组织重点排放单位,按照《企业温室气体排放核算与报告指南 发电设施》(环办气候函〔2022〕485号,以下简称《核算报告指南》)要求,于每年12月31日前通过管理平台完成下一年度数据质量控制计划制订工作(2023年度数据质量控制计划需在3月10日前完成)。(三)组织开展月度信息化存证组织重点排放单位,按照《核算报告指南》等要求,在每月结束后的40个自然日内,通过管理平台上传燃料的消耗量、低位发热量、元素碳含量、购入使用电量、发电量、供热量、运行小时数和负荷(出力)系数以及排放报告辅助参数等数据及其支撑材料。(四)组织报送年度温室气体排放报告组织重点排放单位于每年3月31日前通过管理平台报送上一年度温室气体排放报告。其中,2022年度温室气体排放报告,按照《企业温室气体排放核算方法与报告指南 发电设施(2022年修订版)》(环办气候〔2022〕111号)要求编制;2023和2024年度温室气体排放报告,按照《核算报告指南》要求编制。  2022年度全国电网平均排放因子为0.5703t CO2/MWh。后续年度全国电网平均排放因子如有更新,将由我部在当年年底前另行发布。(五)组织开展年度排放报告核查组织有关技术支撑单位或委托第三方技术服务机构,按照《企业温室气体排放报告核查指南(试行)》(环办气候函〔2021〕130号)和《企业温室气体排放核查技术指南 发电设施》(环办气候函〔2022〕485号)要求,通过管理平台进行文件评审,开展现场核查并线上填报核查信息、编制核查报告,确保核查全过程电子化留痕,于每年6月30日前完成对重点排放单位上一年度温室气体排放报告的核查及管理平台填报工作。核查结束后,省级生态环境部门应将管理平台生成的核查结果数据汇总表、配额分配相关数据汇总表书面报送我部,抄送全国碳排放权注册登记机构。(六)强化数据质量日常监管按照《核算报告指南》等要求,组织有关技术支撑单位或委托第三方技术服务机构对重点排放单位月度信息化存证的数据及信息进行技术审核,识别异常数据,及时将有关问题线索移交设区的市级生态环境部门进一步查实和处理。我部将对各地碳排放数据质量开展评估。  组织和指导设区的市级生态环境部门,对重点排放单位数据质量控制计划编制与实施情况进行监督检查,督促重点排放单位及时、规范开展存证,对煤样采集、制备、留存的规范性、真实性进行现场抽查,对投诉举报和上级生态环境部门转办交办有关问题线索逐一进行核实处理。对于存证材料不及时、不规范、不完整及不清晰等情况,设区的市级生态环境部门应在3个工作日内组织重点排放单位完成查实整改。对于存在异常数据等问题线索的,设区的市级生态环境部门应及时组织重点排放单位提交相关证明材料,并将查实意见通过管理平台报省级生态环境部门。(七)开展对核查技术服务机构的评估根据《企业温室气体排放报告核查指南(试行)》要求,对核查技术服务机构的工作质量、合规性、及时性等进行评估,于每年7月31日前通过管理平台向社会公开评估结果。二、保障措施(一)加强组织领导各地应高度重视温室气体排放报告管理相关工作,加强组织领导,建立定期检查与随机抽查相结合的常态化监管执法工作机制,通过加强日常监管等手段切实提高碳排放数据质量。我部将对各地落实本通知重点工作任务情况进行监督指导和调研帮扶,对年度核查完成进展、信息化存证及时性和规范性以及数据质量存在的突出问题等进行通报。(二)落实工作经费保障各地应落实温室气体排放核查、数据质量日常监管以及相关能力建设培训等碳排放数据质量管理相关工作所需经费。通过政府购买服务委托技术服务机构开展核查的,应尽早在每年的核查经费中提前安排下一年度核查技术服务机构所需经费,并在年底前完成下一年度核查技术服务机构招投标有关程序,按期保质保量完成相关工作。鼓励省级生态环境部门委托下属单位开展有关核查工作。(三)加强能力建设各地应尽快组建一支高水平、专业化的碳市场监管队伍,充实碳排放监督执法人员,提升执法能力水平。加大培训力度,定期组织对设区的市级生态环境部门、重点排放单位、核查技术服务机构的专题培训,提升从业人员、管理人员的技术水平和专业能力。(四)启用全国碳市场管理平台省级生态环境部门根据确定的名录,向管理平台申请开立重点排放单位账户,并将登录名及初始密码告知重点排放单位。省级生态环境部门负责开立设区的市级生态环境部门和核查技术服务机构的管理平台账户,并组织核查技术服务机构在管理平台维护机构和人员的账户信息。设区的市级以上地方生态环境部门可通过管理平台进行碳排放数据质量监管和审核。  工作中遇到相关问题,及时向我部反馈。  特此通知。  联系人:应对气候变化司张保留、杨乐亮电话:(010)65645679、65645665国家气候战略中心(技术咨询)王中航、于胜民电话:(010)82268486、82268461信息中心(管理平台咨询)吴海东电话:(010)84665799附件:发电行业分类代码  生态环境部办公厅2023年2月4日(此件社会公开)抄送:环境发展中心、环境规划院、气候战略中心、信息中心。  附件发电行业分类代码国民经济行业分类代码(GB/T 4754-2017)类别名称4411火力发电4412热电联产4417生物质能发电 注:类别“生物质能发电”中,掺烧化石燃料燃烧的生物质发电企业需报送,纯使用生物质发电的企业无需报送。
  • 林赛斯发布热电转换效率测量系统 TEG-Tester 新品
    p style=" text-align:center " img src=" https://img1.17img.cn/17img/images/201908/pic/ff28225e-9884-436e-b6cd-9b90124f60ab.jpg!w400x400.jpg" alt=" 德国林赛斯 热电转换效率测量系统 TEG-Tester " / /p p style=" box-sizing: border-box margin: 0px 0px 0px 8px color: rgb(102, 102, 102) font-family: & #39 Microsoft YaHei& #39 , sans-serif font-size: 14px font-style: normal font-variant-ligatures: normal font-variant-caps: normal font-weight: 400 letter-spacing: normal orphans: 2 text-indent: 0px white-space: normal widows: 2 word-spacing: 0px -webkit-text-stroke-width: 0px background-color: rgb(255, 255, 255) text-align: justify" span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 近年来,对可再生能源 /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 技术的需求越来越大,可替代化石资源的优化也达到了上限。热电技术提供了将热能直接转化为电能的途径,是一种利用工业过程、车辆排气系统甚至来自人体热量中尚未消耗的废热的发电方法。 /span /span /p p style=" box-sizing: border-box margin: 0px 0px 0px 8px color: rgb(102, 102, 102) font-family: & #39 Microsoft YaHei& #39 , sans-serif font-size: 14px font-style: normal font-variant-ligatures: normal font-variant-caps: normal font-weight: 400 letter-spacing: normal orphans: 2 text-indent: 0px white-space: normal widows: 2 word-spacing: 0px -webkit-text-stroke-width: 0px background-color: rgb(255, 255, 255) text-align: justify" span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" LINSEIS TEG-Tester 是一种用于热电器件(TEGs)温度相关转换效率评估的测量系统。该模块位于 /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 热板 /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 和冷 /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 板 /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 之间,其中 /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 热板 /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 连接到可调节加热器,冷 /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 板 /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 连接到恒温控制的液冷散热器。通过集成的电机自动调节接触压力(根据温度调整压力稳定性)。 /span /span /p p style=" box-sizing: border-box margin: 0px 0px 0px 8px color: rgb(102, 102, 102) font-family: & #39 Microsoft YaHei& #39 , sans-serif font-size: 14px font-style: normal font-variant-ligatures: normal font-variant-caps: normal font-weight: 400 letter-spacing: normal orphans: 2 text-indent: 0px white-space: normal widows: 2 word-spacing: 0px -webkit-text-stroke-width: 0px background-color: rgb(255, 255, 255) text-align: justify" span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 通过设置不同的温度来对热电装置施加温度梯度,并测量通过参考试块计量棒而进入 /span TEG的热流。在不同的点对产生的电压和电流进行扫描,得到I-V曲线,或可观测到在动态负载下运行的TEG。利用扰动和观测法来计算效率和跟踪最大功率点。 /span /p p style=" box-sizing: border-box color: rgb(102, 102, 102) font-family: & #39 Microsoft YaHei& #39 , sans-serif font-size: 14px font-style: normal font-variant-ligatures: normal font-variant-caps: normal font-weight: 400 letter-spacing: normal orphans: 2 text-indent: 0 white-space: normal widows: 2 word-spacing: 0px -webkit-text-stroke-width: 0px background-color: rgb(255, 255, 255) text-align: justify" strong style=" box-sizing: border-box font-weight: bold" span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 32px color: rgb(89, 89, 89) font-weight: bold font-size: 16px" span style=" box-sizing: border-box" 应用方向: img src=" http://www.linseis.com.cn/static/kindeditor/attached/image/20190804/20190804112433_91135.jpg" alt=" " title=" " style=" box-sizing: border-box border: none vertical-align: middle max-width: 100% height: auto" width=" 325" height=" 217" / /span /span /strong strong style=" box-sizing: border-box font-weight: bold" /strong /p p style=" box-sizing: border-box margin: 0px 0px 0px 28px color: rgb(102, 102, 102) font-family: & #39 Microsoft YaHei& #39 , sans-serif font-size: 14px font-style: normal font-variant-ligatures: normal font-variant-caps: normal font-weight: 400 letter-spacing: normal orphans: 2 white-space: normal widows: 2 word-spacing: 0px -webkit-text-stroke-width: 0px background-color: rgb(255, 255, 255) text-align: justify" span style=" box-sizing: border-box font-family: Wingdings color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" l span style=" box-sizing: border-box" & nbsp /span /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 热电模块的性能测试 /span /span /p p style=" box-sizing: border-box margin: 0px 0px 0px 28px color: rgb(102, 102, 102) font-family: & #39 Microsoft YaHei& #39 , sans-serif font-size: 14px font-style: normal font-variant-ligatures: normal font-variant-caps: normal font-weight: 400 letter-spacing: normal orphans: 2 white-space: normal widows: 2 word-spacing: 0px -webkit-text-stroke-width: 0px background-color: rgb(255, 255, 255) text-align: justify" span style=" box-sizing: border-box font-family: Wingdings color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" l span style=" box-sizing: border-box" & nbsp /span /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 评估热电材料的最大热电转换效率 /span /span /p p style=" box-sizing: border-box margin: 0px 0px 0px 28px color: rgb(102, 102, 102) font-family: & #39 Microsoft YaHei& #39 , sans-serif font-size: 14px font-style: normal font-variant-ligatures: normal font-variant-caps: normal font-weight: 400 letter-spacing: normal orphans: 2 white-space: normal widows: 2 word-spacing: 0px -webkit-text-stroke-width: 0px background-color: rgb(255, 255, 255) text-align: justify" span style=" box-sizing: border-box font-family: Wingdings color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" l span style=" box-sizing: border-box" & nbsp /span /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 在负载及热循环条件下测试 /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 热电 /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 模块的预期 /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 寿命 /span /span /p p style=" box-sizing: border-box color: rgb(102, 102, 102) font-family: & #39 Microsoft YaHei& #39 , sans-serif font-size: 14px font-style: normal font-variant-ligatures: normal font-variant-caps: normal font-weight: 400 letter-spacing: normal orphans: 2 text-indent: 0px white-space: normal widows: 2 word-spacing: 0px -webkit-text-stroke-width: 0px background-color: rgb(255, 255, 255) text-align: justify" strong style=" box-sizing: border-box font-weight: bold" span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 32px color: rgb(89, 89, 89) font-weight: bold font-size: 16px" span style=" box-sizing: border-box" 特点: /span /span /strong strong style=" box-sizing: border-box font-weight: bold" /strong /p p style=" box-sizing: border-box margin: 0px 0px 0px 28px color: rgb(102, 102, 102) font-family: & #39 Microsoft YaHei& #39 , sans-serif font-size: 14px font-style: normal font-variant-ligatures: normal font-variant-caps: normal font-weight: 400 letter-spacing: normal orphans: 2 white-space: normal widows: 2 word-spacing: 0px -webkit-text-stroke-width: 0px background-color: rgb(255, 255, 255) text-align: justify" span style=" box-sizing: border-box font-family: Wingdings color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" l span style=" box-sizing: border-box" & nbsp /span /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 自动机械负载压力补偿 /span /span /p p style=" box-sizing: border-box margin: 0px 0px 0px 28px color: rgb(102, 102, 102) font-family: & #39 Microsoft YaHei& #39 , sans-serif font-size: 14px font-style: normal font-variant-ligatures: normal font-variant-caps: normal font-weight: 400 letter-spacing: normal orphans: 2 white-space: normal widows: 2 word-spacing: 0px -webkit-text-stroke-width: 0px background-color: rgb(255, 255, 255) text-align: justify" span style=" box-sizing: border-box font-family: Wingdings color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" l span style=" box-sizing: border-box" & nbsp /span /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 不同的操作模式( /span CC、CV、FOC、MPPT、P& amp O) /span /p p br/ /p table width=" 549" cellspacing=" 0" border=" 1" tbody style=" box-sizing: border-box" tr style=" box-sizing: border-box" class=" firstRow" td style=" box-sizing: border-box padding: 0px border: none" width=" 166" valign=" center" p style=" box-sizing: border-box text-align: left vertical-align: middle" strong style=" box-sizing: border-box font-weight: bold" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(69, 150, 197) font-weight: bold font-style: normal font-size: 22px" 型号 /span /strong strong style=" box-sizing: border-box font-weight: bold" /strong /p /td td style=" box-sizing: border-box padding: 0px border: none" width=" 382" valign=" center" p style=" box-sizing: border-box text-align: left vertical-align: middle" strong style=" box-sizing: border-box font-weight: bold" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(69, 150, 197) font-weight: bold font-style: normal font-size: 22px" TEG TESTER /span /strong strong style=" box-sizing: border-box font-weight: bold" /strong /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 样品尺寸 /span /p /td td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 40 mm x 40 mm (其他需求可定制) /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 样品厚度 /span /p /td td style=" box-sizing: border-box padding: 0px border: none" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 最大 30 mm /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 测厚 /span span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 精度 /span /p /td td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" ± 0.1% (50% 量程) / ± 0.25%(100% 量程) /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 温度 /span span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 范围 /span /p /td td style=" box-sizing: border-box padding: 0px border: none" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" RT span & nbsp /span /span span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 至 /span span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" & nbsp 300° C (热端) / –20 span & nbsp /span /span span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 至 /span span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" & nbsp 300° C /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 温度 /span span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 准确度 /span /p /td td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 0.1° C /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 电压 /span span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 范围 /span /p /td td style=" box-sizing: border-box padding: 0px border: none" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 0-60 V (DC) /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 电压 /span span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 准确度 /span /p /td td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 0.3 % /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 电压分辨率 /span /p /td td style=" box-sizing: border-box padding: 0px border: none" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 2.4 μV /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 电流 /span span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 范围 /span /p /td td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 0-25 A (DC) /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 电流 /span span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 准确度 /span /p /td td style=" box-sizing: border-box padding: 0px border: none" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 0.3 % /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 电流分辨率 /span /p /td td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 1 μA /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 损耗功率 /span /p /td td style=" box-sizing: border-box padding: 0px border: none" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 最高至 250 W /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 评估参数 /span /p /td td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 热流 /span /p p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 赛贝克系数平均值 /span /p p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 热导率平均值 /span /p p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 模块电阻平均值 /span /p p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 输出功率 /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 接触压力范围 /span /p /td td style=" box-sizing: border-box padding: 0px border: none" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 0 至 8 MPa (根据样品尺寸) /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 接触压力准确度 /span /p /td td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" +/- 1% /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 尺寸 /span /p /td td style=" box-sizing: border-box padding: 0px border: none" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 675 mm H x 550mm W x 680 mm D /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 冷却装置 /span /p /td td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 外部冷却器(与附加加热装置结合使用) /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 加热装置 /span /p /td td style=" box-sizing: border-box padding: 0px border: none" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 电阻加热器 /span /p /td /tr /tbody /table p br/ /p p span style=" font-family: 微软雅黑 font-size: 13px line-height: 19px widows: auto background-color: rgb(255, 255, 255) " span style=" color: rgb(59, 69, 73) font-family: 微软雅黑 font-size: 13px line-height: 19px background-color: rgb(255, 255, 255) " span style=" color: rgb(59, 69, 73) font-family: 微软雅黑 font-size: 13px line-height: 19px background-color: rgb(255, 255, 255) " *价格范围仅供参考,实际价格与配置等若干因素有关。如有需要,请拨打电话咨询,我们定会将竭尽全力为您制定完善的解决方案。 /span /span /span /p p 创新点: /p p 电机全自动压力控制(最高8 MPa)LVDT高分辨率自动测厚符合标准ASTM D5470全集成软件控制装置(可变负载MPP跟踪) /p p a href=" https://www.instrument.com.cn/netshow/C335674.htm" style=" font-size:22px text-decoration: underline " target=" _blank" strong 德国林赛斯 & nbsp 热电转换效率测量系统 & nbsp TEG-Tester /strong /a /p
  • 《光伏发电系统专用电缆产品认证技术规范》征求意见
    关于对《光伏发电系统专用电缆产品认证技术规范(申请备案稿)》征求意见的函   各有关单位:   国家认监委已接受中国质量认证中心有限公司提交的《光伏发电系统专用电缆产品认证技术规范》的备案申请,现在我委网站公开征求意见,请各有关单位提出修改意见和建议,并于2013年9月10日前将意见和建议返回国家认监委科技标准部。   联系人:娄丹   电话:010-82260775   传真:010-82260846   E-mail:loud@cnca.gov.cn   附件:1.《光伏发电系统专用电缆产品认证技术规范》 (申请备案稿).doc   2.《光伏发电系统专用电缆产品认证技术规范》 (编制说明).doc   国家认监委办公室   2013年8月22日
  • 云南省生态环境厅关于开展2023—2025年发电行业企业温室气体排放报告管理有关重点工作的通知
    各州、市生态环境局:为加强企业温室气体排放数据管理工作,建立健全数据质量管理长效工作机制,根据《生态环境部办公厅关于做好2023—2025年发电行业企业温室气体排放报告管理有关重点工作的通知》(环办气候函〔2023〕43号)工作要求,现将我省2023—2025年发电行业企业温室气体排放报告管理有关工作要求通知如下:一、工作安排(一)确定并公开年度名录发电行业纳入全国碳排放权交易市场的年度重点排放单位名录(以下简称名录),包括经最近一次核查结果确认(附件1)以及上年度新投产预计年度排放量达到2.6万吨二氧化碳当量(综合能源消费量达到1万吨标准煤)的发电行业(分类代码见附件2,自备电厂视同发电行业)企业或其他经济组织。对因停业、关闭或者其他原因不再从事生产经营活动而停止排放温室气体,或经核查上两年度温室气体排放均未达到2.6万吨二氧化碳当量的排放单位,我厅将组织现场核实确认,在企业已完成应履行的碳排放配额清缴义务后从名录中移出。请各州(市)生态环境局按照上述工作范围仔细核对,并于每年12月20日前通过管理平台组织报送下一年名录(2023年名录需在2023年2月28日前确定),同时将《XX州(市)2021年度发电行业温室气体排放报告管理重点排放单位》盖章件和Excel件反馈至省生态环境厅大气环境处邮箱ynsdqc@126.com。不涉及发电企业的州(市)也请发邮件说明。(二)组织制订年度数据质量控制计划请有关州(市)组织辖区内重点排放单位,按照《企业温室气体排放核算与报告指南 发电设施》(环办气候函)〔2022〕485号,以下简称《核算报告指南》)要求,于每年12月31日前通过管理平台完成下一年度数据质量控制计划制订工作,其中2023年度数据质量控制计划需在2023年3月5日前完成。(三)组织开展月度信息化存证请有关州(市)组织辖区内重点排放单位,按照《核算报告指南》等要求,在每月结束后的40个自然日内,通过管理平台上传燃料的消耗量、低位发热量、元素碳含量、购入使用电量、发电量、供热量、运行小时数和负荷(出力)系数以及排放报告辅助参数等数据及其支撑材料。温室气体排放报告所涉数据的原始记录和管理台账应当至少保存5年,鼓励各州(市)组织有条件的重点排放单位探索开展自动化存证。(四)报送年度温室气体排放报告请有关州(市)组织辖区内重点排放单位于每年3月20日前通过管理平台报送上一年度温室气体排放报告。其中,2022年度温室气体排放报告,按照《企业温室气体排放核算方法与报告指南 发电设施(2022年修订版)》(环办气候〔2022〕111号)要求编制(2022年度全国电网平均排放因子为0.5703tCO2/MWh)。2023和2024年度温室气体排放报告,按照《核算报告指南》要求编制。(五)组织开展年度排放报告核查我厅将组织有关技术支撑单位或委托第三方技术服务机构,按照《企业温室气体排放报告核查指南(试行)》(环办气候函〔2022〕130号)和《企业温室气体排放核查技术指南 发电设施》(环办气侯函〔2022〕485号)要求,通过管理平台进行文件评审,开展现场核查并线上填报核查信息、编制核查报告,确保核查全过程电子化留痕,于每年6月30日前完成对重点排放单位上一年度温室气体排放报告的核查及管理平台填报工作。下一步,我厅将统一组织第三方机构开展2022年度发电企业碳核查工作,具体现场核查时间另行通知。(六)强化数据质量日常监管一是按照《核算报告指南》等要求,我厅将组织有关技术支撑单位或委托第三方技术服务机构对重点排放单位月度信息化存证的数据及信息进行技术审核,识别异常数据,及时将有关问题线索移交有关州(市)进一步查实和处理。二是请有关州(市)对重点排放单位数据质量控制计划编制与实施情况进行监督检查,督促重点排放单位及时、规范开展存证,对煤样采集、制备、留存的规范性、真实性进行现场抽查,对投诉举报和上级生态环境部门转办交办有关问题线索逐一进行核实处理。对于存证材料不及时、不规范、不完整及不清晰等情况,有关州(市)应在3个工作日内组织重点排放单位完成查实整改。对于存在异常数据等问题线索的,有关州(市)应及时组织重点排放单位提交相关证明材料,并将查实意见通过管理平台报我厅。(七)开展对核查技术服务机构的评估根据《企业温室气体排放报告核查指南(试行)》要求,我厅将每年对核查技术服务机构的工作质量、合规性、及时性等进行评估,于每年7月30日前通过管理平台向社会公开评估结果。二、其他事项(一)加强组织领导各州(市)生态环境局应高度重视温室气体排放数据报送工作,加强组织领导,建立定期检查与随机抽查相结合的常态化监管执法工作机制,通过加强日常监管等手段切实提高碳排放数据质量。(二)加强能力建设各州(市)生态环境局应结合重点排放单位温室气体排放报告和核查工作的实际需要,充实碳排放监督管理和执法队伍力量,组织开展重点排放单位碳排放数据质量管理相关能力建设。我厅将组织对各州(市)生态环境局、重点排放单位、核查技术服务机构开展专题培训和技术指导,提升从业和管理人员的技术水平和专业能力。近期生态环境部也将开展平台使用和核算指南等培训(培训时间另行通知),请各州(市)组织企业按时参加。(三)启用全国碳市场管理平台一是管理端帐号。请各州(市)将需要访问新平台的人员名单(人员数量不限制),并于2月13日12点前按照附件1格式发放至大气处邮箱ynsdqc@126.com。各州(市)可通过管理平台进行碳排放数据质量监管和审核。二是企业端账号。企业端账号由新平台根据旧平台已存在的企业信息初步自动生成一版,并于2月16号与管理端帐户一并反馈各州(市),请各州(市)及时告知重点排放单位,并组织企业通过平台完成年度目录、数据质量控制计划、月度信息化存证明等报送工作。我厅将根据各州(市)报送确定的名录,向管理平台更新调整企业账户信息。附件:1.云南省2021年度碳核查结果确认发电行业纳入全国碳排放权交易市场的年度重点排放单位名录2.覆盖行业及代码3.云南省全国碳市场管理平台人员名单云南省生态环境厅 2023年2月13日 (联系人及电话:大气处张小萍 0871-64134767省环科院高瑜晗 0871-64148103)(此件公开发布)附件1 云南省2021年度碳核查结果确认发电行业纳入全国碳排放权交易市场的年度重点排放单位名录企业名称 国民经济分类代码 中化云龙有限公司 4412 云南华电镇雄发电有限公司 4411 云南能投威信能源有限公司 4411 国电电力发展股份有限公司宣威分公司 4411 华能云南滇东能源有限责任公司 4411 云南能投曲靖发电有限公司 4411 云南滇东雨汪能源有限公司 4411 云南大为制焦有限公司 4412 云南金汉光纸业有限公司 4412 云南新平南恩糖纸有限责任公司 4412 云南华电巡检司发电有限公司 4411 云南能投红河发电有限责任公司 4411 国能开远发电有限公司 4411 云南文山铝业有限公司 4412 国能阳宗海发电有限公司 4411 云南华电昆明发电有限公司 4411 云南先锋化工有限公司 4412 云南省盐业有限公司 4412 云南滇能陆良协联热电有限公司 4411 附件2 发电行业分类代码国民经济行业分类代码 (GB/T 4754—2017) 类别名称 4411 火力发电 4412 热电联产 4417 生物质能发电 注:类别“ 生物质能发电”中,掺烧化石燃料燃烧的生物质发电企业需报送,纯使用生物质发电的企业无需报送。附件3 云南省全国碳市场管理平台人员名单(政府端)省厅联系人: 高瑜晗 省厅专属业务联系邮箱:ynsdqc@126.com序号 姓名 单位名称 手机号 职务/职称 电子邮箱 1 2 …… 备注:政府端文档需填报生态环境主管部门人员名单。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制