当前位置: 仪器信息网 > 行业主题 > >

声学应用型道路吸声测量系统

仪器信息网声学应用型道路吸声测量系统专题为您提供2024年最新声学应用型道路吸声测量系统价格报价、厂家品牌的相关信息, 包括声学应用型道路吸声测量系统参数、型号等,不管是国产,还是进口品牌的声学应用型道路吸声测量系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合声学应用型道路吸声测量系统相关的耗材配件、试剂标物,还有声学应用型道路吸声测量系统相关的最新资讯、资料,以及声学应用型道路吸声测量系统相关的解决方案。

声学应用型道路吸声测量系统相关的资讯

  • 江苏省计量院4个声学实验室通过验收达到国内顶尖水平
    日前,江苏省计量院全消音室、半消音室、隔声室和混响室四个声学实验室经过中国计量院专家为期3天的检测,顺利通过验收,各项技术指标达到国内顶尖水平,堪称江苏最安静的地方。   全消音室在空调通风系统关闭、环境无强振动的条件下,本底噪声低于5dBA,在环境无强振动、空调通风系统运行条件下,本底噪声低于12dBA。半消音室在空调通风系统关闭、环境无强振动的条件下,本底噪声低于6dBA,在环境无强振动、空调通风系统运行条件下,本底噪声低于15dBA。另外,隔声室和混响室验收指标大大优于设计指标。   声学检测与百姓生活密切相关,这些实验室可广泛应用于空调、洗衣机、冰箱等各类家电及大中型通讯设备、工业机床的声学参数测量,喇叭、扬声器等电声元件的声学特性测量,房门、窗、墙体等各型建筑结构及各类隔声屏障的隔声量测量,各类材料的吸声量测量,及汽车NVH的相关研究等领域。
  • 应用案例|声学多普勒流速测量仪
    现状马来西亚雨水管理和公路隧道("SMART")项目的规模宏大--隧道长度为12公里,直径为11.8米,可收集多达400万立方米的洪水--这是一个艰巨而伟大的项目。这条隧道的设计概念极富创意,让人叹服,可以在旱季通过地下隧道疏导吉隆坡拥挤的交通,并在洪灾期间将雨水安全地分流到市中心地下。同时,支持这项大规模隧道和大型集水盆地的系统也同样令人惊叹,它被称为SMART工程的智能系统。这是一个由洪水检测设备和自动化管理机械组成的网络,与监控数据采集和控制 (SCADA)“大脑”连接,利用其收集的信息自动启动洪水管理闸门和水泵。技术由系统集成商Greenspan Technology Pty Ltd,设计的洪水检测和自动化管理系 统通过28个远程监测站来指导项目沿线31个闸门、7个大型水泵和4个独立发电装置(发电机组)的决策。三级系统Greenspan公司驻新加坡的国际经理Bruce Sproule解释,SMART项目设计为分三个阶段运作,以防止类似2007年那样的洪水对城市造成严重破坏。准确及时的流量和流速信息对SMART项目的成功和吉隆坡180万居民 的安全至关重要。为了确保高质量的数据流,Sproule的团队在项目总监Mark Wolf和项目经理Marc Schmidt的带领下,布置了一个由22个雨量计、50个与气泡系统相连的压力传感器和16个SonTek Argonaut声学多普勒测流组成的阵列。Greenspan公司的控制中心运营小组在Mark Van Elswyk的带领下,维护着由高频电台、GSM、光纤信号和微波传输组成的通信系统,以保持传感站点和SCADA系统之间的持续通信。通过以太网连接的Argonauts每分钟报告一次数据;通过高速VHF连接的Argonauts每5至10分钟广播一次。SCADA工程师Jarrah Watson、Nick Hitchins和Peter Johnson保持控制/采集系统精细地调整。河流、暂存池和隧道的数据与Greenspan公司的时间序列数据库中的降雨信息相结合,然后通过该公司的预测模型进行传输。结果驱动自动闸门,控制进入SMART集水井和隧道的流量,并在下游水量可以积累到排放水平时,启动大型水泵,对隧道进行排水。这是更准确的信息,Sproule说。如果受到潮汐影响或回水影响,可能会出现滞后现象,水深得来的流量数据是不准确的。Sproule说,当水位上升并且下游潮汐对吉隆坡洪水的影响越来越大时,预警模型就会从气体吹扫压力传感器的读数切换到声学多普勒测流仪的数据,以跟踪流量情况。他解释说,下游潮汐效应会产生滞后现象,从而减缓了洪水对来自上游力量带来的通常变化。关键是要追踪河流中到底发生了什么,而不是依赖于基于无障碍重力驱动条件的简单数学估计,这点非常重要。“这是更准确的信息,”Sproule说。“如果受到潮汐影响或回水影响, 水深换算的流量可能会出现滞后现象,而且数据不准确。”他补充说,Greenspan公司开发了自己的流速率定软件,以确保流量的准确计算。由于具有多个测量方向,SonTek-IQ非常适合存在滞后的情况。专有流量算法非常适合在灌溉渠道、天然河流和管道中收集数据。该仪器采用SonTek独有的SmartPulseHD自适应采样。使用垂直声束和压力进行水位自动校准。精心布置Sproule指出,在隧道内部和周围,SonTek Argonaut SL(侧视)测流仪布置在精心确定的高度,以便为高流量情况做好准备。两个Argonaut SW(浅水)测流仪测量下游排放点的双箱涵的流量和流速,为流量模型提供信息。即使洪水没有来临,信息流也提供了有价值的洞察力。Sproule指出,事实上,来自SW的数据显示,在洪水事件发生后,发现在其潜水面中储存了惊人数量的水,并在比Greenspan模型最初假设的更长的时间内才可以释放了这些水。Sproule指出,在洪水期间保护贵重设备可能是一项挑战。Greenspan公司的Wayne Farrell设计了“骑士头盔”站,用自动缩回的头盾保护传感器,让人想起中世纪的骑士头盔。“骑士头盔”站精心放置在测量系统中高水位的最佳高度,每次洪水过后都必须进行维护。Sproule 指出:“设计这些装置是为了防止仪器被大型残片冲走,但这些装置确实已经变成淤泥收集器。”他补充说,Greenspan公司开发了自己的校准软件,以方便测流仪的日常和暴雨后维护。该公司还开发了一个专有系统,为每个采样点建立8万个点的横断面。Sproule说,Greenspan团队还包括水文测量技术员BenNoble Clem Williams和Faizal Yusoff,他们认为SonTek Argonauts是SMART项目的必然选择。他解释说:“我们曾考虑过雷达/声纳,但价格非常昂贵,而且我们有很多使用SonTek设备的经验。”“在这个项目中,这是最简单、最准确的方法。我们在新加坡有一个八人的雨水监测小组,使用SonTek的设备已经14个月了,所以我们知道它能做什么,不能做什么。”服务支持很好,设备也很可靠。他补充道。仪器很可靠,一旦出现问题,公司会迅速做出响应。对于像SMART这样大规模的项目,快速响应至关重要。在2007年9月的一次系统测试中,该系统提前30分钟准确预测到了河流水位会上升,成功分流50万立方米水。随着车流穿过巨大的隧道,无声的传感器网络向Greenspan公司的SCADA系统报告时,Sproule对SMART项目进行了反思。“这是Greenspan公司设计过的最复杂的系统,”他指出,该系统平稳运行和保护吉隆坡11.8米高的隧道一样,是一个令人惊叹的奇迹。
  • 小菲课堂|声学成像技术在局部放电监测中的应用(一)
    高压局部放电局部放电是电力设备绝缘在足够强的电场作用下局部范围内发生的放电,每一次局部放电对绝缘介质都会产生一些影响,使绝缘强度下降,造成高压电力设备绝缘损坏,甚至会造成人安全隐患。目前,预防性维护人员已经开始使用声学成像技术定位局部放电,甚至能在设备过热之前就发现设备特有的声音特征。与FLIR红外热像仪配合使用,像FLIR Si124之类的声学成像仪是必不可少的设备,可以有效地发现局部放电,避免出现设备故障、代价高昂的损坏和意外停机等问题。局部放电的过程与危害根据IEC 60270的正式描述,局部放电指“只是局部地桥接导线间绝缘体的局部放电现象,可能发生在导线附近,也可能发生在其他地方。通常,局部放电是局部电应力在绝缘体或绝缘体表面集中的结果,一般表现为持续时间远远小于1毫秒的脉冲。电流总是趁人不注意时试图逃逸、跳离导线、徒劳地尝试桥接附近的电极。在寻找逃逸路线时,它首先会从老化的绝缘体上的裂缝开始。如果是架空电线,则是从因多年积污的电线表面开始。也许是在高压电缆的纸绕组上戳一个小孔,也可能隐藏在老化的液体电介质中形成的气泡附近。在电压正弦波的每个波峰和波谷,它都会持续不断地尝试(局部放电)。电流就这样日复一日地试图穿越到相邻的导线上,肉眼却无法看到这类局部放电。受持续性高压应力影响,附近的绝缘材料会在某个时刻失效,丧失对电流的约束。最终,电流会分流进入另一导线。这种情况发生时,导线会完全失效。这会对线路上连接的电气设备、开关设备、机械或设施造成了极大的破坏,代价高昂。局部放电有可能损坏工厂设备或灼伤敏感的电子设备。严重时,局部放电可能导致社区停电数小时,闲置设备,浪费宝贵的生产力。声学成像仪是预防性维护的必要工具局部放电检测是状态监测(CBM)或预防性维护(PdM)计划切实发挥作用的必要条件。越早发现,局部放电对绝缘体的损坏就越少,设备故障和后续停机风险也就越低。追踪局部放电问题有着简单的经济动机:发现问题,安排停机,然后在局部放电现场修复和更换绝缘体及电气接头,其成本和破坏性要低得多。为了准确定位局部放电,电气承包商、检查人员和专业维护人员可以使用多种诊断技术。绝缘测试仪提供了绝缘体的有效性或电阻的数值读数。FLIR红外热像仪可以定位并识别电气设备产生的阻热,通过逐像素的温度读数在可视图像中精确定位问题所在。还可以将热成像技术与声学成像技术结合起来,确定局部放电的严重程度。温度升高和声学特征可以表明绝缘设备的完整性遭到破坏。FLIR Si124满足声像仪的所有需求作为整个诊断生态系统的一部分,FLIR在红外热像诊断方案以外,还推出了声学成像解决方案。FLIR Si124工业声学成像仪是一款基于声学原理的解决方案,它可以定位和分析工业故障、老化以及缺陷如局部放电等。研究发现,在元件发热到能被红外热像仪检测到之前,局部放电会导致声音异常。这就为我们额外提供了一层提示,帮助我们提前检测到潜在的故障。虽然我们经常能在电线附近听到嗡嗡声,但人耳通常是听不到局部放电的,因此局部放电人耳很难定位,尤其是在过于嘈杂的工作场所。借助手持式声学成像仪(FLIR Si124),用户可以扫描一整个区域,在被检组件的声像图上看到局部放电产生超声波的位置,即使人耳听不到、背景噪声很大也没关系。虽然在声学成像方面,电工有许多工具可选,但从便携性到精度,需要考虑多种因素。首先,虽然大多数声学成像工具都很轻便,但要选择便于换场作业的款式。选择一台简单易用、单手可握、携带方便,符合人体工学设计且便于瞄准的手持式成像仪。很显然,FLIR Si124工业声波成像仪很好地满足了以上所有要求!麦克风更多,检测速度快10倍科技领域有一条通用法则:越多越好。从这个意义上讲,声学成像仪中增加麦克风的数量对形成细节丰富的声学图像至关重要。同样在科技领域,对于麦克风本身而言,(体积)大不一定好,因此使用MEMS(微机电系统)类型的麦克风。这类麦克风的性能达到了良好的平衡,能在不同环境下稳定地工作,功耗低,支持小体积电池,续航时间长。另外,体积小意味着更容易把它们紧凑地布置在手持工具上。更多的麦克风,都有哪些优势呢?灵敏度:FLIR Si124声学成像仪搭载了由124个MEMS麦克风精心布成的阵列,这些麦克风相互配合,使灵敏度达到高水平。麦克风越多越可以降低“空间混叠”的可能,也就是降低图像上声源错位的可能。检测范围与访问:增加麦克风的另一个优势是可以扩大检测范围。声音在空气中的传播距离每增加一倍就会衰减6分贝(距离声源15米处听到的声音比30米处听到的声音强6分贝),中型局部放电的分贝值约为40分贝。为了检测范围更广,声学成像仪制造商通过增加麦克风的数量来扩大检测范围。FLIR Si124声学成像仪将麦克风增加三倍,从而使检测范围扩大一倍。出于安全考虑,许多电气设备周围都有栅栏,或者离地较高,很难接近访问。这种访问限制也可能与时间有关,比如需要客户联系人在场时才能进入。鉴于这些访问限制,远距离也能精确定位局部放电的工具就显得至关重要。处理能力:FLIR Si124会产生124个音频数据流,这些数据流经过处理后可转换为视觉图像。这款声像仪搭载了自动音频频率筛选功能,既不牺牲性能,也简化了操作过程。数据和图形处理能力的进步使得将如此大量的声学数据,瞬间整合成屏幕上易于理解的图像成为可能。如果用户选用搭载较少麦克风或老款处理器的成像仪,结果只能得到较低品质图像、较低的分辨率、以及较慢的刷新率。就生产效率而言,像FLIR Si124这样先进的声学成像仪在发现问题的速度方面比其它可用工具快10倍。配备124个麦克风的FLIR声学成像仪不仅检测速度快人一步麦克风频率还会影响检查效果想知道关于声学成像仪的更多理论知识持续关注我们
  • 国防毕业生因抢救仪器落海牺牲
    7月8日,东华理工大学2011届测绘专业国防生毕业了,此时,一则不幸的消息传来,2009年毕业于该校的校友刘刚为抢救价值20多万元的测量仪器,跌入海中英勇牺牲,生命永久定格在青春的25岁。   走时,测量杆紧紧抱在怀里   6月20日清晨,刘刚和战友奉命到东海一处人迹罕至的某小岛上执行测量任务。这是一项国家重大测量任务,数据精度要求非常高。上岛后,刘刚主动承担起最危险的跑点任务。   背着沉重的设备,扛着长长的测量杆,刘刚冒着高温高湿一干就是3个多小时。疲惫的刘刚向一处悬崖边上的测量点攀爬时,右手紧握的移动台测量杆突然打滑,眼看价值20多万元的测量仪器要掉进海里,他急忙探身伸手抓住。就在这一瞬间,湿滑的岩石让他脚下打滑,身体陡然失去重心,坠入海中,被巨浪挟裹着重重撞击到崖壁礁石上,光荣牺牲。   事发后,东华理工大学海军后备军官学院副院长赵克锋第一时间赶往东海舰队。“将遗体从大海中捞起时,刘刚依然把测量杆紧紧抱在怀里。”赵克锋说。   回忆,老师对学生赞不绝口   据东华理工大学副校长聂逢君介绍,2005年9月,刘刚就读测绘工程专业,临毕业那年入党,现在是东海舰队某作战支援舰支队测量助理工程师。   “刘刚同学在校时积极上进,各方面的表现都非常优秀。”据测绘学院党委书记张明副介绍,刘刚多次被评为学校优秀学生干部、优秀大学生军训教官。鲁铁定老师教授“测量平差”,他对刘刚记忆犹新,“他每次都坐教室左边第一排,认真好学。”   “对面就是陆地,还能看见远处的高楼,但就是不能靠岸。在船上,淡水限量使用,蔬菜早就吃完了,剩下的就是蛋炒饭和罐头……”今年1月份,刘刚还通过东华理工大学校报向学弟学妹讲述舰艇锚泊时的情景,鼓励他们“学好本领”。   意外,发生在第八次测绘时   家境贫寒,使刘刚自幼养成勤奋好学的品质,2009年,作为一名刚参加工作的技术员,刘刚深知业务知识欠缺,主动向老同志求教,在最短时间里掌握新仪器的性能、操作流程,成为一名人民海军测绘战线上的最年轻科技军官之一。   刘刚先后参加完成了7次沿岸测量任务,面对每次执行测量任务中出现的断水、断电、蚊虫多等恶劣环境,他都能克服困难,心甘情愿地在艰苦的环境中工作。这次的外出测绘任务,刘刚本可以按照支队领导的安排留守,备战部队庆祝建党90周年“红歌会”比赛,可是他却走上一线,并向领导报告说比赛、测绘“两手都会抓”。“在岛上测绘间隙,刘刚就放声歌唱。”战友们说,谁也没想到,前一天还听着他洪亮的歌声,第二天他就“永远地走了”。   和刘刚朝夕相处的战友们说,在清理遗物时,刘刚的工作簿扉页写着“少壮不努力,老大徒伤悲”的字样。
  • 华因康重磅发布临床应用型测序仪 测序仅需10小时
    导读:2015年10月18日,华因康基因重磅发布了一款自主研发、获CFDA医疗器械注册证的临床应用基因测序仪HYK-PSTAR-IIA。在基因测序技术受关注的今天,HYK-PSTAR-IIA基因测序仪的正式发布,对中国基因测序技术发展具有怎样的影响?会给NGS的临床应用市场带来怎样的冲击?又能为临床用户带来怎样的体验?华因康基因测序仪产品发布会,带您一同观看一场正在改变中国基因测序临床应用的发布会。  2015年10月18日,作为中国高通量基因测序仪首创企业,华因康携863项目重要成果--自主创新且获CFDA医疗器械注册证的临床应用基因测序仪HYK-PSTAR-IIA,亮相第74届中国国际医疗器械博览会,并举办了“863项目成果交流会暨华因康基因测序仪产品发布会”,与863项目相关领导和专家进行了深入交流,全面系统展示了该款产品的核心专利、技术优势及临床应用等方面,分享和探讨了临床及科研领域的应用经验。  国家产业支持,固筑中华健康梦想  完全依赖进口,将使我们无法即时得到最新、最先进的测序设备,而且设备、软件、试剂价格不菲,不利于临床应用的开展,中国需要自己的测序仪,需要这种核心平台技术。盛司潼博士指出,前沿生命科技要更好的造福人类,就要为大众的医疗健康带来新的价值。在国家科技部863重大课题的支持下,华因康实现了将最初的科研型测序仪升级成为临床型测序仪,并于2014年获得国家药监局医疗器械注册证。这将开启基因测序在临床应用的新时代,将为我们日益增长的精准医疗需求提供解决方案,同时也将极大的推动基因检测临床市场的迅速发展。  匠心设计,打造中华首创  任何一个自主品牌产品的诞生,都必然有一条曲折的道路,华因康HYK-PSTAR-IIA基因测序仪也不例外。华因康产品总监谭辉标指出,早在2011年之初,华因康就已经瞄准临床应用这个潜力巨大的市场,并开启了设备的精心设计。他还透露了一组关于该产品的重要数据:11项核心算法,16次重大技术攻关,274名技术人员,360种零部件,1007次测试,1095天,1200例临床试验 115件中国及国际PCT专利,10项全球领先的核心技术,8项国家标准,6篇SCI学术论文,2项创新医疗器械特别审批。其中,基于200多项涵盖试剂供给、测序反应、自动化控制、光学成像、数据处理等5大系统核心专利,HYK-PSTAR-IIA得以成为首个通过创新医疗器械特别审批程序的基因测序仪。  我国十分重视基因测序技术的发展与推进,作为863项目重要成果--获CFDA医疗器械注册证的基因测序仪HYK-PSTAR-IIA的正式发布,意味着我国真正拥有了首个临床诊疗领域独立自主的基因测序仪品牌。  核心专利技术,实现临床精准诊疗  会议期间,华因康医学总监李花特别针对临床医师广为关注的,应该如何选择测序仪进行了阐述。她指出,国外厂商的设备并不完全适合于临床应用,存在测序成本高、操作复杂、测序周期长等问题。而HYK-PSTAR-IIA是一款专为临床应用而设计的基因测序仪,具有灵活、快速、准确等特点,成为临床精准医疗的最佳选择。  HYK-PSTAR-IIA四大特点--灵活、快速、方便、准确  李花指出HYK-PSTAR-IIA除了配备4种规格反应体系模块,还可以根据用户需求定制反应模块,极大方便临床测序的应用,最低上机样本数低至4个,同时最大上机样本量达几百,尤其适用于临床样本不固定的医疗机构。HYK-PSTAR-IIA检测快速,单轮测序时间仅10小时,充分满足临床对检测周期短的要求。HYK-PSTAR-IIA配备了自动化的数据分析软件,使得数据分析更加简单易行,一键即可开启大规模数据分析,临床使用更简便。高灵敏度、大尺度、CCD成像系统联合DICT图像精准识别专利技术,实现精准对焦,自动化采图,经多个权威平台对比验证,准确性达99.9%以上。  以HYK-PSTAR-IIA基因测序仪为核心的PSTAR基因测序系统,已获得14个医疗器械注册证,包括测序配套、试剂及分析软件,其中试剂盒已获得8个,而且新试剂盒将不断上市,新应用将不断拓展,能为基因测序解析工作提供全套系统解决方案。  市场精心布局,临床应用展翅翱翔  会议期间,上海瑞金医院、浙江省肿瘤医院以及深圳市南山区慢性病防治院的测序仪用户,均对各自的应用案例进行了深入的剖析与分享,让广大与会人员看到中国自主创新品牌的测序仪在临床领域开展的众多应用。浙江省肿瘤研究所的凌志强教授更是坦言,基因测序最重要的是时机,如果测序报告不及时,一旦肿瘤发生转移,个性化用药或其它治疗的效果就会大打折扣。华因康的设备最大的优势就是灵活,快速,成本低,很适合在临床上使用,并且准确率与国外的设备不相上下。  HYK-PSTAR-IIA基因测序仪应用范围极为广泛,从基础研究到产品开发,从临床科研到健康产业,涵盖了疾病早期筛查、精准用药指导、疾病分子机制研究、药物开发、等众多领域,得到国内多家科研机构、医疗机构等的高度认可,并获得行业内的多项荣誉资质。  目前,华因康基因已与国内顶级医院及科研机构如上海瑞金医院、浙江省肿瘤医院等携手,进行了全方位合作,成立了合作应用示范点,形成了以点带面逐级扩展的辐射效应,这将极大拓宽在我国生命科学领域的应用空间,开拓了高通量基因测序技术在生命科学与健康医疗领域中的广阔应用。  总结与展望  华因康绕开了长期被Illumina、Life Technology等国外测序厂商垄断的科研测序仪市场,大举进军医用基因测序仪,因此HYK-PSTAR-IIA基因测序仪的正式发布将对中国基因测序产业带来产生深远的影响。当天上午,在武汉光谷领导们的大力支持下,华因康完成了试剂研发生产华中基地落户武汉光谷,由此华因康全国市场布局真正打开,华因康将以此为一个新的起点,再接再厉,谱写新的篇章。
  • 声学多普勒剖面系统ADCP选址技巧
    使用声学多普勒水流剖面系统 (ADCP) 进行河流流速和流量测量时,最常被忽视的错误或问题来源之一是选址。您可能在仪器操作、安装等方面做到一切正确,但是如果您选择的地点违反了 ADCP 河流测量的基本假设,那么您仍然无法获得准确的数据。选择测量地点时,目标是能够测量代表平均河道流速的速度。理想情况下,将有一段适当长度的顺直河道,不受河道弯曲、水中障碍物、流入、流出等造成的流动干扰。一般建议,测量或安装位置应在任何流动干扰源的上游和下游至少 5-10 个河道宽度,这样可保持充分的线性距离,从而使任何湍流、涡流、上升流、回水效应等均能稳定为均匀而稳定的水流。河道中的植物生长会对水流情况产生影响,河道的底部地形也会产生影响,因为水面以下可能存在不可见的显著流动干扰源。使用多波束声学多普勒测流系统时请注意的相关事项。同质条件使用任何多波束声学多普勒测流系统进行测量的基本假设之一是,各个波束在相似条件下进行测量,因此各个波束的平均速度将提供准确的平均速度。空间平均使用多波束声学多普勒测流系统(如 RiverSurveyor S5/M9、SonTek-SL 和 SonTek-IQ),报告的速度是单个声束测量的速度的平均值,这些声束非常窄。报告的速度近似于根据 2、3 或 4 个波束测量的速度计算出的空间平均值,平均面积随着与系统的距离而增加。SonTek 系统的离轴波束角为 25 度*,因此在距系统的任何特定距离(即范围)处,波束间隔的距离为 (0.93 x 范围)。例如,使用 2 波束 SonTek-SL 系统,在 10m 范围内,波束间隔为 9.3m。湍流/涡流当河道中存在明显的湍流或涡流时,各个波束可能会在截然不同的条件下进行测量(因此违背了均质条件的假设),从而导致其平均流速明显不同于实际平均流速。例如,在某些情况下,大涡流会导致波束测量相反方向的速度,从而导致平均速度为零。河道中通常存在一定程度的湍流或涡流,尤其是自然河道,但在适当长的时间内对速度数据进行平均,有助于改善结果。如速度误差和相关性等参数将提供测量均匀性指示。磁场影响另一个选址考虑因素是局部磁场,它会影响配备罗盘的系统,例如 RiverSurveyor S5/M9/RS5。磁干扰源可能包括钢桥、混凝土桥梁、结构中使用的钢筋以及电力线。以下示例显示了河流横断面的带有速度矢量的船迹,其附近的桥柱对罗盘造成了磁干扰:根据可用的测量地点,上述建议和考虑可能并不总是可行的。没有任何地点是完美的,但在选择地点时牢记基本假设非常重要。
  • 陋室不陋!看清华大学建筑声学实验室(图)
    什么是建筑声学?什么又是建筑物理实验室?在一个IT数码网站谈论这些内容,未免有点过于专业了。其实,声学离我们很近,又离我们很远。每天我们都会听到美妙的音乐声,同时也会接触到令人心烦的噪音。建筑声学,是用来解决建筑声学环境问题的科学,同时还要考虑到室内音质及建筑环境噪音的控制问题。   而建筑物理实验室又是干嘛的呢?众所周知,声学属于物理学科范围内,建筑物理实验室,主要是用来测试建筑声学环境是否符合国家标准的一个实验室,不仅可以提供检测报=报告结果,同时还是在校学生的一个学习场所。今天我们就抛开那些电脑音箱,走进清华大学的建筑物理实验室看看,探索下声学奥秘。    这所建筑物理实验室可是相当古老,据说清华大学主楼还没建好的时候,这所建筑物理实验室就已经在工作了。大约是在1956年,还是由苏联专家协助建设的。去的当天赶上下大雨,您看那墙都湿了。如今,这所实验室里包含了上图中的五家单位,他们都在这里办公。基本上这个实验室就是用来测试建筑声学环境,以及提供国家认证的有效的测试报告结果,很多工程项目都需要有建筑声学环境的检测报告。     建筑学院培训中心组织的学习课程,每周都会有,主要介绍一些建筑声学方面的知识、概念、案例,所有课程都是免费的,感兴趣的朋友可以联系 孙伊伟 负责人,联系电话:13693223194,有关课程时间排期等方面的问题都可以咨询孙老师。   从进了实验室办公区的大门之后,您就能看到四处都是与建筑声学有关的材料或装修。这面墙就铺着圣德木质吸声板,条纹状,主要作为展示用。    先去实验室的办公区看看,里面人并不多,和大多数的职场的布局基本一致,不过墙面上的这幅画还会蛮有意思的,这可不是一幅普通的装饰画哦!据孙老师介绍,这幅画拥有吸声处理作用,不过就是没有那些材料效果那么好,但比它们看起来要美观的多,要在自己的影音室里挂一幅这样的画,既起到装饰房间的作用,又能起到吸声的作用,两全其美了。   看完四周的墙,再来看看角落里的木地板,地板是没什么特殊的,亮点在地板下面,这也是吸声的吗?准确的说,是用来吸收高跟鞋的声音的,现场一个穿跟鞋的妹纸用脚在上面踩了踩,基本上没有什么声音,效果非常的明显。    从实验室的办公区打开这扇隔声门,可以直接进入隔声室,很期待里面是什么样的,笔者也是第一次见,充满好奇心。穿过这两层门,便可进入隔声室内。    整个隔声室的平面布局图,一个音源室,外加两个接收室,其中一个接收室在地下。    这就是整个实验室的布局,有点像正在装修的客厅,一片狼藉,如果您第一次见到这里的环境的话,肯定以为这个实验室正在装修呢,其实这就是原形。隔声室是用来测试建筑的墙体、门窗、楼板等隔声效果的,只有符合国家标准的,才可以批准使用。    接收室的天花板布局    音源室的天花板布局   不同的实验室天花板布局不一样,主要都是为了对声音的控制,感觉很奇怪,接收室的天花板像挂着帆船布,而音源室的天花板又好像是铺满管道一般。    音源室的中央摆着这样一个仪器,好似平衡杆一样,通过它来测试并得出具体的数据及结果。   接下来,我们再去看看消音室和混响室。   说实话,实验室的工作环境还是挺恶略的,可以说几乎是密不透风,因为在里面时间长了,会感到很憋屈,所以作为声学测试的人员,工作还是很辛苦的。顺着楼梯往地下走,直奔消音室,一个非常神奇的实验室。      消音室是全封闭的,实验室顶部的四个角,都安装了这样一块板子,也是起到对声音的处理的作用。    实验室四周墙壁凹凸不齐   天花板好似被网遮住一样   在这个消声室内,如果一言不发,调整好呼吸的话,几乎听不到一点点的声响,安静到吓人。地面下是双层的,中间有很多弹簧支撑,用力跳起,落下的时候会有轻微的感受。消声室可以提供一个低噪声的检测环境,同时也提供一个声学自由场环境。   离开消声室,转头去向混响室。打开这扇厚实的隔声门,看到满墙的三氯氰胺吸声泡沫,虽然它对人体有害,但却是一种非常好的吸声材料。    在往里走,就到达了混响室,这里面看着相对来说还整洁点,但房间四壁并不是平面的,除了地板之外,其他的墙壁都是半圆柱的凸起设计。在房间内,说话、拍手都有很大的回声。整个实验室是用来检测混响时间的,什么是混响时间呢?当您喊了一声之后,在您喊的这个环境中还存在着来自其他各个界面的迟到的被反射的声音&ldquo 残留&rdquo 现象,就用混响时间里表达。混响时间是建筑声学中很重要的一个概念。   看到墙上的一道裂痕了吗?这是当年地震的时候,留下的残骸,可见这间混响室的&ldquo 岁数&rdquo 也不小了。   通过参观清华大学的声学实验室,看到了常人很难见到的声学检测环境,虽然整体看着非常简陋,但其作用却是非常重要的,目前国内像国家大剧院、奥运会工程都有使用到这所实验室,我们能有机会参观一番,也算是另一种学习。
  • 稀有细胞检测,不做无谓的牺牲
    p   有些细胞在血液和组织中的含量很少但却很重要,比如干细胞、循环内皮细胞、循环肿瘤细胞和残留病变细胞。准确检测和分析这些稀有细胞,是理解疾病进程和发育机制的关键。然而稀有细胞检测并不是一件容易的事,会受到样本质量等多种因素的影响。 /p p   流式细胞技术能对每个细胞进行多种定量分析,是在血液、骨髓等组织中检测稀有细胞的有力工具。稀有细胞检测往往需要大量样本才能采集到足够的数据,这个时候传统流式细胞仪也有些发怵,因为大样本意味着处理时间长,如果不想牺牲检测灵敏度,就不能贸然加快进样速率。 /p p   strong  声波聚焦技术,不做任何无谓的牺牲 /strong /p p   样本溶液注射到流式细胞仪的时候,细胞是随机分布在三维空间内的。让这些细胞逐个穿过激光束,对于准确采集数据非常重要。绝大多数流式细胞仪通过快速流动的鞘液实现这一点。鞘液带动细胞并将其限制在中心位置,进而建立单细胞流,这一过程称为水动力聚焦。 /p p   与传统水动力聚焦不同的是,声波聚焦技术利用超声波将细胞紧密聚集在样本流中间,汇聚成一条直线。这种超声波大于2 MHz,与医学成像中的超声波类似。声波聚焦流式细胞仪基本不受进样速率的影响,能使细胞强聚焦于激光检测点,与样本-鞘液的比率无关。 /p p strong   不牺牲通量和精度 /strong /p p   传统的水动力聚焦技术受到了不少限制。流速提高会增大样本流的宽度,使细胞的聚焦效果下降。细胞偏离激光中心越远,激发光强度变化就越大,CV值也越高。研究人员经常需要在分析通量和精度之间寻求平衡。 /p p   声波聚焦技术在很大程度上与进样流速无关,不论样本流与鞘液流的比例如何,都能使细胞紧密地聚集于激光检测焦点,避免分散。这样可以采集更多光子,在极高的样本通量下保证高精度分析。 /p p   声波聚焦流式细胞仪在高达1 mL/min的进样速率下也能维持精确聚焦,让研究人员能够获得更小的CV值,更好地鉴别弱阳性信号和背景,实现更小的差异和更好的信号分离。 /p p   不牺牲检测速度稀有细胞检测一般需要采集大量细胞,才能获得准确而可靠的结果。在这种情况下,传统流式细胞仪需要很长的处理时间。不过,声波聚焦流式细胞仪的样本运行速率非常快(可达1,000μL /min),每次运行可采集2000万个细胞。这么高的样本采集速率和样本量可以帮助人们快速准确地检测稀有细胞,不会影响数据的质量。 /p p   不牺牲珍贵样本样本制备对稀有细胞检测有很大的影响。举例来说,洗脱和裂解红细胞(RBC)会造成严重的细胞损失和损伤。声波聚焦流式细胞仪支持无洗脱、无裂解的流式实验方案,可以最大程度的保留珍贵样本,避免不必要的细胞损失,简化样本制备步骤。 /p p   研究人员可以通过有目的地稀释样本来取代洗脱和裂解步骤,快速而有效地分析浓度较低的样本,比如脑脊液(CSF)、干细胞以及细胞数量较少的稀释样本。对于小鼠血液、骨髓等难以采集的样本、细针抽吸样本或低细胞产量样本,研究人员可以直接染色和稀释,无需洗脱或红细胞裂解。 /p p   值得一提的是,声波聚焦流式细胞仪处理全血样本可省去样本制备,既没有样本损失,也不会影响数据质量。 /p p strong   选择流式细胞仪需要知道的事 /strong /p p   近三十年来,流式细胞仪已经成为科研和临床领域不可或缺的重要工具。不论你是不是第一次购买流式细胞仪,入手一个新平台都需要考虑很多因素。为了找到最适合自己的那一款,我们需要了解一些事: /p p   流式细胞仪主要由三个部分组成:液流系统、光学系统和电子系统。液流系统将颗粒或细胞送给激光束进行检测。光学系统负责照明并将光信号引导到适当的检测器。而电子系统将光信号转变为电脑可以处理的电信号。 /p p   检测参数同时检测多种细胞参数,是流式细胞仪的一大优势。我们在选择流式细胞仪时一定要明确自己对参数的需求。因为一次实验能检测多少参数,取决于流式细胞仪配备的激光器和检测器。比如Attune® NxT声波聚焦流式细胞仪采用模块化设计,能够配置多达4种激光和14色荧光检测,适用于多参数分析。 /p p   检测性能了解流式细胞仪的灵敏度、分辨率、动态范围、检测能力和检测速度,可以帮助我们缩小选择范围。购买流式细胞仪是一笔不小的投资,我们不仅需要认清目前的研究需求,还应全面考虑到未来几年的应用。 /p p   样本类型现在绝大多数流式细胞仪都能处理几微升到几百微升的样本。如果细胞非常稀少,我们就需加大样本量同时尽量避免细胞损失。在这种情况下,Attune® NxT声波聚焦流式细胞仪将是不错的选择。这种流式细胞仪特别适用于稀少细胞和珍贵样本的检测。 /p p   系统软件流式细胞仪用起来顺不顺手,在很大程度上取决于其系统软件。除了方便性以外,我们还需要了解软件是否能呈现我们所需的数据,以及可不可以定时更新升级。Attune的采集和分析软件很直观而且功能强大,适合各种经验水平的用户。 /p p   实验室空间每一个实验室的空间都是有限的,越来越紧凑正是流式细胞仪的发展趋势。Attune声波聚焦流式细胞仪就是这样一种小巧方便的台式设备。 /p p   除此之外,购买流式细胞仪之前我们还需要了解多方面的信息,比如仪器的自动化程度,厂家提供的技术支持和培训,仪器的兼容性和可拓展性等等。 br/ /p
  • 沥青乳液表征 | 道路千万条,沥青少不了
    在今年的两会上,与会代表提出“取消重大节假日高速公路免费通行政策,与此同时,全面降低高速公路收费标准”的建议,引起了大家的热议。高速公路已经与人们出行密不可分,影响高速公路质量的重要材料——沥青。沥青乳液沥青乳液不仅使沥青的加工和储存变得简单,也使得道路的铺设过程更为方便(1)。沥青乳液的物理、化学及应用性能在很大程度上取决于沥青、乳化剂和水的含量比,以及沥青乳液的粒径分布(2)。常温下,沥青是不可加工的。因此,为了使沥青变的可加工,需采用不同的工艺对其处理。最常见的技术是将沥青加热到液态。另一种技术是将沥青加工成乳状液。然而,单纯将沥青和水混合在一起并不能形成一个稳定体系。因此,要根据具体的应用需求在沥青中添加一定的稳定剂和乳化剂。沥青乳液使用起来非常方便,同时也更容易对其储存、运输和进一步加工。沥青乳液的优势及化学组成沥青乳液的优势:良好的润湿能力低能源消耗和环境友好可通过增塑剂对其改性状态的多样性(如粘度)沥青乳液的化学组成:在沥青乳液中,沥青为分散相,水为连续相。为了保证能够乳化充分并形成稳定的颗粒,对乳化剂的选择变得十分重要。而粒径和乳化剂也同样会影响沥青乳液的加工性能和存储稳定性。乳化剂分子附着在沥青颗粒的表面,使这些颗粒具有均匀的电荷。这导致颗粒间的静电斥力,从而阻止乳液颗粒在运输和储存过程中固化。根据电荷(正电荷或负电荷)的不同,可以将其分为阳离子或阴离子的沥青乳液。沥青乳液的应用取决于其电荷、沥青质量分数、乳化剂、水以及沥青乳液的粒径(2)。实验实验中选取四种不同的沥青乳液(样品1 - 4),固含量均为63%。实验分别研究了样品的粒径、电位及流变行为。电位zeta电位的测量采用安东帕Litesizer 500。样品经水稀释,pH 为8.6±0.2。实验中对电位的测量采用Ω样品池,分别对样品进行三次系列测试。Litesizer 500粒径粒径分布(PSD)采用安东帕PSA 1090 L测定。实验设置为三次系列测量,水为流动相。样品分散不需要超声处理,搅拌和泵速分别设置为中速,遮光度设为10%,并采用夫琅和费近似理论对粒度分布进行计算。PSA流变行为为了表征沥青乳状液的流变特性,采用Anton Paar公司的流变仪及其平板测量系统PP25对样品进行测试。实验中,对每个样品在25°C下的流变曲线和振幅扫描进行测量。流变曲线的剪切速率范围为0.01~100s -1,时间范围为100s~1秒。振幅扫描的角频率为10 rad / s,形变范围为0.01~100% 。SmartPave结果与讨论zeta电位对稳定性的评估通过对沥青乳液zeta电位的表征,可得到样品稳定性的相关信息。zeta电位值越高,体系越稳定。实验中的所有样品zeta电位均为负值,说明沥青乳状液为阴离子型。如表1所示。这说明热处理对沥青乳状液的稳定性没有影响。样品加工性能的表征实验中,对样品1和样品2的加工性能进行了比较。样品1比样品2的粒径分布更宽,同时包含了大颗粒和小颗粒(图1)。两个样品的D90值差异最为明显(表2)。图2显示了样品的剪切速率粘度函数。样品1的小颗粒含量较少,与样品2(小颗粒含量较多)相比其表面积较小。较小的表面积说明颗粒和液体之间较小的界面,导致两相之间的摩擦力和相互作用力较小。从而造成较低的粘度,如图2所示。样品的屈服应力也不同。样品1 (2.33 Pa)颗粒较大(图3),其屈服应力低于样品2 (15.99 Pa)。质量控制沥青配方及工艺参数对其最终产品的粘度均有影响,为了控制产品的粘度,可在生产过程中对工艺参数进行监测。例如,样品3和样品4在粘度上没有差异,但在加工后表现出不同的流变特性(图4)。样品3的屈服应力为31.78 Pa,高于样品4的22.63 Pa。此外,样品3的损耗模量G”更高,这意味着它比样品4的粘性更大(图5)。这些结果表明,沥青乳液样品的界面性质不同,可通过测量粒度分布来实现质量控制。表3和图6汇总了各个样品的粒径结果。结论及参考文献结论实验展示了粒径对不同沥青乳液流变性能的影响。一般认为,沥青乳液的稳定性很好,同时具有以下特性:粒径越小,粘度越大粒径分布越宽,粘度越小具有混合粒径的沥青乳液,比只有单一粒径的沥青乳液粘度更低粒径分布影响样品的粘弹行为和屈服点利用现代测量技术,有利于开发出黏度相对较低但固体含量较高的高稳定性沥青乳液。沥青乳液的屈服应力和粒径分布影响着沥青乳液的应用性能,因此对这些参数的分析具有重要的意参考文献安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 全新FLIR Si2声学成像仪,让局部放电故障位置一目了然!
    全新FLIR Si2-PD和Si2-Pro声学成像仪配备了智能局部放电检测分析功能其可帮助用户检测、辨识和分析电气系统中象征着存在问题和故障隐患的局部放电提前定位故障点,避免出现重大事故那么它是如何做到精准又快速的呢?局部放电被听见的必要性顾名思义,局部放电(PD)指绝缘体局部故障,其可能在任何类型(固体、空气、气体、真空或液体)的绝缘体上发生。如果电荷经常穿过绝缘体,很可能导致绝缘体被彻底击穿,从而造成灾难性的故障,因此及时发现局部放电非常重要,它能有效规避重大事故的发生。局部放电分为多种不同类型,其特征因类型而异。在实际应用中,可分为四类:负电晕放电、正负电晕放电、浮动放电以及表面或内部放电。不同放电类型的局部放电相位分布(PRPD)图谱略有差异,想要详细解读的菲粉们可以点击下方图片,获取“FLIR Si2系列声学成像仪局部放电检测深度分析白皮书”,它能让您对局部放电有更深层次的理解!声学成像仪智能分类局部放电的类型不同类型的局部放电主要表现为50或60Hz周期的不同时段中的脉冲或脉冲簇。对局部放电进行电气测量,能够测出这些脉冲期间转移的电荷,并显示其与电压相位的相对关系。这就是所谓的局部放电相位分布(PRPD)图谱。局部放电相位分布(PRPD)图谱PRPD图谱具备数种特征,可用于推断存疑局部放电的类型。例如,PRPD图谱通常拥有两个明显的脉冲簇,一个靠近正电压峰值,另一个则靠近负电压峰值,这些脉冲簇的大小和形状可能不同。这两个脉冲簇在大小和形状上可能对称,也可能高度不对称。在某些情况下,可能只存在一个脉冲簇而非两个。因此,可以根据不同的PRPD图谱来判断局部放电的类型。下载白皮书,详细介绍典型的PRPD图谱FLIR声学成像仪将自动检测具有较强50或60Hz周期性的信号,并构建类似的PRPD图谱。但要注意,即使声学成像仪界面显示了PRPD图谱,也不代表声源一定是局部放电。例如,某些类型的低压电子设备也可能产生类似的周期性图谱,因此还要进一步分析。选择FLIR Si2声学成像仪的优势FLIR Si2系列声学成像仪内置124枚麦克风,接收频率范围在2kHz至130kHz,涵盖了局部放电的声波范围,在远距离或嘈杂环境中也能直观地显示超声波信息,生成精确的声像。声像实时叠加在可见光数码图像上,使用户可以准确地查明异常声音来源。对于局部放电检测,Si2声学成像仪内置局部放电严重程度评估和纠正措施建议功能,通过对局部放电进行分类,能让用户迅速做出决策,减少故障的影响。这样的检测,比传统方法要将近快10倍哦~Si2具备人工智能技术辅助分析和故障严重程度评估功能,可现场提供决策支持FLIR Si2系列声学成像仪其配备的插件还能让用户将声像导入FLIR Thermal Studio软件中,进行离线编辑、分析和创建高级报告。专业的报告和分析软件,让局部放电检测后的结果处理变得更加简单明了!利用超声波对局部放电进行检测不仅设备轻便,适应性好,性价比高还能保障操作人员的安全,精准定位故障点FLIR Si2系列声学成像仪作为其中的佼佼者可作为电力检测人员的“完美”工具。
  • 小菲课堂|声学成像技术在局部放电监测中的应用(二)
    声学成像仪在高压局部放电中的应用原理小菲在上周的文章中提到一部分没看到的小伙伴戳这里:小菲课堂|声学成像技术在局部放电监测中的应用(一)下面继续为大家详细解说声学成像仪:智能除噪,结果准确电气承包商选择检测局部放电的工具本身,也可能会导致人们对局部放电的识别效果产生误解。比如,局部放电以40 kHz的频率恒定地发出超声波,许多声学成像设备就只有这个频率的范围,尽管这些设备在某些情况下可能有用,但在大多数情况下,选择这些设备可能大大削弱检测的灵敏度。例如,在远距离工作时(如户外变电站),使用更宽的频率范围(10 kHz-30 kHz)可以产生更好的结果。目前,声学成像已迅速发展成对维护供电基础设施正常运行不可或缺的技术。越来越多的状态监测管理人员开始把FLIR Si124之类的声像仪加入工具箱。此类设备可以快速、轻松地发现问题,降低维修成本,减少意外停机,很快就能带来投资回报。 当高压设备内有悬浮导体时(比如用垫片隔开),就有可能产生悬浮放电,悬浮放电被认为是最常见的局部放电类型。导线(如输电线)周围作为绝缘材料的空气在高湿度或污染环境下会丧失部分绝缘能力,进而发生空气放电。这会导致电流进入空气中,进一步降低近处的空气质量和导线的性能。分析声学图像可能需要一定的培训和学习,尤其是在理解不同类型的局部放电时。了解问题及其严重性有助于制定更好的报告、维修建议和更明智的后续行动。FLIR Si124声学成像仪采用人工智能算法分析局部放电,可助电气承包商一臂之力。用户可以将声学图像上传到FLIR Acoustic Camera Viewer云服务,后者会自动将这些图像与数千张局部放电图像进行比较。先进的人工智能服务有助于减少误差,加快报告制作,成为客户检查业务的关键优势。简单易用的特性也有助于使更多工人加入声学成像检测队伍,共同开展状态监测或预防性维护工作。声学成像仪重点检测区域对于局部放电易发生的区域,主要包括:★ 导线和母线★ 发电机★ 输配电设备★ 变电站★ 定子、电机和线圈★ 开关设备★ 变压器声学成像可以检测到超声波的能力,已成为公用事业组织用于确定是否存在局部放电的有效方法。它使专业人士能够执行更多例行预防性维护,有助于提供对即将发生的会导致关键系统停机的电气故障的关键初步预警。所以,电气供应商们要与时俱进,选择更有效、更快捷的工具检测电气设备的局部放电哦~想要了解更多详情。
  • 152万!武汉理工大学梯度材料超声无损声学分析仪采购项目
    项目编号:HBHD-ZC-2022-038项目名称:武汉理工大学梯度材料超声无损声学分析仪预算金额:152.0000000 万元(人民币)最高限价(如有):152.0000000 万元(人民币)采购需求:武汉理工大学梯度材料超声无损声学分析仪的供货、安装、调试、验收及售后服务,具体技术规格、要求详见“第三章 项目采购需求”。序号货物名称数量是否接受进口产品中小企业划分标准所属行业主要功能要求1超声扫描显微镜1套接受工业★1.1 图像分辨率:1~4000um★1.2 定位精度:X/Y≤±1μm,Z≤±10μm★1.3 具有一键校准、手动扫描(A/B/C扫描模式)、批量扫描、导出报告、探头切换、强度检测、相位检测、厚度检测、断层检测等功能。2无损超声共振频谱仪(核心产品)1套接受工业★3.1 扫频范围:1kHz-3MHz★3.2 频率精度:0.01%★3.3 对于各向同性,立方,四方和正交晶体结构的材料样品,一次测量计算出所有独立的弹性常数质量标准:合格合同履行期限:合同签订后6个月内交货本项目( 不接受 )联合体投标。
  • 中科院声学所完成声表面波气相色谱仪研制
    p   声表面波气相色谱仪因体积小、检测快、反应灵敏,被广泛应用于爆炸物、水污染、有毒害气体等多种物质的检测,为环保、公共安全提供了便捷、高效的检测手段。但长期以来,该类仪器主要依靠进口。 /p p   近期,中国科学院声学研究所超声技术中心研究员何世堂团队完成了声表面波气相色谱仪的研制,实现了该类仪器的国产化。 /p p   声表面波气相色谱仪是基于声表面波传感器与气相色谱分离联用的有机气体分析仪,气相色谱将有机混合物分离成纯组分之后,由声表面波传感器进行定量检测,具有灵敏度高、色谱柱升温速度快(每秒约20 ℃)、体积小等特点,可实现痕量气体的广谱(挥发和半挥发性有机物)、快速(5分钟内)、高灵敏度(ppb~ppt级)现场分析,在公共安全、环境监测、食品和药品检测等方面有广阔的应用前景。 /p p   在仪器研制过程中,何世堂团队对声表面波气相色谱仪的响应机理进行了理论分析,计算出仪器的质量检测下限 设计仪器的核心部件——声表面波(SAW)检测器,并分析SAW检测器表面不同区域的灵敏度,根据分析结果优化检测器及检测器与分离系统的对接参数。此外,何世堂团队在设计进样富集和色谱分离系统、声表面波检测系统、数控系统和辅助系统等多个分系统的基础上,进行系统集成并研制出声表面波气相色谱仪样机。样机的检测下限降低至国外同类仪器的一半,相当于性能提高了一倍。 /p p   除传统的分析检测爆炸物、毒品、人体气味、水污染等功能外,何世堂团队还基于该仪器以麝香为样品开发了中药成分的检测功能。相关研究有望为中药质量监管提供技术支撑。在后续的研究中,团队将侧重分析方法方面的研究,使声表面波气相色谱仪的检测更精准、性能更完善,并与应用领域相结合,开发出具有领域针对性的快检仪器。 /p p   相关研究成果发表在《应用声学》上。 /p p   论文题目:声表面波气相色谱仪及其应用 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/08a1be87-63e3-43a1-84e9-9a257fc2f7b8.jpg" title=" 001.jpg" / /p p style=" text-align: center " 声学所声表面波气相色谱仪原理图 /p
  • 我国首套海洋哺乳动物声学实时监测系统运行
    我国首套海洋哺乳动物水下声学实时监测系统在该保护区建设完成验收并在连续3个月运行中初显成效,运行期间共监测到海洋哺乳动物声学片段1066条,并实时传输至保护区智慧化监管指挥中心。2022年11月,合浦儒艮保护区建设4套海洋哺乳动物声学实时监测系统。系统由自然资源部第一海洋研究所主导开发,南京师范大学现场验证。该系统由数字水听器、动物发声智能识别系统、实时传输系统、海洋浮标和声学监测管理平台构成。系统集成了人工智能动物发声识别模型,可以识别中华白海豚、儒艮和印太江豚等珍稀海洋哺乳动物的叫声,可实时监测浮标周边1.4公里左右范围声学信号进行处理和识别,并实时将识别的数据传输至监管平台,保护区管理中心能实时掌握保护区海域内中华白海豚、儒艮和印太江豚的时空变化。保护区通过布设海洋哺乳动物声学实时监测系统,并通过20个航次船只调查比对,形成一套能相互印证、互相补充的整合式生态研究新模式,助力海洋哺乳动物物种保护和野外监测发展。
  • 上海硅酸盐所纳米热学-声学显微成像系统亮相国家“十一五”成就展
    仪器信息网讯 2011年3月7日至14日,中国科学院上海硅酸盐研究所的纳米热学-声学显微成像系统亮相国家“十一五”重大科技成就展。 纳米热学-声学显微成像系统   上为SThM扫描探针声成像控制仪,下为SThM扫描探针热成像控制仪。   在原子力显微镜基础上,中科院上海硅酸盐研究所自主研发了纳米热学-声学显微成像技术,为研究纳米结构、微观弹性和热学特性提供了独特的新方法,实现了其他手段不易获得的结构分析、缺陷检测和热、弹性能评价功能,已在国内外多个高校和科研院所得到应用,推动了显微成像技术的发展。此外,该仪器还获得了2006年中国国际工业博览会银奖。   关于中国科学院上海硅酸盐研究所:   中国科学院上海硅酸盐研究所渊源于1928年成立的国立中央研究院工程研究所,1954年更名为中国科学院冶金陶瓷研究所。1959年独立建所,定名为中国科学院硅酸盐化学与工学研究所,1984年改名为中国科学院上海硅酸盐研究所。经四十多年的发展,上海硅酸盐研究所已成为一个以基础性研究为先导,以高技术创新和应用发展研究为主体的无机非金属材料综合性研究机构。
  • 如何打造高质量无泄漏的压缩气体系统?选择FLIR声学成像仪“精准护航”
    压缩空气是一种多用途广泛应用的实用工具,可用于驱动各种工业流程,从制造和组装到自动化和气动工具。然而,效率低下或设计不良的系统可能会导致不必要的能源消耗、增加运营成本和降低生产效率。今天就一起来学习下,英国某企业成功解决压缩空气系统中泄漏问题的案例!压缩空气系统检修的必要性Air Power East 是一家家族企业,拥有30多年的经验,是阿特拉斯科普柯(瑞典的一家全球性工业集团公司)的主要分销商,专门为East Anglia的各个行业提供高质量的压缩空气系统。在Jason Sewell的领导下,该公司在提供可靠和高效的解决方案方面建立了良好的声誉。然而,他们在确保系统完全无泄漏方面面临着重大挑战,这是他们的客户(包括Paul Musgrove管理的一家农业制造商)同样关心的问题。Jason强调说:“客户一直要求我们用实证,来证明设备确保无泄漏。”与此同时,Paul Musgrove正在寻求一种有效的方法来管理和维护他们的压缩空气系统,特别关注减少能源浪费和运营成本,强调需要“尽可能省钱,尤其是在能源价格如此高昂的情况下”。这一双重挑战要求必须采取创新方法,以保持Air Power East对质量和效率的承诺,同时满足客户的特定需求。FLIR Si124-LD:精准定位气体泄漏为了应对多重挑战,Jason联系了培训和预测性维护设备的独立供应商——Baseline RTS。他们将FLIR Si124-LD声学成像仪引入到Air Power East的设备检修中,从而能够准确检测压缩空气泄漏。Jason解释说:“我们坐下来,对几个不同型号的产品进行了一些市场研究,多方对比后选择了它。所以我们联系了FLIR,向我们展示Si124-LD,从那以后我们就很信赖它。”FLIR Si124-LD是一款轻便的可单手操作的工具,旨在快速定位压缩空气系统中的加压泄漏。它配备了124个麦克风收集声音,可产生精确的声学图像,直观地显示超声波信息。该图像可实时转换附在数码相机图片上,使用户能够准确定位声源。即使在嘈杂的工业环境中,FLIR声学成像仪也能以比传统方法快10倍的速度检测气体泄漏问题。此外,它还能与FLIR Thermal Studio套件兼容,用于离线编辑、分析和创建高级报告,大大节省了设备的维修费用,还延迟了花费安装新压缩机的费用。FLIR声学成像仪:凭实力获得客户认可Si124-LD声学成像仪的使用带来了变革性的结果。Jason解释了它的有效性:“我们带领客户一起四处走动,向他们展示我们在屏幕上发现的内容。如果我们确实发现了任何小泄漏,随时可以维修它们,然后向客户证明他们的系统是无泄漏的。这种方法不仅提高了压缩空气系统的效率,而且巩固了客户对 Air Power East 服务的信任。”定量检测结果则凸显了Si124-LD的另一强大功能。该声学成像仪能够检测到大约每分钟100立方英尺 (CFM)的泄漏,大约每秒50升,这相当于大约18.5千瓦的压缩机功率。有了这款检测设备,工厂可节省大量的能源成本,尤其是在能源价格上涨的情况下。Air Power East选择FLIR Si124-LD声学成像仪来解决压缩空气系统中的复杂挑战,这也证明了创新技术在工业环境中的力量。成功检测和改善空气泄漏,不仅提高了运营效率,还为农业制造商等企业节省了大量的能源成本,未来可应用到更多行业中!目前Si124-LD的升级款FLIR Si124-LD Plus声学成像仪正在进行“降价促销”活动想要快速精准地发现并量化漏气问题的小伙伴可千万别错过这次机会数量有限,先到先得哦~想知道它具体的“惊喜折扣价”?FLIR专业人员为您一对一报价哦~您可拨打官方客服电话直接咨询呀!
  • BRÜ EL & KJÆ R声学与振动测量公司将与HBM公司合并
    思百吉集团(Spectris;伦敦证交所交易代码:SXS;一家制造精密仪器仪表及控制设备的公司)今天宣布,从2019年1月1日起,集团旗下的Bruel & Kjaer声学与振动测量公司和HBM公司将合并运营。Bruel & Kjaer公司和HBM公司都是思百吉集团旗下测试与测量板块的运营公司。合并后的新公司将被命名为HBK(Hottinger, Bruel & Kjaer)。Bruel & Kjaer公司和HBM公司是各自领域的全球市场专家,在整个测量链上拥有互补的专长。通过发挥两家公司的各自优势,我们的目标是创建具有能力、广度和规模的业务,带来差异化的客户价值,例如,在推进力、耐用性、安全性,以及噪音、振动和平顺性等领域。基于Bruel & Kjaer公司和HBM公司的优势和专长,一个新的管理团队已经被选定,将于2018年7月1日就位。合并的准备工作将从现在开始到2018年底结束,在这一准备阶段,两家公司将在现有架构中运作。合并后的新公司HBK将于2019年1月1日起在新架构下运行。思百吉测试与测量板块集团总监Eoghan O’Lionaird说:“Bruel & Kjaer和HBM都是测量领域的先进硬件供应商,也都非常重视软件。通过合并,这两家公司可以将传感器、数据采集、准备、评估和工程服务结合在一起,为客户提供整合的解决方案。这与思百吉集团专注于提供整合硬件、软件及相关服务的完整解决方案的战略相一致,并将使我们能够为Bruel & Kjaer和HBM的用户提供更广泛的服务和更多的价值。关于Bruel & KjaerBruel & Kjaer帮助用户解决声音与振动的挑战,并开发测量和管理声音与振动的先进技术。作为该领域的专家,Bruel & Kjaer帮助用户确保组件质量、提高产品性能、并监控操作的合规性。在逾75年的时间中,Bruel & Kjaer的研发人员取得了卓越的成就,许多人已成为公认的全球专家,他们帮助科学界并在机构任教。 Bruel & Kjaer应用经验和技术在产品生命周期的每个阶段提高质量和效率:设计、开发、制造、部署和操作阶段。Bruel & Kjaer对声音与振动的精通帮助用户加速业务增长并提高环境质量。Bruel & Kjaer是总部位于英国的思百吉集团(www.spectris.com)旗下的子公司。思百吉集团年销售额达15亿英镑,集团的4个业务板块在全球共有约9,800名员工。如需了解更多信息,请访问www.bksv.com关于HBMHottinger Baldwin Messtechnik GmbH(HBM测试与测量公司)成立于1950年,是测试与测量领域的技术和市场专家。HBM的产品范围包括整个测量链的解决方案,从虚拟到物理测试。公司在德国、美国、中国、葡萄牙设有生产基地,在全球80多个国家设有代表处。如需了解更多信息,请访问www.hbm.com
  • BRÜ EL & KJÆ R声学与振动测量公司将与HBM公司合并
    思百吉集团(Spectris;伦敦证交所交易代码:SXS;一家制造精密仪器仪表及控制设备的公司)今天宣布,从2019年1月1日起,集团旗下的Bruel & Kjaer声学与振动测量公司和HBM公司将合并运营。Bruel & Kjaer公司和HBM公司都是思百吉集团旗下测试与测量板块的运营公司。合并后的新公司将被命名为HBK(Hottinger, Bruel & Kjaer)。Bruel & Kjaer公司和HBM公司是各自领域的全球市场专家,在整个测量链上拥有互补的专长。通过发挥两家公司的各自优势,我们的目标是创建具有能力、广度和规模的业务,带来差异化的客户价值,例如,在推进力、耐用性、安全性,以及噪音、振动和平顺性等领域。基于Bruel & Kjaer公司和HBM公司的优势和专长,一个新的管理团队已经被选定,将于2018年7月1日就位。合并的准备工作将从现在开始到2018年底结束,在这一准备阶段,两家公司将在现有架构中运作。合并后的新公司HBK将于2019年1月1日起在新架构下运行。思百吉测试与测量板块集团总监Eoghan O’Lionaird说:“Bruel & Kjaer和HBM都是测量领域的先进硬件供应商,也都非常重视软件。通过合并,这两家公司可以将传感器、数据采集、准备、评估和工程服务结合在一起,为客户提供整合的解决方案。这与思百吉集团专注于提供整合硬件、软件及相关服务的完整解决方案的战略相一致,并将使我们能够为Bruel & Kjaer和HBM的用户提供更广泛的服务和更多的价值。关于Bruel & KjaerBruel & Kjaer帮助用户解决声音与振动的挑战,并开发测量和管理声音与振动的先进技术。作为该领域的专家,Bruel & Kjaer帮助用户确保组件质量、提高产品性能、并监控操作的合规性。在逾75年的时间中,Bruel & Kjaer的研发人员取得了卓越的成就,许多人已成为公认的全球专家,他们帮助科学界并在机构任教。 Bruel & Kjaer应用经验和技术在产品生命周期的每个阶段提高质量和效率:设计、开发、制造、部署和操作阶段。Bruel & Kjaer对声音与振动的精通帮助用户加速业务增长并提高环境质量。Bruel & Kjaer是总部位于英国的思百吉集团旗下的子公司。思百吉集团年销售额达15亿英镑,集团的4个业务板块在全球共有约9,800名员工。关于HBMHottinger Baldwin Messtechnik GmbH(HBM测试与测量公司)成立于1950年,是测试与测量领域的技术和市场专家。HBM的产品范围包括整个测量链的解决方案,从虚拟到物理测试。公司在德国、美国、中国、葡萄牙设有生产基地,在全球80多个国家设有代表处。
  • 新一代声学多普勒水流剖面仪M9 在水文测验中的应用(一)
    摘要:新一代走航式声学多普勒水流剖面仪M9克服了早期仪器的缺陷,采用多频、智能的多种工作模式,解决了困惑水文的高、低流速测流难题。M9灵活的配置,考虑不同用户的需求,可实现无线通讯、内置GPS、遥控,解决河床走底引起的多普勒流速仪流量测验误差。列举了各种不同条件、环境的河道,采用 M9实测的案例,显示了该仪器的优异性能。关键词:M9;多频;智能;脉冲相干、宽带、窄带多种工作模式自动切换;高、低速测流前言采用多普勒频移原理研制的走航式声学多普勒水流剖面仪,应用于水文测验已经有二十多年的历史。由于制作复杂、生产成本高、以及使用量不大等原因,世界上能够生产该类仪器的著名厂家仅为可数的几家,而且基本上集中在美国。近几年,国内部分厂家开始研制类似产品,并陆续投放市场。二十余年来,厂家历经了数次的改进,生产出了不少型号和不同工作频率的仪器,供不同条件和环境下的使用。其性能虽有了很大的提高,但因为最初的设计是针对海洋测流需要,这对于在内河河道上的使用,带来了一些不足;在水文测验中还是感到有些不尽人意。一直以来,困惑水文的高、低流速测流难题,仍然没有给出有效的解决方案。经过多年的研究和总结了目前所有多普勒流速仪产品存在的问题;美国赛莱默公司旗下的SonTek 公司在2009年开发出了最新一代的走航式声学多普勒水流剖面仪 M9/S5。经过数年多在世界各地的实际使用和比测,效果非常之好,成为了目前世界上最先进的一种声学多普勒流量计。M9 的技术指标和配置 考虑到不同用户的需要,M9系列的仪器有着灵活的配置。其标准配置为:仪器主机+10米电源/通讯电缆线(可延长);可安装在船舷边使用;实现主机与计算机之间的直接通讯。若装备有小型载体(船体)时,可配置无线电台的通讯方式,通讯距离可达1500米,实现主机与计算机之间的无线通讯。为了满足在河床走底情况下测流的需要,还可以选配内置的 GPS,有二种供选择;即 SonTek 的DGPS(亚米级精度),和SonTek 的RTK GPS(0.03米精度)。此外,M9/S5系列的仪器还可以配置SonTek自行研制的单体船,以及其它公司配套的三体船或自带动力的遥控船;这种浮体保证了仪器在测量时的平稳和较小的仪器入水深度。从上述技术指标可以看到,M9 从很浅的不到0.3米处河岸开始测量,一直到最深达80米的河床深度,仍然可以一次完成测量并计算出该测流断面的流量,这大大满足了全世界 85 % 以上河道测流的需求。M9/S5 的特点和优势作为一种全新的M9/S5,实际上是一款专为河流流量测验所设计的仪器。与老一代所有现有的多普勒流速仪相比,有以下几个特点:1、多种频率换能器的配置。4个一组的二种不同频率换能器用于流速的测量,满足了从浅水到深水的不同河床条件,只用一款仪器进行流量测验的需要。2、垂直声波探头专用于水深的测量。改变了原先采用斜向测速声波测量流速的同时,测量水深的方法。直接提高了水深的测量精度,以及流量的测量精度。500KHz工作频率的波束使得仪器的测量范围增加到80米之深。3、全自动的测量方式,有四种自动转换的功能工作模式的自动转换。仪器采用了一种 SmartPulseHD智能脉冲功能,基于实测动态的水深和流速,自动地选择 脉冲相干(PC)工作模式、或 宽带工作模式、或 窄带工作模式,这三种不同的工作模式都有其优点和弱点。M9/S5充分发挥了各种模式的优势,自动切换,使得仪器始终处于高分辨率的最佳性能比。? 测量单元的自动转换。可根据实测水深和流速,自动选择从0.02~4米的测量单元。保证在浅水时具有很高的分辨率;在深水时有更大的测量范围。? 二种不同频率换能器工作状态的转换。可根据实测的水深和流速,在浅水时采用高频的3MHz换能器测量流速,在深水时采用低频的1MHz换能器测量流速;仪器始终保持最佳的工作状态。? 采样频率的自动转换。可根据水深的变化,自动调整仪器每秒钟的采样频率,其最高采样频率达到 70Hz。在水深变化的情况下,尽可能地获取更多的采样数,以提高仪器的测量精度。以下图为例,在同一个测流断面上,用二种不同的仪器测量的成果。上图是采用老一代多普勒流速仪实测的成果;下图是M9 采用智能脉冲功能所表现的高分辨率,犹如HD“高清电视”的效果。测量精度大为提高。4、仪器内部的流量计算功能。内置微处理器直接计算流量数据,而不再依赖于外部的计算机和测量软件进行实测数据的处理和计算。M9在测量过程中,即使通讯中断,也不会影响到测量的过程,更不会因此而丢失数据。仪器测量运行时甚至可关闭计算机;而重新开机通讯后仍可获得全部数据。大大提高了测量的可靠性。16G内存可用于保存实测的流速、水深流量、GPS等大量数据5、可内置的GPS,满足了在走底河床情况下,仍然采用声学多 普勒 原理测量流量的可能性,而不必过虑因为采用外置GPS 所带来的不兼容等问题的困惑。SonTek 自行研制配套的DGPS(亚米级精度),和RTK GPS(0.03米精度),不同于市场上所选用的各种型号的GPS。DGPS不需要寻找地面上设置的基站,直接接收地球上空静止卫星的差分信号,以获得差分GPS 的精度。RTK GPS也不需要地面上已知点的支持,而自行在河岸的任何开阔处设立一个RTK基站。使得仪器的使用非常之灵活和简单。保证了在走底河床情况下的正确测流。6、多种通讯方式 - 有线与无线的选择。对于无线通讯,也可以根据需要,采用无线电台的通讯方式。有效的通讯距离达1500米。除了可使用计算机与主机之间的通讯之外,还可以采用平板电脑来控制主机测量的开始和结束,并在平板电脑屏幕上给出实测的各种数据、航迹和图表。使用非常方便。7、支持多国语言的操作、数据处理的计算机软件。可提供大量的实测数据,和经过计算、分析后的数据,同时提供多种方式,方便用户自行修正和处理数据。软件还可用于控制、下载、查看、分析数据等。
  • 一种先进的用于高细胞浓度灌流培养的声学截留系统-BioSep
    概述哺乳动物细胞培养对于生物技术行业的蛋白质生产具有重要意义[1]。制药行业中约70%的重组蛋白是使用中国仓鼠卵巢细胞(CHO)生产的。在灌流培养中,营养物质持续供应并去除副产物[2]。与批培养和流加补料技术相比,灌流为细胞提供了有利的环境和较短的产品停留时间。这对于不稳定产品的质量尤为重要。灌流模式的另一个优点是它允许使用较小的生物反应器并减少在位清洗操作[3]。灌流需要一种装置将细胞保留在培养基中。灌流中使用的大多数哺乳动物细胞保留系统都基于细胞尺寸差异,例如使用滤器。然而,由于滤器不可避免的污染,传统的过滤膜无法实现真正的稳态灌流培养。此外,频繁更换过滤器会增加成本和污染风险[4]。声学分离器是一种替代的细胞截留系统,利用超声波驻波场中产生的力将细胞与清液分离。细胞被困在驻波的压力平面中,并收集为松散的聚集体。这些细胞聚集体通过重力沉降返回生物反应器[4]。 在本研究中,使用了一种针对高密度细胞培养物灌流的Applikon Biosep 10 L声学细胞分离器的高级版本。生物反应器中,细胞密度在11~144*106 cells/mL之间的CHO细胞评估其性能。材料和方法01细胞声学截留装置 – BioSep BioSep 系统由声学腔室和控制器组成。 控制器功能是自动产生声学腔室内的声场。 来自生物反应器的细胞悬液被泵输入到安装在生物反应器头板上的声学腔室中。 驻波迫使悬浮细胞进入平面,在那里它们形成松散的聚集体(图 1)。 清液向上通过声场而收获,而浓缩的细胞则返回到生物反应器。 随着细胞浓度和灌流速率的增加,声学腔室的功率输入被调整到更高水平,以保持高分离效率[5]。 运行时间对应于细胞与清液分离的时间段。在运行时间结束时,声场暂时关闭,收获暂停,同时腔室中的细胞返回生物反应器。 在这项研究中,功率水平和运行时间发生了变化,以获得最佳设置,使高密度CHO 细胞培养超过 125* 106 cells/mL。02实验装置 为了评估在一系列高细胞浓度下的分离性能,将CHO 细胞在摇瓶中培养,浓缩、然后悬浮在使用my-Control 操作系统的Applikon 250 mL MiniBio 生物反应器中。 BioSep 10 L的功率水平为2~7W。 实验设置如图2所示。2丨A) 实验装置包括:进料罐、废液罐、收获泵、进料泵、声学室、MiniBio 250 mL、my-ControlB)典型的实验装置[5]3 | 分析方法&bull BioSep 的分离效率根据公式 1 计算:SE (%) = 1 - HX / BX *100 [1] 其中HX对应于收获管路的活细胞浓度,BX对应于生物反应器中的活细胞浓度[4]。为确保稳定和可重复的声学条件,在从收获管路和生物反应器取样之前,超声波功率输入、收获速率和运行/反冲洗定时器设置至少恒定 30 分钟。根据所选运行周期的持续时间,在时间点采集收获样本,以获得一致且可比较的数据(表1)。结果和讨论1| 循环流速 在高细胞密度的灌流培养过程中,需要高循环速率,这会导致声学室内的湍流增加。 这种湍流诱导会影响声学诱导的细胞聚集[6]。 在目前的研究中观察到新的BioSep版本允许声学诱导的细胞聚集体不受干扰地沉降,最大流入速率高达7 mL/min(~10 L/天),允许保留超过100*106cells/mL的生物反应器浓度。2| 分离性能 从收获管路和生物反应器中采集的70对样品中测定分离效率。 CHO细胞总浓度范围为11~144*106 cells/mL。 研究了1~15L/天的不同净收获率、2~7 W的功率水平和2至10分钟的运行时间(未显示值),结果总结在图3中。 从图3中可以看出,当CHO细胞总浓度为100*106cells/mL时,可以实现高达3L/天的净收获率,同时保持98%的典型活细胞分离效率。超过4L/天的净收获率会影响最高密度下的效率,但分离仍保留了90%以上的细胞。 在总浓度为125*106 cells/mL时,以2L/天的净收获率运行,细胞分离效率达到98%。 在细胞浓度增加或收获率高的情况下,使用高功率水平和更短的运行周期是必要的[5]。 优化功率(w)和运行时间(min)的配对,以实现高密度细胞。这些值的组合使得最高的分离效率是:2 w - 10 min 3 W - 5 min 5 W - 3 min 7 W - 2 min。这些结果是意料之中的,因为更高的功率水平允许在高浓度或高流量条件下增加细胞的保留,而更短的运行时间避免了细胞聚集体在声室中过度积聚,然后才有机会沉降回到生物反应器。Figure 3 分离效率以黑色方块表示,作为记录的流入管线的净收获率和CHO细胞总浓度的函数。功率水平矩阵表示在该特定净收获率下应用的最大HF功率。黄色虚线表示循环速率20L/天和10L/天之间的边界。实验结论目前的研究证明了Biosep作为CHO细胞浓度高达125*106cells/mL的细胞保留系统,增强了细胞的沉降效率。在该细胞浓度下,以2 L/天的净收获率下运行,分离效率高达98%。参考文献[1]S. M. Woodside, B. D. Bowen, and J. M. Piret, “Mammalian cell retention devices for stirred perfusion bioreactors,” Cytotechnology, vol. 28, pp. 163–175, 1998.[2]T. Kwon, N. Madziva, J. D. Oliveira, S. K. Chandramohan, L. Yin, H. Prentice, J. Han, ‘Long-term steady state perfusion culture of mammalian cells using a robust microfluidic cell retention device”. 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 2015.[3]M. F. Clincke, C. lleryd, Y. Zhang, E. Lindskog, K. Walsh, and V. Chotteau, “Very high density of CHO cells in perfusion by ATF or TFF in WAVE bioreactor. Part I: Effect of the cell density on the process,” Biotechnol. Prog., 2013.[4]V. M. Gorenflo, J. B. Ritter, D. S. Aeschliman, H. Drouin, B. D. Bowen, and J. M. Piret, “Characterization and optimization of acoustic filter performance by experimental design methodology,” Biotechnol. Bioeng., 2005.[5]Biosep manual 10 and 50 L per day, Applikon Biotechnology.[6]I. Z. Shirgaonkar, S. Lanthier & A. Kamen, Acoustic cell filter: A proven cell retention technology for perfusion of animal cell cultures. Biotechnology Advances, 22(6), 433–444, 2004.
  • 国产化便携式排放测试系统(PEMS)助力非道路国四标准实施
    非道路国四排放法规背景及要求HJ 1014-2020《非道路柴油移动机械污染物排放控制技术要求》于2020年12月28日发布,要求从2022年12月1日起,所有生产、进口和销售的560KW(含560KW)的非道路移动机械及装用的柴油机,必须符合本标准。标准的发布,为国内非道路机械主机厂设定了闹钟,国四产品的准备正式步入倒计时阶段。该标准是对2014年颁布的GB 20891-2014《非道路移动机械用柴油机排气污染物排放限值及测量方法(中国第三、四阶段)》第四阶段内容的补充。相较于原标准,其中很重要的一项是增加了车载法检验的限值及检测规程,并对车载便携式排放测试系统(PEMS)的相关技术要求进行了规定。便携式排放测试系统(PEMS)的发展历程2015年9月18日,美国环境保护署指控大众汽车所售部分柴油车安装了专门应对尾气排放检测的软件,可以识别汽车是否处于被检测状态,继而在车检时秘密启动,从而使汽车能够在车检时以“高环保标准”过关,而在平时行驶时,这些汽车却大量排放污染物,最大可达美国法定标准的40倍。该事件导致大众汽车支付罚金以及和诉讼和解金达数百亿欧元之巨,被称之为“排放门”。“排放门”事件导致了各国政府和环保部门对汽车在道路中的实际排放水平高度重视,仅仅在实验室台架上的检测结果已经不被信任。因此专门用于对车辆在实际道路中的排放水平进行检测的设备——便携式排放测试系统(PEMS)应运而生并得到快速的普及。这种设备可以装在车辆上,随着车辆的实际行驶,实时检测车辆的排放水平,并通过时间积分得到车辆的总排放水平。非道路国四排放法规关于车载法检测的逻辑和意义非道路机械排放及管理现状有如下两个特点:一是非道路机械的保有量巨大,工况复杂,过载工况非常频繁,实际的排放水平相对于发动机台架试验结果的劣化程度高;二是非道路机械用户分散,移动性较差,现行的GB 36886标准虽然对非道路在用机械的排放进行限定,但是通过类似于汽车年检的监管方式进行I/M管理非常困难。因此,在产品生产准入阶段增加PEMS检测,从源头上对非道路机械的实际排放进行总体管控,同时逐步淘汰国二、国三老旧机型,将逐步扭转非道路机械污染严重的局面。便携式排放测试系统(PEMS)国产化解决方案湖北锐意系统有限公司(以下简称“湖北锐意")为四方光电股份有限公司(股票代码688665)的全资子公司,成立于2010年,是一家专业提供气体成分及流量测量方案的高新技术企业,服务于环境监测、过程气体监测、智慧计量等领域。基于四方光电核心气体传感技术平台的优势,湖北锐意开发了系列非分光红外(NDIR)、紫外差分吸收光谱(UV-DOAS)、激光拉曼(LRD)、超声波(Ultrasonic)、热导(TCD)、光散射探测(LSD)等技术原理的气体成分流量仪器仪表,产品广泛应用于环境监测、冶金、煤化工、生物质能源等各个行业,在节能减排中发挥重要作用。公司从2005年开始从事汽车尾气及发动机排放检测设备的研发和制造,目前产品已经在发动机厂、高校及科研机构、汽车检测站等领域有广泛的应用。2021年,针对国内急需的便携式排放测试系统(PEMS)需求,公司快速组织研发技术团队攻关,实现了便携式排放测试系统(PEMS)的国产化。其中,Gasboard-9805系列是湖北锐意基于自主研发的核心气体分析技术专门针对非道路国四标准开发的一款便携式排放测试系统(PEMS)。图1:湖北锐意便携式排放测试系统(PEMS)产品特点• 自主研发的核心气体分析技术:红外NDIR技术测量CO、CO2;紫外UV-DOAS直测NO,NO2,精度高;• 模块化设计,使用灵活:GAS模块及PN模块均可单独使用,满足客户不同的测量需求。 • 操作简单,易于使用:操作简单、支持测试过程引导、测试结果的保存以及报告⽣成。• 续航能力强,满足随车测试要求:内置电池,续航4小时以上,无需外加电池,能完成⼀次完整的实际⾏驶污染物排放试验。• 性能优异,满足国标要求:满足《非道路移动机械用柴油机排气污染物排放限值及测量⽅法(中国第三、四阶段)》(GB 20891-2014)及《非道路柴油移动机械污染物排放控制技术要求》(HJ 1014-2020)标准要求。• 环境适应性好:系统环境适应性好,不受车辆震动、大气压力及环境温湿度变化的影响。图2:湖北锐意便携式排放测试系统(PEMS)系统配置相较于进口品牌产品,湖北锐意便携式排放测试系统(PEMS)能够完全满足《HJ 1014—2020非道路柴油移动机械污染物排放控制技术要求》的要求;其核心传感器模块均为自主研发生产,性价比高,极大减轻非道路机械行业用户经济负担;产品操作界面更加人性化、易于上手;皮实耐用,适应非道路机械测量的恶劣工况。图3:湖北锐意便携式排放测试系统(PEMS)实测现场为推动我国非道路发动机和工程机械的高效低污染研究,实现我国高端尾气测试设备的自主可控及国产替代,除销售便携式排放测试系统(PEMS)外,湖北锐意还向广大用户提供如下服务:1、为非道路主机厂提供法规及标准的讲解服务;2、根据客户要求,提供产品上门测试与展示服务;3、产品试用服务;4、提供上门检测服务,并出具检测报告。
  • 锐意自控非道路机械/柴油车排气烟度检测系统助力尾气环保执法检测
    随着我国机动车保有量的增加,大气污染正在向工业燃煤污染与机动车排气污染复合型发展,机动车排气污染对颗粒物和氮氧化物的贡献率较大,尤其是非道路移动柴油机械的排放,对我国环境空气质量的影响日益凸显,成为我国污染治理的重中之重。而污染治理,当以检测为先。一、 政策标准介绍我国非道路移动柴油机械的排放检测虽起步较晚,但在政策标准的颁布和实施上也形成了体系。生态环境部2018年第34号公告发布《非道路移动机械污染防治技术政策》,各地也纷纷出台机动车和非道路移动柴油机械防治污染条例或办法,严格控制柴油货车联合执法体系,完善生态环境部门监测取证、公安交管部门实施处罚、交通运输部门监督维修的联合执法监管模式,开展非道路移动柴油机械排气污染监督检测。此外,GB 3847-2018《柴油车污染物排放限值及测量方法(自由加速法及加载减速法)》、GB 36886-2018《非道路移动柴油机械排气烟度限值及测量方法》明确规定了非道路移动柴油机械的检测方法和排放限值要求。表一、GB 3847-2018排气烟度限值要求表二、GB 36886-2018排气烟度限值要求二、 非道路移动机械排气污染监督抽检技术难点基于政策和标准的要求,国家和地方相关执法部门、第三方检测公司相继引进了非道路移动柴油机械排气污染检测设备,国内做相关设备的厂家也如雨后春笋般涌现,但在实际的应用中还面临着诸多难点:1、 检测数据输出的准确性和及时性GB 3847-2018和GB 36886-2018中对非道路移动柴油机械排气污染检测设备的技术指标做了明确规定。此外,在路检和入户检测时一般要求现场打印检测报告,对设备的准确性和响应时间也有严格的要求。表三、GB3847-2018和GB36886-2018中对检测设备的技术指标要求检测项目误差要求不透光度N最大允许误差:±2.0%光吸收系数K最大允许误差:±2.0%温度±4% (相对误差) 或 ±0.5℃(绝对误差) 湿度±5%相对误差或±3RH(绝对误差)压力±3% (相对误差) 或±2kPa(绝对误差)转速±50r/min油温±5℃2、 设备的便携性和电池续航能力非道路移动柴油机械排气污染监督检查一般要求设备具备单人便携使用的能力,满足执法人员在路检或入户检查的时候通过手提或背负等方式实现便携移动。而目前国内大部分的烟度计需要连接电源或外接移动电源使用,无法满足操作便携性的要求,限制了其使用场所。3、 数据联网上传相关地方机动车和非道路移动柴油机械排气污染防治条例要求在非道路移动柴油机械排气污染执法检测中要以电子监控、视频录像、摄像拍照、遥感检测等方式对非道路移动机械排气污染状况进行取证,检测结果和相关数据须上传到监管平台。因此,在非道路移动机械排气污染检测中APP的智能性和云端联网功能也尤为重要。三、 锐意自控非道路机械/柴油车排气烟度检测系统:专为环保路检执法设计锐意自控基于多年的机动车尾气检测技术与设备研发经验,深入调研市场需求,积极投入研发资源,不断升级和完善产品以应对不同地区的检测要求,推出一款专为环保路检执法设计的非道路机械/柴油车排气烟度检测系统,可同时测量排气烟度、转速、环境温湿度、大气压力等参数,也可选配油温传感器、视频摄像头及打印机。满足GB 3847 -2018《柴油车污染物排放限值及测量方法(自由加速法及加载减速法)》和GB 36886-2018 《非道路移动柴油机械排气烟度限值及测量方法》的相关性能指标要求。产品特点:1、透射式烟度计采用分流式技术保护光学系统,不受排烟污染,满足GB 3847-2018和GB 36886-2018标准中±2.0%测量精度的要求,具备自动调零功能;检测室采用恒温控制技术,可有效防止水汽冷凝。2、便携式设计、操作便捷。烟度计主机集成高容量电池(12V/35AH),正常满电可连续进行12小时持续测量,不受现场使用场所限制。扩展单元转速表、环境参数测试仪采用一体化机箱设计,烟度计主机配置有拉杆式机箱,携带操作便捷,满足执法人员路检或入户检查的需要。3、配置Wi-Fi无线通讯模块,设备在单机模式下即可实现无线通讯;此外,通过物联网信息传输技术也可将测试信息上传至监管平台。4、使用智能平板和专业的非道路测试软件操作,将控制和测量单元分开,可连接打印机现场打印检测报告。也可选配视频模块,实时保存视频记录和测试数据,留存车辆图像信息,检验结果溯源清楚。此外,锐意自控非道路机械/柴油车排气烟度检测系统已获得计量器具型式批准证书、计量测试技术研究院检定证书、软件产品等级测试报告。四、 锐意自控非道路机械/柴油车排气烟度检测系统应用案例武汉是中部地区重要的交通枢纽,机动车保有量近年来持续上升。2020年6月,经湖北省十三届人大常委会第十六次会议批准,武汉市政府发布《武汉市机动车和非道路移动机械排气污染防治条例》(以下简称《条例》),将于2020年9月1日起施行,同年7月印发《武汉市2020年大气污染防治工作方案的通知》(以下简称《通知》)。《条例》中明确要求要强化非道路移动机械排气污染防治工作,可以对非道路移动机械排气污染状况进行现场抽测,通过电子监控、视频录像、摄像拍照、遥感检测等方式对非道路移动机械排气污染状况进行取证,并规定对非道路移动机械违规行为进行处罚。2020年12月,锐意自控参与武汉市机动车排气污染防治管理中心关于“武汉市机动车排气污染防治管理中心柴油车(非道路移动机械)尾气检测便携式设备采购项目”的公开招标,项目要求设备具备单人便携使用,满足路检执法人员通过手提或背负等方式实现便携移动,设备应自带工作电源,不受使用场所限制。项目将在入户检查、路检路查、机构督察等场景下为环保执法人员提供柴油货车(非道路移动机械)尾气检测的工具支撑,便于快速、精准、便捷的获取检测结果、录入和上报检查结果,提升现场执法效能。为满足招标需求,锐意自控制定了7天24小时的快速响应服务机制,协同内部技术人员不断的升级完善产品。在项目推进过程中,武汉市机动车排气污染防治管理中心联合第三方测试机构在青山区、江汉区、东湖高新技术开发区、黄陂区、汉阳区、武昌区现场进行道路测试,现场操作人员对锐意自控的非道路机械/柴油车排气烟度检测系统的设备操作便携性、测量的准确性、报告输出的及时性和软件使用智能性给予充分肯定。在武汉市机动车排气污染防治管理中心的指导下,锐意自控顺利完成了本次“武汉市机动车排气污染防治管理中心柴油车(非道路移动机械)尾气检测便携式设备采购项目”的交付任务。锐意自控企业介绍锐意自控坐落于武汉“光谷”,是一家专业从事气体分析仪器研发、生产和销售的高新技术企业。公司前身为四方光电股份有限公司的气体分析仪器事业部,于2016年正式作为四方光电的全资子公司开始独立运行,专业服务于环境监测、过程气体、智慧计量等领域。 锐意自控坚持以客户为中心,依托母公司四方光电的核心气体传感技术平台优势,开发了基于非分光红外(NDIR)、紫外差分吸收光谱(UV-DOAS)、激光拉曼(LRD)、超声波(Ultrasonic)、热导(TCD)、光散射探测(LSD)等技术原理的一系列推陈出新的气体分析仪产品,主要有:烟气分析仪、煤气分析仪、沼气分析仪、尾气分析仪以及超声波燃气表和气体流量计。其中自主研发生产的便携式红外沼气分析仪、微流红外烟气分析仪、 红外煤气分析仪曾获得国家重点新产品证书;红外煤气分析仪获得中国仪器仪表学会优秀产品奖荣誉,其核心技术获得湖北省发明专利金奖。 公司“微流红外烟气传感器研究及产业化”获得工信部2019年工业强基工程重点“产品、工艺”一条龙应用计划示范项目。
  • 四方仪器非道路机械/柴油车排气烟度检测系统助力尾气环保执法检测
    随着我国机动车保有量的增加,大气污染正在向工业燃煤污染与机动车排气污染复合型发展,机动车排气污染对颗粒物和氮氧化物的贡献率较大,尤其是非道路移动柴油机械的排放,对我国环境空气质量的影响日益凸显,成为我国污染治理的重中之重。而污染治理,当以检测为先。  一、政策标准介绍  我国非道路移动柴油机械的排放检测虽起步较晚,但在政策标准的颁布和实施上也形成了体系。生态环境部2018年第34号公告发布《非道路移动机械污染防治技术政策》,各地也纷纷出台机动车和非道路移动柴油机械防治污染条例或办法,严格控制柴油货车联合执法体系,完善生态环境部门监测取证、公安交管部门实施处罚、交通运输部门监督维修的联合执法监管模式,开展非道路移动柴油机械排气污染监督检测。  此外,GB 3847-2018《柴油车污染物排放限值及测量方法(自由加速法及加载减速法)》、GB 36886-2018《非道路移动柴油机械排气烟度限值及测量方法》明确规定了非道路移动柴油机械的检测方法和排放限值要求。  表一、GB 3847-2018排气烟度限值要求  表二、GB 36886-2018排气烟度限值要求  二、非道路移动机械排气污染监督抽检技术难点  基于政策和标准的要求,国家和地方相关执法部门、第三方检测公司相继引进了非道路移动柴油机械排气污染检测设备,国内做相关设备的厂家也如雨后春笋般涌现,但在实际的应用中还面临着诸多难点:  1、检测数据输出的准确性和及时性  GB 3847-2018和GB 36886-2018中对非道路移动柴油机械排气污染检测设备的技术指标做了明确规定。此外,在路检和入户检测时一般要求现场打印检测报告,对设备的准确性和响应时间也有严格的要求。  表三、GB3847-2018和GB36886-2018中对检测设备的技术指标要求  2、设备的便携性和电池续航能力  非道路移动柴油机械排气污染监督检查一般要求设备具备单人便携使用的能力,满足执法人员在路检或入户检查的时候通过手提或背负等方式实现便携移动。而目前国内大部分的烟度计需要连接电源或外接移动电源使用,无法满足操作便携性的要求,限制了其使用场所。  3、数据联网上传  相关地方机动车和非道路移动柴油机械排气污染防治条例要求在非道路移动柴油机械排气污染执法检测中要以电子监控、视频录像、摄像拍照、遥感检测等方式对非道路移动机械排气污染状况进行取证,检测结果和相关数据须上传到监管平台。因此,在非道路移动机械排气污染检测中APP的智能性和云端联网功能也尤为重要。   三、四方仪器非道路机械/柴油车排气烟度检测系统:专为环保路检执法设计  四方仪器基于多年的机动车尾气检测技术与设备研发经验,深入调研市场需求,积极投入研发资源,不断升级和完善产品以应对不同地区的检测要求,推出一款专为环保路检执法设计的非道路机械/柴油车排气烟度检测系统,可同时测量排气烟度、转速、环境温湿度、大气压力等参数,也可选配油温传感器、视频摄像头及打印机。满足GB 3847 -2018《柴油车污染物排放限值及测量方法(自由加速法及加载减速法)》和GB 36886-2018 《非道路移动柴油机械排气烟度限值及测量方法》的相关性能指标要求。产品特点   1、透射式烟度计采用分流式技术保护光学系统,不受排烟污染,满足GB 3847-2018和GB 36886-2018标准中±2.0%测量精度的要求,具备自动调零功能;检测室采用恒温控制技术,可有效防止水汽冷凝。  2、便携式设计、操作便捷。烟度计主机集成高容量电池(12V/35AH),正常满电可连续进行12小时持续测量,不受现场使用场所限制。扩展单元转速表、环境参数测试仪采用一体化机箱设计,烟度计主机配置有拉杆式机箱,携带操作便捷,满足执法人员路检或入户检查的需要。  3、配置Wi-Fi无线通讯模块,设备在单机模式下即可实现无线通讯;此外,通过物联网信息传输技术也可将测试信息上传至监管平台。  4、使用智能平板和专业的非道路测试软件操作,将控制和测量单元分开,可连接打印机现场打印检测报告。也可选配视频模块,实时保存视频记录和测试数据,留存车辆图像信息,检验结果溯源清楚。  此外,四方仪器非道路机械/柴油车排气烟度检测系统已获得计量器具型式批准证书、计量测试技术研究院检定证书、软件产品等级测试报告。  四、四方仪器非道路机械/柴油车排气烟度检测系统应用案例  武汉是中部地区重要的交通枢纽,机动车保有量近年来持续上升。2020年6月,经湖北省十三届人大常委会第十六次会议批准,武汉市政府发布《武汉市机动车和非道路移动机械排气污染防治条例》(以下简称《条例》),将于2020年9月1日起施行,同年7月印发《武汉市2020年大气污染防治工作方案的通知》(以下简称《通知》)。《条例》中明确要求要强化非道路移动机械排气污染防治工作,可以对非道路移动机械排气污染状况进行现场抽测,通过电子监控、视频录像、摄像拍照、遥感检测等方式对非道路移动机械排气污染状况进行取证,并规定对非道路移动机械违规行为进行处罚。  2020年12月,四方仪器参与武汉市机动车排气污染防治管理中心关于“武汉市机动车排气污染防治管理中心柴油车(非道路移动机械)尾气检测便携式设备采购项目”的公开招标,项目要求设备具备单人便携使用,满足路检执法人员通过手提或背负等方式实现便携移动,设备应自带工作电源,不受使用场所限制。项目将在入户检查、路检路查、机构督察等场景下为环保执法人员提供柴油货车(非道路移动机械)尾气检测的工具支撑,便于快速、精确、便捷的获取检测结果、录入和上报检查结果,提升现场执法效能。  为满足招标需求,四方仪器制定了7天24小时的快速响应服务机制,协同内部技术人员不断的升级完善产品。在项目推进过程中,武汉市机动车排气污染防治管理中心联合第三方测试机构在青山区、江汉区、东湖高新技术开发区、黄陂区、汉阳区、武昌区现场进行道路测试,现场操作人员对四方仪器的非道路机械/柴油车排气烟度检测系统的设备操作便携性、测量的准确性、报告输出的及时性和软件使用智能性给予充分肯定。  在武汉市机动车排气污染防治管理中心的指导下,四方仪器顺利完成了本次“武汉市机动车排气污染防治管理中心柴油车(非道路移动机械)尾气检测便携式设备采购项目”的交付任务。  四方仪器企业介绍  四方仪器坐落于武汉“光谷”,是一家专业从事气体分析仪器研发、生产和销售的高新技术企业。公司前身为四方光电股份有限公司的气体分析仪器事业部,于2016年正式作为四方光电的全资子公司开始独立运行,专业服务于环境监测、过程气体、智慧计量等领域。  四方仪器坚持以客户为中心,依托母公司四方光电的核心气体传感技术平台优势,开发了基于非分光红外(NDIR)、紫外差分吸收光谱(UV-DOAS)、激光拉曼(LRD)、超声波(Ultrasonic)、热导(TCD)、光散射探测(LSD)等技术原理的一系列推陈出新的气体分析仪产品,主要有:烟气分析仪、煤气分析仪、沼气分析仪、尾气分析仪以及超声波燃气表和气体流量计。其中自主研发生产的便携式红外沼气分析仪、微流红外烟气分析仪、 红外煤气分析仪曾获得国家重点新产品证书;红外煤气分析仪获得中国仪器仪表学会优良产品奖荣誉,其核心技术获得湖北省发明专利金奖。 公司“微流红外烟气传感器研究及产业化”获得工信部2019年工业强基工程重点“产品、工艺”一条龙应用计划示范项目。
  • 石墨烯成医学检测工具其声学特性有助诊断肌萎缩侧索硬化症
    p style=" text-indent: 2em text-align: justify " 石墨烯是一种很神奇的材料,具有优异的光学、电学、力学特性,应用前景广阔。而美国伊利诺伊大学芝加哥分校的一项新研究,又赋予了这种材料一种新用途——检测肌萎缩侧索硬化症(ALS)。研究人员指出,石墨烯是一种很有用的检测工具,其声学特性能够帮助科学家开发新的神经退行性疾病诊断方法。相关研究发表在美国化学学会期刊《应用材料与界面》上。 /p p style=" text-indent: 2em text-align: justify " 石墨烯是由碳原子构成的二维材料,材料中结合原子的化学键会因弹性而产生共振,其振动波,即声子,可以非常精确地测量。当分子与石墨烯相互作用时,这种共振会以可量化的方式发生改变,其变化模式取决于分子的独特电子特性。通过测量由分子引起的石墨烯声子能量的变化,就可以确定该分子的电子特性。 /p p style=" text-indent: 2em text-align: justify " 正是基于这一原理,研究人员通过石墨烯声子能量的变化来检测ALS。在研究中,他们将来自ALS患者、多发性硬化症患者及没有神经退行性疾病的志愿者的脑脊液放置在石墨烯上,然后通过石墨烯声子振动特性变化情况进行脑脊液成分分析,进而识别脑脊液所属——是来自ALS患者,还是多发性硬化患者,抑或是没有神经退行性疾病的志愿者。研究人员称,由于目前还没有可靠的ALS实验室检测手段,所以这种客观的诊断测试可以帮助ALS患者尽早开始接受治疗,减缓病情。 /p p style=" text-indent: 2em text-align: justify " 论文作者之一、伊利诺伊大学芝加哥分校工程学院副教授维卡斯· 贝里指出,石墨烯是一种“超级材料”,目前科学家对其声学特性的研究甚少。他们的研究表明,依仗其声学特性,石墨烯可以作为一种极其通用且准确的探测手段。 /p
  • 奥斯恩噪声监测系统助力河南省噪声污染防治行动计划
    前言 河南省生态环境厅联合河南省发展和改革委等共16部门联合印发《河南省噪声污染防治行动计划 (2023-2025年)》,全力推进工业企业、建筑施工、交通运输和社会生活等重点领域噪声污染治理,加快解决人民群众普遍关心的噪声污染问题,推动全省“十四五”声环境质量改善目标顺利实现。 噪声污染防 治事关人民群众身心健康,是最普惠的民生工程,是生态文明建设和生态环境保护的重要内容。为“还自然以宁静、和谐、美丽”,有效落实《噪声污染防 治法》(以下简称《噪声法》),全面实施噪声污染防 治行动,积极满足人民群众对宁静优美环境的强烈需求,逐步改善声环境质量,依据《“四五”噪声污染防 治行动计划》(环大气〔2023〕1号),制定本行动计划。 简介 深圳奥斯恩作为一家依托AIOT智能互联技术感知,专注于声学环境、应急安全、自然生态、水文水质、AI视觉识别仪器设备研发制造,销售与安装运维,跨领域信息化软件平台开发,环境综合应用服务的研发制型企业,在“构建完善城市噪声监测网络体系,噪声扰民事件整治数据支撑,降低噪声扰民投诉率”方向深多项应用解决方案,在社会生活类、建筑施工类、工业类噪声监测领域服务众多项目。 奥斯恩目前已具备功能区噪声自动监测站(国标)生产制造技术,可提供城市声功能区可行性建设分析,选点规划监测点,产品适用于区域声环境监测、功能区声环境监测、城市声环境监测等。可监测各小时的等效声级计、累积百分声级、值、最小值、标准差等,噪声计测量范围大、功能强稳定性好、可实现远程视频监控、远程广播喊话等功能。 功能区噪声监测系统 功能区噪声监测系统是在监测点位采用连续自动监测仪器对声环境功能区噪声进行连续的数据采集、处理和分析的仪器系统。本系统主要由噪声监测子站(全天候户外传声器、噪声采集分析单元、通信单元、供电系统、气象监测环境功能区噪声进行连续的数据采集、处理和分析的仪器系统。本系统主要由噪声监测子站(全天候户外传声器、噪声采集分析单元、通信单元、供电系统、气象监测模块等)、中心服务器、声环境自动监测数据统计分析平台等组成,并可以监测与分析环境噪声的特征,判断噪声来源,通过无线或有线的网络传输,实现远程数据遥测、噪声事件监测、系统自动校准,终形成多种报告。 工业企业噪声监测系统 工业企业噪声监测系统是针对工业企业室内噪声、工业企业厂界噪声需求而设计,实现噪声自动监测并进行噪声数据统计分析,掌握噪声变化规律和排放强度,智能识别超标声源类型和方向,为工业企业厂界噪声排放的管理、评价及控制提供数据支撑。 建筑施工噪声监测系统 建筑施工噪声在线监测系统主要用于建筑施工场所产生的噪声监测,其户外设计可适应不同施工场所复杂的现场环境下长期运行,使用寿命长。核心部件带有静电激励器装置,实现对传声器远程自动校准,传感器长期使用中测量的稳定性,提升建筑施工噪声监测自动化、标准化、智能化水平,为施工审批、噪声监管等提供数据支持。 道路交通噪声监测系统 交通噪声监测系统主要由噪声监测子站、鸣笛抓拍、通讯网络及监控管理云平台组成,主要监测参数包括噪声、车流量、人流量、违法鸣笛等。系统通过声呐(麦克风阵列)技术准确锁定任意的噪声源位置,并通过声纹识别技术提取喇叭声音特征,将环境干扰(如刹车声、鸟叫声、广场舞、人声、口哨声等)滤除,准确定位到实际的鸣笛车辆,从而对鸣笛的车辆进行视频抓拍和车牌识别,确定违法鸣笛车辆。 社会生活噪声监测系统 社会生活噪声监测系统是针对对商业活动、文化娱乐活动、体育运动中使用固定装置所产生的噪音、人群活动产生的噪音等各类不同场景的噪声监测系统。系统按照国家及行业标准规范,实现噪声24小时不间断监测与分析,掌握噪声污染情况,并可搭配LED高清显示屏、语音播报音柱等实现噪声数据实时显示、超标语音提醒等功能,为噪声污染防止监管提供强有力手段。 移动式噪声监测系统 奥斯恩移动式噪声监测系统,是我司结合不同的监测场景所衍生出来的产品,是移动监测、流动监测、突击检查等场景的监测利器。同时也是固定监测点位无法覆盖到区域的有效补充。 通过执法人员配合移动式噪声监测设备进行噪声污染排查显得日益重要,对噪声投诉区采取“不打招呼、不提前通知、不做检查预案,直赴基层、直达检查现场”的执法检查手段,严查各种噪声违法行为。对发现的环境违法行为,做到及时制止、有案必查、高效执法、迅速处理、及时整改,减少噪声污染信访投诉,切实保障人民群众合法利益。 智能噪声监测一体机 智能噪声监测一体机符合2级声级计标准,通过物联网技术与现场端仪器仪表进行互联互通,完成对环境噪声数据实时采集,并对采集数据统计分析,计算噪声值,是一种简易型的户外噪声自动监测系统。它由数据显示屏、噪声传感器、数据采集统计分析软件、GPRS无线传输模块、服务器云平台软件、微信客户端等部分组成,人性化表情变化设计、测量范围大、功能强稳定性好,可扩展“AQI”六要素。 手持式声级计 手持式声级计是一款数字化多功能声级计,配置分为一级/二级声级计,设计用于测量各类噪声的频率计权和时间计权声压级、等效连续声级、暴露声级、统计声级等多种声学评价量,它具有积分平均、并行测量、统计分析、24h测量、1/1倍频程、1/3倍频程和室内噪声等7种工作模式供用户选择,同时仪器还提供了低频A频率计权,用于二次辐射噪声测量,是一款功能强大、性能好的手持式仪器,适用于各类噪声长时间的、可靠并精确的测量,它内带8G(可选32G)的SD卡,标配5号电池供电。 声环境自动监测数据统计分析平台 声环境自动监测数据统计分析平台可实现对噪声污染源监测点实时排放水平监测的同时,能够自动预警噪声超标排放行为,通过智能分析噪声源特征,自动联动摄像头抓拍取证,形成超标事件告警信息,当场提醒发出噪声的主体自行整改,同时通知执法、监管部门予以督导落实。通过电脑端、手机端等方式对噪声污染排放状况进行实时跟踪、视频监控、超标录音、超标报警、历史查询、现场执法等功能,具有现场报警、报警推送等多种报警通知,为噪声数据网络化管理、实时数据分析提供了有力基础。 声环境大屏,显示所有前端设备的实时状态、监测数据和噪声污染扩散图,便于管理部门更好地实施污染排放情况的全局监控、预警和协调调度,及时控制超标排放,避免环保污染扩大。通过平台可以实时查看到噪声监测点分布、进行噪声问题定位,通过数据分析进行故障诊断、噪声治理等工作。
  • 英斯特朗推出新款气动细绳和纱线夹具
    英斯特朗,全球领先的材料和构件物性测试试验机制造商,针对目前工业纺织品纤维(包括芳香族聚酰酩和超高分子量聚乙烯)过早失效这一业界困扰问题,推出气动细绳和纱线夹具,提供更便捷优化的解决方案。 英斯特朗气动细绳和纱线夹具(2714-04x),载荷可达2kN, 此可互换的夹块设计适用于由常规纤维或新开发的高性能纤维制作的纤维或纱线。此极具性价比的设计使用户可直接使用同一套夹具体,并根据具体的应用要求来更换相应夹块。基于此项新增的可互换夹块功能,用户的试验室将有必要购置全套系的夹具,包括夹具,夹面和单用途绞盘。 芳香族聚酰酩和超高分子量聚乙烯都是合成纤维,其单位重量高于钢铁。当使用传统平推夹具进行测试时,夹面可能会内部滑动,此时,纤维就会相继滑动。而应力集中的夹面上,纤维也有可能掉落。它将使检测变得更困难而成为我们的挑战,并且导致得出最大强度值偏低和/或不准确的结果。 此气动细绳和纱线夹具结合绞盘的设计,均匀地使夹持力分布在锯齿表面,此渐开线的特别设计可使断裂载荷达到最大值。 该绞盘为试样提供支持,可使试样承受的的自由应力逐渐而非突然地过渡,因此可减小试样靠近夹面时所产生的断裂。该绞盘还有一个光滑的导角,有助于试样的快速加载,防止试样装载过程中损坏单根纤维束。使其可记录更大的断裂载荷。 此外,该锁紧装置可自动通过踏脚开关激活,可双手试样插入和免手动夹具操作;从而方便试验操作员使用双手握住试样,以便于装载。 该气动细绳和纱线夹具提供可选的夹持力,以适应不同的材料和良好地跟进补偿对因试样蠕变而造成的夹持力衰减。若您欲了解更多英斯特朗其他材料或应用方面的夹具解决方案,请联系我们:400 820 2006;或登陆中国官方网站:www.instron.cn 英斯特朗新款气动细绳和纱线夹具关于英斯特朗:英斯特朗(INSTRON )是全球领先的材料和构件物性测试试验机制造商,美国五百强公司ITW集团旗下品牌,从基本的软组织到先进的高强度合金材料,其产品被广泛运用于测试各种材料,组件和结构在不同环境下的力学性能和特性。 自1946年英斯特朗成立并研制了世界上第一台闭环控制的电子万能材料试验机和第一个应变片式载荷传感器以来,英斯特朗以成为公认的力学性能测试设备世界领导者为使命,通过提供最高品质的产品,专业的技术支持和世界水平的服务,从而使用户获得拥有英斯特朗产品的最佳体验。 更多新闻垂询请联系: 英斯特朗市场部Kelly Jiang Tel: +86 21-62158568* 8301E-Mail: jiang_min-hua@instron.com 或者您可访问英斯特朗官方网站: www.instron.cn用手机扫一扫,关注英斯特朗微信账号,获取更多英斯特朗的产品信息和测试tips
  • 开展计量交流 助力声学计量深层次发展
    声学是研究弹性媒质中声波的产生、传播、接收、效应及其应用的科学。声学计量是声学的重要组成部分,也是声学发展的基础,研究声学基本参量、主要评价参量和工程实用参量的测量及保证单位统一和量值准确的技术科学。它包括声学计量基准和标准的建立及保持、量值传递、测量方法等。可分为空气声计量、水声计量和超声计量。国防和军事用途的需求是声学计量发展的强大动力。   杭州海康威视数字技术股份有限公司是视频安防行业企业,面向全球提供安防产品、行业解决方案与服务。   浙江省计量院成立于1960年,是浙江省人民政府计量行政部门依法设置并经国家总局授权的省级法定计量检定机构、浙江省市场监督管理局所属公益二类事业单位、浙江省科技厅重点扶植科研院所之一。   近日,海康威视硬件技术测试中心一行赴浙江省计量科学研究院声学振动重点室开展声学技术交流,同心共力推动声学测试发展。   会上,浙江省计量院声学重点室姚磊博士围绕“浙江省重点实验室”、声学计量能力和科研团队等内容做详细介绍,并组织带领海康威视一行参观了声学重点室的实验室、声学仪器设备等。双方就智能声学产品、声学测试方法、相关计量标准等多个领域进行了深入探讨,并达成“交流互助”共识。   下一步,浙江省计量院将对准“共同富裕”“科技创新”跑道,夯实专业技能,专注新方法、新技术、新装置的科学研究,建设成为一个面向全国的声学与振动精密测量分析公共服务平台,为人体健康水平、高端装备制造能力、重大工程与公共安全提供测量分析技术支撑。
  • 世界顶级测量平台:PPMS综合物性测量系统之拓展应用篇(下)
    上一期给大家介绍了PPMS的部分测量应用,为大家呈现了PPMS基于主腔体的多种功能选件,在几十年磁学探索及合作的道路上,这部分选件功能已经为大部分磁电研究领域的科学家给予了大支持。然而,QuantumDesign公司并未止步于此,在满足客户基本需要的基础上,我们在不断突破测试限,完善测试平台的多功能性、灵活性和稳定性,新近推出了更多系列的拓展功能选件。QuantumDesign公司近期与德国attocube公司联合推出了多款可以在PPMS平台上工作的显微学和光谱学组件,涵盖了表面形貌、磁电、光学等多个领域的高精度测量,实现在变温、变磁场环境下的多种测量模式(诸如原子力AFM、磁力显微镜MFM、扫描霍尔探针显微镜SHPM、共聚焦显微镜CFM等)的形貌及表面微结构的测量等,例如:1、对磁畴成像图1磁畴测量结果,样品为NiFe薄膜。测量温度300K,探针与样品间距为20nm,dual-pass扫描模式,空间分辨率为10.7nm2、BSCCO磁通随磁场B和温度T的变化图2磁场强度从-40Oe变化到+50Oe时,磁通出现反向图3提高样品温度,磁通结构消失3、BaFeO低温测量图4相对于MFM,SHPM具有定量测量、无需接触样品表面和更高敏感性的优点测量参数:霍尔电流:10μA;扫描范围:30μm样品与探针距离:350nm;磁场分辨率:0.19mT4、氧化铁薄膜压电显微镜测量样品:层状异质结(150nmBiFeO3-Mn/35nmSrRuO3/SrTiO3(001)衬底)测量温度:82K压电力振幅图像(图5a)压电力相位图像(图5b,压电畴方向为0°和180°)图5图中有两个正方形(正方向和旋转的)是分别采用+/-15V电压书写的,从振幅图可以看到,在畴壁区域,振幅为零图6电滞回线,测量温度82K;左右分别为相位和振幅信号5、MFM模式下的磁通测量图7复旦大学PPMS用户——4K和45Gs的MFM模式下探测铁基超导样品磁通目前,PPMS平台搭建attocube光学选件已经在拥有复旦大学、中科大、物理所等多家用户,满足了不同用户的不同测试需求。QuantumDesign公司在寻求外部合作的同时,也不断突破自我,勇于创新,逐步完善测试平台。包括温度控制部分、磁体冷却方式及磁场大小、电路部分升以及氦气的利用和回收方式等,并取得了较好的效果(从代大杜瓦,EC-I到二代reliquefier,EC-II然后当前新一代DynaCool),同时也致力于研发更多功能强大的选件(比如适用于MPMS3的ETO选件),希望这些选件能为科研工作者的研究工作带来更高的精度和更大的便捷。如果您对以上选件功能感兴趣,或者期望了解PPMS更多功能选件及应用案例,欢迎您拨打:010-85120280电话咨询,我们会尽快对您的咨询给出满意的答复!相关产品链接:mpms3-新一代磁学测量系统:http://www.instrument.com.cn/netshow/sh100980/c17089.htmppms综合物性测量系统:http://www.instrument.com.cn/netshow/sh100980/c17086.htm完全无液氦综合物性测量系统dynacool:http://www.instrument.com.cn/netshow/sh100980/c18553.htm多功能振动样品磁强计versalab系统:http://www.instrument.com.cn/netshow/sh100980/c19330.htm超精细多功能无液氦低温光学恒温器:http://www.instrument.com.cn/netshow/sh100980/c122418.htm低温热去磁恒温器:http://www.instrument.com.cn/netshow/sh100980/c201745.htmmicrosense振动样品磁强计:http://www.instrument.com.cn/netshow/sh100980/c194437.htm智能型氦液化器(ATL):http://www.instrument.com.cn/netshow/sh100980/c180307.htm
  • 国家标管委发布31项行业分析测试标准
    中华人民共和国国家标准批准发布公告(2010年第4号),公布了241项工业行业标准的发布及实施日期,其中分析检测标准共有31项,现摘录如下。 序号 标准号 标准名称 代替标准号发布日期--修订日期-- 发布日期 实施日期 1 GB/T 232-2010 金属材料 弯曲试验方法 GB/T 232-19991963-12-31 -- 2010-9-2 2011-6-1 2 GB/T 511-2010 石油和石油产品及添加剂机械杂质测定法 GB/T 511-19881965-01-20 -- 2010-9-2 2010-12-1 3 GB/T 3402.2-2010 塑料 氯乙烯均聚和共聚树脂 第2部分:试样制备及性能测定  2010-07-13-- 2010-9-2 2011-5-1 4 GB/T 4985-2010 石油蜡针入度测定法 GB/T 4985-19981985-03-06 -- 2010-9-2 2010-12-1 5 GB/T 12010.2-2010 塑料 聚乙烯醇材料(PVAL) 第2部分:性能测定 GB/T 12010.3-1989,GB/T 12010.4-1989,GB/T 12010.5-1989,GB/T 12010.6-1989,GB/T 12010.7-19891989-12-25 -- 2010-9-2 2011-5-1 6 GB/T 12010.4-2010 塑料 聚乙烯醇材料(PVAL) 第4部分:pH值测定 GB/T 12010.8-19891989-12-25 -- 2010-9-2 2011-5-1 7 GB/T 12010.5-2010 塑料 聚乙烯醇材料(PVAL) 第5部分:平均聚合度测定 GB/T 12010.9-19891989-12-25 -- 2010-9-2 2011-5-1 8 GB/T 12010.6-2010 塑料 聚乙烯醇材料(PVAL) 第6部分: 粒度的测定 GB/T 12010.10-19891989-12-25 -- 2010-9-2 2011-5-1 9 GB/T 12010.7-2010 塑料 聚乙烯醇材料(PVAL) 第7部分:氢氧化钠含量测定 GB/T 12010.11-19891989-12-25 -- 2010-9-2 2011-5-1 10 GB/T 12010.8-2010 塑料 聚乙烯醇材料(PVAL) 第8部分:透明度测定 GB/T 12010.12-19891989-12-25 -- 2010-9-2 2011-5-1 11 GB/T 15173-2010 电声学 声校准器 GB/T 15173-19941994-08-20 -- 2010-9-2 2011-4-1 12 GB/T 16292-2010 医药工业洁净室(区)悬浮粒子的测试方法 GB/T 16292-19961996-04-10 -- 2010-9-2 2011-2-1 13 GB/T 16293-2010 医药工业洁净室(区)浮游菌的测试方法 GB/T 16293-19961996-04-10 -- 2010-9-2 2011-2-1 14 GB/T 16294-2010 医药工业洁净室(区)沉降菌的测试方法 GB/T 16294-19961996-04-10 -- 2010-9-2 2011-2-1 15 GB/T 16537-2010 陶瓷熔块釉化学分析方法 GB/T 16537-19961996-09-09 -- 2010-9-2 2011-5-1 16 GB/T 17286.3-2010 液态烃动态测量 体积计量流量计检定系统 第3部分:脉冲插入技术 GB/T 17286.3-19981998-04-02 -- 2010-9-2 2010-12-1 17 GB/T 19146-2010 红外人体表面温度快速筛检仪 GB/T 19146-20032003-05-29 -- 2010-9-2 2010-12-1 18 GB/T 19889.14-2010 声学 建筑和建筑构件隔声测量 第14部分:特殊现场测量导则  2010-07-13 -- 2010-9-2 2011-4-1 19 GB/T 20013.4-2010 核医学仪器 例行试验 第4部分:放射性核素校准仪  2010-07-13 -- 2010-9-2 2011-2-1 20 GB 23101.3-2010 外科植入物 羟基磷灰石 第3部分:结晶度和相纯度的化学分析和表征 2010-07-13 -- 2010-9-2 2011-8-1 21 GB/T 25005-2010 感官分析 方便面感官评价方法  2010-07-13 -- 2010-9-2 2010-12-1 22 GB/T 25006-2010 感官分析 包装材料引起食品风味改变的评价方法  2010-07-13 -- 2010-9-2 2010-12-1 23 GB/T 25050-2010 镍铁锭或块 成分分析用样品的采取  2010-07-13 -- 2010-9-2 2011-6-1 24 GB/T 25051-2010 镍铁颗粒 成分分析用样品的采取  2010-07-13 -- 2010-9-2 2011-6-1 25 GB/T 25074-2010 太阳能级多晶硅  2010-07-13 -- 2010-9-2 2011-4-1 26 GB/T 25075-2010 太阳能电池用砷化镓单晶  2010-07-13 -- 2010-9-2 2011-4-1 27 GB/T 25076-2010 太阳电池用硅单晶  2010-07-13 -- 2010-9-2 2011-4-1 28 GB/T 25077-2010 声学 多孔吸声材料流阻测量  2010-07-13 -- 2010-9-2 2011-4-1 29 GB/T 25079-2010 声学 建筑声学和室内声学中新测量方法的应用 MLS和SS方法  2010-07-13 -- 2010-9-2 2011-4-1 30 GB/T 25102.100-2010 电声学 助听器 第0部分:电声特性的测量 GB/T 6657-19861986-07-31 -- 2010-9-2 2011-4-1 31 GB/T 25104-2010 原油水含量的自动测定 射频法  2010-07-13 -- 2010-9-2 2010-12-1
  • 应用案例 | Ppb级中红外石英增强光声传感器,用于使用T型音叉调谐探测DMMP
    近日,来自山西大学激光光谱研究所、光学协同创新中心,-巴里大学和巴里理工大学跨校物理系波利森斯实验室的联合研究团队发表了《Ppb级中红外石英增强光声传感器,用于使用T型音叉调谐探测DMMP》论文。二甲基甲基膦酸酯(DMMP)被广泛认为是最具代表性的模拟物,已开发并广泛用于DMMP检测的各种气体分析技术。气相色谱(GC)和质谱(MS)分析可以高敏感地鉴定不同的有机磷化合物,但它们在原位监测方面具有几个缺点,包括昂贵和耗时。此外,色谱分析必须由熟练的人员在专门的实验室中进行,不适合小型化。相比,光声光谱(PAS)是DMMP气体水平监测最有前景的技术之一,因为它具有高灵敏度、选择性和快速响应的优势。作为PAS的一种变体,石英增强光声光谱(QEPAS)技术自2002年首次报道以来迅速发展,其中超窄带石英调谐叉(QTF)与两个作为锐利共振声学换能器的声学微共振器(AmRs)在声学上耦合,用于检测声音信号,而不是传统的宽带麦克风。与体积超过10 cm3的传统光声池相比,小体积的QTF更有利于DMMP检测设备的小型化和快速响应。此外,QEPAS技术的显著特点是激发波长的独立性,这意味着可以使用相同的光谱声学器测量具有不同特征吸收光谱的痕量气体。DMMP在9–11.5 µ m的中红外区域显示出强烈的光吸收特征,因此使用高性能中红外量子级联激光器(QCLs)可以在理论上实现高灵敏度的检测。然而,中红外QCL输出光束通常具有较大的发散角,这使得将中红外激光束耦合到具有300微米叉间距的QTF中成为巨大的挑战,因为任何误散射光束击中QTF都会产生大的背景信号。在本研究中,我们展示了种基于定制T型QTF和中红外量子级联激光器(QCL)的小型化集成QEPAS DMMP传感器。T型QTF的叉间距为0.8毫米,具有约15,000的高品质因数,避免了由误散射光引起的背景信号,从而在ppb水平上获得最佳检测限。通过使用掺入DMMP的真实室外空气对传感器进行测试,以验证其有效性。实验部分:检测波长和光学激发源的选择强有力的靶向吸收带对于DMMP检测至关重要,因为实际应用需要具有亚百万分之一灵敏度的传感装置。由于其高输出功率、紧凑性和窄的光谱线宽,QCLs在中红外光谱区域已成为最多功能的半导体激发源。考虑到激发波长和激光源的大小,宁波海尔欣光电科技有限公司为该实验提供了一个发射波长为9.5 µ m,线宽为2 MHz的QCL激光器(QC-Qube 200831-AC712)作为DMMP-QEPAS传感器的激发源,其输出功率稳定性Fig. 2. QCL emission wavelength and output optical power as a function of driving current in amplitude modulation operating mode with a duty cycle of 50 %. QCL laser: HealthyPhoton, QC-QubeQCL laser driving circuit:: Healthy Photon, QC750-Touch&trade 结论基于QEPAS的传感器由于其波长独立性具有很高的多功能性,这使得通过替换激光源可以检测各种神经毒剂。在本研究中,首次开发了一种紧凑尺寸和可靠性能的ppb级QEPAS DMMP传感器。选择了9.56 µ m的激发波长,这是最强的DMMP吸收带,不受H2O和CO2的干扰。优化了主要系统参数,包括激光激发功率、气体压力和调制频率。最终,在0至1.5 ppm范围内验证了传感器的线性,并在300毫秒的积分时间下实现了6 ppb的最低检测限。我们使用真实室外空气作为载气检测了500 ppb的DMMP,并获得了与以零气作为载气时相同的信号幅度,从而验证了传感器的高选择性。参考Ppb-level mid-IR quartz-enhanced photoacoustic sensor for sarin simulant detection using a T-shaped tuning fork, Sensors & Actuators: B. Chemical 390 (2023) 133937, https://doi.org/10.1016/j.snb.2023.133937
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制