Confocal(激光共聚焦显微镜)现在已经司空见惯,甚至是超分辨(SIM等)也是屡见不鲜,今天我们就定性和定量两个方面分析显微成像系统的性能(以分辨率为例),从而更了解系统性能好坏,才能在选择显微镜时做到有的放矢 。[align=center][img=,445,262]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261504385121_662_3450141_3.png!w445x262.jpg[/img][/align]这次我们主要测试对象为奥林巴斯(Olympus) SpinSR超高转盘共聚焦系统,搭载超分辨模块SpinSR10,配以Photometrics 公司的Prime 95B相机。[b][color=#00af50]一、定性分析[/color][/b]利用共聚焦模块与超分辨模块分别在100倍油镜下扫描,采集成像。样品采用Argolight标准测试片Argo-SIM。此测试片中的图样由激光写入,不仅无光漂白效应,而且常见波段皆可被激发,使用方便。通过标准测试片中的“间距渐变线对”图样可以快速定性评估系统空间分辨率及信噪比。Argolight的Argo-SIM标准片中共有4组间距渐变线对,分别朝向四个方向,用以测试显微镜对不同方向的分辨率。线对间距以0 nm为起点,30 nm为步进递增至390 nm。[align=center] [/align][align=center][img=,390,266]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261505109514_806_3450141_3.png!w390x266.jpg[/img][/align][align=center]图一:用户在观看“间距渐变线对”图样(激发光488nm )[/align]实时预览状态下,我们仅用肉眼就可以看出,线对之间有无明显分开,以此大致判定系统的分辨率。线对从下往上数,如从第n根可以分开,则显微镜的分辨率大致为(n-1)*30nm左右。以下图为例:[align=center][img=,690,657]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261506487351_747_3450141_3.png!w690x657.jpg[/img][/align][align=center]图二 定量分析示意图[/align]但是,人眼判断的精确度有限。对于关注方法学的人,仅仅定性分析已不能满足需求。需要对相关结果定量分析,得出更准确的值。[b][color=#00af50] [/color][color=#00af50]二、定量分析[/color][/b]第二阶段,我们将上述采集到的图像分别送入Argolight测试片配套的图像分析软件Daybook中自动计算出分辨率结果。为了得到更为准确的结果,分析过程中截取图像不同区域,分别计算出其分辨率,平均计算得出最终分辨率数值。[align=center][img=,468,298]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261508270801_1889_3450141_3.png!w468x298.jpg[/img][/align][align=center]图三 Daybook软件对比度测量计算图[/align][align=center] [/align]分析过程中,Daybook软件首先自动识别图像中的线对,将强度曲线中的峰值和谷值分别进行标定,之后计算不同线对之间峰值和谷值得的光强对比度(见图三)。另外,软件允许用户选择对比度阈值,以此作为分辨率的判定标准。[align=center][img=,545,242]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261511582801_395_3450141_3.png!w545x242.jpg[/img][/align] [align=center] confocal成像(左) 右:超分辨模块成像(右)[/align][align=center]图四 Argo-SIM测试片中的“间距渐变线对”图样的成像(激发光488 nm)[/align][align=center] [/align][align=center][img=,523,294]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261513007694_2665_3450141_3.png!w523x294.jpg[/img][/align][align=center]五 Daybook软件测量结果截图[/align][align=center] 通过此次测试,我们清楚了解该显微镜的实际分辨率,验证了与厂家参数的契合度。同时,有赖于Argolight荧光显微镜测试方案的高效和便捷,整个测试过程耗时不超过30分钟。[/align][align=center]Argolight荧光标准评估片除了测试显微镜分辨率外,还可以测试其它性能如照明均匀度、光强光谱响应度、空间共定位、定位误差等等。可关注后续文章或致电了解更多功能。[/align][align=center](注)[/align][align=center]1、图片传送压缩问题,图片可能失真。烦请谅解![/align][align=center]2、测量最终结果涉及其他厂家相关产品,暂决定不公布相关测量准确数值,如需了解结果可咨询相关厂家。我司仅负责提供相关产品测量方案,不负责具体系统的评测。烦请谅解![/align]
讲座名称:共聚焦光片成像技术——让荧光成像速度更快,光毒性更低,光操作更容易 主讲老师:易海英 徕卡显微系统生命科学产品应用专家,2014年毕业于华中科技大学生命科学与技术学院,研究生期间的主要研究方向为力学微环境对肿瘤干细胞及其转移的影响,以及力学信号对胚胎干细胞分化及发育的影响,在激光共聚焦和超高分辨率成像领域积累了丰富经验,参与的文章发表在Nature Communications等杂志期刊上。 主要内容:2014年,光片荧光显微技术(light-sheet fluorescence microscopy)被《Nature Methods》评选为年度技术(Method of the Year 2014)。光片(light sheet)技术简单来说即使用一薄层光束从侧面激发荧光样品,随后从样本的上部或下部检测所产生的荧光信号,即检测方向与照射方向相垂直。该技术能够以很高的三维分辨率对不同大小的固定样品或活样品进行三维成像,快速地捕捉细胞或亚细胞水平上的动态变化。其高速、低毒性、低漂白等优势使得光片技术在生命科学领域开始流行起来。光片荧光显微技术的概念其实早在一百多年前就已经被提出来了,但此后很长时间都没有什么进展,直到近年来才活跃起来,其中徕卡创造性地以其成熟的激光扫描共聚焦系统为平台,直接搭载上光片系统,得到既可以实现光片成像,又可以进行常规单光子成像,还可以将光片与单光子、多光子联合使用以实现和开创更为丰富多样的可能性的系统——Leica TCS SP8 DLS!光片荧光显微技术在细胞生物学、发育生物学、微生物学、植物学等多个领域都有广泛的应用,本次Webinar将着重介绍徕卡共聚焦光片系统DLS在生物学研究领域的应用。 举行时间:2016-11-17 14:00 报名链接:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2178http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_669464_2507958_3.jpg手机扫描二维码,报名参会http://exmail.qq.com/cgi-bin/viewfile?type=signature&picid=ZX0717-9QlCeoL%7EVb5UZDdhPeiRO6f&uin=1407973628
讲座名称:共聚焦光片成像技术——让荧光成像速度更快,光毒性更低,光操作更容易 主讲老师:易海英 徕卡显微系统生命科学产品应用专家,2014年毕业于华中科技大学生命科学与技术学院,研究生期间的主要研究方向为力学微环境对肿瘤干细胞及其转移的影响,以及力学信号对胚胎干细胞分化及发育的影响,在激光共聚焦和超高分辨率成像领域积累了丰富经验,参与的文章发表在Nature Communications等杂志期刊上。 主要内容:2014年,光片荧光显微技术(light-sheet fluorescence microscopy)被《Nature Methods》评选为年度技术(Method of the Year 2014)。光片(light sheet)技术简单来说即使用一薄层光束从侧面激发荧光样品,随后从样本的上部或下部检测所产生的荧光信号,即检测方向与照射方向相垂直。该技术能够以很高的三维分辨率对不同大小的固定样品或活样品进行三维成像,快速地捕捉细胞或亚细胞水平上的动态变化。其高速、低毒性、低漂白等优势使得光片技术在生命科学领域开始流行起来。光片荧光显微技术的概念其实早在一百多年前就已经被提出来了,但此后很长时间都没有什么进展,直到近年来才活跃起来,其中徕卡创造性地以其成熟的激光扫描共聚焦系统为平台,直接搭载上光片系统,得到既可以实现光片成像,又可以进行常规单光子成像,还可以将光片与单光子、多光子联合使用以实现和开创更为丰富多样的可能性的系统——Leica TCS SP8 DLS!光片荧光显微技术在细胞生物学、发育生物学、微生物学、植物学等多个领域都有广泛的应用,本次Webinar将着重介绍徕卡共聚焦光片系统DLS在生物学研究领域的应用。 举行时间:2016-11-17 14:00 报名链接:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2178http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_669468_2507958_3.jpg手机扫描二维码,报名参会http://exmail.qq.com/cgi-bin/viewfile?type=signature&picid=ZX0717-9QlCeoL%7EVb5UZDdhPeiRO6f&uin=1407973628
讲座名称:共聚焦光片成像技术——让荧光成像速度更快,光毒性更低,光操作更容易 主讲老师:易海英 徕卡显微系统生命科学产品应用专家,2014年毕业于华中科技大学生命科学与技术学院,研究生期间的主要研究方向为力学微环境对肿瘤干细胞及其转移的影响,以及力学信号对胚胎干细胞分化及发育的影响,在激光共聚焦和超高分辨率成像领域积累了丰富经验,参与的文章发表在Nature Communications等杂志期刊上。 主要内容:2014年,光片荧光显微技术(light-sheet fluorescence microscopy)被《Nature Methods》评选为年度技术(Method of the Year 2014)。光片(light sheet)技术简单来说即使用一薄层光束从侧面激发荧光样品,随后从样本的上部或下部检测所产生的荧光信号,即检测方向与照射方向相垂直。该技术能够以很高的三维分辨率对不同大小的固定样品或活样品进行三维成像,快速地捕捉细胞或亚细胞水平上的动态变化。其高速、低毒性、低漂白等优势使得光片技术在生命科学领域开始流行起来。光片荧光显微技术的概念其实早在一百多年前就已经被提出来了,但此后很长时间都没有什么进展,直到近年来才活跃起来,其中徕卡创造性地以其成熟的激光扫描共聚焦系统为平台,直接搭载上光片系统,得到既可以实现光片成像,又可以进行常规单光子成像,还可以将光片与单光子、多光子联合使用以实现和开创更为丰富多样的可能性的系统——Leica TCS SP8 DLS!光片荧光显微技术在细胞生物学、发育生物学、微生物学、植物学等多个领域都有广泛的应用,本次Webinar将着重介绍徕卡共聚焦光片系统DLS在生物学研究领域的应用。 举行时间:2016-11-17 14:00 报名链接:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2178http://ng1.17img.cn/bbsfiles/images/2016/10/201610281713_615330_0_3.jpg手机扫描二维码,报名参会http://exmail.qq.com/cgi-bin/viewfile?type=signature&picid=ZX0717-9QlCeoL%7EVb5UZDdhPeiRO6f&uin=1407973628
激光共聚焦显微镜系统的原理和应用激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。一.激光共聚焦显微镜系统应用领域:涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。二.基本原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。三.应用范围:细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析3.药理学:药物对细胞的作用及其动力学4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布6.微生物学和寄生虫学:细菌、寄生虫形态结构7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断四.激光共聚焦显微镜在医学领域中的应用A.在细胞及分子生物学中的应用1.细胞、组织的三维观察和定量测量2.活细胞生理信号的动态监测3.粘附细胞的分选4.细胞激光显微外科和光陷阱功能5.光漂白后的荧光恢复6.在细胞凋亡研究中的应用B.在神经科学中的应用1.定量荧光测定2.细胞内离子的测定3.神经细胞的形态观察C.在耳鼻喉科学中的应用1.在内耳毛细胞亚细胞结构研究上的应用2.激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用3.激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用4.激光扫描共聚焦显微镜在嗅觉研究中的应用D.在肿瘤研究中的应用1. 定量免疫荧光测定2. 细胞内离子分析3. 图像分析:肿瘤细胞的二维图像分析4. 三维重建 E.激光扫描共聚焦显微镜在内分泌领域的应用1. 细胞内钙离子的测定2. 免疫荧光定位及免疫细胞化学研究3. 细胞形态学研究:利用激光扫描共聚焦显微镜 F.在血液病研究中的应用1. 在血细胞形态及功能研究方面的应用2. 在细胞凋亡研究中的应用 G.在眼科研究中的应用1. 利用激光扫描共聚焦显微镜观察组织、细胞结构2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态4. 三维重建H. 激光扫描共聚焦显微镜在肾脏病中的应用可以系统观察正常人肾小球系膜细胞的断层扫描影像及三维立体影像水平,使图像更加清晰,从计算机分析系统可从外观到内在结构,从平面到立体,从静态到动态,从形态到功能几个方面对系膜细胞的认识得到提高。
激光共聚焦显微镜系统的原理和应用激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。一.激光共聚焦显微镜系统应用领域:涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。二.基本原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。三.应用范围:细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析3.药理学:药物对细胞的作用及其动力学4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布6.微生物学和寄生虫学:细菌、寄生虫形态结构7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断四.激光共聚焦显微镜在医学领域中的应用A.在细胞及分子生物学中的应用1. 细胞、组织的三维观察和定量测量2. 活细胞生理信号的动态监测3. 粘附细胞的分选4. 细胞激光显微外科和光陷阱功能5. 光漂白后的荧光恢复6. 在细胞凋亡研究中的应用B.在神经科学中的应用1. 定量荧光测定2. 细胞内离子的测定3. 神经细胞的形态观察C.在耳鼻喉科学中的应用1. 在内耳毛细胞亚细胞结构研究上的应用2. 激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用3. 激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用4. 激光扫描共聚焦显微镜在嗅觉研究中的应用D.在肿瘤研究中的应用1. 定量免疫荧光测定2. 细胞内离子分析3. 图像分析:肿瘤细胞的二维图像分析4. 三维重建 E.激光扫描共聚焦显微镜在内分泌领域的应用1. 细胞内钙离子的测定2. 免疫荧光定位及免疫细胞化学研究3. 细胞形态学研究:利用激光扫描共聚焦显微镜 F.在血液病研究中的应用1. 在血细胞形态及功能研究方面的应用2. 在细胞凋亡研究中的应用 G.在眼科研究中的应用1. 利用激光扫描共聚焦显微镜观察组织、细胞结构2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态4. 三维重建H. 激光扫描共聚焦显微镜在肾脏病中的应用可以系统观察正常人肾小球系膜细胞的断层扫描影像及三维立体影像水平,使图像更加清晰,从计算机分析系统可从外观到内在结构,从平面到立体,从静态到动态,从形态到功能几个方面对系膜细胞的认识得到提高。北京中科研域科技有限公司(蔡司显微镜代理商)地址:北京市朝阳区建国路15号院甲1号北岸1292,一号楼406室联系人:张辉13911188977 邮编:100024电话:010-57126588 传真:010-85376588E-mail:[email=zhs_8000@126.com][color=#0365bf]zhs_8000@126.com[/color][/email]
讲座名称:共聚焦光片成像技术——让荧光成像速度更快,光毒性更低,光操作更容易 主讲老师:易海英 徕卡显微系统生命科学产品应用专家,2014年毕业于华中科技大学生命科学与技术学院,研究生期间的主要研究方向为力学微环境对肿瘤干细胞及其转移的影响,以及力学信号对胚胎干细胞分化及发育的影响,在激光共聚焦和超高分辨率成像领域积累了丰富经验,参与的文章发表在Nature Communications等杂志期刊上。 主要内容:2014年,光片荧光显微技术(light-sheet fluorescence microscopy)被《Nature Methods》评选为年度技术(Method of the Year 2014)。光片(light sheet)技术简单来说即使用一薄层光束从侧面激发荧光样品,随后从样本的上部或下部检测所产生的荧光信号,即检测方向与照射方向相垂直。该技术能够以很高的三维分辨率对不同大小的固定样品或活样品进行三维成像,快速地捕捉细胞或亚细胞水平上的动态变化。其高速、低毒性、低漂白等优势使得光片技术在生命科学领域开始流行起来。光片荧光显微技术的概念其实早在一百多年前就已经被提出来了,但此后很长时间都没有什么进展,直到近年来才活跃起来,其中徕卡创造性地以其成熟的激光扫描共聚焦系统为平台,直接搭载上光片系统,得到既可以实现光片成像,又可以进行常规单光子成像,还可以将光片与单光子、多光子联合使用以实现和开创更为丰富多样的可能性的系统——Leica TCS SP8 DLS!光片荧光显微技术在细胞生物学、发育生物学、微生物学、植物学等多个领域都有广泛的应用,本次Webinar将着重介绍徕卡共聚焦光片系统DLS在生物学研究领域的应用。 举行时间:2016-11-17 14:00 报名链接:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2178http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_669462_2507958_3.jpg手机扫描二维码,报名参会http://exmail.qq.com/cgi-bin/viewfile?type=signature&picid=ZX0717-9QlCeoL%7EVb5UZDdhPeiRO6f&uin=1407973628
请教激光共聚焦显微镜的分辨率是多少?
共聚焦显微系统(LSCM)诞生至今,短短二十多年里,已经成为了科学研究的重要工具。在我国生命科学研究领域,也发挥着巨大的作用。如何更好利用激光共聚焦技术,推动生命科学研究,受到了学术界的广泛关注。 激光共聚焦显微镜作为光学显微镜的重大改进,与传统场式(widefield)照明显微镜相比有许多独特的优点, 它可以控制焦深、照明强度,降低非焦平面光线噪音干扰,从一定厚度标本中获取光学切片。可以在不改变普通荧光显微镜的制片方法的前提下,观察到非常清晰的高质量图像,并且通过共聚焦显微镜可以十分方便的观察活的细胞或组织。 它的诞生,大大提高了科学研究的效率。目前共聚焦显微镜在国内的应用已经相当广泛,在越来越多的国家级科研院所与高校实验室,都能看到科研工作者忙碌在共聚焦显微镜前的身影。以下为奥林巴斯品牌类显微镜:智能激光扫描共聚焦显微镜——FV10iFV1000MPE:只关注多光子荧光成像FluoView™ FV1000共聚焦显微镜DSU转盘扫描显微镜奥林巴斯FluoView™ FV300(已停产)大家了解多少?欢迎讨论用后感想。
[url=http://www.leica-microsystems.com/cn/%E4%BA%A7%E5%93%81/%E5%85%B1%E8%81%9A%E7%84%A6%E6%98%BE%E5%BE%AE%E9%95%9C/]激光共聚焦显微镜[/url]用于对样品(如贴片细胞)进行荧光成像,一般具有几条不同波长的激光作为激发光,研究人员可根据自身不同的实验需要来选择合适的激光进行荧光成像。共聚焦显微镜相对于传统的荧光显微镜具有极大的优势。首先,激光共聚焦显微镜具有极高的层切能力,可以对样品进行三维成像。与普通荧光显微镜不同,共聚焦显微镜可以对待观察样品的某一平面清晰成像,通过改变样品的垂直位置对样品的不同平面进行依次成像,还可对样品的特定平面进行实时动态成像。其次,共聚焦显微镜相对于传统的荧光显微镜具有极高的分辨率,基本达到了光学显微镜分辨率的理论极限。再次,由于激光共聚焦显微镜基于单点扫描的成像模式,因此可以在此基础上开发出其他传统荧光显微镜不能达成的技术,如荧光漂白恢复技术,荧光相关光谱技术等。共聚焦显微镜在生物学和化学领域具有极其广阔的应用,如对样品的荧光信号进行定性定量分析,对组织样品进行三维结构观察等。
激光共聚焦扫描显微镜简介一、 激光共聚焦显微镜的基本组成激光扫描共聚焦显微镜(laser scanning confocal microscope LSCM)是20世纪80年代发展起来的一项具有划时代意义的高科技新产品,是当今世界最先进的细胞生物学分析仪器。激光共聚焦显微镜利用激光作为光源,在传统光学显微镜基础上采用共轭聚焦的原理和装置,以及通过针孔的选择和PMT的收集,并带有一套对其所观察到的对象进行数字图像分析处理的系统软件。与传统光学显微镜相比,它具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点。所以它问世以来在生物学的研究领域中得到了广泛应用。激光共聚焦显微镜主要有四部分组成:1、显微镜光学系统。2、扫描装置。3、激光光源。4、检测系统。整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地进行。1.1 显微镜光学系统 显微镜是LSCM的主要组件,它关系到系统的成象质量。显微镜光路以无限远光学系统可方便地在其中插人光学选件而不影响成象质量和测量精度。物镜应选取大数值孔径平场复消色 差物镜,有利于荧光的采集和成象的清晰。物镜组的转换,滤色片组的选取,载物台的移动调节,焦平面的记忆锁定都应由计算机自动控制。1.2 扫描装置 LSCM使用的扫描装置在生物领域一般为镜扫描。由于转镜只需偏转很小角度就能涉及很大的扫描范围,图象采集速度大大提高,512×512画面每秒可达4帧以上,有利于那些寿命短的离子作荧光测定。扫描系统的工作程序由计算机自动控制。1.3 激光光源 LSCM使用的激光光源有单激光和多激光系统。多激光器系统在可见光范围使用多谱线氩离子激光器,发射波长为457nm、488nm和514nm的蓝绿光,氦氖绿激光器提供发射波长为543nm的绿光,氦氖红激光器发射波长为633nm的红光,新的405nm半导体激光器的出现可以提供近紫外谱线,但是小巧便宜而且维护简单。1.4 检测系统 LSCM为多通道荧光采集系统,一般有三个荧光通道和一个透射光通道,能升级到四个荧光通道,可对物体进行多谱线激光激发,样品发射荧光的探测器为感光灵敏度高的光电倍增管PMT,配有高速12位A/D转换器,可以做光子计数。PMT前设置针孔,由计算机软件调节针孔大小,光路中设有能自动切换的滤色片组,满足不同测量的需要,也有通过光栅或棱镜分光后进行光谱扫描功能的设置。二、激光共聚焦显微镜的特点以及在生物领域的应用传统光学显微镜相比,激光共聚焦显微镜具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点,在对生物样品的观察中,激光共聚焦显微镜有如下优越性:1、对活细胞和组织或细胞切片进行连续扫描,可获得精细的细胞骨架、染色体、细胞器和细胞膜系统的三维图像。2、 可以得到比普通荧光显微镜更高对比度、高解析度图象、同时具有高灵敏度、杰出样品保护。3、***图象的获得,如7 维图象(XYZaλIt): xyt 、xzt 和xt 扫描,时间序列扫描旋转扫描、区域扫描、光谱扫描、同时方便进行图像处理。 4、细胞内离子荧光标记,单标记或多标记,检测细胞内如PH和钠、钙、镁等离子浓度的比率测定及动态变化。5、荧光标记探头标记的活细胞或切片标本的活细胞生物物质,膜标记、免疫物质、免疫反应、受体或配体,核酸等观察;可以在同一张样品上进行同时多重物质标记,同时观察; 6、对细胞检测无损伤、精确、准确、可靠和优良重复性;数据图像可及时输出或长期储存。 由于共聚焦显微镜的以上优点,激光共聚焦显微镜在以下研究领域中应用较为广泛:1、细胞生物学:如:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化、细胞凋亡机制;各种细胞器、结构性蛋白、DNA、RNA、酶和受体分子等细胞特异性结构的含量、组分及分布进行定量分析;DNA、RNA含量、利用特定的抗体对紫外线引起的DNA损伤进行观察和定量;分析正常细胞和癌细胞细胞骨架与核改变之间的关系;细胞黏附行为等 2、生物化学:如:酶、核酸、受体分析、荧光原位杂交、杂色体基因定位等,利用共聚焦技术可以取代传统的核酸印迹染交等技术,进行基因的表达检测,使基因的转录、翻译等检测变的更加简单、准确。3、药理学:如:药物对细胞的作用及其动力学;药物进入细胞的动态过程、定位分布及定量 4、生理学、发育生物学:如:膜受体、离子通道、离子含量、分布、动态;动物发育以及胚胎的形成,骨髓干细胞的分化行为;细胞膜电位的测量.荧光漂白恢复(FRAP)、荧光漂白丢失(FLIP)的测量等。 5、遗传学和组胚学:如:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断; 6、神经生物学:如:神经细胞结构、神经递质的成分、运输和传递; 7、微生物学和寄生虫学:如:细菌、寄生虫形态结构; 8、病理学及病理学临床应用:如:活检标本的快速诊断、肿瘤诊断、自身免疫性疾病的诊断; 9、免疫学、环境医学和营养学。如:免疫荧光标记(单标、双标或三标)的定位,细胞膜受体或抗原的分布,微丝、微管的分布、两种或三种蛋白的共存与共定位、蛋白与细胞器的共定位;对活细胞中的蛋白质进行准确定位及动态观察可实时原位跟踪特定蛋白在细胞生长、分裂、分化过程中的时空表达,荧光能量共转移(FRET)。
[url=http://www.f-lab.cn/microscopes-system/rs-g4.html][b]脑切片共聚焦显微镜[/b][/url]是专业为大脑研究设计的[b]脑切片共聚焦成像显微镜[/b],非常适合大面积[b]脑切片共聚焦成像[/b],具有[b]共聚焦反射成像[/b]CRM和[b]共聚焦荧光成像[/b]CFM模式,[color=#333333][color=#333333]方便获得活体组织共聚焦图像.[/color][/color]脑切片共聚焦显微镜采用全球领先的图像缝合技术和条带图像镶嵌技术,快速创建亚像素精度的细胞尺度图像,并能够快速从脑切片图像中定位某个区域.脑切片共聚焦显微镜还可以用于动物研究,得益于其较大的成像视场,能够快速获得动物各个生长阶段的共聚焦图像和荧光细胞突出的图像,成像面积覆盖微米分辨率到30x30mm,实现微观成像和宏观成像.脑切片共聚焦显微镜还提供785nm和830nm激光,用于动物活体成像,成像传统深度高达250微米.脑切片共聚焦显微镜可广泛用于病理学研究,提供共聚焦反射成像CRM和共聚焦荧光成像CFM,有效获得活体组织图像.[img=脑切片共聚焦显微镜]http://www.f-lab.cn/Upload/RS-G4.jpg[/img][img=脑切片共聚焦显微镜]http://www.f-lab.cn/Upload/rsg4brain-section-.JPG[/img]脑切片共聚焦显微镜:[url=http://www.f-lab.cn/microscopes-system/rs-g4.html][b]http://www.f-lab.cn/microscopes-system/rs-g4.html[/b][/url]
共聚焦显微镜与普通光学显微镜的比较显微镜是观察细胞的主要工具。根据光源不同,可分为光学显微镜和电子显微镜两大类。前者以可见光(紫外线显微镜以紫外光)为光源,后者则以电子束为光源。普通光学显微镜与激光共聚焦显微镜同属于光学显微镜。 一、普通光学显微镜 普通生物显微镜由3部分构成,即:①照明系统,包括光源和聚光器;②光学放大系统,由物镜和目镜组成,是显微镜的主体,为了消除球差和色差,目镜和物镜都由复杂的透镜组构成;③机械装置,用于固定材料和观察方便。 显微镜物象是否清楚不仅决定于放大倍数,还与显微镜的分辨力(resolution)有关,分辨力是指显微镜(或人的眼睛距目标25cm处)能分辨物体最小间隔的能力,分辨力的大小决定于光的波长和镜口率以及介质的折射率,用公式表示为: R=0.61λ /N.A. N.A.=nsinα/2 式中:n=介质折射率;α=镜口角(标本对物镜镜口的张角),N.A.=镜口率(numeric aperture)。镜口角总是要小于180?,所以sina/2的最大值必然小于1。 制作光学镜头所用的玻璃折射率为1.65~1.78,所用介质的折射率越接近玻璃的越好。对于干燥物镜来说,介质为空气,镜口率一般为0.05~0.95;油镜头用香柏油为介质,镜口率可接近1.5。 普通光线的波长为400~700nm,因此显微镜分辨力数值不会小于0.2μm,人眼的分辨力是0.2mm,所以一般显微镜设计的最大放大倍数通常为1000X。
激光扫描共聚焦显微镜还能这么用! 众所周知,激光共聚焦显微镜主要的应用方向在观察活细胞结构及特定分子、离子的生物学变化,而在石笋这样的样品观察上使用激光扫描共聚焦显微镜,可以说脑洞大开了!让我们来看看原文,从Nikon A1激光扫描共聚焦显微镜使用者的角度看看,怎么把这个工具用活了! 激光扫描共聚焦显微镜在古气候纹层学的应用 第一作者:赵景耀 通讯作者:程 海 1984年第一台商业化的激光扫描共聚焦显微镜(Laser Scanning Confocal Microscope,简称 LSCM)出现,随之共聚焦显微镜技术成为了一个热点,并广泛应用在国内外生物和工业检测领域。现今,我们将LSCM首次应用于国内古气候纹层学研究。纹层学一直是古气候研究重要内容,特别是荧光微层在很多古气候载体中是重要的年代标尺和气候指标。2000年,Ribes等首次将LSCM应用于石笋荧光微层研究,发现LSCM分辨率可达1μm,因此,可适用于各种不同厚度的石笋年纹层;2008年,Orland等将LSCM与离子探针采样结合,首次发现了石笋δ18O的季节性信号,并表示以色列Soreq Cave单层δ18O季节波动可达2.15‰;2010年,Dasgupta等通过LSCM识别石笋纹层中的碎屑和粘土层,据此重建了美国明尼苏达州过去3000年极端暴雨事件,发现20世纪全球升温以来,其暴雨频率明显增加;2015年,Wendt利用LSCM,在巴西TBV Cave石笋纹层中发现了罕见的“双纹层”,且均出现在高生长速率的Heinrich事件期间,认为这与Heinrich期间,Intertropical Convergence Zone(ITCZ)南支南移所导致一年内存在2个雨季有关;2015年,Orland等再次将LSCM与离子探针技术应用于中国苦栗树洞石笋研究,发现全新世和B?lling-Aller?d暖期的夏季降水比例明显多于Younger Dryas时期。而目前,国内主要依赖于普通透射光和荧光显微镜,这一定程度上限制了国内古气候学研究。笔者在西安交通大学机械制造系统工程生物制造中心,利用购置的LSCM组件(图1a),观察石笋“年纹层”和砗磲“天纹层”,取得初步认识,以下分别就LSCM及其在古气候荧光微层方面的应用及注意事项作一简介。 图1 激光扫描共聚焦显微镜(LSCM)组件(a)及其原理(b) 1.倒置荧光显微镜(Inverted fluorescence microscope);2.荧光探测器(Flurescence detector);3.激光发生器(Laser generator);4.LSCM总控制器(Main controller);5.扫描头(Head of laser scanner);6.明场及电动载物台开关(Switch of bright-field microscopy and electric stage);7..荧光光源开关(Switch of fluorescent source);8.电动载物台(Electric stage);9.LSCM连接电脑(Computer and Monitor) LSCM以激光为点光源,由照明针孔与探测针孔对被探测点的共轭关系(图1b),实现对被探测点所在焦面的逐点激发,逐点扫描,该技术称为共聚焦。与普通荧光显微镜一次性照明整个视野不同,LSCM通过逐点扫描探测,呈现标本荧光层的2维或3维图像(图2),因此其对不同焦点和焦面的辨析能力,是普通荧光显微镜所不能达到的。其中,图2a中3D切片z轴步进间距(即焦面间距)为3μm,当前仪器上限25nm(仪器型号:Nikon A1)。在LSCM标本纹层成像过程中,放置于探测器前的探测针孔(Pinhole)(图1b)起着关键作用,有效地阻挡了不同焦点带来的杂散光,只有被探测点所发射的荧光透过Pinhole,到达探测器形成图像,这对图像对比度和分辨率有重要影响(图2)。而且LSCM采用光电倍增技术,可将微弱荧光信号进一步放大。综上,利用LSCM可以真正地实现10μm级荧光纹层的清晰辨别,其分辨率和辨识度是普通荧光显微镜所不能实现的,在此基础我们可以观察并辨别10μm左右石笋“年纹层”(图2d)和3~5μm级别砗磲“天纹层”(图2e)。 图2 石笋荧光层3D切片拟合(a)、石笋荧光“年纹层”(b、c和d)和砗磲荧光“天纹层”(e) 所有图像在1024扫描分辨率下,利用波长为488-nm的蓝色激光作为激发光源激发,然后用荧光滤光片滤选发射波长为505~539nm绿色发射光,最终被检测器探测并扫描成像;图片(a)由LSCM连续拍摄31层平行荧光焦面拟合而成,3μm/层;石笋样品(a)和(c)取自湖北省犀牛洞,(b)取自南京葫芦洞,(d)取自吉林省琉璃洞;(e)砗磲取自中国南沙群岛永暑礁 不同于普通光学显微镜,通过制作极薄的显微镜[url=http://www.gengxu.cn]滤光片[/url](≤1mm)实现对于杂散光或荧光焦面的控制。LSCM装配倒置荧光显微镜直接对古气候标本切面观察,源于LSCM对不同焦面荧光信号的精准解析和辨别能力,对于石笋和砗磲等古气候标本,无需制作显微镜薄片,只需将样品切面抛光磨平,即可实现对抛光表面荧光微层和透光微层定焦高分辨率扫描。LSCM极大地简化标本处理,不仅能够更好地节约和保护标本,且能和其他分析(如稳定同位素分析)在同一样品上进行,有利于精细对照,对于古气候研究有重要意义。例如,最近Li等在其他方法精确定年困难的情况下,利用LSCM方法精确确定了近百年石花洞的石笋样品年代序列;对著名的南京葫芦洞样品的初步工作显示,将能够重建上个冰期精细到年的时间序列及气候变化的变率(图2b),而又不破坏极其珍贵的样品。 但是由于LSCM以激光作为光源,在镜下观察过程中发现,根据物镜倍数(10×、20×、40×、60×和100×)不同,导致激光聚光强度不同,会出现不同程度的荧光猝灭,对于常用倍数10×和20×,荧光猝灭微弱,肉眼无法识别,可忽略。但是在60×油镜及以上倍数,荧光猝灭快速,因此在使用过程中,要注意调焦与拍摄时间的平衡。另外,计算机对焦过程是纳米级对焦,在标本前期处理过程中,保证样品观察面平整,是快捷对焦、自动扫描和拼接大图的工作基础。对于目前使用的型号Nikon A1,由于LSCM电动载物台承重和规格限制,以及明场聚光器位置限制(图1a),要求古气候标本观察面≤6cm×6cm,厚度≤5cm,但可根据需要选择不同型号的载物台。最后,由于各种LSCM在许多研究机构和医学院都具备,且使用费用不高,因此进行该研究不必购置新设备。
共聚焦和普通荧光显微镜的区别
荧光共聚焦显微镜原理
荧光显微镜和共聚焦显微镜的区别
激光共聚焦和荧光显微镜的区别
共聚焦显微镜和荧光显微镜的区别
随着计算机技术和光电技术的飞跃发展,八十年代后期开始实际应用的激光共聚焦扫描显微镜(LSM),使人们在医学生物学上对活细胞的动态观察、细胞无损伤探测、免疫荧光标记和离子荧光探针的观察和研究上有了更加得心应手的手段和工具。随着计算机、光学显微镜、大数值孔径复消色差物镜、高分辨率分析显示、激光源、激光功率、高敏感度探测器、声光转换电子控制和各种荧光标记物的发展,使得LSM向更精、更快、多维和无损伤性分析的方向发展。
工业用激光共聚焦相对比荧光共聚焦简单得多,因为是单反射, 不涉及波长问题,且是单个通道的信号处理. 因此用软件计算的计算量相对荧光要小几个数量级, 在共聚焦价格居高不下的情况下, 软件去模糊成为了一个卖点. 特点是成本相对要低得多,通常只要在显微镜的Focus机构改成精度高的电动部件与CCD就能满足要求,如果象Leica高级的配了CCD的电动调焦显微镜则不必添加其它硬件,免去了共聚焦的维护与激光高使用成本,并能达到甚至高于激光共聚焦的分辨率水平.唯一付出的是在可以忍受范围的时间等待,越几分钟时间.相关产品有Autodeblur等.
共焦显微镜因其高分辨率和能三维立体成像的优点被广泛应用在生物、医疗、半导体等方面。文章首先分析了影响共焦显微镜分辨率的因素,主要有光源、探测器孔径和杂散光等;并结合这些因素介绍了双光子共焦碌微镜、彩色共焦显微镜、荧光共焦显微镜、光纤共焦显微镜;然后从提高系统成像速度的方面介绍了波分复用共焦显微镜和频分复用共焦显微镜;最后分析了共焦显微镜的发展趋势。一、引言随着人们对于生物医学的研究,传统的光学显微镜已经无法满足研究的需要,人们需要可以实现三维成像的显微镜。1957年Marvin Minsky提出了共焦扫描显微镜的原理。1969年,耶鲁大学的Paul Davidovits和M.David Egger设计了第一台共焦显微镜,1987年第一台商业化共焦显微镜的问世,真正实现了三维立体成像。与普通光学显微镜相比,共焦显微镜具有极其明显的优点:能对物体的不同层面进行逐层扫描,从而获得大量的物体断层图像;可以利用计算机进行图像处理;具有较高的横向分辨率和纵向分辨率;对于透明和半透明物体,可以得到其内部的结构图像;还可以对活体细胞进行观察,获取活细胞内的信息,并对获得的信息进行定量分析。自共焦显微原理被提出以来,引起了研究者的广泛关注,提高显微系统的分辨率和改善系统的性能是研究者开发新型显微镜时考虑的主要因素。近几十年,国内外学者通过对共焦显微成像系统的三维点扩散函数、光学传递函数等方面的分析,得出影响显微系统分辨率的因素,主要包括系统的激励光源、探测器孔径、杂散光等。此外,共焦显微镜的成像速度也是决定系统性能的一个重要因素,专家们也一直在进行提高系统成像速度的研究。本文主要从提高显微系统分辨率和系统成像速度这两个方面来介绍共焦显微镜的发展情况。二、共焦扫描显微镜分辨率的提高光源、探测器孔径和杂散光等是影响共焦显微镜分辨率的几个主要因素,因此可以通过改善这些方面来提高显微系统的分辨率。1.光源显微镜的成像性质在很大程度上取决于所采用光源的相干性,有关研究表明,光源相干性好的系统其分辨率要比相干性差的系统要好,并且照明光源对分辨率的改变范围达到了26.4%。因此,选取适合的照明光源对提高显微系统的分辨率有很大帮助。常规的共焦扫描显微镜主要使用普通单色激光作为光源,随着技术的进步,目前已经出现了使用飞秒激光、超白激光、高斯光束作为光源的共焦显微镜,以提高系统性能,获得更高的分辨率。①飞秒激光为光源的双先子扫描共焦显微镜双光子扫描共焦显微镜通常使用近红外的飞秒激光作为激发光源,由于红外光具有较强的穿透性,它能探测到生物样品表面下更深层的荧光图像,并且生物组织对红外光吸收少,随着探测深度的增加衰减会变小,另一方面红外光的衍射低,光束的形状保持性好。2005年,Wild等人利用双光子扫描共焦显微技术实时观察和定量分析了PAHs在植物叶片表面和内部的光降解过程。后来又进一步研究了菲从空气到叶片的迁移过程、菲在叶片内部的运动及其分布情况等,该技术可观测PAHs在叶片内部的最大深度约为200μm。②白激光( supercontinuum laser)为光源的彩色共焦显微镜彩色共焦显微镜是利用光学系统的彩色像差,光源的不同光谱成分会聚焦到样品的不同深度,通过分析由样品反射的光谱能有效地获得样品的扫描深度。2004年,美国宾夕法尼亚州立大学的Zhiwen Liu课题小组使用光子晶体光纤产生的超连续谱白光作为彩色共焦显微镜的光源,这种超连续谱白光具有大的带宽,能够提高系统的扫描范围,能达到7μm扫描深度。另外超白激光有较高的空间相干性,无斑点噪声,能提高系统的信噪比和扫描速度。③使用高斯光束的荧光共焦显微镜荧光共焦显微镜是通过激光照射样品激发样品发出荧光,再通过探测器接受荧光对样品进行观察的共焦显微镜。华南农业大学的杨初平等人研究了不同光源孔径和束斑尺寸的高斯光束对荧光共焦显微镜分辨率的影响表明:与一定孔径尺寸的平行光束相比,采用高斯光束系统可以获得更好的分辨率。 2. 探测器孔径和杂散光共焦显微镜中探测器孔径能滤除部分杂散光,提高系统的分辨率和信噪比。根据相关文献对共焦扫描显微镜的三维光学传递函数与探测器孔径之间的依赖关系的研究,可以得到探测小孔直径为:d=β*1.22λ/NA,式中,β为物镜的放大率,λ为光的波长,NA为物镜的数值孔径。由该公式确定探测器小孔的直径,一方面满足了共焦扫描系统对探测器小孔直径的要求,从而保证高的横向和纵向分辨率,另一方面,又最大限度地使由试样中发射的荧光能量被探测器接收。为了更进一步提高系统分辨率,许多研究者对共焦显微镜中探测孔径进行了改进,例如使用单模光纤代替普通针孔孔径,还有双D型孔径等。① 使用单模光纤的光纤共焦显微镜在光纤共焦显微镜中用光纤分路器代替传统共焦显微镜中的光束分路器,并以单模光纤来代替光源和探测器的微米尺寸针孔孔径。使用单模光纤的优点在于:首先,在采用寻常针孔制作的共焦显微镜中,光源、针孔、探测器等有可能不在一条直线上从而会引起像差;但是在光纤作为针孔的共焦显微镜中,即使有的部件偏离直线时也不会引入像差。其次,使用单模光纤代替微型针孔,容易清除针孔的污染,而且不易受污染。第三,在使用光纤的系统中,可以自由移动显微镜部分而不必挪动探测器。2006年德克萨斯大学使用光纤共焦显微镜进行口腔病变检测,测得的系统横向和轴向分辨率分别为2. 1µm和10µm,成像速度为15帧/s,可观测范围为200µm×200µm。② 具有D型孔径的共焦显微镜近几年,具有对称D型光瞳的共焦显微成像技术引起广泛的关注,图1所示是该系统示意图。2006年美国东北大学的Peter J.Dwyer等人使用这种共焦显微镜进行了人体皮肤内部成像的实验,测得横向分辨率为1.7士0.1µm。2009年新加坡国立大学的Wei Gong等人采用傍轴近似方法理论分析了在共焦显微镜中使用双D型孔径对轴向分辨率的影响。分析表明在图1中的d值给定时,进入瞳孔的光信号强度l会随着探测器尺寸的增加而增加;但是在探测器尺寸给定时,光信号强度I会随着d的增加而单调递减。在使用有限大小的探测器时,改变d的大小,轴向分辨率可以得到改善。 http://www.biomart.cn//upload/userfiles/image/2011/11/1321512815.png 图1 双D型孔径共焦成像系统示意图在共焦成像光学系统中,到达像面的杂散光会在像面上产生附加的强度分布,从而进一步降低了像面的对比度,限制了系统分辨率的提高,因此在显微系统设计时,杂散光的影响也是不容忽视的。一般除了使用探测小孔来抑制杂散光,其他的一些设备例如可变瞳滤波器等对杂散光也有很好的过滤作用。最近以色列魏茨曼科学研究所的O.sipSchwartz and Dan Oron等人提出在系统中使用可变瞳滤波器,这个滤波器能够使多光子荧光共焦显微镜达到分辨率阿贝极限的非线性模拟,从而改善系统的分辨率。三、共焦扫描显微成像速度的提高共焦显微镜快速的成像速度为研究者观察生物细胞中快速动态反应提供了良好的条件。在共焦扫描显微成像系统中,传统的方法是通过改善扫描探测技术来提高成像速度。现有的扫描探测技术主要有Nipkow转盘法、狭缝共焦检测法、多光束的微光学器件检测法。这些方法可以改善扫描速度,但是与系统分辨率,视场之间都存在矛盾,因此又诞生了两种提高成像速度的新型显微镜:波分复用共焦显微镜和频分复用共焦显微镜。
[size=3]1台真实色共聚焦扫描显微镜综合了以下6种设备的功能:[U]高分辨率光学显微镜SEM扫描电镜ROUGHNESS TESTER表面粗糙度仪3-D PROFILER 三维表面形貌轮廓仪STEP TESTER 台阶仪R.G.B不同波长单色激光共聚焦显微镜[/U]特点:1.真实颜色、形状同时准确的立体观察成像,避免同色异像,同像异色现象的产生;2.根据样品选择最合适R.G.B三原色进行单波长测定;3.高精度彩色图像输出1280*1024;4.图像拼接实现高放大、高分辨、大视场;5.每秒85桢的高速图像读取;6.高度差、粗糙度、三维尺寸等的直接测量。产品应用:MEMS、半导体、液晶相关产品、金属材料、化学材料、其他各种应用领域。[/size][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=64576]真实色共聚焦显微镜材料观测图片[/url]
请问倒置荧光显微镜与激光共聚焦显微镜功能上有什么区别现在有一台倒置荧光显微镜不知道能不能用来进行钙离子荧光探针标记的测定,我看文献上大多使用激光共聚焦显微镜,激发波长488nm,不知道倒置荧光显微镜能不能实现相同的目的
课题经费有限,求购一台二手荧光共聚焦显微镜,有的老板联系,13811919943
荧光显微镜和激光共聚焦显微镜的区别
激光共聚焦显微镜和荧光显微镜的区别
摘要激光扫描共聚焦显微镜作为80年代发展起来的一种高精度分子细胞生物学分析仪器,具有组织细胞断层扫描、活细胞动态荧光监测、三维图像重建、共聚焦图像定量分析等先进功能,在近年的细胞凋亡这一研究热点中得到了大量创造性的应用。本文拟就对激光扫描共聚焦显微镜在凋亡的形态学、分子水平变化及重要生理过程三方面研究中的应用及其成果做一综述。细胞凋亡(apoptosis)是不同于细胞坏死的一种细胞主动死亡方式,并由特定的基因控制。凋亡细胞在形态上出现变圆皱缩、染色质浓缩边集、核碎裂、凋亡小体形成等变化,并最终由非炎症过程清除。由于细胞凋亡独特地影响着机体的细胞发育和代谢,在监测和清除肿瘤细胞与突变细胞等方面也可能发挥重要的作用,近年来受到了细胞生物学、分子生物学、免疫学等多学科的广泛关注。激光扫描共聚焦显微镜(laser scaing confocal microscopy, LSCM)是80年代发展起来的一种高精度分子细胞生物学分析仪器,辅以各类免疫荧光探针或荧光染料与被测物质特异性结合,不仅可观察固定的细胞组织切片,还可对活细胞的结构、分子和离子进行实时动态地观察和检测。在细胞凋亡的研究中,激光扫描共聚焦显微镜已被广泛地应用于形态学、分子水平监测及重要生理改变等各方面,其中不乏新颖之处,并获得了大量成果,以下将就此做一简单的介绍。激光扫描共聚焦显微镜与凋亡的形态学激光扫描共聚焦显微镜用点光源扫描标本的光学横断面,以代替普通光学显微镜所使用的场光源,并用探测针孔滤去离焦光线,所以消除了来自焦平面以外的衍射或散射光的干扰,可实现高清晰、高分辨率的组织细胞断层扫描。并且由于激光扫描共聚焦显微镜采用数字化成像,因而辅以一定的软件就能对图像进行定量分析及三维重建等操作。过去对细胞凋亡的形态学研究方法局限于活性细胞和组织切片染色、荧光镜观察,或者石蜡切片原位末端标记法。由于普通光镜的分辨率和清晰度有限,而电镜又显然不适合对凋亡这一复杂动态过程的监测,激光扫描共聚焦显微镜的应用使人们对细胞凋亡的形态学观察分析提高到了一个前所未有的新水平。细胞核核膜的破坏对于染色质聚集并形成凋亡小体起重要作用。lamin是构成核片层的蛋白质,位于核膜的内表面,由caase-6介导的lamin裂解可影响核膜的完整性。在McCall等的研究中,对果蝇卵子发生晚期的细胞凋亡现象进行了动态观察。以单抗mAb101标记其哺育细胞核内膜的laminDm0(哺乳类laminB的同源体),用激光扫描共聚焦显微镜加以观察。正常哺育细胞到11期时,染色的lamin呈弥散的雾状分布并围绕核周,而dcp-1GLC哺育细胞即使到了较晚的14期时,仍然显示界线明确的染色。可见dcp-1突变体在核lamin蛋白的酶切或解聚方面存在缺陷。细胞器Li 等在对C(6)-酰基鞘氨醇诱导胞内囊泡产生的研究中,在不产生中毒效应的情况下,加入10microM C(6)-酰基鞘氨醇以诱导鼠纤维母细胞(3T3-L1和3T3-F442A)凋亡。观察到囊泡的形成与C(6)-酰基鞘氨醇的诱导呈时间依从和剂量依从关系。大量小泡在其加入后8小时内出现,并且随时间而增大;大泡最终分布在核周,而小泡分布在细胞边缘。用抗-溶酶体膜蛋白抗体和共聚焦免疫荧光显微分析,证明增大的囊泡为晚期内吞体/溶酶体。另外,胞内的细胞器都有其适用的荧光探针,如高尔基复合体常用的探针有Dceramide、BODIPY ceramide等,内质网常用的有Dil、DiOC6等,经标记均可进行精细的观察。当然,激光扫描共聚焦显微镜在形态学中的优势更在于其对图像的三维重建功能,从而揭示过去只能在平面上显现的凋亡细胞在三维空间中的结构;而对细胞凋亡的动态过程,它可以用三维加时间的四维方式进行观察,来获取最逼真的形态学资料。凋亡过程中一些特征性的三维形态变化正期待着进一步具体的工作去发现。激光扫描共聚焦显微镜对凋亡细胞的分子水平监测随着分子生物学突飞猛进的发展,关于细胞凋亡分子机制的研究已有了很大的突破。细胞凋亡的信号传递途径及其调控涉及到大量的酶级联反应、生物大分子的空间转移等。而激光扫描共聚焦显微镜以其定性、定量、定时的优点,结合众多荧光探针的应用,成为了研究细胞凋亡分子水平变化的有力手段。DNA大分子DNA断裂以及染色质的异常凝聚,是细胞凋亡的关键,同时也是细胞核在细胞凋亡中具有标志性的变化。Columbara等报道将激光扫描共聚焦显微镜与原位TdT和Poll免疫荧光技术相结合,进而确定双链和单链DNA的断裂点。而在对细胞凋亡和细胞坏死区别的研究中,Kreel等在培养的K562细胞中加入放线菌素D以诱导凋亡,并对细胞的DNA片段进行了3’-末端标记。经激光扫描共聚焦显微镜观察发现K562细胞凋亡早期有大量DNA片段出现,且DNA片段弥散分布于除核仁外的细胞核区。伴随着凋亡的进展,细胞核内出现大量高标记密度的圆形小体。而采用NaN3或快速冻融法使细胞坏死,经激光扫描共聚焦显微镜观察证实,在坏死开始阶段并无DNA片段的出现,至少在坏死发生24小时后才有DNA片段产生。Caase家族Caases是一组高度保守的半胱氨酸蛋白酶,目前发现有11个成员。多数细胞凋亡是以Caase家族蛋白的激活并作用于其关键底物而实现的,而caases激活的关键又在于该家族蛋白间的级联反应,因此caases被认为是细胞凋亡的中心环节和执行者,成为研究的热点。Mandal等用激光扫描共聚焦显微镜对细胞凋亡中激活的caase-3的重分布进行了研究。用丁酸处理细胞后,观察到DNA-PKcs的裂解与caase-3的激活成正相关,而Bcl-2的过度表达则可抑制上述两个过程。同时还证明(1)激活后的caase-3重分布到核区,(2)裂解局部的DNA-PKcs和PARP(polyADP-ribosepolymerase,聚腺苷二磷酸核糖多聚酶),(3)裂解产物又被释放到核外的细胞液。caase-3的抑制物四肽DEVD-CHO又可抑制上述的三个连续的步骤。该研究提示:激活的caase-3在核内的重分布构成了丁酸所诱导的细胞凋亡中的一个重要凋亡信号。另外,在用激光扫描共聚焦显微镜对Q79诱导大鼠神经元凋亡的研究中,Sanchez等发现了Q79对caase-8的聚集和激活,而对caase-8的抑制则阻止了被诱导的细胞凋亡;加以Westernblot分析,还建立了caase-8的激活和某些神经退行性疾病(如舞蹈病)的联系。Grazyme丝氨酸蛋白酶grazyme为另一种重要的凋亡信号分子,对某些caase家族蛋白也有激活作用。Trapani等就证明了杀伤淋巴细胞利用穿孔素和grazymeB的协同作用来诱导靶细胞的凋亡,在其研究中通过激光扫描共聚焦显微镜观察到(1)50%细胞的胞核内快速聚集了以FITC荧光标记的grazymeB(最长7分钟,t1/2为2分钟),然后发生凋亡;(2)其它的细胞只有细胞液内有FITC-grazyme B的摄取,避免了凋亡。此间至少在13分钟后才有DNA碎片的出现,说明核内的grazyme B聚集出现在凋亡的执行阶段之前。并且通过对核内液的处理(加入70KDa FITC-dextran),间接观察到grazyme B的转移并非是因为核膜受caases的作用而破损,而是由于穿孔素的协同。其它以上的介绍显示,激光扫描共聚焦显微镜在检测活细胞酶活性动态变化方面有着突出的优势。实际上,对于细胞凋亡的分子机制这样一个极其复杂的课题,激光扫描共聚焦显微镜的应用远不只限于上述的几种离子和大分子,而是渗透到了大量的分枝课题中去。如在对重要的凋亡负调控蛋白Bcl-2的研究中,Beham等利用基因毒性损害(genotoxic damage)诱导细胞凋亡,并以Bcl-2蛋白抑制其凋亡过程。用激光扫描共聚焦显微镜和Immunoblotting观察显示,Bcl-2的作用在于阻止了诱导产生的p53蛋白向核内的转运。而Ohsawa等对独立于caase家族的另一种重要蛋白酶—组织蛋白酶进行了研究,用血清剥夺法诱导PC12细胞凋亡,并用激光扫描共聚焦显微镜监测了其精细超微结构改变过程和细胞内组织蛋白酶B和D的免疫活度的对比变化。又如,在人胰岛淀粉样多肽(hIA)的研究中,Hiddinga等用表达hIA的质粒转染COS-1细胞诱导凋亡,辅以免疫组化染色,用激光扫描共聚焦显微镜证明了hIA在细胞的内质网和高尔基复合体内呈簇状沉积,并与细胞
激光扫描共聚焦显微镜是近十年发展起来的医学图像分析仪器,与传统的光学显微镜相比,大大地提高了分辨率,能得到真正具有三维清晰度的原色图像。并可探测某些低对比度或弱荧光样品,通过目镜直接观察各种生物样品的弱自发荧光。能动态测量Ca2+ 、pH值,Na+、Mg2+等影响细胞代谢的各种生理指标,对细胞动力学研究有着重要的意义。同时激光扫描共聚显微镜可以处理活的标本,不会对标本造成物理化学特性的破坏,更接近细胞生活状态参数测定。可见激光扫描共聚焦显微镜是普遍显微镜上的质的飞跃,是电子显微镜的一个补充,现已广泛用于荧光定量测量,共焦图像分析,三维图像重建、活细胞动力学参数分析和胞间通讯研究等方面,在整个细胞生物学研究领域有着广阔的应用前景。1. 定量荧光测量ACAS可进行重复性极佳的低光探测及活细胞荧光定量分析。利用这一功能既可对单个细胞或细胞群的溶酶体,线粒体、DNA、RNA和受体分子含量、成份及分布进行定性及定量测定,还可测定诸如膜电位和配体结合等生化反应程度。此外,还适用于高灵敏度快速的免疫荧光测定,这种定量可以准确监测抗原表达,细胞结合和杀伤及定量的形态学特性,以揭示诸如肿瘤相关抗原表达的准确定位及定量信息。2. 定量共聚焦图像分析借助于ACAS激光共焦系统,可以获得生物样品高反差、高分辨率、高灵敏度的二维图像。可得到完整活的或固定的细胞及组织的系列及光切片,从而得到各层面的信息,三维重建后可以揭示亚细胞结构的空间关系。能测定细胞光学切片的物理、生物化学特性的变化,如DNA含量、RNA含量、分子扩散、胞内离子等,亦可以对这些动态变化进行准确的定性、定量、定时及定位分析。3. 三维重组分析生物结构ACAS使用SFP进行三维图像重组,SFP将各光学切片的数据组合成一个真实的三维图像,并可从任意角度观察,也可以借助改变照明角度来突出其特征,产生更生动逼真的三维效果。4. 动态荧光测定Ca2+、pH 及其它细胞内离子测定,利用ACAS能迅速对样品的点,线或二维图像扫描,测量单次、多次单色、双发射和三发射光比率,使用诸如Indo-1、BCECF 、Fluo-3等多种荧光探针对各种离子作定量分析。可以直接得到大分子的扩散速率,能定量测定细胞溶液中Ca2+对肿瘤启动因子、生长因子及各种激素等刺激的反应,以及使用双荧光探针Fluo-3和CNARF进行Ca2+和pH的同时测定。5. 荧光光漂白恢复(FRAP)——活细胞的动力学参数荧光光漂白恢复技术借助高强度脉冲式激光照射细胞某一区域,从而造成该区域荧光分子的光淬灭,该区域周围的非淬灭荧光分子将以一定速率向受照区域扩散,可通过低强度激光扫描探测此扩散速率。通过ACAS可直接测量分子扩散率、恢复速度,并由此而揭示细胞结构及相关的机制。6. 胞间通讯研究动物细胞中由缝隙连接介导的胞间通讯被认为在细胞增殖和分化中起非常重要的作用。ACAS可用于测定相邻植物和动物细胞之间细胞间通讯,测量由细胞缝隙连接介导的分子转移,研究肿瘤启动因子和生长因子对缝隙连接介导的胞间通讯的抑制作用,以及胞内Ca2+、PH和cAMP水平对缝隙连接的调节作用。7. 细胞膜流动性测定ACAS设计了专用的软件用于对细胞膜流动性进行定量和定性分析。荧光膜探针受到极化光线激发后,其发射光极性依赖于荧光分子的旋转,而这种有序的运动自由度依赖于荧光分子周围的膜流动性,因此极性测量间接反映细胞膜流动性。这种膜流动性测定在膜的磷脂酸组成分析、药物效应和作用位点,温度反应测定和物种比较等方面有重要作用。8. 笼锁-解笼锁测定许多重要的生活物质都有其笼锁化合物,在处于笼锁状态时,其功能被封闭,而一旦被特异波长的瞬间光照射后,光活化解笼锁,使其恢复原有活性和功能,在细胞的增值、分化等生物代谢过程中发挥功能。利用ACAS可以人为控制这种瞬间光的照射波长和时间,从而达到人为控制多种生物活性产物和其它化合物在生物代谢中发挥功能的时间和空间作用。9. 粘附细胞分选ACAS是目前唯一能对粘附细胞进行分离筛选的分析细胞学仪器,它对培养皿底的粘附细胞有两种分选方法: ① Coolie-CutterTM法,它是Meidian公司专利技术,首先将细胞贴壁培养在特制培养皿上,然后用高能量激光的欲选细胞四周切割成八角形几何形状,而非选择细胞则因在八角形之外而被去除,该分选方式特别适用于选择数量较少诸如突变细胞、转移细胞和杂交瘤细胞,即使百万分之一机率的也非常理想。 ② 激光消除法,该方法亦基于细胞形态及荧光特性,用高能量激光自动杀灭不需要的细胞,留下完整活细胞亚群继续培养,此方法特别适于对数量较多细胞的选择。10. 细胞激光显微外科及光陷阱技术借助ACAS可将激光当作“光子刀”使用,借此来完成诸如细胞膜瞬间穿孔、切除线粒体、溶酶体等细胞器、染色体切割、神经元突起切除等一系列细胞外科手术。通过ACAS光陷阱操作来移动细胞的微小颗粒和结构,该新技术广泛用于染色体、细胞器及细胞骨架的移动。
老板拿了一项大经费, 要买一台荧光共聚焦显微镜,可以看生物活体的,有奥林巴斯,莱卡,蔡司三个牌子考虑,这3个厂家的产品各有什么特点?欢迎大家给予一些意见 !