当前位置: 仪器信息网 > 行业主题 > >

声学应用型道路吸声测量系统

仪器信息网声学应用型道路吸声测量系统专题为您提供2024年最新声学应用型道路吸声测量系统价格报价、厂家品牌的相关信息, 包括声学应用型道路吸声测量系统参数、型号等,不管是国产,还是进口品牌的声学应用型道路吸声测量系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合声学应用型道路吸声测量系统相关的耗材配件、试剂标物,还有声学应用型道路吸声测量系统相关的最新资讯、资料,以及声学应用型道路吸声测量系统相关的解决方案。

声学应用型道路吸声测量系统相关的论坛

  • 建筑声学测量仪器解决方案

    为了帮助客户更好地选用建筑声学测量仪器,我们根据相关标准要求,提出建筑声学测量仪器解决方案,主要包括以下内容:1 建筑声学测量总的仪器解决方案 适用建筑构件隔声测量、混响室吸声系数测量和室内混响时间测量。 建筑构件隔声测量根据传播途径的不同分为: 1)建筑构件的空气声隔声测量; 2)楼板撞击声隔声测量。 我公司提供的解决方案:选用AWA6290M型双通道分析仪、AWA5870B型功率放大器、AWA5510型12面体声源、AWA5560型标准撞击器,以及建筑声学测量软件。 与传统建筑声学仪器配置的比较: 1)设备少了许多,不再需要噪声发生器、滤波器、电平记录仪; 2)智能化程度高,由计算机直接计算各项测量指标,省力省时间; 3)混响时间测量既可以按中断声源法,也可按脉冲响应积分法; 4)同时测量出各个中心频率下的混响时间、隔声量和吸声系数,效率大大提高; 5)可以自动生成报表; 6)还可进行噪声的频谱分析等测量。如果用户需要对振动进行测量,只要增加振动测量通道和相应的软件。 7)当测量标准修订了,也可以通过软件升级或增加的办法,使它符合新标准的要求,而不需重新购买。2 测量混响时间简单解决方案 如果仅仅测量混响时间,只需选用AWA6291型实时信号分析仪,配置实时倍频程和1/3倍频程分析软件和混响时间测量软件。该配置的优点:1)使用设备非常简单,不再需要噪声发生器、滤波器、电平记录仪;2)按脉冲响应积分法测混响时间,准确性高,低频尤其明显;3)同时测量并直接计算所有频带的混响时间,省力省时间;4)该仪器还能进行噪声测量和实时倍频程和1/3倍频程分析。3 阻抗管法材料吸声系数测量解决方案 材料吸声系数的测量除了混响室法,还可采用阻抗管法。阻抗管法材料吸声系数的测量又分为: 1)驻波比法吸声系数测量方法 利用AWA6122A型驻波管吸声系数测试仪,测定垂直入射条件下吸声材料的吸声系数。测试仪软件根据测量到的峰声级值和谷声级值自动计算出吸声系数,并能生成吸声系数与频率的坐标曲线。 该方案的特点: ● 工作原理直观,尤适宜教学使用; ● 不另需要信号发生器、测量放大器、滤波器等设备; ●自动计算吸声材料各频率点的吸声系数,生成吸声系数频响曲线; ●只能一个一个频率点测量,而且要寻找波峰和波谷点,费时费力。 2)传递函数法测量吸声系数 选用AWA6290M型双通道分析仪或AWA6290B型四通道分析仪,相位配对的1/4″测量传声器和AWA14634E前置放大器,加上AWA8551系列阻抗管,配置信号发生软件、1/3 OCT分析软件、FFT 分析软件、传递函数吸声系数测量软件和四传声器隔声测量软件。不同测量要求选择选择不同配置。 该方案的特点: ●是一种更为方便、快捷、操作误差小、测量结果一致性好的吸声系数和声阻抗的近代测量技术; ●同时测量并计算所有频率点的吸声系数,生成吸声系数频响曲线; ●采用4传声器法还可测量材料的隔声系数; ●设备比较复杂,价格相对较高。

  • 【分享】声屏障设计基本声学知识点

    1、绕射越过声屏障顶端绕射到达受声点的声能比没有屏障时的直达声能小。直达声与绕射声的声级之差,称之为绕射声衰减,其值用符号△Ld 表示,并随着Φ角的增大而增大。声屏障的绕射声衰减是声源、受声点与声屏障三者几何关系和频率的函数,它是决定声屏障插入损失的主要物理量。2、 透射 声源发出的声波透过声屏障传播到受声点的现象。穿透声屏障的声能量取决于声屏障的面密度、入射角及声波的频率。声屏障隔声的能力用传声损失TL来评价。TL 大,透射的声能小;TL 小,则透射的声能大,透射的声能可能减少声屏障的插入损失,透射引起的插入损失的降低量称为透射声修正量。用符号ΔLt表示。通常在声学设计时,要求TL —△Ld≥10dB,此时透射的声能可以忽略不计,即△Lt≈0。3、反射 当道路两侧均建有声屏障,且声屏障平行时,声波将在声屏障间多次反射,越过声屏障顶端绕射到受声点,它将会降低声屏障的插入损失,由反射声波引起的插入损失的降低量称之为反射声修正量,用符号△Lr 表示。 为减小反射声,一般在声屏障靠道路一侧附加吸声结构。反射声能的大小取决于吸声结构的吸声系数α,它是频率的函数,为评价声屏障吸声结构的整体吸声效果,通常采用降噪系数NRC。

  • 【资料】会议室声学要求

    为保证声音绝缘与吸声效果,天花板应用吸声材料做吊顶,室内铺有地毯、天花板、四周墙壁内都装有隔音毯,窗户应采用双层玻璃,进出门应考虑隔音装置。同时吸声不要过量,避免声音干涩。根据声学技术要求,一定容积的会议室有一定混响时间的要求。一般来说,混响的时间过短,则声音枯燥发干;混音时间过长,声音又混淆不清。因此,不同的会议室都有其最佳的混响时间,如混响时间合适则能美化发言人的声音,掩盖噪声,增加会议的效果。具体混响时间的计算公式如下(目前更多的是采用计算机辅助声学设计软件,如EASE3.0进行混响时间的计算):T=KV/{S[-2.3lg(1-a)]+4MV}其中:K为房间形状的参变数,一般取0.161 V为房间容积(m³ );S为房间内吸声物总表面面积(m² );a为室内平均吸声系数;M为空气衰减系数;T为混响时间(s);会议室的高度大约在4m的情况下:当会议室面积小于200平方米时,T=0.3-0.5秒当会议室面积在200-500平方米时,T=0.5-0.8秒当会议室面积大于500平方米时,T=0.8-1.0秒本会议室实际会议使用面积约为250平方米,我们通过EASE3.0计算机声学辅助设计软件计算出的混响时间为0.5s~0.6s,可达到非常理想的效果。扬声器的布置应使会议室得到均匀的声场,且能防止声音回传。扩声系统的功率放大器应采用数个小容量功率放大器集中设置在同一会场的方式,用合理的布线和切换系统,保证会议室在损坏一台功放时,不造成会场声音中断。声音信号输入功率放大器之前,应采用均衡器和反馈抑制器进行处理,以提高声音信号的质量。使用尽可能少的麦克风,因为麦克风越多,引入的背景噪音会越强。会议室一般都是采用吸声吊顶的措施来有效地控制室内混响问题的,会议室吸声吊顶常用的材料有博网针孔复合吸声铝板、岩棉吸声板等。

  • 【资料】声学环境噪声测量方法 GB/T 3222-94

    声学环境噪声测量方法 GB/T 3222-94 Acoustics一Measurement method of environmental noise GB/T 3222-94 代替 GB 3222-82 本标准参照采用国际标准ISO 1996/1《声学 环境噪声的描述和测量第1部分:基本量与测量方法》;ISO 1996/2《声学 环境噪声的描述和测量第2部分:与土地使用有关的数据采集》。 1、 主题内容与适用范围 本标准规定了环境噪声测量与评价方法。 本标准适用于城市区域(含县、建制镇)环境噪声、道路交通噪声的测量。 2、 引用标准 GB 3947 声学名词术语 GB 3785 声级计的电、声性能及测试方法 SJ/Z 9151 积分平均声级计 JJG 176 声校准器检定规程 JJG 669 积分声级计检定规程 JJG 778 噪声统计分析仪检定规程 3、 术语 3.1 A[计权]声级 用A计权网络测得的声级,用LpA表示,单位dB。 注:通常简单地用LA表示。 3.2 累积百分声级 在规定测量时间T内,有N%时间的声级超过某一LpA值,这个LpA值叫做累积百分声级,用LN,T表示,单位dB。例如L95,1h表示1小时内,有95%的时间超过的A声级。 累积百分声级用来表示随时间起伏无规噪声的声级分布特性。 注:通常简单地用LN表示,如L95。 3.3 等效「连续]A声级 等效[连续]A声级是在某规定时间内A声级的能量平均值,用LAeq,T表示,单位dB。按此定义此量为: ………………………………… (1) 式中:LpA(t)棗某时刻t的瞬时A声级,dB; T -规定的测量时间,s。 当规定的时间T内,要分时间段测量时,如T=T1+T2+…………+Tm,则T时间内的等效A声级,计算式为: ………………………………… (2) 式中:LAeq,Ti棗 第i段时间测得的等效A声级; Ti- 第i段时间,s。 由于环境噪声标准中都用A声级,故如不加说明,则等效声级就是等效[连续]A声级、并常简单地用符号Leq表示。 3.4 昼夜等效声级 在昼间和夜间的规定时间内测得的等效A声级分别称为昼间等效声级Ld或夜间等效声级Ln,。昼夜等效声级为昼间和夜间等效声级的能量平均值,用Ldn表示,单位dB。 考虑到噪声在夜间要比昼间更吵人,故计算昼夜等效声级时,需要将夜间等效声级加上10dB后再计算。如昼间规定为16h,夜间为8h,昼夜等效声级为 ………………………………… (3) 注:昼间和夜间的时间,可依地区和季节的不同按当地习惯划定。 4 、测量条件 4.1 测量仪器 4.1.1 测量仪器准确度为2型(包括2型)以上的积分式声级计或噪声统计分析仪(具有环境噪声自动监测的功能),其性能符合GB 3785一83的要求。 4.1.2 测量仪器和声校准器应按JJG699、JJG176、JJG778的规定定期检定。 测量前后使用声校准器校准测量仪器的示值偏差不大于2dB,否则测量无效。 4.2 气象条件 测量应在无雨、无雪的天气条件下进行(要求在有雨、雪的特殊条件下测量,应在报告中给出说明),风速达到5m/s以上时,停止测量。

  • 近三年来发布的有关声学与振动国家标准

    标准号标准名称代替标准号实施日期声学 GB/T 25078.1-2010 声学 低噪声机器和设备设计实施建议 第1部分:规划 2011-04-01 GB/T 25078.2-2010 声学 低噪声机器和设备设计实施建议 第2部分:低噪声设计的物理基础 2011-04-01 GB/T 10491-2010 航空派生型燃气轮机成套设备噪声值及测量方法 GB/T 10491-1989 2011-03-01 GB/T 25371-2010 铸造机械 噪声声压级测量方法 2011-03-01 GB/Z 25425-2010 风力发电机组 公称视在声功率级和音值 2011-01-01 GB/T 25516-2010 声学 管道消声器和风道末端单元的实验室测量方法 插入损失、气流噪声和全压损失 2011-05-01 GB/T 25612-2010 土方机械 声功率级的测定 定置试验条件GB/T16710.2-1996 2011-03-01 GB/T 25613-2010 土方机械 司机位置发射声压级的测定 定置试验条件GB/T 16710.3 -1996 2011-03-01 GB/T 25614-2010土方机械 声功率级的测定 动态试验条件GB/T 16710.4 -1996 2011-03-01 GB/T 25615 -2010土方机械 司机位置发射声压级的测定 动态试验条件GB/T 16710.5 -1996 2011-03-01 GB 16710-2010土方机械 噪声限值 GB 16710.1 -1996 2012-01-01 GB/T 25982-2010客车车内噪声限值及测量方法 2011-05-01 GB/T 3449-2011声学 轨道车辆内部噪声测量 GB/T 3449-1994 2012-05-01 GB/T 5111-2011声学 轨道机车车辆发射噪声测量 GB/T 5111-1995 2012-05-01 GB/T 7584.3-2011声学 护听器 第3部分:使用专用声学测试装置测量耳罩式护听器的插入损失 2012-05-01 GB/T 14369-2011声学 水声材料样品插入损失、回声降低和吸声系数的测量方法 GB/T 14369-1993 2012-05-01 GB/T 27763-2011声学 评价工作间声学性能的空间声场分布曲线的测量方法及参量表述 2012-05-01 GB/Z 27764-2011声学 阻抗管中传声损失的测量 传递矩阵法 2012

  • 气象六要素监测系统交通道路安装

    气象六要素监测系统交通道路安装

    气象六要素监测系统交通道路安装气象六要素监测系统一款气象要素集成度高的小型气象站,本身设计紧凑,方便携带。气象六要素监测系统可以监测风速、风向、温度、湿度、大气压、雨量六项气象要素数据,因此气象六要素监测系统也称为六要素气象站。应用用途上,气象六要素监测系统如果在自身不扩展的情况下可以应用在农业生产、旅游、科研、气象等城市环境监测和其它领域。另外,可以根据用户的需求,扩展气象要素监测,比如监测雨量,只需要添加雨量监测,需要测太阳辐射,则添加辐射传感器即可。气象六要素监测系统如果扩展FSP10总辐射、组件温度等测量,更可应用于光伏行业,如果扩展雨量测量,可应用于水利、地灾等行业,如果扩展土壤温湿度测量,可应用于农、林行业。[img=气象六要素监测系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210130913388817_9501_4136176_3.jpg!w690x690.jpg[/img]气象六要素监测系统本身设计简单小巧,方便拆卸携带,重量轻体积小,外形美观,而且测量结果稳定准确,自身有较强的兼容性,扩展性强适应性强,可以在各种恶劣环境的工作,气象六要素监测系统自身采用热镀锌、静电喷塑工艺处理,抗腐蚀、抗氧化性强。气象六要素监测系统可以实现精准采集气象数据,能够实现全天候不间断的数据采集,不会遗漏掉任一重要的气象信息。要知道即便在短短的的一个小时之内,天气的温度和湿度等数值,均会发生微小的变化,因此需要将这部分信息采集到位。[img=气象六要素监测系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210130914470602_2262_4136176_3.jpg!w690x690.jpg[/img]

  • 每个牺牲,都是不朽,致敬!

    十八大以来,法院系统牺牲119人,检察系统牺牲65人,公安系统牺牲2061人,司法行政系统牺牲286人,国安系统……连牺牲的人数也只能是个秘密。 转身,泪如雨下,每个牺牲,都是不朽,致敬!

  • 【资料】噪声基础知识--吸声原理

    纤维多孔吸声材料,如离心玻璃棉、岩棉、矿棉、植物纤维喷涂等,吸声机理是材料内部有大量微小的连通的孔隙,声波沿着这些孔隙可以深入材料内部,与材料发生摩擦作用将声能转化为热能。多孔吸声材料的吸声特性是随着频率的增高吸声系数逐渐增大,这意味着低频吸收没有高频吸收好。多孔材料吸声的必要条件是 :材料有大量空隙,空隙之间互相连通,孔隙深入材料内部。错误认识之一是认为表面粗糙的材料具有吸声性能,其实不然,例如拉毛水泥、表面凸凹的石才基本不具有吸声能力。错误认识之二是认为材料内部具有大量孔洞的材料,如聚苯、聚乙烯、闭孔聚氨脂等,具有良好的吸声性能,事实上,这些材料由于内部孔洞没有连通性,声波不能深入材料内部振动摩擦,因此吸声系数很小。   与墙面或天花存在空气层的穿孔板,即使材料本身吸声性能很差,这种结构也具有吸声性能,如穿孔的石膏板、木板、金属板、甚至是狭缝吸声砖等。这类吸声被称为亥姆霍兹共振吸声,吸声原理类似于暖水瓶的声共振,材料外部空间与内部腔体通过窄的瓶颈连接,声波入射时,在共振频率上,颈部的空气和内部空间之间产生剧烈的共振作用损耗了声能。亥姆霍兹共振吸收的特点是只有在共振频率上具有较大的吸声系数。   薄膜或薄板与墙体或顶棚存在空腔时也能吸声,如木板、金属板做成的天花板或墙板等,这种结构的吸声机理是薄板共振吸声。在共振频率上,由于薄板剧烈振动而大量吸收声能。薄板共振吸收大多在低频具有较好的吸声性能。   吸隔声复合声屏障,就是利用吸声原理有效地解决交通噪声的反射声引起的交通噪声放大,从而提升声屏障的降噪水平。

  • 声学混响室校准

    [font=&][size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-39721.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font]混响室是混响时间长、声场尽量扩散的房间,常用于噪声声功率精密法测定、材料吸声测试、电声器件的扩散声场特性测量等。混响室声学特性复校时间间隔建议为5年,但存在下述情况时混响室需重新校准:混响室任一反射面(包括地面)反射情况改变,扩散体数量及角度进行了调整。[font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]声学混响室校准标准依据:JJF 1143-2006 《混响室声学特性校准规范》。声学混响室校准校准项目内容:本底噪声、混响时间、声压均匀性等项目的校准。[font=&][size=16px][color=#333333]检测标准[/color][/size][/font][font=&][color=#333333][/color][/font][table][tr][td]产品名称[/td][td]检测项目[/td][td]检测标准[/td][/tr][tr][td]混响室[/td][td]混响时间[/td][td]JJF 1143-2006[/td][/tr][/table][font=&][size=16px][color=#333333]我们的优势[/color][/size][/font][font=&][color=#333333][/color][/font]中钢国检有专门的声学实验室,同时也可以做声学实验室校准。有校准的资质和能力,可以为客户提供全面的服务。

  • 吸声系数检测

    各位大侠好,请问在北京哪个单位有吸声系数测试仪?驻波管法或混响室法的均可。谢谢!

  • 超微力测量系统的特点、规格以及应用

    这款[url=http://www.f-lab.cn/micromanipulators/fms-ls.html][b]超微力测量系统[/b][/url]是高精度[b]微力测量测试系统[/b]FMS-LS,它[b]与[/b]显微操作器联合使用,用于[b]测量纳米压痕[/b]和[b]超微力测量,还可用于[/b]测量细胞力学,杨氏模量,微机电系统MEMS的弹簧常数和共振频率的弹性参数。[b]超微力测量系统FMS-LS特点[/b][url=http://www.f-lab.cn/micromanipulators/fms-ls.html][b]超微力测量系统[/b][/url]调节器连接附件,调节器显示力反馈,并且在扬声器上播放材料的谐振频率。由具有集成吸管夹持器的力传感器,具有前置放大器和扬声器的控制模块,PC软件,电源,和操作者的手册组成。[img=超微力测量系统]http://www.f-lab.cn/Upload/FMS-LS-L_.jpg[/img][b]超微力测量系统FMS-LS应用[/b]测量细胞,杨氏模量,微机电系统(MEMS)的弹簧常数和共振频率的弹性参数纳米压痕[b]超微力测量系统[b]FMS-LS[/b]规格[/b]分辨率:亚μN测力范围:最高可达10毫米输出:+/-10 V

  • 土豆看新闻之你会为仪器牺牲自己吗?

    土豆近日读新闻看到,国防毕业生因抢救仪器落海牺牲  7月8日,东华理工大学2011届测绘专业国防生毕业了,此时,一则不幸的消息传来,2009年毕业于该校的校友刘刚为抢救价值20多万元的测量仪器,跌入海中英勇牺牲,生命永久定格在青春的25岁。  走时,测量杆紧紧抱在怀里  6月20日清晨,刘刚和战友奉命到东海一处人迹罕至的某小岛上执行测量任务。这是一项国家重大测量任务,数据精度要求非常高。上岛后,刘刚主动承担起最危险的跑点任务。  背着沉重的设备,扛着长长的测量杆,刘刚冒着高温高湿一干就是3个多小时。疲惫的刘刚向一处悬崖边上的测量点攀爬时,右手紧握的移动台测量杆突然打滑,眼看价值20多万元的测量仪器要掉进海里,他急忙探身伸手抓住。就在这一瞬间,湿滑的岩石让他脚下打滑,身体陡然失去重心,坠入海中,被巨浪挟裹着重重撞击到崖壁礁石上,光荣牺牲。  事发后,东华理工大学海军后备军官学院副院长赵克锋第一时间赶往东海舰队。“将遗体从大海中捞起时,刘刚依然把测量杆紧紧抱在怀里。”赵克锋说。 且不说这项工作该如何做好安全防护措施,也不说这个新闻是否牵强附会,土豆只说下在大家的使用、运输仪器过程当中,有为了仪器而放弃甚至牺牲自己——的个人利益吗?比如,让仪器呆空调房里,自己在热房间里呼呼地吹电风扇;比如,抱着仪器坐车;又比如,为了给仪器安置一个配件跑遍全城..... 欢迎大家谈一谈自己亲身经历的或者看到的人与仪器,有奖励哦。http://simg.instrument.com.cn/bbs/images/brow/em09508.gif

  • 激光测振仪在超声变幅杆振动测试中的应用

    激光测振仪在超声变幅杆振动测试中的应用

    超声加工系统主要由超声电源、换能器、变幅杆、加工工具及磨料供给系统组成。超声变幅杆是超声加工系统中的核心部件,主要作用是把机械振动的质点位移或速度放大,或者将超声能量集中于较小面积处,即聚能作用。一般超声换能器辐射的振动幅度在20kHz范围内只有几微米,但在高声强超声应用中,比如超声加工、超声焊接、超声金属成型或其他超声疲劳试验等应用中,辐射面的振动幅度范围一般在几十微米到几百微米,因此必须在换能器的端面连接超声变幅杆,将机械振动放大。除此之外,超声变幅杆可以作为阻抗变换器,在换能器和声负载之间进行阻抗匹配,使超声能量更加有效向负载传输。在超声变幅杆的设计研究中,需要测量其振动频率、振型等参数。变幅杆的尺寸较小,利用传统加速度传感器会面临附加质量影响及如何固定传感器的问题。激光测振仪非接触的测量方式适用于测量变幅杆的振动频率,并获得位移,速度或加速度振幅。利用扫描式激光测振仪可以直接获取变幅杆的振型参数。[img=,334,195]https://ng1.17img.cn/bbsfiles/images/2019/04/201904221426182913_5511_3859729_3.jpg!w334x195.jpg[/img]超声变幅杆[img=,431,181]https://ng1.17img.cn/bbsfiles/images/2019/04/201904221426281325_9396_3859729_3.jpg!w431x181.jpg[/img]OptoMET数字型激光多普勒测振仪是一套高精度的振动测量仪器。该仪器可非接触且精确地测量振动和声学信号,包括振动位移、速度和加速度。它具有超高的光学灵敏度,并利用自行研发的超速数字信号处理技术(UltraDSP),不仅能快速测量简单系统的振动,还能测量极具挑战的系统,包括高频振动,远距离测试,微小振幅,高线性和高振动加速度或速度。超速数字信号处理技术(UltraDSP)确保了测量的高分辨率和高精度。OptoMET Scan系列扫描式激光测振仪采用短波红外激光进行测量。这套激光测振仪用于非接触式的振动测量,可对结构的振动进行可视化的测试和分析。采用这套仪器进行工作变形分析(ODS)或模态分析,过程就如同拍摄视频一样简单。通过预设定的测量点,激光测振仪可对整个被测面进行扫描式的测量。这种强大的扫描测振系统采用了当前最为先进的数字处理技术,同时集成了强大的数据采集、3D可视化以及数据分析软件。文章来源嘉兆科技http://www.tnm-corad.com.cn/news/Show-5665.html

  • 【转帖】谁占用了道路资源[发展公共交通的必要性]

    【转帖】谁占用了道路资源[发展公共交通的必要性]

    谁占用了道路资源?中国城市道路资源持续紧张的趋势日益严重,如何能使城市的交通“快”起来、“通”起来,大的对策必须是把有限的道路资源优先分配给利用道路资源最有效的交通方式,即能够最大容量的为人们出行服务的交通方式-公共交通的方式。[img]http://ng1.17img.cn/bbsfiles/images/2007/05/200705111441_51458_1604313_3.jpg[/img]交通方式与道路占用图显示了不同交通方式静态对道路资源的占用状况。小汽车的平均占地面积为12 m2(2 m宽,6 m长),公共汽车占地面积为30平方米(2.5 m宽,12 m长),自行车占地面积为1.75 m2(1 m宽,1.75 m长),行人占地面积为0.3 m2。一辆12 m长的公共汽车往往可以载运70名乘客,而一辆小汽车最多只能乘坐5人。显而易见,公共汽车的乘载效率远高于小汽车。  然而,交通是一个动态的过程,运送同样数量的人,公共汽车需要的地面道路资源比小汽车要少得更多。任何一个城市都不可能满足每人驾车出行的要求,提倡乘坐公共交通可以缓解城市交通拥堵。治堵思路  随着个人收入水平的提高,车辆拥有率的增长不可避免,但过多的小汽车使用反而给人们出行带来了不便。  道路资源总是有限的,大的对策必须是把有限的道路资源优先分配给最有效的交通方式——能够最大容量为人们出行服务的公共交通。  公共交通发展的总体目标是在财政实力可负担得起的前提下,尽快建成一个能覆盖城市绝大部分区域的高品质 高运能的公共交通网络。虽然轨道交通是一种有效的交通方式,但投资大、建设周期长,政府不应该为了建设轨道交通牺牲一代人的财富积累,或是给下一代留下沉重的债务负担。相比之下,快速公交是一种中国大部分城市财政可以负担的、并能在短期内建设成网的大容量公共交通系统。  控制机动车拥有和使用的交通需求管理是可持续交通发展中的一环,它和大力发展公共交通也是相辅相成的:对小汽车使用的限制必须以优质的公共交通服务为基础;要改善公共交通系统的服务水平就必须对小汽车的使用进行限制。  非机动交通必须得到保护和改善,它不仅是一种便利、有效、环境友好的短途出行方式,同时其人均道路占用面积小,节省了稀缺的道路资源。每使用步行或自行车出行一次,就使道路上减少了一辆小汽车,少添了一分拥堵。

  • 中国科学院声学研究所诚聘分析化学工程师-北京,坐标北京,你准备好了吗?

    [b]职位名称:[/b]分析化学工程师-北京[b]职位描述/要求:[/b]工作要求:1 本科,化学或分析化学专业,后者优先2 工作年限:3年以上第三方检测公司或实验室工作经验,或仪器公司售后经验,熟悉[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]操作。岗位职责和要求:1 声表面波[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的生产、调试和日常维护,能解决简单维修问题;2 日常实验室实验分析以及数据记录;3 确保实验数据的客观准确性和真实性;4 能出差,培训。5 工作细致认真,有较强责任心和上进心,良好的沟通能力和团队协作精神6 熟练使用日常办公软件word\excel[b]公司介绍:[/b] 中国科学院声学研究所主要致力于声学和信息处理技术学科的应用基础和高技术发展研究,围绕我国在海洋、安全、能源、生命健康和信息网络等领域的战略急需,着力破解与声学和信息处理技术相关的前瞻性重大科技难题与系统集成瓶颈,着力提升自主创新与竞争能力,取得创新性重大成果,引领学科发展方向,保持特色鲜明和不可替代研究所的地位,把声学所打造成声学和信息处理技术领域国内外一流的国立专业研究机构。 ...[url=https://www.instrument.com.cn/job/user/job/position/52399]查看全部[/url]

  • 【分享】近场声学显微镜成熟商品的“中国创造”——访中科院上海硅酸盐研究所殷庆瑞研究员

    【分享】近场声学显微镜成熟商品的“中国创造”——访中科院上海硅酸盐研究所殷庆瑞研究员

    扫描电声显微镜是一种多功能、高分辨率的显微成像仪器,兼具电子显微术高分辨率和声学显微术非破坏性内部成像的特点,拥有广阔的市场应用前景。2011年3月7-14日,中科院上海硅酸盐研究所研制的纳米热学-声学显微镜成像系统亮相国家“十一五”重大科技成就展,并引起了业内人士、专业媒体多方面关注。  据了解,该项目负责人殷庆瑞研究员以自行研制的材料和器件为核心技术,已成功研发出多台具有自主知识产权的大型科学仪器设备,如扫描电声显微镜(SEAM)、扫描探针声学显微镜(SPAM)、扫描热学显微镜(SThM)、激光-光声测量仪、超声雾化器等。其中,扫描电声显微镜创新性地将电子显微术(SEM)与声学显微术(SAM)“合二为一”,现已荣获国家技术发明二等奖、国际工业博览会银奖以及中科院自然科学一等奖等殊荣。  近年来我国科技经费投入持续增长,每年取得的科技成果有3万多项,但多数成果却陷入了“成果-证书-鸡肋”的尴尬状况。虽然目前科学成果商品化面临诸多问题,但也有不少成功范例,殷庆瑞研究员扫描电声显微镜的成功商品化便是其中之一。据悉,目前,该款仪器已成功更新至第IV代,分辨率达到200nm,已出口到美国、德国、日本、台湾、新加坡等地,成为“我国大型科学仪器出口到发达国家和地区的一个成功范例”,被誉为“全球唯一成熟的商品化扫描电声显微镜”。  随着材料科学朝着纳米及精细复合方向发展,功能器件则越来越小型化、集成化,这就对材料及功能器件的评价表征方法提出了日益严峻的考验;为应对这一挑战,殷庆瑞研究员课题组目前已成功研制出扫描探针声学显微镜与扫描热学显微镜,现正在研发电-声-热显微镜“三合一”技术。  近日,仪器信息网就声学显微镜成像技术与仪器的研制、应用、产业化等问题,专门采访了中科院上海硅酸研究所殷庆瑞研究员。 更多精彩内容:近场声学显微镜成熟商品的“中国创造”—访中科院上海硅酸盐研究所殷庆瑞研究员http://ng1.17img.cn/bbsfiles/images/2011/06/201106210920_300691_1899109_3.jpg中科院上海硅酸盐研究所殷庆瑞研究员http://bimg.instrument.com.cn/lib/editor/UploadFile/20116/2011620192355875.jpg扫描电声显微成像系统http://bimg.instrument.com.cn/lib/editor/UploadFile/20116/2011620192516447.jpg扫描探针近场压电-声学-热学显微成像系统  其它相关新闻报道:  发展我国电子显微镜产业需循序渐进——访军事医学科学院国家生物医学分析中心张德添教授  风物长宜放眼量——访国家“十一五电镜项目”攻关单位之一、中科科仪张永明总裁

  • 【分享】公路声屏障工程设计依据

    1、《声环境噪声标准》GB/T3096—932、《声屏障声学设计和测量规范》 HJ/T90—20043、《混响室法——吸声系数的测量规范》 GBJ47—834、《钢结构设计规范》 GBJ17—885、《钢结构工程施工及验收规范》 GB50205—20016、《钢结构工程质量检验评定标准》 GB50221—957、《公路环境保护设计规范》 (JTJ/T006-98)8、《建筑结构荷载规范》(GB 50009-2001)9、《建筑隔声测量规范》 GBJ75—84

  • 浙江省计量院发起噪声测量仪器项目交流三方研讨会

    [color=#333333] 近日,由浙江省计量院发起,杭州爱华仪器有限公司主办,杭州市环境监测中心站参与的噪声测量仪器项目交流三方研讨会在浙江杭州举办。[/color][color=#333333]  噪声污染是世界四大环境问题之一,同时也是人们最容易忽视的一项污染。长期的高噪声值的环境对我们的听觉、视觉系统的损害,严重的还会引起神经离乱。为了更好地对噪声污染进行治理,首先就是要对噪声进行测量。目前,噪声测量仪器已经被广泛应用在噪声的测量上,最基本和最常用的是声级计和频谱分析器。[/color][color=#333333][/color][color=#333333][/color][color=#333333]  杭州爱华仪器有限公司是浙江省高新技术企业和软件企业,专业从事噪声、电声、声学和振动测量仪器的研发与生产,是国内著名声学测量仪器研制与生产厂家。目前公司专业生产测试传声器、声级计和噪声测量仪器、环境噪声自动监测系统、电声测量仪器、振动测量仪器和实验室校准测试仪器等系列产品,产品品种达100 多个,涵盖环境噪声测量、工业噪声测量、机场噪声测量、建筑声学测量、电声测量、机器振动测量、环境和人体振动测量等领域。[/color][color=#333333][/color][color=#333333][/color][color=#333333]  为了进行更加精确的噪声测量,浙江省计量科学院发起了噪声测量仪器项目交流会。浙江省计量院对各级科研项目申报政策进行梳理与解读,提出联合申报、协同创新;杭州爱华仪器有限公司相关负责人对企业的研发情况、成果转化等作介绍;杭州市环境监测中心站就设备使用过程中所遇到的困惑及亟待解决的问题作主题报告。[/color][color=#333333][/color][color=#333333][/color][color=#333333]  研讨会气氛热烈,检测机构、生产企业及使用单位积极寻找合作锲机,达到创新、合作、共赢的目标。通过三方会议,浙江省计量院将科研项目与企业实际难题有机融合,有针对性地开展研究,精准施“测”。[/color]

  • 【原创大赛】探讨TD-GC-MS分析土壤中半挥发性机物含量的可应用性

    探讨TD-GC-MS分析土壤中半挥发性机物含量的可应用性 随着城市生活区规划性扩张,石油、印染、制药等化工企业全面迁离城区已成必然趋势,工业区旧址的环境污染情况将是决定其可否生活区化的关键因素,尤其是可长期与人类密切接触的土壤环境的污染情况更是环境安全性评价的重要指标之一。化工企业在某区域的长期生产活动,必然存在有组织或无组织工业废气、废水、废弃物的泄露或外排,在周边大气、水体和土壤环境中形成迁移和累积。特别是部分化工企业原材料或生产环节中使用或合成的具刺激性、毒性的有机化合物发生外排迁移将在该区域形成持久性累积,并对环境安全造成严重的危害。某种意义上来看,有机化合物的累积含量与其危害性成正比例关系,因此土壤中有机化合物的含量的检测对环境影响安全评价具有重要的意义。 根据有机化合物的沸点可将其划分为挥发性有机化合物(Volatile Organic Compounds,VOCs)(40℃-170℃)、半挥发性有机物(Semi-volatile Organic Compounds,SVOCs)(170℃-350℃)和几乎不挥发有机物。其中,土壤中VOCs和SVOCs通常采用GC-based方法检测,根据实际的检测能力需求选择MSD、FID、ECD等检测器,但在样品预处理方面存在较大的差异。VOCs可采用顶空(Headspace analysis,EPA methods 3810 and 5021)或吹扫捕集(Purge and trap analysis,EPA method 5035,methanol extraction)进行预处理,预处理方法简单、成熟且可获得较高的准确度和精密度。SVOCs通常需要进行溶剂萃取(一般经蒸馏水预先浸润),提取方式包括振摇或涡旋(Shaking or vortexing)、索氏提取(Soxhlet,EPA method SW-846 3540)、超声提取(Sonication,EPA method SW-846 3550)、超临界流体萃取(Supercritical fluid)和加速流体萃取(Accelerated solvent extraction,EPA method 3545)等。除超临界流体萃取使用CO2外,一般常用丙酮、正己烷、二氯甲烷、乙酸乙酯等有机溶剂中的一种或特定比例混合溶液进行提取,辅以固相萃取、旋转蒸发、氮吹等手段富集、浓缩。溶剂萃取法是目前应用最为广泛的方法,适用于土壤中大多数的SVOCs的提取,但受限于不同溶剂对于不同化合物的提取能力的差异,溶剂的选择和比例的优化是获得满意回收率和数据准确性的最大桎梏。提取过程耗时过长、程序冗杂大大的降低了土壤中SVOCs的检测效率。同时,提取过程中使用的大量有机试剂的处置本身也对环境存在一定的影响。 热脱附-气相色谱-质谱联用(TD-GC-MS)技术不断成熟,已被广泛的应用于环境大气样品VOCs测试,如HJ 644-2013《环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法》、HJ 734-2014《固定污染源废气挥发性有机物的测定固相吸附-热脱附-气相色谱-质谱法》等,具有较高的准确性和精密性,说明可脱附、可解析的化合物采用TD-GC-MS技术进行检测是可行的。与此同时,热脱附技术已被成熟的应用于土壤中挥发性有机物和半挥发性有机物的清除和治理,说明热脱附技术是可以使半挥发性有机物自土壤中充分解析释放的。综上所述,TD-GC-MS技术应用于土壤中SVOCs的检测是值得尝试。 为了证实该方法是否确实可行,综合考量方法、仪器等方面的需求,确定了初步的实验方案。计划采用空脱附管填充土壤的方式进行样品测定,因此应考虑土壤水份对色谱柱和仪器的影响,为避免SVOCs在样品制备中的损失,确定采用冷冻干燥的方式处理样品,为保证样品填充均匀且不易被吹扫进仪器,应控制样品粒度,并在填充后采用玻璃棉搭配铜网进行封堵。选择非极性色谱柱并预设升温程序、热脱附程序,将制备好的载样热脱附管上机测试,高温加热使土壤中的SVOCs解析并随吹扫气于冷阱处富集,进入气相色谱系统分离,并最终被质谱检测器检测。在色谱图上,VOCs区和SVOCs区均明显获得分离度较高的色谱峰,说明该土壤样品中存在某种有机化合物。该实验说明,TD-GC-MS技术是可以检测土壤中SVOCs的。 然而,可以检测并不意味着准确检测,还需要进一步的实验去验证检测的准确性。选择硝基氯苯类、氨基苯类、氯苯类、苯甲醚类等多种SVOCs化合物配置混合标准溶液,相同仪器条件测定,确定保留时间、定性定量碎片,并和上一次测试的样品色谱图对比,选择样品中未检出峰进行准确度验证。相同的步骤制备待测载样热脱附管,在进样远端加入(≤10μl,含量保证可以被检出)混合标准溶液,小流量氮气将溶剂吹干,相同仪器条件测定。单点法校正样品中检出的被选择目标物含量,与加标量比对,确定该方法可获得较高的准确度。 经验证,TD-GC-MS技术分析土壤中半挥发性机物含量是可行的。但是,该方法距离可应用还存在较大的一段距离。首先,SVOCs数量繁多,尚未一一验证其准确性和精密性;其次,TD-GC-MS仪器普及度较低,应用受限;再次,热脱附管在使用之后的清理较为困难,且热脱附管的成本较高。最后,该方法需要优化改进和论证的参数较多,土壤粒度、填充紧实程度、热脱附温度、吹扫气流速等参数对实验数据的影响均待考证。因此,TD-GC-MS技术分析土壤中半挥发性机物含量的可应用性还需要经历漫长的研究阶段。

  • 二次元影像测量仪在工作中的广泛应用性

    二次元影像测量仪在工业生产中,有着广泛的应用,对很多行业的工件都可以进行测量,同时,在影像测量仪的测量中,也有着许多的测量方式,通过这些方式,影像测量仪才能顺利的完成测量的任务。 以下介绍精密检测仪器二次元影像测量仪的两个测量方式,他们分别是轮廓测量和表面测量。  1、轮廓测量  顾名思义就是影像测量仪测量工件的轮廓边缘,一般采用底部的轮廓光源,需要时也可加表面光做辅助照明,让被测边线更加清晰,有利于测量。  2、表面测量  表面测量可以说是二次元影像测量仪的主要功能,凡是能看到的物体表面图形尺寸,在表面光源照明下,影像测量仪几乎全部能测量,电路板上的线路铜箔尺寸、IC电路等,当被测物件是黑色塑料、橡胶时,影像测量仪也能轻易测量尺寸。http://www.zhengyekeji.net/include/upload/ckeditor/images/1319709450197084656155029.jpg  二次元影像测量仪(又名影像式测绘仪)是建立在CCD数位影像的基础上,依托于计算机屏幕测量技术和空间几何运算的强大软件能力而产生的。计算机在安装上专用控制与图形测量软件后,变成了具有软件灵魂的测量大脑,是整个PCB实验室解决方案设备的主体。

  • 《声屏障技术与材料选用手册》

    随着我国经济发展,汽车保有量的增多,道路、铁路等交通产生的噪声超标情况严重。根据交通噪声监测结果,按《声环境质量标准》(GB3096-2008),即使执行要求最低的4类标准,即城市中的道路交通干线道路两侧区域,穿越城区的内河航道两侧区域,以及穿越城区的铁路主、次干线两侧等区域的昼间70dB,夜间55dB标准,公路交通噪声现状是昼间超过标准较少,夜间则普遍超标,有些甚至超标10dB以上,根据对中国高等级公路交通噪声分析,夜间交通噪声有增强趋势。研究表明,近年来随着车流量的增加,重型车、大型车比例呈增加的趋势,道路附近噪声级有上升的趋势。交通噪声是道路两侧的住宅、文教机关区和医院的主要污染源,可以说已发展成为一种污染公害。根据现有的工业发展水平和已有城市规划布局,用建立声屏障的方法来治理交通噪声是一种主要手段,其他国家的声屏障发展经验也证明了这一点。我国声屏障的应用也进入一个快速发展,大幅增加的时期。我国噪声控制行业经过半个多世纪的发展,通过噪声控制方面专家的研究和实践,发展了我国道路交通噪声控制的学术和应用水平,特别是在声屏障结构形式设计、新型材料的应用方面。在声屏障设计标准、材料标准等方面也得到规范。随着声屏障的大量应用,特别是高速铁路发展对声屏障降噪的需求,需要大量的声屏障设计人员和相关工作者,因此需要关于声屏障结构设计和材料选用方面比较系统的知识,以便于应用。同时在培养交通噪声控制方面的人才也需要类似的书籍进行引导。本书通过对噪声控制专家在声屏障领域取得的成就进行总结,形成较为系统的声屏障适用范围、结构设计、材料选择、安全设计、景观设计等方面内容,同时对声屏障施工、验收等整个过程通过完整、详实的案例进行了系统阐述。方便交通噪声控制科技工作者参考。同时对培养交通噪声控制方面的人才,来适应快速发展的道路、铁路交通噪声控制行业起到一定的引导作用,促进行业的健康快速发展。主要内容全书共9章,主要内容如下:第一章主要介绍声屏障概念和原理,声屏障的主要组成,使读者对声屏障有一个初步、总体的概念。第二章主要介绍声屏障国内外发展现状,重点介绍了声屏障分类、声屏障在结构方面特别是顶部结构应用方面进行介绍,声屏障计算机技术应用、材料发展进行了介绍。第三章主要对声屏障应用特点和发展趋势进行了总结。第四章对声屏障结构设计、材料选用、安全设计、景观设计等进行了系统介绍。第五章对声屏障整个施工过程中基础施工、声屏障屏体加工制造及质量控制、支撑结构制造、声屏障安装进行了详细介绍。第六章通过实际案例对声屏障设计、声屏障施工进行了详尽介绍,便于理解前面章节的内容。第七章对声屏障验收流程、验收要求、验收规范、验收内容进行了系统介绍。第八章对典型金属和非金属声屏障缺陷期维护保养、日常维护保养、维修保养技术进行了案例式系统介绍。第九章介绍了声屏障及材料选用的一般原则,同时展示了目前市场主流声屏障及材料,有助于对声屏障材料的了解和针对性选用。本书由声屏障信息门户网运营商福州音谷信息科技有限公司独家策划,中国建筑材料科学研究总院冀志江教授、陈继浩博士,交通运输部公路科学研究院尚晓东高级工程师、雷学东高级工程师,声屏障信息门户网(http://www.sooooob.cn/)总编龚世华共同编写完成。中国声学学会环境声学分会主任委员程明昆、国家环境保护城市噪声与振动控制工程技术中心邵斌总工程师、北京交通大学机械与电子控制工程学院宋雷鸣教授、铁道第三勘察设计院朱正清高级工程师受邀担任本书技术顾问,对书稿进行了认真地审阅并提出了宝贵的意见和建议,为本书倾注了大量心血,在此向各位专家表示衷心的感谢!同时感谢国家环境保护部环境工程评估中心 王毅研究员;上海交通设计所 褚国红、毛海亮、李晓东、邱贤峰;北京交通大学机械与电子控制工程学院噪声振动研究室 张新华高级工程师;中国环境科学研究院环境标准研究所 张国宁副研究员;大连交通大学噪声与振动控制研究所 刘岩教授;上海交通大学环境科学与工程学院 蔡俊博士等专家、学者在本书编写过程中所给予帮助和支持。由于编者水平,本书存在不足甚至谬误之处,恳请各位专家及广大读者不吝赐教。

  • 【分享】微型光纤光谱仪---荧光测量系统

    当前,微型光纤光谱仪非常流行,受到了众多应用领域的青睐。与大型光谱仪相比较,微型光纤光谱仪价格便宜(仅是大型光谱仪的零头);携带方便(只有手掌大小);测量速度快(毫秒级的数据采集,实现在线实时分析);操作方便,性能稳定可靠(无需专人维护)等长处。因此,在满足使用要求的前提下,微型光纤光谱仪是一种最佳的选择。 我司微型光纤光谱仪的主要功能有:吸光度测量;反射率测量;透射率测量;颜色测量;相对辐射和绝对辐射测量。具体应用包括吸光度测量系统(包括气体、液体、固体的吸光度测量);颜色测量系统(纸张、油漆、颜料、布料、动物皮肤、植物、光源等等);膜厚测量系统(感光保护膜、半导体薄膜、金属膜、等离子体镀膜、光学镀膜等);SLM系列光源测量系统(白炽灯、荧光灯、ARC、HRC、以及发光二级管等光源的各种参数测量);SMS光照度/辐照度测量系统(光通量、光强、光照度或光亮度测量);LCS系列LED测量系统(测量LED光源、大型光源的光学、光谱、颜色、纯度等特征信息);氧含量测量系统(连续测量氧饱和度、总含量、含氧和去氧血色素的浓度);[color=#00008B][color=#00FFFF][color=#DC143C][size=4]荧光测量系统(测量皮克级的含有荧光团的物质);[/size][/color][/color][/color]近红外测量系统(糖、酒精、湿度、脂肪等成分的分析);拉曼测量系统(药物、爆炸物、水质、现场材料的分析,制药监控,石化工业过程控制等);LIBS2500光纤光谱仪系统(无损地对气体、液体、固体进行定性和半定量的实时元素分析);PlasCalc等离子监控器系统(监测等离子蚀刻,检查表面清洁处理,分析等离子反应腔控制情况,检测异常污染和排放现象,等离子开发过程的检测和控制,等等);防晒指数测量系统(化妆品、防晒用品、防紫外服、感光乳剂等的SPF值测量);量子效应测量系统(量子效率的测量等)。另外,我司还有闪光光解光谱仪(演示化学动力学原理);各种光源(钨光源、氘光源、氘-钨光源、氙光源、LED系列光源、校准光源等)及各种光纤(普通光纤、中红外光纤、红外光纤、高功率传输光纤、图像传输光纤、医疗光纤等)。 谢谢您的关注!详情请见我司的网站(http://www.psci.cn)或与我联系(电话:0571-88225151-8020,13738178070,Email:zqchen@psci.cn 陈振泉)。

  • 【讨论】药物的应用性能指标的分析方法验证

    有个原料药的其中一个重要的指标——磷结合率的测定要做方法验证,碰到一些问题,想请教大家。磷结合率,就是指此药在一定条件下和定量的磷酸根结合,考察每克药物结合了多少摩尔量的磷酸根。这也是此药的用药机理。通过测定起始和结束的磷酸根含量,就得到结合掉的磷酸根。质量指标是5.0~6.5mol/g。问题是反应过程中涉及到很多因素。例如药物在磷酸根溶液中搅拌,总会有一些药物被甩到溶液上的瓶壁上而未反应。例如要过滤掉药物来测定溶液中的磷酸根而不能冲洗药物,药物上总会残留磷酸根。这样的话,方法的重现性就不好。我想这种药物的应用性能指标的测定,质量指标范围是很宽的。那么它的方法验证是不是可以特殊对待?但我手里没有具体的指导文件。请教各位能人来解答。

  • 【资料】声学发展简史

    声学是研究媒质中机械波的产生、传播、接收和效应的物理学分支学科。媒质包括各种状态的物质,可以是弹性媒质也可以是非弹性媒质;机械波是指质点运动变化的传播现象。声学发展简史  声音是人类最早研究的物理现象之一,声学是经典物理学中历史最悠久,并且当前仍处在前沿地位的唯一的物理学分支学科。  从上古起直到19世纪,人们都是把声音理解为可听声的同义语。中国先秦时就说“情发于声,声成文谓之音”,“音和乃成乐”。声、音、乐三者不同,但都指可以听到的现象。同时又说“凡响曰声”,声引起的感觉(声觉)是响,但也称为声,这与现代对声的定义相同。西方国家也是如此,英文的的词源来源于希腊文,意思就是“听觉”。  世界上最早的声学研究工作主要在音乐方面。《吕氏春秋》记载,黄帝令伶伦取竹作律,增损长短成十二律;伏羲作琴,三分损益成十三音。三分损益法就是把管(笛、箫)加长三分之一或减短三分之一,这样听起来都很和谐,这是最早的声学定律。传说在古希腊时代,毕达哥拉斯也提出了相似的自然律,只不过是用弦作基础。  1957年在中国河南信阳出土了蟠螭文编钟,它是为纪念晋国于公元前525年与楚作战而铸的。其音阶完全符合自然律,音色清纯,可以用来演奏现代音乐。1584年,明朝朱载堉提出了平均律,与当代乐器制造中使用的乐律完全相同,但比西方早提出300年。  古代除了对声传播方式的认识外,对声本质的认识也与今天的完全相同。在东西方,都认为声音是由物体运动产生的,在空气中以某种方式传到人耳,引起人的听觉。这种认识现在看起来很简单,但是从古代人们的知识水平来看,却很了不起。  例如,很长时期内,古代人们对日常遇到的光和热就没有正确的认识,一直到牛顿的时代,人们对光的认识还有粒子说和波动说的争执,且粒子说占有优势。至于热学,“热质”说的影响时间则更长,直到19世纪后期,恩格斯还对它进行过批判。  对声学的系统研究是从17世纪初伽利略研究单摆周期和物体振动开始的。从那时起直到19世纪,几乎所有杰出的物理学家和数学家都对研究物体的振动和声的产生原理作过贡献,而声的传播问题则更早就受到了注意,几乎2000年前,中国和西方就都有人把声的传播与水面波纹相类比。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制