当前位置: 仪器信息网 > 行业主题 > >

多波长增益平坦掺铒放大器

仪器信息网多波长增益平坦掺铒放大器专题为您提供2024年最新多波长增益平坦掺铒放大器价格报价、厂家品牌的相关信息, 包括多波长增益平坦掺铒放大器参数、型号等,不管是国产,还是进口品牌的多波长增益平坦掺铒放大器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多波长增益平坦掺铒放大器相关的耗材配件、试剂标物,还有多波长增益平坦掺铒放大器相关的最新资讯、资料,以及多波长增益平坦掺铒放大器相关的解决方案。

多波长增益平坦掺铒放大器相关的资讯

  • 上海光机所在超短脉冲掺Yb大模场磷酸盐光纤放大器方面取得进展
    近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室胡丽丽研究团队在超短脉冲大模场多组分玻璃光纤放大器方面取得重要进展。相关研究成果于5月在线发表于《中国激光》。   大能量、高峰值功率超短脉冲激光在远距离激光雷达、地震探测、主动照明等领域具有重要应用价值。主振荡脉冲放大系统(MOPA)是超短脉冲激光的主要运行方式,其中有源增益光纤是关键核心部件。目前,传统有源石英光纤存在稀土离子溶解度有限、难以保证低数值孔径(NA)纤芯制备的均匀性等问题,导致其使用长度较长(数米),纤芯直径通常小于40μm,具有较低的非线性阈值,进而限制其输出的脉冲能量。相比之下,多组分氧化物玻璃具有稀土掺杂浓度高、光学均匀性好等优势,能够获得模场面积大、吸收系数高的大模场增益光纤,从而大幅提升大能量脉冲放大的非线性阈值。   然而,大模场光纤的制备难点在于降低数值孔径的同时保持极高的均匀性。例如,要实现NA为0.03的单模掺Yb光纤,则需要纤芯与包层玻璃的折射率差值小于3×10-4,这要求玻璃本身的光学均匀性达到10-5量级。   研究团队从大尺寸、高光学均匀性磷酸盐激光玻璃的制备工艺出发,采用光学均匀性约为1×10-6的高掺Yb磷酸盐玻璃作为光纤基质,在自研高掺Yb大模场磷酸盐光纤中实现了平均功率27.3W的脉冲激光放大输出。该系统采用掺Yb大模场磷酸盐双包层光纤(30/135/280μm)与匹配无源石英光纤(20/130μm)异质熔接的全光纤方案(熔点损耗为0.3 dB),结构如图1所示。其中,信号光波长为1030nm、脉宽为30ps、重复频率为27MHz,掺Yb磷酸盐光纤的纤芯和内包层的NA分别为0.03和0.41,纤芯中Yb2O3质量分数为6%,背景损耗为0.61300nm,使用长度为30cm;采用976 nm包层泵浦,获得放大后脉冲激光的平均功率如图2所示,最大输出平均功率为27.3W,斜率效率为71.4%,同时未观察到受激布里渊散射等非线性效应。该结果体现出了磷酸盐玻璃在高掺杂能力、高光学均匀性以及高非线性阈值的优势。图 1. 掺Yb磷酸盐大模场光纤脉冲激光放大器结构图   Fig. 1. Structural diagram of pulsed laser amplifier using Yb-doped large-mode-area phosphate fiber图 2. 放大的脉冲激光的平均功率随泵浦功率的变化,插图是输出激光的光斑和光谱   Fig. 2. Average power of amplified pulsed laser versus pump power with spot and spectrum of output laser shown in inset
  • 【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能
    【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能Moku:Go提供全面的便携式实验室解决方案,不仅集成了工程实验教学所需的仪器套件,还可满足工程师和学生测试设计、研发等项目。Liquid Instruments最新发布Moku:Go应用程序,新增数字滤波器、FIR滤波器生成器、锁相放大器三个仪器功能。用户现在可以使用数字滤波器来创建IIR滤波器,使用FIR滤波器生成器来设计FIR滤波器,使用锁相放大器从噪声环境中提取已知频率的信号。这一更新使Moku:Go上集成的仪器总数达到了11种,将面向信号与系统等方向提供更完善的实验教学方案,不仅使电子信息工程、电气工程、自动化控制等学科教学进一步受益,并扩展到物理学、计算机科学等领域。数字滤波器数字滤波器作为设计和创建无限冲激响应(IIR)滤波器的常用工具,用户能够创建参数可调的高达8阶的低通、高通、带通和带阻IIR滤波器。这对噪声过滤、信号选择性放大等很有用。此外,Moku:Go的数字滤波器还集成示波器和数据记录器,有助于解整个信号处理链的参数变化,并轻松采集记录这些信号随时间的变化。 FIR滤波器生成器利用Moku:Go的FIR滤波器生成器,用户可以创建和部署有限冲激响应(FIR)滤波器。使用直观的用户界面,在时域和频域上微调您的滤波器的响应。锁相放大器作为第yi个在教育平台上提供的全功能锁相放大器设备,Moku:Go的锁相放大器满足更高级实验教学,如激光频率稳定和软件定义的无线电(Software Defined Radio,SDR)等。作为Liquid Instruments的Moku:Lab和Moku:Pro的旗舰仪器,Moku:Go增加了锁相放大器,使学生在其职业生涯中与Moku产品一起成长。其他更新和即将推出功能在此次更新中,Moku:Go也新增了对LabVIEW应用接口的支持,确保用户易于集成到更复杂的现有实验装置中。今年,Liquid Instruments计划进一步扩大软件定义的测试平台。届时,Moku:Go将在现有的逻辑分析仪仪器上增加协议分析,还将提供“多仪器并行模式”和“Moku云编译(Cloud Compile)”。多仪器模式允许同时部署多个仪器,以建立更复杂的测试配置,而Moku云编译使用户能够直接在Moku:Go的FPGA上开发和部署自定义数字信号处理。这些更新预计将在今年6月推出,将推动Moku:Go成为整个STEM教育课程的主测试和测量套件。目前Moku:Go的用户已经可以通过更新他们的Moku桌面应用程序来访问数字滤波器、FIR滤波器生成器和锁相放大器仪器功能。您也可以联系我们免费下载Moku桌面应用程序体验Moku:Go仪器演示模式。Liquid Instruments基于FPGA的平台的优势,将Moku:Lab和Moku:Pro上的仪器快速向下部署到Moku:Go上,并以可接受的成本提供一致的用户体验。如果您对Moku:Go 在数字信号处理、信号与系统、控制系统等教学方案感兴趣,请联系昊量光电进一步讨论您的应用需求。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
  • 国仪量子 |“去伪存真”,锁相放大器在量子精密测量系统中的应用
    随着科技的进步,人们想要了解的现象越来越精细、想测量的信号也越来越微弱。而微弱信号常淹没在各种噪声中,锁相放大器可以将微弱信号从噪声中提取出来并对其进行准确测量。锁相放大器在光学、材料科学、量子技术、扫描探针显微镜和传感器等领域的研究中发挥着重要作用。国仪量子,赞1锁相放大器在精密磁测量中的应用在精密磁测量领域,特别是低频磁场测量领域,系综氮-空位(NV)色心磁测量方法发展迅速。其中连续波测磁系统是对NV色心施加连续的微波和激光进行自旋操控,从而实现高精度磁测量的实验系统。其基于NV色心基态的零场分裂和磁共振现象,当没有外磁场时,NV色心的ODMR谱如图所示,对NV色心打入共振频率的微波,其荧光强度最小。当存在外磁场时,外磁场会影响NV色心的塞曼劈裂的能级差,从而产生偏共振现象,使得荧光强度发生变化。我们将微波频率定于NV色心连续波谱的斜率最大处,则当外磁场发生变化,其荧光强度的变化最明显,从而提高测量的灵敏度。NV色心的ODMR谱为了提高测量信号的信噪比,通常采用锁相放大的方法,将微波信号进行频率调制,从而避开电测量系统的1/f噪声,实现更高的测量精度。其系统如下图所示,锁相放大器的参考输出信号和微波源进行频率调制后,通过辐射结构将微波电信号转化成磁场信号,作用于NV色心,然后将NV色心发射的荧光信号进行光电转换后用锁相放大器的电压输入通道进行采集,通过解调后即可得到系综NV色心样品的周围环境的磁场信号大小。参考文献:基于金刚石氮-空位色心系综的磁测量方法研究 -- 谢一进锁相放大器在磁成像——扫描NV探针显微镜中的应用扫描NV探针显微镜是利用金刚石NV色心作为磁传感器的扫描探针显微镜,其将光探测磁共振ODMR和AFM进行了巧妙结合,通过对钻石中NV色心发光缺陷的自旋进行量子操控与读出,来实现磁学性质的定量无损成像,具有纳米级的高空间分辨率和单自旋的超高探测灵敏度。国仪量子推出的量子钻石原子力显微镜其系统结构如下图所示,包括了NV色心成像系统和AFM控制系统。AFM控制系统负责将金刚石NV色心在待测样品上进行平面二维扫描,而NV色心对扫描区域的微弱磁信号进行高分辨率的探测,从而最终形成高分辨率的磁成像。在AFM的扫描过程中,金刚石与样品的距离是通过锁相放大器来进行控制的。金刚石NV色心固定在石英音叉上,形成探针。石英音叉有固定的振动频率,当探针在样品表面移动时,随着样品与探针的距离变化,石英音叉的共振幅度会发生变化。我们使用锁相放大器对音叉的振动信号进行采集和解调后,通过锁相放大器内部的PID反馈控制就可以实现样品位移台垂直方向(Z方向)的动态调节,从而使样品到NV色心探针的距离保持相同。锁相放大器主要用于AFM的控制系统中国仪量子数字锁相放大器LIA001MLIA001M锁相放大器是一款高性能、多功能的数字锁相放大器,基于先进硬件和数字信号处理技术设计,配合丰富的模拟输入输出接口,集可视化锁相放大器、虚拟示波器、参数扫描仪、信号发生器、PID控制器等多种功能于一体,有效的简化科研工作流程和设备依赖,提高科研效率和质量。数字锁相放大器LIA001M
  • 合肥研究院构筑出表面增强拉曼光谱单热点放大器
    p   近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。 /p p style=" text-align: center " img width=" 250" height=" 321" title=" ea14fe0b8668f5b02fa47ae1ab982279.jpg" style=" width: 250px height: 321px " src=" http://img1.17img.cn/17img/images/201706/noimg/f983e4b8-d607-4608-b35c-43557cf4f477.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。 /p p   基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。 /p p   以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助 (2016T90590)的支持。 /p
  • 放大光谱信号实现超极限大气二氧化氮探测
    通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。基于多模激光的振幅调制腔增强吸收光谱技术,适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。周家成中国科学院合肥物质科学研究院安徽光机所博士近日,中国科学院合肥物质科学研究院安徽光机所张为俊研究员团队在大气二氧化氮探测技术方面取得新突破,团队利用相敏检测的振幅调制腔增强吸收光谱技术,创立了一种能够快速灵敏检测大气环境中二氧化氮的新方法。这项研究成果日前发表于美国化学会(ACS)出版的《分析化学》上,并申请了发明专利保护。导致大气污染的“元凶”之一“二氧化氮是对流层大气中主要的污染物,它的来源主要包括交通运输排放和工业生产过程中的化石燃料燃烧、农作物秸秆等生物质燃烧、大气当中的闪电和平流层光化学反应等过程。”中国科学院合肥物质科学研究院安徽光机所的周家成博士告诉科技日报记者,大气中的二氧化氮对臭氧和二次颗粒的生成也起着重要作用,是形成酸雨的重要原因之一。“二氧化氮的光解是对流层臭氧的主要来源之一,其参与了光化学反应以及光化学烟雾的形成。”周家成说,二氧化氮通过光化学反应产生硝酸盐二次颗粒,导致大气能见度下降并进一步降低空气质量,是形成灰霾的主要因素。同时,排放到大气中的二氧化氮可以与水蒸气发生作用,产生硝酸和一氧化氮,进而形成酸雨。“正因如此,二氧化氮的高灵敏准确测量对大气化学研究以及大气污染防控具有重要意义。”周家成说,对于一些特殊应用场景,例如青藏高原、海洋等环境中,大气中二氧化氮浓度极低,只有高灵敏的仪器才能精确测量,进而开展相应的大气化学研究。此外,高灵敏的仪器还可以捕捉城市大气污染的深层次信息,例如通量等关键参数,从而更好地服务大气污染防控。放大光谱信号实现超极限探测一般而言,大气当中的每一种成分,都对应有特殊的光谱,也就是相当于这种组分的特殊身份识别标志特征。从原理上来讲,只要能够实现对某种大气组分光谱的高灵敏度探测,也就做到了对这种组分的精确探测。周家成介绍,他们团队创新研发的“基于多模激光的振幅调制腔增强吸收光谱技术”,是将调制技术与多模激光相结合的一种全新的高灵敏度吸收光谱技术。它的工作原理是把被调制的光强信号输入到相敏检波器中,与参考信号进行混频乘法运算,再经过窄带低通滤波器滤除掉其他噪声频率成分后,得到一个与输入信号成正比的直流信号,就可以直接用于吸收系数的计算。“通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。”周家成告诉记者,“基于多模激光的振幅调制腔增强吸收光谱技术”集成了共轴腔衰荡吸收光谱的高光注入效率、离轴腔增强吸收光谱的低腔膜噪声,以及调制光谱的窄带高灵敏度微弱信号探测等优点,能够提供一种简单、可靠、低成本和自校准的二氧化氮绝对浓度测量方法。“它适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。”周家成告诉记者,他们研制的这台仪器用到的一个关键部件,叫做“宽带多模二极管激光器”,即能够输出波长具有一定宽度,并且可以同时产生两个或多个纵模的激光器,它被作为整个仪器的探测光源。“正是由于它发出的激光光源能被二氧化氮分子所吸收,所以被用来进行二氧化氮浓度的测量。”周家成说,他们用到的这款激光器的中心波长为406纳米,带宽约为0.4纳米,它发射出的探测光源,恰好能够被二氧化氮分子所吸收。一般而言,某种仪器或探测方法,在探测某种参数时所能达到的极限,被称为“探测极限”,也代表了仪器的最高性能指标。周家成表示,他们研制的探测技术经过多次实际应用验证表明,超过探测极限浓度的二氧化氮也能够被测量到。助力北京冬奥会精准预报天气北京冬奥会期间,中国科学院合肥物质科学研究院安徽光机所研制的快速灵敏检测二氧化氮仪器被用于环境大气实时在线观测,为冬奥会高精度数值天气预报和多源气象数据融合等关键技术方法提供了必要的数据支持,共同构建了冬奥气象“百米级”预报技术体系。“在此之前,这台仪器在北京参加了‘超大城市群大气复合污染成因外场综合协同观测研究’项目,针对北京城市站点大气环境中氮氧化物的作用开展相关研究,对北京市大气复合污染成因解析起到了重要作用。”周家成表示,后续该仪器还将应用于青藏高原背景站点开展常年观测,填补青藏高原大范围区域二氧化氮有效观测数据的空白。谈起团队科研历程,周家成坦言,这其中充满了艰辛和不确定性,但还是有着很多乐趣。“为了验证仪器吸收测量的准确性,我们先在实验室开展不同浓度二氧化氮测量实验,但是结果始终和预期不一样。折腾了几个小时后,发现居然是外部锁相放大器的一个参数设置有误。”周家成说,这件事再次验证了“细节决定成败”的道理。自此以后,他每次实验前,都会仔细检查仪器的各项参数,防止出现类似的问题。周家成说,仪器在参加北京冬奥会观测期间,由于观测人员在实验前期对仪器操作不熟悉,光腔被正压气体冲击,导致无法用于测量。“当时我不在现场,内心十分着急,牵挂仪器,到了深夜都不能入睡,怕影响观测进度。”年后没几天,周家成携带工具前往北京维修,加班加点终于使仪器正常工作,赶上了综合实验的进度。“接下来,我们将对仪器进行小型化集成,利用锁相板代替商业锁相放大器,配合自动控制系统,使得这台仪器更加智能化、便携化。”周家成表示,未来他们团队还计划把这种二氧化氮探测技术与化学滴定、热解和化学放大法相结合,应用于一氧化氮、臭氧、活性氮和总过氧自由基的高精度测量。通过增加保护气,仪器还可应用于气溶胶消光系数的高灵敏度测量。
  • 中科院杨良保团队构筑表面增强拉曼光谱单热点放大器
    p   近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。 /p p   表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。 /p p   基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。 /p p   以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助(2016T90590)的支持。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/c1557673-0290-4c66-b7f3-c167bb5da6fc.jpg" title=" 微信图片_20170518091903_副本.jpg" / /p p style=" text-align: center " 文章封面以及毛细力构筑单热点结构示意图 /p
  • 科学家构筑出表面增强拉曼光谱单热点放大器
    p   近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。 br/ /p p   表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。 /p p   基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。 /p p   以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助(2016T90590)的支持。(来源:中科院合肥物质科学研究院) /p p br/ /p p br/ /p
  • 外部参考信号、全新屏显,你要的升级锁相放大器来啦!
    锁定放大器用于测量非常小的交流信号,即使小信号被数千倍大的噪声源所掩盖,也可以进行准确的测量。这种设备用利用一种称为相敏检测(phase-sensitive detection, PSD)的技术来挑选出特定参考频率和相位的信号分量,提取具有已知载波的调制信号。锁定放大器在各种光学测量仪器个设备中扮演着十分关键的角色。昕虹光电HPLIA微型双通道调制解调锁相放大器以当今FPGA +ARM单片机的业界流行配置而设计,长期深受用户青睐。迎接2022年,我们回应广大客户的需求,推出了升级版HPLIA Plus调制解调锁相放大器,不仅提升了颜值,更支持了大家期待已久的外部参考信号输入,实现更便捷、更弹性的调制和解调功能!海尔欣HPLIA Plus外观展示图HPLIA Plus 亮点:1.老版仅支持内部同步DDS信号,进行独立的双通道内同步解调。而HPLIA Plus终于支持外同步模式啦!用户可选择去同步外部输入的参考信号模式,而由Input1去解调微弱信号。内外同步模式,便于用户灵活自选调制信号,让您的实验设置更弹性!2.在外同步模式下,其中一路调制通道DDS输出与用户参考信号锁相的正弦波,可以用于同步其他HPLIA Plus,这样的配置可使多通道锁相解调成为可能,可借由数个HPLIA Plus锁相放大器串联,实现简易、便捷、经济的多路信号同步锁相解调。3.全新的UI界面,支持原有PC显示或机身自带高分辨触摸显示屏,实验设备玩出高级感!
  • 关亚风团队“微光探测器(光电放大器)”通过成果鉴定
    1月27日,由大连化物所微型分析仪器研究组(105组)关亚风研究员、耿旭辉研究员团队研发的“微光探测器(光电放大器)”通过了中国仪器仪表学会组织的新产品成果鉴定。鉴定委员会一致认为:该产品设计新颖、技术创新性强,综合性能达到国际先进、动态范围和长期稳定性能达到国际领先水平,同意通过鉴定。  微光探测器是科学仪器和光学传感器中的关键器件之一,广泛应用于表征仪器和化学分析仪器中,如物理发光、化学发光、生物发光、荧光、磷光、以及微颗粒散射光等弱光探测中,其性能决定着光学检测仪器的灵敏度和动态范围指标。该团队经过十五年技术攻关,成功研制了具有自主知识产权的高灵敏、低噪音、低漂移的AccuOpt 2000系列微光探测器(光电放大器),并批量生产,用于替代进口光电倍增管(PMT)、制冷型雪崩二极管(APD)和深冷型光电二极管(PD)对弱光的探测。  该微光探测器已形成产品,在单分子级激光诱导荧光检测器、黄曲霉毒素检测仪、深海原位荧光传感器等多款仪器上应用,替代PMT得到相同的检测信噪比和更宽的动态线性范围。经权威机构检测和多家用户使用表明,该微光探测器具有比进口PMT更好的重复性、稳定性和性能一致性,具有广阔的应用前景。  由于疫情原因,鉴定会以线上会议方式召开。该项目研发得到了国家自然科学基金、中国科学院重点部署项目等资助。
  • 新材料助力大化所推出低价、高性能光电放大器组件
    仪器信息网讯 2016年10月10日,慕尼黑上海分析生化展(analytica China 2016)召开同期,中国科学院大连化学物理研究所(以下简称:大化所)携AccuOpt 2000光电放大器组件、小型化学衍生器等产品参加。 中国科学院大连化学物理研究所参加analytica China 2016  大化所研究员关亚风向仪器信息网介绍了AccuOpt 2000光电放大器组件的特点及潜在的优势应用领域。AccuOpt 2000光电放大器组件的检测器采用了硅光二极管制成的检测器,结合自有的信号放大电路设计,使得AccuOpt 2000的噪音电平达到0.01mV。硅光二极管检测器的应用,使AccuOpt 2000的光谱响应范围为320~1100nm,覆盖近红外光波段,可替代昂贵的红外增强型光电倍增管。同时,这也给AccuOpt 2000带来了抗震、抗强光的特点,为适应更多的应用场合带来潜在的优势。AccuOpt 2000仅需5~12V的供电电源,并能在2分钟内平衡稳定,一方面能降低仪器在供电电源方面的成本;同时,专为AccuOpt 2000提供的DC-DC电源,12V输入,单块电源功率2W或3W,就能同时为8支AccuOpt 2000供电,这也大大减少仪器运行中的能源消耗,契合当前绿色仪器的发展大趋势。 AccuOpt 2000光电放大器组件  AccuOpt 2000价格远低于光电倍增管,如果应用于食品快检领域,将为用户提供低价、高质的食品安全快速筛查解决方案。从大化所展位现场看到,AccuOpt 2000已经成功应用于LED荧光检测器、激光诱导荧光检测器、叶绿素α 检测器中。据了解,AccuOpt 2000已经实现批量化生产,第一批生产1000支。  大化所的小型化学衍生器也吸引了信息网编辑的目光。这是一款小型柱后碘/溴化学衍生器,能使黄曲霉毒素B1和G1的荧光强度提高6.5倍。关亚风介绍到,该款小型化学衍生器已经批量生产100台,完全具备了批量化生产能力,为国内企业的供货价格将是市场同类产品的4分之一。 小型化学衍生器  关亚风特别提到,是新材料在零部件上的使用,实现了AccuOpt 2000低价和高性能这两者之间的很好结合。
  • 【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会
    【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会昊量光电邀您参加2022年01月19日锁相放大器工作原理及应用和Moku产品介绍网络研讨会。由Liquid Instruments研发的Moku系列多功能综合测量仪器在量子光学、超快光学、冷原子、材料科学和纳米技术等领域都有着广泛的应用,尤其是他的锁相放大器、PID控制器和相位表、激光器稳频功能,单一设备满足实验室多种测量、控制应用需求。在本次网络研讨会中,您将了解到锁相放大器的基本原理及应用,并提供对应的信号的检测方案介绍。主办方上海昊量光电设备有限公司,Liquid Instruments会议主题锁相放大器工作原理及应用和Moku产品介绍会议内容1. 锁相放大器的基本原理2. 锁相放大器在光学领域的重要应用方向-测量信号振幅(强度)以及相位3. 如何设置锁相放大器的调制频率和时间常数4. 应用介绍:超快光谱和锁相环/差频激光锁频5. 如何通过锁相环来解决锁相放大器测相位时的局限性6. 问题环节主讲嘉宾应用工程师:Fengyuan (Max) Deng, Ph.D.简介:普渡大学化学博士学位,主要研究非线性光学显微成像方向。应用工程师:Nandi Wuu, Ph.D.简介:澳洲国立大学工程博士学位,主要研究钙钛矿太阳能电池。直播活动1.研讨会当天登记采购意向并在2022年第一季度内采购的客户,可获赠Moku:Go一台!其中采购Pro还可加赠云编译使用权限一年。 2.联系昊量光电并转发微信文章即可获得礼品一份。直播时间:2022年01月19日报名方式:欢迎致电昊量光电报名成功!开播前一周您将收到一封确认电子邮件,会详细告知如何参加线上研讨会。期待您的参与,研讨会见!
  • 应用案例 | 参数调谐随机共振作为增强波长调制光谱学的工具,使用密集重叠斑点模式多程吸收池
    近日,来自安徽大学、安庆师范大学、复旦大学、皖西学院的联合研究团队发表了《参数调谐随机共振作为增强波长调制光谱学的工具,使用密集重叠斑点模式多程吸收池》论文。Recently, the joint research team from Anhui Key Laboratory of Mine Intelligent Equipment and Technology, School of Electronic Engineering and Intelligent Manufacturing, Department of Atmospheric and Oceanic Sciences, School of Electrical and Photoelectronic Engineering, West Anhui University published an academic papers Parameter-tuning stochastic resonance asa tool to enhance wavelength modulation spectroscopy using a dense overlapped spot pattern multi-pass cell.背景 激光吸收光谱技术已在许多应用中得到证明,如空气质量监测、工业过程控制和医学诊断。测量的精度对这些应用非常重要。尽管激光吸收光谱在敏感检测方面具有许多优点,但仍需要很长的光学路径长度和特殊的测量技术来检测极微量的物质,以实现高检测灵敏度。为了实现这些目的,通常采用具有长光学路径的多程吸收池来增强吸收信号。然而,在吸收信号中经常出现意想不到的干扰光束、热噪声、射频噪声、电噪声和白噪声,严重影响了检测的精度。当使用密集重叠斑点模式的多程吸收池时,这些问题在激光吸收光谱中很常见。因此,从强噪声背景中有效提取弱光电吸收信号具有重要意义。已提出了几种方法来消除噪声的负面影响。传统的弱周期信号处理方法主要包括时间平均法、滤波法和相关分析法。① 时间平均法可以获得信噪比(SNR)较高的信号,因此可以降低噪声的标准差并提高信号质量。然而,这种方法无法完全消除强噪声背景。② 基于硬件和软件的信号滤波广泛用于降噪,其特点是带宽较窄。在实际应用中,期望的信号和噪声通常具有连续的功率谱和宽带宽,但制造与信号带宽相匹配以去除噪声的滤波器相对较困难。如果滤波器的带宽非常小,噪声将大幅衰减。然而,这可能会破坏期望的信号。③ 相关检测方法是通过周期信号的自相关来去除噪声的。其本质是建立一个非常窄的带宽滤波器,以滤除与信号频率不同的噪声。与上述其他弱周期信号检测方法相比,参数调谐随机共振(SR)方法的优势显而易见。即使噪声和信号具有相同的频率,只要它们达到最佳的共振匹配,SR方法就可以将部分噪声能量转化为信号能量,以抑制噪声并增强信号。在这项工作中,我们将SR方法应用于波长调制光谱学(WMS),并使用密集重叠斑点模式的多程吸收池。首先,将进行数值计算以找到合适的参数并评估最佳SR系统的性能,然后通过实验验证SR方法可以有效增强WMS信号。IntroductionThe laser absorption spectroscopy technology has been demonstrated in many applications, such as air quality monitoring, industrial process control, and medical diagnostic. The precision of the measurement is important to those applications. Although laser absorption spectroscopy has many advantages in sensitive detection, it still needs a long optical path length and special measurement technology for detecting a very trace substance, with a high detection sensitivity . For those purposes, a multi-pass cell with a long optical path is usually applied to enhance the absorption signal. However, the unexpected interference fringe, thermal noise, shot noise, electrical noise and white noise, often occur in absorption signals and seriously spoil the detection precision. Those problems are common for laser absorption spectroscopy when using dense overlapped spot pattern multi-pass cell. Therefore, it is of great significance to effectively extract weak photoelectric absorption signals from a strong noise background.Several methods are proposed to eliminate the negative influence of the noise. The traditional weak periodic signal processing methods mainly include time average method, filtering method,and correlation analysis method. ①The signal with a high signal-to-noise ratio (SNR) can be obtained by time average method, so the standard deviation of noise can be reduced and the signal quality can be improved. Nevertheless, the strong noise background cannot be fully eliminated by this method.②The signal filters based on hardware and software are widely used for noise reduction, the characteristic of which is narrow bandwidth. In practical application, the desired signal and noise usually have a continuous power spectrum and wide bandwidth, but it is relatively difficult to manufacture a filter that matches the bandwidth of the signal to remove the noise. If the bandwidth of the filter is very small, the noise will be greatly attenuated. However, this may destroy the desired signal.③The correlation detection method is used to remove the noise by the autocorrelation of the periodic signal. Its essence is to establish a very narrow bandwidth filter to filter out the noise, the frequency of which is different from that of the signal. Compared with other weak periodic signal detection methods mentioned above, the advantage of the parameter-tuning stochastic resonance (SR) method is apparent. Even if the noise and signal have the same frequency, as long as they reach the optimal resonance matching, the SR method can convert part of the noise energy into the signal energy to suppress the noise and enhance the signal.In this work, the SR method is applied to the wavelength modulation spectroscopy (WMS) by using the dense overlapped spot pattern multi-pass cell. first, the numerical calculation will be implemented to find the suitable parameters and evaluate the performance of the optimal SR system, and then it is verified that the SR method can effectively enhance the WMS signal by the experiments.实验装置的示意图如图1所示。海尔欣光电科技有限公司为此研究提供了锁相放大器(Healthy Photon,HPLIA),用于解调来自光电探测器的吸收信号,解调频率为第二谐波信号2f的频率(其中f = 6千赫兹是正弦波的调制频率)。锁相放大器的时间常数设置为1毫秒。解调后的信号随后由一个数据采集卡数字化,并显示在计算机上。A schematic diagram of the experimental setup is shown in Fig. 1. HealthyPhoton Technology Co., Ltd. provides a lock-in amplifier (HPLIA), which is used for demodulation of absorption signal from the photodetector at the frequency of second harmonic signal 2f (where f =6 KHz is the modulation frequency of the sine wave). The time constant of the lock-in amplifier is set to 1 ms. The demodulated signal is subsequently digitalized by a DAQ card and displayed on a computer. Fig. 1. Schematic diagram of experimental device of measurement.Healthy Photon,lock-in amplifier HPLIAFig. 2. 2f SR signal and 2f time average signal.结论参数调谐随机共振(SR)方法可以将部分噪声能量转化为信号能量,以抑制噪声并放大信号,与传统的弱周期信号检测方法(例如,时间平均法、滤波法和相关分析法)相比。本研究进行了数值计算,以找到将SR方法应用于波长调制光谱学(WMS)的最佳共振参数。在随机共振状态下,2f信号的峰值(CH4浓度恒定在约20 ppm)有效放大到约0.0863 V,比4000次时间平均信号的峰值(约0.0231 V)高3.8倍。尽管标准差也从约0.0015 V(1σ)增加到约0.003 V(1σ),但信噪比相应提高了1.83倍(从约25.9提高到约15.8)。获得了SR 2f信号峰值与原始2f信号峰值的线性光谱响应。这表明在强噪声背景下,SR方法对增强光电信号是有效的。Conclusion The parameter-tuning stochastic resonance (SR) method can convert part of the noise energy into the signal energy to suppress the noise and amplify the signal, comparing with traditional weak periodic signal detection methods (e.g., time average method, filtering method, and correlation analysis method). In this work, the numerical calculation is conducted to find the optimal resonance parameters for applying the SR method to the wavelength modulation spectroscopy (WMS). Under the stochastic resonance state, the peak value of 2f signal (a constant concentration of CH4&sim 20 ppm) is effectively amplified to &sim 0.0863 V, which is 3.8 times as much as the peak value of 4000-time average signal (&sim 0.0231 V). Although the standard deviation also increases from &sim 0.0015 V(1σ) to &sim 0.003 V(1σ), the SNR can be improved by 1.83 times (from &sim 25.9 to &sim 15.8) correspondingly. A linear spectral response of SR 2f signal peak value to raw 2f signal peak value is obtained. It suggests that the SR method is effective for enhancing photoelectric signal under strong noise background.参考:Reference: Parameter-tuning stochastic resonance as a tool to enhance wavelength modulation spectroscopy using a dense overlapped spot pattern multi-pass cell, Optics Express 32010https://doi.org/10.1364/OE.465629
  • 锁相放大器OE1022应用在黑磷中激子Mott金属绝缘体转变的量子临界现象测量
    关键词:量子相变 锁相放大器 超导超流态 说明:本篇文章使用赛恩科学仪器OE1022锁相放大器测量【概述】 2022年,南京大学王肖沐教授和施毅教授团队在nature communications发表了一篇题为《Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus》文章,报道了黑磷中激子Mott金属-绝缘体转变的光谱学和传输现象。通过光激发来不断调控电子-空穴对的相互作用,并利用傅里叶变换光电流谱学作为探针,测量了在不同温度和电子-空穴对密度参数空间下的电子-空穴态的综合相图。 【样品 & 测试】 文章使用锁相放大器OE1022对材料的传输特性进行测量,研究中使用了带有双栅结构(TG,BG)的BP器件,如图1(a)所示,约10纳米厚的BP薄膜被封装在两片六角形硼氮化物(hBN)薄片之间,为了保持整个结构的平整度,使用了少层石墨烯薄片来形成源极、漏极和顶栅接触,以便在传输特性测量中施加恒定的电位移场。图一 (a)典型双栅BP晶体管的示意图。顶栅电压(VTG)和底栅电压(VBG)被施加用于控制样品(DBP)中的载流子密度和电位移场。(b) 干涉仪设置的示意图,其中M1,M2和BS分别代表可移动镜子,静止镜子和分束器。 在实验中,迈克耳孙干涉仪的光程被固定在零。直流光电流直接通过半导体分析仪(PDA FSpro)读取。光电导则采用标准的低频锁相方案测量,即通过Keithley 6221源施加带有直流偏置的11Hz微弱交流激励电压(1毫伏)至样品,然后通过锁相放大器(SSI OE1022)测量对应流经样品的电流。图二(a)在不同激发功率下,综合光电流随温度的变化。100% P = 160 W/cm² 。(b) 在每个激发功率下归一化到最大值的光电流。(c)从传输特性测量中提取的与温度T相关的电阻率指数为函数的相图,作为T和电子-空穴对密度的函数。(d)不同电子-空穴对密度在过渡边界附近的电阻率与温度的关系 【总结】 该文设计了一种带有双栅结构的BP器件,通过测量器件的傅里叶光电流谱和传输特性,观测到从具有明显激子跃迁的光学绝缘体到具有宽吸收带和粒子数反转的金属电子-空穴等离子体相的转变,并且还观察到在Mott相变边界附近,电阻率随温度呈线性关系的奇特金属行为。文章的结果为研究半导体中的强相关物理提供了理想平台,例如研究超导与激子凝聚之间的交叉现象。【文献】 ✽ Binjie Zheng,Yi Shi & Xiaomu Wang et al. " Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus." nature communications (2022) 【推荐产品】
  • 放大NO₂光谱信号 快速锁定大气污染“元凶”
    近日,中国科学院合肥物质科学研究院安徽光机所张为俊研究员团队在大气二氧化氮探测技术方面取得新突破,团队利用相敏检测的振幅调制腔增强吸收光谱技术,创立了一种能够快速灵敏检测大气环境中二氧化氮的新方法。这项研究成果日前发表于美国化学会(ACS)出版的《分析化学》上,并申请了发明专利保护。通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。基于多模激光的振幅调制腔增强吸收光谱技术,适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。 导致大气污染的“元凶”之一“二氧化氮是对流层大气中主要的污染物,它的来源主要包括交通运输排放和工业生产过程中的化石燃料燃烧、农作物秸秆等生物质燃烧、大气当中的闪电和平流层光化学反应等过程。”中国科学院合肥物质科学研究院安徽光机所的周家成博士说道,大气中的二氧化氮对臭氧和二次颗粒的生成也起着重要作用,是形成酸雨的重要原因之一。“二氧化氮的光解是对流层臭氧的主要来源之一,其参与了光化学反应以及光化学烟雾的形成。”周家成说,二氧化氮通过光化学反应产生硝酸盐二次颗粒,导致大气能见度下降并进一步降低空气质量,是形成灰霾的主要因素。同时,排放到大气中的二氧化氮可以与水蒸气发生作用,产生硝酸和一氧化氮,进而形成酸雨。“正因如此,二氧化氮的高灵敏准确测量对大气化学研究以及大气污染防控具有重要意义。”周家成说,对于一些特殊应用场景,例如青藏高原、海洋等环境中,大气中二氧化氮浓度极低,只有高灵敏的仪器才能精确测量,进而开展相应的大气化学研究。此外,高灵敏的仪器还可以捕捉城市大气污染的深层次信息,例如通量等关键参数,从而更好地服务大气污染防控。放大光谱信号实现超极限探测一般而言,大气当中的每一种成分,都对应有特殊的光谱,也就是相当于这种组分的特殊身份识别标志特征。从原理上来讲,只要能够实现对某种大气组分光谱的高灵敏度探测,也就做到了对这种组分的精确探测。周家成介绍,他们团队创新研发的“基于多模激光的振幅调制腔增强吸收光谱技术”,是将调制技术与多模激光相结合的一种全新的高灵敏度吸收光谱技术。它的工作原理是把被调制的光强信号输入到相敏检波器中,与参考信号进行混频乘法运算,再经过窄带低通滤波器滤除掉其他噪声频率成分后,得到一个与输入信号成正比的直流信号,就可以直接用于吸收系数的计算。“通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。”周家成告诉记者,“基于多模激光的振幅调制腔增强吸收光谱技术”集成了共轴腔衰荡吸收光谱的高光注入效率、离轴腔增强吸收光谱的低腔膜噪声,以及调制光谱的窄带高灵敏度微弱信号探测等优点,能够提供一种简单、可靠、低成本和自校准的二氧化氮绝对浓度测量方法。“它适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。”周家成介绍到,他们研制的这台仪器用到的一个关键部件,叫做“宽带多模二极管激光器”,即能够输出波长具有一定宽度,并且可以同时产生两个或多个纵模的激光器,它被作为整个仪器的探测光源。“正是由于它发出的激光光源能被二氧化氮分子所吸收,所以被用来进行二氧化氮浓度的测量。”周家成说,他们用到的这款激光器的中心波长为406纳米,带宽约为0.4纳米,它发射出的探测光源,恰好能够被二氧化氮分子所吸收。一般而言,某种仪器或探测方法,在探测某种参数时所能达到的极限,被称为“探测极限”,也代表了仪器的最高性能指标。周家成表示,他们研制的探测技术经过多次实际应用验证表明,超过探测极限浓度的二氧化氮也能够被测量到。助力北京冬奥会精准预报天气北京冬奥会期间,中国科学院合肥物质科学研究院安徽光机所研制的快速灵敏检测二氧化氮仪器被用于环境大气实时在线观测,为冬奥会高精度数值天气预报和多源气象数据融合等关键技术方法提供了必要的数据支持,共同构建了冬奥气象“百米级”预报技术体系。“在此之前,这台仪器在北京参加了‘超大城市群大气复合污染成因外场综合协同观测研究’项目,针对北京城市站点大气环境中氮氧化物的作用开展相关研究,对北京市大气复合污染成因解析起到了重要作用。”周家成表示,后续该仪器还将应用于青藏高原背景站点开展常年观测,填补青藏高原大范围区域二氧化氮有效观测数据的空白。谈起团队科研历程,周家成坦言,这其中充满了艰辛和不确定性,但还是有着很多乐趣。“为了验证仪器吸收测量的准确性,我们先在实验室开展不同浓度二氧化氮测量实验,但是结果始终和预期不一样。折腾了几个小时后,发现居然是外部锁相放大器的一个参数设置有误。”周家成说,这件事再次验证了“细节决定成败”的道理。自此以后,他每次实验前,都会仔细检查仪器的各项参数,防止出现类似的问题。周家成说,仪器在参加北京冬奥会观测期间,由于观测人员在实验前期对仪器操作不熟悉,光腔被正压气体冲击,导致无法用于测量。“当时我不在现场,内心十分着急,牵挂仪器,到了深夜都不能入睡,怕影响观测进度。”年后没几天,周家成携带工具前往北京维修,加班加点终于使仪器正常工作,赶上了综合实验的进度。“接下来,我们将对仪器进行小型化集成,利用锁相板代替商业锁相放大器,配合自动控制系统,使得这台仪器更加智能化、便携化。”周家成表示,未来他们团队还计划把这种二氧化氮探测技术与化学滴定、热解和化学放大法相结合,应用于一氧化氮、臭氧、活性氮和总过氧自由基的高精度测量。通过增加保护气,仪器还可应用于气溶胶消光系数的高灵敏度测量。
  • “精密大带宽锁相放大器的研发及应用”获得立项
    近日,由赛恩科仪团队首席技术顾问中山大学王自鑫副教授作为项目负责人申报的国家重点研发计划“精密大带宽锁相放大器的研发及应用”获批立项;项目将实现超过100M带宽的精密锁相放大器,将研究复杂电磁环境下的微弱信号解耦合技术,实现高带宽高精度的锁相放大器检测技术。赛恩科仪拥有多位在集成电路设计、电磁兼容性分析、数字信号处理等领域具有丰富经验的归国留学人员,一直依托中山大学微电子系、物理系、中山大学光电材料与技术国家重点实验室从事微弱信号仪器检测相关的研究工作。赛恩科仪是一家专注微弱信号检测技术近二十年的国家高新技术企业,拥有本领域的系列核心知识产权。公司推出涵盖各个频段的系列锁相放大器产品,性能参数全面覆盖国际同行,在国内外数百家科研机构与企业得到应用,深受国内外客户的一致好评。
  • 科学家试制新型“激声”放大器
    据美国物理学家组织网9月8日(北京时间)报道,在今年庆贺激光诞生50周年之际,科学家正在研究一种新型的相干声束放大器,其利用的是声而不是光。科学家最近对此进行了演示,在一种超冷原子气体中,声子也能在同一方向共同激发,就和光子受激发射相似,因此这种装置也被称为“激声器”。   声子激发理论是2009年由马克斯普朗克研究院和加州理工学院的一个科研小组首次提出的,目前尚处于较新的研究领域。其理论认为,声子是振动能量的最小独立单位,也能像光子那样,通过激发产生高度相干的声波束,尤其是高频超声波。他们首次描述了一个镁离子在电磁势阱中被冷冻到大约1/1000开氏温度,能生成单个离子的受激声子。但是单个声子的受激放大和一个光子还有区别,声子频率由单原子振动的频率所决定而不是和集体振动相一致。   在新研究中,葡萄牙里斯本高等技术学院的J.T.曼登卡与合作团队把单离子声子激发的概念,扩展到一个大的原子整体。为了做到这一点,他们演示了超冷原子气体整合声子激发。与单离子的情况相比,这里的声子频率由气态原子的内部振动所决定,和光子的频率是由光腔内部的振动所决定一样。   无论相干电磁波,还是相干声波,最大的困难来自选择系统、频率范围等方面。曼登卡说,该研究中的困难是要模仿光波受激放大发射的机制,但产生的是声子,而不是光子。即通过精确控制超冷原子系统,使其能完全按照激光发射的机制来发射相干声子。   新方法将气体限定在磁光陷阱中,通过3个物理过程产生激态声子。首先,一束红失谐激光将原子气体冷却到超冷温度 然后用一束蓝失谐光振动超冷原体气体,生成一束不可见光,最后使原子形成声子相干发射,此后衰变到低能级状态。研究人员指出,最后形成的声波能以机械或电磁的方式与外部世界连接,系统只是提供一种相干发射源。   关于给声子激发命名,科学家先是沿袭“镭射(laser)”之名使用了“声射(saser)”,即声音受激放大发射。但曼登卡认为使用“激声(phaser)”更准确,它强调了声子的量子特性而不是声音,也暗示了其发射过程类似于光子受激发射。   高相干超声波束的一个可能用途是,在X光断层摄影术方面,能极大地提高图像的解析度。曼登卡说:“激光刚开发出来时,仅被当做一种不能解决任何问题的发明。所以,对于激声,我们现在担心的只是基础科学方面的问题,而不是应用问题。”
  • 日本将禁止向俄罗斯出口示波器、光谱仪、信号放大器、信号发生器等产品
    近日,日本经济产业省公布了在乌克兰军事行动后将禁止向俄罗斯出口的产品清单。该禁令包括57个项目,将于3月18日生效。该部表示,该清单包括31种通用商品和26种技术项目,包括软件。出口禁令适用于半导体、雷达、传感器、激光器、通信设备、记录设备及其组件、示波器、光谱仪、信号放大器、信号发生器、电阻器、加密设备、电视摄像机、滤光片和氟化物光纤。此外,还对导航设备、无线电电子设备、水下监视设备、潜水设备和柴油发动机实施了禁令。此外,禁止的是拖拉机部件,飞机及其部件的燃气涡轮发动机以及炼油设备。2月24日,在分离的顿巴斯共和国呼吁帮助保卫自己免受乌克兰军方的攻击后,俄罗斯在乌克兰发动了军事行动。作为回应,西方国家对莫斯科实施了全面制裁。
  • 中国科大彭新华教授团队实现新型自旋量子放大技术
    中国科学技术大学中国科学院微观磁共振重点实验室彭新华教授研究组在自旋量子精密测量领域取得重要进展,首次提出和验证了Floquet自旋量子放大技术,该技术克服了以往只在单个频率处量子放大的局限性,实现了多频段极弱磁场信号的量子放大,灵敏度达到了飞特斯拉水平。相关研究成果于6月9日以“Floquet Spin Amplification”为题在线发表于著名国际学术期刊《Physical Review Letters》上[Phys. Rev. Lett. 128, 233201 (2022)],并被选为“编辑推荐(Editors’Suggestion)”文章。现代自然科学和物质文明是伴随着测量精度的不断提升而发展的。随着量子力学基础研究和科学技术的发展,通过原子、分子、自旋等物理系统可以实现微弱信号的量子增强放大。相比于基于经典电路的传统放大技术,量子增强放大受限于更低的量子噪声且具有更高的放大增益,为提升测量精度提供了强有力的研究手段,因此受到大家的广泛关注和研究。目前,量子放大技术已经在诸多测量过程发挥不可替代的作用,催生出许多革命性成果,例如微波激射器、激光器、原子钟,甚至宇宙微波背景辐射的首次发现等,诺贝尔物理学奖也曾多次授予相关领域。然而目前对量子放大精密测量技术的探索仍然有限,实现信号放大主要依赖于量子系统固有的离散能级跃,由于可调谐性的限制,量子系统固有离散跃迁频率往往无法满足放大需要的工作频率,因此限制了量子放大器的性能,如工作带宽、频率和增益等。如果能够克服以上困难,量子放大技术的性能将可以得到很大改善,对探测极弱电磁波和奇异粒子等基础物理和实际应用具有重要意义。成果示意图:(a)Floquet能级;(b)Flqouet量子自旋放大器原理图;(c)磁探测灵敏度。针对以上难题,本文研究人员提出了Floquet自旋量子放大技术,成功克服了以往探测频率范围小等限制,实现了对多个频率的极弱磁场放大。这项技术得益于该组之前提出的“自旋放大技术”[Nat.Phys. 17, 1402 (2021)]和“Floquet调制技术”[Sci. Adv. 7(8), eabe0719 (2021)],将二者有机结合,从而将量子放大技术推广到Floquet自旋系统:利用Floquet调制技术调控自旋的能级与量子态,将固有的二能级系统(如129Xe核自旋)修饰为周期性驱动Floquet系统,从而具有很多独特的性质,使得系统形成了一系列等能量间距分布的Floquet能级结构,在这些能级之间可以发生共振跃迁,因此有效拓广了磁场放大的频率范围。通过理论计算和实验研究,首次展示了Floquet系统可以实现多个频率待测磁场2个数量级的同时量子放大,测量灵敏度达到了飞特斯拉级级别。该工作首次将量子放大技术扩展到Floquet自旋系统,有望进一步推广到其他量子放大器,实现全新的一类量子放大器——“Floquet量子放大器”。彭新华研究组长期瞄准量子精密测量领域,利用量子精密测量技术来解决世界前沿科学问题。包括于2018年自主研发出超灵敏原子磁力计,并且利用该技术实现了无需磁场的新型核磁共振技术——“零磁场核磁共振”[Sci. Adv. 4(6), eaar6327 (2018)];于2019年至2020年发展新型原子磁力仪技术[Adv. Quantum Technol. 3, 2000078 (2020),Phys. Rev.Applied 11, 024005 (2019)],达到了国际领先水平的磁场探测灵敏度;通过进一步研究,于2021年实现了新型的自旋微波激射器,在低频段创造了国际最佳的磁探测灵敏度[Sci. Adv. 7(8), eabe0719 (2021)]。之后,该研究组将已发展的平台型量子精密测量技术用于寻找超越标准模型的新粒子,取得了一系列对推动学科领域发展有实质性贡献的研究成果。包括于2021年利用新型量子自旋放大器搜寻暗物质候选粒子,首次突破国际公认最强的宇宙天文学界限[Nat.Phys. 17, 1402 (2021)],以及实现了对一类超越标准模型的新相互作用的超灵敏检验,实验界限比先前的国际最好水平提升至少2个数量级[Sci. Adv. 7, eabi9535 (2021)]。中科院微观磁共振重点实验室江敏副研究员、博士研究生秦毓舒和王鑫为该文共同第一作者,彭新华教授为该文通讯作者。该研究得到了科技部、国家自然科学基金委和安徽省的资助。论文链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.233201量子自旋放大技术论文链接:https://www.nature.com/articles/s41567-021-01392-z
  • 上海光机所在特殊波长的飞秒超快光纤激光器研制方面获进展
    近期,中国科学院上海光学精密机械研究所高功率光纤激光技术实验室在特殊波长的飞秒超快光纤激光器研制方向取得重要进展。该团队首次报道了一种基于色散管理、全保偏九字腔的978 nm飞秒掺镱光纤激光器。相关研究成果以Generation of 978 nm dispersion-managed solitons from a polarization-maintaining Yb-doped figure-of-9 fiber laser为题,发表在《光学快报》(Optics Letters)上。978 nm掺镱飞秒锁模光纤激光器因独特的应用价值而备受关注。然而,由于Yb3+在978 nm波长附近的吸收截面近似等于发射截面,为了在这个波长获得高性能激光输出,必须克服978 nm处的激光自吸收和1030 nm附近的放大自发辐射(ASE)等问题。此外,Yb3+在978 nm附近的增益带宽相对较窄,这进一步增加了在该波长下获得飞秒激光脉冲的难度。因此,与1 μm以上的传统掺镱锁模光纤激光器相比,实现这种978 nm的飞秒光纤激光器面临着更大挑战。针对上述问题,研究团队采用基于九字腔结构的非线性放大环镜(NALM)技术实现了978 nm处色散管理孤子的稳定输出。实验中,通过控制激光腔内各色散元件的参数有效地管理了腔内总色散,并引入滤波器来抑制1030 nm的ASE,最终获得了具有14.4 nm光谱带宽和175 fs的高相干激光脉冲。此外,激光腔由全保偏光纤器件组成,能够有效抗温度、震动等环境扰动,确保了锁模脉冲的长期稳定性。数值模拟结果表明,978 nm色散管理孤子的光谱宽度主要受限于Yb3+在相关波长附近的增益带宽。未来,可以利用非线性效应在腔外进一步展宽光谱,从而在这个特殊波长实现更窄脉宽的激光输出。该研究实现的978 nm锁模脉冲是迄今为止报道的相关波长超快光纤激光器中能够输出的最短脉冲,在水下通信和太赫兹波产生等领域具有良好的应用前景。图1.978 nm九字腔色散管理孤子光纤激光器实验装置图图2. 978 nm九字腔光纤激光器输出脉冲参数。(a)光谱,(b)脉冲序列,(c)射频谱,(d)自相关信号,(e) 腔外压缩后的频谱和(f)自相关信号。图3. 数值模拟结果。(a、b)输出色散管理孤子的光谱和时间特性;(c、d)腔内脉冲的时频演化过程。
  • Molecular Devices 网络讲座:如何更有效使用Axon pCLAMP软件和Axon放大器系列讲座之二
    立即注册参加Axon传统电生理网络讲座 题目:全细胞电压钳记录模式为何需要补偿串联电阻?日期:2012年9月26日,周三时间:9:00 -10:00 AM 建议参会人包括: 正要建立新电生理实验室的教授及研究人员 大学研究院所和医药界的电生理学家 现在使用Axon软件及放大器的用户题目: 全细胞电压钳记录模式为何需要补偿串联电阻?主讲人:Jeffrey Tang, PhD, Product Marketing Manager of Axon Conventional Electrophysiology, Molecular Devices, LLC. 请点击 在线注册 注册本次网络讲座。本次讲座费用全免,但是参会人数有限,请尽快注册。在线注册后,您将收到一封确认邮件,同时附有如何登陆本次网络讲座的资料。我们期待您的参与! 若您在注册时遇到任何问题,请联系info.china@moldev.com或jeffrey.tang@moldev.com询问。
  • 关于光电倍增管(PMT)模块的选型与使用
    PMT模块的选型PMT模块中不仅都集成了PMT裸管、分压电路和高压电源,还根据信号输出的不同需求集成了其他的功能组件。按照PMT模块的信号输出类型,滨松的PMT模块产品可以分为电流输出模块、电压输出模块和光子计数探测器。他们的区别是这样的:点击查看大图PS.图中灰色方框内的各种产品/附件滨松也有提供~可以移步至滨松中国官网了解目前滨松有40多个系列,工程师梳理了一张系列型号及基础参数参考表,在选型时可以有所帮助:(点击查看看大图)在同一系列的滨松PMT模块中,会以后缀来区分不同的产品型号。这些后缀往往代表着不同的含义,了解它们,也可以有助于我们的产品选型。这里,我们选出了用途最为广泛的φ8端窗PMT模块,针对其中关键的名词项,来深入一一解读。 滨松φ8 PMT模块命名规则# Settling time是什么?在PMT模块中,加在PMT上的高压会随着控制电压(一般在0.5-1.1V)的变化而变化;但这个过程是有一定延迟的,且根据PMT模块中分压电路的设计有长有短。从调节完控制电压,到施加在PMT的高压到达设定电压——其时间间隔称之为Settling time,也就是稳定时间,简而言之,就是PMT调完控制电压后等多久能用。在滨松PMT模块的彩页中,标注的Settling time数值一般是控制电压从+1.0V到+0.5V所对应的Settlingtime。如果控制电压的变化幅度较小,响应的Settling time也会相应变小。 # 纹波噪声是什么?PMT模块中,除了PMT裸管之外,还至少会集成高压电源和分压电路。其中高压电源中使用的振荡电路(oscillation circuit)会带来额外微小的电压抖动,继而使得加在PMT上的高压、PMT的增益以及最终输出的信号上都会出现相应的抖动,即纹波(ripple,见图)。纹波现象所带来的纹波噪声在滨松PMT模块的彩页中一般被标注为“Ripple noise(peak to peak)”,是在特定控制电压下,采用特定的读出参数所测得的电压曲线中波峰和波谷的差值。 纹波噪声示意为高压电源选择合适的电路设计可以大幅减小纹波噪声。虽然纹波噪声不可能完全消除,但在当前已经商业化的PMT模块中,纹波噪声已经小到基本可以不予考虑。如果特定情况下确实需要降低纹波噪声,可以考虑以下两种方法: (1)在模块信号输出之后加入低通滤波器,过滤掉一部分;(2)提高控制电压——此时光电倍增管的增益与纹波的绝对值都会增加,但是增益的增长要更快,所以能够实际上降低纹波的影响。# PMT模块的电流输出与电压输出的区别?电压输出的PMT模块的Conversion factor是什么? PMT最原始的输出信号为电流。相对于电流输出模块,电压输出的PMT模块中多了一个跨阻放大器(Current-Voltage Conversion Amp)将电流已经转换成了电压(可以翻到上文看看图)。对应的转换系数就是conversion factor(或者称作Current-to-voltage conversion factor)。 此外,由于跨阻放大器本身是有带宽的,如H10722和H10723采用了不同的跨阻放大器,所以其输出信号的带宽也就不一样。 总的说来,电压输出模块和电流输出模块在使用中的优劣如下:# 插针式与导线式有什么区别? 插针式(下图左,如H10720,H11900)与导线式(下图右,如H10721,H11901)的两种光电倍增管模块没有本质区别。前者可以直接插在电路板上;后者在安装上则更加灵活。可以根据实际使用环境和条件选择。 H10720和H10721外观 # 光谱响应参数的解析PMT模块的光谱响应范围主要由光阴极面的材料和窗材决定。 光阴极面的材料决定了PMT光谱响应的波长上限,更长波长的光子由于能量不足就较难转化成光电子从而被探测了。 管壁材料(窗材)决定了PMT光谱响应的波长下限。对于波长更短的光子,理论上只要能够轰击到光阴极面都能够产生光电子。但PMT是一个真空管结构,光子到达光阴极面之前需要先通过管壁。过短波长的光子会被管壁所阻碍,所以管壁材料(窗材)一般决定了PMT光谱响应的波长下限。 光电倍增管工作示意图在滨松样本资料中,一般会给出波长范围(如H10720-110的230-700nm)。其下限代表的是管壁透光率曲线的拐点;其上限,对于多碱材料是灵敏度峰值的0.1%,对于双碱材料是灵敏度峰值的1%。# 关于功耗更多的解析H1072X系列最吸引人的是其低功耗;H10720/H10721系列所要求的电压(input voltage)甚至只有2.8-5.5V,电流也只是mA级别。这意味着,3节普通的5号电池就足以作为PMT模块的电源。加上H10720/H10721本身的小体积,使得其非常适合用于手持式设备。 H10720/H10721,H11900/H11901系列与功耗相关的参数 PMT模块的使用根据实际应用中数据测量的需求,PMT模块的使用可以分为如下3类。 1. 在示波器上读出PMT模块输出的模拟信号 2. 在电脑上读出PMT模块输出的模拟信号 3. 在电脑上读出光子计数结果
  • 波长调制光谱(WMS)技术简介
    可调谐半导体激光吸收光谱(Tunable Diode Laser Absorption Spectroscopy, 即TDLAS)是一种红外吸收光谱分析技术,利用分子“选频”吸收形成吸收光谱的原理,实现高分辨率的分子浓度定量分析技术。TDLAS能够进行原位非接触式测量,并且具有高精度、高选择性等特性,结合波长调制光谱(WMS)和锁相放大等抑制噪声的技术,可以实现ppm甚至ppb量级的痕量气体分子浓度测量。 之前我们已经介绍过锁相放大的工作原理和其在TDLAS中的应用,今天小编就跟大家聊聊WMS背后的科学还有实际的应用方式吧! TDLAS基本原理及Beer-Lambert定律 了解WMS技术之前,我们先简单复习一下TDLAS的原理:基本方法是通过调谐特定的半导体激光器波长,扫过被测气体分子的特定吸收光谱线,被气体吸收后的透射光由光电探测器接收,经锁相放大模块提取透射光谱的谐波分量,反演出待测气体浓度信息。 为了确定与于目标分子浓度相关的吸收,必须将透射光强度I与入射光强度I0进行比较。这个定量分析的依据来自Beer-Lambert定律: 其中L为光程,α(v) 是由入射光波长和样品中目标分子浓度同时决定的吸收系数。TDLAS技术通过使用Beer-Lambert定律分析吸收光谱的数据,便可以获得分子浓度信息。 图一 TDLAS技术示意图 直接吸收光谱(DAS) 接着,我们来看一下直观的直接吸收光谱(Direct Absorption Spectroscopy, DAS)技术。顾名思义,DAS技术通过检测入射光和透射光强度直接获得光吸收量(如图二),并根据两个信号的比例直接推断出气体特性,典型的DAS方法得到的信号如图三。 图二 DAS示意图:调谐激光器波长扫过被测气体分子的特定吸收光谱线,在吸收峰可以直接看到的投射光强度衰减 图三 直接吸收光谱(DAS)技术的典型透射光强度信号 图三也显示了DAS的潜在问题,其相对简易直接的性质使得DAS对许多噪声源敏感。各种高强度的噪声可能源于激光强度波动、激光波长波动(如果激光波长在吸收曲线内波动,也会导致透射光的强度波动)、探测器噪声、散粒噪声(光子噪声)和其他技术噪声。如果吸收谱线足够强,即吸收物质的浓度足够高、提供足够的信噪比 (SNR),则可以使用DAS进行准确测量。然而,检测低浓度的气体分子需要进一步减少吸收接收信号中的噪声,WMS就是一种在TDLAS技术中广为应用来抑制噪声的方法。 波长调制光谱(WMS) WMS能够改善DAS在信噪比较差的环境中的局限性。将入射激光的波长用一个相对较高频率的载波(通常约为10 kHz)进行调制(如图四),并且将吸收光谱信号以调制频率或该频率的谐波进行解调评估分析,获取特异但有规律可循的谐波波形,从而获取分子浓度信息。由于噪声的影响主要存在于低频,例如二极管的1/f噪声或机械噪声,WMS技术将吸收光谱的检测转移到到了信噪比较优的高频,以此达到抑制噪声的目的。 图四 WMS示意图:调制入射激光的波长至较高频率,将接收端信号以调制频率的谐波进行解调分析 WMS的实现是通过调制可调谐半导体激光器的注入电流,以达到对激光输出的波长和强度的高频调制,并将吸收信号移到了更高的频率。其中,TDLAS系统的线性响应(激光器的线性强度调谐)以调制频率的一次谐波为中心,系统的非线性响应(例如吸收和非线性强度调谐)则反应在调制频率的二次及更高次谐波,因此可以透过对高次谐波信号的分析来提取光谱吸收信息。一般来说,二次谐波分析足以满足大多数的气体分析要求。 要提取并分析在已知载波频率的高频信号,锁相放大器是一个十分强大的工具。利用锁相放大器可以用来创建指定频率的带通滤波器,如果带宽足够窄,便能抑制宽带噪声,所以用于调制的频率必须避开主要的噪声频率。(点击这里了解锁相放大器在TDLAS系统中的功用) 除此之外,WMS技术还提供了另外一种选择,能够通过频分复用的方法同时发射传播多个不同波长的激光。多个激光以不同的频率调制并收集在单个探测器上,谨慎选择的调制频率能够尽量避免谐波重叠或拍频干扰,最终每个激光信号都可以由独立的锁相放大通道器提取。利用昕虹光电数字电路实现的双通道锁相放大器,使得实现这样的一个多组分分子一体化探测系统变得经济而简单,实现对多个目标分子(如多种温室气体N2O,CH4,CO2等)同时进行测量。 参考文献:1. “Absorption spectroscopy”, http://www.atomic.physics.lu.se/fileadmin/atomfysik/Education/Elective_courses/FAF080_AtomoMolekylSpektr/Lab_absorption_spectroscopy_2017.pdf2. Christopher Lyle Strand, 2014, ‘Scanned Wavelength-Modulation Absorption Spectroscopy with Application to Hypersonic Impulse Flow Facilities’, PhD thesis, Standford University, USA.
  • 赛恩科仪双通道锁相放大器被以色列维茨曼研究所应用在SQUID扫描显微镜测量中
    赛恩科仪双通道锁相放大器OE1022D被以色列维茨曼研究所应用在SQUID扫描显微镜测量中,维茨曼研究所已累计采购了十多台赛恩科学仪器的锁相放大器,该型号锁相放大器获得以色列维茨曼研究所的认可,具体见如下用户评价:
  • 新品降临——DFB-2000近红外激光驱动器
    简介: 海尔欣科技推出新一代激光器驱动器DFB-2000,多种开箱即用的功能可以帮助用户快速搭建系统光源,实现精密的光学测量。本篇将介绍DFB-2000核心性能参数的测试结果。 • 集成低噪声的电流源和高稳定的TEC温度控制器 • 自带14pin蝶形安装座,更好的便携性和机械稳定性 • 全新的彩色触摸屏,便于激光器工作参数的观察和设置 • 多层级的保护措施确保激光器的安全,延长激光器的使用寿命技术参数:l 电流噪声密度:电流噪声密度是表征驱动器电流源噪音水平的核心指标。对于低噪声的电流源而言,电流的波动比实际电流要小10000甚至100000倍以上。为了测试如此微小的电流波动,我们搭建了图1所示的电路。 图1.电流噪声密度测试电路示意图DFB-2000输出的电流I经过精密电阻R后转换为电压信号Vin,并由增益为G的放大电路放大后输入频谱仪,图2给出了频谱仪测试的结果。图中黄色信号为频谱仪本底频谱响应曲线,绿色信号是放大器(输入端短接)连接频谱仪时的频谱响应曲线,当DFB-2000输出电流后频谱响应为蓝色信号。根据功率噪声密度计算公式以及电路传输特性,可以计算得到电流噪声密度约为2.9 nA√Hz,这与进口驱动器的噪声水平相当。 图2.DFB-2000频谱噪声测试l 控温稳定性:激光器工作温度的变化会导致输出波长的不稳定, 因此精确稳定地控制激光器工作温度至关重要。为了评估DFB-2000的控温性能,在室温条件下,将激光器工作温度设定在0℃,记录24小时内的温度变化,如图3所示。可以看出DFB-2000的温度控制精度在±0.005℃以内,长期温度稳定性优于0.01℃。由于0℃与环境温度相差较大,因此可以预期当激光器工作温度接近室温时,可以现实更优的长期温度稳定性。 图3.激光器工作温度在24小时内的变化l 电流漂移:在典型的应用环境中,一天之内的温度波动往往会超过几摄氏度。如果驱动器达不到要求,微小的温度变化可能意味着激光器的电流会发生显著变化。下图展示了利用DFB-2000驱动的激光器工作在0℃时工作电流的漂移。在24小时内,测试环境的温度变化超过3℃,激光器电流的最大漂移为37 μA。 图4.DFB-2000输出电流24小时的漂移l 3dB带宽:小信号调制时的3dB带宽是衡量驱动器带宽响应特性的关键参数。下图给出了带宽响应测试的电路图。 图5. DFB-2000带宽响应测试电路示意图函数发生器生成的正弦信号Vin通过模拟调制端口输入DFB-2000,电流I经过精密电阻R,测量R两端电压信号Vout,利用公式20log(Vout/Vin)计算得到带宽,如图6所示。在100kHz调制频率以内,驱动器的增益平坦度小于-3dB,因此能够满足绝大多数基于波长调制技术的TDLAS系统的需求。 图6. DFB-2000带宽响应特性l 电流软钳制:DFB-2000集成了多重措施保护激光器的安全,如最大电流软钳制、输出缓启动、过压欠压保护、超温保护、继电器短路输出保护等。其中最大电流软钳制功能可以快速实现电流的钳位,有效规避异常情况下大电流对激光器造成的损伤。用户在使用最大电流软钳制功能时,首先要根据激光器参数设置对应的最大工作电流,当激光器实际电流高于该电流时,DFB-2000会确保电流处于限流值。电流软钳制的测试电路与3dB带宽测试相同。图7(b)显示了最大电流软钳制的实际效果,可以明显的看到,当精密电阻R两端电压(红色信号)超过阈值时,会被固定在该阈值电压上。图中调制信号(蓝色三角波)幅度为1.54V,当激光器工作电流为200mA,设置的最大工作电流为250mA时,测试得到钳制电压为2.42V(DFB-2000模拟调制系数为100mA/V±5%),对应钳制电流为242mA,与实际设定值一致。 图7.(a)电流工作在最大钳制电流以下(b)最大电流软钳制的实际测试效果
  • 应用案例 | 通过实施光学条纹噪声抑制方法的激光波长调制光谱技术实现气体测量的高精度和高灵敏度检测
    近日,来自安徽科技理工大学、安徽西部大学皖西学院、复旦大学大气与海洋科学学院、上海期智研究院的联合研究团队发表了《通过实施光学条纹噪声抑制方法的激光波长调制光谱技术实现气体测量的高精度和高灵敏度检测》论文。Recently, the joint research team from Anhui University of Science and Technology, West Anhui University, Department of Atmospheric and Oceanic Sciences, Fudan University, Shanghai QiZhi Institute published an academic papers High precision and sensitivity detection of gas measurement by laser wavelength modulation spectroscopy implementing an optical fringe noise suppression method.可调谐二极管激光吸收光谱(TDLAS)已被开发用于痕量气体测量,因其高精度、高灵敏度和无需任何样品准备的原位自校准的独特优势。通常,长光程的多次通过腔体(MPC)被应用于增强基于TDLAS的传感器的检测精度和灵敏度。然而,MPC中出现的意外光学干涉纹严重影响了传感器的检测精度和灵敏度。基于MPC的TDLAS传感器的检测精度和灵敏度通常受到光学干涉纹的限制,这些干涉纹由衍射、镜面表面瑕疵的散射、镜面畸变、热膨胀、冷收缩或应力变形引起。因此,MPC中观察到的光学干涉纹由不同的光学干涉纹组成。这些光学干涉纹主要是由于少量的激光以与主激光束相差ΔL的光程到达探测器所致。这些问题对于TDLAS是普遍存在的,尤其是在使用密集重叠斑点模式的MPC时,提出了一些不同的方法来消除光学干涉纹的负面影响。The Tunable Diode Laser Absorption Spectroscopy (TDLAS) has been developed for trace gas measurement, as its unique advantages of high precision, high sensitivity and self-calibration in situ qualification with-out any sample preparation. The multi-pass cell (MPC) with a long optical path is usually applied to enhance TDLAS-based sensor’s detection precision and sensitivity. However, the unexpected optical fringes occurring in the MPC often spoil the sensor’s detection precision and sensitivity seriously. The detection precision and sensitivity of the TDLAS-based sensors containing an MPC are often limited by the optical fringes that result from diffraction, scattering on the mirror surface imperfections, mirror aberration, thermal expansion, cold contraction, or stress deformation. Therefore, the complex optical fringe consisting of different optical fringe will be observed in the MPC. These optical fringes are due largely to a small amount of laser reaching the detector with an optical path length differing by ΔL from the main laser beam. Those problems are common for TDLAS, especially using dense overlapped spot pattern MPC and some di&fflig erent methods are proposed to eliminate the negative influence of the optical fringes.研究团队提出了一种抑制可调二极管激光吸收光谱中光学条纹噪声的新方法,并将其应用于由光学条纹扰动的CH4气体传感器,以提高检测精度和灵敏度。所开发的CH4检测仪的示意图如图1所示。宁波海尔欣光电科技有限公司为此项目提供锁相放大器(HPLIA 微型双通道调制解调锁相放大器),从光电探测器输出的信号发送到锁相放大器,锁相放大器相对于同步信号对2f模式进行解调,锁相放大器的时间常数设为1ms。In this work, a novel method to suppress optical fringe noise in the tunable diode laser absorption spectroscopy is proposed and applied to the CH4 gas sensor perturbed by optical fringes for higher detection precision and sensitivity.The schematic diagram of the developed CH4 detection instrument is shown in Fig. 1 . HealthyPhoton Co.,Ltd provided a HPLIA Miniature dual-channel modulated demodulation lock-in amplifier for this project. The lock-in amplifier demodulates the signal in the 2f mode with respect to the sync signal. The time constant of the lock-in amplifier is set to 1 ms.Fig.1. Schematic diagram of the developed CH 4 detection systemlock-in amplifier (Healthy Photon, HPLIA)对于被光学条纹和随机噪声干扰的20 ppm CH4的二次谐波(2 f)信号,通过该新方法,2f信号的信噪比(SNR)从17提高到182,优化平均光谱范围Δ𝜆 。与未经处理的原始信号相比,CH4测量精度改善了约1.5倍。相应的最小可检测浓度可从3 ppb改善到0.78 ppb。系统的相应噪声当量吸收灵敏度(NNEA)和噪声当量浓度(NEC)分别为6.13 ×10-11 cm&minus 1 W Hz&minus 1/2 and 0.181 ppm。For the 2nd harmonic(2f) signal of 20 ppm CH4 spoiled by optical fringes and random noise, by the novel method, the signal-to-noise ratio (SNR) of the 2f signal is improved about 6.5 times from 17 to 182 with an optimal averaging spectral range Δ𝜆 . A &sim 1.5 times improvement in the measurement precision of CH4 is achieved compared to unprocessed raw signal. The corresponding minimum detectable concentration can be improved from 3 ppb down to 0.78 ppb. The corresponding noise equivalent absorption sensitivity (NNEA) and the noise equivalent concentration (NEC) of the system is 6.13 ×10-11cmW-1Hz-1/2 and 0.181 ppm, respectively.Violet line from traditional averaging method and magenta line from the novel optical fringe noisesuppression method.Histogram plot of the 20 ppm CH 4 deviation.20 ppm CH 4 Allan-deviation stability of developed overlapped spot pattern MPC.参考文献:Reference:Yanan Cao, Xin Cheng, Zong Xu, Xing Tian, Gang Cheng, Feiyan Peng, Jingjing WangHigh precision and sensitivity detection of gas measurement by laser wavelengthmodulation spectroscopy implementing an optical fringe noise suppression method, Optics and Lasers in Engineering 166 (2023) 107570www.elsevier.com/locate/optlaseng
  • 我国高功率拉曼光纤激光器研究取得进展
    近期,中国科学院上海光学精密机械研究所空间激光信息技术研究中心冯衍研究员领衔的课题组,在高功率拉曼光纤激光器研究中取得新进展。提出了一种镱-拉曼集成的光纤放大器结构,有效地解决了拉曼光纤激光器功率提升的主要技术瓶颈问题,在1120nm波长,首次获得580W的单横模线偏振拉曼光纤激光和1.3kW的近单模拉曼光纤激光输出。   近年来,高功率光纤激光器发展迅速。1&mu m波段的掺镱光纤激光器,近衍射极限输出功率可达20kW,多横模输出功率可达100kW。尽管如此,稀土掺杂光纤激光器的输出波长,因稀土离子能级跃迁的限制,仅能覆盖有限的光谱范围,限制了其应用领域。基于光纤中受激拉曼散射效应的拉曼光纤激光器是拓展光纤激光器波长范围的有效手段。   该项研究中,在一般的高功率掺镱光纤放大器中注入两个或多个波长的种子激光,波长间隔对应光纤的拉曼频移量。处于镱离子增益带宽中心的种子激光率先获得放大后,在后续光纤中作为泵浦激光对拉曼斯托克斯激光进行逐级放大。初步的演示实验获得了300 W的1120nm拉曼光纤激光输出 接着采用较大包层(400&mu m)的光纤,获得了580W的单横模线偏振拉曼光纤激光和1.3kW的近单模拉曼光纤激光输出。结果发表于《光学快报》(Optics Letters)和《光学快讯》(Optics Express) [Opt. Lett. 39, 1933-1936 (2014) Opt. Express 22, 18483 (2014)]。鉴于目前高功率掺镱光纤激光器均采用主振放大结构,新提出的光纤放大器结构可用于进一步提升拉曼光纤激光的输出功率。初步的数值计算也表明,该技术方法有望在1~2&mu m范围内任意波长获得千瓦级激光输出。   该项研究得到了中国科学院百人计划、国家&ldquo 863&rdquo 计划、国家自然科学基金等项目的支持。    千瓦级掺镱-拉曼集成的光纤放大器结构示意图    输出功率随976 nm二极管泵浦功率的变化曲线,其中的插图为最高输出时的光谱。
  • 量子半导体器件实现拓扑趋肤效应,可用于制造微型高精度传感器和放大器
    科技日报北京1月22日电 德国维尔茨堡—德累斯顿卓越集群ct.qmat团队的理论和实验物理学家开发出一种由铝镓砷制成的半导体器件。这项开创性的研究发表在最新一期《自然物理学》杂志上。由于拓扑趋肤效应,量子半导体上不同触点之间的所有电流都不受杂质或其他外部扰动的影响。这使得拓扑器件对半导体行业越来越有吸引力,因为其消除了对材料纯度的要求,而材料提纯成本极高。拓扑量子材料以其卓越的稳健性而闻名,非常适合功率密集型应用。新开发的量子半导体既稳定又高度准确,这种罕见组合使该拓扑器件成为传感器工程中令人兴奋的新选择。利用拓扑趋肤效应可制造新型高性能量子器件,而且尺寸也可做得非常小。新的拓扑量子器件直径约为0.1毫米,且易于进一步缩小。这一成就的开创性在于,首次在半导体材料中实现了微观尺度的拓扑趋肤效应。这种量子现象3年前首次在宏观层面得到证实,但只是在人造超材料中,而不是在天然超材料中。因此,这是首次开发出高度稳健且超灵敏的微型半导体拓扑量子器件。通过在铝镓砷半导体器件上创造性地布置材料和触点,研究团队在超冷条件和强磁场下成功诱导出拓扑效应。他们采用了二维半导体结构,触点的排列方式可在触点边缘测量电阻,直接显示拓扑效应。研究人员表示,在新的量子器件中,电流—电压关系受到拓扑趋肤效应的保护,因为电子被限制在边缘。即使半导体材料中存在杂质,电流也能保持稳定。此外,触点甚至可检测到最轻微的电流或电压波动。这使得拓扑量子器件非常适合制造尺寸极小的高精度传感器和放大器。
  • 预算1.58亿元!哈尔滨工程大学近期大批仪器采购意向
    近日,哈尔滨工程大学发布52项仪器设备采购意向,预算总额达1.58亿元,涉及太赫兹矢量网络分析仪、目标电磁散射测试设备、电磁频谱成像设备、磁性材料微结构测试系统、多功能X射线衍射仪等,预计采购时间为2024年9~10月。哈尔滨工程大学2024年9~10月仪器设备采购意向汇总表序号采购项目需求概况预算金额/万元采购时间1电磁干扰测试接收机电磁干扰测试接收机主要用于依据国军标实现舰载设备的电磁兼容特性主要项目测试,具有典型的EMI测试界面,内置低噪声放大器、全波段预选器,可进行标准限值线编辑、传输因子编辑、扫描列表编辑,具备全面的频谱分析功能,包括信道功率测量、占用带宽测量、邻道功率测量等。2342024年10月2太赫兹矢量网络分析仪太赫兹矢量网络分析仪能够准确、高效测试微波、毫米波太赫兹被测件的幅度、相位和群时延特性等参数,能够同时满足宽频带、大动态范围和快速实时测试的要求,适合有源器件S参数的测试等多种场景。2432024年10月3目标电磁散射测试设备目标电磁散射测试设备能够实现宽频带范围内目标RCS的准确测试,能够进行一维、二维成像。具备RCS测试数据的采集、数据显示与输出功能,数据采集过程支持采集数据实时曲线显示,具备RCS测试结果对比分析和断点续测功能。1712024年10月4电磁仿真测试软件电磁仿真测试软件具备不低于万倍波长的电大尺寸目标计算能力,内置优化算法,具有电磁、红外、力学和流体计算功能;具有单站RCS计算模式和成像计算模式,支持多种算法;软件具备在深腔外表面和开口边缘构建高效吸波材料的能力;具有雷达目标成像计算模式,具有一维距离成像(HRRP)模式及二维全波算法 ISAR/SAR 成像模式;具备电大/超电大舰船平台的电磁脉冲(各种时域脉冲和任意外部读入脉冲波形)、多频率的复杂电磁场计算能力。2382024年10月5电磁频谱成像设备电磁频谱成像设备能够实现户外便携高光谱成像,快速获取地物光谱信息和图像信息;同时可以实现机载高光谱成像,可悬停内置推扫成像或无人机外置推扫成像;具备自动调焦功能,获取清晰图像,无需手拧镜头调节图像采集清晰度;能够实现波形相似度匹配,可设置相似度,截取指定波段数据:下限波长和上限波长。1782024年10月6弓形法测试装置弓形法测试装置能够在常温~1000℃下,在宽频带范围内实现材料此电磁波反射率测试,弓形框电动控制,一键达位,L型,半径可调,支持对于反射率数据分析计算,支持计算最大值及对应的频点、最小值及对应的频点、平均值、关注的带宽等参数,支持测试数据拟合处理。1202024年10月7功率放大器功率放大器主要用于对微波毫米波信号进行功率放大,包括射频信号及小信号增益放大,具有频率范围宽、高增益、低噪声系数的特点,用于开展各项科研试验过程中信号放大与处理。812024年10月8毫米波控制机毫米波控制机采用TESTI/O总线作为控制总线的结构体系,主要实现对于微波网络分析设备的毫米波及太赫兹频率扩展。772024年10月9近场扫描装置近场扫描装置具有扫描架平面指示及可调功能,由X轴、Y轴、Z轴、P轴四轴组成,可根据设置转角间隔,输出TTL电平脉冲,可用于各项天线测试试验中的机械运动与扫描的精密控制。882024年10月10毫米波信号发射模块毫米波信号发射模块主要用于实现3mm波段内太赫兹信号产生与发射,可以确保优异的动态范围,具备频带宽,输出功率大的特点,变频损耗低,适用于太赫兹天线各项功能指标验证试验的有效开展。862024年10月11毫米波信号接收模块毫米波信号发射模块主要用于实现3mm宽带范围内太赫兹信号接收与分析,具备宽频带的特点,变频损耗低,可以用于开展太赫兹天线各项功能指标的验证试验。862024年10月12电磁信号收发装置电磁信号收发装置可以实现在宽带范围内,用于天线测量过程中的信号发射与接收,增益参考功能,具备宽频带、高增益的特点,通过定制安装夹具,配合其他装置实现天线各个切面的幅度、相位方向图等指标测试。812024年10月13天线测试装置天线测试装置主要用于天线测试过程中的各项细节保障,包含波导低噪声放大、运行总体控制、低散射天线支撑、电磁信号屏蔽,系统连接及转接等多种功能,是确保开展天线性能测试各项试验的重要设备。802024年10月14天线近远场测试软件天线近远场测试软件能分析天线各个切面的幅度、相位二维方向图及三维方向图,能测试和分析天线的增益、方向图参数:波束宽度、零深、副瓣位置及电平、圆极化轴比等,具备比较法增益自动计算的功能;具备分析天线极化性能功能,具备近远场切换功能,分为实时测量部分和数据分析部分;可配置测试的频率、功率、测试参数;具备远场数据处理功能;具备测试数据采集、显示与输出功能,测试曲线显示支持直角坐标,数据采集过程支持采集数据实时曲线显示。452024年10月15磁性材料微结构测试系统测试系统精度保持性好,准确度高,针对磁性材料进行分析检测,通过分析得到材料信息,通过不同的设置条件来应对不同的应用场景,扩大设备应用范围,可以应对不仅磁性材料以及其它材料科学研究。22302024年10月16多功能X射线衍射仪需实现的主要功能及目标:设备可用于粉末样品定性定量分析,薄膜的成份、密度、厚度以及粗糙度的测定,本体材料的织构、应力和微区分析。同时,可实现材料在不同温度下、充放电过程中的物相、晶胞参数、原子位置占有率以及微观应力等原位X射线衍射分析。3002024年10月17自动激光电弧复合焊接系统自动激光电弧复合焊接系统结合激光焊和电弧焊的优点,焊接热输入量小,焊接变形小,可有效改善船舶分片装配的精度,改善焊接质量,提高焊接效率。装备该焊接系统可以提高船舶背景教学科研水平,提升船舶建造材料专业人才培养能力。2162024年10月18搅拌摩擦增材制造系统采购标的名称:搅拌摩擦增材制造系统。 采购标的需实现的主要功能:设备主要用于目前实验室金属搅拌摩擦增材制造技术研究。通过搅拌摩擦焊原理,使金属在固态下塑性变形,实现金属构件的成形,并且具有成形工艺参数调节、过程监测等功能,可实现轻金属高效安全的增材制造,为搅拌摩擦增材制造的技术研究提供设备实验条件。 采购标的数量:1套。1352024年10月19原位红外-拉曼电化学测试系统名称:原位红外-拉曼电化学测试系统。主要功能:从分子及原子层次上对清洁能源转化与催化的反应机理进行更多的原位表征和理论分析,实时原位分析提供的重要数据支撑。实时原位分析是能源、环境与催化材料研究的重要手段和未来发展方向。采购标的数量:1套。采购标的需满足的质量、服务、安全、时限等要求:供应商负责装置的安装、供应商确保正确调试装置的各项产品;产品应满足采购标的技术参数要求,质量合格,通过验收;供应商应提供售后和培训服务;产品应满足国家生产安全标准;供应商应在合同规定的日期前将设备送达并安装调试完成。1892024年10月20先进金属熔化沉积系统采购标的名称:先进金属熔化沉积系统 采购标的实现的主要功能和目标:该设备的主要功能是用于材料加工成型,建设先进金属熔化沉积系统,形成面向船海领域的金属材料及复杂构件制备能力,并开展复杂结构海洋工程装备构件及其材料成型工艺研究,突破海洋工程装备零部件制造难题,为船舶与海洋工程装备制造提供基础。主要目标要完成沉积参数对金属材料成型性能的研究;对增材制造构件残余应力调控研究;开展激光增材金属材料缺陷调控研究;开展激光增材金属材料微观组织与力学性能的研究。 采购标的数量:1套。1172024年10月21核电厂含氚废水处理实验系统采购一套非标定制科研和教学实验设备,用于开展含氚水处理技术的科研和教学实验工作。含氚水先经过膜蒸馏预处理装置,去除溶液中的金属离子及硼酸等成分,然后进入联合电解催化交换装置,经过电解槽的电解作用和液相催化交换住(LPCE)中Pt催化剂的催化交换作用,实现氚水的浓集。1902024年10月22超声多普勒测速仪及飞轮电磁流量计(1)由于液态铅铋的不透明性,研究中为了测量液态铅铋的速度场,无法使用传统的光学测量手段。超声多普勒测速仪是利用超声多普勒技术测量流体内部流速分布的测量仪器,是现今世界科研范围内,唯一可以测量不透明液体内部流速场的测量仪器,包括但不限于液态金属等不透明液体,与特制的高温波导管探头搭配使用,可用于高达600℃熔融状态下的液态金属内部流速场测量。本高温液态铅铋介质内结构材料及杂质颗粒演变特性综合实验平台高温铅铋自然循环回路系统铅铋运行温度最高可达500℃,需使用配备高温波导管探头的超声多普勒测速仪对高温液态铅铋的速度分布进行非接触式测量,以研究液态铅铋介质内部的流动状态和机理。 (2)高温液态铅铋介质内结构材料及杂质颗粒演变特性综合实验平台高温铅铋自然循环回路系统需要对铅铋流量进行长期监测。高温液态铅铋流量测量的主要难点是其润湿性。高温液态铅铋在长期运行过程中会在管壁内部形成氧化层,从而使管壁和测量端不润湿。国内一般使用电磁式流量计进行液态金属测量,此类电磁流量计会随着高温液态铅铋的氧化,逐渐丧失测量精度,且可能彻底失灵。飞轮流量计采用特别的非接触式测量设计,能够有效克服的润湿性的问题,并且在国内外有长期铅铋测量的经验。在本综合实验平台中,飞轮流量计主要用于管道内铅铋流量的长期高精度非接触式测量。2722024年10月23测量及数据采集系模块和振动力学分析仪器用于开展光纤应变信号采集,高温介质压力测量与采集,加速度、位移信号的模态处理,模拟电流、模拟电压及热电偶信号的高频采集。1652024年10月24铅铋介质内腐蚀产物迁移及过滤机理研究模块用于开展高温液态铅铋介质内杂质颗粒在线配送、等速取样及不同过滤结构性能研究。1182024年10月25包层液态锂铅换热回路系统模块及超临界二氧化碳布雷顿循环回路系统模块关键设备包层液态锂铅换热回路系统模块及超临界二氧化碳布雷顿循环回路系统模块关键设备应用于可控核聚变能量转换技术前沿基础实验研究平台。聚焦可控核聚变能量产生、传输、转化基础研究和共性关键技术问题,开展聚变能高效安全传输转换技术、液态锂铅及超临界二氧化碳等新工质热工水力特性、聚变系统瞬态运行特性及控制策略等方面试验条件建设。6182024年10月26GNSS联合低轨卫星空天协同导航增强系统采购一套GNSS联合低轨卫星空天协同导航增强系统,包含低轨卫星模拟器,卫星信号采集回放仪,卫星信号转发器,信号干扰发射器,微波暗室等设备,主要用于仿真各类GNSS、低轨卫星星座,模拟各类信号故障、误差模型、信号干扰、运行轨迹、运行载体等因素,具备场景回放、重复复盘等功能。9月34水面无接触运动测量系统精准测量水面上舰船、海洋工程结构物模型等浮体在碰撞、风浪等不同情况下的姿态和运动轨迹。
  • 十四五开局!6亿国拨经费支持科学仪器、试剂
    5月18日,“基础科研条件与重大科学仪器设备研发” 重点专项项目申报指南发布。为落实“十四五”期间国家科技创新有关部署安排,国家重点研发计划启动实施“基础科研条件与重大科学仪器设备研发” 重点专项。根据重点专项实施方案的部署,现发布 2021 年度项目申报指南。本重点专项的总体目标是加强我国基础科研条件保障能力建设,着力提升科研试剂、实验动物、科学数据等科研手段以及方法工具自主研发与创新能力;围绕国家基础研究与科技创新重大战略需求,以关键核心部件国产化为突破口,重点支持高端科学仪器工程化研制与应用开发,研制可靠、耐用、好用、用户愿意用的高端科学仪器,切实提升我国科学仪器自主创新能力和装备水平,促进产业升级发展,支撑创新驱动发展战略实施。2021 年度指南部署围绕科学仪器、科研试剂、实验动物和科学数据等四个方向进行布局,拟支持 39 个项目,拟安排国拨经费概算 5.39 亿元。此外,拟支持 16 个青年科学家项目,拟安排国拨经费概算 4800 万元,每个项目 300 万元。科学仪器方向各项目自筹经费与国拨经费比例不低于 1:1。项目统一按指南二级标题(如 1.1)的研究方向申报。同一指南方向下,原则上只支持 1 项,仅在申报项目评审结果相近、技术路线明显不同时,可同时支持 2 项,并建立动态调整机制,根据中期评估结果,再择优继续支持。除特殊说明外,所有项目均应整体申报,须覆盖全部研究内容和考核指标。项目执行期原则上为 3~5 年。一般项目下设的课题数不超过 5 个,项目参与单位数不超过 10 家。项目设 1 名负责人,每个课题设 1 名负责人。科研试剂和科学仪器两部分指南方向(除 5.1 外)须由科研机构与从事相关领域生产并具有销售能力的企业联合申报,建立产、学、研、用相结合的创新团队。青年科学家项目(项目名称后有标注)支持青年科研人员承担国家科研任务。青年科学家项目不再下设课题,项目参与单位总数不超过 3 家。项目设 1 名项目负责人,青年科学家项目负责人年龄要求,男性应为 1983 年 1 月 1 日以后出生,女性应为 1981年 1 月 1 日以后出生,原则上团队其他参与人员年龄要求同上。专项实施过程中,涉及实验动物和动物实验,应遵守国家实验动物管理的法律、法规、技术标准和有关规定,使用合格的实验动物,在合格设施内进行动物实验,保证实验过程合法,实验结果真实、有效,并通过实验动物福利和伦理审查。涉及高等级病原微生物实验活动的,必须符合国家病原微生物实验室有关要求,并具备从事相关研究的经验和保障条件。涉及人体被试和人类遗传资源的科学研究,须遵守我国《中华人民共和国人类遗传资源管理条例》《涉及人的生物医学研究伦理审查办法》《人胚胎干细胞研究伦理指导原则》等法律、法规、伦理准则和相关技术规范。本专项 2021 年度项目申报指南如下。1 高端通用科学仪器工程化及应用开发1.1辉光放电质谱仪研究内容:针对高纯材料、高温合金、绝缘固体样品等材料中主成分、微量和痕量元素检测需求,以及针对材料剥层分析、材料元素深度分布检测、涂层材料表面分析等需求,突破直流辉光放电离子源、绝缘固体第二阴极系统、高分辨电磁双聚焦质量分析器、法拉第杯与电子倍增管双检测器等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的辉光放电质谱仪产品,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在半导体、高纯稀土、高温合金等材料科学研究领域的应用。考核指标:质量分析范围(4~250)amu;质量分析稳定性≤25ppm/8h;分辨率 LR300/MR4000/HR10000;平均背景≤0.5cps; 灵敏度≥ 1×109cps ; 丰度灵敏度≤ 20ppb ; 主成分重复性≤ 3%RSD;微量成分重复性≤5%RSD;痕量成分重复性≤10%RSD。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级;至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.2 第三代基因测序仪研究内容:针对 DNA 基因测序的无扩增、长读长直接测序、大容量生物特征信息获取等检测需求,突破DNA 精确长读长直接测序、极微弱光或极微弱电信号测量等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的第三代基因测序仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在基因工程、病毒检测、生物安全检测、体外诊断等领域的应用。考核指标:序列平均读长≥15kb;最长读长≥500kb;DNA直接测序最高准确率≥95%;采样率≥1kHz;单个通道测序速度≥400nt/s;可溯源量值定值和质量评价方法≥3 种;基因组比对一致性≥99%;组装连续度 NG50≥1M 碱基;结构变异检测精度与检出率≥90%(片段长度≥50bp)。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级;至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.3超高分辨活细胞成像显微镜研究内容:针对实时观察活细胞精细结构动态变化的检测需求,突破超高分辨活细胞成像显微、精密光机电控制、图像实时处理和成像标定等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的超高分辨活细胞成像显微镜产品,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在细胞学、微生物学、生物物理学和药理学等领域的应用。考核指标:视场≥10µm×10µm;横向分辨率≤150nm;纵向分辨率≤350nm;时间分辨率≥15 帧/秒(2D 成像);时间分辨率≥8 帧/秒(3D 成像)。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级; 至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.4核磁共振波谱仪研究内容:针对化学分析、生物分子结构、代谢混合物组分等检测需求,突破超高场稳态磁体设计与制造、高精度磁共振谱仪控制、高效射频激发与接收等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的核磁共振波谱仪产品,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广, 实现在化学化工、生命医学、食品制药和环境能源等领域的应用。考核指标:磁场强度≥14T;室温孔径≥50mm;磁场稳定度≤9Hz/h;磁场均匀度≤0.05ppm;支持多核素频谱分析范围1H、13C、15N、31P、129Xe 等;射频带宽 50~650MHz 以上;波谱频率分辨率≤0.003Hz;射频发射通道数≥2 通道;液氦补充时间≥150 天。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级;至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量, 具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.5宽频带取样示波器研究内容:针对 5G 移动通信、光纤通信设备和高速网络设备的宽带模拟电路和高速数字电路开发与检测需求,突破 85GHz 采样器、超低抖动时钟产生与触发、高速时钟恢复、高精度波形采集与恢复、信号完整性分析等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的宽频带取样示波器,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广, 实现在光纤通信、5G 移动通信、雷达、卫星通信与卫星导航等领域的应用。考核指标:电采样模块:通道数量 2;测试带宽≥85GHz;采样率≥150kSa/s;抖动≤80fs;采样分辨率 16bit;光采样模块: 波长范围 800~1600nm;光接收灵敏度优于-7dBm;测试带宽≥ 65GHz;采样率≥150kSa/s;抖动≤250fs;采样分辨率 16bit。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级;至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.6高灵敏手性物质离子迁移谱与质谱联用仪研究内容:针对生物样品分析、临床诊断和药物开发等领域对手性分子同分异构体快速识别、高灵敏高准确定量分析的需求, 突破离子迁移过程模型仿真与控制、手性物质高选择性试剂制备、手性气相离子高效选择性存储、高分辨手性气相离子构型差异分析与质量分析等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的高灵敏手性物质离子迁移谱与质谱联用仪, 开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在生命科学、临床医学和药物学等领域的应用。考核指标:手性分子纯度检测范围 0.1%~99.9%,离子迁移谱分辨率≥300;手性物质分析检出限≤10-10摩尔/升;质谱质量分辨率≥100000;手性分子分析时间≤10 分钟/样品;建立手性物质数据库 1 套。项目完成时通过可靠性测试和第三方异地测试, 平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级;至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用, 满足用户使用要求。1.7复杂微结构三维光学显微测量仪研究内容:针对光电探测器、MEMS 微系统、半导体集成电路等微小型器件和光学器件表面和亚表面缺陷检测需求,突破高倾斜光滑微结构、深 V 结构、混合材料层叠微结构、层叠结构亚表面等复杂微结构三维几何形状表征、三维几何参数精密测量、亚表面缺陷检测等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的复杂微结构三维光学显微测量仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广, 实现在超光滑光学表面损伤、半导体集成电路、光电集成电路等领域的应用。考核指标:显微视场≥100μm×100μm;水平方向表面显微分辨率≤250nm;水平方向亚表面显微分辨率≤400nm;垂直方向 分辨率≤20nm;光滑微结构测倾斜角度≥50°;单一材料台阶高 度测量误差≤5%;多层材料台阶高度测量误差≤10%;亚表面缺陷检测深度≥110μm;缺陷检出灵敏度≤200nm;深度定位精度≤2μm;高能损伤缺陷判定准确率≥80%。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级;至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2 核心关键部件开发与应用原则上,每个项目下设课题数不超过 4 个,项目参与单位总数不超过 4 个,实施年限不超过 3 年。2.1快速可调谐激光器研究内容:开发波长调谐范围大、调谐速度快的可调谐激光器,突破大范围无跳模腔体设计、高速微腔调制制备、高速数字化激光模块驱动电路设计和模式补偿算法、波长非线性修正等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在光学相干层析检测、高精密光谱分析和共焦测量等仪器中的应用。考核指标:中心波长 1060nm 和 1310nm;输出功率≥15mW;波长调谐范围≥110nm;重复频率≥100kHz;相干长度≥15mm。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.2热场发射电子源研究目标:开发热场发射电子源,突破单晶钨制备、尖端取向和形状控制、氧化锆处理、电子枪结构设计、灯丝对中控制等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在扫描电子显微镜、透射电子显微镜等仪器中的应用。考核指标:微尖曲率半径范围 1.2µm~0.4µm(可控),误差≤±0.05µm;阴极温度 1750K~1800K;栅极电压-200~-600V(可调);角电流密度 200µA/sr;引出电压 3~6kV(可调);最大电子束流≥150nA;电流稳定度≤1%。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.3侧窗型光电倍增管研究内容:开发高性能多碱阴极侧窗型光电倍增管,突破宽光谱及高灵敏度反射式多碱光电阴极制备、高增益电子倍增极结构设计、高二次电子发射材料制备、低暗计数率等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在光谱分析、电子显微分析和X 射线分析等仪器中的应用。考核指标:探测面积≥8mm×24mm;阴极光谱响应范围≥165nm~900nm;阴极积分灵敏度≥250μA/lm;增益≥1×107;暗计数率≤1000cps;暗电流≤10nA(1000V);上升时间2.4磁共振成像低温探头研究内容:开发磁共振成像低温探头,突破高密度射频阵列、超低温制冷系统、低噪声前置放大等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在高场磁共振成像仪、波谱分析仪等仪器的应用。考核指标:通道数≥2;扫描孔径≥2cm;射频探头匹配≤-15dB;探头温度≤30K;前置放大器噪声系数≤1dB;灵敏度提高(低温/常温)≥4 倍。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级; 至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用, 满足用户使用要求。2.5X 射线能谱探测器研究内容:开发 X 射线能谱探测器,突破大面积硅漂移探测、电荷前置放大、数字多道分析、漏电流噪声抑制、真空封装等关键技术;开展工程化开发、应用示范和产业化推广;形成具有自主知识产权、质量稳定可靠的部件产品,实现在X 射线能谱仪、电子显微能谱分析仪等仪器以及同步辐射大科学装置的应用。考核指标:探测器尺寸≥30mm2;能量分辨率≤127eV(MnK);探测元素范围Be~Am;最大输出计数率≥300kcps(最大输入计数率 1000kcps);窗口材料铍、氮化硅(≤100nm)或无窗。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.6高精度哈特曼—夏克波前传感器研究目标:开发高精度哈特曼—夏克波前传感器,突破高质量微透镜阵列制备、微透镜阵列与探测器高精度耦合、超高精度误差标定、快速高精度波前重构等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在光束质量分析、自适应光学系统和三维测量等仪器中的应用。考核指标:空间分辨率≥128×128;倾斜测量范围≥±3°;倾斜测量精度≤1μrad;相对波前测量精度(RMS)≤λ/150;绝对波前测量精度(RMS)≤λ/100;重复性精度(RMS)≤λ/200; 工作波长范围 400~1100nm;频率≥7Hz。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.7高通量生物样品真空传递装置研究内容:开发高通量生物样品真空传递装置,突破小样品精细操作、真空低温精密运动、低温样品镀膜等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在透射电镜和扫描电镜等仪器中的应用。考核指标:最低存储温度≤-160℃;真空度≤5×10-4Pa;运动精度≤100μm;样品存储数量≥12grids;镀膜真空度≤4Pa;镀膜样品台温度≤-160℃。项目完成时通过可靠性测试和第三方异地 测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.8深地声学探测器研究内容:开发具有耐高温、耐高压、高性能和高稳定性的声学探测器,突破耐高温高压材料调控、小体积低频宽带结构以及界面粘接机理和工艺等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在三维远程声波探测仪、深地超声成像测井仪等仪器中的应用。考核指标:单极换能器(长度伸缩):工作频带 5~20kHz,最高耐温≥260℃,最高耐压≥200MPa;偶极换能器(弯曲振动):工作频带 1~4.5kHz,最高耐温≥230℃,最高耐压≥172MPa;多极接收器:工作频带 1~20kHz,最高耐温≥230℃,最高耐压≥ 172MPa;超声换能器:工作频带 250~700kHz,最高耐温≥205℃, 最高耐压≥172MPa。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.9太赫兹超导混频器研究内容:开发太赫兹超导混频器,突破超导混频器芯片设计与制备、超导混频器与低温低噪声放大器集成、一维相干探测接收机阵列集成等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在太赫兹频谱仪、太赫兹安检仪和射电天文接收机等仪器中的应用。考核指标:探测器中心频率 0.1~0.3THz;中频带宽≥5GHz;噪声温度≤7 倍量子噪声;动态范围≥30dB;像素≥1×10。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥ 5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权; 形成批量生产能力,经用户试用,满足用户使用要求。2.10分离打拿极电子倍增器研究内容:开发分离打拿极电子倍增器,突破检测器高纯打拿极合金及膜层制备、高精度封装、空气中安全存储、脉冲和模拟双模式检测等关键技术,开发具有自主知识产权、质量稳定可靠的部件产品,开展工程化开发、应用示范和产业化推广,实现在磁质谱仪、四极杆质谱仪上的应用。考核指标:增益≥105(模拟工作状态下),增益≥107(脉冲计数方式下);暗电流≤1pA;暗计数率≤50cps;单离子脉冲宽度/ 半高宽≤7ns。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于2 类仪器。明确发明专利、标准和软件著作权等知识产权数量, 具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.11宽频带同轴探针研究目标:开发宽频带同轴探针,突破弹性件热处理与表面处理工艺、精密微组装、微小零件加工等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在微波集成电路在片测试仪、片上天线测试仪、三维封装天线测试仪等仪器中的应用。考核指标:2.92mm 连接器探针:工作频率DC~40GHz,插入损耗≤1.5dB;2.4mm 连接器探针:工作频率DC~50GHz,插入损耗≤1.5dB;1.85mm 连接器探针:工作频率DC~67GHz,插入损耗≤2.0dB。项目完成时通过可靠性测试和第三方异地测试, 平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量, 具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.12 精密大带宽锁相放大器研究目标:开发精密大带宽锁相放大器,突破大带宽数字调制、高分辨率数模转换和高精度相位解调等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在微弱信号探测、光谱测量及分析、电子束测量及能谱分析等仪器中的应用。考核指标:频率范围 0~50MHz;输入电压噪声≤5nV/√Hz;动态储备≥120dB;满量程输入灵敏度≤1nV;A/D≥14bit;相位分辨率≤1μdeg;频率分辨率≤0.7μHz。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力, 经用户试用,满足用户使用要求。2.13相位型液晶空间光调制器研究目标:开发相位型液晶空间光调制器,突破大相位调制深度、高帧率驱动、高抗激光损伤等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在光束整形仪、波分复用仪、单色仪、超快激光加工机、激光打标机等仪器设备中的应用。考核指标:像元数≥1920×1080;相位范围≥2π(1064nm);相位灰阶≥8bit;填充因子≥92%;衍射效率≥80%;刷新频率≥ 100Hz;最大输入光功率密度≥50W/cm2。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.14 X 射线椭球聚焦镜研究目标:开发 X 射线椭球聚焦镜,突破 X 射线椭球聚焦镜制作、性能检测、高精度装校等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在 X 射线衍射仪、X 射线散射仪和X 射线成像仪等仪器中的应用。考核指标:工作能段 1~8keV;聚焦斑点≤100μm;口径≥15mm
  • 3~4 μm中红外激光新机遇:红光LD泵浦的稀土共掺氟化物光纤
    近日,电子科技大学光电科学与工程学院李剑峰教授、罗鸿禹副研究员课题组提出了一种利用红光LD泵浦Er3+/Dy3+共掺氟化物光纤实现波长大于3 μm中红外激光激射的新方法,不但在3.5 μm波长附近获得了瓦级激光高效输出,同时还实现了3.05~3.7 μm波长宽带调谐。相关研究成果以“Red-diode-clad-pumped Er3+/Dy3+ codoped ZrF4 fiber: A promising mid-infrared laser platform”为题发表在Optics Letters上。3~4 μm中红外波段是一个重要的光谱区间,它不但覆盖了众多气体分子及化学键的吸收峰,同时也是一个重要的大气传输窗口,因此位于该区间的激光在气体监测、材料加工、空间通信等领域具有重要的应用价值。尽管在该波段目前已存在多种技术手段如:带内级联激光器、光参量振荡器、固体激光器、气体激光器等,但全固态光纤激光器因在光束质量、转化效率、系统集成性及可靠性上优良的综合表现,仍具备极强的竞争力。然而,从实用性角度来讲,该波段在激光激射体系上还难以达到1~2 μm掺Yb3+、Er3+及Tm3+石英光纤激光器的成熟度(即采用商用LD包层泵浦直接实现高效激光输出),从而发挥出光纤激光器的全部优势。该团队提出采用红光LD泵浦双包层Er3+/Dy3+共掺氟化物光纤,通过直接激励Er3+高能级4F9/2,借助Er3+与Dy3+间以及内部的能量传递和Dy3+的带内吸收过程(图1),不仅可以有效释放Er3+长寿命能级4I11/2和4I13/2上的离子,加速离子循环,促进Er3+中4F9/2→4I9/2跃迁实现3.5μm附近激光高效激射,同时还可以激活Dy3+中6H13/2→6H15/2跃迁大幅拓展辐射带宽。图1 659 nm红光泵浦的Er3+/Dy3+共掺氟化物光纤简化能级示意图。ET:能量传递;ETU:能量传递上转换;CR:交叉驰豫;MR:多声子弛豫在自由运转状态下(F-P腔),采用21%输出耦合可以获得斜效率为8.8%的3.4μm单波带激光输出,最大功率为0.8W ;采用40%输出耦合可以获得斜效率为10.7%的3.3μm和3.5μm双波带激光输出,最大总功率为0.95W,进一步的功率提升仅受限于当前泵浦功率。在波长调谐状态下(Littrow结构光栅),可以获得3.05~3.7μm波长连续调谐激光输出(图2)。图2 659 nm红光LD泵浦的Er3+/Dy3+共掺氟化物光纤激光器。(a)实验装置示意图(包含自由运转和波长调谐结构);(b)自由运转状态下的功率演化和光谱图;(c)波长调谐状态下的功率和光谱演化图相较于现有的3~4 μm光纤激光器,该团队提出的红光LD泵浦的Er3+/Dy3+共掺氟化物光纤激光器,不仅具有简单的结构和高的运转效率,同时还可以实现宽带激光波长覆盖,为未来商用3~4 μm激光器小型化和集成化提供了新的机遇,同时该系统超宽的增益带也为中红外宽带信号放大以及少周期超短脉冲产生等提供了机会。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制