当前位置: 仪器信息网 > 行业主题 > >

电动应变控制无侧限压力仪

仪器信息网电动应变控制无侧限压力仪专题为您提供2024年最新电动应变控制无侧限压力仪价格报价、厂家品牌的相关信息, 包括电动应变控制无侧限压力仪参数、型号等,不管是国产,还是进口品牌的电动应变控制无侧限压力仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电动应变控制无侧限压力仪相关的耗材配件、试剂标物,还有电动应变控制无侧限压力仪相关的最新资讯、资料,以及电动应变控制无侧限压力仪相关的解决方案。

电动应变控制无侧限压力仪相关的论坛

  • 电动针阀和双通道控制器在真空冷冻干燥高精度压力控制中的应用

    电动针阀和双通道控制器在真空冷冻干燥高精度压力控制中的应用

    [color=#990000]摘要:目前真空冷冻干燥过程中已普遍使用了电容压力计,使得与电容压力计相配套的压力控制器和电动进气调节阀这两个影响压力控制精度和重复性的主要环节显着尤为突出。为解决控制精度问题,本文介绍了国产最新型的2通道24位高精度PID压力控制器和步进电机驱动电动针阀的功能、技术指标及其应用。经试验验证,上游控制模式中使用电动针阀和高精度控制器可将压力精确控制在±1%以内,并且此控制器还可以同时用于冷冻干燥过程中皮拉尼真空计的监控,以进行初次冻干终点的自动判断。[/color][size=18px][color=#990000]一、问题的提出[/color][/size] 压力控制是真空冻干过程中的一个重要工艺过程,其控制精度严重影响产品质量,对于一些敏感产品的冷冻干燥尤为重要。因此,为使冷冻干燥过程可靠且可重复地进行,必须在干燥室内准确、重复地测量和控制压力,这是考察冷冻干燥硬件设备能力的重要指标之一。同时因为一次干燥时的压力或真空度,直接影响产品升华界面温度,因此准确平稳的控制压力,对于一次干燥过程至关重要。但在实际真空冷冻干燥过程中,在准确压力控制方面目前国内还存在以下问题: (1)压力控制器不匹配问题:尽管冷冻干燥工艺和设备都配备了精度较高的电容压力计,其精度可达到满量程的0.2%~0.5%,但目前国内大多配套采用PLC进行电容压力计直流电压信号的测量和控制,PLC的A/D和D/A转换精度明显不够,严重影响压力测量和控制精度。A/D和D/A转换精度至少要达到16位才能满足冷冻干燥过程的需要。 (2)进气控制阀不匹配问题:对于冷冻干燥中的真空压力控制,其压力恒定基本都在几帕量级,因此一般都采用上游进气控制模式,即在真空泵抽速一定的情况下,通过电动调节阀增加进气流量以降低压力,减少进气流量以增加压力。但目前国内普遍还在使用磁滞很大的电磁阀来进行调节,严重影响压力控制精度和重复性,而目前国际上很多已经开始使用步进电机驱动的低磁滞电动调节阀。 为解决上述冷冻干燥过程中压力控制存在的问题,本文将介绍国产最新型的2通道24位高精度PID压力控制器、电动针阀的功能、技术指标及其应用。经试验考核和具体应用的验证,上游控制模式中使用电动针阀和高精度PID压力控制器可将压力精确控制在±1%以内,并且2通道PID控制器还可以同时用于冷冻干燥过程中皮拉尼真空计的监控和记录。[size=18px][color=#990000]二、国产2通道24位高精度PID压力控制器[/color][/size] 为充分利用电容压力计的测量精度,控制器的数据采集和控制至少需要16位以上的模数和数模转化器。目前我们已经开发出VPC-2021系列高精度24位通用性PID控制器,如图1所示。此系列PID控制器功能强大远超国外产品,但价格只有国外产品的八分之一。[align=center][img=冷冻干燥压力控制,550,286]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211608584555_3735_3384_3.png!w650x338.jpg[/img][/align][align=center][color=#990000]图1 国产VPC-2021系列温度/压力控制器[/color][/align] 压力控制器其主要性能指标如下: (1)精度:24位A/D,16位D/A。 (2)多通道:独立1通道或2通道。2通道可实现双传感器同时测量及控制。 (3)多种输出参数:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制。 (4)多功能:正向、反向、正反双向控制。 (5)PID程序控制:改进型PID算法,支持PV微分和微分先行控制。可存储20组分组PID,支持20条程序曲线(每条50段)。 (6)通讯:两线制RS485,标准MODBUSRTU 通讯协议。 在冷冻干燥的初级冻干终点判断中,VPC-2021系列中的2通道控制器可同时接入电容压力计和皮拉尼压力计,其中电容压力计用作真空压力控制,皮拉尼计用来监视冻干过程中水汽的变化,当两个真空计的差值消失时则认为初级冻干过程结束。整个过程的典型变化曲线如图2所示。[align=center][color=#990000][img=冷冻干燥压力控制,586,392]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211609304857_1459_3384_3.png!w586x392.jpg[/img][/color][/align][align=center][color=#990000]图2. 初级干燥过程中的典型电容压力计和皮拉尼压力计的测量曲线[/color][/align][size=18px][color=#990000]三、国产步进电机驱动电子针阀[/color][/size] 为实现进气阀的高精度调节,我们在针阀基础上采用数控步进电机开发了一系列不同流量的电子针阀,其磁滞远小于电磁阀,如图3所示,价格只有国外产品的三分之一,详细技术指标如图4所示。[align=center][img=冷冻干燥压力控制,400,342]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211609435684_1917_3384_3.png!w599x513.jpg[/img][/align][align=center][color=#990000]图3 国产NCNV系列电子针阀[/color][/align][align=center][color=#990000][img=冷冻干燥压力控制,690,452]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610002292_1250_3384_3.png!w690x452.jpg[/img][/color][/align][align=center][color=#990000]图4 国产NCNV系列电子针阀技术指标[/color][/align][size=18px][color=#990000]四、国产PID控制器和电子针阀考核试验[/color][/size] 考核试验采用了1Torr量程的电容压力计,电子针阀作为进气阀以上游模式进行控制试验。首先开启真空泵后使其全速抽气,然后在68Pa左右对PID控制器进行 PID参数自整定。自整定完成后,分别对12、27、40、53、67、80、93和 107Pa 共 8 个设定点进行了控制,整个控制过程中真空度的变化如图 5所示。 [align=center][color=#990000][img=冷冻干燥压力控制,690,418]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610175473_9598_3384_3.png!w690x418.jpg[/img][/color][/align][align=center][color=#990000]图5 多点压力控制考核试验曲线[/color][/align] 将图5曲线的控制效果以波动率来表达,则得到如图6所示的不同真空压力下的波动率。从图6可以看出,整个压力范围内只有在12Pa控制时波动率大于1%,显然将68Pa下自整定得到的PID参数应用于12Pa压力控制并不太合适,还需要进行单独的PID 参数自整定。[align=center][color=#990000][img=冷冻干燥压力控制,690,388]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610294377_3818_3384_3.png!w690x388.jpg[/img][/color][/align][align=center][color=#990000]图6. 多点压力恒定控制波动率[/color][/align][align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 步进电机驱动的数字针阀和电动球阀在MOCVD工艺真空压力精密控制中的应用

    步进电机驱动的数字针阀和电动球阀在MOCVD工艺真空压力精密控制中的应用

    [color=#990000]摘要:针对目前MOCVD设备和工艺中真空压力控制方面存在的问题,如多数设备仅能使用下游控制模式、节流阀响应速度不够、节流阀耐腐蚀问题和压力控制器采集精度不高,本文提出了相应的解决方案,以进行MOCVD设备的改进和提高工艺和产品质量。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000]一、问题提出[/color][/size]在半导体行业内,MOCVD具有许多显著特点,可用于大面积生长,可精确控制成分和厚度,具有高重复性和生长速率,可覆盖复杂基板形状,可快速切换气路制备陡峭的多层界面,适用于原位退火等。但在MOCVD设备的开发和工艺调试中,需要研究和选择与生产相关的生长参数,这些参数包括反应室形状、工作压力、生长温度、基座转速、气体流速和入口温度等。MOCVD的工作压力一般为10 mtorr-500 torr范围内,工作压力的精密控制决定了反应室的流动稳定性,但在目前的真空压力控制中还存在以下问题:(1)如图1所示,目前的MOCVD设备基本都采用下游模式对工作压力进行控制,即在排气端安装节流阀进行排气流量调节实现反应室内的压力控制,但这仅适用于压力较高的工艺,如工作压力100~500torr范围。但对于有些工艺的低压要求,采用下游控制模式会造成工作压力波动较大,无法准确控制,从而影响产品质量。对于低工作压力的精密控制最好采用上游控制模式,即控制进气端的流量实现反应室的压力稳定。[align=center][img=MOCVD压力控制,600,265]https://ng1.17img.cn/bbsfiles/images/2022/02/202202050858525574_7248_3384_3.png!w690x305.jpg[/img][/align][align=center][color=#990000]图1 MOCVD典型压力控制系统示意图[/color][/align](2)MOCVD工艺过程始终伴随着温度变化,而温度变化会严重影响工作压力的稳定性和可控性,因此要求在温度变化过程中同时实现工作压力的准确控制,这就要求进气和排气控制阀的响应速度越快越好,控制阀从全开到全闭至少要控制在5秒内,1秒以内更佳。(3)有些MOCVD工作气体带有腐蚀性,相应的阀门也需具有较强的抗腐蚀性以提高设备的连续正常工作寿命。(4)目前绝大多数控制都采用PLC模组,但极少PIC控制器能达到24位的模数转换精度,对于工作压力的精密控制,建议采用24位精度的PID控制器以充分发挥电容式压力传感器的高精度测量优势。本文将针对目前MOCVD设备和工艺中存在的上述问题,提出相应的解决方案。[size=18px][color=#990000]二、压力精密控制方案[/color][/size]在MOCVD工作压力范围内,一般要求在一定范围内,反应室内的工作压力可以在任意设定点上准确恒定。为了满足低压和高压的不同压力范围精密控制,所提出的压力控制方案是在原有的下游控制模式上增加上游控制模式,真空压力控制系统结构如图2所示,具体内容如下:[align=center][color=#990000][img=MOCVD压力控制,600,330]https://ng1.17img.cn/bbsfiles/images/2022/02/202202050900060793_95_3384_3.png!w690x380.jpg[/img][/color][/align][align=center][color=#990000]图2 MOCVD真空压力控制系统结构示意图[/color][/align](1)在反应室的进气口和排气口分别安装步进电机驱动的电子针阀和电动球阀,电子针阀直接安装在进气口处,电动球阀安装在排气口和真空泵之间。对于MOCVD设备,可增加一个气囊以对进入的工作气体进行按比例混合后再经电子针阀进入反应室。当在高压下进行控制时,可固定电子针阀的开度,仅调节下游的电动球阀;在低压下进行控制时,可固定电动球阀的开度,仅调节上游的电子针阀。由此可满足不同压力控制的需要。(2)电子针阀和电动球阀都有高速型节流阀,电子针阀的响应速度为0.8秒,电动球阀有两种响应速度型号,分别是5秒和1秒。针阀和球阀的阀体采用不锈钢,密封件采用FFKM全氟醚橡胶,超强耐腐蚀性,可用于各种腐蚀性气体和液体。(3)在MOCVD中一般采用1000torr或10torr量程的电容压力计进行压力测量,其精度可达±0.2%。也可采用更高精度±0.05%的真空压力传感器进行测量。由此,方案中采用专用的24位A/D采集的高精度PID真空压力控制器,以匹配高精度电容式压力传感器的测量精度,并保证控制精度。综上所述,通过以上方案的实施,可以在整个真空压力范围内,将压力波动控制在±1%以内,并会快速响应反应室的温度变化实现压力的快速恒定,同时耐腐蚀性密封件将大幅度提高阀门的使用寿命。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 高精度快响应电动针阀在氢燃料电池系统氢气压力控制中的应用

    高精度快响应电动针阀在氢燃料电池系统氢气压力控制中的应用

    [color=#ff0000]摘要:氢气供应系统作为燃料电池系统的重要组成部分,其空气侧与氢气侧之间压力差的动态控制对于整个燃料电池系统可靠性尤为重要。本文针对氢燃料电池系统氢气压力控制中存在的问题,推荐使用精密电动针阀,并详细介绍了电动针阀的特点和技术参数。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][img=高精度快响应电动针阀在氢燃料电池系统氢气压力控制中的应用,690,518]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101053487958_1868_3384_3.png!w690x518.jpg[/img][/align][size=18px][color=#ff0000]1. 问题的提出[/color][/size]  氢气供应系统作为燃料电池系统的重要组成部分,与电堆、空气供应系统、水热管理系统和电子电力系统协同工作,保证氢气流量、压力的稳定供应,并实现氢气循环利用。燃料电池氢气供应系统简化结构如图1-1所示。高压储氢罐是系统的氢气来源,氢气经过减压阀,压力降至适宜系统使用的范围,通常情况为几巴左右。氢气进气阀用于控制进入电堆的氢气量,进而控制电堆氢气回路的压力,目前常用的氢气进气阀为比例调节阀、开关阀或多个开关阀组。[align=center][color=#ff0000][img=燃料电池氢气供应系统简化图,690,66]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101055206617_6144_3384_3.png!w690x66.jpg[/img][/color][/align][align=center][color=#ff0000]图1-1 燃料电池氢气供应系统简化图[/color][/align]  由于燃料电池自身膜电极的厚度逐渐降低,其机械强度相应下降,因此空气侧及氢气侧压力的动态控制对于整个燃料电池系统可靠性尤为重要,一般要求是氢气侧压力要等于或者稍高于空气侧压力,并且在调节两侧压力时要确保同升同降,以减少对质子膜的损害。然而,在目前氢燃料电池电源系统中,对于这两侧压差的控制存在以下几方面的问题:  (1)采用开关阀进行氢气进气的控制,使得整个氢气回路中的波动太大而不易控制;  (2)采用电磁比例阀尽管可以按照一定比例进行类似PID模式进行压力控制,但电磁比例阀由于存在较大磁滞现象,会带来控制不稳定的严重问题。  本文针对氢燃料电池系统氢气压力控制中存在的问题,推荐使用精密电动针阀,并详细介绍了电动针阀的特点和技术参数。[size=18px][color=#ff0000]2. 电动针阀[/color][/size]  电动针阀如图2-1所示。[align=center][img=各种规格电动针阀,599,513]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101055582033_8168_3384_3.png!w599x513.jpg[/img][/align][align=center][color=#ff0000]图2-1 各种规格电动针阀[/color][/align][size=18px][color=#ff0000]2.1. 技术指标[/color][/size][align=center][color=#ff0000][img=电动针阀技术指标,690,453]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101057223127_3501_3384_3.jpg!w690x453.jpg[/img][/color][/align][color=#ff0000][/color][align=center][color=#ff0000]图2-2 电动针阀技术指标[/color][/align][align=center] [img=电动针阀尺寸,690,421]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101057371906_4688_3384_3.jpg!w690x421.jpg[/img][/align][align=center][size=16px][color=#ff0000]图2-3 电动针阀尺寸[/color][/size][/align][size=18px][color=#ff0000]2.2. 驱动模块[/color][/size]  数控电动针阀配备有步进电机驱动电路模块,以提供所需电源和控制信号,並以将直流信号转换为双极步进电机的步进控制,同时也可提供RS485串口通讯的直接控制。[align=center][color=#ff0000][img=驱动模块及其尺寸,690,220]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101058555517_9466_3384_3.jpg!w690x220.jpg[/img][/color][/align][color=#ff0000][/color][align=center][color=#ff0000]图2-4 驱动模块及尺寸[/color][/align][size=18px][color=#ff0000]2.3. 特点[/color][/size]  新一代用于比例流量调节的数控电动针阀将步进电机的精度和可重复性优势与针阀的线性和分辨率相结合,其结果是具有小于2%滞后、2%线性、1%重复性和0.2%分辨率的可调流量控制,是目前常用电磁比例阀的升级换代产品。与各种PID控制算法和压力控制器相结合,可构成快速准确的氢气压力控制装置。  电动针阀具有以下几方面的特点: (1) 多规格节流面积:从低流量的直径0.9mm(0~50L/min气体)到高流量的直径4.10mm(0到660 L/min气体)的多种规格针阀节流面积,可满足不同的应用需要。  (2) 高度线性:小于2%的线性度,简化了查表或外部控制硬件和软件的配套,简化了命令输入和流量输出之间的关系。  (3) 高重复性:通过每次达到0.1%的相同流量,可提供长期稳定的一致性。  (4) 宽压力范围:通过5或7bar的压力,取决于孔的大小,入口环境可覆盖宽泛的压力范围。电机的刚度和功率确保阀门在相同的输入指令下打开,与压力无关。  (5) 低迟滞:小于2%的迟滞使积分和编程变得简单,在增加和减少达到设定点时能提供一致的流量。  (6) 高分辨率:0.2%的分辨率允许电动针阀根据调节指令的微小变化进行最小流量调整,提供了出色的可控性。  (7) 快速响应:整个行程时间小于1秒,由此可提供及时快速的流量调节和控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][/align][align=center][img=,690,355]https://ng1.17img.cn/bbsfiles/images/2021/08/202108101059518215_4501_3384_3.jpg!w690x355.jpg[/img][/align][align=center][/align][align=center][/align]

  • 土壤三轴试验制样和力学性能测试中的真空压力控制技术

    土壤三轴试验制样和力学性能测试中的真空压力控制技术

    [size=16px][color=#339999][b]摘要:在当前的各种三轴测试仪中,对月壤和月壤模拟物的样品制备和力学性能测试还无法实现样品的真空制备、测试过程中的可变围压控制和样品的超真空度准确控制。为此本文提出了实现这些功能的解决方案,解决方案采用不同气体流量控制技术以及特殊样品机构来实现月壤样品负压吸膜压实制备和给样品提供高真空环境,采用正压气体压力控制技术实现月壤样品的可变围压控制。此解决方案可用于开发新型真空三轴仪和现有三轴仪的升级改造。[/b][/color][/size][size=16px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 随着我国探月工程的开展,对月球土壤和岩石的研究工作也在进一步深入开展,其中目前迫切需要开展的工作之一是在实验室模拟月球的高真空条件下,测试循环载荷对月壤(或月壤模拟物)密度的影响以及相应的应力-应变-强度特性。这些工作都需要在具有超高真空形成和控制能力的三轴仪上进行,在这种超高真空三轴仪上需要具体开展的研究内容如下:[/size][size=16px] (1)不同真空度条件下的样品压实及其密度变化研究。[/size][size=16px] (2)开发新型高真空型三轴仪或改造现有圆柱形三轴装置,用于在高真空下对压实月球模拟物的应力-应变-强度进行测试。[/size][size=16px] (3)循环压实模拟物的约束和三轴剪切试验。[/size][size=16px] (4)评估原位(围压)应力和高真空对压实模拟物响应的影响,确定变形和强度参数。[/size][size=16px] 为了开展上述研究工作,特别是针对开发新型高真空三轴仪或对现有的三轴仪进行高真空技术改造,本文提出了相应的解决方案,解决方案的核心是设计新型的月壤样品卡具,并增加相应的真空压力配套系统,实现超高真空和正压围压的精密控制。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 无论是开发新型高真空三轴测试仪,还是对现有三轴设备进行高真空技术改造,都需要实现以下几方面的功能和技术指标:[/size][size=16px] (1)可对月壤样品进行单独的抽真空,使包裹有橡胶膜的月壤样品处于模拟的月球真空环境中,真空度范围为1×10[font='times new roman'][sup]-11[/sup][/font]Torr~760Torr(绝对压力),真空度可在此范围内的任意设定点上进行控制,控制精度由真空计的测量精度确定。[/size][size=16px] (2)在包裹有橡胶膜的月壤样品外部空间内,提供高于一个大气压的气体压力用于形成围压,可在0~400kPa(表压)范围内的任意设定点上进行控制,控制精度优于1%。[/size][size=16px] 为了实现上述三轴仪功能和技术指标,本文提出了相应的真空压力控制解决方案,解决方案的前提是三轴仪需具备独立的样品抽真空管路、样品顶部和底部的低漏率密封连接件以及密闭型的围压生成腔体。解决方案所设计的三轴仪和真空压力控制系统如图1所示。[/size][align=center][size=16px][color=#339999][b][img=01.三轴仪真空压力控制系统结构示意图,690,450]https://ng1.17img.cn/bbsfiles/images/2023/07/202307250954595123_1111_3221506_3.jpg!w690x450.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 三轴仪真空压力控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,月壤样品通过外侧的橡胶膜、密封顶杆和基座、以及上下密封圈形成独立的真空密闭环境。在真空度控制过程中,由顶盖管路进行抽真空排气,由底部基座管路进气,通过排气和进气速率达到不同的动态平衡状态实现相应设定真空度的控制。[/size][size=16px] 月壤样品上下两端的真空管路都经过三轴仪底部基座与外部的真空控制管路连接,所连接的真空排气控制管路用紫色线表示,排气控制管路上连接有由皮拉尼计、电容规、电动球阀、干泵和分子泵。[/size][size=16px] 真空进气分为低真空和高真空两个控制管路,这两个管路并联且共用三轴仪底部基座的进气口,以分别负责大流量进气和微小流量进气。其中低真空进气控制管路用绿线表示,此管路中连接有电动针阀、压力调节器、高压气源和双通道真空压力控制器。高真空微量进气控制管路用蓝线表示,此管路中连接有电动针阀、泄漏阀、压力调节器、高压气源和双通道真空压力控制器。[/size][size=16px] 为了给月壤样品四周提供可变的围压,需要在图1中的腔室内形成充气正压,即处于真空状态下的月壤样品被放置在一个气体压力可控的密闭腔室内。正压腔室同样也经过三轴仪底部基座通道与黄线所代表外部正压控制管路连接,此管路中连接有压力计、压力调节器、高压气源和双通道真空压力控制器。[/size][size=16px][color=#339999][b](1)低真空控制[/b][/color][/size][size=16px] 所谓低真空是指仅靠干泵抽气所能达到的真空能力,一般是0.01~760Torr绝对真空度范围。在此低真空范围内的控制时,使用到了紫线所示的抽气管路和绿线所示的低真空控制管路,此时分子泵和蓝线高真空管路处于关闭状态。[/size][size=16px] 在此低真空0.01~760Torr范围内,一般需要配置两个不同量程的电容规才能覆盖。因此,低真空范围内的控制,采用了双通道真空压力控制器,其中第一通道连接1000Torr量程的电容规和电动球阀,用来控制1~760Torr范围内的真空度;第二通道连接1Torr量程的电容规和电动针阀,用来控制0.01~1Torr范围内的真空度。[/size][size=16px][color=#339999][b](2)高真空控制[/b][/color][/size][size=16px] 所谓高真空是指在低真空基础上还需分子泵继续抽气所能达到的真空能力,一般是指绝对真空度范围1×10[font='times new roman'][sup]-2[/sup][/font]~1×10[font='times new roman'][sup]-11[/sup][/font]Torr。在此高真空范围内的控制时,使用到了紫线所示的抽气管路和蓝线所示的高真空控制管路,此时干泵和绿线低真空管路处于关闭状态。[/size][size=16px] 在此高真空范围内,可以根据精度要求选择不同的真空计,另外还需分别控制电动针阀和压力调节器。高真空范围内的控制同样也采用了双通道真空压力控制器,其中第一通道连接真空计和压力调节器进行真空度自动调节;第二通道连接电动针阀用于高真空控制管路的打开和关闭。[/size][size=16px][color=#339999][b](3)正压压力控制[/b][/color][/size][size=16px] 正压压力控制是提供0~400kPa(表压)范围内的自动控制,使用了黄线所示的压力管路,并可以根据控制精度要求选择相应的压力计,同时采用了单通道真空压力控制器。在正压控制过程中,压力计、压力调节器和真空压力控制器组成闭环控制回路,可自动根据压力设定点或设定程序对进气压力进行减压定点控制或可编程控制。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过此解决方案可很好的实现三轴测试仪在高真空环境和可变围压条件下的测试,但在实际应用中还需注意以下两个方面:[/size][size=16px] (1)通过上述真空控制功能,也可以进行圆柱形月壤样品的压实制作。即在颗粒状样品压实制作时,先将橡胶膜管放置在一个侧壁透气的金属圆管内,然后把低真空控制管路连接到腔体正压接口对腔体抽真空,通过橡胶膜外部的真空作用使橡胶膜紧密吸附在金属圆管内壁上,由此可方便的倒入颗粒月壤并进行压实,最终制作出非常规整的外部套有橡胶膜的圆柱状月壤样品。[/size][size=16px] (2)在此方案中,仅指定了高真空度的有限范围和一路高真空控制管路。如果需要进一步扩展到更高真空度,还需根据所扩展的真空度选择不同的真空泵,由此还需改变高真空控制中的泄漏阀技术指标,或增加高真空控制管路数量,这样才能满足不同高真空度范围内的准确控制。[/size][size=16px] (3)此解决方案所涉及的真空压力控制技术,结合流量测量技术后,也可拓展应用到月壤和各种土壤的渗透性能测试。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align][size=16px][/size][size=16px][/size][size=16px][/size][size=16px][/size][size=16px][/size]

  • 油炸工艺中的真空、正压和高压压力控制解决方案

    油炸工艺中的真空、正压和高压压力控制解决方案

    [size=16px][color=#339999]摘要:针对食品油炸过程中涉及到的真空、正压和高压三种压力场控制需求,本文提出了相应的解决方案。解决方案基于动态平衡法控制原理,采用真空压力控制器、电动针阀、电动球阀、电气比例阀、背压阀和真空泵的搭配组合,分别实现真空负压控制、正压控制和超高压控制,可有效保证油炸食物品质,更便于油炸参数和新技术的开发。依据解决方案所构成的真空压力控制系统即可单独构成油炸设备的控制单元,也可配套集成到中央控制系统。[/color][/size][align=center][size=16px][img=油炸设备中的真空、正压和高压三种压力场控制的解决方案,500,376]https://ng1.17img.cn/bbsfiles/images/2023/03/202303291411304643_3469_3221506_3.jpg!w690x520.jpg[/img][/size][/align][size=16px][/size][b][size=18px][color=#339999]1. [/color][/size][size=18px][color=#339999]油炸过程中的压力场控制问题[/color][/size][/b][size=16px] 油炸是以油为传热介质的最流行的食品加工方法之一,是一个典型的高温传热传质过程。油炸食品由于美味而广受欢迎,但油炸食品往往对人体健康造成很大影响。为此,现有和今后的油炸技术都在基于物理场(温度场、压力场、电磁场和声场等)的单独或协同应用技术,以减少油炸食品对健康的负担以及提高油炸食品的生产效率和质量。[/size][size=16px] 油炸与其他加热烹饪方法一样,首先要能形成一定的温度场才能使食物致熟,但为了能提供更健康的油炸食物,往往会需要进行相应的压力等其他物理场的控制。尽管现在有很多其他油炸新技术,但健康油炸过程的两个核心指标还是温度和压力,这是因为压力往往会决定温度高低。众所周知,水的沸点与外界压力有关。当施加的压力降低(或增加)时,水的沸点降低(或增加),这就是基于压力场油炸技术和改变油炸温度的基本原理。[/size][size=16px] 随着科技的进不许,真空油炸(减压)或压力油炸(加压)正在取代常压油炸技术,提高油炸产品的效率和质量。另外,高压加工(HPP)作为预处理技术的应用已经显示出在油炸水果和蔬菜中具有巨大的商业利用潜力,具有更快的水分去除率和更少的质量退化。下面将分别介绍油炸技术中的这三种压力场控制方法以及需解决的技术问题。[/size][size=16px][color=#339999][b]1.1 真空油炸(低压或减压)[/b][/color][/size][size=16px] 真空油炸被定义为在低于大气压下进行的深度油炸过程,典型的真空油炸装置如图1所示[1]。由于真空下水的沸点降低,食物中的水分可以在相对较低的温度下除去,这使得真空油炸具有保留热敏性营养物的显著特征。同时,由于低温和真空下的低氧含量,脂肪氧化和美拉德反应也受到显著抑制。此外,真空油炸水果和蔬菜更好地保留了天然颜色,包含更高的亮度、更低的红色和更低的黄色,这可能与更少的非酶褐变反应有关。[/size][align=center][size=16px][color=#339999][b][img=01.典型真空油炸装置示意图,650,355]https://ng1.17img.cn/bbsfiles/images/2023/03/202303291415539393_8671_3221506_3.jpg!w690x377.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 典型真空油炸装置示意图[1][/b][/color][/size][/align][size=16px] 此外,由于在最初的减压步骤中实现了更少的气泡和更均匀的微观表面结构,因此在油炸产品中实现了更好的保存纹理。[/size][size=16px] 真空油炸的另一个优势是油炸后的离心步骤,同时保持负压,这大大有助于减少最终产品的吸油量。在真空条件下,油炸材料的结构保持膨胀和松散的形状,孔隙中的压力随着热传递和水蒸发速率的降低而保持,这抑制了油被临时毛细压力吸收到外壳中。同时,在油炸篮从油中提起后立即进行离心,大部分附着在表面的油被离心力去除,从表面渗透到多孔结构的油最终减少,从而使最终产品具有较少的吸油量。因此,真空油炸的商业应用已经被许多具有低脂肪生产要求的食品工业所采用,特别是水果和蔬菜。[/size][size=16px] 然而,由于相对较低的温度,真空油炸延长了某些产品的油炸时间,因此较长的加工周期和较高的能耗成为其应用的明显障碍。因此近年来,人们尝试了创新的预处理方法和电磁加热技术,以降低油炸时间和能耗并提高真空油炸产品的整体质量属性。[/size][size=16px] 另外,尽管目前真空油炸技术和设备已经比较成熟,但有个关键技术问题则很少涉及,那就是如何准确控制真空度来满足不同食品的油炸需要,使得油炸食品具有更高的品质和重复性。[/size][size=16px][color=#339999][b]1.2 压力油炸[/b][/color][/size][size=16px] 压力油炸是通过食物自然释放的水分在油炸锅内产生足够压力的过程。水的沸点由于油炸锅中的高压(通常高于大气压)而升高,这导致食物中的水分更好地保留。大量研究表明,压力油炸主要应用于肉、鱼和家禽产品,以有效地减少加工时间并生产具有优良质地的油炸产品,在2bar压力下,压力油炸的传热系数几乎是常压油炸的两倍,与常压油炸相比,压力油炸鸡肉的油炸时间减少了近50%。就压力油炸过程中的结构变化而言,由于加剧的水分梯度,促进了外壳表面的形成,并增加了孔隙率,导致油炸产品的脆性质地和多孔外观。据报道,炸鸡的多汁性、嫩度和颜色得到了极大改善,并且与开放式油炸相比,还发现了更脆的外壳。此外,据报道,压力油炸产品的吸油率因水分保留而降低,同时压力油炸鸡肉中的中性脂肪含量减少了10.0%,碳水化合物含量增加了18.9%,而蛋白质含量没有发现显著差异,压力油炸鸡肉中游离脂肪酸和硫代巴比妥酸的含量分别降低了75.6%和26.2%,这意味着油炸鸡肉中的脂肪质量得到了极大改善。[/size][size=16px] 压力油炸在一些即食食品加工情况下有广泛的应用,如餐馆、超市、便利店、熟食店、学校、医院和其他商业餐饮经营。氮气被选择用作油炸锅中的压力产生源,以产生在保湿和质地方面质量更好的油炸产品。然而,由于繁琐的操作过程和较少的油炸食品量,其在工业生产中的应用受到限制,因此当用于大规模生产水平时,有必要探索合适的油炸条件或连续生产方法,以实现更高的加工效率。[/size][size=16px] 同样,在压力油炸中也同样很少涉及如何准确控制压力来满足不同食品的油炸需要。[/size][size=16px][color=#339999][b]1.3 高压加工预处理[/b][/color][/size][size=16px] 高压加工也称为高静水压或高静压(远高于100MPa),是食品加工中的一种新兴技术。这种最初用作非热保存的技术被发现有利于在油炸过程中获得高质量转移率,因为它对部分细胞渗透性的改变有影响。同时,油炸前的高压加工预处理被确定为通过抑制酶促和非酶促反应的发生而对油炸产品的颜色产生积极影响。[/size][size=16px] 值得注意的是,在100MPa较低压力下提交的油炸食品明显轻于200和300MPa较高压力下处理的油炸食品。压力造成的组织破坏增加了多酚氧化酶与其底物的接触,并没有完全使酶失活。有研究报道,高压加工预处理有助于减少油炸时间,增加油炸蔬菜和水果的硬度,这可能与细胞壁的物理损伤有关,导致细胞破裂和随后的水分渗出。此外,高压加工预处理能够保留水果和蔬菜的营养和感官特性,因为它对与其颜色和风味相关的化合物的共价键影响有限,同时能更好地保持最终油炸产品的酚类物质含量和抗氧化能力,而这种效应甚至可以在储存过程中有效维持。然而,据报道,高压加工预处理油炸会使得有些水果和蔬菜的吸油量增加,这可能与较高的渗透率有关,这有助于油炸物容纳更多的油。因此,适当的减油技术可以与高压加工预处理相结合,以保证其作为提高油炸产品效率和质量的有效策略。[/size][size=16px][color=#339999][b]1.4 问题的提出[/b][/color][/size][size=16px] 从上述三种不同压力形式的油炸方法介绍可以看出,压力场的控制会涉及到低压、正压和高压三个压力区间,但很少有报道涉及到详细的压力控制方法和相关仪器,而压力的准确控制会涉及到具体油炸产品品种和相应的油炸温度,为此本文将提出详细的真空压力控制解决方案。[/size][size=18px][color=#339999][b]2. 真空压力控制原理[/b][/color][/size][size=16px] 从上述油炸过程中所需的压力场可以看出,以绝对压力形式来描述,其相应的真空压力范围为0.005 ~ 300MPa。为了在如此宽泛的压力范围内实现压力控制,本文将采用动态平衡控制方法,其基本原理如图2所示。此原理的特点是既能进行全量程范围的真空压力控制,也可以进行某段区间内的单独控制。[/size][align=center][size=16px][color=#339999][b][img=02.油炸装置真空压力控制原理示意图,550,238]https://ng1.17img.cn/bbsfiles/images/2023/03/202303291416216769_231_3221506_3.jpg!w690x299.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 油炸过程真空压力控制原理示意图[/b][/color][/size][/align][size=16px] 按照图2所示的动态平衡法真空压力控制原理,油炸过程中的真空压力控制主要分三部分:[/size][size=16px] (1)负压区间控制:在控制真空负压时,由进气排气阀门、真空泵、传感器和控制器组成闭环控制回路,高压气源提供压力不高的工作气体。在具体控制过程中,真空压力控制器根据传感器采集信号与设定值进行比较,控制器输出两路信号分别用于固定进气阀门开度和调节排气阀门开度,通过自动调节进出气流量达到动态平衡来实现负压区间全量程的真空度准确控制。[/size][size=16px] (2)正压区间控制:在低于7MPa范围内的正压控制时,由高压气源、进气阀、传感器和控制器组成闭环控制回路。进气阀门直接采用电气比例阀,比例阀对高于7MPa的高压气源进行减压控制,而真空压力控制器根据压力传感器与设定值比较后输出信号对比例阀进行自动调节。[/size][size=16px] (3)超高压区间控制:对于7~300MPa范围内的超高压控制,进气阀门需要采用电气比例阀和背压阀的组合形式。背压阀对超高压进气进行减压来控制控制油渣罐内的超高压力,电气比例阀作为先导阀来调节背压阀,真空压力控制器根据压力传感器与设定值比较后输出信号对比例阀进行自动调节。[/size][size=18px][color=#339999][b]3. 解决方案[/b][/color][/size][size=16px] 根据前述的油炸装置真空压力控制原理以及三个不同真空压力范围的控制方法,本文提出了三个相应的具体解决方案。[/size][size=16px][color=#339999][b]3.1 真空负压控制解决方案[/b][/color][/size][size=16px] 基于图1所示的油炸装置结构,真空负压控制的解决方案具体如图3所示。[/size][align=center][size=16px][color=#339999][b][img=03.油炸装置真空负压控制系统结构示意图,550,238]https://ng1.17img.cn/bbsfiles/images/2023/03/202303291416416718_3794_3221506_3.jpg!w690x299.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 油炸装置真空负压控制系统结构示意图[/b][/color][/size][/align][size=16px] 方案中采用了电动针阀进行进气流量调节,采用电动球阀进行排列流量调节,真空计为1000Torr量程的薄膜电容规。在油炸装置中对选用的电动针阀和电动球阀有较高的要求,一方面是要有较好的真空密封性能,更重要的是还要具有较快的调节速度,以便能对油炸过程中温度变化以及水分蒸发造成的气压突变进行快速调节。[/size][size=16px] 另外,所用的电动针阀和球阀较适用于小尺寸的油炸罐体,对于较大规格的油炸罐体,可以考虑采用具有相同性能的进气电动球阀和排气电动蝶阀,以满足大尺寸腔体对大流量进气和排气的需要。[/size][size=16px] 解决方案中的另一个重要内容是真空压力控制器,这里的控制器是一个高精度通用型的双通道PID控制器,两个独立通道分别用于电动针阀和电动球阀开度的控制。另外,此真空压力控制器具有通讯接口和配套的计算机软件,可通过上位机编程进行控制,也可能用计算机直接运行软件进行控制操作。[/size][size=16px][color=#339999][b]3.2 正压控制解决方案[/b][/color][/size][size=16px] 同样基于图1所示的油炸装置结构,7MPa以下正压控制的解决方案具体如图4所示。[/size][align=center][size=16px][color=#339999][b][img=04.油炸装置7MPa以下压力控制系统结构示意图,500,246]https://ng1.17img.cn/bbsfiles/images/2023/03/202303291417152373_4414_3221506_3.jpg!w690x340.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图4 油炸装置7MPa以下正压控制系统结构示意图[/b][/color][/size][/align][size=16px] 方案中采用了电气比例阀直接对油炸罐压力进行控制,即对高压气源的压力进行减压后输送到油炸罐。电气比例阀的控制则采用了真空压力控制器,同样,也可以采用上位机和计算机直接对电气比例阀进行控制。[/size][size=16px] 方案中需要注意的是,电气比例阀仅能满足小尺寸油炸罐内的压力控制,针对较大尺寸的油炸罐,则需要在电气比例阀后面增加流量放大器,以对大尺寸罐体内的压力快速响应和控制。[/size][size=16px][color=#339999][b]3.3 超高压控制解决方案[/b][/color][/size][size=16px] 同样基于图1所示的油炸装置结构,超高压控制的解决方案具体如图5所示。[/size][align=center][size=16px][color=#339999][b][img=05.油炸装置超高压300MPa压力控制系统结构示意图,500,317]https://ng1.17img.cn/bbsfiles/images/2023/03/202303291417342442_4888_3221506_3.jpg!w690x438.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图5 油炸装置超高压控制系统结构示意图[/b][/color][/size][/align][size=16px] 图5中的解决方案与图4所示的正压控制解决方案类似,这里的电气比例阀是作为先导阀来驱动背压阀,背压阀则对输入的超高压气源进行减压以实现油炸罐内的超高压控制。[/size][size=16px] 在此方案中需要采用两路气源,一路气源用于驱动电气比例阀,另一路气源作为油炸罐的工作气源。[/size][size=16px] 油炸罐的超高压力自动控制也采用了真空压力控制器,控制器根据压力传感器信号来控制电气比例阀,电气比例阀驱动背压阀,由此实现对背压阀的间接控制。同样,也可以采用上位机和计算机直接对背压阀进行控制操作。[/size][size=18px][color=#339999][b]4. 总结[/b][/color][/size][size=16px] 采用真空压力控制器、电动针阀、电动球阀、电气比例阀、背压阀和真空泵的自动化控制解决方案,可以实现食品油炸过程中的真空压力准确控制,提高油炸食品的质量和口感。[/size][size=16px] 解决方案的另外一个特点是可以采用灵活的组合,实现不同范围的真空压力控制,可满足不同压力场要求的油炸设备,也可满足不同尺寸大小的油炸罐真空压力控制需要。[/size][size=16px] 解决方案具有很强的可扩展性和灵活性,在实现真空压力控制的同时,真空压力控制器还可以拓展应用到油炸过程中的温度和其他参数的控制,控制器的小巧尺寸和通讯功能可方便的集成在油炸装置的控制系统中,也可单独构成中央控制单元。[/size][size=18px][color=#339999][b]5. 参考文献[/b][/color][/size][size=16px][1] Andrees-Bello, A., P. Garc?a-Segovia, and J. Mart?nez-Monzo. 2011. Vacuum frying: An alternative to obtain high-quality dried products. Food Engineering Reviews 3 (2):63–78.[/size][size=16px][/size][align=center]~~~~~~~~~~~~~~~~[/align][size=16px][/size][size=16px][/size][size=16px][/size]

  • 真空浓缩过程中新型PID控制器和高速电动阀门对温度和压强的精确控制

    真空浓缩过程中新型PID控制器和高速电动阀门对温度和压强的精确控制

    [color=#990000]摘要:真空浓缩过程中,浓缩温度和压强是核心控制参数。本文针对目前浓缩仪器和设备中压强控制存在精度差、波动性大等问题,提出了详细解决方案,并提出采用新型双通道超高精度多功能PID控制器和高速电动阀门来实现浓缩过程中温度和压强的同时准确测量和控制。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000]1、问题提出[/color][/size] 真空浓缩的工作原理是将样品在冷冻干燥、离心浓缩和旋转蒸发等状态下,同时采用真空和加热技术使样品中的溶剂快速蒸发、样品体系得到快速浓缩或干燥。由于不同样品对温度有不同的敏感性,同时压强与温度之间存在强相关性,所以在真空浓缩过程中,如何准确控制浓缩温度和压强,就成了使用者最关心的问题。在目前各种常用的真空浓缩设备中,普遍还存在以下几方面问题: (1)压强测量和控制精度普遍不高,特别是低压情况下更是如此,这主要是所采用的传感器和控制器精度不够。压强控制精度不高同时会对温度带来严重影响。 (2)浓缩仪器和设备普遍采用的是下游压强控制方式,即在容器和真空泵之间安装调节阀来实时调控容器的排气速率。这种下游方式适用于较高压强的准确控制,但对10mbar以下的低压则很难实现控制的稳定准确。 (3)目前绝大多数电动调节阀采用的是电动执行机构,从闭合到全开的时间基本都在10秒以上,这种严重滞后的阀门调节速度也很难保证控制精度和稳定性。 (4)由于浓缩过程中有水汽两相介质排出,很多时候介质还带有腐蚀性,这就对下游调节阀耐腐蚀性提出了很高的要求。[size=18px][color=#990000]2、解决方案[/color][/size][color=#990000]2.1 采用高精度压强传感器[/color] 对于真空浓缩过程,压强传感器是保证整个浓缩过程可控性的核心,强烈建议采用高精度压强传感器以保证真空度的测量和控制准确性。一般真空浓缩过程基本都采用机械式真空泵,低压压强(绝压)不会超过0.01mbar,高压压强接近一个大气压,因此高精度压强传感器建议采用电容薄膜规,如图1所示,其绝对测量精度可以达到±0.2%。 如果浓缩仪器和设备使用的压强范围比较宽,建议采用两只不同量程的传感器进行覆盖,如10Torr和1000Torr。[align=center][color=#990000][img=真空浓缩,600,450]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041456355439_1975_3384_3.png!w600x450.jpg[/img][/color][/align][align=center][color=#990000]图1 电容薄膜式真空压力计[/color][/align] 如果采用其他类型的真空度传感器,也需要达到一定的精度要求。[color=#990000]2.2 采用高精度双通道PID控制器[/color] 在真空压力测量和控制中,为了充分利用上述电容薄膜压力计的测量精度,控制器的数据采集和控制至少需要16位的模数和数模转化器。目前已经推出了测控精度为24位的通用性PID控制器,如图2所示。[align=center][color=#990000][img=真空浓缩,690,358]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457090941_3284_3384_3.png!w690x358.jpg[/img][/color][/align][align=center][color=#990000]图2 国产VPC-2021系列温度/压力控制器[/color][/align] 对于真空浓缩的过程控制,此系列PID控制器具有以下特点: (1)高精度:24位A/D采集,16位D/A输出。 (2)多通道:独立的1通道和2通道。2通道可实现温度和压强的同时测量及控制。 (3)多功能:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制,可进行正反向控制(双向控制模式)。 (4)PID控制:改进型PID算法,支持PV微分和微分先行控制。20组分组PID。 (5)双传感器切换:每一个通道都可支持温度高低温和高低真空度的双传感器切换,两通道可形成总共接入四只传感器的控制组合。 (6)程序控制:可自行建立和存储最多20种浓缩程序,进行浓缩时只需选择调用即可开始(程序控制模式)。[color=#990000]2.3 增加上游进气控制和双向控制模式[/color] 目前普遍采用的下游控制模式比较适合压强接近大气压的浓缩过程,但对10mbar以下的低压浓缩过程,就需要引入上游进气控制模式,即在浓缩容器上增加进气通道,通过电子针阀控制进气通道的进气流量来实现压强的准确控制。 如图3所示,目前已有各种流量的国产电子针阀可供选择,结合下游的真空泵抽气,通过上游模式可实现高真空(低压)的精确控制。[align=center][color=#990000][img=真空浓缩,599,513]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457210338_3059_3384_3.png!w599x513.jpg[/img][/color][/align][align=center][color=#990000]图3 国产NCNV系列电子针阀[/color][/align] 为同时满足低压和高压全量程准确控制,可以采用如图4所示的双传感器和双向控制模式。 在图4所示的控制模式中,就需要用到上述VPC-2021系列双通道控制器的正反向控制和双传感器自动切换功能,即在不同气压控制过程中,控制器自动切换相应量程的真空计,并选择相应的电子针阀和高速电动球阀进行控制。[align=center][img=真空浓缩,690,548]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457335020_3012_3384_3.png!w690x548.jpg[/img][/align][align=center][color=#990000]图4 双向控制和双传感器自动切换模式示意图[/color][/align][color=#990000][/color][color=#990000]2.4 采用高速电动球阀[/color] 所谓高速阀门一般是指阀门从全闭到全开的动作时间小于1s,这对于气体流量和压力控制非常重要。特别是对于真空浓缩过程,气压控制的快速响应可保证浓缩的准确性、安全性和提高蒸发速率。 目前已经开发出国产高速电动球阀,如图5所示。NCBV系列微型化的高速电动球阀和蝶阀,是目前常用慢速电动阀门的升级产品,与VPC2021系列温度/压力控制器相结合,可构成快速准确的真空压力闭环控制系统。[align=center][img=真空浓缩,377,500]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457527127_514_3384_3.png!w377x500.jpg[/img][/align][align=center][color=#990000]图5 国产NCBV系列高速电动球阀[/color][/align][color=#990000][/color][color=#990000]2.5 采用真空控压型调节器[/color] 在目前的真空浓缩仪器和设备中,浓缩是在密闭容器中发生,通过加热和真空手段将蒸发气体冷凝和排出,真空泵是对一个密闭容器进行抽气,并通过抽气流量调节来实现密闭容器内的气压恒定在设定值,这是一个典型的流量控制型恒压模式。这种控流型调压方式相当于一个开环控制方式,容器内部自生气体,且自生气体并没有很明显的规律(如线性变化),这非常不利于容器内部压强的准确控制。对于这种控流型调压方式,如图2所示,会在浓缩容器的前端增加一个进气通道,并对进气流量进行调节以使容器内部真空度控制在稳定的设定值。 对于有些真空浓缩仪器和设备,并不允许增加额外的进气通道,这里就可以用到如图6所示的控压型调节器。[align=center][img=真空浓缩,690,372]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041458102995_3900_3384_3.png!w690x372.jpg[/img][/align][align=center][color=#990000]图6 控压型调节器在浓缩过程真空度控制中的应用[/color][/align] 控压型真空压力调节器实际上一个内置真空压力传感器、微控制器、空腔和两个电动阀门的集成式装置。在真空压力控制过程中,内置传感器测量空腔内压力,如果压力小于设定值,则进气口处阀门打开直到等于设定值,如果压力大于设定值则抽气口处阀门打开直到等于设定值,从而始终保证空腔内压力始终保持在设定值上,而调节器空腔与浓缩容器连通,即调节器空腔压力始终等于浓缩容器压力。 由此可见,控压型调节器是一个自带进气阀的独立真空压力调节装置。如图6所示,控压型调压器也可以外接传感器,设定值可以手动设置,也可以通过PID控制器设置。[align=center]=======================================================================[/align]

  • 各个试验机厂家应变控制方法

    前段时间采用ISO6892方法A中的应变控制模式做实验,使用的INSTRON的设备,发现一个和MTS不同的地方。MTS C64.305的型号,中PID参数需要自己调整,而INSTRON的则是全自动的。只用过这两家的设备,求助别的试验机厂家是怎么样达到应变控制目的?

  • 高精度可编程真空压力控制器(压强控制器和温度控制器)

    高精度可编程真空压力控制器(压强控制器和温度控制器)

    [align=center][img=,599,441]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200929562418_9505_3384_3.png!w599x441.jpg[/img][/align][size=18px][color=#990000]一、简介[/color][/size] 真空压力控制器是指以气体管道或容器中的真空度(压力或压强)作为被控制量的反馈控制仪器,其整个控制回路是闭环的,控制回路由真空度传感器、真空压力控制器和电动调节阀组成。 依阳公司的VPC2021系列控制器是一种强大的多功能高度智能化的真空压力测量和过程控制仪器,采用了24位数据采集和人工智能PID控制技术,可与各种型号的真空压力传感器(真空计)、流量计、温度传感器、电动调节阀门和加热器等连接,可实现高精度真空压力(压强)、流量和温度等参量的定点和程序控制,是一种替代国外高端产品的高性能和高性价比控制器。[size=18px][color=#990000]二、主要技术指标[/color][/size] (1)测量精度:±0.05%FS(24位A/D)。 (2)输入信号:32种信号输入类型(电压、电流、热电偶、热电阻),可连接众多真空压力传感器。 (3)控制输出:4种控制输出类型(模拟信号、固态继电器、继电器、可控硅),可连接众多电动调节阀。 (4)控制算法:PID控制和自整定(可存储和调用20组PID参数)。 (5)控制方式:定点和程序控制,最大可支持9条控制曲线,每条可设定24段程序曲线。 (6)控制周期:50ms。 (7)通讯方式:RS 485和以太网通讯。 (8)供电电源:交流(86-260V)或直流24V。 (9)外形尺寸: 96×96×136.5mm (开孔尺寸92×92mm)。[size=18px][color=#990000]三、特点和优势[/color][/size] (1)高精度24位数据采集,使得此系列控制器具有高精度的控制能力。 (2)具有各种不同类型信号的输入功能,可覆盖多种测量传感器,既可连接真空计用来控制真空压力和压强,也可用来控制其它变量,如连接流量计用来控制流量、连接温度传感器用来进行温度控制等。 (3)可连接和控制几乎所有的电动调节阀和数字控制阀门,也可连接控制各种加热装置,结合传感器由此组成可靠的闭环控制系统。 (4)控制器体积小巧和使用灵活,即可独立做为面板型控制器使用,也可集成在测试系统整机中使用。 (5)采用了标准的MODBUS通讯协议,便于控制器与上位机通讯和进行二次开发。 (6)具有2路输出功能,可实现真空压力的两种控制模式,一种是可变气流量(上游控制)压强控制模式,另一种是可变通导(下游控制)流量调节模式。[align=center][color=#990000][img=,300,253]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932222782_1134_3384_3.png!w300x253.jpg[/img][/color][/align][align=center][color=#990000]上游控制压强模式[/color][/align][align=center][color=#990000][img=,300,252]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932370447_2503_3384_3.png!w300x252.jpg[/img][/color][/align][align=center][color=#990000]下游控制压强模式[/color][/align][align=center][color=#990000][img=,300,249]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932454481_7140_3384_3.png!w300x249.jpg[/img][/color][/align][align=center][color=#990000]上游和下游同时控制的双向模式[/color][/align][size=18px][color=#990000]四、外形和开孔尺寸[/color][/size][align=center][img=,690,317]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932536698_9309_3384_3.png!w690x317.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 用于微流控芯片的多通道正负压力控制器解决方案

    用于微流控芯片的多通道正负压力控制器解决方案

    [color=#000099]摘要:在微流控芯片进样、化学反应进样和长时间药物注射领域,都需要能提供正负气压可精密控制的压力控制器。本文特别针对微流控芯片进样对多通道压力控制器的技术要求,提出了相应的解决方案,并详细介绍了方案中多通道气路结构、控制方法、气体流量调节阀、压力传感器和PID控制器等内容和技术指标。通过此解决方案,完全能够满足各种微流体控制对多通道压力控制器的要求。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#000099]一、背景介绍[/color][/size]在微流控芯片进样、化学反应进样和长时间药物注射领域,都需要能提供正负气压可精密控制的多通道压力控制器,并且通过气体压力来控制流体的流量或流速。图1所示为这种压力控制器在微流控芯片进样中的典型应用。[align=center][img=微流控芯片用压力控制器,690,318]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271559098143_8354_3384_3.png!w690x318.jpg[/img][/align][align=center]图1 多通道压力控制器在微流控芯片进样中的典型应用[/align]在微流控芯片进样中,要求压力控制器需具备以下几方面的功能:(1)多通道,每个通道可独立控制和操作。(2)每个通道都可按照编程设定输出相应的正负压力。(3)正负压力控制范围:绝对压力1Pa~0.5MPa(表压-101kPa~0.6MPa)。(4)压力控制精度:0.1%~1%。 针对上述微流控芯片进样对压力控制器要求,本文提出了相应的解决方案,并详细介绍了方案中多通道气路结构、控制方法、气体流量调节阀、压力传感器和PID控制器等内容和技术指标。通过此解决方案,完全能够满足各种微流体控制对多通道压力控制器的要求。[size=18px][color=#000099]二、解决方案[/color][/size]本文所提出的解决方案是实现在1Pa~0.7MPa绝对压力范围内的精密控制,控制精度极限可达到0.1%。即提供一个可控气压源解决方案,采用双向控制模式的动态平衡法,结合高精度步进电机和微小流量电动针阀、高精度压力传感器和多通道PID控制器,气压源可进行高精度的各种真空压力的可编程输出,同时也可用于控制不同的流体流量。本文所涉及的解决方案,主要针对用于微流控芯片进样用多通道正负压力控制器,这主要是因为微流控芯片所用压力基本在一个标准大气压附近变化,相应的多通道压力控制器相对比较简单。而对于更低压力,如气压小于1kPa绝对压力的多通道控制,要实现精密控制则整个压力控制器将十分复杂。微流控芯片进样用多通道压力控制器工作原理如图2所示。[align=center][img=微流控芯片用压力控制器,690,350]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271559436818_6219_3384_3.png!w690x350.jpg[/img][/align][align=center]图2 微流控芯片进样用多通道压力控制器工作原理图[/align]微流控芯片进样用多通道压力控制器的工作原理为:(1)多通道压力控制包括多个控制通道,每个控制通道包括正压气源、进气调节阀、出气调节阀、抽气泵和PID控制器单元。其中的正压气源和抽气泵提供足够的负压和正压能力,并且可以多通道公用。同样,多通道压力控制器也公用一个进气调节阀。需要注意的是,由于微流控进样所需的负压气压值较大并接近一个标准大气压,对于微流控芯片进样的压力控制,只需固定进气调节阀的开度,近靠调节出气阀开度极可实现正负压的精密控制,因此可以公用一个进气调节阀。如果要进行较低负压气压值(较高真空度)的精密控制,配置恰恰相反,每一通道配置的进气阀进行调节,但可以公用一个抽气阀。(2)精密压力控制原理基于密闭空腔进气和出气的动态平衡法。多通道压力控制器的每一个通道都是典型闭环控制回路,其中PID控制器的每一通道采集相应通道的真空压力传感器信号并与此通道的设定值进行比较,然后调节相应通道的进气和抽气调节阀开度,最终使此通道传感器测量值与设定值相等而实现该通道真空压力的准确控制。(3)为了覆盖负压到正压的所要求的真空压力范围,需要配置一个测试量程覆盖要求范围内的高精度绝对压力传感器,如果一个压力传感器无法覆盖全量程,则需要增加压力传感器数量来分段覆盖。采用绝对压力传感器的优势是不受各地大气气压变化的影响,无需采取气压修正,更能保证测试的准确性和重复性。(4)绝对压力传感器对应所覆盖的真空压力范围输出数值从小到大变化的直流模拟信号(如0~10VDC)。此模拟信号输入给PID控制器,由PID控制器调节进气阀和排气阀的开度而实现压力精确控制。(5)当控制是从负压到正压进行变化时,一开始的进气调节阀开度(进气流量)要远小于抽气调节阀开度(抽气流量),通过自动调节进出气流量达到不同的平衡状态来实现不同的负压控制,最终进气调节阀开度逐渐要远大于抽气调节阀开度,由此实现负压到正压范围内一系列设定点或斜线的连续精密控制。对于从正压到负压压的变化控制,上述过程正好相反。[size=18px][color=#000099]三、方案具体内容[/color][/size]解决方案中所涉及的正负压力控制器的具体结构如图3所示,主要包括正压气源、电动针阀、密闭空腔、压力传感器、高精度PID控制器和抽气泵。[align=center][img=微流控芯片用压力控制器,690,393]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271602023624_9954_3384_3.png!w690x393.jpg[/img][/align][align=center]图3 微流控芯片进样用多通道正负压力控制器结构示意图[/align]在图3所示的正负压力控制器中,每个通道都对应一密闭空腔,每个密闭空腔上的外接接口作为此通道的压力输出口。密闭空腔左右安装两个NCNV系列的步进电机驱动的微型电动针阀,电动针阀本身就是正负压两用调节阀,其绝对真空压力范围为0.0001mbar~7bar,最大流量为40mL/min,步进电机单步长为12.7微米,完全能满足小空腔的正负压精密控制。由此,压力控制器中的每个通道可实现正负压任意设定点的精确控制,也可以从正压到负压的压力线性变化控制,也可以从负压到正压的压力线性变化控制。微流控芯片进样过程中一般要求微小正负压控制,要求是在标准大气压附近的真空压力精确控制,如控制精度为±0.5%甚至更小,一般都需要采用调节抽气阀的双向动态模式,即通过控制器使得进气口处电动针阀的开度基本不变,同时根据PID算法来调节排气口处的电动针阀开度。由于进气阀的开度基本处于固定状态,使得微流控芯片进样所用的多通道压力控制器可以公用一个调节进气流量的电动针阀。另外,所有通道都需要具备抽气功能,抽速也是一固定值,因此多通道压力控制器也可以公用一个抽气泵。在微流控芯片进样过程中压力控制,除了上述恒定进气流量调节抽气流量的控制方法之外,决定压力控制精度的因素还有压力传感器、PID控制器和电动针阀的精度。本方案中的PID控制器采用的是24位AD和16位的DA,电动针阀则是高精度步进电机,因此本解决方案的测试精度主要取决于压力传感器精度,一般至少要选择0.1%精度的压力传感器。在微流控芯片进样过程中,往往会要求密闭容器在正负压范围内进行多次往复变化和按照设定曲线进行控制,因此本方案采用了可存储多个编辑程序的PID控制器,每个设定程度是一条多个折线段构成的曲线,由此可实现正负压往复变化的自动程序控制。在本文所述的解决方案中,为实现正负压的精密控制,如图3所示,针对负压的形成配置了抽气泵。抽气泵相当于一个负压源,但采用真空发生器同样可以达到负压源的效果,负压源采用真空发生器的优点是整个系统只需配备一个正压气源,减少了整个系统的造价、体积和重量,真空发生器连接正压气源即可达到相同的抽气效果。[size=18px][color=#000099]四、总结[/color][/size]本文所述解决方案,完全可以实现微流控芯片进样系统中压力的任意设定点和连续程序形式的精密控制,并且可以达到很高的控制精度和速度,全程自动化。本方案除了自动精密控制之外,另外一个特点是系统简单,正负压控制范围也可以比较宽泛,整个系统小巧和集成化,便于形成小型化的检测仪器。本文解决方案的技术成熟度很高,方案中所涉及的电动针阀和PID控制器,都是目前特有的标准产品,其他的压力传感器、抽气泵、真空发生器和正压气源等也是目前市场上常见的标准产品。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 光声谱仪器中光声池的高精度气体压力控制解决方案

    光声谱仪器中光声池的高精度气体压力控制解决方案

    [align=center][size=16px][img=石英增强光声光谱和光热光谱技术中的高精密压力控制解决方案,600,393]https://ng1.17img.cn/bbsfiles/images/2023/11/202311130940541042_934_3221506_3.jpg!w690x452.jpg[/img][/size][/align][size=16px][color=#339999][b]摘要:光声池内气体压力的可调节控制以及稳定性是保证光声法高精度测量的关键,但在目前的光声和光谱研究中,对气体样品池内压力控制技术的报道极为简单,甚至很多都是错误的,根本无法实现高精度调节和控制,为此本文提出了可工程化实现的解决方案。基于动态平衡法控制介绍,解决方案采用了高精度真空计、气体流量计、电动针阀和双通道真空压力控制器等,可实现气体样品池的进气流量和真空压力的自动精密控制,并适用于多种气体。[/b][/color][/size][align=center][size=16px][color=#339999][b]===================[/b][/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 光声法是基于光声效应的一种光谱技术,气体分子吸收特定波长的调制光辐射能量,由振动基态跃迁到激发态,然后通过快速的辐射跃迁或者无辐射跃迁过程回到基态。 气体分子通过无辐射跃迁过程回到基态会产生热能,导致气体温度的变化,相应地引起气体压强的变化,从而产生声波信号,信号的强弱与入射光强和气体吸收大小成正比,检测声音信号即可间接测定气体浓度。在光声法中气体既是被检气体,又是吸收光辐射的探测器,利用同一光声池检测装置,只要改变光源的波长即可对多种气体进行检测。[/size][size=16px] 随着技术的发展出现了许多新型光声光谱检测技术,但光声池始终是所有光声光谱检测仪器中的核心部件,注入光声池内的被检气体压力是影响光声法测量精度的关键因素之一,主要体现在以下两个方面:[/size][size=16px] (1)气体压力的稳定性对测量精度的影响[1,2]。[/size][size=16px] (2)不同气体和浓度的光声法测量过程中,在一个最佳气体压力下时测量精度最高[3]。[/size][size=16px] 由此可见,光声池内气体压力的可调节控制以及稳定性是保证光声法高精度测量的关键,而在光声池压力控制的所有文献报道中,有些仅简单描述了压力控制基本原理,有些所描述的压力控制方法和装置根本无法实现高精度调节和控制。[/size][size=16px] 如文献[3]采用石英增强光声和光热光谱技术测量痕量一氧化碳气体含量的报道中,仅介绍了光声池进样气体方式和压力控制的原理,整个装置和压力控制结构的简单描述如图1所示,图中所示的光声池压力控制尽管包括了真空泵、针阀、压力传感器和压力控制系统(PCS),但压力控制系统的布置位置并不一定正确,既没有明确具体技术细节,也没有显示出压力控制的自动化能力和控制精度能达到什么水平。同样,许多多其他光声法测试技术的研究报道也多是如此简单介绍,并未看到光声池压力控制的详细文献报道。[/size][align=center][size=16px][color=#339999][b][img=文献[3]光声和光热谱检测系统结构示意图,600,527]https://ng1.17img.cn/bbsfiles/images/2023/11/202311130942538680_3779_3221506_3.jpg!w690x607.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 文献[3]光声和光热谱检测系统结构示意图[/b][/color][/size][/align][size=16px] 在河北大学的发明专利CN111595786B“基于光声效应的气体检测系统及方法”中提出了一种详细的光声池内部压力控制方法[4],其结构如图2所示。[/size][align=center][size=16px][color=#339999][b][img=文献[4]基于光声效应检测系统的结构示意图,690,447]https://ng1.17img.cn/bbsfiles/images/2023/11/202311130943224524_1783_3221506_3.jpg!w690x447.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 专利[4]基于光声效应检测系统的结构示意图[/b][/color][/size][/align][size=16px] 在图2所示的光声池压力控制系统中,光声池上设有供气体进入的进气口,进气口通过导管与?30℃的冷肼预浓缩装置相连通,可以去除待测气体中水分的干扰,达到一定的浓缩效果。在光声池上还设有供气体排出的出气口、控制腔体内气压的压力监测口以及压力控制口。在进气口、出气口和压力控制口处均设有单向阀,在出气口和压力控制口处均设有真空泵。在压力监测口设有气体压力传感器,气体压力传感器连接单片机,单片机控制继电器以及一个抽气系统,当腔体内的气压未达到所设置的目标值时,压力传感器传出电信号到控制系统中的单片机来控制继电器闭合,使电机转动,抽气系统运行,保持腔内部的气压值为设定好的目标值,当腔内的气压达到设定目标值时该抽气系统不工作。[/size][size=16px] 由此可见,尽管专利[4]中采用了单片机进行压力的自动控制,但所描述的抽气系统控制是一种最简单的开关式控制方式,这种控制方式在控制精度的稳定性很差,往往会使光声池内的实际压力在设定值上下出现较大波动现象。[/size][size=16px] 另外,这种开关模式在控制过程中存在很大的滞后性,当传感器测量到压力值大于或小于设定值时才发出关闭或启动抽气电机信号,这势必带来控制延迟。而且对于小容积内的气压控制,目前已很少采用调节真空泵转速或开关式真空泵技术,这是因为会很容易影响真空泵寿命。[/size][size=16px] 为了彻底解决光声光谱和光热光谱技术中气体样品池的压力精密控制问题,基于真空压力控制的动态平衡法,即通过自动调节气体样品池的进气和排气流量,使它们能快速达到动态平衡状态,本文将提出以下详细且可工程化实现的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 从研究文献所报道的光声光热法气体池内压力控制中,可以得出以下几项技术指标要求:[/size][size=16px] (1)气体池有一进气口和排气后,其中排气口连接真空泵,真空泵提供负压使样品气体通过进气口流入样品池,样品池的这种结构和气体取样方式则说明样品池内的压力一般应该是一个大气压上下的微负压或微正压,即样品池内的气体压力在500~1000Torr的绝对压力范围内,且要小于进气口压力。[/size][size=16px] (2)在文献[3]中报道了对最佳压力的测试研究,得到的最佳压力为600Torr。由此可见,针对不同气体的光声和光热法测试中,需要根据不同气体样品池的结构和具体被测气体寻找到最佳压力值,由此可保证最佳的测试精度。[/size][size=16px] (3)在文献[2,3]中,涉及到了多种气体混合和进气流量的控制,由此可说明在某些光声和光热法测试中需要具备对进气流量的调节,这也就是说,对于气体样品池而言,既要能调节进气流量,还要能调节气体压力且稳定控制。[/size][size=16px] 针对光声光谱和光热光谱技术中气体样品池的压力精密控制问题,特别是实现上述技术指标和功能,本解决方案所设计的气体样品池压力和进气流量控制系统结构如图3所示。[/size][align=center][size=16px][color=#339999][b][img=光声池气体压力和流量控制系统结构图,690,314]https://ng1.17img.cn/bbsfiles/images/2023/11/202311130943461767_8516_3221506_3.jpg!w690x314.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 光声池气体压力和进气流量控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图3所示,整个控制系统主要包含以下几方面的内容:[/size][size=16px] (1)压力控制模式:由于光声池内的压力需要在500~1000Torr的绝对压力范围进行调节和控制,因此解决方案中采用了动态平衡法中的下游控制模式,即恒定进气流量,通过调节排气流量的大小以达到不同的动态平衡,由此来实现不同气体压力的精密控制。进气形式如图3所示可以是单独一种气体,也可以是多种气体混合,各种气体可以通过气体质量流量控制器(MFC)进行流量的精密控制,各路气体进入一个混气罐进行混合后,再注入光声池内。气体的注入则通过排气端真空泵所提供的负压与进气端正压所形成的压力差来实现。[/size][size=16px] (2)压力控制回路:如图3中的蓝色箭头线所示,压力控制回路由1000Torr量程的电容真空计、NCNV-20型电动针阀和VPC2021-2型压力流量控制器组成,其中真空计检测光声池的真空压力并传输给控制器,控制器将传感器数据与压力设定值比较并经过PID计算,输出控制信号给排气电动针阀,实现压力自动恒定控制。[/size][size=16px] (3)流量控制回路:如图3中的红色箭头线所示,流量控制回路由气体流量计、NCNV-120电动针阀和VPC2021-2型压力流量控制器组成,其中控制器通过手动控制方式直接输出控制信号来调节进气电动针阀的开度,使得流量计达到希望值,由此可始终恒定进气流量保持不变。[/size][size=16px] 由此可见,通过图3所示的解决方案控制系统可实现光声池压力和进气流量的独立调节和控制,这种实现的关键部件是电控针阀和双通道压力流量控制器,电控针阀可以快速精密的调节进气和排气流量,而双通道压力流量控制器可直接连接真空计和流量计,实现高精度的真空压力和流量的测量,控制精度能小于读数的±1%,同时还能进行自动PID控制和手动恒定输出控制。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案对现有文献所报道的光声池压力控制方法进行了细化,比较而言,本文所提出的解决方案具有以下优势和特点:[/size][size=16px] (1)本解决方案更具有实用性,并经过了试验考核,按照解决方案可很快的搭建起光声池压力控制系统。[/size][size=16px] (2)本解决方案具有很强的适用性和可拓展性,如通过改变其中的相关部件参数指标就可适用于不同范围的真空压力,可满足光声法和光热法中对样品池气体压力的各种控制要求。[/size][size=16px] (3)本解决方案可以通过高压气源的改变来实现不同样品气体的测量,也可进行多种气体混合后的测试,具有很大的灵活性。[/size][size=16px] (4)解决方案中的真空压力控制自带计算机软件,可直接通过计算机的软件界面操作进行整个控制系统的调试和运行,且控制过程中的各种过程参数变化曲线自动存储,这样就无需再进行任何的控制软件编写即可很快搭建起控制系统,极大方便了光谱设备的搭建和测试研究。[/size][size=18px][color=#339999][b]4. 参考文献[/b][/color][/size][size=16px][1] 陈伟根,刘冰洁,胡金星,等.微弱气体光声光谱监测光声信号影响因素分析[J].重庆大学学报:自然科学版, 2011(2):7-13.[/size][size=16px][2] 张佳薇,谈志强,李明宝,等.气体流量对石英增强型光声光谱检测精度的影响[J].科学技术与工程, 2022(003):022.[/size][size=16px][3] Pinto D , Moser H , Waclawek J P ,et al.Parts-per-billion detection of carbon monoxide: A comparison between quartz-enhanced photoacoustic and photothermal spectroscopy[J].Photoacoustics, 2021, 22:100244.DOI:10.1016/j.pacs.2021.100244.[/size][size=16px][4] 娄存广,刘秀玲,王鑫,等.基于光声效应的气体检测系统及方法:CN202010511763.8[P]. CN111595786B[2023-11-10].[/size][size=16px][/size][size=16px][color=#339999][b][/b][/color][/size][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 采用电动针阀和电气比例阀实现液氮气体低温温度的程序控制

    采用电动针阀和电气比例阀实现液氮气体低温温度的程序控制

    [size=16px][color=#339999]摘要:为了解决室温至液氮温区温控系统中需要昂贵的低温电动阀门进行液氮介质流量调节的问题,本文提供了三种不同精度的液氮温区内的低温温度控制解决方案。解决方案的技术核心是通过采用电动针阀和电气比例阀在室温环境下来快速调节外部气源流量或压力大小以实现低温温度的精准控制,不再需要具备耐低温性能的低温阀门。同时,在上述两种技术方案的基础上增加了电加热形式的第三种解决方案,可实现更高精度的低温温度快速控制。[/color][/size][size=16px][/size][align=center][size=16px][img=电动针阀和电气比例阀在流动液氮气体低温温度控制中的应用,600,336]https://ng1.17img.cn/bbsfiles/images/2023/02/202302270648384200_9124_3221506_3.jpg!w690x387.jpg[/img][/size][/align][b][size=24px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 对于液氮温度范围内的低温温度控制, 目前常用的方法为以下两种:[/size][size=16px] (1)直接浸泡式:即试验件完全浸泡在液氮内进行降温冷却和相应的温度控制,但采用这种方式时试验件的冷却温度无法在较宽泛的低温温区内进行控制和调节,只能在接近-196℃的温度附近通过控制液氮气压来进行小范围的调节和控制。另外,直接浸泡法往往未等试验件达到冷却保温时间,液氮已基本完全挥发。同时,这种操作方式较为简陋,对实际操作人员要求较高,稍有不慎将会有安全事故发生。[/size][size=16px] (2)液氮吹扫法:即直接采用流量可控的液氮或液氮气体进行吹扫来进行试验件低温温度调节和控制。在采用吹扫法进行低温温度控制时,液氮或液氮气体的流量大小直接关系到试验件温度的稳定性和可靠性。同时,低温介质的流量控制一直是行业的难点和痛点,这要求低温管路上的流量控制阀内的各个元器件均需要很好的耐低温特性,且价格十分昂贵。有些简陋的低温控制采用了低温开关阀进行通断式控制,尽管降低了阀门成本,但这种开关控制模式的控制精度极差。另外,低温介质的出口与试验件或热交换器内的空气直接接触,空气中的水蒸气遇冷急剧结冰,随着降温时间增长,低温介质的出口很容易被结冰堵塞。现亟需研发一种核心控制器件在常温状态下便可实现超低温控制的试验装置。[/size][size=16px] 为了解决上述液氮吹扫法中存在的问题,本文提供了三种不同精度的液氮温区宽量程温度控制解决方案。解决方案的技术核心是通过调节室温环境下的气源流量或压力大小来实现低温温度的精准控制,不再需要控制阀门具有耐低温性能。同时,在上述两种技术方案的基础上将增加电加热形式的第三种解决方案,由此可实现更高精度的低温温度控制。[/size][size=24px][color=#339999][b]2. 原理和分析[/b][/color][/size][size=16px] 在传统液氮低温温度控制的吹扫法中,普遍是直接调节液氮低温介质的吹扫流量,同时结合温度传感器和PID控制器形成闭环控制回路,通过对流量的控制最终实现低温温度控制。[/size][size=16px] 通过分析上述的传统液氮吹扫法可以发现,实现低温介质吹扫的基本原理是在液氮罐(杜瓦瓶)内形成较高的气压迫使液氮或液氮气体溢出到设定管路内形成低温介质流动,最终再通过调节流动速度来进行低温温控。因此,液氮罐中的高压气体是所有这些的关键,只要能调节气体压力,同样能在固定管路内形成不同流速的低温介质而达到控温目的。同时,这种调节液氮罐内气体压力的方式可在室温环境中实现,这样就可以避免在直接低温介质流量控制中需要使用特殊且昂贵的电动低温调节阀。[/size][size=16px] 基于上述分析,本文设计了以下三种低温温度控制方案,并可实现不同的控制精度。[/size][size=24px][color=#339999][b]3. 进气流量控制方案[/b][/color][/size][size=16px] 对于任何具有一定空间大小的容器而言,其内部压力都可以归结为进气和出气流量所达到的一种动态平衡状态。因此,如果要对液氮罐内的气体压力进行控制,有效的方法之一就是对液氮罐的进出气体流量分别进行调节使其达到动态平衡。[/size][size=16px] 需要注意的是,在实际低温温度控制系统中,液氮罐的出液口或出气口往往直接与试验件的冷却管路连接,若在液氮罐出口处对低温介质流量进行直接控制又会需要使用低温阀门,因此这时可以基出口孔径不变而不对流量进行调节,只调节液氮罐的进气流量。具体方案如图1所示。[/size][align=center][size=16px][color=#339999][b][img=采用电动针阀调节流量的低温冷却试验装置温控系统结构示意图,690,354]https://ng1.17img.cn/bbsfiles/images/2023/02/202302270650154160_155_3221506_3.jpg!w690x354.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 采用电动针阀调节流量的低温冷却试验装置温控系统结构示意图[/b][/color][/size][/align][size=16px] 从图1可以看出,高压气体(一般为氮气)经过减压阀形成固定压力的气体,此室温高压气体流经电动针阀和进气管进入杜瓦瓶中的液氮中。室温高压气体进入液氮后使液氮形成蒸发而挥发为气体,挥发气体在使密闭杜瓦瓶中压力逐渐升高的同时,通过出气管流经试验装置中的热交换器后排出。由此可见,通过调节安装在进气管路上的电动针阀,针阀开度越大,进气口流速越快,液氮挥发越激烈,杜瓦瓶中的压力越高,最终使得流经热交换器的低温介质流速越快,相应的降温速度也越快。此方案的另一个主要特点是电动针阀可以在室温下工作。[/size][size=16px] 由此可见,这种在室温下通过调节进气流量的解决方案是通过电动针阀、温度传感器和PID程序控制器构成了一个低温闭环控制回路,从而可实现低温温度的定点控制或程序控制。但这种方案存在的问题是控温精度较差,一般会有2~5℃的温度波动,主要原因如下:[/size][size=16px] (1)由于一定流量的高压气体使得杜瓦瓶内的压力产生变化,压力的改变又使得冷却介质的流量发生改变,这个升华过程和压力变化过程比较复杂,这使得进气流量与压力以及压力与温度并不是一个简单的线性关系,这都是造成温度控制不准的主要因素。除非整个调节过程的速度非常快,但实际往往是个慢速过程。[/size][size=16px] (2)这种仅仅采用低温介质进行温度控制的技术手段存在降温快而升温慢的弊端,一旦实际温度超过设定点温度,往往需要试验件缓慢散冷才能实现回温,这也是造成低温温度控制很难实现较高精度的另一个主要原因。[/size][size=24px][color=#339999][b]4. 进气压力控制方案[/b][/color][/size][size=16px] 为了解决上述流量控制过程中存在的压力不稳定问题,本文提出的另一个解决方案就是直接对杜瓦瓶中的压力进行控制,即采用对高压气体进气口压力的调节和控制来实现杜瓦瓶内部压力的精确控制。具体方案如图2所示。[/size][align=center][size=16px][color=#339999][b][img=采用电气比例阀调节压力的低温冷却试验装置温控系统结构示意图,690,358]https://ng1.17img.cn/bbsfiles/images/2023/02/202302270651039090_5722_3221506_3.jpg!w690x358.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 采用电气比例阀调节压力的低温冷却试验装置温控系统结构示意图[/b][/color][/size][/align][size=16px] 从图2可以看出,高压气体经电气比例阀在进气口处按照设定值进行压力控制,由此保证杜瓦瓶中的压力始终处于准确受控状态。通过电气比例阀、温度传感器和PID程序控制器构成的双闭环串级控制回路(其中电气比例阀为辅助控制回路,PID控制器与温度传感器和电气比例阀构成主控回路),通过调节比例阀的输出压力进而控制杜瓦瓶内的气体压力,杜瓦瓶中的压力越大,使得流经热交换器的低温介质流速越快,相应的降温速度也越快。由此,通过PID控制器自动根据设定点或设定程序来调节杜瓦瓶中的气体压力,从而可实现低温温度的更准确控制,规避了复杂得升华过程带来的控制不确定性。[/size][size=16px] 与前述流量控制方案相比,压力控制方案的结构同样十分简单,提高了温控系统的控温精度,同时还保留了可在室温下进行调节的优势。[/size][size=16px] 压力控制方案的另一个突出优势是可以进行大尺寸试验件的低温控制,这主要是由于大尺寸液氮杜瓦瓶内的压力控制要远比流量控制更为简便和准确,而流量控制方案会受到电动针阀口径大小对流量调节范围的限制,大口径针阀较慢的响应速度也会给温度控制带来误差。[/size][size=16px] 尽管压力控制方案是流量控制方案的升级,也提高了控温精度,但还是没有解决单一冷却方式存在的冷却快但回温慢的弊端,还存在控温精度比较有限和控温速度较慢的问题。[/size][size=24px][color=#339999][b]5. 电加热辅助进气压力控制方案[/b][/color][/size][size=16px] 为了彻底解决单一冷却方式存在的冷却块但回温慢造成控温精度不高和速度较慢的问题,本文提出了另一个优化方案,即在进气压力控制方案的基础上,在试验件上增加电热器以提供加热功能,由此提供一个主动加热装置配合冷却系统形成冷热双作用系统,在试验件温度低于设定值时自动主动加热形成微调,这样既可以实现温度快速回温达到设定值提高控制速度,同时还可以大幅度提高控温精度。具体方案如图3所示。[/size][align=center][size=16px][color=#339999][b][img=采用电气比例阀调节压力以及辅助电热器的低温冷却试验装置温控系统结构示意图,690,387]https://ng1.17img.cn/bbsfiles/images/2023/02/202302270651428613_3754_3221506_3.jpg!w690x387.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 辅助电加热式电气比例阀调节压力的低温冷却试验装置温控系统结构示意图[/b][/color][/size][/align][size=16px] 如图3所示,优化方案是在图2所示方案的基础上增加了电热器,即增加了一路纯加热功能的温度控制。同时,为了配套此加热功能的实现,除增加了一只温度传感器之外,另外还采用了VPC2021-2系列的双通道PID调节器。由此形成了两个独立控制回路,一个回路控制进气压力实现低温温度的粗调,另一回路控制加热实现低温温度的细调,由此同时保证控温速度和精度。[/size][size=24px][color=#339999][b]6. 总结[/b][/color][/size][size=16px] 本文提出的解决方案,彻底解决了以往液氮温区低温控制中需要配备昂贵电动低温调节阀的问题,也解决了低温开关阀控温精度很差的问题。[/size][size=16px] 本文所述的三个解决方案,可适用和满足液氮温区内宽量程范围内不同要求的温度控制,在实际应用中可根据具体情况选择使用。其中控制流量和控制压力的方案可适用的温度控制范围为0℃~-150℃,而辅助加热器功能后控制压力方案的可控温度范围为150℃~-150℃,这里的上限温度主要受加热器耐低温特性决定。[/size][size=16px] 上述所有低温控温方案仅适用于液氮气体的吹扫形式,因此温度不是很低,但为更低温度的液氮介质直接流动冷却以及温度控制提供了技术上的借鉴。[/size][size=16px][/size][align=center][size=16px]~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/size][/align]

  • 低压与高压(负压与正压)之间的真空压力连续控制解决方案

    低压与高压(负压与正压)之间的真空压力连续控制解决方案

    [align=center][img=负压到正压之间的真空压力控制,550,322]https://ng1.17img.cn/bbsfiles/images/2022/06/202206150930277204_2781_3384_3.png!w690x405.jpg[/img][/align][color=#000099]摘要:针对一些真空压力应用场合需要实现低压到高压(或负压到正压)之间的单向或交替连续精密控制,本文提出了相应的解决方案。并针对不同的真空压力范围,详细介绍了不同的调节阀配置和技术参数。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#000099]一、背景介绍[/color][/size]在一些真空压力应用场合,常需要气压在低压和高压(负压到正压)之间进行单向或交替变化,且整个变化过程需要精密控制。这方面的典型应用场合主要有:(1)压力传感器的校准装置:对于一些测量范围覆盖负压到正压的压力传感器,其校准就需要相应的校准腔室,校准腔室需要模拟出相应的负压到正压的真空压力环境。并且在校准过程中,需在低压到高压范围内设置多个校准点,并按照从高到低(或从低到高)连续控制和测量,并进行校准。(2)人体肺器官性能研究装置:通过正压和负压变化控制模拟呼吸过程以研究肺器官的动力学特性,由此来指导和改进呼吸机和相关仪器。(3)大气气压环境模拟装置:在各种航空飞行器、机动车辆和电器仪表等行业,都需要在大气气压模拟环境下进行考核测试,相应的大气气压模拟腔室也需要正负压范围内的连续控制,有时甚至要求在正负压之间快速变化以模拟飞行器高度快速变化的动态特性。(4)医院隔离房间的正负压转换:很多医院的手术室等多为正压房间,随着新型冠状病毒出现以后,需要将正压室改造为负压室,甚至要求可以按照需要在正压和负压之间进行转换。(5)闪蒸工艺:闪蒸工艺是使液体在正负压快速变化环境中形成过热并快速挥发成蒸汽而起到快速干燥作用,同时可用来增加液体对固体的渗透。(6)机械手用软气动致动器:大多数用于产生弯曲致动的软气动致动器都利用了正压或负压,正负压致动器的弯曲力组合成单个致动结构,并产生较大的阻挡力并仍然能够产生较大的弯曲变形,为软机器人夹具在需要细腻触感的应用中提高了有效的技术手段。本文将针对上述应用场合中需要实现低压到高压(或负压到正压)之间的单向或交替连续精密控制,提出相应的解决方案。并针对不同的真空压力范围,详细介绍不同的调节阀配置和技术参数。[size=18px][color=#000099]二、技术方案[/color][/size]正负压区间连续控制的基本原理如图1所示,其目的是精密控制真空压力容器内的气压从低压到高压(或从高压到低压)的连续单调变化(或往复交变)。以下为控制原理的具体内容:[align=center][img=负压到正压之间的真空压力控制,550,264]https://ng1.17img.cn/bbsfiles/images/2022/06/202206150934002513_5809_3384_3.png!w690x332.jpg[/img][/align][align=center]图1 正负压区间真空压力连续控制原理图[/align](1)控制原理基于真空压力容器进气和出去的动态平衡法,是一个典型的闭环控制回路。PID控制器采集压力传感器信号并与设定值进行比较并调节进气和抽气调节阀的开度,最终使传感器测量值与设定值相对而实现真空压力准确控制。(2)为了覆盖低压到高压的整个真空压力范围,至少配置两个真空压力传感器分别负责负压和正压。PID控制器为双通道同时控制以对应低压和高压区间的控制,并且PID控制器能根据不同的真空压力范围对传感器进行自动切换。(3)控制回路中分别配备了真空泵(负压源)和高压气源(正压源),以提供足够的低压和高压能力。(4)当控制是从低压到高压进行变化时,一开始的进气调节阀开度(进气流量)要远小于抽气调节阀开度(抽气流量),通过自动调节进出气流量达到不同的平衡状态来实现不同的真空压力控制,最终进气调节阀开度逐渐要远大于抽气调节阀开度,由此实现低压到高压范围内一系列设定点的连续精密控制。对于从高压到低压的变化控制,上述过程正好相反。[size=18px][color=#000099]三、方案具体配置[/color][/size]本文所提出的技术方案包括了两个部分,以覆盖以下两个不同的真空压力范围。(1)绝对压力最高7bar至最低0.01mbar(1Pa)。此真空压力范围内的控制系统结构如图2所示。[align=center][img=,550,324]https://ng1.17img.cn/bbsfiles/images/2022/06/202206150934256923_4766_3384_3.png!w690x407.jpg[/img][/align][align=center]图2 绝对压力0.01mbar~7bar范围内的控制系统结构示意图[/align]在图2所示的控制系统中,由于对高真空进行精密控制而采用了电动针阀,电动针阀的正压耐压仅为7bar,因此决定了此种配置的控制系统高压控制范围不超过7bar。图2所示的控制系统中使用了通径较大电动球阀作为排气调节阀,主要是用于容积较大的密闭容器的真空压力控制。如果要在较小体积密闭容器内实现真空压力的连续控制,则排气调节阀可采用通径较小的电动针阀。另外,对于要求正负压快速交变控制的应用场合,要求进气和排气调节阀具有很高的响应速度,这时就需要采用响应速度更快的电动针阀。(2)绝对压力最高15bar至最低15mbar(1.5kPa)为满足更高压力的需要,就需要解决图2方案中的高压瓶颈,因此将图2中的高压耐压差的电动针阀更换为真空型气控背压阀,由此可大幅度拓宽高压区间,但相应地要在低压范围内做出牺牲。此高压型的控制系统结构如图3所示。[align=center][img=负压到正压之间的真空压力控制,557,324]https://ng1.17img.cn/bbsfiles/images/2022/06/202206150934440387_9047_3384_3.png!w690x401.jpg[/img][/align][align=center]图3 绝对压力15mbar~15bar范围内的控制系统结构示意图[/align]图3所示的负压至正压的控制系统中,采用了真空型背压阀来对进出气流量进行调节,对背压阀的驱动则使用了气控先导阀。由于采用了气控式真空型背压阀,可将高压控制范围提升到了15bar,但相应的负压同样也被提升到了15mbar。如果需要,还可以进一步抬高高压上限,但低压下限也会随之提升。在图3所示的这种先导阀驱动背压阀控制方法中,除了将整个控制区间向高压端平移之外,还具有两个特点,一是背压阀可制作成较大通径而适用于较大容器的真空压力控制,二是背压阀的响应速度很快可满足正负压往复交变的快速控制。[size=18px][color=#000099]四、总结[/color][/size]通过上述技术方案,完全可以实现正负压范围内真空压力的连续控制和往复交变控制,并且可以达到很高的控制精度和速度。本文解决方案的技术成熟度很高,方案中所涉及的电动针阀、电动球阀、背压阀和PID控制器,都是目前上海依阳实业有限公司特有的标准产品,其他的真空计、压力计、先导阀、真空泵和高压起源等也是目前市场上的标准产品。本文技术方案仅是对技术路线的详细内容进行了介绍,在具体实施过程中,还需根据具体应用中的技术指标要求来进行搭配和细化,如采用PLC控制和增加防护用的截止阀等。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 真空压力精密控制技术在阶梯光栅光谱仪中的应用

    真空压力精密控制技术在阶梯光栅光谱仪中的应用

    [color=#990000]摘要:为了实现阶梯光栅光谱仪的高精度测量,要在全过程中对温度和压力进行长时间的精密恒定控制。本文将针对阶梯光栅光谱仪中压力的精密控制,介绍压力的自动化控制技术,并详细介绍了具体实施方案,其中特别介绍了控制效果更好的双向控制模式。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、问题提示[/color][/size] 阶梯光栅光谱仪作为一种全谱直读的光谱仪器广泛应用于天文、地矿、化工、冶金、医药、环保、农业、食品卫生、生化、商检和国防等诸多领域,但阶梯光谱仪的灵敏度会受到环境温度和压力的严重影响,因此阶梯光谱仪普遍要求对工作温度和压力进行精密控制,特别是压力控制要求达到很高精度,如果控制精度不够,则会带来以下几方面的影响: (1)压力波动会使得阶梯光谱仪内的气体折射率发生改变。 (2)压力波动也会造成光谱仪内外压差不同而造成光谱仪光路(特别是光学窗口处)的微小变形。同时,温度变化也会直接造成气压随之改变。 总之,为了实现阶梯光栅光谱仪的高精度测量,要在全过程中对温度和压力进行长时间的精密恒定控制。本文将针对阶梯光栅光谱仪中压力的精密控制,介绍压力的自动化控制技术,并详细介绍了具体实施方案。[size=18px][color=#990000]二、实施方案[/color][/size] 阶梯光栅光谱仪的压力控制系统结构如图所示。在具体实施过程中,需要根据具体情况需要注意以下几方面的内容:[align=center][color=#990000][img=阶梯光谱仪压力控制,550,355]https://ng1.17img.cn/bbsfiles/images/2022/01/202201211541151559_1872_3384_3.png!w690x446.jpg[/img][/color][/align][align=center][color=#990000]阶梯光栅光谱仪压力控制系统示意图[/color][/align] (1)阶梯光谱仪的工作压力一般在一个大气压760torr附近,因此要选择在此压力下测量精度能满足设计要求的压力传感器。 (2)压力自动控制采用24位高精度PID控制器,如果24位测量精度还是无法匹配压力传感器精度,则需要更高精度控制器。 (3)压力控制采用双向模式,即同时调节进气和出气流量,但对于一个大气压附近的压力控制,一般是固定进气流量后自动调节排气流量实现压力恒定控制。 (4)针对不同尺寸的阶梯光谱仪工作腔室大小,需选择不同的出气流量控制阀。对于大尺寸空间工作室,出气流量控制可选用出气口径较大的电动球阀;而对于小尺寸空间工作室,出气流量控制则需要选择出气口径较小和更精密的电动针阀。抽气用的真空泵也是如此。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 彻底讲清如何实现各种单晶炉的0.1%超高精度真空压力控制

    彻底讲清如何实现各种单晶炉的0.1%超高精度真空压力控制

    [size=16px][color=#339999]摘要:针对晶体生长和CVD等半导体设备中对0.1%超高精度真空压力控制的要求,本文对相关专利技术进行了分析,认为采用低精度的真空度传感器、调节阀门和PID控制器,以及使用各种下游控制方法基本不太可能实现超高精度的长时间稳定控制。要满足超高精度要求,必须采用0.05%左右精度的传感器和相应精度的PID控制器,结合1s以内开合时间的高速电动针阀和电动球阀,同时还需采用上游进气控制模式。另外,本文提出的超高精度解决方案中,还创新性的提出了进气混合后的减压恒压措施,消除进气压力波动对超高精度控制的影响。[/color][/size][align=center][size=16px][img=彻底讲清如何实现各种单晶炉的0.1%超高精度真空压力控制,690,290]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071124469579_383_3221506_3.jpg!w690x290.jpg[/img][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 在晶体生长和CVD等半导体设备领域,普遍要求对反应腔室的真空压力进行快速和准确控制。目前许多半导体工艺设备的真空压力基本在绝对压力10~400Torr的真空度范围内,通过使用下游节流阀(电动球阀或电动蝶阀)的开度自动变化来调节抽气速率基本能达到1%以内的控制精度。但对于有些特殊晶体生长等生产工艺,往往会要求在0.1~10Torr真空度范围内进行控制,并要求实现0.1%的更高精度控制。[/size][size=16px] 最近有用户提出对现有晶体生长炉进行技术升级的要求,希望晶体炉的真空压力控制精度从当前的1%改造升级到0.1%,客户进行改造升级的依据是宁波恒普真空科技股份有限公司的低造价的压力控制系统,且技术指标是“公司研发的压力传感器和控制阀门及配套的自适应算法,可将压力稳定控制在±0.3Pa(设定压力在100~500Pa间)”。[/size][size=16px] 我们分析了宁波恒普在真空压力控制方面的两个相关专利,CN115113660A(一种通过多比例阀进行压力控制的系统及方法)和CN217231024U(一种碳化硅晶体生长炉的压力串级控制系统),认为采用所示的专利技术可能无法实现100~500Pa全量程范围内0.1%的长时间稳定的控制精度,最多只可能在个别真空点和个别时间段内勉强内达到。本文将对这两项专利所设计的控制方法进行详细技术分析说明无法达到0.1%控制精度的原因,并提出相应的解决方案。[/size][b][size=18px][color=#339999]2. 专利技术分析[/color][/size][/b][size=16px] 宁波恒普公司申报的发明专利“一种通过多比例阀进行压力控制的系统及方法”,其压力控制系统结构如图1所示,所采用的控制技术是一种真空压力动态平衡控制方法中典型的下游控制模式,即固定进气流量,通过调节排气流量实现真空压力控制。[/size][align=center][size=16px][color=#339999][b][img=01.通过双比例阀进行压力控制的系统的示意图,500,244]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071128351485_5277_3221506_3.jpg!w690x338.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 通过双比例阀进行压力控制的系统的示意图[/b][/color][/size][/align][size=16px] 在动态平衡法控制中,这种下游模式的特点是: (1)非常适用于10~760Torr范围内的高气压精确控制,抽气流量的变化可以很快改变真空腔体内部气压的变化,不存在滞后性,这对于高精度的高压气体控制非常重要,因此这种下游控制模式也是目前国内外绝大多数晶体炉的真空压力控制方法。 (2)并不适用于0.1~10Torr范围内低气压控制,这是因为在低气压控制过程中,抽气速率对低气压变化的影响较为缓慢,存在一定的滞后性,调节抽气速率很难实现低气压范围内的真空度高精度控制。因此,对于低气压高真空的精密控制普遍采用的是上游控制模式,即调节进气流量,利用了低气压对进气流量非常敏感的特性。 宁波恒普公司所申报的发明专利“一种通过多比例阀进行压力控制的系统及方法——CN 115113660A”,如图1所示,所采用的下游控制模式是通过分程(或粗调和细调)形式来具体实现,即通过次控制阀开度改变抽气口径大小后,再用主控制阀开度变化进行细调,本质还是为了解决抽气速率的精细化调节问题。 这种抽气速率分段调节的类似方法在国内用的比较普遍,较典型的如图2所示的浙江晶盛公司专利“一种用于碳化硅炉炉腔压力控制的控压装置——CN210089430U”,采用的就是多个分支管路进行下游模式控制,多个分支管路组合目的就是调节抽气口径大小。[/size][align=center][b][size=16px][color=#339999][img=02.下游控制整体结构示意图,500,450]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071129101289_1324_3221506_3.jpg!w690x621.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图2 下游多支路真空压力控制结构示意图[/color][/size][/b][/align][size=16px] 宁波恒普公司另一个实用新型专利CN217231024U(一种碳化硅晶体生长炉的压力串级控制系统),如图3所示,也是采用下游控制模式。[/size][align=center][b][size=16px][color=#339999][img=03.晶体生长炉的压力串级控制系统的结构示意图,450,361]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071132344137_9996_3221506_3.jpg!w690x555.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图3 下游串级控制系统结构示意图[/color][/size][/b][/align][size=16px] 在晶体生长和其他半导体工艺的真空压力控制中,国内外普遍都采用下游控制模式而很少用上游控制模式,主要原因如下:[/size][size=16px] (1)绝大多数工艺对气氛环境的要求是高气压(低真空)范围内控制,如10~500Torr(绝对压力),且控制精度能达到1%即可。这种要求,最适合的控制方法就是下游模式。[/size][size=16px] (2)绝大多数半导体工艺都需要输入多种工作气体,而且各种工作气体还要保持严格的质量和比例,所以进气控制基本都采用气体质量流量计。如果在质量和比例控制之后,再对进气流量进行控制,一是没有必要,二是会增加技术难度和设备成本。[/size][size=16px] (3)在下游控制模式中安装节流阀(电动蝶阀)比较方便,可以在真空泵和腔体之间的真空管路上安装节流阀,而且对节流阀的拆卸和清洗维护也较方便。[/size][size=16px] 国内有些厂家在下游模式中采用上述分程控制方法的动机主要是为了规避使用高速和高精度但价格相对较贵的下游节流阀(电动蝶阀),这种高速高精度下游节流阀主要是具有1秒以内的全程闭合时间,直接使用这种高速蝶阀就可以在高气压范围内实现低真空度控制。而绝大多数国产真空用电动球阀和电动蝶阀尽管价格便宜,但响应速度普遍在几十秒左右,这使得压力控制的波动性很大。所以为了使用国产慢速电动蝶阀,且保证控制精度,只能在下游管路上想办法。[/size][size=16px] 如果采用高速电动球阀或电动蝶阀,且真空计和控制器达到一定精度,则采用任何形式的下游模式控制方式都可以在低气压范围内轻松实现1%的控制精度,但无法达到0.1%的控制精度。而如果采用低速阀门和上述专利所述的控制方法,也有可能达到1%控制精度,但更是无法实现更高精度0.1%的真空压力控制。[/size][b][size=18px][color=#339999]3. 超高精度真空压力控制方法及其技术[/color][/size][/b][size=16px] 晶体生长炉的真空压力控制也是一种典型的闭环PID控制回路,回路中包括真空泵、真空计、电动阀门和PID控制器。其中真空泵提供真空源,真空计作为真空压力测量传感器,电动阀门作为执行器调节进气或出气流量,PID控制器接收传感器信号并与设定值进行比较和PID计算后输出控制信号给执行器。[/size][size=16px] 这里我们重点讨论在0.1~10Torr的低气压(高真空)范围内实现0.1%超高精度的控制方法和相关技术。依据动态平衡法控制理论以及大量的实际控制试验和成功应用经验,如果要实现上述低压范围内(0.1~10Torr)的高精度控制,必须满足以下几个条件,且缺一不可:[/size][size=16px] (1)真空泵要具备覆盖此真空度范围的抽取能力,并尽可能保持较大的抽速,由此在高温加热过程中的气体受热膨胀压力突增时,能及时抽走多余的气体。[/size][size=16px] (2)真空计和PID控制器要具有相应的测量和控制精度。[/size][size=16px] (3)采用上游控制模式,并需采用高速电动针阀自动和快速的调节进气流量大小。[/size][size=16px] 国内外晶体生长炉和半导体工艺的真空压力控制,普遍采用的是薄膜电容真空计,价格在一万元人民币左右的这种进口真空计,测量精度基本在0.25%左右。这种真空计完全可以实现0.5 ~ 1%的控制精度,但无法满足更高精度控制(如0.1%)中的测量要求,更高精度的真空度测量则需要采用0.05%以上精度的昂贵的薄膜电容真空计。[/size][size=16px] 同样,对于PID控制器,也需要相应的测量精度和控制精度。如对于0.25%精度的真空计,采用16位AD、12位DA和0.1%最小输出百分比的PID控制器,可以实现1%以内的控制精度,这在相关研究报告中进行过专门分析和报道。若要进行更高精度的控制,则在采用0.05%精度真空计基础上,还需采用24位AD、16位DA和0.01%最小输出百分比的PID控制器。[/size][size=16px] 宁波恒普公司在其官网的压力控制技术介绍中提到,采用恒普自己研发的压力传感器和控制阀门及配套的自适应算法,在绝对压力100~500Pa范围内可将国内外现有技术的±3Pa压力波动(控制精度在1%左右)提升到±0.3Pa(控制精度在0.1%左右),控制精度提高了一个数量级。我们分析认为:在绝对压力100~500Pa的低压范围内,如果不能同时满足上述的三个条件,基本不太可能实现0.1%的超高精度控制。[/size][b][size=18px][color=#339999]4. 超高精度真空压力控制技术方案[/color][/size][/b][size=16px] 对于超高精度真空压力控制解决方案,我们只关心前述条件的第二和第三点,不再涉及真空泵内容。[/size][b][color=#339999] (1)超高精度真空计的选择[/color][/b][size=16px] 目前国际上能达到0.05%测量精度的薄膜电容真空计有英福康和MKS两个品牌,如图4所示。这类超高精度的真空计都有模拟信号0~10V输出,数模转换是20位。[/size][align=center][b][size=16px][color=#339999][img=04.超高精度薄膜电容真空计,550,240]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071130184466_8776_3221506_3.jpg!w690x302.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图4 超高精度0.05%薄膜电容真空计 (a)INFICON Cube CDGsci;(b)MKS AA06A[/color][/size][/b][/align][size=16px][b][color=#339999] (2)超高精度PID控制器的选择[/color][/b] 从上述真空计指标可以看出,真空计的DAC输出是20位的0~10V模拟型号,那么真空压力控制器的数据采集精度ADC至少要20位。为此,解决方案选择了目前最高精度的工业用PID控制器,如图5所示,其中24位AD、16位DA和0.01%最小输出百分比。所选控制器具有单通道和双通道两种规格,这样可以分别用来满足不同真空度量程的控制,双通道控制器可以用来同时采集两只不同量程的真空计而分别控制进气阀和抽气阀实现真空压力全量程的覆盖控制。另外PID控制器还具有标准的RS485通讯和随机配套计算机软件。[/size][align=center][b][size=16px][color=#339999][img=05.高速电动阀门和超高精度PID调节器,650,237]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071130375986_9640_3221506_3.jpg!w690x252.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图5 超高精度PID真空压力控制器和高速电动阀门[/color][/size][/b][/align][size=16px][b][color=#339999] (3)高速电动阀门选择[/color][/b] 高速电动阀门主要包括了真空用电动针阀和电动球阀,都有极小的漏率。如图5所示,其中电动针阀用于微小进气流量的快速调节,电动球阀用于大排气流量的快速调节,它们的全程开启闭合速度都小于1s,控制电压都为0~10V模拟信号。[b][color=#339999] (4)超高精度0.1%压力控制技术方案[/color][/b] 基于上述关键部件的选择,特别是针对0.1~10Torr范围内的0.1%超高精度真空压力控制,本文提出的控制系统具体技术方案如图6所示。[/size][align=center][b][size=16px][color=#339999][img=06.超高精度真空压力控制系统结构示意图,600,325]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071131004546_6716_3221506_3.jpg!w690x374.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图6 超高精度真空压力控制系统结构示意图[/color][/size][/b][/align][size=16px] 如前所述,在0.1~760Torr的真空压力范围内,分别采用了量程分别为10Torr和1000Torr的两只超高精度真空计,并分别对应上游和下游控制模式来进行覆盖控制,真空源为真空泵。[/size][size=16px] 在10~750Torr范围内,采用下游控制模式,即控制器的第一通道用来控制电动针阀的进气开度保持固定,第二通道用来检测真空计信号,并根据真空压力设定值自动PID调节电动球阀的开度变化实现准确控制。[/size][size=16px] 在0.1~10Torr范围内,采用上游控制模式,即控制器的第二通道用来控制电动球阀的进气开度保持固定(一般为全开),第二通道用来检测真空计信号,并根据真空压力设定值自动PID调节电动针阀的开度变化实现准确控制。[/size][size=16px] 由于电动针阀调节的是总进气流量,所以在具体工艺中需要将多种工作气体先进行混合后再流经电动针阀,而且多种工作气体通过相应的气体质量流量计(MFC)来控制各种气体所占比例,然后进入混气罐。在0.1~10Torr范围内的超高精度控制中,进气压力的稳定是个关键因素。为此,解决方案中增加了一个减压恒压罐,并采用正压控制器对混合后的气体进行减压,使恒压罐内的压力略高于一个大气压且恒定不变。[/size][size=16px] 解决方案中的超高精度PID控制器具有RS485接口并采用标准的MODBUS通讯协议,可以通过配套的计算机软件直接对控制器进行各种设置和操作运行,并显示、存储和调用各种控制参数的变化曲线,这非常便于整个工艺控制过程的调试。工艺参数和过程调试完毕后,可连接PLC上位机进行简单的编程就能与工艺设备控制软件进行集成。[/size][size=16px] 综上所述,本文设计的解决方案,结合相应的超高精度和高速的传感器、电动阀门和PID控制器,能够彻底解决超高精度且长时间的真空压力控制难题,可以满足生产工艺需要。[/size][b][size=18px][color=#339999]5. 总结[/color][/size][/b][size=16px] 晶体生长和半导体材料的生产过程往往需要较长的时间,工艺过程中的真空压力控制精度必须还要考虑长时间的控制精度,仅仅某个真空度下或短时间内达到控制精度并不能保证工艺的稳定和产品质量。[/size][size=16px] 在本文的解决方案中,特别强调了一是必须采用相应高精度和高速的传感器、执行器和控制器,二是必须采用相应的上游或下游控制方式,否则,如果仅靠复杂PID控制算法根本无法通过低精度部件实现高精度控制,特别是在温度对真空压力的非规律性严重影响下更是如此,这在太多的温度和正压控制中得到过证明,也是一个常识性概念。[/size][size=16px] 对于超高精度的真空压力控制,本文创新性的提出了稳定进气压力的技术措施,其背后的工程含义也是先粗调后细调,尽可能消除外界波动对控制精度的影响,这在长时间内都要求进行超高精度稳定控制中尤为重要。[/size][size=16px] 这里需要说明的是,实现超高精度控制的代价就是昂贵的硬件装置,如超高精度的电容真空计。尽管在高速电动阀门和超高精度PID控制器上已经取得技术突破并降低了价格,但在薄膜电容真空计方面国内基本还处于空白阶段。除非在超高精度电容真空计上的国内技术取得突破,可以使得造价大幅降低,否则将不可避免使得真空压力控制系统的成本增大很多,而目前在国内还未看到这种迹象。[/size][align=center][size=16px]~~~~~~~~~~~~~~~~~~~~~~[/size][/align]

  • 微激光束焊接中真空控制系统的压力调节解决方案

    微激光束焊接中真空控制系统的压力调节解决方案

    [color=#990000]摘要:本文针对微激光束焊接中真空控制系统的压力调节,介绍了相应的解决方案。具体实施方案是配备不同量程的真空计、进气电动针阀、排气电动球阀和双通道高精度PID控制器,并采用上游和下游控制模式可实现全量程范围内的气压调节和恒定控制。此解决方案可在全量程范围内任意设定点的真空度恒定控制达到波动率小于±1%。[/color][align=center][color=#990000]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/align][color=#990000] [size=18px]一、背景介绍[/size][/color]微激光束焊接 (LBW) 也称为微焊接,是通过投射出的微小直径激光光束,产生微观焊缝将不同金属熔合在一起。最近有客户提出定制要求,要求在微激光束焊接的系统中,配备用于精确压力调节的真空控制系统。具体要求是焊接腔室内充入惰性气体,焊接腔室内的绝对气压在10Pa至一个大气压(0.1MPa)的真空范围内精确恒定控制,在任意控制点上的气压波动小于±1%。本文将针对上述客户对微激光束焊接中真空控制系统的压力调节技术要求,提出相应的解决方案。具体实施方案是配备不同量程的真空计、进气电动针阀、出气电动球阀和双通道高精度PID控制器,并针对不同真空度量程分别采用上游和下游控制模式实现全量程范围内的气压调节和恒定控制。此解决方案可在全量程范围内任意设定点的真空度恒定控制达到波动率小于±1%。[size=18px][color=#990000]二、解决方案[/color][/size]微激光束焊接 (LBW) 真空控制系统的压力调节解决方案如下图所示。[align=center][img=微激光束焊接中的真空控制系统,400,555]https://ng1.17img.cn/bbsfiles/images/2022/09/202209201618016926_439_3221506_3.png!w590x819.jpg[/img][/align]由于微激光束焊接所要求的气压调节范围(绝对压力)为10Pa~0.1MPa的真空度,并实现全量程任意设定真空度在恒定过程中的波动率小于±1%,而且还要求对焊接过程中所引起的气压波动进行快速调节并恒定能力,故本解决方案采用两个控制回路来覆盖全量程。第一个控制回路负责控制1kPa~101kPa范围的高气压,采用了1000Torr量程的薄膜电容真空计作为传感器。此真空计连接PID控制器的第一通道,PID控制器通过接收到的真空度信号与设定值进行比较来调节电动球阀,使得焊接室内的气压快速达到设定值并保持恒定。第二个控制回路负责控制10Pa~1kPa范围的低气压,采用了10Torr量程的薄膜电容真空计作为传感器。此真空计连接PID控制器的第二通道,PID控制器通过接收到的真空度信号与设定值进行比较来调节电动针阀,使得焊接室内的气压快速达到设定值并保持恒定。为保证控制精度和稳定性,此解决方案中要求电动针阀和球阀需要具有1秒以内的响应速度,并要求双通道PID控制器具有24位AD和16位DA的高精度。此解决方案已成功得到广泛应用。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 探空仪检定用低压环境模拟舱压力控制系统的升级改造

    探空仪检定用低压环境模拟舱压力控制系统的升级改造

    [color=#990000]摘要:针对上一代探空仪检定用低压环境模拟舱压力控制系统控制精度和稳定性差、压力传感器和控制系统配置不合理等问题,用户提出升级改造要求。本文介绍了新一代低压环境模拟舱压力控制系统的实施方案,采用了双向控制模式,进行了方案验证试验,试验结果证明控制精度和稳定性都大幅提高。关键词:低压模拟舱,探空仪,压力控制,电动针阀,电动球阀,上游模式,下游模式,PID控制器[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000]一、问题的提出[/color][/size]检定探空仪的重要手段之一是在地面进行低压环境模拟舱的测试,在用的低压环境模拟舱结构如图1所示。[align=center][color=#990000][img=低气压环境模拟舱压力控制,550,376]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061504557090_7216_3384_3.jpg!w690x472.jpg[/img][/color][/align][align=center][color=#990000]图1 低压环境模拟舱结构示意图[/color][/align]此低压环境模拟舱使用过程中存在压力控制波动较大的问题,越靠近1个大气压时波动越大,通过分析认为主要是以下几方面原因引起:(1)压力传感器选择不合理,在全量程压力范围内传感器误差所占比例并不相同,从而显示出靠近1个大气压时波动大和远离1个大气压时波动小的现象,但实际上整体都存在较大波动,只是压力传感器在1个大气压附近精度最高,而在远离1个大气压处压力传感器误差已经完全涵盖了压力波动范围。(2)压力控制采用的是开关控制模式,真空泵和电磁阀根据压力设定值大小同时开启或关闭,尽管增加了储气罐作为缓冲,但这种半自动控制模式很难实现压力的准确恒定。(3)控制器并没有采用PID自动控制方式,也是影响压力控制精度的主要原因。综上分析,针对上一代探空仪检定用低压环境模拟舱压力控制系统控制精度和稳定性差、压力传感器和控制系统配置不合理等问题,用户提出升级改造要求。本文将介绍新一代低压环境模拟舱压力控制系统的实施方案,拟采用双向控制模式,并进行方案验证试验,由此证明控制精度和稳定性能大幅提高。[size=18px][color=#990000]二、压力控制系统升级改造方案[/color][/size]探空仪检定用低压环境模拟舱工作的绝对压力范围为1torr~760torr,要求在此范围内模拟舱的压力可以在任意设定点上准确恒定,甚至要求可以按照设定变压速率进行控制。为此,具体的升级改造方案是在原压力控制系统的基础上,保留真空泵和真空电磁阀,更换压力传感器和控制器,去掉储能罐,增加数控的进气阀和排气阀,具体方案如下:(1)采用10torr和1000torr两个不同量程的电容压力计来覆盖整个低气压范围的测量,从而保证全量程的测量精度。(2)采用高精度PID真空压力控制器,以匹配电容压力计的测量精度和保证控制精度。(3)分别真空腔体的进气口和排气口安装电动针阀和电动球阀,电动针阀直接安装在进气口处,电动球阀安装在排气口和真空泵的电磁阀之间。(4)控制方式分别采用上游模式和下游模式,上游模式用来控制10torr以下气压,下游控制用来控制10~760torr范围气压。(5)如图2所示,上游模式是维持上游压力和出气口流量恒定,通过调节进气口流量控制仓室压力。(6)如图3所示,下游模式是维持上游压力和进气口流量恒定,通过调节排气口流量控制仓室压力。[align=center][color=#990000][img=低气压环境模拟舱压力控制,400,421]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061506055621_2789_3384_3.jpg!w400x421.jpg[/img][/color][/align][align=center][color=#990000]图2 低气压上游控制模式[/color][/align][align=center][color=#990000][img=低气压环境模拟舱压力控制,450,393]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061506206214_771_3384_3.jpg!w450x393.jpg[/img][/color][/align][align=center][color=#990000]图3 低气压下游控制模式[/color][/align][size=18px][color=#990000]三、方案验证试验[/color][/size]针对上述两种控制模式,分别采用1torr和1000torr两只电容压力计、电动针阀、电动球阀和24位高精度压力控制器进行了考核试验,试验用的真空腔体内部空间为400×400×500mm,试验装置如图4和图5所示。[align=center][color=#990000][img=低气压环境模拟舱压力控制,550,369]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061506318858_3696_3384_3.jpg!w690x464.jpg[/img][/color][/align][align=center][color=#990000]图4 低气压上游控制模式考核试验装置[/color][/align][align=center][color=#990000][img=低气压环境模拟舱压力控制,550,339]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061506474377_3818_3384_3.jpg!w690x426.jpg[/img][/color][/align][align=center][color=#990000]图5 低气压下游控制模式考核试验装置[/color][/align]在上游模式试验过程中,首先开启真空泵后使其全速抽气,然后在 68Pa 左右对控制器进行 PID参数自整定。自整定完成后,分别对 12、27、40、53、67、80、93 和 107Pa共8个设定点进行了控制,整个控制过程中的气压变化如图6所示。在下游模式试验过程中,首先开启真空泵后使其全速抽气,并将进气阀调节到微量进气的位置,然后在300torr左右对控制器进行PID参数自整定。自整定完成后,分别对 70、 200、 300、450 和 600Torr 共5个设定点进行了控制,整个控制过程中的气压变化如图7所示。 [align=center][color=#990000][img=低气压环境模拟舱压力控制,550,333]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061507110485_1025_3384_3.jpg!w690x418.jpg[/img][/color][/align][align=center][color=#990000]图6 上游模式低气压定点控制考核试验曲线[/color][/align][align=center][color=#990000][img=低气压环境模拟舱压力控制,550,327]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061507246957_2391_3384_3.jpg!w690x411.jpg[/img][/color][/align][align=center][color=#990000]图7 下游模式低气压定点控制考核试验曲线[/color][/align]将上述不同低气压恒定点处的控制效果以波动率来表示,则得到图8和图9所示的整个范围内的波动率分布。从波动率分布图可以看出,在整个低气压的全量程范围内,波动率可以精确控制在±1%范围,在12Pa处出现的较大波动,是因为采用 68Pa处自整定获得的PID参数并不合理,需进行单独的PID参数自整定。 [align=center][color=#990000][img=低气压环境模拟舱压力控制,550,309]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061507435250_4590_3384_3.jpg!w690x388.jpg[/img][/color][/align][align=center][color=#990000]图8 上游模式低气压定点控制考核试验曲线[/color][/align][align=center][color=#990000][img=低气压环境模拟舱压力控制,550,340]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061507565906_1701_3384_3.jpg!w690x427.jpg[/img][/color][/align][align=center][color=#990000]图9 下游模式低气压定点控制考核试验曲线[/color][/align]从上述考核试验结果可以看出,升级改造后的控制方法可以将压力控制精度和稳定性提高五倍以上,并大幅提高了低压环境模拟仓自动化水平和可靠性。[align=center]=======================================================================[/align]

  • 半导体封装工艺用固晶炉的正负压力PID控制系统

    半导体封装工艺用固晶炉的正负压力PID控制系统

    [size=16px][color=#990000]摘要:真空压力除泡机和除泡烤箱在电子行业的应用十分广泛,但现有除泡机存在的最大问题是选择了开关式阀门,无法实现真空和压力既准确又快速的控制。为此,本文提出了升级改造技术方案,即采用双向PID控制器和快速电动球阀开度大小的连续调节,可在各种规格尺寸的除泡机上实现真空压力的快速准确控制。[/color][/size][align=center] [img=,690,439]https://ng1.17img.cn/bbsfiles/images/2023/04/202304231446478656_8396_3221506_3.jpg!w690x439.jpg[/img][/align][size=16px][/size][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size][size=16px] 真空压力除泡烤箱常用于半导体、5G通讯、新能源、汽车电子、消费电子、航天军工等领域的芯片黏结(DAF)、屏幕贴合(OCA)、底部填充胶(Underfill)、灌封胶(Potting)或印刷涂覆胶(Printing)等工艺制程中,可有效消除气泡,增加粘附力和密封性,提高产品良率、一致性和可靠性。真空处理是为了防止粘结剂受热氧化,加压充气是将粘结剂内的气泡压除,避免气泡的产生,使得半导体芯片与片材在后续的回焊过程中不会受到较大的应力而避免损坏。[/size][size=16px] 真空压力除泡的典型过程如图1所示,首先对载有半导体芯片以及片材的烤箱抽真空并充氮气的冲洗循环,尽可能减少腔室内的氧分子,然后将腔室内压力控制在微负压状态,使腔室内氮气体积为箱体体积的60%~70%。随后控制加热器加热使腔室内部环境温度升高到80℃,并将加热器周围的热气吹至半导体芯片上,防止将半导体芯片以及片材粘结剂固化。随后再次通入氮气在腔室内形成高压环境,高压氮气将粘结剂内的气泡压除清理,完成气泡的清除工作,同时将腔室内部环境加热至150℃并保持恒定,使得粘结更加稳定,半导体芯片的质量更好。最后停止加热和通过水冷机构将箱体内部的温度降低,泄压后完成工作。[/size][align=center][size=16px][color=#990000][b][img=01.除泡过程中的真空压力和温度变化曲线示意图,550,294]https://ng1.17img.cn/bbsfiles/images/2023/04/202304241456550094_8341_3221506_3.jpg!w690x369.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 除泡过程中真空压力和温度的典型变化曲线[/b][/color][/size][/align][size=16px] 从图1所示过程可以看出,整个除泡过程需要包含以下几方面的内容:[/size][size=16px] (1)真空压力的变化过程需要准确的可编程程序控制,可使整个处理过程完全自动运行。[/size][size=16px] (2)所配置的真空压力装置能被来自控制器的电子信号精细调节和控制以满足精度要求,而且还需满足一定的变化速度要求。[/size][size=16px] (3)需要合适的控制方法和结构,控制真空和压力的连续变化。[/size][size=16px] 尽管目前大多除泡机都标称具有真空压力控制功能,但由于都是采用开关式阀门进行真空和压力的调节控制,这种开关式控制方法存在以下两个问题:[/size][size=16px] (1)如果阀门口径较大,则真空压力的控制稳定性较差,但好处是控制速度较快。[/size][size=16px] (2)如果阀门口径较小,尽管能改善控制精度,但劣势则是控制速度很慢。[/size][size=16px] 由此可见,现有真空压力除泡机存在的最大问题是选择了开关式阀门进行真空压力控制,无法对抽气和进气流量进行精细调节。为此,本文提出了升级改造技术方案,通过采用快速电动阀门的开度大小调节,可准确且快速实现除泡机的真空压力控制。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 为了在除泡机上实现快速准确的真空压力控制,本文提出的具体解决方案如图2所示。[/size][align=center][size=16px][color=#990000][b][img=02.除泡机真空压力控制系统结构示意图,690,342]https://ng1.17img.cn/bbsfiles/images/2023/04/202304241457199993_3223_3221506_3.jpg!w690x342.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 除泡机真空压力控制系统结构示意图[/b][/color][/size][/align][size=16px] 除泡机的新型真空压力控制系统主要包括高压气源、电动调节阀、真空压力传感器、双向控制器和真空泵等,其真空压力控制基于动态平衡法,即通过调节进入和流出除泡烤箱的气体流量实现真空和压力的准确控制。当进行真空控制时,自动减小进气调节阀开度但增大出气调节阀开度;当进行压力控制时,自动增大进气调节阀开度但减小出气调节阀开度。由此可实现真空压力的全量程自动平滑控制。[/size][size=16px] 此新型的除泡机真空压力控制系统主要有以下功能和特点:[/size][size=16px] (1)采用通径为10mm的快速电动球阀,工作压力1MPa以下,极小的真空漏率,开关速度小于7秒,0~10V模拟控制信号,这样既可以快速抽取真空和加载高压气体,又能进行快速调节实现真空压力的稳定控制。[/size][size=16px] (2)采用了真空和压力双传感器,可以覆盖真空压力的全量程测量和控制。[/size][size=16px] (3)采用具有分程控制功能的双向PID控制器实现进气和出气阀门的同时调节,可在真空压力全量程范围内进行自动控制。[/size][size=16px] (4)PID控制器具有双传感器自动切换功能,可根据控制要求自动选择相应的传感器。[/size][size=16px] (5)PID控制器具有可编程功能,可支持20条工艺曲线。控制器具有PID参数自整定功能,支持20组分组PID参数。[/size][size=16px] (6)PID控制器具有RS485通讯接口和标准的MODBUS协议,可与上位机连接。自带的控制软件可直接运行控制器,并设置、数字显示、曲线显示和存储控制器参数的变化过程。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本文详细介绍了用于除泡机的新型真空压力控制系统,控制系统所采用的电动球阀和双向PID控制器,使得此系统可实现真空压力全范围内快速准确的可编程控制。[/size][size=16px] 另外,控制系统所用的PID控制器,是一种通用性PID调节器,也完全可以用于除泡机的温度控制。特别是具有两路独立的PID控制通道,可对两组发热体进行控制,更能保证除泡机内的温度均匀性。[/size][align=center][size=16px]~~~~~~~~~~~~~~~~~~~[/size][/align]

  • 【讨论】如何实施GB/T228中规定的应变速率控制??

    [color=#DC143C][size=4]在GB/T228中规定的下屈服强度的测定中要求使用应变速率进行测量控制,大家在平时的工作中有没有什么好的方法,提供出来和大家分享!问题1、现在我们那些厂家生产的试验机可以实现该种控制方式? 2、如何实现应变速率控制? 3、是否可以根据标准要求通过粗略计算而使用其它的控制方式来实现?[/size][/color]

  • 采用压力串级控制系统实现气动马达的精密调节

    采用压力串级控制系统实现气动马达的精密调节

    [color=#ff0000]摘要:气动马达作为一种将压缩空气的压力能转换为旋转机械能的装置,其运行的关键是要进行驱动气体压力的控制。本文介绍了目前气动马达压力控制装置的技术现状,特别指出了现有技术中使用电空变换器存在的不足,介绍了电空变换器的更新换代产品——电气比例阀。本文对这两种新旧技术进行了详细比较,新一代的电气比例阀技术更能满足今后气动马达对小型化、集成化、智能化、精细化、高寿命和高可靠性等方面的需求。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~[/align] 气动马达也称为风动马达,是指将压缩空气的压力能转换为旋转的机械能的装置。气动马达一般作为更复杂装置或机器的旋转动力源,它的作用相当于电动机或液压马达,即输出转矩以驱动机构作旋转运动。气动马达的主要特点有: (1)使用空气作为介质,无供应上的困难,用过的空气不需处理,放到大气中无污染 压缩空气可以集中供应,远距离输送。操纵方便,维护检修较容易。 (2)气马达具有结构简单,体积小,重量轻,马力大,操纵容易,维修方便。 (3)可以无级调速,只要控制进气阀或排气阀的开度,即控制压缩空气的流量,就能调节马达的输出功率和转速。即通过调节气源压力或者改变气流量,也可通过同时调节两者来实现。 (4)能够正转也能反转。大多数气马达只要简单地用操纵阀来改变马达进、排气方向,即能实现气马达输出轴的正转和反转,并且可以瞬时换向。在正反向转换时,冲击很小,而且不需卸负荷。 (5)工作安全,不受振动、高温、电磁、辐射等影响,适用于恶劣的工作环境,在易燃、易爆、高温、振动、潮湿、粉尘等不利条件下均能正常工作。 从上述气动马达的特点可以看出,气动马达运行的关键是压力控制。目前气动马达常用的压力控制装置如图1所,其中主要包括电空变换器(E/P或V/P转换器)和增压器,由此构成压力的开环控制,通过电流或电压信号输入就可以进行气动马达的调节。[align=center][color=#ff0000][img=气动马达常用压力控制装置结构示意图,500,359]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301217044251_5561_3221506_3.jpg!w690x496.jpg[/img][/color][/align][align=center][color=#ff0000]图1 气动马达常用压力控制装置结构[/color][/align] 如果增加传感器(如旋转编码器)和PLC控制器,由此可构成闭环控制回路,传感器检测气动马达的转速等参量,PLC控制器通过检测传感器信号并与设定值比较可进行气动马达高精度的自动控制。另外,整个控制装置还可以通过增加双向阀来实现气动马达的正反转自动控制。 在图1所示的气动马达压力控制装置中,所用的电控变换器(电气转换器)是一种比较传统的压力调节装置,目前正逐渐被电气比例阀所代替。图2所示为这两种压力调节装置的对比。[align=center][color=#ff0000][img=电气比例阀和电气转换器比较表,690,520]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301217340426_2793_3221506_3.jpg!w690x520.jpg[/img][/color][/align][align=center][color=#ff0000]图2 电气比例阀和电气转换器特性对比表[/color][/align] 从上述对比可以看出,电气比例阀采用了更新的技术,与传统的电气转换器相比具有更优异的性能,电气比例阀正在快速对电气转换器形成升级替换,特别是随着电气比例阀的价格逐渐降低,已逐渐成为电气压力控制领域内主要产品。 另外,由于电气比例阀内置了压力传感器和PID控制器,为很多压力和流量控制应用场合提供了极其丰富的拓展应用,即采用电气比例阀可很方便的与其他物理量(如温度、位移、出力等)的探测和控制组成更复杂的串级控制回路,实现更多工业应用领域中的精密控制功能。 特别是采用电气比例阀与超高精度PID控制器结合形成的串级控制回路,可实现超高精度定位、超低速度运转和细小载荷的控制。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 国产化替代艾默生ER5000系列电子压力控制器及其功能扩展

    国产化替代艾默生ER5000系列电子压力控制器及其功能扩展

    [color=#990000]摘要:本文主要介绍了国产化替代方面所做的工作,替代产品为艾默生TESCOM ER5000系列电子压力控制器及其背压阀。本文介绍了进口产品的性能特点和不足,提出了国产化替代技术路线,描述了国产化替代产品的性能指标,介绍了国产化替代产品的功能扩展和技术创新,使国产化替代产品具有了更高的性价比和使用灵活性。[/color][align=center][img=国产化替代,690,408]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182018432207_7188_3384_3.jpg!w690x408.jpg[/img][/align][size=18px][color=#990000]1. 艾默生ER5000系列压力控制器[/color][/size][size=16px][color=#990000]1.1. 压力控制器结构和原理[/color][/size]艾默生最新一代TESCOM ER5000系列电子压力控制器,是一种多功能集成式的压力控制器,集成了压力传感器、PID(比例-积分-微分)控制器和电动比例阀三个部件,集传感器、控制器和电子阀门于一体构成一个完整的控制机构。TESCOM ER5000电子压力控制器及其基本结构如图1-1所示。[align=center][color=#990000][img=国产化替代,690,249]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182025069214_3530_3384_3.png!w690x249.jpg[/img][/color][/align][align=center][color=#990000]图1-1 TESCOM ER5000电子压力控制器结构示意图[/color][/align]从图1-1可以看出,ER5000电子压力控制器的功能就是控制底部出口处的压力,将进气压力降低并控制在设定压力上,使底部出口处的压力始终与设定压力一致。ER5000电子压力控制器实际上是一款电子式的减压阀,其工作原理如图1-2所示。外部气源向ER5000供给压力,供给压力通过打开的进气阀成为出口处的输出压力,同时此输出压力通过压力传感器反馈至PID控制器。如果反馈值低于压力设定值,控制器继续控制进气阀处于开启状态直到反馈值与设定值相等。等到上述两个值相等,进气阀将关闭,此时出口处持续输出恒定的设定值压力。如果反馈值高于设定值,则控制器将启动排气阀,从而排放过量的出口压力直到反馈信号等于设定值。等到上述两个值相等,排气阀将关闭,此时出口处同样持续输出恒定的设定值压力。[align=center][img=国产化替代,690,284]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182025348584_2251_3384_3.png!w690x284.jpg[/img][/align][color=#990000][/color][align=center][color=#990000]图1-2 TESCOM ER5000电子压力控制器原理图[/color][/align][size=16px][color=#990000]1.2. 典型应用[/color][/size]ER5000压力控制器主要有两类应用方向,一是单机应用,二是与其他特殊阀门的配合应用,以达到不同范围内的压力调节和控制。(1)单机应用:从上述结构和原理可知,TESCOM ER5000电子压力控制器是一款非常典型的电子式减压阀,在单机使用情况下,控制器本身可对压力8.2bar以下的气源进行减压并准确控制,甚至可以实现对粗真空的控制。另外,在单机应用中,可分别采用内部和外部反馈两种控制模式,如图1-3和图1-4所示。[align=center][img=国产化替代,690,244]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182025483237_8169_3384_3.png!w690x244.jpg[/img][/align][align=center][color=#990000]图1-3 艾默生ER5000电子压力控制器内部反馈控制模式单机应用[/color][/align][color=#990000][/color][align=center][img=国产化替代,690,266]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182025582943_2239_3384_3.png!w690x266.jpg[/img][/align][align=center][color=#990000]图1-4 艾默生ER5000电子压力控制器外部反馈控制模式单机应用[/color][/align](2)配合使用:ER5000电子压力控制器的一个重要应用是作为先导阀与其他调节阀配合使用,以调控更大的压力范围。更大压力减压应用如图1-5所示,与背压阀配合应用如图1-6所示[align=center][color=#990000][img=ER5000国产化替代,690,301]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182026370215_476_3384_3.png!w690x301.jpg[/img][/color][/align][align=center][color=#990000]图1-5 艾默生ER5000电子压力控制器典型减压应用[/color][/align][color=#990000][/color][align=center][img=ER5000国产化替代,690,450]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182026463023_179_3384_3.png!w690x450.jpg[/img][/align][align=center][color=#990000]图1-6 艾默生ER5000电子压力控制器典型背压应用[/color][/align][size=16px][color=#990000]1.3. 性能指标[/color][/size]由于TESCOM ER5000系列电子压力控制器是由压力传感器、PID控制器和双阀结构压力调节器三部分的集成,每部分的技术指标则代表了控制器的整体性能,相关技术指标和功能分列如下:(1) 压力控制原理:双电磁阀三通控压。(2) 介质类型:清洁、干燥的惰性气体或仪表级空气。(3) 进气口压力(绝对压力):最小(真空泵压力),最大8.2bar(820kPa)(4) 出气口压力(绝对压力):最小0.07bar(7kPa),最大8.2bar(820kPa)(5) 输入信号:USB、RS485、4~20mA、1~5V或0~10V。(6) 外部传感器反馈信号:4~20mA、1~5V或0~10V。(7) 内部压力传感器测量精度:±0.10%(FSO),其中包括了±0.05%(FSO)线性度和±0.05%(FSO)迟滞。(8) 控制器A/D转换:16位。(9) 控制器重复性:±0.05%(FSO)。(10) 控制器分辨率灵敏度:±0.03%(FSO)。(11) 控制方式:PID(需结合专用软件ERTune进行PID参数调试和优化)。(12) 控制模式:内部反馈、外部反馈和双环三种模式。这里特别介绍ER5000压力控制器的三种控制模式,这是此控制器的一个技术亮点:(1)内部反馈模式:该模式仅使用内部传感器。内部反馈模式使用ER5000内部压力传感器以监控控制器内部1~100psig/0.07~6.9bar范围内的绝对压力。(2)外部反馈模式:该模式仅使用外部传感器。外部反馈模式利用用户提供的外部传感器以监控系统压力,该传感器安装于过程管线中并向ER5000提供直接反馈。(3)双环模式:该模式是在“循环内循环”配置中同时使用内部和外部传感器。双环模式在一个PID循环中执行另一个PID循环。内部回路使用控制器的内部传感器,外部回路使用外部传感器。[size=16px][color=#990000]1.4. 功能和特点[/color][/size]从上述介绍,可归纳出ER5000压力控制器的以下几方面功能和特点:(1) ER5000压力控制器最主要功能是可进行气体压力(不是流量)控制,即可实现密闭型容器和管道内压力的准确控制。(2) 整体集成式结构,集成了压力传感器、PID控制器和双阀调节器执行结构,使得整体结构小巧,并便于安装使用和多台并行使用。(3) 作为一种典型的压力控制器,即可直接对最大8.2bar的气源压力进行减压并准确恒压控制(进气口为正压),也可用来控制低压(粗真空,进气口为真空),最低压力可达0.07bar(7kPa)。(4) ER5000压力控制器可作为先导阀来驱动各种大量程的减压阀和背压阀,控制器的出口与其他背压阀的先导口连接,可实现更大量程范围内压力调节和控制。(5) 压力传感器±0.1%的测量精度和16位的A/D转换,属于中高端技术指标,可满足大多数应用场合。(6) 数字PID控制方式可实现压力的快速和准确控制。(7) 内部反馈、外部反馈和双环三种控制模式,使ER5000压力控制器具有较大的使用灵活性,可根据实际使用要求选择最佳控制模式。[size=16px][color=#990000]1.5. 压力控制器存在的不足[/color][/size]尽管ER5000压力控制器有上述诸多功能和特点,但在实际应用中还存在以下多方面的限制和不足。(1) ER5000压力控制器集成了真空压力控制领域中三种最常用部件,但由于是集成式结构而不是模块化积木式结构,这反而限制了ER5000压力控制器应用。如ER5000压力控制器中集成了两个电磁阀,但仅能进行气体压力控制,而无法进行只需单电磁阀的气体流量控制。(2) ER5000压力控制器更侧重于正压控制,也可进行部分的负压控制,这主要是由于所用阀门的漏率太高造成,从而并未发挥传感器(特别是外置传感器)和PID控制的强大功能。如果能降低控制器内部阀门的气体漏率,则控制器完全可覆盖整个真空度范围的控制,将目前的7kPa的真空度扩展到1Pa左右。(3) 在驱动各种大量程减压阀和背压阀应用方面,使用价格较高的ER5000压力控制器作为先导阀其性价比非常低,完全可以使用高性价比的国产替代产品。(4) ER5000压力控制器16位的A/D转换,属于中高端技术指标,如果采用外置高精度的压力传感器则需要24位的A/D转换器,这使得ER5000压力控制器无法满足一些测量控制精度要求较高的场合。(5) 尽管ER5000压力控制器采用了PID控制方式,但PID参数的调节都需要使用专用软件,控制器自身缺乏PID参数自整定功能,还需连接计算机,现场操作非常繁复。(6) ER5000压力控制器自身缺乏显示功能,还需连接计算机和使用配套软件才能进行调试和显示控制过程和结果。(7) ER5000压力控制器的整体价格偏高,而且操作复杂,对操作人员有较高的要求。再结合控制器上述不足,这使得ER5000压力控制器的性价比并不高,很多场合下使用显着非常的奢侈和浪费。[size=18px][color=#990000]2. 国产化替代技术路线[/color][/size]对艾默生公司最新一代TESCOM ER5000系列电子压力控制器的国产化替代,技术路线是首先实现ER5000压力控制器的测控功能,提供高性价比国产压力控制器。然后采用模块结构技术路线,将真空压力传感器、PID控制器和电子阀门分离为各自独立模块,每一类模块由一系列不同技术指标的部件组成,通过这些不同性能指标模块的组合来实现不同控制功能和精度要求,拓展控制器功能,满足不同需求,并具有高性价比。[size=16px][color=#990000]2.1. 实现ER5000压力控制器功能[/color][/size](1) 国产化替代产品要达到ER5000电子压力控制器绝大部分功能,即实现ER5000压力控制器自身的减压和控压功能。(2) 国产化替代产品同时与ER5000压力控制器一样,可作用先导阀来对大量程高压范围的气体进行减压和控压。(3) 国产化替代产品具有设定值输入和显示功能,无需软件和连接计算机进行操作。(4) 国产化替代产品价格低,具有高性价比。[size=16px][color=#990000]2.2. 模块化结构和功能拓展[/color][/size](1) 模块化结构分为传感器、PID控制器和电子阀门三个模块。(2) PID控制器模块是所有模块的核心器件,决定了测控精度,决定了可配合使用的传感器和电子阀门的种类,决定了控制方式和控制模式。PID控制器模块将采用24位A/D转换器提高测控精度,集成两个独立控制通道可同时控制2路真空压力或1路真空压力和1路温度,可连接多种真空压力和温度传感器,2通道结合可进行正反双向控制以满足真空压力的上下游控制模式,2通道结合可具备双传感器自动切换功能以覆盖宽泛测控量程,PID控制器带程序设定功能可输入多条控制工艺曲线,可输入和存储多组PID参数,PID参数调整带自整定功能,控制器带彩色液晶屏显示全过程参数和结果。(3) 电子阀门模块由多种规格型号的电子阀门构成,主要有流量调节阀和压力调节阀两大类。流量调节阀主要有小流量电动针阀和大流量大口径电动球阀蝶阀,这些流量调节阀都属于高速调节阀,开闭速度都在1s以内。压力调节阀主要有真空型背压阀和高压型背压阀,两种背压阀都可以在水气两相介质下工作。(4) 传感器模块主要是外协配套件,由多种规格型号的压力传感器和温度传感器构成,主要分为高压传感器、低压(真空)传感器、热电偶、铂电阻、热敏电阻、红外测温仪和直流电压信号,由此可覆盖几乎所有压力和温度范围内的测量。[size=18px][color=#990000]3. 国产化替代产品[/color][/size]根据上述的国产化替代技术路线,上海依阳实业有限公司研制了相应的产品,现分别介绍如下。[size=16px][color=#990000]3.1. 数显压力控制器[/color][/size]国产化的数显式压力控制器包括正压型和真空型两种规格,其压力控制原理和基本结构与艾默生TESCOM ER5000系列电子压力控制器一样,如图3-1所示。[align=center][color=#990000][img=ER5000国产化替代,690,390]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182027032534_5519_3384_3.png!w690x390.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图3-1 国产化电子压力控制器及其结构原理[/color][/align]国产化的数显式压力控制器同样是压力传感器、控制器和双阀结构压力调节器三部分的集成结构,相关技术指标和功能分列如下:(1) 压力控制原理:双电磁阀三通控压。(2) 介质类型:清洁、干燥的惰性气体或仪表级空气。(3) 进气口压力(绝对压力):最小(真空泵压力),最大50bar(5MPa)(4) 出气口压力(绝对压力):最小0.21bar(21kPa),最大30bar(3M Pa)(5) 输入信号:4~20mA、0~5V或0~10V。(6) 外部传感器反馈信号:4~20mA、0~5V或0~10V。(7) 内部压力传感器测量精度:±1.0%(FSO),其中包括了±0.5%(FSO)线性度和±0.5%(FSO)迟滞。(8) 控制器A/D转换:12位。(9) 控制器重复性:±0.5%(FSO)。(10) 控制器分辨率灵敏度:±0.2%(FSO)。(11) 控制方式:内置PID自动控制,无需人工干预。(12) 控制模式:内部反馈和外部反馈。从上述技术指标可以看出,国产化压力控制器的有些技术指标进行了降低,如12位的A/D转换和±1.0%测量精度,但拓宽了使用压力范围,增加了显示和输入功能,压力控制器可独立使用无需外接计算机和软件调试,降低了操作难度,提高了性价比,基本上能满足绝大多数领域的应用。[size=16px][color=#990000]3.2. 背压阀(高压型和真空型)[/color][/size]国产化的新型背压阀模块单独分为高压型和真空型背压阀,两种背压阀都采用上述数显压力控制器做先导阀进行控制,但新型背压阀对艾默生TESCOM等传统背压阀做了重大改进。传统的背压阀,都具有一个固定在阀体上的阀座,此阀座与阀芯紧密贴合,来达到密封效果。它可以为大多数简单过程提供基本的压力控制,在这种设计中,通过弹簧或其他的方式提供一个预设加载力,这个加载力使得阀芯与阀座密封。当管路压力作用到阀芯上的力,与加载力相同时,则背压阀在预设的压力状态下正常工作;当阀门的入口端压力升高,使作用在阀芯上的力超过预设的加载力时,阀芯和阀座分离,释放入口端多余的压力,直至恢复预设的压力。传统背压阀结构,在瞬时流量变化较大、或入口压力波动频繁的情况下,控制压力的精度较低,原因如下:(1) 由于大多数控制压力超过20bar的传统背压阀,采用了活塞的方式作为阀芯的负载机构,活塞中的O形密封圈增加了动作摩擦,从而使阀芯动作卡滞;(2) 传统背压阀的进出口流道,多为单一且固定截面积的通路,当阀门入口的流量迅速增加或降低时,阀门的Cv值(流通能力)却没有变化,这样会使入口压力产生剧烈波动;(3) 传统背压阀阀芯和阀座,因密封需要,贴合时存在应力或摩擦,频繁的开合,会使其彼此互相磨损和消耗,破坏初始的形状,使Cv值发生不可预知的改变。新型背压阀是上向下相连接的阀盖和阀体结构,如图3-2所示。阀盖和阀体之间连接有膜片,阀盖顶部开设先导气孔,先导气孔通过阀盖内部开设的气源通道连通至阀盖底部开设的供膜片中部起伏运动的活动槽,形成上下贯通的通路,阀体侧壁上分别开设相对设置的介质入口和介质出口,介质入口与阀体上表面开设的多个入口小孔相连通,介质出口与阀体上表面开设的多个出口小孔相连通。新型背压阀的突出特点是整个动作无摩擦,不会产生压力滞后,入口压力稳定性高,具备更大的流通能力。[align=center][color=#990000][img=ER5000国产化替代,690,259]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182027186867_2208_3384_3.png!w690x259.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图3-2多孔式结构新型背压阀[/color][/align][size=16px][color=#990000]3.3. 双通道高精度PID控制器[/color][/size]针对PID控制模块,为满足广泛的真空压力控制要求,上海依阳实业有限公司出品了VPC2021系列PID控制器,此系列控制器可进行真空、压力和温度的测量、显示和控制。采用了24位数据采集和人工智能PID控制技术,可接入各种型号的真空、压力和温度传感器,可控制多种型号的电动针阀、电动阀门和加热器等执行结构,可实现高精度真空、压力和温度等参量的定点和程序控制,是替代国外高端控制器产品的高性能和高性价比控制器。如图3-3所示,VPC2021系列PID控制器具有双通道独立测控功能,可对不同通道上的参数同时进行测量、显示和控制。如果两个通道接入相同类型但量程不同传感器,如图3-4所示,可以根据测试值实现两个传感器之间自动切换,由此可覆盖宽量程的测量和控制。[align=center][img=ER5000国产化替代,690,348]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182027332455_2803_3384_3.png!w690x348.jpg[/img][/align][align=center][color=#990000]图3-3 VPC2021系列双通道高精度PID控制器及其应用[/color][/align][color=#990000][/color][align=center][img=ER5000国产化替代,690,369]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182027510730_967_3384_3.png!w690x369.jpg[/img][/align][align=center][color=#990000]图3-4 双通道高精度PID控制器的双传感器自动切换[/color][/align]VPC2021系列双通道高精度PID控制器主要技术指标如下:(1) 测量精度:±0.05%FS(24位A/D)。(2) 输入信号:可连接众多真空压力传感器,32种信号输入类型(电压、电流、热电偶、热电阻)。(3) 控制输出:4种控制输出类型(模拟信号、固态继电器、继电器、可控硅),可连接众多电动调节阀。(4) 控制算法:PID控制和自整定(可存储和调用20组PID参数)。(5) 控制方式:定点和程序控制,最大可支持9条控制曲线,每条可设定24段程序曲线。(6) 通道:双通道,双通道传感器自动切换。(7) 通讯方式:RS 485和以太网通讯。(8) 供电电源:交流(86-260V)或直流24V。(9)外形尺寸: 96×96×136.5mm (开孔尺寸92×92mm)[size=16px][color=#990000]3.4. 高速电动流量调节阀[/color][/size]针对电子阀门模块,为满足不同大小流量的高速调控,上海依阳实业有限公司推出了两个系列的电子阀门,一个系列是电动针阀用于小流量调控,另一个系列是电动球阀和蝶阀用于大流量调控。这两个系列电子阀门的最大特点是可电控,并具有1s以内的高速闭合时间,是国内非常罕见的快速电子阀门。如图3-5所示,电动针阀NCNV系列是将步进电机的精度和可重复性优势与针阀的线性和分辨率相结合,其结果是具有小于2%滞后、2%线性、1%重复性和0.2%分辨率的可调流量控制,是目前常用电磁比例阀的升级产品。与依阳公司VPC2021系列真空压力控制器相结合,可构成快速准确的真空压力闭环控制系统。[align=center][color=#990000][img=ER5000国产化替代,599,513]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182028158401_6212_3384_3.png!w599x513.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图3-5 NCNV系列电子针阀[/color][/align]NCNV系列电动针阀主要技术指标和特点如下:(1) 多规格节流面积:从低流量的直径0.9mm(0~50L/min气体)到高流量的直径4.10mm(0到660 L/min气体)的多种规格针阀节流面积,可满足不同的应用需要。(2) 高度线性:小于2%的线性度,简化了查表或外部控制硬件和软件的配套,简化了命令输入和流量输出之间的关系。(3) 高重复性:通过每次达到0.1%的相同流量,NCNV系列电动针阀可提供长期稳定的一致性。(4) 宽压力范围:通过5或7bar巴的真空,取决于孔的大小,入口环境可覆盖宽泛的压力范围。电机的刚度和功率确保阀门在相同的输入指令下打开,与压力无关。(5) 低迟滞:小于2%的迟滞使积分和编程变得简单,在增加和减少达到设定点时能提供一致的流量。(6) 高分辨率:0.2%的分辨率允许NCNV系列电动针阀根据调节指令的微小变化进行最小流量调整,提供了出色的可控性。(7) 快速响应:整个行程时间小于1秒,由此可提供及时快速的流量调节和控制。(8) 工作电压:VDC 24V。(9) 输入信号:4~20mA、0~5V和0~10V。如图3-6所示,电动球阀NCBV系列是将高速电动执行器及高品质V型球阀组成,是目前常用慢速电动球阀的升级产品。与依阳公司VPC2021系列真空压力控制器相结合,可构成快速准确的真空压力闭环控制系统。[align=center][color=#990000][img=ER5000国产化替代,377,500]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182029196473_3852_3384_3.png!w377x500.jpg[/img][/color][/align][align=center][color=#990000]图3-6 NCBV系列电动球阀[/color][/align]NCBV系列电动球阀主要技术指标和特点如下:(1) 最大扭力:2N.m。(2) 阀球转动角度:90°。(3) 开关阀时间:小于1秒。(4) 工作电压:VDC 24V(5) 输入信号:4~20mA、0~5V和0~10V(6) 防护等级:IP67。(7) 环境温度\湿度:-20℃至45℃;≤85%(不凝露)。(8) 介质温度和压力:0~100℃;≤1.0MPa [size=18px][color=#990000]4. 总结[/color][/size]综上所述,通过一系列国产化替代产品的开发,基本可以完全替代艾默生最新一代TESCOM ER5000系列电子压力控制器及其背压阀,且性价比大幅度提高。重要的是,在国产化替代基础上,设计了更灵活易用的模块化结构,对单项模块产品进行了功能扩展和技术创新,开发了新型背压阀和高速电动流量调节阀,新开发的PID控制器具有更强大的功能和测量精度,整个系列的国产化替代产品具有较高的性价比。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 检验科实验室房间压力控制解决方案

    检验科实验室房间压力控制解决方案一、前言从事室内压力控制研究的人都知道,良好的室内压力梯度——保证不同区域间合理的气流流向和压力分布,是保证洁净的室内环境的必备条件。例如,洁净厂房必须依靠保持一定的正压使外界未经净化的空气不会进入净化 区域,以保证洁净级别。相关标准明确规定:不同等级的洁净室以及洁净区域与非洁净区域之间的压差应达到5Pa,洁净区与室外的压差应不小于10Pa。又如对于生物安全洁净室,压差控制是保证安全防护屏障的关键指标,必须使实验室的负压梯度得到稳定可靠的控制。因此对于实验室,房间压差控制是非常重要的。此外,对于包含通风柜的实验室,需要对通风柜进行精确的控制。通风柜的面风速应保持在80~120 fpm(0.4m/s~0.6m/s)之间,其测量误差不得大于20%。故而通常使其面风速保持在0.5m/s左右,才能避免有害气体、病菌等外泄,以免危及人员健康或造成污染。本文将就房间压力控制及通风柜控制中的一些常见问题做出探讨,并提出一些切实可行的解决方案。二、房间压力控制(一)压力控制概念当理想房间不存在任何泄漏时,若送入房间的风量与排出房间的风量间保持额定的风量差,房间压差的增加与时间应成正比关系,具体见图1。而实际的房间有固定的泄露面积,这时可应用伯努利方程得出如图2的曲线,它表示了房间压差、泄露面积及进出风量差之间的复杂关系。DP ——压降, Par——空气密度,1.2kg/m3A——泄露面积,m2m——常数, 0.72V——流量, m3/h由图1可知,对于具有一定泄露面积的房间,让室内送风量与排风量之间保持一定的风量差(ΔV),可以产生并维持固定的房间压差。由此可知,调节并稳定房间压力,需要依靠调节房间的进/排风量实现,也就是需要准确地调节送风及排风风阀。但在实际工程设计中,存在很多设计误区,以致对风阀开度的调节不够精确,不能满足稳定房间压力的需要。(二)传统房间压力控制方案讨论1.电动蝶阀+气密阀控制方案此种方法是通过实测房间压力与设定值的差值,调节送风/排风风道的电动蝶阀开度,以期调节送/排风风量,保证房间压差。例如,假设在500Pa的风道压力下,30%的风阀开度可以保证300m3/h的送风量,那么就认为,当房间的送风需要300m3/h时,将电动风阀调节至30%即可。这是一种压力有关控制法,如图3所示。压力有关控制法最大的缺陷,在于忽略了风道压力对风道风量的影响。根据上文的假设,当风道压力发生变化(这种情况在实际中几乎随时发生)不再是500Pa时,30%的风阀开度就不再对应300m3/h的风量。风道压力对风量的影响,会导致控制精度难以保证,并且极易引起系统震荡,使房间压力频繁上下摆动,很难稳定至设定值,如图4所示。这样的后果有时非常严重,尤其当洁净区域对各个房间的压力梯度有明确要求的时候。例如设计要求房间压力控制在-40Pa,而走廊要求房间压力控制在-30Pa,当房间压力波动至-30Pa甚至更大时,就会出现房间压力向走廊方向的泄漏。2. 定风量阀固定送/排风量控制方案这是最常见的设计方案之一。该方法通常会在各个房间风道末端设置定风量阀,在对系统风道平衡进行调节时,手动调整各分管道上的定风量阀,使各末端的出风量达到其设计值,避免由于风道风量不平衡而产生的部分出口出风量过大,而其它的出风口出风量不足的情况发生,以期保证送入及排出各个房间的风量恒定不变,使房间拥有额定的风量差,从而实现房间压力的恒定。但选用这种方法存在若干局限性:首先此种定风量系统要求在所有的时间内,设备必须保证恒定的送风量和排风量。而该恒定量必须按全负荷设计,需要留有较大的余量来弥补由于过滤器等造成的送风和排风系统性能的下降。可以想象,始终全负荷的连续运行会造成极大的能耗,因此运行成本非常高,且始终大风量运行会在实际运行过程中造成很大噪音。[font=微软雅

  • 耐腐蚀电动调节阀应用:亚硫酸法澄清工艺中磷酸流量的自动控制

    耐腐蚀电动调节阀应用:亚硫酸法澄清工艺中磷酸流量的自动控制

    [color=#990000]摘要:目前亚硫酸法澄清工艺中普遍采用调节阀来控制磷酸液体的流量,但调节阀普遍存在耐腐蚀性差、响应速度慢和自动化水平低的问题。本文介绍了一种基于针型阀的新型耐腐蚀电动调节阀,采用了步进电机推进和FFKM全氟醚橡胶密封技术,具有可用于真空下的良好密封性能和微秒量级的响应速度,可采用直流电压信号或RS 485直接驱动,并已在蔗糖生产线得到了应用。[/color][size=18px][color=#990000]一、问题的提出[/color][/size]目前的蔗糖生产过程中普遍采用亚硫酸法澄清工艺,其中的磷酸自动控制系统要求能够进行磷酸的自动配比,并根据蔗汁流量实时连续自动调节磷酸添加量以保证磷酸添加的准确性。磷酸添加量控制是通过对浓度85%磷酸液体的流量进行调节,但存在以下迫切需要解决的难题:(1)耐腐蚀性差:85%浓度的磷酸液是一种无机中强酸,具有一定的腐蚀性,而目前绝大多数电动流量调节阀的耐腐蚀性普遍较差,无法用于硫酸流量调节。(2)自动化水平低:目前磷酸流量调节中大多还采用耐腐蚀的手动调节阀,磷酸添加准确性和及时性差影响产品质量,无法准确掌握磷酸使用情况。(3)精度差和响应速度慢:尽管也有用于流量调节电/气动球阀和蝶阀,但普遍口径太大,调节精度差,响应速度慢,无法满足磷酸流量ppm级调节精度要求。[size=18px][color=#990000]二、耐腐蚀精密电动调节阀[/color][/size]上海依阳实业有限公司开发的NCNV系列耐腐蚀数控电动针阀是一种灵巧型的电子式双向计量针阀,采用高精度直线步进电机驱动阀轴。[align=center][img=耐腐蚀电动调节阀,400,297]https://ng1.17img.cn/bbsfiles/images/2021/12/202112281632323226_702_3384_3.png!w603x449.jpg[/img][/align]主要技术指标如下:(1)接触材料:不锈钢;(2)密封材料:全氟醚橡胶(FFKM);(3)响应时间:0.8s(全关到全开);(4)流体:气体和液体;(5)压力范围:-1~7bar;(6)阀芯节流内径:0.9~4.1mm;(7)流量范围:0.1~2000L/m;(8)线性度:±0.1~±11%(9)重复精度:±0.1%(全量程);(10)使用温度范围:0~84℃;(11)控制信号:0~10VDC或RS485;(12)工作电源:24V(≤12W)。[align=center][/align][align=center]=======================================================================[/align]

  • 低温超导测试系统中实现高精度液氦压力控制的解决方案

    低温超导测试系统中实现高精度液氦压力控制的解决方案

    [color=#ff0000]摘要:针对目前两种典型低温超导测试系统中存在的液氦压力控制精度较差的问题,本文提出了相应的解决方案。解决方案分别采用了直接压力控制和流量控制两种技术手段和配套数控阀门,结合24位AD和16位DA的超高精度的PID真空压力控制器和压力传感器,大幅提高了液氦压力控制精度,最终实现低温超导性能的高精度测试。[/color][color=#ff0000][/color][color=#ff0000][/color][align=center][img=低温超导测试系统中实现高精度液氦温度控制的解决方案,690,411]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031120120633_4214_3221506_3.jpg!w690x411.jpg[/img][/align][align=center]~~~~~~~~~~~~~[/align][size=14px][/size][size=18px][color=#ff0000][b]1. 项目概述[/b][/color][/size] 各种超导部件如超导磁铁和超导腔体在装机前都需要在低温超导测试系统中对其性能进行测试,为了使超导部件达到低温环境则需要将被测部件浸泡在液氦介质内,并采用低温杜瓦盛装液氦介质。在整个测试过程中,对低温测试系统内的液氦压力要求极高,即要求杜瓦顶部氦气压强(绝对压力)有极好的稳定性,否则会导致测试不稳定,给测试结果带来严重误差。 目前国内现有的很多低温超导测试系统都存在液氦压力控制不稳定的严重问题,有些客户提出了相应的技术升级改造要求。 如图1所示的低温超导测试系统中,采用了两个不同口径的第一和第二泄压阀来粗调和细调液氦压力,但这种调节方法的液氦压力只能控制在1.2~1.6Bar范围内,对应4.39~4.74℃范围的液氦温度变化,造成0.35℃的温度波动。目前客户提出要设法将温度波动控制在0.1℃以内或更高的稳定性上,以提高超导部件性能测试精度。[align=center][color=#ff0000][b][img=超导试件测试时氦压控制系统,500,356]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031123466941_8802_3221506_3.jpg!w690x492.jpg[/img][/b][/color][/align][align=center][color=#ff0000][b]图1 低温超导测试系统液氦压力控制装置[/b][/color][/align] 如图2所示的高场超导磁体低温垂直测试系统,其压力控制范围1~1.3Bar,尽管在图2所示系统中采用了液氦加热器来改变液氦压力,但由于压力控制阀的调节精密度不够,最终造成压力控制精度远达不到测试要求,客户也提出了技术改造要求。[align=center][b][color=#ff0000][img=高场超导磁体低温垂直测试系统,400,557]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031123146762_3661_3221506_3.jpg!w522x728.jpg[/img][/color][/b][/align][align=center][b][color=#ff0000]图2 高场超导磁体低温垂直测试系统[/color][/b][/align] 针对上述两种典型低温超导测试系统中存在的液氦压力控制精度不足的问题,本文将提出相应的解决方案。解决方案将分别采用直接压力控制和流量控制两种技术手段和配套数控阀门,结合超高精度的PID真空压力控制器和压力传感器,可大幅度提高液氦压力控制精度,最终减小低温超导性能测试误差。[b][size=18px][color=#ff0000]2. 解决方案[/color][/size][/b] 在图1和图2所示的两种典型低温超导测试系统中,它们各自的液氦压力变化起因不同,因此要实现液氦压力准确控制的技术手段也不同。以下是解决方案中对应的两种不同技术途径。[b][color=#ff0000](1)直接压力调节法[/color][/b] 在图1所示的低温超导测试系统中,造成液氦蒸发的因素并不可控,只能通过调节液氦上方的氦气压力来使得测试系统保持稳定。因此,为了实现液氦上方的压强控制,解决方案采用了直接压力调节法,如图3所示,即采用数控压力控制阀代替图1中的第一和第二泄压阀。此压力控制阀与高精度PID控制器和压力传感器构成闭环控制回路,实现自动泄压和高精度压力控制。[align=center][color=#ff0000][b][img=纯压力控制结构,500,350]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031124390427_8017_3221506_3.jpg!w690x483.jpg[/img][/b][/color][/align][align=center][color=#ff0000][b]图3 直接压力调节法控制装置结构[/b][/color][/align] 数控压力控制阀是一种数控正压减压控制阀,正好可以满足低温超导测试系统的微正压控制需求。通过氦气源和减压阀提供的驱动压力,可在控制阀出口处实现高精度的压力控制,同时还保持很小的漏气以节省氦气。 另外,此数控压力控制阀具有很高的控制精度,结合高精度的压力传感器和PID真空压力控制器,可将液氦压力控制在0.1%的高精度水平。[b][color=#ff0000](2)流量调节法[/color][/b] 在图2所示的低温超低测试系统中,其不同之处之一是具有液氦加热器,即通过液氦加热器和压力控制阀构成的控制回路可进行不同液氦压力的控制,由此实现不同液氦温度的控制。 为实现不同液氦压力的精密控制,解决方案在此采用了流量调节法。如图4所示,解决方案采用了电动针阀作为图2中的压力控制阀,电动针阀与双通道高精度PID控制器、压力传感器和液氦加热器构成闭环控制回路,可以按照任意设定值进行高精度的压力控制。[align=center][color=#ff0000][b][img=流量控制结构,500,290]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031125069440_4211_3221506_3.jpg!w690x401.jpg[/img][/b][/color][/align][align=center][color=#ff0000][b]图4 流量调节法控制装置结构[/b][/color][/align] 电动针阀是一种数控的微小流量调节阀,可通过PID压力控制器自动调节针阀开度,流出的氦气可通向氦气回收气囊。电动针阀同样具有很高的控制精度,结合高精度的压力传感器和PID真空压力控制器,同样可将液氦压力控制在0.1%的高精度水平。[b][size=18px][color=#ff0000]3. 总结[/color][/size][/b] 通过上述解决方案的技术手段,可实现低温超低测试系统中液氦压力的准确控制,控制精度最高可达±0.1%。 按照绝对压力进行计算,饱和蒸气压为1.2Bar时,液氦温度为4.4K。由此,如果压力控制精度为±0.1%,液氦压力的波动范围为±1.2mBar(相当于绝对压力±120Pa),对应的液氦温度波动范围为4.4mK,即所控的液氦温度为4.4±0.0044K。 由此可见,通过本文所述的解决方案,仅通过采用工业级别较低造价的PID真空压力控制器和压力传感器,结合数控压力控制阀和电动针阀,就可实现很高精度的液氦压力控制,温度控制精度可达到mK量级,完全能满足绝大多数低温超导测试系统的需要。[align=center]~~~~~~~~~~~~~~~~~[/align]

  • 双层玻璃反应釜真空压力(正负压)准确控制解决方案

    双层玻璃反应釜真空压力(正负压)准确控制解决方案

    [color=#ff0000]摘要:针对双层玻璃反应釜中存在的无法进行真空压力自动和准确控制等问题,本文提出了完整和成熟的解决方案,即采用卫生级电动调节阀和高精度双通道PID控制器,结合不同量程的真空计,与反应器、真空泵和正压气源构成闭环控制回路。通过上下游(进气和排气)同时控制的双向模式,可实现真空度全量程和微正压的自动程序控制,可达到很高的控制精度,并可与上位机通讯实现中央控制。[/color][align=center][img=玻璃反应器高精度真空度控制系统,690,368]https://ng1.17img.cn/bbsfiles/images/2022/12/202212082226547967_8886_3221506_3.jpg!w690x368.jpg[/img][/align][align=center]~~~~~~~~~~~~~~[/align][b][size=18px][color=#ff0000]1. 问题的提出[/color][/size][/b] 双层玻璃反应釜为双层玻璃设计,内层放入反应溶媒可做搅拌反应,夹层可通以不同的冷热源(冷冻液,热水或热油)做循环加热或冷却反应。在设定恒温条件下的密闭玻璃反应器内,可根据使用要求在真空至微正压条件下进行搅拌反应,并能做反应溶液的回流与蒸馏,是现代精细化工厂、生物制药和新材料合成的理想中试、生产设备。 双层玻璃反应釜与其他反应器一样,真空压力是反应过程中的一个重要控制变量,不同反应过程往往需要不同的真空度(负压)或压力(正压)值。但在目前绝大多数玻璃搅拌釜反应器中,真空压力的准确控制还存在严重不足,主要体现在以下几个方面: (1)无自动化控制手段,很多还仅靠真空泵的抽取加人工干预,仅能提高简单的真空环境但无法实现控制。 (2)有些真空压力控制器还采用开关式进气控制方式,真空压力波动非常大,往往很多也无法实现程序控制。 (3)控制方式单一,无法进行全量程的(1Pa~0.1MPa)真空度控制,只能在某一区间进行控制。另外,绝大多数玻璃搅拌釜反应器都不具备微正压供给和控制能力。 (4)许多反应器对抽气速率控制采用蝶阀或球阀控制,对于较小尺寸的玻璃反应器而言,蝶阀和球阀的响应速度太慢,无法实现真空压力的准确控制,特别是在温度变化的反应过程中这种现象尤为明显。 (5)同样,也有采用可调转速的真空泵来进行反应器的真空度控制,但同样存在响应速度慢导致真空压力波动大的问题。另外,仅调节抽气速率也只能控制接近一个大气压的低真空(高压)范围,对较高真空(低压)区间的控制则无能为力。 (6)很多反应器对接气(或接液)部件有严格要求,要求卫生级(或食品级)阀门,而目前大多数电动调节阀都无法满足这种特殊要求。 为解决双层玻璃反应釜存在的上述问题,本文将提出完整和成熟的解决方案,即采用卫生级电动调节阀和高精度双通道PID控制器,结合不同量程的真空计,与反应器、真空泵和正压气源构成闭环控制回路。通过上下游(进气和排气)同时控制的双向模式,可实现真空度全量程和微正压的自动编程控制,可达到很高的控制精度,并可与上位机通讯实现中央控制。[b][size=18px][color=#ff0000]2. 真空压力(正负压、高低气压)控制方法[/color][/size][/b] 一般我们以一个标准大气压(绝对压力为1Bar 或 750 Torr)为参考点,规定小于标准大气压为负压或真空环境,大于标准大气压为正压(压力)环境。那么,搅拌式反应器的气压工作环境的控制就是一个典型的真空压力(正负压或高低气压)控制问题。 正负压控制的典型方法是动态平衡法,其原理如图1所示。[align=center][b][color=#ff0000][img=真空压力动态平衡法控制原理框图,600,262]https://ng1.17img.cn/bbsfiles/images/2022/12/202212082224430816_252_3221506_3.jpg!w690x302.jpg[/img][/color][/b][/align][align=center][b][color=#ff0000]图1 真空压力动态平衡法控制原理框图[/color][/b][/align] 动态平衡法的核心原理是被控压力容器内的进气和出气达到某种设定平衡。图1中的黑色箭头线代表气体流动方向,红色箭头线代表电信号的传递和方向。 其中高压气源作为正压源,真空泵进行抽气提供负压源,过程调节器采集传感器信号经过与设定值比较后同时调节进气和出气阀门的开度,使得进气和出气流量达到设定的平衡状态。 在真空压力控制中采用动态平衡法主要有两个优势: (1)控制区间非常宽泛,可以实现从真空到正压全量程的连续控制。 (2)在全量程具有很高的控制精度。在高真空(低压)区间控制时,固定抽气阀开度,调节进气阀开度大小。在低真空或微正压区间控制时,固定进气阀开度,调节抽气阀开度。[b][size=18px][color=#ff0000]3. 解决方案[/color][/size][/b] 依据上述真空压力动态平衡法控制原理,针对双层玻璃反应釜的真空压力控制,解决方案提出的控制装置结构如图2所示。[align=center][b][color=#ff0000][img=双层玻璃反应釜真空压力控制装置结构示意图,690,360]https://ng1.17img.cn/bbsfiles/images/2022/12/202212082225130500_9388_3221506_3.jpg!w690x360.jpg[/img][/color][/b][/align][align=center][b][color=#ff0000]图2 反应器真空压力控制装置结构图[/color][/b][/align] 从图2可以看出,真空压力控制装置主要由高压气源、电动阀门、真空压力传感器、PID过程调节器和真空泵几部分组成。以下是对前四部分内容的介绍。 [color=#ff0000](1)高压气源[/color] 高压气源一般为微正压控制过程提供大于设定压力的高压气体。气源一般为高压气瓶,高压气瓶经减压阀输出固定压力的气体,此固定压力需略大于所需控制的微正压。若反应器只需在真空(负压)范围内控制,则无需高压气源,直接采用大气即可。 [color=#ff0000](2)电动阀门[/color] 解决方案中的电动阀门是一种快速响应的电子调节阀,包括电动针阀和电动球阀。电动针阀适用于小流量进气调节,电动球阀用于大流量排气调节。对于小容积的双层玻璃反应器,进气和出气调节阀可以直接用电控针阀;而对于大容积反应器,则进气阀选择电子针阀,排气阀选择电控球阀。电子针阀的全程开启时间为0.8s,电子球阀的全程开启时间有1s和7s两种规格,快速响应时间是保证控制精度的重要因素之一。另外,无论是针型阀还是球阀,都有卫生级、食品级和耐酸腐蚀的对应型号。 [color=#ff0000] (3)真空压力传感器[/color] 传感器是整个反应过程中真空压力测量的关键,其测量精度也决定了反应器温度和真空压力控制精度以及工艺的有效性。一般推荐采用精度较高的电容真空计,在整个真空压力范围内,通过两种规格的电容真空计(10Torr和1000Torr)基本可以覆盖整个低压(真空)至微正压(高压)区间,而且还可以保证在任意真空压力下的精度为测量值×0.25%。电容真空计对应测量范围的信号输出一般为0~10V直流电压,此输出电压与真空度测量值呈线性关系。 有些反应器采用的是皮拉尼计进行真空范围内的测量,但皮拉尼计的测量误差较大,同时相应的输出电压信号与真空度呈非线性关系,所以一般采用皮拉尼计进行对控制精度要求不高的反应器真空压力控制。在使用中需要特别注意的是,电容真空计的正压测量能力非常有限,皮拉尼计无法测量正压,如果要进行正压控制,则还需要配备相应精度的正压压力传感器。 [color=#ff0000] (4)PID过程调节器[/color] 过程调节器是实现真空压力控制的关键,其采集精度和调节精度决定了真空压力的最终控制精度。本解决方案采用的是超高精度的双通道PID过程调节器,其中有两个独立通道分别用来调节进气阀和出气阀。每个通道配置的都是24位AD、16位DA和双精度浮点运算,可实现0.01%的最小输出百分比,这是目前国内外工业用PID调节器最高级别的配置,结合电容真空计和快速调电子调节阀,可轻松实现优于±1%的真空压力控制精度。 超高精度双通道PID过程调节器具有强大的功能,PID参数可以自整定,可存储多组PID参数以满足不同反应工艺需要,并具有MODBUS标准通讯协议,通过上位机可实现多台调节器的中央控制。随机配备的计算机软件可对PID调节器进行远程设置、数据采集、显示和存储,极大方便了真空压力控制系统的调试。[b][size=18px][color=#ff0000]4. 总结[/color][/size][/b] 综上所述,本文所提出的真空压力准确控制解决方案,除了可满足双层玻璃反应器真空压力(正负压)准确控制需要之外,也可以用于其他各种反应器和旋转蒸馏器中的真空压力控制。 本文解决方案描述的是一种分立结构形式的真空压力控制系统,也可以按照需要和具体反应器设计对控制系统进行集成,将电控阀门和PID调节器集成为仪器,更便于反应器的整体布局设计和配套。[align=center]~~~~~~~~~~~~~~~[/align]

  • 显微成像系统的真空压力和气氛精密控制解决方案

    显微成像系统的真空压力和气氛精密控制解决方案

    [align=center][b][img=显微镜探针冷热台的真空压力和气氛精密控制解决方案,600,484]https://ng1.17img.cn/bbsfiles/images/2023/11/202311021102101876_7960_3221506_3.jpg!w690x557.jpg[/img][/b][/align][size=16px][color=#333399][b]摘要:针对目前国内外显微镜探针冷热台普遍缺乏真空压力和气氛环境精密控制装置这一问题,本文提出了解决方案。解决方案采用了电动针阀快速调节进气和排气流量的动态平衡法实现0.1~1000Torr范围的真空压力精密控制,采用了气体质量流量计实现多路气体混合气氛的精密控制。此解决方案还具有很强的可拓展性,可用于电阻丝加热、TEC半导体加热制冷和液氮介质的高低温温度控制,也可以拓展到超高真空度的精密控制应用。[/b][/color][/size][align=center][size=16px][color=#333399][b]====================[/b][/color][/size][/align][size=16px][color=#333399][b][/b][/color][/size][size=18px][color=#333399][b]1. 问题的提出[/b][/color][/size][size=16px] 探针冷热台允许同时进行样品的温控和透射光/反射光观察,支持腔内样品移动、气密/真空腔、红外/紫外/X光等波段观察、腔内电接线柱、温控联动拍摄、垂直/水平光路、倒置显微镜等,广泛应用于显微镜、倒置显微镜、红外光谱仪、拉曼仪、X射线等仪器,适用于高分子/液晶、材料、光谱学、生物、医药、地质、 食品、冷冻干燥、 X光衍射等领域。[/size][size=16px] 在上述这些材料结构、组织以及工艺过程等的微观测量和研究中,普遍需要给样品提供所需的温度、真空、压力、气氛、湿度和光照等复杂环境,而现有的各种探针冷热台往往只能提供所需的温度变化控制,尽管探针冷热台可以提供很好的密闭性,但还是缺乏对真空、压力、气氛和湿度的调节及控制能力,国内外还未曾见到相应的配套控制装置。为了实现探针冷热台的真空压力、气氛和湿度的准确控制,本文提出了相应的解决方案,解决方案主要侧重于真空压力和气氛控制问题,以解决配套装置缺乏现象。[/size][size=18px][color=#333399][b]2. 解决方案[/b][/color][/size][size=16px] 针对显微镜探针冷热台的真空压力和气氛的精密控制,本解决方案可达到的技术指标如下:[/size][size=16px] (1)真空压力:绝对压力范围0.1Torr~1000Torr,控制精度为读数的±1%。[/size][size=16px] (2)气氛:单一气体或多种气体混合,气体浓度控制精度优于±1%。[/size][size=16px] 本解决方案将分别采用以下两种独立的技术实现真空压力和气氛的精确控制:[/size][size=16px] (1)真空压力控制:采用动态平衡法技术,通过控制进入和排出测试腔体的气体流量,使进气和排气流量达到动态平衡从而实现宽域范围内任意设定真空压力的准确恒定控制。[/size][size=16px] (2)气氛控制:采用气体质量流量控制技术,分别控制多种工作气体的流量,由此来实现环境气体中的混合比。[/size][size=16px] 采用上述两种控制技术所设计的控制系统结构如图1所示。[/size][align=center][size=16px][color=#333399][b][img=显微镜探针冷热台真空压力和气氛控制系统结构示意图,690,329]https://ng1.17img.cn/bbsfiles/images/2023/11/202311021103195907_6925_3221506_3.jpg!w690x329.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#333399][b]图1 真空压力和气氛控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,真空压力控制系统由进气电动针阀、高真空计、低真空计、排气电动针阀、高真空压力控制器、低真空压力控制器和真空泵组成,并通过以下两个高低真空压力控制回路来对全量程真空压力进行精密控制:[/size][size=16px] (1)高真空压力控制回路:真空压力控制范围为0.1Torr~10Torr(绝对压力),控制方法采用上游控制模式,控制回路由进气电动针阀(型号:NCNV-20)、高真空计(规格:10Torr电容真空计)和真空压力程序控制器(型号:VPC20201-1)组成。[/size][size=16px] (2)低真空压力控制回路:真空压力控制范围为10Torr~1000Torr(绝对压力),控制方法采用下游控制模式,控制回路由排气电动针阀(型号:NCNV-120)、低真空计(规格:1000Torr电容真空计)和真空压力程序控制器(型号:VPC20201-1)组成。[/size][size=16px] 由上可见,对于全量程真空压力的控制采用了两个不同量程的薄膜电容真空计进行覆盖,这种薄膜电容真空计可以很轻松的达到0.25%的读数精度。真空计所采集的真空度信号传输给真空压力控制器,控制器根据设定值与测量信号比较后,经PID算法计算后输出控制信号驱动电动针阀来改变进气或排气流量,由此来实现校准腔室内气压的精密控制。[/size][size=16px] 在全量程真空压力的具体控制过程中,需要分别采用上游和下游控制模式,具体如下:[/size][size=16px] (1)对于绝对压力0.1Torr~10Torr的高真空压力范围的控制,首先要设置排气电控针阀的开度为某一固定值,通过运行高真空度控制回路自动调节进气针阀开度来达到真空压力设定值。[/size][size=16px] (2)对于绝对压力10Torr~1000Torr的低真空压力范围的控制,首先要设置进气针阀的开度为某一固定值,通过运行低真空度控制回路自动调节排气针阀开度来达到真空压力设定值。[/size][size=16px] (3)全量程范围内的真空压力变化可按照设定曲线进行程序控制,控制采用真空压力控制器自带的计算机软件进行操作,同时显示和存储过程参数和随时间变化曲线。[/size][size=16px] 显微镜探针冷热台内的真空压力控制精度主要由真空计、电控针阀和真空压力控制器的精度决定。除了真空计采用了精度为±0.25%的薄膜电容真空计之外,所用的NCNV系列电控针阀具有全量程±0.1%的重复精度,所用的VPC2021系列真空压力控制器具有24位AD、16位DA和0.01%最小输出百分比,通过如此精度的配置,全量程的真空压力控制可以达到很高的精度,考核试验证明可以轻松达到±1%的控制精度,采用分段PID参数,控制精度可以达到±0.5%。[/size][size=16px] 对于探针冷热台内的气氛控制,如图1所示,采用了多个气体质量流量控制器来对进气进行精密的流量调节,以精确控制各种气体的浓度或所占比例。通过精密测量后的多种工作气体在混气罐内进行混合,然后再进入探针冷热台,由此可以准确控制各种气体比值。在气氛控制过程中,需要注意以下两点:[/size][size=16px] (1)对于某一种单独的工作气体,需要配备相应气体的气体质量流量控制器。[/size][size=16px] (2)混气罐压力要进行恒定控制或在混气罐的出口处增加一个减压阀,以保持混气罐的出口压力稳定,这对准确控制校准腔室内的真空压力非常重要。[/size][size=18px][color=#333399][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案可以彻底解决显微镜探针冷热台的真空压力控制问题,并具有很高的控制精度和自动控制能力。另外,此解决方案还具有以下特点:[/size][size=16px] (1)本解决方案具有很强的适用性和可拓展性,通过改变其中的相关部件参数指标就可适用于不同范围的真空压力,更可以通过在进气口增加微小流量可变泄漏阀,实现各级超高真空度的精密控制。[/size][size=16px] (2)本解决方案所采用的控制器也可以应用到冷热台的温度控制,如帕尔贴式TEC半导体加热制冷装置的温度控制、液氮温度的低温控制。[/size][size=16px] (3)解决方案中的控制器自带计算机软件,可直接通过计算机的屏幕操作进行整个控制系统的调试和运行,且控制过程中的各种过程参数变化曲线自动存储,这样就无需再进行任何的控制软件编写即可很快搭建起控制系统,极大方便了微观分析和测试研究。[/size][size=16px] 在目前的显微镜探针冷热台环境控制方面,还存在微小空间内湿度环境的高精度控制难题,这将是我们后续研究和开发的内容之一。[/size][size=16px][/size][align=center][size=16px][color=#333399][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 常压原子力显微镜实现从超高真空到1bar的可变压力精密控制解决方案

    常压原子力显微镜实现从超高真空到1bar的可变压力精密控制解决方案

    [align=center][size=16px] [img=常压原子力显微镜实现从超高真空到1bar的可变压力精密控制解决方案,690,446]https://ng1.17img.cn/bbsfiles/images/2023/10/202310111648213082_8409_3221506_3.jpg!w690x446.jpg[/img][/size][/align][size=16px][color=#000099][b]摘要:针对原子力显微镜对真空度和气氛环境精密控制要求,本文提出了精密控制解决方案。解决方案基于闭环动态平衡法,在低真空控制时采用恒定进气流量并调节排气流量的方法,在高真空和超高真空控制时则采用恒定排气流量并调节进气流量的方法。原子力显微镜真空度控制系统主要由高速电控针阀、电动可变泄漏阀、高速电控球阀、电容真空计、电离真空计和超高精度PID调节器构成,在超高真空至一个大气压范围内可达到很高的控制精度。[/b][/color][/size][align=center][size=16px][color=#000099][b]=================[/b][/color][/size][/align][size=18px][color=#000099][b]1. 问题的提出[/b][/color][/size][size=16px] 环境可控型原子力显微镜(AFM)是一种可以选择真空环境、气氛环境、液体环境以及变温环境等不同工作环境,并基于检测被测样品与探针之间的弱相互作用来研究包括材料表面形貌和物理化学性质的精密仪器。原子力显微镜要具备真空和气氛环境功能,主要出于以下应用需求:[/size][size=16px] (1)众所周知,原子之间的相互作用力非常微小的,AFM在工作时,为了维持两者之间的作用力,探针和样品之间的距离非常近,通常只有几个纳米或几十个纳米,这就对仪器周围环境的要求非常之高。目前市场上的原子力显微镜都是在普通空气环境中进行操作,但由于空气中活跃着各种气体分子、存在各种机械振动以及电磁干扰的缘故,要想获得极高的分辨率还是比较困难的,要想利用原子力显微镜真正获得原子级别的分辨率,还是需要在真空和超高真空环境下进行工作。[/size][size=16px] (2)随着微纳尺度下研究的逐步深入,在诸多研究中,需要在真空环境或者同一气氛环境(如氮气、氧气、湿度以及酒精蒸汽等)中,对样品表面同一实验区域原位开展多种不同的探测实验(如摩擦能量耗散测量,需要在不破坏工作环境的前提下更换其他具有不同功能的探针,实现原位探测)。 [/size][size=16px] (3)在有些微纳尺度研究中,不同真空度和不同气氛下的力谱测量结果显示AFM针尖和所研究材料之间的粘附力显著依赖于所暴露的真空压力和气体。[/size][size=16px] 总之,为了使原子力显微镜具有环境可控功能,关键是解决原子力显微镜的真空度和环境气氛精密控制问题,为此本文提出以下解决方案。[/size][size=18px][color=#000099][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案的基本思路是在采用多个进气管路来选择具体工作气体的基础上,采用了两种技术途径来改变和精密控制原子力显微镜内的真空度。[/size][size=16px][color=#000099][b]2.1 回填技术[/b][/color][/size][size=16px] 在文献1所报道的如图1所示的环境压力原子力显微镜中,采用的就是回填技术,即先对环境压力腔室抽真空至超高真空度,然后通过泄漏阀的调节向环境压力腔室内回填所需的工作气体,使腔室内的压力达到所需的真空度。整个真空回填系统结构如图2所示。[/size][align=center][size=16px][color=#000099][b][img=带有制备室和环境压力室的超高真空度原子力显微镜,690,485]https://ng1.17img.cn/bbsfiles/images/2023/10/202310111651309750_3730_3221506_3.jpg!w690x485.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图1 带有制备室和环境压力室的超高真空度原子力显微镜[/b][/color][/size][/align][align=center][size=16px][color=#000099][b][img=原子力显微镜真空压力回填系统结构示意图,550,361]https://ng1.17img.cn/bbsfiles/images/2023/10/202310111651565751_1942_3221506_3.jpg!w460x302.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图2 原子力显微镜真空压力回填系统结构示意图[/b][/color][/size][/align][size=16px] 如图2所示,回填系统主要由以下几部分构成:(1)涡轮分子泵、(2)旋转低真空泵、(3)一氧化碳气体管线的碳过滤器、(4)压力计、(5)冷阱、(6)AP室气体计量的泄漏阀和(7)AP室初始排空闸阀。[/size][size=16px] 环境压力室真空压力范围为超高真空1×10[sup]-7[/sup]mBar~1Bar,在打开泄漏阀之前,环境压力室与准备室和离子泵隔离。由于真空室压力最高可达1巴,因此关闭离子压力计,使用全量程压力计(冷阴极压力计和对流压力计的组合)监控压力。[/size][size=16px] 从图2可以看出,在文献1所描述气体回填系统是一个真空压力的开环控制系统,我们分析此真空度控制系统并未进行更详细的描述,甚至可能根本无法真正实现文中所述的从超高真空度到一个大气压的1%精度内的准确控制,主要原因如下:[/size][size=16px] (1)首先,文献1中所采用的真空度传感器是超高真空用离子压力计和全量程压力计(冷阴极压力计和对流压力计的组合),这些真空计本身的精度就无法达到1%以内的测量精度。[/size][size=16px] (2)文献1采用了调节泄漏阀的开环控制形式向AFM环境压力腔内回填气体来进行真空度调节,根本就无法做到实施的反馈控制,关闭泄漏阀后,腔体自身漏率的存在一定会使腔内压力逐渐回升,这种回升在超高真空度范围内会非常明显,会明显影响超高真空度的稳定性。[/size][size=16px] (3)泄漏阀是一种漏率极低的调节阀门,其微小的进气流量仅适合10[sup]-3[/sup]~10[sup]-10[/sup]mBar范围内的高真空和超高真空度调节。对于10[sup]-3[/sup]mBar~1Bar的低真空控制,泄漏阀的作用非常有限,或者需要非常长的进气时间才能达到所需真空度,因此对于低真空范围内的进气控制,一般都会采用进气流量较大的针阀。[/size][size=16px][color=#000099][b]2.2 闭环控制和不同流量阀技术[/b][/color][/size][size=16px] 针对上述文献1中所用的回填技术存在的问题,本文提出的解决方案将逐项予以解决,一方面采用闭环控制技术,即由真空计、电动进气流量调节阀和真空压力PID控制器过程闭环控制回路,对所设定的不同真空度进行准确控制。另一方面是针对不同的真空度范围,分别采用了微小进气流量的电动可变泄漏阀和较大流量的电动针阀。由此构成的真空控制系统结构如图3所示。[/size][align=center][size=16px][color=#000099][b][img=原子力显微镜真空压力闭环控制系统结构示意图,690,364]https://ng1.17img.cn/bbsfiles/images/2023/10/202310111652283772_3144_3221506_3.jpg!w690x364.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图3 原子力显微镜真空压力闭环控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图3所示,整个真空压力闭环控制系统分为以下四条气体管路,各自功能如下:[/size][size=16px] 抽气管路:抽气管路主要由电动球阀、干泵和分子泵组成,其中干泵和分子泵的作用是提供相应的真空源,而电动球阀则是用于调节使用干泵时管道内的抽气速率。[/size][size=16px] 大流量进气管路:大流量进气管路主要由电动针阀组成,其作用是以较大的流量形式调节腔体的进气流量。[/size][size=16px] 微小流量进气管路:微小流量进气管路主要由电动可变泄漏阀组成,其作用是以极小的流量形式调节腔体的进气流量。[/size][size=16px] 进气管路:进气管路的作用是连接气源和为腔体提供多种压力恒定的工作气体,图3中并未绘出。进气管路中也可以通过增加混气罐来进行各种进气的混合。[/size][size=16px] 通过上述四条管路以及相应的真空度传感器和真空压力控制器,图3所示的闭环控制系统可实现从超高真空度至一个大气压的全量程真空压力精确控制,具体控制的过程如下:[/size][size=16px] (1)低真空度范围(10mBar~1Bar):在低真空度范围内,双通道真空压力控制器的第一通道采集1000Torr电容真空计(测量精度0.25%)的真空度测量信号,与设定值比较后驱动电动球阀,通过快速改变电动球阀的开度调节排气流量,从而在低真空度范围内实现1%内的控制精度。需要注意的是在低真空度范围控制时,大流量进气管路上的电动针阀要保持恒定开度。[/size][size=16px] (2)高真空度范围(0.01mBar~10mBar):在高真空度范围内,双通道真空压力控制器的第二通道采集10Torr电容真空计(测量精度0.25%)的真空度测量信号,与设定值比较后驱动电动针阀,通过快速改变电动针阀的开度调节进气流量,从而在高真空度范围内实现1%内的控制精度。需要注意的是在高真空度范围控制时,抽气管路上的电动球阀要始终处于全开状态。[/size][size=16px] (3)高真空度范围(10[sup]-10[/sup]mBar~0.01mBar):在超高真空度范围内,真空压力控制器采集电离真空计(测量精度15%)的真空度测量信号,与设定值比较后驱动电动可变泄漏阀,通过快速改变泄漏阀的进气流量,从而在超高真空度范围内实现15%内的控制精度。需要注意的是在超高真空度范围控制时,抽气管路上的电动球阀要始终处于全开状态,大流量进气管路上的电动针阀处于关闭状态,而分子泵处于工作状态。[/size][size=16px] 在真空压力的控制过程中,要实现高精度控制,以下部件需要达到相应的技术指标要求:[/size][size=16px] (1)真空度传感器:真空度传感器的测量精度是决定控制精度的关键指标之一,本解决方案在低真空和高真空范围内采用了精度可达0.25%的薄膜电容真空计,而在超高真空范围内采用了精度最高可达15%的电离真空计。[/size][size=16px] (2)阀门:各种进气和排气阀门调节精度和速度也是决定控制精度的关键指标,解决方案所采用的电动针阀、电动球阀和电动可变泄漏阀都具有非常好的调节精度,响应速度都小于1秒以内,其中可变泄漏阀的响应速度可以到达十几微秒,完全可以满足超高真空度的进气控制。[/size][size=16px] (3)真空压力控制器:真空压力控制器的采集精度、调节输出精度和线性化处理功能也是决定控制精度的关键指标,解决方案采用了VPC2021系列超高精度PID调节器,具有24位AD、16位DA、0.01%最小输出百分比和八点拟合处理功能,可很好的实现全量程真空度的精密控制。[/size][size=18px][color=#000099][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本文提出的解决方案可很好的实现环境可控原子力显微镜从超高真空至一个大气压全真空度范围内任意真空压力设定点的准确控制,也可以按照设定的真空度变化曲线进行程序控制。另外,此解决方案可以推广应用到各种显微镜的真空度和气氛环境的精密控制。[/size][size=18px][color=#000099][b]4. 参考文献[/b][/color][/size][size=16px] [1] Choi, Joong Il Jake, et al. "Ambient-pressure atomic force microscope with variable pressure from ultra-high vacuum up to one bar." Review of Scientific Instruments 89.10 (2018).[/size][size=16px][/size][align=center][b]~~~~~~~~~~~~~~~[/b][/align][size=16px][color=#000099][b][/b][/color][/size]

  • 瑞利-布里渊散射光谱测量中温度和压力的精确控制方法

    瑞利-布里渊散射光谱测量中温度和压力的精确控制方法

    [color=#cc0000]摘要:针对瑞利-布里渊散射(RBS)包络谱实验装置,用户提出要对测量气室实现温度和压力的高精度控制。本文了介绍具体实施方案,其中高精度温度控制采用半导体TEC模组实现。压力控制采用高精度真空压力控制系统,其中包括高精度压力传感器、精密电动针阀和24位采集精度PID控制器。此温度和压力控制方案已得到广泛应用和证明。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#cc0000]一、技术要求[/color][/size] 根据客户要求,要对如图1所示的瑞利-布里渊散射(RBS)包络谱实验装置中的温度和压力(图1中红色方框区域内容)进行精确控制,具体要求如下: (1)温度范围300K~318K;控温精度±0.02K。 (2)压力范围30kPa~90kPa(绝压);控压精度±0.1kPa;气氛99.99%氮气。[align=center][color=#cc0000][img=瑞利-布里渊散射光谱测量中温度和压力的精确控制,690,350]https://ng1.17img.cn/bbsfiles/images/2022/01/202201171739338695_2143_3384_3.jpg!w690x350.jpg[/img][/color][/align][align=center][color=#cc0000]图1 RBS包络谱测量的实验装置[/color][/align][size=18px][color=#cc0000]二、温度控制方案[/color][/size] 对于室温附近的高精度温度控制,拟采用如图2所示的半导体加热制冷技术予以实现,具体内容包括: (1)加热制冷器:TEC模组。 (2)传感器:铂电阻或热敏电阻温度。 (3)PID控制器:高精度24位温度压力控制器。[align=center][color=#cc0000][img=瑞利-布里渊散射光谱测量中温度和压力的精确控制,690,402]https://ng1.17img.cn/bbsfiles/images/2022/01/202201171740041263_5493_3384_3.jpg!w690x402.jpg[/img][/color][/align][align=center][color=#cc0000]图2 高精度温度控制装置[/color][/align][size=18px][color=#cc0000]三、压力控制方案[/color][/size] 实验装置要求工作的绝对压力范围为30kPa~90kPa,并要求在此范围内的压力可以在任意设定点上准确恒定。为此,拟采用如图2所示的真空压力控制系统进行实施,具体内容如下:[align=center][color=#cc0000][img=瑞利-布里渊散射光谱测量中温度和压力的精确控制,690,448]https://ng1.17img.cn/bbsfiles/images/2022/01/202201171740188969_3588_3384_3.jpg!w690x448.jpg[/img][/color][/align][align=center][color=#cc0000]图3 高精度真空压力控制系统[/color][/align] (1)采用1000torr程的电容压力计进行压力测量,其精度可达±0.2%。也可采用更高精度±0.05%的真空压力传感器进行测量。 (2)采用24位A/D采集的高精度PID真空压力控制器,以匹配高精度真空压力传感器的测量精度,并保证控制精度。 (3)在气室的进气口和排气口分别安装电动针阀和电动球阀,电动针阀直接安装在进气口处,电动球阀安装在排气口和真空泵之间。如果气室容积很小,可以用电动针阀代替电动球阀。 (4)控制过程中,真空泵开启后抽速保证恒定。先将进气电动针阀进行设定,使得进气口压力和流量恒定,然后进行PID参数自整定,通过自动调节排气口流量实现气室压力精确控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 耐腐蚀高速电动针阀在圆晶湿法刻蚀清洗化学药液流量控制中的应用

    耐腐蚀高速电动针阀在圆晶湿法刻蚀清洗化学药液流量控制中的应用

    [size=16px][color=#339999][b]摘要:化学药液流量的精密控制是半导体湿法清洗工艺中的一项关键技术,流量控制要求所用调节针阀一是开度电动可调、二是具有不同的口径型号、三是高的响应速度,四是具有很好的耐腐蚀性,这些都是目前提升半导体清洗设备性能需要解决的问题。为此,本文提出了相应的解决方案,解决方案的核心是采用具有系列口径的高速和耐腐蚀的电动针阀。[/b][/color][/size][align=center][size=16px][img=高速耐腐蚀电动针阀流量控制在前道化学清洗机中的应用,550,271]https://ng1.17img.cn/bbsfiles/images/2023/04/202304261136485023_8685_3221506_3.jpg!w690x341.jpg[/img][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 湿法蚀刻清洗工艺(如RCA清洗)是半导体制造工艺步骤中数量最多的工艺,湿法清洗的目的是去除晶圆上前一道工序的残留或者副产物,使之不进入后续工序。一般通过化学药液与晶圆表面去除物的反应,或改变不同特性化学清洗液处理以后的晶圆表面亲水性,达到去除残留物的目的。其中,化学反应强烈程度与温度、浓度、化学药液的反应量密切相关,而蚀刻量是检测此化学反应强烈程度的重要手段。因此,刻蚀量是湿法刻蚀工艺中最重要的工艺控制参数之一,而影响蚀刻量的三大因素分别是化学药液温度、化学药液浓度和化学药液流量,其中药液浓度和流量都与流量控制密切相关。典型的化学药液循环系统结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=01.化学药液循环系统结构示意图,690,247]https://ng1.17img.cn/bbsfiles/images/2023/04/202304261138411498_3193_3221506_3.jpg!w690x247.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 化学药液循环系统结构示意图[/b][/color][/size][/align][size=16px] 针对当前和未来的湿法刻蚀清洗工艺,用于药液流量控制的针阀需要满足以下几方面要求:[/size][size=16px] (1)首先针阀要求是可电控针阀,如图1所示,由电动针阀、流量计和PID控制器可组成闭环控制回路,通过电动针阀的开度精细变化,可极大保证药液流量控制的精度。[/size][size=16px] (2)制程工艺中对药液流量有不同的要求,所以电子针阀需具有不同口径和流量范围。[/size][size=16px] (3)电动针阀要求具有极快的响应速度,能实现快速的打开和闭合,以减少初段流量稳定时间和末端流量控制时的“水锤效应”影响。[/size][size=16px] (4)在清洗过程中所采用的化学药液,往往具有很强的腐蚀性。尽管管路和阀门所采用的不锈钢材料具有很好的抗腐蚀性,但各种阀门密封件往往抗腐蚀性很差,所以要求电动针阀的接液密封件也需要具有很强的耐腐蚀性。[/size][size=16px] 药液流量控制中上述对调节阀的要求,都是目前半导体清洗设备中需要解决的问题。为此,本文提出了相应的解决方案,解决方案的核心是采用具有系列口径的高速和耐腐蚀的电动针阀。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 为了满足上述湿法清洗工艺化学药液流量控制对调节阀的需要,本文提出的解决方案是采用具有一系列不同口径、高速和耐腐蚀的电动针阀。系列电动针阀如图2所示。[/size][align=center][size=16px][color=#339999][b][img=02.强耐腐蚀性的高速电动针阀,450,385]https://ng1.17img.cn/bbsfiles/images/2023/04/202304261139215269_3851_3221506_3.png!w599x513.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 NCNV系列耐腐蚀高速电动针阀[/b][/color][/size][/align][size=16px] 用于流量调节的NCNV系列数控电动针阀将步进电机的精度和可重复性优势与针阀的线性和分辨率相结合,其结果是具有1s以内的开闭合时间,小于2%滞后、2%线性、1%重复性和0.2%分辨率的可调流量控制,是目前常用电磁比例阀的升级产品。电动针阀直接用模拟电压信号控制,与PID控制器和流量计相结合,可构成快速准确的闭环控制系统。[/size][size=16px] NCNV系列数控电动针阀的其他技术特点如下:[/size][size=16px] (1)多规格节流面积:具有从低流量的直径0.9mm到高流量的直径4.10mm的多种规格针阀节流面积,可满足不同的流量控制需要。[/size][size=16px] (2)宽压力范围:入口环境可覆盖宽泛的压力范围(5或7bar)。步进电机的刚度和功率确保针阀在相同的输入指令下打开,与压力无关。[/size][size=16px] (3)快速响应:整个行程时间小于1秒,可提供及时快速的流量调节和控制。[/size][size=16px] (4)耐腐蚀性:阀体采用不锈钢,密封件采用FFKM全氟醚橡胶,超强的耐腐蚀性,可用于各种腐蚀性气体和液体。[/size][size=16px] (5)电源电压为24V,控制信号为0~10V模拟电压,也可采用RS485直接控制。[/size][b][size=18px][color=#339999]3. 总结[/color][/size][/b][size=16px] 综上所述,通过采用上述系列的电动针阀,可以很好的实现湿法清洗中化学药液流量的精密调节。特别是与相应的流量计、压力传感器和具有串级和比值控制功能的高精度PID控制器相结合组成闭环控制系统,可实现各种药液配比流量的高精度控制。[/size][size=16px][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~~[/color][/b][/align][align=center][/align][align=center][b][color=#339999][/color][/b][/align]

  • 电动针阀和手动可变泄漏阀在超高真空度PID自动精密控制中的应用

    电动针阀和手动可变泄漏阀在超高真空度PID自动精密控制中的应用

    [size=16px][color=#000099]摘要:超高真空度的控制普遍采用具有极小开度的可变泄漏阀对进气流量进行微小调节。目前常用的手动可变泄漏阀无法进行超高真空度的自动控制且不准确,电控可变泄漏阀尽管可以实现自动控制但价格昂贵。为了实现自动控制且降低成本,本文提出了手动可变泄漏阀与低漏率电控针阀组合的解决方案,结合真空压力PID控制器可实现超高真空度自动控制。[/color][/size][align=center][size=16px][/size][/align][size=16px][/size][align=center][color=#000099]~~~~~~~~~~~~~~~~~~~~~[/color][/align] [b][size=18px][color=#000099]1. 问题的提出[/color][/size][/b][size=16px] 超高真空一般是指10-7Pa~10-2Pa范围的真空度,相应的超高真空技术应用也十分广泛,特别是对于芯片级原子钟(CSACs)、电容膜片规(CDGs)、显微镜、质谱仪和和新型金属有机化学[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]沉积(MOCVD)等需要超高真空环境的设备,其真空度控制的稳定性通常非常重要。[/size][size=16px] 超高真空度控制的基本原理如图1所示,可采用开环和闭环两种控制形式,基本控制原理是固定真空泵的抽速,通过调节进气流量来实现不同真空度的控制。对于超高真空控制,要求进气量非常微小,所以一般采用可变泄漏阀(varible leakage valve)进行调节进气量。[/size][align=center][size=16px][color=#000099][b][img=01.超高真空度控制系统结构示意图和各种可变泄漏阀,650,493]https://ng1.17img.cn/bbsfiles/images/2023/04/202304272211542322_7977_3221506_3.jpg!w690x524.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图1 超高真空度控制的基本原理和各种可变泄漏阀[/b][/color][/size][/align][size=16px] 如图1所示,目前常用的可变泄漏阀有手动和自动两种形式,但在实际应用中存在以下两方面的问题:[/size][size=16px] (1)手动可变泄漏阀只能组成开环控制回路,需要人工调节泄漏阀开度并同时观察真空计读数进行超高真空度控制。这种开环控制方法很难实现真空度的稳定,气源和真空腔体内稍有扰动就会带来严重的波动,另外就是在多个真空度点控制时很难操作和控制。[/size][size=16px] (2)自动可变泄漏阀是在手动泄漏阀上配置了一个电子致动器和PID控制器,与真空计可构成闭环控制回路,可实现超高真空度的精密控制,但存在的问题是价格昂贵,自动可变泄漏阀要比手动泄漏阀贵三倍左右。[/size][size=16px] 针对目前可变泄漏阀具体使用中存在的上述问题,本文提出了如下解决方案。[/size][size=18px][color=#000099][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案的基本思路是采用价格相对较低的手动可变泄漏阀以提供微小的很定进气流量,然后再配备低漏率的电控针阀对此微小进气流量进行电动调节,以实现最终超高真空度的自动控制,由此构成的超高真空度控制系统结构如图2所示。[/size][align=center][size=16px][color=#000099][b][img=02.手动泄漏阀和电动针阀组合式超高真空度控制系统结构示意图,600,267]https://ng1.17img.cn/bbsfiles/images/2023/04/202304272212262679_3036_3221506_3.jpg!w690x308.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图2 手动泄漏阀和电动针阀组合式超高真空度控制系统结构示意图[/b][/color][/size][/align][size=16px] 由图2所示的控制系统可以看出,整个系统由手动泄漏阀、电控针阀、真空计和PID真空压力控制器构成,并形成闭环控制系统。在具体控制过程中,首先将手动泄漏阀调节到某一固定位置使其保持恒定的微小进气流量,真空压力控制器根据采集到的真空计信号与设定值比较后对电控针阀进行动态调节。由于电控针阀自身有很小的真空漏率,所以电控针阀的开度变化相当于是对手动泄漏阀进气流量的进一步调节,由此电动针阀与手动泄漏阀配合可实现对进入腔体的流量进行调节而最终实现超高真空度的控制。[/size][size=16px] 在图2所示的控制系统中,真空计采用了组合式皮拉尼真空计,真空度测试范围可以从一个大气压到5×10-8Pa,全量程真空度对应的模拟信号输出为0~10V。此真空计信号可以直接被真空压力PID控制器接收,PID控制器具有24位AD、16位DA和0.01%最小输出百分比技术指标,并带有程序控制和RS485通讯功能,可很好的进行超高真空度的全量程自动控制。[/size][size=16px] 此解决方案除了可以满足小型真空腔室的超高真空度控制之外,也可以用于较大腔室的控制,所需的只是改变手动可变泄漏阀开度大小。[/size][align=center][size=16px][color=#000099]~~~~~~~~~~~~~~~~[/color][/size][/align][align=center][size=16px][color=#000099][/color][/size][/align][align=center][size=16px][color=#000099][/color][/size][/align]

  • 真空激光粉末床融合中的气氛环境压力控制

    真空激光粉末床融合中的气氛环境压力控制

    [color=#990000]摘要:增材制造的激光粉末床融合过程中,在环境气氛窗口5~101KPa范围内,可使得熔池更稳定和降低孔隙率。本文介绍了实现气氛压力控制的方法以及具体布局和相应配置。[/color][align=center][img=增材制造,690,325]https://ng1.17img.cn/bbsfiles/images/2021/12/202112121732534721_961_3384_3.jpg!w690x325.jpg[/img][/align][size=18px][color=#990000][/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000]增材制造的低压气氛激光粉末床融合工艺[/color][/size] 特点:熔池更稳定和降低孔隙率。 低压气氛要求:在工艺窗口为5kPa~101kPa内实现快速准确的气压控制。[align=center][img=增材制造,690,479]https://ng1.17img.cn/bbsfiles/images/2021/12/202112121734044490_4158_3384_3.png!w690x479.jpg[/img][/align][align=center][color=#990000]图1 真空激光粉末床融合设备[/color][/align][size=18px][color=#990000]气压控制[/color][/size] 控制方法:双向控制模式,同时调节上游进气电动针阀和下游电动球阀来调节进气流量和真空泵排气速率。 传感器:真空压力传感器,测量范围5kPa~101kPa,精度±0.2%。 控制器:双通道PID控制器,双向控制功能。[align=center][color=#990000][img=增材制造,690,229]https://ng1.17img.cn/bbsfiles/images/2021/12/202112121735072671_1242_3384_3.png!w690x229.jpg[/img][/color][/align][align=center][color=#990000]图2 真空激光粉末床融合环境压力控制框图[/color][/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制