当前位置: 仪器信息网 > 行业主题 > >

实时彩色阴极发光成像系统

仪器信息网实时彩色阴极发光成像系统专题为您提供2024年最新实时彩色阴极发光成像系统价格报价、厂家品牌的相关信息, 包括实时彩色阴极发光成像系统参数、型号等,不管是国产,还是进口品牌的实时彩色阴极发光成像系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合实时彩色阴极发光成像系统相关的耗材配件、试剂标物,还有实时彩色阴极发光成像系统相关的最新资讯、资料,以及实时彩色阴极发光成像系统相关的解决方案。

实时彩色阴极发光成像系统相关的论坛

  • 【分享】显微镜,鉴定宝石,阴极发光仪

    高能量的电子束激发宝石使之发光称为阴极发光,阴极发光仪作为宝石的一种无损检测方法,近年来在宝石的测试与研究中得到了较广泛的应用。 1、基本原理固体能带理论认为,宝石矿物内存在价带、禁带和导带。在高能量的电子束激发下价带电子被激发到导带,形成不稳定的激发态。处在激发态的电子通过各种形式释放能量回到基态。如果以可见光的形式释放能量,就形成阴极发光。宝石矿物可以因为含有微量的杂质成分、结构缺陷,而有不同的阴极发光颜色、图式和光谱。 2、仪器的结构 宝石阴极发光仪(图8-3-11)主要由真空系统、电子枪、控制系统和样品仓等部分组成,为了观察需要,还需配备体视显微镜(宝石显微镜)和照相系统等辅助设备(图8-3-10)。 ① 真空系统:由旋转机械泵、扩散泵、离子泵、真空阀门和真空检测器组成,功能是为电子系统提供真空条件,以增强束电压和束电流的强度,同时也可防止样品室污染。 ② 电子枪:多为冷阴极式电子枪,发射直径为2~20mm大小的电子束,然后在l~25kV加速电压作用下可形成100~5000uA的束电流。 ③ 控制系统:由真空检测、高压调节、电流强度调节、束斑聚焦调节等部分组成。用来控制束电压、电流强度和束斑焦点的大小,其功能是维持整个系统的正常工作状态。 ④ 样品仓:用于放置样品并可以前后左右调节样品位置。 ⑤ 显微镜和照相系统:用于观察现象和照相。 3、宝石学应用 (1)区分天然与合成钻石 阴极发光技术最成功的应用就是能迅速有效地区分天然和合成钻石。天然钻石多发出相对均匀的中强蓝色一灰蓝色光,并显示生长环带结构(图8-3-11);由于合成钻石晶体多发黄绿色光, 并显示几何对称的生长分区结构。 ② 天然和处理蓝色托帕石的鉴定阴极发光技术另外一项不可替代的作用是鉴别天然和处理蓝色托帕石。天然蓝色托帕石的阴极发光明显比无色的托帕石强,无色的托帕石又比处理的蓝色托帕石强。用无色的托帕石为参考,可以方便地区分出天然和处理的蓝色托帕石。

  • 【分享】阴极发光显微镜分析技术

    阴极发光显微镜分析技术阴极发光显微镜技术是在普通显微镜技术基础上发展起来用于研究岩石矿物组分特征的一种快速简便的分析手段。该方法在快速准确判别石英碎屑的成因和方解石胶结物的生长组构、鉴定自生长石和自生石英以及描述胶结过程等方面得到了广泛的应用。通过对砂岩的阴极射线致发光的观察和研究,可以深人了解砂岩的原始孔隙度和渗透率,并且获得一系列有关蚀源区地质体的组成、产状、成因的信息。1) 原理 : 电子束轰击到样品上,激发样品中发光物质产生荧光,又称阴极发光。实验证明,阴极射线致发光现象多是由于矿物中含杂质元素或微量元素(激活剂),或者是矿物晶格内有结构缺陷引起的,这是矿物阴极射线致发光的两种主要解释。矿物内的激活剂包括金属元素(Eu2十、Srn +、时十、IV +、 Ea3十)以及过渡金属元素(mw十、Fe3+, c a 干、V3十、Tia+),与激活剂相对应能抑制矿物发光的物质叫碎灭剂,如Co干,Nl-2+,F e2+、Tie十等。2) 应用 :自然界中已发现具有阴极射线致发光的矿物有200多种,其中常见矿物有锡石、错石、萤石、白钨矿、方解石、尖晶石、独居石、磷灰石、长石、石英、辉石、橄榄石、云母、独居石等。目前,阴极发光显微镜技术已成为沉积学及石油地质学研究的一种常规手段,特别是对石英和方解石的发光特征已经进行了很多的研究,形成了一套系统的理论,在沉积成岩型矿床和石英脉型金矿床研究中得到了广泛地应用。石英 中 的 激发是由微量元素、结构中的缺陷,以及两者之间的相互作用造成的。例如,蓝色发光被归因为A13+替代Sia十 以及Tia+的含量有关。石英的阴极致发光颜色与岩石的形成环境密切相关,如表1所示。发蓝紫色光的石英,包括红紫、蓝紫和蓝色的石英与火山岩、深成岩以及快速冷却的接触变质岩的环境有关联。棕色发光,包括红棕、深棕和浅棕色的石英和冷却缓慢的低级和高级变质岩相联系的。碎屑 岩 中 的石英由陆源颗粒石英和胶结物石英(即自生的晶体和次生加大边)组成,通过阴极发光的观察是极易鉴定的,因为两者的阴极发光特性常有较大的差异。因此,碎屑岩的胶结作用和孔隙率演化的研究通常大量地依靠阴极发光,而且砂岩中孔隙度降低的数量可以用阴极发光来定量。普通的光学显微镜和扫描电镜技术对辩别不同形态的颗粒边界及某些情况下辩别颗粒和胶结物都无能为力,只有阴极发光能揭示出胶合的石英颗粒的碎屑形状,可观察到次生加大胶结、多期胶结、破裂愈合胶结、压溶嵌合式胶结等现象,对石英的次生加大级别的强弱、石英的溶蚀程度的强弱也极易作出判断。碳酸 盐 类 矿物方解石和白云石特别适合于用阴极发光来研究,因为这一类矿物都能发光。由于碳酸盐矿物是砂岩中最常见的孔隙充填胶结物,它们一般会含有多个阶段的矿物生长世代,而且容易发生重结晶作用和蚀变作用。阴极发光能比其他技术更快地、而且通常更成功地鉴定出成岩成矿作用事件的序列,具有不同的阴极发光颜色环带的方解石胶结物可以被用来指示成岩孔隙水物理化学条件随时间的变化,能使我们推断出成岩过程中矿物的替代。此外,阴极发光能够“看穿”重结晶作用前的原岩结构,它是测定碳酸盐的蚀变历史和成矿序列的惟一切实可行的方法。

  • 阴极发光仪的应用

    阴极发光现象被发现与100多年前,19世纪80年代主要应用于观察宝石,20世纪开始进入考古学和矿物学等研究,1965年利用阴极发光原理制成的仪器和偏光镜相结合,从此较广泛的应用于地球科学研究。 主要应用领域为地球科学、生命科学、石油、珠宝鉴定等领域。 CLF-1阴极发光仪的主要功能: 1.矿物组份的鉴别 2.化石和有机残留物中的骨骼结构、胶结过程的描述、自生长石和自生石英的鉴定 3.砂岩和页岩的胶结、矿物在分离过程中的辨认等 4.石油勘探岩心的含油气信息研究 5.用于对珠宝内部结构的鉴定 对阴极发光有兴趣的朋友可以联系我 QQ 490348698

  • 【分享】显微镜的新光源---阴极发光

    阴极发光仪可用于石英、方解石、白云石以及钻石等固体样品结构和组成的确定,同时,不会对样品造成任何破坏。阴极发光仪具有换样快速方便,设计简单紧凑,以及易于和岩相学专用显微镜联机的优点。此外,样品室对样品大小的要求范围宽,而且对于适合低温产生阴极光的样品控温能力强。从80年代开始,阴极发光技术不仅应用在传统的地球科学和行星学领域,而且开创了玻璃、陶瓷、半导体和合成材料等行业的研究和应用;此外,阴极发光技术在法医学、考古学、材料科学领域等新的方向具有发展前途,阴极发光仪与EDS检测器的联机可获得相关样品的X射线光谱特征描述和元素分析。阴极发光仪在岩石学领域的应用价值已经得到普遍认可,如组份的分区,二次结晶、脱液、共生、断裂填合、辐射环、化石和有机残留物中的骨骼结构、胶结过程的描述、自生长石和自生石英的鉴定、砂岩和页岩的胶结、矿物在分离过程中的辨认等。目前,CAMBRIDGE IMAGE TECHNOLOGY LTD(CITL)的100多台产品已经广泛的分布在30多个国家的大学实验室里,在Elf、Gulf、Shell等15个著名石油天然气公司以及英国、美国、法国、西班牙、荷兰、阿根廷等国家的研究机构和国家历史博物馆也得到应用。阴极发光仪也应用于宝石特性的识别(天然石或人造石),人造宝石完美程度鉴定。南非、泰国、荷兰及英国的珠宝鉴定机构及珠宝商使用了该类产品。CL8200 MK5型阴极发光仪是MK4型的升级产品,主要在电子微控制和仪表数字显示方面进行了改进。显示面板新增了控制信息,并且可以根据房间的照明条件进行自动亮度补偿。产品开发还考虑到更换样品时切断束流电压并保证真空泵同时运行,节省了换样时间。另外,还设计了与计算机连接的扩展卡,便于将来仪器的软件升级。在绝大多数应用领域,阴极发光仪只需要少量样品,无需对样品进行涂层等前处理,而且测定过程不会对样品造成任何破坏。阴极发光仪可以根据工作目的安装在各种显微镜上,如偏光显微镜、实体显微镜、金相显微镜等。[em17]

  • 阴极灯发光角度及氘灯角度

    有人了解阴极灯和氘灯的发光特性吗?我有咨询过阴极灯厂家,对方无法给出具体的发光曲线,那么大家实际使用中,一般阴极灯角度按多少度计算的呢?谢谢各位老师讨论

  • 小动物荧光发光成像优势特点

    [b][url=http://www.f-lab.cn/vivo-imaging/photonimager.html]小动物荧光发光成像系统photonimager[/url]™ [/b]系统优势: 1.生物荧光与荧光成像操作非常方便 2.无与伦比的性能和精度 3.实时成像能力 4.模块化理念[img=小动物荧光发光成像系统]http://www.f-lab.cn/Upload/Photonimager-IntroRT.jpg[/img]小动物荧光发光成像系统photonimager易于发光荧光成像特点 1.从蓝光到近红外的全波段成像,保证生物发光和荧光成像,连续选择激发波长450nm-1000nm 2.配备高达10带通滤光片 3.自动自发荧光滤除 4.混合像元分解 5.multilabeling能力 6.从全身发光成像到细胞尺寸成像小动物荧光发光成像:[url]http://www.f-lab.cn/vivo-imaging/photonimager.html[/url]

  • 化学发光凝胶成像仪

    化学发光凝胶成像仪   http://cls.bnu.edu.cn/Portals/1/yqysb/images/凝胶成像/化学发光成像.jpghttp://cls.bnu.edu.cn/Portals/1/yqysb/images/凝胶成像/化学发光成像面板.jpg操作流程:1. 打开电脑;2. 打开成像仪器电源(左后侧)和CCD 电源(黑色),将样品放入工作台;3. 双击桌面上图标,打开Quantity One 软件,或从开始-程序-The Discovery Series/Quantity One进入;4. 从File 下拉菜单栏中选择ChemiDoc XRS…,打开图像采集窗口;5. Select Application 选择相关应用;aUV Transillumination 透射UV:针对DNA EB 胶或其他荧光,打开仪器面板上UV 按钮;bWhite Transillumination 透射白光:针对透光样品如蛋白凝胶,x-光片,把白光灯箱 放在UV工作台上,打开仪器面板上Trans-White;cWhite Epillumination 侧面白光:针对不透光样品或蛋白凝胶,打开仪器面板上Epi-White6. 单击Live/Focus 按钮,激活实时调节功能,此功能有三个上下键按钮:IRIS(光圈),ZOOM(缩放),FOCUS(聚焦),您可在软件上直接调节或在仪器面板上手工调节,调节步骤:a调节IRIS 至合适大小b点ZOOM,将胶适当放大c调节FOCUS,至图像最清晰7. 如果是DNA EB 胶或其他荧光或蛋白凝胶,单击Auto Expose,系统将自动选择曝光时间成像,如不满意,单击Manual Expose,并输入曝光时间(秒),图像满意后保存;8. 如是化学发光,在Select Application 下选择Chemiluminescence 或Chemi Hi Sensitivity(如样品强度较弱),先打开Epi-White 侧面白光,同第5 步调节清楚膜的聚焦状态(如膜上没有可对焦的标记,可用记号笔做个小记号)。然后关闭光源,不打开任何光源,将滤光片位置换到o 位(仪器上方右侧),将光圈Iris 开到最大,选择Auto Expose 自动曝光,或输入ManualExpose 时间,可对化学发光的弱信号进行长时间积累如30min,或单击Live Acquire 进行多桢图象实时采集,在对话框内定义曝光时间长短,采集几桢图象,在采集的多桢图象中选取满意的保存。 化学发光是特别弱的发光,所以曝光可以很长,记得做完化学发光后,把滤光片位置换到原先的位置(I 位)。

  • 【求助】关于化学发光成像分析 vs 化学发光检测仪

    刚学习化学发光,请专家指点化学发光检测仪采用液相(态)检测方法比化学发光固相(态)检测(成像系统)灵敏多少个数量级? 3~5个?对于化学发光检测,是不是PMT单光子检测做的工作,化学发光成像系统一定不可以做? 例如?

  • 原子荧光空心阴极灯发光异常

    仪器:东西分析;型号:AF-7550。新机子,砷、铋、锑灯在按照说明书的主电流和辅电流的条件下,只能持续正常发光几秒钟或者十几秒钟。之后就会变得比较暗。再给它加说明书条件下的电流,又只能正常发光十几秒,然后又会变得比较暗。汞灯能正常持续发光,没有出现以上情况。新手,麻烦大神指教下。

  • 原子荧光空心阴极灯发光异常

    仪器:东西分析;型号:AF-7550。新机子,砷、铋、锑灯在按照说明书的主电流和辅电流的条件下,只能持续正常发光几秒钟或者十几秒钟。之后就会变得比较暗。再给它加说明书条件下的电流,又只能正常发光十几秒,然后又会变得比较暗。汞灯能正常持续发光,没有出现以上情况。新手,麻烦大神指教下。

  • 【分享】几种常用荧光探针的化学发光成像研究

    [b][size=4]利用双(2, 4, 6)三氯苯基过氧化草酸酯( TCPO) 2过氧化氢(H2O2 ) 2咪唑2荧光探针的化学发光体系,研究了荧光探针化学发光成像,对几种常用的荧光探针(丁基罗丹明、罗丹明B、罗丹明6G、荧光素及异硫氰酸荧光素等)进行了定量分析。本方法具有高灵敏度、成像分析高通量等优点,线性范围宽,检出限达10 - 11mol/L。对四甲基异硫氰酸罗丹明(TR ITC)标记的单克隆羊抗人IgG的化学发光成像分析,比相同条件下荧光成像的检出限低一个数量级。[/size][/b]

  • 还搞不懂生物发光成像和荧光成像的区别?一篇文章告诉你!

    [align=center][b][font=宋体][/font][/b][/align][align=center][font='times new roman'][size=18px]还搞不懂生物发光成像和荧光成像的区别?一篇文章告诉你![/size][/font][/align][font=&][size=16px][color=#ff0000] 引言[/color][/size][/font][font=&][size=16px]当[/size][/font][font=&][size=16px]夜晚降临,[/size][/font][font=&][size=16px]当[/size][/font][font=&][size=16px]中国四川天台山的萤火虫[/size][/font][font=&][size=16px]们[/size][/font][font=&][size=16px]幻化成满目[/size][/font][font=&][size=16px]“[/size][/font][font=&][size=16px]星空[/size][/font][font=&][size=16px]”[/size][/font][font=&][size=16px]的美景时[/size][/font][font=&][size=16px],[/size][/font][font=&][size=16px]游弋在[/size][/font][font=&][size=16px]太平洋深处的[/size][/font][font=&][size=16px]发光水母们[/size][/font][font=&][size=16px]正[/size][/font][font=&][size=16px]散发着[/size][/font][font=&][size=16px]柔和[/size][/font][font=&][size=16px]的[/size][/font][font=&][size=16px]绿色[/size][/font][font=&][size=16px]光芒[/size][/font][font=&][size=16px]。同样是关于“光”的美景,[/size][/font][font=&][size=16px]相同点是我们都是通过肉眼去观察,实际上它们[/size][/font][font=&][size=16px]有着[/size][/font][font=&][size=16px]截然不同的发光[/size][/font][font=&][size=16px]原理。[/size][/font][font=&][size=16px][/size][/font][font=&][size=16px]如同萤火虫和发光水母一样[/size][/font][font=&][size=16px],[/size][/font][font=&][size=16px]活体光学成像技术包括[/size][/font][font=&][size=16px][b]生物发光[/b][/size][/font][font=&][size=16px]与[/size][/font][font=&][size=16px][b]荧光成像[/b][/size][/font][font=&][size=16px]两种。生物发光和荧光成[/size][/font][font=&][size=16px]像[/size][/font][font=&][size=16px]作为近年来新兴的活体动物体内光学成像技术[/size][/font][font=&][size=16px],[/size][/font][font=&][size=16px]以其操作简便及直观性成为研究小动物活体成像的[/size][/font][font=&][size=16px]理想方法[/size][/font][font=&][size=16px],[/size][/font][font=&][size=16px]在生命科学研究中不断发展[/size][/font][font=&][size=16px]。那么生物发光和荧光成像[/size][/font][font=&][size=16px]的[/size][/font][font=&][size=16px]区别到底在哪里[/size][/font][font=&][size=16px]呢[/size][/font][font=&][size=16px]?是否所有的活体成像设备都能同时检测生物发光和荧光成像呢?[/size][/font][align=center][font='times new roman'][size=16px][color=#c00000][b]不同点[/b][/color][/size][/font][/align][font=&][size=16px]类似于我们都是通过肉眼去观察萤火虫和发光水母一样[/size][/font][font=&][size=16px],[/size][/font][font=&][size=16px]生物发光与荧光成像在本质上都是机体中特定的细胞或材料发出光子被高灵敏度的[/size][/font][font=&][size=16px]CCD[/size][/font][font=&][size=16px]检测到形成图像[/size][/font][font=&][size=16px],[/size][/font][font=&][size=16px][b]但是生物发光与荧光成像产生光子的过程和机制是完全不同的[/b][/size][/font][font=&][size=16px]。[/size][/font][font=宋体][size=16px]请大家继续向下看↓[/size][/font][align=center][font='宋体'][size=16px][b]产生光子的原理[/b][/size][/font][font='宋体'][size=16px][b]不同[/b][/size][/font][/align][table][tr][td][align=center][font='宋体'][size=16px]生物发光[/size][/font][/align][/td][td][align=center][font='宋体'][size=16px]荧光成像[/size][/font][/align][/td][/tr][tr][td][align=center][font='宋体'][size=14px]生物发光需要[/size][/font][font='宋体'][size=14px][color=#ff0000][i]两类化学物质[/i][/color][/size][/font][font='宋体'][size=14px],一类被称作萤光素,另一类被称为荧光素[/size][/font][font='宋体'][size=14px]酶。荧光素能在荧光素酶的催化下消耗[/size][/font][font='宋体'][size=14px]ATP,并与氧气发生反应,反应中产生激发态的氧化荧光素,当氧化荧光素从激发态回到基态时释放出光子,从而发光[/size][/font][font='宋体'][size=14px],是[/size][/font][font='宋体'][size=14px][color=#ff0000][i]化学能转化为光能[/i][/color][/size][/font][font='宋体'][size=14px]。[/size][/font][/align][/td][td][align=center][font='宋体'][size=14px]荧光的发光需要[/size][/font][font='宋体'][size=14px][color=#ff0000][i]荧光物质和激发光源[/i][/color][/size][/font][font='宋体'][size=14px]。当荧光蛋白或荧光物质[/size][/font][font='宋体'][size=14px]被一定波[/size][/font][font='宋体'][size=14px]长光激发后,电子被激发到高能级,随后向低能级跃迁的过程中发出比激发光波长更长的荧光[/size][/font][font='宋体'][size=14px],是[/size][/font][font='宋体'][size=14px][color=#ff0000][i]物理[/i][/color][/size][/font][font='宋体'][size=14px][color=#ff0000][i]过程[/i][/color][/size][/font][font='宋体'][size=14px]。[/size][/font][/align][/td][/tr][/table][font=宋体][size=16px]当我们[/size][/font][font=宋体][size=16px]理解[/size][/font][font=宋体][size=16px]了生物发光和荧光成像的发光原理之后[/size][/font][font=宋体][size=16px],[/size][/font][font=宋体][size=16px]我们就能很好的理解[/size][/font][font=宋体][size=16px]为什么生物发光[/size][/font][font=宋体][size=16px]检测前[/size][/font][font=宋体][size=16px]需要注射[/size][/font][font=宋体][size=16px]荧光[/size][/font][font=宋体][size=16px]素[/size][/font][font=宋体][size=16px],以及为什么荧光成像需要配置激发光源。[/size][/font][align=center][font='宋体'][size=16px][color=#c00000][b]相同点[/b][/color][/size][/font][/align][font=宋体][size=16px]既然生物发光和荧光成像的原理截然不同,那么就没有相同的地方吗?[/size][/font][font=宋体][size=16px]答案当然是否定的!如同上述所说的,[/size][/font][font=&][size=16px]生物发光产生的光子和荧光成像产生的光子[/size][/font][font=&][size=16px]都[/size][/font][font=&][size=16px]可以被高灵敏的[/size][/font][font=&][size=16px]CCD[/size][/font][font=&][size=16px]检测[/size][/font][font=&][size=16px]并形成图像[/size][/font][font=宋体][size=16px],就像一个人的眼睛就可以既看到萤火虫又可以看到发光水母一样。除此之外,生物发光和荧光成像都需要对目标细胞进行标记,让细胞产生荧光素酶或者荧光蛋白。[/size][/font][align=center][font='宋体'][size=16px][b]都需要对细胞进行标记[/b][/size][/font][/align][table][tr][td][align=center][font='宋体'][size=16px]生物发光[/size][/font][/align][/td][td][align=center][font='宋体'][size=16px]荧光成像[/size][/font][/align][/td][/tr][tr][td][align=center][font='宋体'][size=14px]哺乳动物生物发光,一般是将 Firefly luciferase 基因(由 554 [/size][/font][font='宋体'][size=14px]个[/size][/font][font='宋体'][size=14px]氨基酸构成,约 50KD)即荧光素酶基因整合到预期观察的细胞染色体 DNA 上以表达荧光素酶,培养出能稳定表达荧光素酶的细胞株,当细胞分裂、转移、分化时, 荧光素酶也会得到持续稳定的表达。[/size][/font][/align][/td][td][align=center][font='宋体'][size=14px]通过将荧光蛋白基因[/size][/font][font='宋体'][size=14px](例如绿色[/size][/font][font='宋体'][size=14px]荧光[/size][/font][font='宋体'][size=14px]蛋白,[/size][/font][font='宋体'][size=14px]由[/size][/font][font='宋体'][size=14px]约[/size][/font][font='宋体'][size=14px]238个氨基酸组成的蛋白质[/size][/font][font='宋体'][size=14px])[/size][/font][font='宋体'][size=14px]整合到目标细胞染色体上以表达荧光蛋白,[/size][/font][font='宋体'][size=14px]培养出能稳定表达[/size][/font][font='宋体'][size=14px]荧光蛋白[/size][/font][font='宋体'][size=14px]的细胞株,当细胞分裂、转移、分化时, [/size][/font][font='宋体'][size=14px]荧光蛋白[/size][/font][font='宋体'][size=14px]也会得到持续稳定的表达。[/size][/font][/align][/td][/tr][/table][font=宋体][size=16px]到目前为止,相信大家对生物发光和荧光成像的区别已经很清楚了,但[/size][/font][font=&][size=16px]是[/size][/font][font=&][size=16px]肯定也会有更多的疑惑[/size][/font][font=&][size=16px]![/size][/font][font=&][size=16px]例如科研工作者比较关心的问题[/size][/font][font=&][size=16px]:[/size][/font][font=&][size=16px][b]针对我的课题[/b][/size][/font][font=&][size=16px][b],生物发光和荧光成像哪个好?什么情况下选择生物发光,什么情况下选择荧光成像。生物发光和荧光成像的应用范围有区别吗?[/b][/size][/font][font=&][size=16px]别急,我们下期再继续为大家解答更多关于活体[/size][/font][font=&][size=16px]光学[/size][/font][font=&][size=16px]成像技术的问题!!!欢迎对活体成像技术有疑问的老师和同学在评[/size][/font][font=&][size=16px]论区留言,共同学习,共同交流。[/size][/font]

  • 活体光学成像技术专栏| 荧光成像与生物发光成像技术的比较

    [i][font='Times New Roman'][font=宋体]引言[/font][/font][/i][font='Times New Roman'][font=宋体]在上一期的专栏里[/font][/font][font=宋体],我们对荧光成像和生物发光的基本原理进行了对比。同时也留下了几个问题:[/font][font='Times New Roman'][font=宋体]针对我的课题[/font][/font][font=宋体],生物发光和荧光成像哪个好?什么情况下选择生物发光,什么情况下选择荧光成像。别急,今天将为大家解答关键问题:[/font][b][font=宋体][color=#ff0000]荧光成像和生物发光成像的优缺点是什么?[/color][/font][/b][align=center][font='Times New Roman']一、 [/font][b][font=宋体]荧光成像技术的优点[/font][/b][/align][font='Times New Roman'][font=宋体]相比生物发光成像[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]荧光成像技术的优势主要表现在[/font][/font][font=宋体]:[/font][font='Times New Roman']1. [/font][b][font='Times New Roman'][font=宋体]荧光蛋白及荧光染料的标记能力更强[/font][/font][font=宋体]。[/font][/b][font=宋体]荧光标记分子种类繁多,包括荧光蛋白、荧光染料、量子点标记等,可以对基因、蛋白、抗体、化合药物等进行标记。[/font][font=宋体][color=#ff0000]应用范围极广[/color][/font][font=宋体],可以对样本进行[/font][font=宋体][color=#ff0000]多色标记[/color][/font][font=宋体],一个样本同时获得多种细胞或药物的分布[/font][font=宋体]。[/font][font='Times New Roman']2. [/font][b][font='Times New Roman'][font=宋体]信号强度[/font][/font][font=宋体]高[/font][/b][font=宋体]由于荧光成像的[/font][font=宋体][color=#ff0000]光子强度较生物发光更强[/color][/font][font=宋体][font=宋体],持续时间长,对[/font]C[/font][font='Times New Roman']CD[/font][font=宋体]的灵敏度要求相对较低,不需要必须配备低温冷[/font][font='Times New Roman']CCD[font=宋体]即可获得清晰的成像结果,节省实验成本和购置成本。[/font][/font][font='Times New Roman']3. [/font][b][font='Times New Roman'][font=宋体]实验成本低[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]成像过程简单[/font][/font][/b][font='Times New Roman'][font=宋体]相比生物发光成像,成像前无需注射荧光素酶底物。有合适的激发光源照射就可以发出特定波长的发射光[/font][/font][font=宋体]。[/font][font='Times New Roman'][font=宋体]只要荧光基团稳定,就可实现[/font][/font][font='Times New Roman'][color=#ff0000][font=宋体]随时激发随时发光随时检测[/font][/color][/font][font='Times New Roman'][font=宋体]。[/font][/font][font='Times New Roman']4. [/font][b][font=宋体]从活体到离体均可成像[/font][/b][font=宋体][font=宋体]相比生物发光只能在活细胞内才会产生发光。荧光蛋白或荧光染料只需要保持荧光基团稳定即可稳定发光。可以在活体或离体组织器官进行观察,在实验前期荧光材料制备阶段,可以直接在[/font]E[/font][font='Times New Roman']P[font=宋体]管中进行成像观察[/font][/font][font=宋体]。[/font][font='Times New Roman']5. [/font][b][font=宋体]应用范围广[/font][/b][font=宋体]相比生物发光成像,荧光成像技术应用范围极广。在肿瘤生长与转移、药物的分布与代谢、纳米颗粒的靶向性与代谢、植物基因的表达、生物相容性材料开发、新型标记技术的开发等多个研究中均可用到荧光成像技术。([/font][font=宋体][color=#ff0000][font=宋体]点击了解[/font]FOBI[font=宋体]整体荧光成像在上述领域的应用[/font][/color][/font][font=宋体])[/font][align=center][font='Times New Roman']二、 [b][font=宋体]生物发光技术的优点[/font][/b][/font][/align][font='Times New Roman'][font=宋体]相比荧光成像[/font][/font][font=宋体],生物发光成像的主要优势表现在:[/font][b][font=宋体]1[font=宋体]、特异性强,无自发荧光[/font][/font][/b][font=宋体]以荧光素酶作为体内报告源的生物发光方法,特异性极强。由于动物本身没有任何自发光,使得生物发光具有极低的背景和极高的信噪比。[/font][b][font=宋体]2[font=宋体]、[/font][/font][font='Times New Roman'][font=宋体]高灵敏度[/font][/font][/b][font='Times New Roman'][font=宋体]由于生物体内很多物质在激发光的照射[/font][/font][font=宋体]下[/font][font='Times New Roman'][font=宋体]也会发出荧光[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]这些非特异性荧光背景会影响检测灵敏度[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]荧光成像的灵敏度最高可在动物体内检测到约[/font]10[/font][sup][font='Times New Roman']4[/font][/sup][font='Times New Roman'][font=宋体]细胞,而生物发光具有在动物体内监测[/font]10[/font][sup][font='Times New Roman']2[/font][/sup][font='Times New Roman'][font=宋体]数量级细胞的灵敏度。[/font][/font][b][font=宋体]3[font=宋体]、检测深度更高[/font][/font][/b][font='Times New Roman'][font=宋体]对于需要在深部[/font][/font][font=宋体]组织[/font][font='Times New Roman'][font=宋体]下进行的研究(检测的深度在[/font]3~4cm[font=宋体])[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]应用生物发光是最佳的选择[/font][/font][font=宋体]。[/font][b][font=宋体]4[font=宋体]、[/font][/font][font='Times New Roman'][font=宋体]精确定量[/font][/font][/b][font=宋体]由于荧光素酶基因是插入细胞染色体中稳定表达的,单位细胞的发光数量、发光条件相对稳定。即使标记细胞在动物体内有复杂的定位,亦可从动物体表的信号水平测量出发光细胞的相对数量。[/font][font='Times New Roman'][color=#ff0000][font=宋体]荧光成像和生物发光技术[/font][/color][/font][font=宋体][color=#ff0000],[/color][/font][font='Times New Roman'][color=#ff0000][font=宋体]是互为补充[/font][/color][/font][font=宋体][color=#ff0000],[/color][/font][font='Times New Roman'][color=#ff0000][font=宋体]分别满足不同的研究领域[/font][/color][/font][font=宋体][color=#ff0000]。对于不同的研究,可根据两者的特定及实验要求,选择合适的方法。[/color][/font][table][tr][td][font='Times New Roman'] [/font][/td][td][align=center][font='Times New Roman']优点[/font][/align][/td][td][align=center][font=宋体]缺点[/font][/align][/td][/tr][tr][td][align=center][font=宋体]荧光成像技术[/font][/align][/td][td][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]荧光染料、蛋白标记能力强,可用于多重标记[/color][/font][font=宋体][color=#333333],[/color][/font][font=Verdana][color=#333333]信号强度大,成像速度快[/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]实验成本低[/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]2 [/color][/font][font=宋体][color=#333333]体内、体外,器官、活体均可成像。[/color][/font][font=Verdana][color=#333333] [/color][/font][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]应用范围极广[/color][/font][/td][td][font=Wingdings][color=#333333]n [/color][/font][font=Verdana][color=#333333]非特异性荧光限制了灵敏度,体内检测最低约[font=Verdana]104[/font][font=宋体]细胞[/font][/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]n [/color][/font][font=Verdana][color=#333333]检测深度受限制[/color][/font][font=宋体][color=#333333],[/color][/font][font=Verdana][color=#333333]较难精确体内定量[font=Verdana] [/font][/color][/font][font=宋体][color=#333333]。[/color][/font][/td][/tr][tr][td][align=center][font=宋体]生物发光技术[/font][/align][/td][td][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]特异性强,无自发荧光[/color][/font][font=宋体][color=#333333],[/color][/font][font=Verdana][color=#333333]背景低[/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]高灵敏度,在体内可检测到几百个细胞[/color][/font][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]可精确定量[/color][/font][font=宋体][color=#333333]。[/color][/font][/td][td][font=Wingdings][color=#333333]n [/color][/font][font=Verdana][color=#333333]信号较弱,检测时间较长,需要灵敏的[font=Verdana]CCD[/font][font=宋体]镜头,仪器价格贵[/font][/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]n [/color][/font][font=Verdana][color=#333333]要求高[/color][/font][font=宋体][color=#333333],[/color][/font][font=Verdana][color=#333333]需要注入荧光素,实验成本高[/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]n [/color][/font][font=宋体][color=#333333]只能用于细胞标记,应用范围窄。[/color][/font][/td][/tr][/table][i][font=宋体]结束语[/font][/i][font=宋体]随着活体成像技术的发展特别是荧光标记技术的发展,越来越多的生物学研究需要用到活体光学成像的方法。无论大家是选择生物发光或者荧光成像技术,苦恼总是随之而来,例如:[/font][font=宋体][color=#ff0000]生物素在体内可以维持多长时间?荧光蛋白和染料种类繁多,我该怎样选择呀?[/color][/font][font=宋体][font=宋体]别急,下期我们继续为大家介绍关于活体成像技术应用与选择的问题与难点。[/font][/font][font=宋体][font=宋体][url=http://dwz.date/cwes]点击了解更多活体成像技术的应用与仪器信息![/url][/font][/font][align=center][font='Times New Roman'][font=宋体]参考文献[/font][/font][/align][font='Segoe UI'][color=#222222]1. [/color][/font][font='Segoe UI'][color=#222222]Su, Y., Walker, J.R., Park, Y. [/color][/font][i][font='Segoe UI'][color=#222222]et al.[/color][/font][/i][font='Segoe UI'][color=#222222] Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals. [/color][/font][i][font='Segoe UI'][color=#222222]Nat Methods[/color][/font][/i][font='Segoe UI'][color=#222222] [/color][/font][b][font='Segoe UI'][color=#222222]17, [/color][/font][/b][font='Segoe UI'][color=#222222]852–860 (2020). [/color][/font][font='Segoe UI'][color=#222222]2. [/color][/font][url=#!][font='Segoe UI'][color=#222222]M.Keyaerts[/color][/font][/url][url=#!][font='Segoe UI'][color=#222222]V.Caveliers[/color][/font][/url][url=#!][font='Segoe UI'][color=#222222]T.Lahoutte[/color][/font][/url][font='Segoe UI'][color=#222222] [/color][/font][url=https://www.sciencedirect.com/science/referenceworks/9780444536334][font='Segoe UI'][color=#222222]Comprehensive Biomedical Physics[/color][/font][/url][font=等线][color=#222222] [/color][/font][url=https://www.sciencedirect.com/science/referenceworks/9780128012383][font='Segoe UI'][color=#222222]Volume 4[/color][/font][/url][font='Segoe UI'][color=#222222], 2014, Pages 245-256.[/color][/font]

  • 【原创】分子印迹化学发光

    分子印迹技术的概念就是将各种生物大分子从凝胶转移到一种固定基质上的过程,当体系中存在着模板分子时,功能单体可以通过聚合使这些模板分子以互补的形式固定下来.聚合后,模板分子可以被除去,从而使获得的分子组装体能专一性地键合模板分子及其类似物。 利用分子印迹化学发光技术进行定量测定,增加了一种准确测定的方法,分子印迹技术可以对混合的样品进行选择性的分离,然后从印迹模板上将待测的物质洗脱下来,进行化学发光测定,从而提高了CL体系的选择和减小了其他物质对体系的干扰。

  • AAS原吸的钙空心阴极灯和AFS原荧的汞空心阴极灯的内部结构和发光原理的相同和区别

    AAS原吸的钙空心阴极灯和AFS原荧的汞空心阴极灯的内部结构和发光原理的相同和区别

    AAS[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]的钙空心阴极灯和AFS原荧的汞空心阴极灯的内部结构和发光原理的相同和区别?都是辉光放电吗?[img=[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]钙灯内部,690,920]https://ng1.17img.cn/bbsfiles/images/2021/10/202110151107335298_5355_3167735_3.jpg!w690x920.jpg[/img][url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]钙灯内部结构[img=[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]钙灯正面,690,920]https://ng1.17img.cn/bbsfiles/images/2021/10/202110151107335633_5479_3167735_3.jpg!w690x920.jpg[/img][url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]钙灯装盒正面[img=原子荧光汞灯背面,690,920]https://ng1.17img.cn/bbsfiles/images/2021/10/202110151108474328_7829_3167735_3.jpg!w690x920.jpg[/img]原子荧光汞灯背面[img=原子荧光汞灯正面,690,920]https://ng1.17img.cn/bbsfiles/images/2021/10/202110151108474768_6500_3167735_3.jpg!w690x920.jpg[/img]原子荧光汞灯正面[img=原子荧光汞灯说明书,690,920]https://ng1.17img.cn/bbsfiles/images/2021/10/202110151108476800_2183_3167735_3.jpg!w690x920.jpg[/img]原子荧光汞灯合格证

  • 空心阴极灯异常现象及处理方法

    现象原因影响处理方法1.阴极辉光变(充氖灯由橙红。粉红一白光),充氢灯由谈紫变白灯内有杂质气体发射线减弱,可能同时有背景发射将灯在10—20mA电流下反向放电几分钟到半小时,如无效,再在80—150mA下反向放电,激活吸气剂2.屏蔽管发光溅射的金屑针状结晶或片状脱落,使阴极与屏蔽管接通发射减弱不稳定振动灯壳,使接通处断开 3.阳极光闪动阳极表面放电不均匀一般不影响使用如有影响,可在10—20mA下反向放电半小时4.阴极外例和后部发光屏蔽管与阴极距离过大,或有杂质气体发射线赂有减弱发射稳定仍可使用,必要时按1反向处理5.阴极内发生跳动的火花状放电 无测定线发射阴极表面有氧化物或有杂质气体恢复正常放电前不能使用在30—50mA下反向放电,或加大与灯串联的稳流电阻到2—10千欧6.灵敏度降低灯有背景发射、波长选择错误、单色器通带过宽、喷射器堵塞,燃气不足、燃烧器狭缝不在光轴下方不能正常测定检查灯的背景发射,观察阴极光色调,不正常,处理同l 7.不发光灯头漏气或灯头接线脱落;电源有故障不能使用先用其它灯检查电源,再用高频真空查漏器检察,如灯壳内无氖光就是漏气(更换新灯)有氖光为接线脱落8.只在阴极口外发光惰性气体压强降低,不能保持正常放电不能使用更换新灯9.发光色调正常,特征铺线发射很弱或不能捡出长期使用后阴极金属耗尽或所用光电倍增管或放大器不合适不能正常测定不能复活,应换灯或重新选择合适的光电倍增管或放大器

  • 有机电致发光研究进展

    在计算机图象图形学领域中常涉及到图象图形的显示问题,特别是超薄显示问题.这不仅涉及到超薄显示材料,也涉及到电致发光薄膜技术.本文就是这一领域研究现状的概要介绍:信息显示是信息产业的核心技术之一,而信息显示技术及显示器件多种多样,其中,有机电致发光显示器件由于响应速度快,适合于全彩色的动态图象显示,同时驱动电压低,能与数字图象VLSI技术兼容,也便于实现动态图象的显示驱动,并且聚合物 材料可以通过低成本的工艺做成柔性的大面积平板显示,所以它是实现未来超薄型可卷壁挂式彩色电视的关键技术,现被公认为是继液晶显示LCD、等离子显示PBD后的新一代图形图象显示器件.有机电致发光的研究起步于60年代,Pope首次在蒽单晶上实现了电致发光,但由于当时需要在大于100V的驱动电压下才能观察到明显的发光现象,且量子效率也很低,还由于受各种条件的制约,未能很好地解决成膜质量差和电荷注入效率低等问题,所以有机电致发光的发展一直处于停滞不前的状态.直到1987年,Tang和VanSlyke采用8-羟基喹啉铝络合物(Alq3)作为发光层,分别用ITO电极和Mg:Ag电极作为阳极和阴极,制成了高亮度(1000cd/m2),高效率(1.5lm/W)的绿光有机电致发光薄膜器件,其驱动电压降到了10V以下,从而取得了有机电致薄膜发光器件研究史上划时代的进展.由于他们的工作,又引起了人们对有机电致发光研究的再度关注.1990年,Burroughes等人用聚对苯乙烯(PPV)制备的聚合物薄膜电致发光器件得到了量子效率为0.05%的蓝绿光输出[3],其驱动电压小于14V.由于聚合物材料的制作工艺、稳定性以及化学修饰性都比有机小分子更为优越,所以聚合物PPV以及PPV衍生物材料的研究进一步地推动了有机电致发光薄膜的研究,使之成为新的研究热点.其中,Braun等用PPV的衍生物制成了量子效率为1%的绿色和橙色光输出,其驱动电压约为3V.这些工作都极大推进了有机薄膜电致发光器件的发展,从而使得有机电致发光的研究在世界范围内广泛地开展.与无机材料的电致发光相比,有机薄膜具有许多不可比拟的优越性,主要表面在下述3方面:第一,有机材料可以获得在可见光谱范围内的全色发光,特别是无机材料难以获得的蓝光 第二,可以直接用十几伏甚至几伏的直流低压驱动,可以和集成电路直接相匹配 第三,有机电致发光器件的制作工艺简单,可以低成本制成超薄平板显示器件,因此易于产业化.可见,由于有机电致发光技术将有可能是制作下一代超薄平板显示的主要技术,引起了人们对有机发光材料和器件研究的极大兴趣,在1992年,有机电致发光薄膜技术被评为该年度化学领域的十大成果之一,1995年,日本通过的“科学技术基本法”已明确规定将有机电致发光器件列为研究重点项目之一,并提出将其应用到超薄大平板显示器件以及计算机领域,预计可实现数十亿美元的市场规模 国内的吉林大学、中国科学院长春物理所、中国科学院长春应用化学所、北京大学、北方交通大学、浙江大学等单位也开展了这方面的研究,并已经取得了一定的成果,国家自然科学基金委员会已经将其作为一个专题进行了重点资助. 1 有机电致发光的发光材料. 从目前的研究成果来看,作为有机电致发光器件核心的发光材料可分为以下3类: (1)小分子有机染料 这类材料具有高的荧光效率,并且可以通过真空沉积法成膜,但是成膜后容易结晶,有时甚至易于其它的有机材料形成激基复合物,因此这类材料的单独应用比较少. (2)金属络合物 其中典型的可以8-羟基喹啉络合物(Alq3)为代表,还有现在研究比较多的一些稀土元素Eu、Tb的络合物,这类材料的性质介于无机和有机之间.它们除可作为EL的发光材料外,还可作为电子传输材料.其中稀土金属络合物因具有窄带波长发射(一般只有10~20nm)、荧光寿命长(10-2~10-6s)、特征发射等特点而倍受关注,另外,金属络合物也和有机小分子一样,大都通过蒸镀法成膜,但由于有些因熔点过低,在热蒸发时易分解,故只能将它

  • 空心阴极灯异常现象及处理方法

    1. 【异常现象】:阴极辉光变(充氖灯由橙红-粉红-白光),充氢灯由淡紫变白。使发射线减弱,可能同时有背景发射。【原因】:灯内有杂质气体;【解决办法】:将灯在10-20mA电流下反向放电几分钟到半小时,如无效,再在80-150mA下反向放电,激活吸气剂。2. 【异常现象】:屏蔽管发光。使发射减弱不稳定。【原因】:溅射的金屑针状结晶或片状脱落,使阴极与屏蔽管接通。【解决办法】:振动灯壳,使接通处断开。3. 【异常现象】:阳极光闪动。【原因】:阳极表面放电不均匀;【解决办法】:一般不影响使用;如有影响,可在10—20mA下反向放电半小时。4. 【异常现象】:阴极外侧和后部发光。使发射线略有减弱。【原因】:屏蔽管与阴极距离过大,或有杂质气体。【解决办法】:发射稳定仍可使用,必要时按1反向处理。5. 【异常现象】:阴极内发生跳动的火花状放电,无测定线发射。从而恢复正常放电前不能使用。【原因】:阴极表面有氧化物或有杂质气体。【解决办法】:在30-50mA下反向放电,或加大与灯串联的稳流电阻到2-10千欧。6. 【异常现象】:灵敏度降低。不能正常测定。【原因】:灯有背景发射、波长选择错误、单色器通带过宽、喷射器堵塞,燃气不足、燃烧器狭缝不在光轴下方。【解决办法】:检查灯的背景发射,观察阴极光色调,不正常,处理同l。7. 【异常现象】:不发光。不能使用。【原因】:灯头漏气或灯头接线脱落;电源有故障。【解决办法】:先用其它灯检查电源,再用高频真空查漏器检察,如灯壳内无氖光就是漏气(更换新灯);有氖光为接线脱落。8.【异常现象】:只在阴极口外发光。不能使用。【原因】:惰性气体压强降低,不能保持正常放电。【解决办法】:更换新灯。9. 【异常现象】:发光色调正常,特征铺线发射很弱或不能检出。不能正常测定。【原因】:长期使用后阴极金属耗尽或所用光电倍增管或放大器不合适。【解决办法】:不能复活,应换灯或重新选择合合适的光电倍增管或放大器

  • 如何挑选凝胶成像系统?

    摘要: 过去,研究人员为了确保凝胶结果完美需要进行辛苦的工作:通过不断重复进行保存凝胶,或者凝胶存档(a record of the gel)的工作,在记录他们辛辛苦苦得来的凝胶结果上花费了许多时间和精力。然而今天的我们已经不再需要如此手工化的操作了,我们可以利用许多商品化的凝胶成像系统快速而准确的记录下实验结果,并且可以方便地获得分析和组织实验的数据。而且凝胶成像系统也已经不仅仅是作为一种凝胶记录的手段,普遍应用于蛋白、DNA的凝胶记录中了,更是一种印迹分析,数据获得的方式  Introduction  过去,研究人员为了确保凝胶结果完美需要进行辛苦的工作:通过不断重复进行保存凝胶,或者凝胶存档(a record of the gel)的工作,在记录他们辛辛苦苦得来的凝胶结果上花费了许多时间和精力。然而今天的我们已经不再需要如此手工化的操作了,我们可以利用许多商品化的凝胶成像系统快速而准确的记录下实验结果,并且可以方便地获得分析和组织实验的数据。而且凝胶成像系统也已经不仅仅是作为一种凝胶记录的手段,普遍应用于蛋白、DNA的凝胶记录中了,更是一种印迹分析,数据获得的方式。  不管是什么用途,刚开始的时候凝胶成像系统的组件都是相似的。Alpha Innotech的产品经理Hanh Lee就曾说,“表面上看来,所有的凝胶成像系统看上去和操作起来很相似:它们都有一个相机、一个黑暗的‘围栏’与获取和分析凝胶图片的软件。”但是,更深入的进行了解,你就会发现大部分凝胶成像系统提供了不同的产品特性来满足不同科学研究的需要。  要挑选一个合适的凝胶成像系统,各人需要根据目前的预算和将来研究需要来决定,市场上有众多的类型和型号可供选择,但是大家要务必记住经常留意最新的产品动向——快速发展的光学技术和成像分析软件也许能实现你以前想都不敢想的方便操作。  A range of specifications for far-ranging needs  首先值得一提的当然是分别在在2004年和2006年获得凝胶成像分析系统生命科学产业奖的Bio-Rad公司的产品,Bio-Rad公司提供了各种不同的产品特性满足客户的不同科学研究需要。例如,Bio-Rad公司的ChemiDoc XRS系统就是为高分辨率的化学发光和荧光成像用途设计的。该系统的特点包括:1.3兆的超级冷却CCD照相机、一个紧密不透光的暗室、一个滑行的透射仪、一个的由软件控制变焦、聚焦、光圈、实时成像和动态平场处理的伸缩镜头。该公司还提供另外一种更基础用途的型号Gel Doc XR,主要用于快速高分辨率成像,但没有化学发光成像功能。该系统包含一个暗室、一个1.4兆像素的CCD照相机、UV和白光照明、琥珀色滤光玻片和UV防护罩。Gel Doc XR系统也可以升级为ChemiDoc XRS系统,两种系统都包含了图像获取和分析软件 ——Quantity One。虽然像ChemiDoc XRS等系统的高科技特性对于新用户来说听起来有点不习惯,但是Bio-Rad公司的CCD成像技术产品经理Jill Raymond表示,“Bio-Rad的凝胶成像系统的关键特点就是设计的简易性——几乎能满足所有顾客的需要。”  Bio-Rad公司还提供两种分辨率更高和灵敏度更好的凝胶成像系统型号:VersaDoc Model 4000和VersaDoc Model 5000。VersaDoc Model 4000系统具备一个3.2兆像素的CCD相机,提供了最佳的分辨率。该系统尤其适用于蛋白组分析,例如可以利用Quantity One 1-D分析软件来估计蛋白样品的分子量和数量,也可以利用PDQuest 2-D分析软件来分析蛋白表达产物的差异。  VersaDoc Model 5000系统则运用了高级的量子效应、蓝光增强的CCD相机,该相机通过过冷光源(supercooled)来优化低亮度情况下的图片成像。通过Quantity One 1-D分析软件就能轻松估计样品的丰度差异。  知名的Alpha Innotech公司在科学研究和预算要求方面也提供了广泛的,可供选择的产品,  比如目前相对新型和高端的产品——FluorChem SP,这是一种可以用于化学发光、荧光、和可见光应用的产品。  Alpha Innotech公司宣称通过FluorChem SP,希望能设定近期发展起来的电子致冷型CCD(cooled CCD camera)相机技术的行业标准,包括分辨率、灵敏度、动态范围和性能等方面的标准。而且Alpha Innotech也相信他们公司提供的相机产品的规格有着其他公司不能比拟之处:高分辨率(科学研究级的CCD)、4兆象素、低信噪比、低暗电流(dark current)、绝对的和可调的制冷温度(用于更高端的系统)。  除了4兆象素的分辨率外,FluorChem SP还提供了Alpha Innotech公司的AlphaEaseFC软件。其特有的算法通过三维图像轮廓成像、图像锐化和降低信噪比等技术改进了成像分辨率。AlphaEaseFC软件提供了可以简单易用的单击完成1D泳道分析、2D点密度、MW/Rf(分子量/迁移率)计算、克隆和细胞计数、微量滴定盘分析、芯片分析、物距测量和凝胶评分等功能。  另一方面,Alpha Innotech公司也提供给用户一种经济实惠的选择——入门级的AlphaDigiDocRT 2产品,这是一种实时的凝胶成像系统,只要具备一台电脑(通过USB连接)、一台UV透射仪就能使用。当然这是一种stand-alone版的成像产品,也就意味着它不具备一些昂贵的系统提供的许多图像分析选项。  AlphaDigiDocRT 2具有高达8兆的分辨率(8位灰度或者24位彩色成像)、在软件控制下具有4倍的光学变焦和自动聚焦等性能。该系统还包含了AlphaEaseFC图像获取软件,用于控制变焦、自动聚焦、分辨率和曝光时间,含有自动图像增强和数据管理工具,除此之外AlphaDigiDocRT 2外形小巧,经济实惠,是小型和拥挤的实验室的理想选择之一。  The importance of upgradeability  假如你现在就需要一台凝胶成像系统,虽然目前你们实验室很小并且预算很紧,或者你不需要很多花俏的凝胶成像系统的功能,但是预知将来可能会需要更多复杂的性能的时候,最好购买一台能允许你升级到满足你将来需要的凝胶成像系统。  有一些公司提供了这种服务,比如Alpha Innotech公司——任何顾客购买了带有DE-500操作室的入门级凝胶成像系统,就对系统进行升级而不需要买一套全新的系统。另外以上提到的Bio-Rad公司的GelDoc XR 和ChemiDoc XRS也是可升级的系统。  除此之外,Kodak公司的分子成像系统就其高级市场专员Allison Sova的表述:“Kodak公司的Gel Logic的凝胶成像系统家族使得研究者能选择目前所需要的性能,并且可以将来可以经济而简易的升级系统以满足将来的需要。简单的来说,Kodak公司提供给研究者更大的灵活性来满足他们实验室对成像能力不断增加的要求”,也是一种可以升级的系统。  Kodak’s Gel Logic 100是Kodak公司的基础型成像系统,它包含一个1兆象素的数码CCD相机、一个Gel Logic成像操作室、一个溴化乙锭带通滤波器。并且Kodak公司award-winning Molecular Imaging软件提供了其他成像系统所没有的特性,该软件可以在Mac操作系统或者Windows操作系统中使用。假如Gel Logic 100系统还不能满足你的需要,Kodak公司还提供了完整系列的数码凝胶成像和印迹成像系统——DNA 和 RNA凝胶成像,或者蛋白凝胶、印迹、或者平板成像等。  比如Gel Logic 2200数码成像系统,Gel Logic 2200数码成像系统是Kodak公司顶级的凝胶成像系统。 Gel Logic 2200运用了2.2兆像素致冷型CCD相机,适用于更高灵敏度的化学发光和低亮度荧光检测,该系统还整合了白光和紫外光光源。Kodak公司称,该系统能检测皮摩尔至飞摩尔水平的荧光信号,达到与放射性自显影胶卷一样的灵敏度。  另外,大范围生产凝胶成像系统的厂商还有Syngene——Synoptics公司的一个分公司。Synoptics公司的Paru Oatey说“基本上你可以根据研究需要和经费预算来选择相机、光源和滤光镜等配置,这将确保不会在一个系统中不需要的部件上花费多余的钱。”  InGenius是Syngene公司的低预算型凝胶成像产品,可以根据选择不同的相机达到不同的分辨率。InGenius系统小巧易用,包括一个暗室,一个0.3-2兆像素的CCD相机(视型号而定)。  G Box是该公司的另一个高端产品,一个更先进的凝胶成像和分析系统。该系统可以根据不同的应用选择三种不同分辨率的CCD相机,可以选择自动伸缩镜头或者手工镜头,电脑驱动或者手动滤光选择器,根据不同用途的光源选择,符合人体工程学外形设计的暗室。Syngene公司最近推出了一款高分辨率的G Box型凝胶成像产品——G Box Chemi XT16,该系统具有一个超致冷型、低噪音、高分辨率的4兆像素的CCD相机,适合灵敏的化学发光用途。除了自带的暗箱外,系统还包括安置在头顶的白光和紫外光透射光源。每一台

  • 【原创】空心阴极灯异常现象及处理方法

    1.异常现象:阴极辉光变(充氖灯由橙红-粉红-白光),充氢灯由淡紫变白。使发射线减弱,可能同时有背景发射。  原因:灯内有杂质气体;  解决办法:将灯在10-20mA电流下反向放电几分钟到半小时,如无效,再在80-150mA下反向放电,激活吸气剂。  2.异常现象:屏蔽管发光。使发射减弱不稳定。  原因:溅射的金屑针状结晶或片状脱落,使阴极与屏蔽管接通。  解决办法:振动灯壳,使接通处断开。  3.异常现象:阳极光闪动。  原因:阳极表面放电不均匀;  解决办法:一般不影响使用;如有影响,可在10—20mA下反向放电半小时。  4.异常现象:阴极外侧和后部发光。使发射线略有减弱。  原因:屏蔽管与阴极距离过大,或有杂质气体。  解决办法:发射稳定仍可使用,必要时按1反向处理。  5.异常现象:阴极内发生跳动的火花状放电,无测定线发射。从而恢复正常放电前不能使用。  原因:阴极表面有氧化物或有杂质气体。  解决办法:在30-50mA下反向放电,或加大与灯串联的稳流电阻到2-10千欧。  6.异常现象:灵敏度降低。不能正常测定。  原因:灯有背景发射、波长选择错误、单色器通带过宽、喷射器堵塞,燃气不足、燃烧器狭缝不在光轴下方。  解决办法:检查灯的背景发射,观察阴极光色调,不正常,处理同l。  7.异常现象:不发光。不能使用。  原因:灯头漏气或灯头接线脱落;电源有故障。  解决办法:先用其它灯检查电源,再用高频真空查漏器检察,如灯壳内无氖光就是漏气(更换新灯);有氖光为接线脱落。  8.异常现象:只在阴极口外发光。不能使用。  原因:惰性气体压强降低,不能保持正常放电。  解决办法:更换新灯。  9.异常现象:发光色调正常,特征铺线发射很弱或不能检出。不能正常测定。  原因:长期使用后阴极金属耗尽或所用光电倍增管或放大器不合适。  解决办法:不能复活,应换灯或重新选择合合适的光电倍增管或放大器

  • 【转帖】空心阴极灯异常现象产生的原因和解决方法

    一、 异常现象:阳极光闪动 产生原因:阳极表面放电不均 处理方法:一般不影响使用,如有影响,在10-20mA电流下反放电约半小时二、异常现象:阳极辉光变淡 产生原因:灯内有杂质气体 处理方法:将灯在10-20mA电流下反放电几分钟到半个小时。如无效,可在80-150mA电流下反放电,激活吸气剂。三、异常现象:阴极外侧和后部发光,使发射线略有减弱 产生原因:屏蔽管与阴极距离过大或有杂质气体 处理方法:发射线稳定仍可使用,必要时在10-20mA电流下反放电约半小时。四、异常现象:屏蔽管外面发光,使发射线减弱不稳定 产生原因:少数灯溅射的金属成针状结晶或片状脱落,使阴极和屏蔽管接通 处理方法:震动灯壳,使接通处断开五、异常现象:阴极内发生跳动的火花状放电,无测定线发射产生原因:阴极表面有氧化物或杂质处理方法:在30-50mA下反向放电,或加大与灯串联的稳流电阻到2-10千欧六、异常现象:测定灵敏度低,甚至为零产生原因:灯有背景发射,波长选择错误;单色器通带过宽;喷射器堵塞,燃气不足;燃烧器狭缝不在光轴下方处理方法:检查灯的背景发射和阳极光色调,不正常 处理同1七、异常现象:在阴极极口处发光,无测定线强度,工作电压生高产生原因:在阴极极口处发光,无测定线强度,工作电压生高处理方法:更换新灯八、异常现象:不发光产生原因:灯头漏气或灯头接线脱落;电源有故障处理方法:先用其它灯检查电源,再用高频真空查漏器检察,如灯壳内无氖光就是漏气(更换新灯)有氖光为接线脱落。九、异常现象:发光色调正常,特征线发射很弱或不能检出产生原因:阴极金属耗尽或砷、硒、碲、铋、铯元素所用光电倍增管或放大器不合适处理方法:如阴极谨慎耗尽,更换新灯;重新选择合适的光电倍增管或放大器。

  • 高分辨率激光共焦显微成像技术新进展

    共焦显微镜因其高分辨率和能三维立体成像的优点被广泛应用在生物、医疗、半导体等方面。文章首先分析了影响共焦显微镜分辨率的因素,主要有光源、探测器孔径和杂散光等;并结合这些因素介绍了双光子共焦碌微镜、彩色共焦显微镜、荧光共焦显微镜、光纤共焦显微镜;然后从提高系统成像速度的方面介绍了波分复用共焦显微镜和频分复用共焦显微镜;最后分析了共焦显微镜的发展趋势。一、引言随着人们对于生物医学的研究,传统的光学显微镜已经无法满足研究的需要,人们需要可以实现三维成像的显微镜。1957年Marvin Minsky提出了共焦扫描显微镜的原理。1969年,耶鲁大学的Paul Davidovits和M.David Egger设计了第一台共焦显微镜,1987年第一台商业化共焦显微镜的问世,真正实现了三维立体成像。与普通光学显微镜相比,共焦显微镜具有极其明显的优点:能对物体的不同层面进行逐层扫描,从而获得大量的物体断层图像;可以利用计算机进行图像处理;具有较高的横向分辨率和纵向分辨率;对于透明和半透明物体,可以得到其内部的结构图像;还可以对活体细胞进行观察,获取活细胞内的信息,并对获得的信息进行定量分析。自共焦显微原理被提出以来,引起了研究者的广泛关注,提高显微系统的分辨率和改善系统的性能是研究者开发新型显微镜时考虑的主要因素。近几十年,国内外学者通过对共焦显微成像系统的三维点扩散函数、光学传递函数等方面的分析,得出影响显微系统分辨率的因素,主要包括系统的激励光源、探测器孔径、杂散光等。此外,共焦显微镜的成像速度也是决定系统性能的一个重要因素,专家们也一直在进行提高系统成像速度的研究。本文主要从提高显微系统分辨率和系统成像速度这两个方面来介绍共焦显微镜的发展情况。二、共焦扫描显微镜分辨率的提高光源、探测器孔径和杂散光等是影响共焦显微镜分辨率的几个主要因素,因此可以通过改善这些方面来提高显微系统的分辨率。1.光源显微镜的成像性质在很大程度上取决于所采用光源的相干性,有关研究表明,光源相干性好的系统其分辨率要比相干性差的系统要好,并且照明光源对分辨率的改变范围达到了26.4%。因此,选取适合的照明光源对提高显微系统的分辨率有很大帮助。常规的共焦扫描显微镜主要使用普通单色激光作为光源,随着技术的进步,目前已经出现了使用飞秒激光、超白激光、高斯光束作为光源的共焦显微镜,以提高系统性能,获得更高的分辨率。①飞秒激光为光源的双先子扫描共焦显微镜双光子扫描共焦显微镜通常使用近红外的飞秒激光作为激发光源,由于红外光具有较强的穿透性,它能探测到生物样品表面下更深层的荧光图像,并且生物组织对红外光吸收少,随着探测深度的增加衰减会变小,另一方面红外光的衍射低,光束的形状保持性好。2005年,Wild等人利用双光子扫描共焦显微技术实时观察和定量分析了PAHs在植物叶片表面和内部的光降解过程。后来又进一步研究了菲从空气到叶片的迁移过程、菲在叶片内部的运动及其分布情况等,该技术可观测PAHs在叶片内部的最大深度约为200μm。②白激光( supercontinuum laser)为光源的彩色共焦显微镜彩色共焦显微镜是利用光学系统的彩色像差,光源的不同光谱成分会聚焦到样品的不同深度,通过分析由样品反射的光谱能有效地获得样品的扫描深度。2004年,美国宾夕法尼亚州立大学的Zhiwen Liu课题小组使用光子晶体光纤产生的超连续谱白光作为彩色共焦显微镜的光源,这种超连续谱白光具有大的带宽,能够提高系统的扫描范围,能达到7μm扫描深度。另外超白激光有较高的空间相干性,无斑点噪声,能提高系统的信噪比和扫描速度。③使用高斯光束的荧光共焦显微镜荧光共焦显微镜是通过激光照射样品激发样品发出荧光,再通过探测器接受荧光对样品进行观察的共焦显微镜。华南农业大学的杨初平等人研究了不同光源孔径和束斑尺寸的高斯光束对荧光共焦显微镜分辨率的影响表明:与一定孔径尺寸的平行光束相比,采用高斯光束系统可以获得更好的分辨率。 2. 探测器孔径和杂散光共焦显微镜中探测器孔径能滤除部分杂散光,提高系统的分辨率和信噪比。根据相关文献对共焦扫描显微镜的三维光学传递函数与探测器孔径之间的依赖关系的研究,可以得到探测小孔直径为:d=β*1.22λ/NA,式中,β为物镜的放大率,λ为光的波长,NA为物镜的数值孔径。由该公式确定探测器小孔的直径,一方面满足了共焦扫描系统对探测器小孔直径的要求,从而保证高的横向和纵向分辨率,另一方面,又最大限度地使由试样中发射的荧光能量被探测器接收。为了更进一步提高系统分辨率,许多研究者对共焦显微镜中探测孔径进行了改进,例如使用单模光纤代替普通针孔孔径,还有双D型孔径等。① 使用单模光纤的光纤共焦显微镜在光纤共焦显微镜中用光纤分路器代替传统共焦显微镜中的光束分路器,并以单模光纤来代替光源和探测器的微米尺寸针孔孔径。使用单模光纤的优点在于:首先,在采用寻常针孔制作的共焦显微镜中,光源、针孔、探测器等有可能不在一条直线上从而会引起像差;但是在光纤作为针孔的共焦显微镜中,即使有的部件偏离直线时也不会引入像差。其次,使用单模光纤代替微型针孔,容易清除针孔的污染,而且不易受污染。第三,在使用光纤的系统中,可以自由移动显微镜部分而不必挪动探测器。2006年德克萨斯大学使用光纤共焦显微镜进行口腔病变检测,测得的系统横向和轴向分辨率分别为2. 1µm和10µm,成像速度为15帧/s,可观测范围为200µm×200µm。② 具有D型孔径的共焦显微镜近几年,具有对称D型光瞳的共焦显微成像技术引起广泛的关注,图1所示是该系统示意图。2006年美国东北大学的Peter J.Dwyer等人使用这种共焦显微镜进行了人体皮肤内部成像的实验,测得横向分辨率为1.7士0.1µm。2009年新加坡国立大学的Wei Gong等人采用傍轴近似方法理论分析了在共焦显微镜中使用双D型孔径对轴向分辨率的影响。分析表明在图1中的d值给定时,进入瞳孔的光信号强度l会随着探测器尺寸的增加而增加;但是在探测器尺寸给定时,光信号强度I会随着d的增加而单调递减。在使用有限大小的探测器时,改变d的大小,轴向分辨率可以得到改善。 http://www.biomart.cn//upload/userfiles/image/2011/11/1321512815.png 图1 双D型孔径共焦成像系统示意图在共焦成像光学系统中,到达像面的杂散光会在像面上产生附加的强度分布,从而进一步降低了像面的对比度,限制了系统分辨率的提高,因此在显微系统设计时,杂散光的影响也是不容忽视的。一般除了使用探测小孔来抑制杂散光,其他的一些设备例如可变瞳滤波器等对杂散光也有很好的过滤作用。最近以色列魏茨曼科学研究所的O.sipSchwartz and Dan Oron等人提出在系统中使用可变瞳滤波器,这个滤波器能够使多光子荧光共焦显微镜达到分辨率阿贝极限的非线性模拟,从而改善系统的分辨率。三、共焦扫描显微成像速度的提高共焦显微镜快速的成像速度为研究者观察生物细胞中快速动态反应提供了良好的条件。在共焦扫描显微成像系统中,传统的方法是通过改善扫描探测技术来提高成像速度。现有的扫描探测技术主要有Nipkow转盘法、狭缝共焦检测法、多光束的微光学器件检测法。这些方法可以改善扫描速度,但是与系统分辨率,视场之间都存在矛盾,因此又诞生了两种提高成像速度的新型显微镜:波分复用共焦显微镜和频分复用共焦显微镜。

  • 空心阴极灯常见的异常现象和处理方法

    1.异常现象:灵敏度降低。不能正常测定。  原因:灯有背景发射、波长选择错误、单色器通带过宽、喷射器堵塞,燃气不足、燃烧器狭缝不在光轴下方。  解决办法:检查灯的背景发射,观察阴极光色调,不正常,处理同l。  2.异常现象:屏蔽管发光。使发射减弱不稳定。  原因:溅射的金屑针状结晶或片状脱落,使阴极与屏蔽管接通。  解决办法:振动灯壳,使接通处断开。  3.异常现象:阴极外侧和后部发光。使发射线略有减弱。  原因:屏蔽管与阴极距离过大,或有杂质气体。  解决办法:发射稳定仍可使用,必要时按1反向处理。  4.异常现象:只在阴极口外发光。不能使用。  原因:惰性气体压强降低,不能保持正常放电。  解决办法:更换新灯。  5.异常现象:阴极内发生跳动的火花状放电,无测定线发射。从而恢复正常放电前不能使用。  原因:阴极表面有氧化物或有杂质气体。  解决办法:在30-50mA下反向放电,或加大与灯串联的稳流电阻到2-10千欧。  6.异常现象:发光色调正常,特征铺线发射很弱或不能检出。不能正常测定。  原因:长期使用后阴极金属耗尽或所用光电倍增管或放大器不合适。  解决办法:不能复活,应换灯或重新选择合合适的光电倍增管或放大器  7.异常现象:阳极光闪动。  原因:阳极表面放电不均匀;  解决办法:一般不影响使用;如有影响,可在10—20mA下反向放电半小时。  8.异常现象:不发光。不能使用。  原因:灯头漏气或灯头接线脱落;电源有故障。  解决办法:先用其它灯检查电源,再用高频真空查漏器检察,如灯壳内无氖光就是漏气(更换新灯);有氖光为接线脱落。  9.异常现象:阴极辉光变(充氖灯由橙红-粉红-白光),充氢灯由淡紫变白。使发射线减弱,可能同时有背景发射。  原因:灯内有杂质气体;  解决办法:将灯在10-20mA电流下反向放电几分钟到半小时,如无效,再在80-150mA下反向放电,激活吸气剂。

  • 不同元素的空心阴极灯不同?

    我是一个原吸新手。发现空心阴极灯构造不同元素还有不同。   Cr镉和Ca钙的灯前面没有一个专门的通光窗,而其它元素似乎都有。   是否因为这两种元素发光区在可见区?

  • 激光荧光成像仪特点

    [b][url=http://www.f-lab.cn/vivo-imaging/rp2.html]激光荧光成像仪[/url][/b][url=http://www.f-lab.cn/vivo-imaging/rp2.html]Lab-FLARE[/url]是采用激光发射激发荧光技术的实验室近红外荧光成像系统和多功能光子荧光成像控制器,与各种手持式荧光成像仪一起,提供近红外荧光高清成像,同时提供700 nm近红外荧光图像,800nm近红外荧光成像和彩色视频。[b]激光荧光成像仪特点[/b]控制使用2个4K高清监测器与所有我公司荧光成像头一起工作,获得高清荧光图像满FLARE容量的四个独立的视频流高功率665nm 和760nm激光激发,提供几乎没有近红外光的白光同时700 nm近红外荧光,800纳米近红外荧光成像,彩色视频输出,几何/数学融合。综合GPIO的大功率继电器统一的FLARE软件与脚本笔记本电脑集成锁存器及一套RC系列成像头带关节臂定位RC系列成像头的可选推车可选的VESA安装做它自己的RC系列成像安装头激光荧光成像仪Lab-FLARE:[url]http://www.f-lab.cn/vivo-imaging/rp2.html[/url]

  • 【原创大赛】空心阴极灯性能优劣判断方法

    【原创大赛】空心阴极灯性能优劣判断方法

    序最近在论坛上看到不少人讨论“怎么判断空心阴极灯性能优劣”的话题,我特意在网络上搜索了相关资料发现还没有人系统的整理过这方面的知识。所以我决定结合自己所学的知识及工作经验写一篇关于“空心阴极灯性能优劣判断”的文章。希望能对大家有帮助。一:常见的空心阴极灯的分类。目前大家比较常见的空心阴极灯的种类有“普通空心阴极灯”、“高性能空心阴极灯”、“多元素空心阴极灯”;根据灯壳的外径可以分为38mm和51mm两种;根据形状分为日立式、瓶式、筒式;按灯座结构分有2脚灯座、4脚灯座及引线式。二:国内常见的元素灯厂家。据我所知目前我国常见的元素灯生产厂家有“北京有色金属研究院”、“ 北京曙光明”、“ 河北宁强光源”、“ 贺利氏特种光源沈阳公司”、“北京浩天晖”等,这些厂家生产灯在市场都有一定占有率同时也有一定的声誉三:元素灯外观的判断。一盏好的元素灯, 外观和内部构造都是十分重要的。要求使用的材料精良做工精细。当你拿到一盏空心阴极灯首先就要认真观察灯的外观。下图就是观察元素灯外表的一些提示。http://ng1.17img.cn/bbsfiles/images/2011/10/201110230050_325793_1634661_3.jpg观察要点提示(1)透光窗要求表面干净整洁没有气泡、杂质、划痕的为好否则会影响透光率。透光窗通常会根据不同元素的波长长短而使用两种不同的材料来制作,波长在紫外区的一般都是使用石英材料制作,但是石英比玻璃贵为了节约成本一般都只是在透光窗那段使用石英,所以大家可以看到很多元素灯上都有驳接的痕迹。对于波长在可见区的元素灯一般都是正个灯体都是使用玻璃正如上图所示的钡灯就是正个外壳是由玻璃制成的所以没有接驳的痕迹。(2)空心阴极灯的阳极通常是由钛金属制成,不同元素灯厂家所制作的阳极形状也不尽相同。通常要求阳极外表光洁,形状规整,和灯脚连接柱焊接牢固。(3)空心阴极灯的阴极通常是由对应元素的纯金属或者合金制成的,阴极通常制成内径为2-3mm的圆筒形。阴极作为元素灯的灵魂要求使用的材料尽可能纯净,制成的形状尽可能的规整。阴极和透光窗要求同轴度尽可能的高。(4)空心阴极灯上的云母片,出了起固定阴极的作用还有减少自吸收使谱线更窄增大发射强度,一般要求云母片表面光洁,大小形状刚好能填满整个玻璃管,并且安装牢固不会轻易的松动。(5)电极的连接支柱一般都为陶瓷制成,一般要求陶瓷整体性好不能有裂痕等,并且和灯的电极及灯的插脚焊接牢固。(6)灯的插脚一定要加工制作规整一般外表光洁,各个灯脚之间大小和间距都要符合标准,不然装拆灯的时候就特别的不方便。四:空心阴极灯的性能指标测试看完灯的外观我们就要通过原子吸收上对空心阴极灯进行实际性能的测试,通过测试我就能更直观的判断空心阴极灯的优劣了。为了使大家更好的了解灯的性能测试我特地找了三盏镉(cd)灯进行示范。这三盏灯是由不同厂家生产的,灯的内部构造也有少许的不同。因为这些灯新旧不一所以测量出的来的结果只能作为这次示范,而不代表该厂灯的真实质量希望大家自己能明辨。http://ng1.17img.cn/bbsfiles/images/2011/10/201110230052_325794_1634661_3.jpg为了描写方便我分别对灯进行编号分别为灯1、灯2、灯3、通过上图大家可以看到,不同的灯各自的阳极构造都有少许的不同。现在有这样说法说是灯的阳极相对于阴极来说对于灯的质量影响较小。(1)看其发光颜色把灯装上到原吸上按仪器的操作步骤把元素灯点亮观察其发光颜色。http://ng1.17img.cn/bbsfiles/images/2011/10/201110230053_325795_1634661_3.jpg观灯小提示1,对于充氖气的元素灯发出来的光是橙红色的,如果存在杂质时会出现粉红色甚至白色。对于充氩气的元素灯发出来的光时蓝紫色的,如果存在杂质时原色会变淡。2,通常发出来的光斑要比较集中的,不能是过于发散的。(2) 测其增益值大小 在仪器条件的一致的情况下,如灯电流、狭缝宽度等条件一致的情况下让仪器进行波长寻峰后看对应灯下得到增益值(负高压)的大小。通过判断增益值大小就可以判断出灯能量(发射光强)的强弱。(因为在仪器条件一定的情况下灯发光强弱和仪器的增益值成反比)。http://ng1.17img.cn/bbsfiles/images/2011/10/201110230054_325796_1634661_3.jpg 大家可以冲上图可以看到灯1所得到的增益值为272比另外两盏灯都要低一些所以可以证明灯1的发射光强比另外两盏灯都要强一些。(3)观察特征谱线附近的背景。 因为灯在制作的过程使用的阴极材料如果不是该元素的纯金属带有杂质元素或者充入的惰性气体纯度不够等都

  • 【转帖】如何挑选凝胶成像要诀

    Introduction  过去,研究人员为了确保凝胶结果完美需要进行辛苦的工作:通过不断重复进行保存凝胶,或者凝胶存档(a record of the gel)的工作,在记录他们辛辛苦苦得来的凝胶结果上花费了许多时间和精力。然而今天的我们已经不再需要如此手工化的操作了,我们可以利用许多商品化的凝胶成像系统快速而准确的记录下实验结果,并且可以方便地获得分析和组织实验的数据。而且凝胶成像系统也已经不仅仅是作为一种凝胶记录的手段,普遍应用于蛋白、DNA的凝胶记录中了,更是一种印迹分析,数据获得的方式。  不管是什么用途,刚开始的时候凝胶成像系统的组件都是相似的。Alpha Innotech的产品经理Hanh Lee就曾说,“表面上看来,所有的凝胶成像系统看上去和操作起来很相似:它们都有一个相机、一个黑暗的‘围栏’与获取和分析凝胶图片的软件。”但是,更深入的进行了解,你就会发现大部分凝胶成像系统提供了不同的产品特性来满足不同科学研究的需要。  要挑选一个合适的凝胶成像系统,各人需要根据目前的预算和将来研究需要来决定,市场上有众多的类型和型号可供选择,但是大家要务必记住经常留意最新的产品动向——快速发展的光学技术和成像分析软件也许能实现你以前想都不敢想的方便操作。    A range of specifications for far-ranging needs  首先值得一提的当然是分别在在2004年和2006年获得凝胶成像分析系统生命科学产业奖的Bio-Rad公司的产品,Bio-Rad公司提供了各种不同的产品特性满足客户的不同科学研究需要。例如,Bio-Rad公司的ChemiDoc XRS系统就是为高分辨率的化学发光和荧光成像用途设计的。该系统的特点包括:1.3兆的超级冷却CCD照相机、一个紧密不透光的暗室、一个滑行的透射仪、一个的由软件控制变焦、聚焦、光圈、实时成像和动态平场处理的伸缩镜头。该公司还提供另外一种更基础用途的型号Gel Doc XR,主要用于快速高分辨率成像,但没有化学发光成像功能。该系统包含一个暗室、一个1.4兆像素的CCD照相机、UV和白光照明、琥珀色滤光玻片和UV防护罩。Gel Doc XR系统也可以升级为ChemiDoc XRS系统,两种系统都包含了图像获取和分析软件 ——Quantity One。虽然像ChemiDoc XRS等系统的高科技特性对于新用户来说听起来有点不习惯,但是Bio-Rad公司的CCD成像技术产品经理Jill Raymond表示,“Bio-Rad的凝胶成像系统的关键特点就是设计的简易性——几乎能满足所有顾客的需要。”  Bio-Rad公司还提供两种分辨率更高和灵敏度更好的凝胶成像系统型号:VersaDoc Model 4000和VersaDoc Model 5000。VersaDoc Model 4000系统具备一个3.2兆像素的CCD相机,提供了最佳的分辨率。该系统尤其适用于蛋白组分析,例如可以利用Quantity One 1-D分析软件来估计蛋白样品的分子量和数量,也可以利用PDQuest 2-D分析软件来分析蛋白表达产物的差异。  VersaDoc Model 5000系统则运用了高级的量子效应、蓝光增强的CCD相机,该相机通过过冷光源(supercooled)来优化低亮度情况下的图片成像。通过Quantity One 1-D分析软件就能轻松估计样品的丰度差异。  知名的Alpha Innotech公司在科学研究和预算要求方面也提供了广泛的,可供选择的产品,比如目前相对新型和高端的产品——FluorChem SP,这是一种可以用于化学发光、荧光、和可见光应用的产品。  Alpha Innotech公司宣称通过FluorChem SP,希望能设定近期发展起来的电子致冷型CCD(cooled CCD camera)相机技术的行业标准,包括分辨率、灵敏度、动态范围和性能等方面的标准。而且Alpha Innotech也相信他们公司提供的相机产品的规格有着其他公司不能比拟之处:高分辨率(科学研究级的CCD)、4兆象素、低信噪比、低暗电流(dark current)、绝对的和可调的制冷温度(用于更高端的系统)。  除了4兆象素的分辨率外,FluorChem SP还提供了Alpha Innotech公司的AlphaEaseFC软件。其特有的算法通过三维图像轮廓成像、图像锐化和降低信噪比等技术改进了成像分辨率。AlphaEaseFC软件提供了可以简单易用的单击完成1D泳道分析、2D点密度、MW/Rf(分子量/迁移率)计算、克隆和细胞计数、微量滴定盘分析、芯片分析、物距测量和凝胶评分等功能。  另一方面,Alpha Innotech公司也提供给用户一种经济实惠的选择——入门级的AlphaDigiDocRT 2产品,这是一种实时的凝胶成像系统,只要具备一台电脑(通过USB连接)、一台UV透射仪就能使用。当然这是一种stand-alone版的成像产品,也就意味着它不具备一些昂贵的系统提供的许多图像分析选项。  AlphaDigiDocRT 2具有高达8兆的分辨率(8位灰度或者24位彩色成像)、在软件控制下具有4倍的光学变焦和自动聚焦等性能。该系统还包含了AlphaEaseFC图像获取软件,用于控制变焦、自动聚焦、分辨率和曝光时间,含有自动图像增强和数据管理工具,除此之外AlphaDigiDocRT 2外形小巧,经济实惠,是小型和拥挤的实验室的理想选择之一。  The importance of upgradeability  假如你现在就需要一台凝胶成像系统,虽然目前你们实验室很小并且预算很紧,或者你不需要很多花俏的凝胶成像系统的功能,但是预知将来可能会需要更多复杂的性能的时候,最好购买一台能允许你升级到满足你将来需要的凝胶成像系统。  有一些公司提供了这种服务,比如Alpha Innotech公司——任何顾客购买了带有DE-500操作室的入门级凝胶成像系统,就对系统进行升级而不需要买一套全新的系统。另外以上提到的Bio-Rad公司的GelDoc XR 和ChemiDoc XRS也是可升级的系统。  除此之外,Kodak公司的分子成像系统就其高级市场专员Allison Sova的表述:“Kodak公司的Gel Logic的凝胶成像系统家族使得研究者能选择目前所需要的性能,并且可以将来可以经济而简易的升级系统以满足将来的需要。简单的来说,Kodak公司提供给研究者更大的灵活性来满足他们实验室对成像能力不断增加的要求”,也是一种可以升级的系统。  Kodak’s Gel Logic 100是Kodak公司的基础型成像系统,它包含一个1兆象素的数码CCD相机、一个Gel Logic成像操作室、一个溴化乙锭带通滤波器。并且Kodak公司award-winning Molecular Imaging软件提供了其他成像系统所没有的特性,该软件可以在Mac操作系统或者Windows操作系统中使用。假如Gel Logic 100系统还不能满足你的需要,Kodak公司还提供了完整系列的数码凝胶成像和印迹成像系统——DNA 和 RNA凝胶成像,或者蛋白凝胶、印迹、或者平板成像等。  比如Gel Logic 2200数码成像系统,Gel Logic 2200数码成像系统是Kodak公司顶级的凝胶成像系统。 Gel Logic 2200运用了2.2兆像素致冷型CCD相机,适用于更高灵敏度的化学发光和低亮度荧光检测,该系统还整合了白光和紫外光光源。Kodak公司称,该系统能检测皮摩尔至飞摩尔水平的荧光信号,达到与放射性自显影胶卷一样的灵敏度。  另外,大范围生产凝胶成像系统的厂商还有Syngene——Synoptics公司的一个分公司。Synoptics公司的Paru Oatey说“基本上你可以根据研究需要和经费预算来选择相机、光源和滤光镜等配置,这将确保不会在一个系统中不需要的部件上花费多余的钱。”  InGenius是Syngene公司的低预算型凝胶成像产品,可以根据选择不同的相机达到不同的分辨率。InGenius系统小巧易用,包括一个暗室,一个0.3-2兆像素的CCD相机(视型号而定)。  G Box是该公司的另一个高端产品,一个更先进的凝胶成像和分析系统。该系统可以根据不同的应用选择三种不同分辨率的CCD相机,可以选择自动伸缩镜头或者手工镜头,电脑驱动或者手动滤光选择器,根据不同用途的光源选择,符合人体工程学外形设计的暗室。Syngene公司最近推出了一款高分辨率的G Box型凝胶成像产品——G Box Chemi XT16,该系统具有一个超致冷型、低噪音、高分辨率的4兆像素的CCD相机,适合灵敏的化学发光用途。除了自带的暗箱外,系统还包括安置在头顶的白光和紫外光透射光源。每一台G Box系统都提供了GeneTools分析软件,该程序能使许多单调乏味的工作自动完成,例如分子量分析和点带匹配等。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制