当前位置: 仪器信息网 > 行业主题 > >

三靶高真空磁控镀膜溅射系统

仪器信息网三靶高真空磁控镀膜溅射系统专题为您提供2024年最新三靶高真空磁控镀膜溅射系统价格报价、厂家品牌的相关信息, 包括三靶高真空磁控镀膜溅射系统参数、型号等,不管是国产,还是进口品牌的三靶高真空磁控镀膜溅射系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合三靶高真空磁控镀膜溅射系统相关的耗材配件、试剂标物,还有三靶高真空磁控镀膜溅射系统相关的最新资讯、资料,以及三靶高真空磁控镀膜溅射系统相关的解决方案。

三靶高真空磁控镀膜溅射系统相关的论坛

  • 扫描电镜不导电样品磁控溅射镀膜仪常见问题解决

    随着电镜技术和应用快速发展,越来越多电镜用户对样品前处理提出了更高的要求。其中磁控溅射镀膜仪就专用来给场发射扫描电镜不导电样品进行喷金镀膜。本作品主要从两大方面介绍磁控溅射镀膜仪。1.简易演示真空磁控

  • 【求购】求购镀膜机

    最近单位要买一台磁控溅射镀膜机,不知国内外哪些厂家的设备比较好,因为镀膜机的部件比较多,又要求真空,出点小问题难免,所以售后方面得好。不知哪位比较有经验的,指点指点。

  • 【原创】真空镀膜在线监测设备---光密度在线检测仪

    真空镀铝膜生产几经波折后如今又在全国迅速发展,主要看重的是真空镀铝膜复合材料不仅在包装上具有很大前途,而且在工农业、通讯、国防和科研领域中得以广泛应用;真空镀膜产品在以后必将形成主流,具有很大的市场空间。 然而,在国内所有的真空镀膜生产厂家中能够生产出品质好的镀铝膜很少,所以才会出现上马快,下马也快的现象。 究其原因主要是真空镀膜行业还是处于一个发展的阶段,目前所有的真空镀膜厂家,都还没有使用一款合适的真空镀膜监测设备---真空镀膜光密度在线检测仪。所以在生产过程中很难控制好镀膜层厚度的均匀性,造成镀膜产品质量不过关,以至于镀膜品质不够好;而且生产效率低,真空镀膜生产厂家往往需要投入较大成本。 真空镀膜质量的影响因素较多,除了跟设备有关,还与操作人员的水平,技术人员的指导和合适的工艺条件有很大关系。 但是不可否认,决定真空镀膜产品品质的最重要因素是镀膜层厚度的均匀性;镀铝薄膜通常应用于具有阻隔性或遮光性要求的包装上使用,因此,镀铝层的厚度和表面状况以及附着牢度的大小将直接影响其镀铝膜性能。镀铝膜的检测主要体现在厚度、镀铝层牢度和镀铝层的表面状况等方面。 如果对镀铝膜检测方法有所了解的,就一定知道检测镀铝膜品质有一种方法叫光密度测量法,目前市场上深圳市林上科技已经研发生产出一款专门的光密度仪,它是用于直接测量镀铝膜的光密度值来判定镀铝膜产品品质的优劣。 薄膜表面镀铝的作用是遮光、防紫外线照射,既延长了内容物的保质期,又提高了薄膜的亮度,从一定程度上代替了铝箔,也具有价廉、美观及较好的阻隔性能。目前应用最多的镀铝薄膜主要有聚酯镀铝膜(VMPET)和CPP镀铝膜(VMCPP)。 由于真空镀铝薄膜上的镀铝层非常薄,因此不能用常规的测厚仪器检测其厚度,通常都是需要使用光密度法来检测。光密度(OD)定义为材料遮光能力的表征。它用透光镜测量。光密度没有量纲单位,是一个对数值,通常仅对镀铝薄膜和珠光膜进行光密度测量。 光密度是入射光与透射光比值的对数或者说是光线透过率倒数的对数。计算公式为D=log10(入射光/透射光)或OD=log10(1/透光率)。通常镀铝膜的光密度值为1-3(即光线透过率为10%-0.1%),数值越大镀铝层越厚,美国国家标准局的ANSI/NAPM IT2.19对试验条件做了详细规定。 但是对于国内众多真空镀膜厂家而言,需要在大批量的生产线上就能控制好镀膜产品的镀膜层厚度均匀性。那就需要使用透光率光密度在线检测仪,在真空镀膜生产线上实行连续监测,才能保证真空镀膜产品的质量,同时提高真空镀膜设备的在线生产效率,减少生产成本。

  • 难怪在镀膜上可以看到金颗粒,原来如此

    难怪在镀膜上可以看到金颗粒,原来如此

    如果在镀膜时所用的设备是直流溅射仪或磁控溅射仪而非离子束溅射仪,在放大倍率为几万倍下观察,就会看到镀膜结构。绝大多数用户所使用的离子溅射仪都属于前两种。下面的照片是我对三个文献有关内容的综合。http://ng1.17img.cn/bbsfiles/images/2013/01/201301262045_422846_1609375_3.jpg

  • 关于真空离子镀膜的问题

    我们公司是做尼龙和塑胶拉链的,最近总是接到客户投诉,说产品在经过真空镀膜后进行水洗测试,表面镀层会脱落的投诉。公司购买了真空镀膜设备,我们按设备供应商提供的工艺流程和试剂做了真空镀膜并进行了水洗测试,存在镀层会脱落的问题。以下是流程:产品表面清洁-去静电-喷底漆-烘烤底漆-真空镀膜-喷面漆-烘烤面漆(120°1m)-出成品。.在此,希望能得到各位老师的帮助:希望各位老师提供一个较成熟的流程,和各工序的参数如果设置?使用什么试剂会更好?希望各位老师解释一下真空镀膜后进行水洗测试,表面镀层会脱落的原因?是否因为没打好底的问题?望各位老师不吝赐教!谢谢!

  • 【原创大赛】磁控溅射原理及TEM样品的制备

    当前,制备非晶的方法主要有淬火法和气相沉积法。快冷法又分为铸膜法和甩带法,适合于制备大块非晶。气相沉积法分为真空蒸发法、化学气相沉积法、脉冲激光沉积法和磁控溅射法。~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~磁控溅射法制备非晶样品有其独特的有点,下面主要介绍下磁控溅射制备非晶样品的原理。电子在电场E的作用下,在飞向基板的过程中与氩气原子发生碰撞,使其电离出氩离子和一个新的电子,电子飞向基片,氩离子在电场作用下飞向阴极靶,并以高能量轰击靶的表面,使靶材发生溅射。在溅射的过程中,溅射离子,中性的靶原子或分子即可在基片上沉积形成膜。综上所述,磁控溅射的基本原理就是以磁场来改变原子的运动状态,并束缚和延长原子的运动轨迹,从而提高电子对工作气体的电离几率和有效地运用了电子的能量。这也体现了磁控溅射低温、高效的原理。常用的TEM样品以TEM载网为基片。TEM载网是直径为3nm,厚为20μm,网格间距为80μm,最底下一层铜或者钼,上面覆盖一层约为5nm厚的无定形碳作为支撑膜。利用磁控溅射法制备沉积的薄膜就沉积在这种TEM载网的无定形碳的支撑膜上,为了减少非弹性散射对衍射数据的影响,在实验过程中尽可能制备厚度比较小的薄膜厚度,约为15nm-20nm,这样制得的样品就可以直接在透射电子显微镜中进行直接的表征。

  • 用真空镀膜方法防止仪器生雾的原理

    [font=微软雅黑]用真空镀膜方法[/font][font=微软雅黑]镀聚全氟乙丙烯,这是一种惰性氟塑料,化学稳定性高,且具有耐热、耐寒、耐腐蚀性,与玻璃和金属都有较强的结合力,具有较好的防霉防雾性能。不仅能在一般玻璃表面化学镀膜,氟化膜层形成保护膜,而且可以在磷酸盐玻璃表面成膜。[/font]

  • 用真空镀膜防止光学仪器生雾

    用真空镀膜防止光学仪器生雾:[font=&]镀聚全氟乙丙烯,这是一种惰性氟塑料:[/font][font=&]化学稳定性高;[/font][font=&]且具有耐热、耐寒、耐腐蚀性;[/font][font=&]与玻璃和金属都有较强的结合力,具有较好的防霉防雾性能。[/font][font=&]不仅能在一般玻璃表面化学镀膜,氟化膜层形成保护膜,而且可以在磷酸盐玻璃表面成膜。[/font]

  • 真空镀膜机

    最近需要购买一台热蒸发真空镀膜机,请问哪些厂家的比较好用?另外,有谁知道日立公司在北京的代理的联系方式?

  • 真空镀膜机中辅助挡板的作用

    真空镀膜机(DMP450)中有一个辅助挡板,设计的初衷是为了改善镀膜均匀性,但在实际生产过程中,原机辅助挡板并不能最大改善膜厚均匀性。一个半球形工件盘,基片卡槽分三圈排列,相同蒸发功率,相同时间下,相邻两圈的基片膜厚有差异。从理论上来说,如何通过修正挡板改善膜厚一致性和均匀性?

  • 出售磁控溅射仪(私聊)

    出售磁控溅射仪(私聊)

    磁控溅射仪(2019下半年购入,9成9新)[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2023/10/202310091529314999_3303_5829706_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2023/10/202310091529317199_6660_5829706_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2023/10/202310091529323410_1965_5829706_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2023/10/202310091529325843_2573_5829706_3.jpg!w690x920.jpg[/img]设备技术要求 1.样品基台:直径 6 英寸样品2.反应腔室:304 不锈钢材质3.靶座系统:3 英寸圆形靶座 4 个,位于腔室上部;靶与样品的距离90~110mm 可调4.真空系统:分子泵,机械泵5.真空测量:薄膜规(进口),全量程规(进口)6.气路系统:标配 2 路进气,种类和流量可定制;管路配件(进口)7.电源系统:500W/13.56MHz 自动匹配射频源 1 套(进口);500W 直流电源 2 套(进口)8.样品载台:自转旋转 5-30rpm 可调;加热温度 300℃;可加射频偏压200V 预清洗基片9.真空性能:本底真空优于 6.67x10-5Pa10.控制系统:工控机;触摸屏,菜单自动/手动操作11.安全控制:异常报警12.工艺应用:金属薄膜和介质薄膜沉积13.不均匀性:≤±5%@6 英寸14.设备尺寸:一体型设备;占地面价(参考)1.0m*1.50m。[img=,554,628]https://ng1.17img.cn/bbsfiles/images/2023/10/202310091529103198_4423_5829706_3.png!w554x628.jpg[/img]运行需求:供电需求: 380V、三相五线制;设备总功率需求约为 15KW冷却水:>1.5L/min压缩空气: 0.4~0.6Mpa

  • 防止光学仪器生雾的办法2-用真空镀膜方法

    防止光学仪器生雾的办法2-用真空镀膜方法:镀聚全氟乙丙烯,这是一种惰性氟塑料:化学稳定性高;且具有耐热、耐寒、耐腐蚀性;与玻璃和金属都有较强的结合力,具有较好的防霉防雾性能。不仅能在一般玻璃表面化学镀膜,氟化膜层形成保护膜,而且可以在磷酸盐玻璃表面成膜。

  • 【原创】分享真空镀膜设备的网销技巧

    曾有那么一段时间,做网络营销N月,单子数量提不上去,所以,和其他人比起来,挺失败的。而,领导衡量一个销售人员的成与败,标准是唯一的——业绩。 静静的回想了这N月的工作,总结了以下几点不足,希望可以给大家一点借鉴: 1、关于注册平台 我们公司是专业生产真空镀膜设备,所以,我需要注册的平台,最主要的分三大类 一、机械行业平台;如真空镀膜网、设备网、真空镀膜门户、机械网等; 二、综合类的B2B平台;像阿里、慧聪、环球资源、Tradekey等; 三、其他B2B平台;就是所有可以用到流量计的行业的网站等。 平台注册了一大堆,但是,每天更新的数量有限,由于前期没经验,没有做好分类工作,注册时候的用户名、密码也不统一,更新起来比较耽误时间(因此,后续总结所有注册的用户名及密码尽量统一公司名。)2、关于博客推广 博客其实是一个很好的平台,可一直都没有利用好。博客中可以写产品信息、机械产品相关知识、写每天工作中遇到的事情、写一些当下流行的话题等等,都是很好的选择,可以提高流量,从而促进推广。小编现在也学会了在阿里博客、新浪播客、天涯博客等写产品的有关文章,因为文章水准有限,由此导致博文更新的速度也有限了。3、关于论坛 喜欢阿里论坛,所以逛的时间是最长,以至于忽略了其他的论坛,所以,要学会平衡,要多逛各种论坛,多学习,这样也可以把其他论坛的好东西引进阿里,自己的产品信息才会被更广泛的认知。4、关于写软文 一篇好的软文,可以带来很多的外链。还可以被百度等搜索引擎收录。可小编我只会写点散文,不能把产品和文章自然的联系起来,很郁闷,这个真的得多写、多练。我现在的体会是,你得爱你的产品,然后你才能对产品有感而发,才会写出有感情的产品软文。5、关于产品图片 把最基础资源与素材做好:产品图片一定要清晰、详细,产品样本什么的一定要准备齐全,这些都是自己的门面。网销中,我们看不到对方,即使真诚的微笑,也是被忽略的,只有你发过去的产品图片是真实的。 因此企业形象能第一时间体现了企业精益求精的精神面貌与企业文化。要懂得将制造品质升华到一个更高的层次,抓住访客对你网站的需求。 以上几点,做网销的你们也要注意咯。虽然,那段时间里没有好的业绩,但继续努力的我找到了原因。一切的一切,用平常心去面对,不断总结自己,然后去提高。你觉得呢?以上经验由振华真空网销员经验分享!

  • 【求助】这是电镀/真空镀膜前处理共同关心的问题-除油问题

    这是电镀/真空镀膜前处理共同关心的问题. 如何判断在电镀/真空镀膜前,工件的油污被清洗干净? 曾经我们公司是这样检测工件表面油是否除净: 对工件表面喷纯净的水,例如用类似于杀虫剂或是啫喱水的喷桶,然后观察工件表面的水纹状态,如果凝聚成水珠,则代表油未除尽,如果是一层平整的水膜,均匀的覆盖在工件表面,则代表已经无油了! 当时我们认为万无一失,结果其他公司证明: 如果除油基本干净,有水膜等,但如有微量的油粒收缩成很小点,清洗是洗不干净的,镀镍后就会看到如凹下去的小白点了(此经过现场验证). 请问我们该如何解决除油问题?

  • 镀膜玻璃在线检测系统的应用

    镀膜玻璃在线检测系统的应用

    玻璃透光率在线检测仪,用于连续生产的浮板玻璃、镀膜玻璃、压花玻璃、玻璃钢瓦等透明、半透明平行平面物体的可见光透射率测试。主要用于各类玻璃生产线上,在生产过程中需要连续监控透光率指标的场合。该系统主要有如下的三部分组成:1.探测系统,主要包括平行光源,接收器和支架。2.现场显示系统,显示实时的各个测试点的透光率测试值。3.电脑实时监控采集系统(选配)特点:1.可根据客户的需求,在生产线上横向设置3,6,9,12路测量通道。2.采用光源的平行光路及接收器聚光设计,使之能够测量大厚度材料。3.操作简单、实用;系统稳定可靠,可连续长期运行。4.通讯功能,测量数据可连接电脑。电脑监控采集系统可以长期记录并分析生产状况,通过计算机系统的运算,可得出该片玻璃的透光率平均值、最大最小值及透光率偏差值,也可以考察一段时期内生产线上玻璃的透光率变化情况。主要技术参数:1.分辨率:0.1% ;2.测量范围0--100%3.测量精度:优于±2%(无色均匀透光物质);4.测试波长:380nm-760nm ;5.输入电源电压AC220Vhttp://ng1.17img.cn/bbsfiles/images/2011/12/201112301408_342825_1619730_3.jpg

  • 用真空镀膜方和非硫化硅橡胶密封腻子防止仪器生雾

    [font=微软雅黑]用真空镀膜方法[/font][font=微软雅黑]镀聚全氟乙丙烯,这是一种惰性氟塑料,化学稳定性高,且具有耐热、耐寒、耐腐蚀性,与玻璃和金属都有较强的结合力,具有较好的防霉防雾性能。不仅能在一般玻璃表面化学镀膜,氟化膜层形成保护膜,而且可以在磷酸盐玻璃表面成膜。[/font][font=微软雅黑] [/font][font=微软雅黑]采用非硫化硅橡胶密封腻子 [/font][font=微软雅黑]光学仪器密封性好,对于防霉防雾都有重要作用,非硫化硅橡胶密封腻,是一种非硫化醚硅橡胶,加入填充剂、着色剂、结构控制剂所组成,其密封腻高、低温性能显著优于原来的密封蜡,其他指标均不低于密封蜡。[/font]

  • 扫描电子显微镜(ScanningElectronMicroscope)基础知识

    扫描电子显微镜(ScanningElectronMicroscope)基础知识一、 扫描电子显微镜的工作原理 扫描电镜是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗 粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要 的成像信号。由电子枪发射的能量为 5 ~ 35keV 的电子,以其交 叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度 和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺 序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射(以及其它物 理信号),二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集 转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的 显像管亮度,得到反映试样表面形貌的二次电子像。二、扫描电镜具有以下的特点(1) 可以观察直径为0 ~ 30mm的大块试样(在半导体工业可以观察更大直径),制样方法简单。(2) 场深大、三百倍于光学显微镜,适用于粗糙表面和断口的分析观察;图像富有立体感、真实感、易于识别和解释。(3) 放大倍数变化范围大,一般为 15 ~ 200000 倍,对于多相、多组成的非均匀材料便于低倍下的普查和高倍下的观察分析。(4) 具有相当高的分辨率,一般为 3.5 ~ 6nm。(5) 可以通过电子学方法有效地控制和改善图像的质量,如通过调制可改善图像反差的宽容度,使图像各部分亮暗适中。采用双放大倍数装置或图像选择器,可在荧光屏上同时观察不同放大倍数的图像或不同形式的图像。(6) 可进行多种功能的分析。与 X 射线谱仪配接,可在观察形貌的同时进行微区成分分析;配有光学显微镜和单色仪等附件时,可观察阴极荧光图像和进行阴极荧光光谱分析等。(7) 可使用加热、冷却和拉伸等样品台进行动态试验,观察在不同环境条件下的相变及形态变化等。三、扫描电镜的主要结构1.电子光学系统:电子枪;聚光镜(第一、第二聚光镜和物镜);物镜光阑。2.扫描系统:扫描信号发生器;扫描放大控制器;扫描偏转线圈。3.信号探测放大系统:探测二次电子、背散射电子等电子信号。4.图象显示和记录系统:早期SEM采用显象管、照相机等。数字式SEM采用电脑系统进行图象显示和记录管理。5.真空系统:真空度高于 10 -4 Torr 。常用:机械真空泵、扩散泵、涡轮分子泵6.电源系统:高压发生装置、高压油箱。 四、扫描电镜主要指标1.放大倍数 M=L/l 2.分辨率(本领)影响分辨本领的主要因素:入射电子束斑的大小,成像信号(二次电子、背散射电子等)。 3.扫描电镜的场深扫描电镜的场深是指电子束在试样上扫描时,可获得清晰图像的深度范围。当一束微细的电子束照射在表面粗糙的试样上时,由于电子束有一定发散度,除了焦平面处,电子束将展宽,场深与放大倍数及孔径光阑有关。 五、试样制备1 .对试样的要求:试样可以是块状或粉末颗粒,在真空中能保持稳定,含有水分的试样应先烘干除去水分,或使用临界点干燥设备进行处理。表面受到污染的试样,要在不破坏试样表面结构的前提下进行适当清洗,然后烘干。新断开的断口或断面,一般不需要进行处理,以免破坏断口或表面的结构状态。有些试样的表面、断口需要进行适当的侵 蚀,才能暴露某些结构细节,则在侵蚀后应将表面或断口清洗干净,然后烘干。对磁性试样要预先去磁,以免观察时电子束受到磁场的影响。试样大小要适合仪器专用样品座的尺寸,不能过大,样品座尺寸各仪器不均相同,一般小的样品座为Φ3~5mm,大的样品座为Φ30~50mm,以分别用来放置不同大小的试样,样品的高度也有一定的限制,一般在5~10mm左右。2 .扫描电镜的块状试样制备是比较简便的。对于块状导电材料,除了大小要适合仪器样品座尺寸外,基本上不需进行什么制备,用导电胶把试样粘结在样品座上,即可放在扫描电镜中观察。对于块状的非导电或导电性较差的材料,要先进行镀膜处理,在材料表面形成一层导电膜。以避免电荷积累,影响图象质量。并可防止试样的热损伤。 3 、粉末试样的制备:先将导电胶或双面胶纸粘结在样品座上,再均匀地把粉末样撒在上面,用洗耳球吹去未粘住的粉末,再镀上一层导电膜,即可上电镜观察。4 、镀膜:镀膜的方法有两种,一是真空镀膜,另一种是离子溅射镀膜。离子溅射镀膜的原理是:在低气压系统中,气体分子在相隔一定距离的阳极和阴极之间的强电场作用下电离成正离子和电子,正离子飞向阴极,电子飞向阳极,二电极间形成辉光放电,在辉光放电过程中,具有一定动量的正离子撞击阴极,使阴极表面的原子被逐出,称为溅射,如果阴极表面为用来镀膜的材料(靶材),需要镀膜的样品放在作为阳极的样品台上,则被正离子轰击而溅射出来的靶材原子沉积在试样上,形成一定厚度的镀膜层。 离子溅射时常用的气体为惰性气体氩,要求不高时,也可以用空气,气压约为 5 X 10 -2 Torr 。离子溅射镀膜与真空镀膜相比,其主要优点是:( 1 )装置结构简单,使用方便,溅射一次只需几分钟,而真空镀膜则要半个小时以上。( 2 )消耗贵金属少,每次仅约几毫克。( 3 )对同一种镀膜材料,离子溅射镀膜质量好,能形成颗粒更细、更致密、更均匀、附着力更强的膜。

  • 扫描电子显微镜(ScanningElectronMicroscope)基础知识

    一、 扫描电子显微镜的工作原理 扫描电镜是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗 粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要 的成像信号。由电子枪发射的能量为 5 ~ 35keV 的电子,以其交 叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度 和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺 序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射(以及其它物 理信号),二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集 转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的 显像管亮度,得到反映试样表面形貌的二次电子像。二、扫描电镜具有以下的特点(1) 可以观察直径为0 ~ 30mm的大块试样(在半导体工业可以观察更大直径),制样方法简单。(2) 场深大、三百倍于光学显微镜,适用于粗糙表面和断口的分析观察;图像富有立体感、真实感、易于识别和解释。(3) 放大倍数变化范围大,一般为 15 ~ 200000 倍,对于多相、多组成的非均匀材料便于低倍下的普查和高倍下的观察分析。(4) 具有相当高的分辨率,一般为 3.5 ~ 6nm。(5) 可以通过电子学方法有效地控制和改善图像的质量,如通过调制可改善图像反差的宽容度,使图像各部分亮暗适中。采用双放大倍数装置或图像选择器,可在荧光屏上同时观察不同放大倍数的图像或不同形式的图像。(6) 可进行多种功能的分析。与 X 射线谱仪配接,可在观察形貌的同时进行微区成分分析;配有光学显微镜和单色仪等附件时,可观察阴极荧光图像和进行阴极荧光光谱分析等。(7) 可使用加热、冷却和拉伸等样品台进行动态试验,观察在不同环境条件下的相变及形态变化等。三、扫描电镜的主要结构1.电子光学系统:电子枪;聚光镜(第一、第二聚光镜和物镜);物镜光阑。2.扫描系统:扫描信号发生器;扫描放大控制器;扫描偏转线圈。3.信号探测放大系统:探测二次电子、背散射电子等电子信号。4.图象显示和记录系统:早期SEM采用显象管、照相机等。数字式SEM采用电脑系统进行图象显示和记录管理。5.真空系统:真空度高于 10 -4 Torr 。常用:机械真空泵、扩散泵、涡轮分子泵6.电源系统:高压发生装置、高压油箱。 四、扫描电镜主要指标1.放大倍数 M=L/l 2.分辨率(本领)影响分辨本领的主要因素:入射电子束斑的大小,成像信号(二次电子、背散射电子等)。 3.扫描电镜的场深扫描电镜的场深是指电子束在试样上扫描时,可获得清晰图像的深度范围。当一束微细的电子束照射在表面粗糙的试样上时,由于电子束有一定发散度,除了焦平面处,电子束将展宽,场深与放大倍数及孔径光阑有关。 五、试样制备1 .对试样的要求:试样可以是块状或粉末颗粒,在真空中能保持稳定,含有水分的试样应先烘干除去水分,或使用临界点干燥设备进行处理。表面受到污染的试样,要在不破坏试样表面结构的前提下进行适当清洗,然后烘干。新断开的断口或断面,一般不需要进行处理,以免破坏断口或表面的结构状态。有些试样的表面、断口需要进行适当的侵 蚀,才能暴露某些结构细节,则在侵蚀后应将表面或断口清洗干净,然后烘干。对磁性试样要预先去磁,以免观察时电子束受到磁场的影响。试样大小要适合仪器专用样品座的尺寸,不能过大,样品座尺寸各仪器不均相同,一般小的样品座为Φ3~5mm,大的样品座为Φ30~50mm,以分别用来放置不同大小的试样,样品的高度也有一定的限制,一般在5~10mm左右。2 .扫描电镜的块状试样制备是比较简便的。对于块状导电材料,除了大小要适合仪器样品座尺寸外,基本上不需进行什么制备,用导电胶把试样粘结在样品座上,即可放在扫描电镜中观察。对于块状的非导电或导电性较差的材料,要先进行镀膜处理,在材料表面形成一层导电膜。以避免电荷积累,影响图象质量。并可防止试样的热损伤。 3 、粉末试样的制备:先将导电胶或双面胶纸粘结在样品座上,再均匀地把粉末样撒在上面,用洗耳球吹去未粘住的粉末,再镀上一层导电膜,即可上电镜观察。4 、镀膜:镀膜的方法有两种,一是真空镀膜,另一种是离子溅射镀膜。离子溅射镀膜的原理是:在低气压系统中,气体分子在相隔一定距离的阳极和阴极之间的强电场作用下电离成正离子和电子,正离子飞向阴极,电子飞向阳极,二电极间形成辉光放电,在辉光放电过程中,具有一定动量的正离子撞击阴极,使阴极表面的原子被逐出,称为溅射,如果阴极表面为用来镀膜的材料(靶材),需要镀膜的样品放在作为阳极的样品台上,则被正离子轰击而溅射出来的靶材原子沉积在试样上,形成一定厚度的镀膜层。 离子溅射时常用的气体为惰性气体氩,要求不高时,也可以用空气,气压约为 5 X 10 -2 Torr 。离子溅射镀膜与真空镀膜相比,其主要优点是:( 1 )装置结构简单,使用方便,溅射一次只需几分钟,而真空镀膜则要半个小时以上。( 2 )消耗贵金属少,每次仅约几毫克。( 3 )对同一种镀膜材料,离子溅射镀膜质量好,能形成颗粒更细、更致密、更均匀、附着力更强的膜。

  • 覆盖高真空、低真空和正压的全量程综合校准系统精密控制解决方案

    覆盖高真空、低真空和正压的全量程综合校准系统精密控制解决方案

    [size=16px][color=#6666cc][b]摘要:针对工作范围在5×10[font='times new roman'][sup]-7[/sup][/font]~1.3×10[font='times new roman'][sup]6[/sup][/font]Pa,控制精度在0.1%~0.5%读数的全量程真空压力综合测量系统技术要求,本文提出了稳压室真空压力精密控制的技术方案。为保证控制精度,基于动态平衡法,技术方案在高真空、低真空和正压三个区间内分别采用了独立的控制方法和不同技术,所涉及的关键部件是微小进气流量调节装置、中等进气流量调节电动针阀、排气流量调节电动球阀、正压压力电子调节器和真空压力PID控制器。配合相应的高精度真空压力传感器,此技术方案可以达到控制精度要求,并已得到过试验验证。[/b][/color][/size][align=center][img=全量程真空压力综合测量系统的高精度控制解决方案,690,384]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121052314254_1235_3221506_3.jpg!w690x384.jpg[/img][/align][size=16px][/size][b][size=18px][color=#6666cc]1. 项目概述[/color][/size][/b][size=16px] 真空压力综合测量系统是一个用于多规格真空传感器测量校准的高精度动态真空压力测量系统,主要由一套真空稳压室、一套电容薄膜真空测量模块、一套冷阻复合真空测量模块、一套高精度真空测量模块,其技术要求如下:[/size][size=16px] (1)真空稳压室体积为1L;[/size][size=16px] (2)真空稳压室含有10路VCR转接接头;[/size][size=16px] (3)真空稳压室加热烘烤温度范围:室温到200℃;[/size][size=16px] (4)冷阻复合真空测量模块量程为(5×10[font='times new roman'][sup]-7[/sup][/font]~1×10[font='times new roman'][sup]5[/sup][/font])Pa;[/size][size=16px] (5)冷阻复合真空测量模块含有通讯接口,提供0~10V电压信号;[/size][size=16px] (6)电容薄膜真空测量模块量程为10Torr,测量精度为0.5%;[/size][size=16px] (7)电容薄膜真空测量模块接口为8VCR接口;[/size][size=16px] (8)电容薄膜真空测量模块含有通讯接口,提供0~10V电压信号;[/size][size=16px] (9)高精度真空测量模块量程为0.1~10000Torr;[/size][size=16px] (10)高精度真空测量模块测量精度为读数的0.1%;[/size][size=16px] (11)配备高精度真空测量模块的控制器,满足真空测量模块的使用要求,包含通讯接口。[/size][size=16px] 从上述技术要求可以看出,整个系统的真空压力范围覆盖了负压和正压,具体的全量程覆盖范围用绝对压力表示为5×10-7~1.3×106Pa,其中包含了高真空(5×10[font='times new roman'][sup]-7[/sup][/font]~1.3×10[font='times new roman'][sup]-1[/sup][/font]Pa)、低真空(1.3×10[font='times new roman'][sup]-1[/sup][/font]~1.3×10[font='times new roman'][sup]5[/sup][/font]Pa)和正压(1.3×10[font='times new roman'][sup]5[/sup][/font]~1.3×10[font='times new roman'][sup]6[/sup][/font]Pa)的精密测量和控制,更具体的是要在一个稳压室内实现三个真空压力范围的不同测量和控制精度。以下将对这些技术要求的实现,特别是对真空压力的精密控制技术方案和相关关键配套装置给出详细说明,其他通用性的装置,如机械泵和分子泵则不进行详细描述。[/size][size=18px][color=#6666cc][b]2. 高精度宽量程真空压力控制技术方案[/b][/color][/size][size=16px] 真空压力控制系统的技术方案基于动态平衡法控制原理,即在一个密闭容器内,通过调节进气和出气流量并达到相应的平衡状态来实现真空压力设定点的快速控制。在动态平衡法实际应用中,只要配备相应精度的传感器、执行器和控制器,可以顺利实现设计精度的控制。为此,针对本项目提出的技术指标,基于动态平衡法,本文所提出的具体技术方案如图1所示。[/size][align=center][size=16px][color=#6666cc][b][img=01.真空压力综合测量控制系统结构示意图,690,410]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121043350021_6971_3221506_3.jpg!w690x410.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图1 高精度全量程真空压力控制系统结构示意图[/b][/color][/size][/align][size=16px] 对应于项目技术指标中的高真空、低真空和正压压力控制要求,图1所示的真空压力控制系统由三个相对独立的控制系统来实现项目技术要求,具体内容如下:[/size][size=16px][color=#6666cc][b]2.1 高真空度控制系统[/b][/color][/size][size=16px] 基于动态平衡法原理,对于高真空控制,需要采用上游控制模式,在分子泵全速抽气条件下,需要在上游(进气端)通过精密调节微小进气流量,来实现高真空范围内任意真空度设定点的恒定控制。如图1所示,高真空控制系统主要包括了冷阻真空计、微量进气调节装置和真空压力控制器,这三个装置构成一个闭环控制系统,它们的精度决定了高真空度的最终控制精度。[/size][size=16px] 需要说明的是高真空和低真空控制系统公用了一套机械泵和分子泵,高真空控制时需要分别使用机械泵和分子泵,而在低真空控制时仅使用机械泵。[/size][size=16px] 对于高真空传感器而言,可根据设计要求选择相应量程和测量精度的真空计,其测量精度最终决定了控制精度,一般而言,控制精度会差于测量精度。[/size][size=16px] 在高真空控制中,关键技术是精密调节微小进气流量。如图1所示,微量进气调节装置有电动针阀、泄漏阀和压力调节器组成,可实现0.005mL/min或更低的微小进气流量调节。[/size][size=16px] 微量气体调节时,首先通过压力调节器来改变泄漏阀的进气压力,使泄漏阀流出相应的微小流量气体,然后通过调节电动针阀来改变进入真空稳压室的气体流量。压力调节器和电动针阀的控制则采用的是24位AD、16位DA和0.01%最小输出百分比的双通道真空压力PID控制器。[/size][size=16px][color=#6666cc][b]2.2 低真空度控制系统[/b][/color][/size][size=16px] 基于动态平衡法原理,对于低真空控制,则需要分别采用上游(进气端)和下游(排气端)两种控制模式。如图1所示,两种控制模式的具体内容如下:[/size][size=16px] 在低真空的0.01~10Torr范围内,需要采用10Torr量程的电容真空计,并在机械泵全速抽气的条件下(电动球阀全开),通过动态改变电动针阀的开度来调节进气流量以实现设定真空度的精密控制。同时在电动针阀的进气端增加一个压力调节器以保证电动针阀进气压力的稳定。[/size][size=16px] 在低真空的10~760Torr范围内,需要采用1000Torr量程的电容真空计,并在固定电动针阀开度和机械泵全速抽气的条件下,通过动态改变电动球阀的开度来调节排气流量以实现设定真空度的精密控制。[/size][size=16px] 同样,在低真空控制系统中也同样采用了高精度的双通道真空压力控制器,两路输入通道分别接10Torr和1000Torr的薄膜电容真空计,两路输出控制通道分别接电动针阀和电动球阀,由此可实现两个低真空范围内的真空度精密控制。[/size][size=16px] 尽管电容真空计可以达到0.2%的测量精度,但要实现项目0.5%的控制精度,需要电动针阀和电动球阀具有很快的响应速度,电动针阀要求小于1s,而电动球阀要求小于3s,另外还要求真空压力控制器也同样具有很高的测量和调节精度,这些要求同样适用于高真空度控制。[/size][size=16px][color=#6666cc][b]2.3 正压压力控制系统[/b][/color][/size][size=16px] 对于正压压力控制采用了集成式动态平衡法压力调节器,并采用了串级控制方法。如图1所示,正压控制系统由压力调节器、压力传感器和真空压力控制器构成的双闭环控制回路构成。采用相应精度和量程的压力传感器和压力调节器可实现0.1%以内的控制精度。[/size][size=18px][color=#6666cc][b]3. 低真空控制解决方案考核试验和结果[/b][/color][/size][size=16px] 对于低真空精密控制解决方案,我们进行过相应的考核试验。低真空上游和下游控制考核试验装置如图2和图3所示,其中分别采用了10Torr和1000Torr薄膜电容真空计。[/size][align=center][size=16px][color=#6666cc][b][img=02.上游控制模式考核试验装置,550,371]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121044011178_1432_3221506_3.jpg!w690x466.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图2 上游控制模式考核试验装置[/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b][img=03.下游控制模式考核试验装置,550,338]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121044250558_2395_3221506_3.jpg!w690x425.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图3 下游控制模式考核试验装置[/b][/color][/size][/align][size=16px] 上游和下游不同真空度设定点的控制结果如图4和图5所示。[/size][align=center][size=16px][color=#6666cc][b][img=04.上游低真空度考核试验曲线,550,333]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121044433769_7471_3221506_3.jpg!w690x418.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图4 低真空上游考核试验曲线[/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b][img=05.下游低真空度考核试验曲线,550,327]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121045002696_1848_3221506_3.jpg!w690x411.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图5 低真空下游考核试验曲线[/b][/color][/size][/align][size=16px] 上游和下游不同真空度设定点的恒定控制波动率如图6和图7所示。[/size][align=center][size=16px][color=#6666cc][b][img=06.上游模式低真空度恒定控制波动度,550,309]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121045233797_3751_3221506_3.jpg!w690x388.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图6 上游模式低真空恒定控制波动度[/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b][img=07.下游模式低真空度恒定控制波动度,550,340]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121045436717_8569_3221506_3.jpg!w690x427.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图7 下游模式低真空恒定控制波动度[/b][/color][/size][/align][size=16px] 通过上下游两种控制模式的考核试验,可得出以下结论:[/size][size=16px] (1)配备有目前型号电动针阀、电动球阀和 PID 控制器的低真空控制系统,在采用了薄膜电容真空计条件下,恒定真空度(压强)控制的波动率可轻松的保持在±0.5%以内。[/size][size=16px] (2)由于真空控制系统中进气或出气流量与真空度并不是一个线性关系,因此在整个测控范围内采用一组 PID 参数并不一定合适,为了使整个测控范围内的波动率稳定,还需采用 2 组或2组以上的 PID 参数。[/size][size=18px][color=#6666cc][b]4. 正压压力控制解决方案考核试验和结果[/b][/color][/size][size=16px] 对于正压压力控制解决方案,同样进行过相应的考核试验。正压压力精密控制考核试验装置如图8所示,其中采用了测量精度为0.05%的压力传感器。[/size][align=center][size=16px][color=#6666cc][b][img=08.正压压力考核试验装置,600,336]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121046014855_1011_3221506_3.jpg!w690x387.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图8 正压压力考核试验装置[/b][/color][/size][/align][size=16px] 考核试验的压力范围为表压0.1~0.6MPa,选择不同的设定点进行恒定控制并检测其控制的稳定性。全量程的正压压力控制结果如图9所示。[/size][align=center][size=16px][color=#6666cc][b][img=09.正压压力考核试验曲线,600,337]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121046261180_1880_3221506_3.jpg!w690x388.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图9 正压压力考核试验曲线[/b][/color][/size][/align][size=16px] 为了更直观的演示正压压力控制精度,将每个压力设定点时的控制过程进行单独显示,以检测测定正压压力的稳定性,图10显示了不同正压设定点恒定控制时的正压压力和控制电压信号的变化曲线。[/size][align=center][size=16px][color=#6666cc][b][img=10.不同正压设定点恒定控制时的压力和控制电压试验曲线,690,555]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121046471416_4804_3221506_3.jpg!w690x555.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图10 不同正压设定点恒定控制时的压力和控制电压试验曲线[/b][/color][/size][/align][size=16px] 通过所用的正压压力精密控制解决方案和考核试验结果,证明了此解决方案完全能够实现0.1%高精度的正压压力控制,具体结论如下:[/size][size=16px] (1)采用串级控制和模式,并结合后外置超高精度(0.05%)的压力传感器和真空压力控制器,完全可以有效提高压力调节器的压力控制精度,可实现0.1%超高精度的压力控制。[/size][size=16px] (2)如果选择更合适和狭窄的压力控制范围,还可以达到0.05%的更高控制精度。[/size][size=16px] (3)高精度0.1%的压力控制过程中,真空压力控制器的测量精度、控制精度和浮点运算是决定整体控制精度的关键技术指标,解决方案中采用的24位ADC、16位DAC和高精度浮点运算0.01%的输出百分比,证明完全可以满足这种高精度的控制需要。[/size][size=18px][color=#6666cc][b]5. 总结[/b][/color][/size][size=16px] 针对真空压力综合测量系统对高真空、低真空和正压精密控制的技术要求,解决方案可以很好的实现精度为0.1%~0.5%读数的精密控制,考试验证试验也证实此控制精度。[/size][size=16px] 更重要的是,解决方案提出了高真空度的精密控制方法和控制系统配置,这将解决在高真空度范围内的任意设定点下的恒定控制难题,为高真空度范围的计量校准测试提供准确的标准源。[/size][align=center][size=16px]~~~~~~~~~~~~~~~~~[/size][/align][size=16px][/size]

  • [求助]请教球面镀膜镜片反射率测试问题

    想求助一个关于球面镀膜镜片反射率测试的问题,希望群里专家能帮我解答下,万分感谢!1.球面镜片表面镀了反射膜,想测反射率,这个一般测得是镜面反射还是漫反射,比如岛津的分光光度计配合积分球配合硫酸钡的标准白板测得是哪个?2.我用光谱仪配合积分球配合标准白板搭建系统测试反射率是否能达到一样的效果?

  • 极紫外脉冲光源真空系统结构及其真空度控制的解决方案

    极紫外脉冲光源真空系统结构及其真空度控制的解决方案

    [b][font='微软雅黑',sans-serif][size=16px][color=#339999]摘要:在高次谐波发生器中一般包含两个不同真空区域,一个是[/color][/size][/font][size=16px][color=#339999]1~100Torr[/color][/size][font='微软雅黑',sans-serif][size=16px][color=#339999]绝压范围的气池内部的低真空区域,一个是高阶谐波光路上的绝压为[/color][/size][/font][size=16px][color=#339999]0.001Pa[/color][/size][font='微软雅黑',sans-serif][size=16px][color=#339999]量级的高真空区域。本文针对此两个区域的真空度控制提出了相应的解决方案,特别是详细介绍了气池内部的低真空度精密控制技术,控制精度可达到±[/color][/size][/font][size=16px][color=#339999]1%[/color][/size][font='微软雅黑',sans-serif][size=16px][color=#339999]以内,为各种高次谐波的产生提供了有效的技术保障。[/color][/size][/font][/b][align=center][img=脉冲激光高阶谐波产生器的真空系统结构及其精密控制解决方案,500,250]https://ng1.17img.cn/bbsfiles/images/2023/03/202303130855486468_7730_3221506_3.jpg!w690x346.jpg[/img][/align][size=18px][color=#339999][b]1. [font='微软雅黑',sans-serif]问题的提出[/font][/b][/color][/size][font='微软雅黑',sans-serif][size=16px][/size][/font] 近年来,利用超短脉冲激光激发惰性气体产生高次谐波,为时间分辨及角分辨光电子能谱系统和极紫外光相干衍射成像提供了简单,成本可控的极紫外光源。高次谐波的产生是一个极端的非线性光学过程,其关键是要将强激光脉冲聚焦到可控浓度的惰性气体中。[font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]如图[/font][font=&]1[/font][font='微软雅黑',sans-serif]所示是一个高阶谐波在相干衍射成像中应用的典型结构示意图,其中超短脉冲激光被聚焦在充满惰性气体的气池内从而激发出高阶谐波。[/font][align=center][b][color=#339999][img=高次谐波产生的相干衍射成像装置结构示意图,690,186]https://ng1.17img.cn/bbsfiles/images/2023/03/202303130857327186_8744_3221506_3.jpg!w690x186.jpg[/img][/color][/b][/align][font='微软雅黑',sans-serif][size=16px][color=#339999][/color][/size][/font][align=center][b][font='微软雅黑',sans-serif]图[/font][font=&]1 [/font][font='微软雅黑',sans-serif]高次谐波产生的相干衍射成像装置结构示意图[/font][/b][/align][font='微软雅黑',sans-serif][size=16px][/size][/font][font=微软雅黑, sans-serif] [/font]在高次谐波生成过程中,要达到实际应用效果,相应的真空系统需要满足以下要求:[font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]1[/font][font='微软雅黑',sans-serif])在高次谐波产生过程中,宏观参数的变化会影响到原子密度和电离分数,并可实现相应的宏观相位匹配,因此可以使用对宏观参数例如有效相互作用长度、激光强度和气体压力的适当调整来改变高次谐波光谱。当改变这些参数时,不仅谐波阶数会改变,而且特定光谱范围内的光谱权重也会改变,这就意味着气池内部气体压力(真空度)需要具备可精密调节和稳定控制能力,以便实现所需高次谐波的产生。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]2[/font][font='微软雅黑',sans-serif])因高次谐波很容易被大气吸收,这就要求高次谐波的光路必须维持在高真空状态。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]由此可见,在高次谐波发生器中需要包含两个不同真空度的区域,一个是[/font][font=&]1~100Torr[/font][font='微软雅黑',sans-serif]绝对压力范围的气池内部低真空区域,另一个是高阶谐波光路上的绝对压力[/font][font=&]0.001Pa[/font][font='微软雅黑',sans-serif]量级的高真空区域。本文将针对此两个不同区域的真空度控制提出相应的解决方案,特别是详细介绍了气池内部低真空区域内真空度的稳定精密控制。[/font][b][size=18px][color=#339999]2. [font='微软雅黑',sans-serif]解决方案[/font][/color][/size][/b][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]为了解决高阶谐波发生器中双区域内的真空度控制问题,基于图[/font][font=&]1[/font][font='微软雅黑',sans-serif]所示的用于相干衍射成像的高阶谐波发生器,本文提出的具体解决方案如图[/font][font=&]2[/font][font='微软雅黑',sans-serif]所示。[/font][align=center][b][color=#339999][img=高次谐波发生器真空度控制系统结构示意图,690,341]https://ng1.17img.cn/bbsfiles/images/2023/03/202303130858082909_4614_3221506_3.jpg!w690x341.jpg[/img][/color][/b][/align][font='微软雅黑',sans-serif][size=16px][color=#339999][/color][/size][/font][align=center][b][font='微软雅黑',sans-serif]图[/font][font=&]2 [/font][font='微软雅黑',sans-serif]高次谐波发生器真空控制系统结构示意图[/font][/b][/align][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]在图[/font][font=&]2[/font][font='微软雅黑',sans-serif]所示的真空控制系统中,根据真空度的不同将真空腔分为两个区域以分别用于气池和高阶谐波传输光路。针对这两个区域的真空度控制,采用了以下两个真空回路。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][b][color=#339999][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]1[/font][font='微软雅黑',sans-serif])光路的高真空控制回路[/font][/color][/b][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]在真空腔的高真空回路中,排气管路直接与真空腔壁连接,通过分子泵来抽取真空腔内的气体使其达到绝压[/font][font=&]0.001Pa[/font][font='微软雅黑',sans-serif]量级的高真空(图[/font][font=&]2[/font][font='微软雅黑',sans-serif]中并未绘出相配套的低真空前级泵),同时用皮拉尼计来监控真空度的变化。为了在测试完成后取出样品,需要对真空腔进行充气以恢复到常压大气环境,在真空腔壁上布置了一个电动放气阀,可程序控制此放气阀的开启和关闭。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][b][color=#339999][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]2[/font][font='微软雅黑',sans-serif])气池的低真空控制回路[/font][/color][/b][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]如图[/font][font=&]2[/font][font='微软雅黑',sans-serif]所示,真空管路直接与气池连接,并与高压气瓶、调节进气流量的电动针阀、电容规、调节排气流量的电动针阀、干泵以及真空控制器组成低真空控制回路。对进气和排气流量进行调节以实现真空度控制是一种动态平衡控制方法,这种方法的特点是可实现[/font][font=&]1Pa~0.1MPa[/font][font='微软雅黑',sans-serif]范围内真空度的精密控制,特别是结合[/font][font=&]24[/font][font='微软雅黑',sans-serif]位[/font][font=&]AD[/font][font='微软雅黑',sans-serif]和[/font][font=&]16[/font][font='微软雅黑',sans-serif]位[/font][font=&]DA[/font][font='微软雅黑',sans-serif]的双通道高精度真空度控制器,控制精度可达到±[/font][font=&]1%[/font][font='微软雅黑',sans-serif]以内。[/font][b][size=18px][color=#339999]3. [font='微软雅黑',sans-serif]总结[/font][/color][/size][/b][font='微软雅黑',sans-serif][/font][size=16px][font=微软雅黑, sans-serif] [/font]通过上述的两路独立真空控制回路构成的真空控制系统,可以很好的实现高次谐波发生器所需的真空度准确控制,而且气池内的真空度可以任意调节和恒定控制,为各种高次谐波的产生和优化提供了有效的技术保障。[/size][align=center][size=16px][/size][/align][size=16px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【基础知识】真空常用名词术语

    1、真空的定义 真空系统指低于该地区大气压的稀簿气体状态2、真空度 处于真空状态下的气体稀簿程度,通常用“真空度高”和“真空度低”来表示。真空度高表示真空度“好”的意思,真空度低表示真空度“差”的意思。3、真空度单位 通常用托(Torr)为单位,近年国际上取用帕(Pa)作为单位。1托=1/760大气压=1毫米汞柱4、托与帕的转换 1托=133.322帕 或 1帕=7.5×10-3托5、平均自由程 作无规则热运动的气体粒子,相继两次碰撞所飞越的平均距离,用符号“λ”表示。6、流量 单位时间流过任意截面的气体量,符号用“Q”表示,单位为帕升/秒(PaL/s)或托升/秒(TorrL/s)。7、流导 表示真空管道通过气体的能力。单位为升/秒(L/s),在稳定状态下,管道流导等于管道流量除以管道两端压强差。符号记作“U”。   U=Q/(P2- P1)8、压力或压强 气体分子作用于容器壁的单位面积上的力,用“P”表示。9、标准大气压 压强为每平方厘米101325达因的气压,符号:(Atm)。10、极限真空 真空容器经充分抽气后,稳定在某一真空度,此真空度称为极限真空。通常真空容器须经12小时炼气,再经12小时抽真空,最后一个小时每隔10分钟测量一次,取其10次的平均值为极限真空值。11、抽气速率 在一定的压强和温度下,单位时间内由泵进气口处抽走的气体称为抽气速率,简称抽速。即Sp=Q/(P-P0)12、热偶真空计 利用热电偶的电势与加热元件的温度有关,元件的温度又与气体的热传导有关的原理来测量真空度的真空计。13、电离真空计(又收热阴极电离计) 由筒状收集极,栅网和位于栅网中心的灯丝构成,筒状收集极在栅网外面。热阴极发射电子电离气体分子,离子被收集极收集,根据收集的离子流大小来测量气体压强的真空计。14、复合真空计 由热偶真空计与热阴极电离真空计组成,测量范围从大气~10-5Pa。15、冷阴极电离计 阳极筒的两端有一对阴极板,在外加磁场作用,阳极筒内形成潘宁放电产生离子,根据阴极板收集的离子流的大小来测定气体压强的真空计。16、电阻真空计 利用加热元件的电阻与温度有关,元件的温度又与气体传导有关的原理,通过电桥电路来测量真空度的真空计。17、麦克劳真空计(压缩式真空计) 将待测的气体用汞(或油)压缩到一极小体积,然后比较开管和闭管的液柱差,利用玻义尔定律直接算出气体压强的一种绝对真空计。18、B-A规 这是一种阴极与收集极倒置的热阴极电离规。收集极是一根细丝,放在栅网中心,灯丝放在栅网外面,因而减少软X射线影响,延伸测量下限,可测超高真空。19、水环真空泵 泵的叶轮转子旋转而产生水环。由于转子偏心旋转而使水环与叶片间容积发生周期性改变而进行抽气的机械真空泵。20、往复真空泵 利用活塞的往复运动而进行抽气的机械真空泵。21、油封机械真空泵 用油来保持密封的机械真空泵,可分为定片式、旋片式、滑阀式、余摆线式等。22、罗茨真空泵 具有一对同步高速旋转的鞋底形转子的机械真空泵,此泵不可以单独抽气,前级需配油封、水环等可直排大气的真空泵。23、涡轮分子真空泵 有一高速旋转的叶轮,当气体分子与高速旋转的涡轮叶片相碰撞时就被驱向出气口再由前级泵抽除。24、油扩散真空泵 扩散泵喷口中喷出高速蒸汽流。在分子流条件下,气体分子不断地向蒸流中扩散,并被蒸汽带向泵出口处逐级被压缩后再由前级泵排除。25、低温真空泵 利用20K以下的低温表面凝聚吸附气体的真空泵。26、冷阱(水冷挡板) 置于真空容器和泵之间,用于吸附气体或捕集油蒸汽的装置。27、气镇阀 油封机械真空泵的压缩室上开一小孔,并装上调节阀,当打开阀并调节入气量,转子转到某一位置,空气就通过此孔掺入压缩室以降低压缩比,从而使大部分蒸汽不致凝结而和掺入的气体一起被排除泵外起此作用的阀门称为气镇阀。28、真空冷冻干燥 真空冷冻干燥,也称升华干燥。其原理是将材料冷冻,使其含有的水份变成冰块,然后在真空下使冰升华而达到干燥目的。29、真空蒸镀 在真空环境中,将材料加热并镀到基片上称为真空蒸镀,或叫真空镀膜。30、真空干燥 利用真空环境下沸点低的特点来干燥物品的方法。31、真空系统常用名称 (1)主泵:在真空系统中,用于获得所需要真空度来满足特定工艺要求的真空泵,如真空镀膜机中的油扩散泵就是主泵。(2)前级泵:用于维持某一真空泵前级压强低于其临界前级压强的真空泵。如罗茨泵前配置的旋片或滑阀泵就是前级泵。(3)粗抽泵:从大气压下开始抽气,并将系统压力抽到另一真空泵开始工作的真空泵。如真空镀膜机中的滑阀泵,就是粗油泵。(4)维持泵:在真空系统中,气量很小时,不能有效地利用前级泵。为此配置一种容量较小的辅助泵来维持主泵工作,此泵叫维持泵。如扩散泵出口处配一台小型旋片泵,就是维持泵。[em09] 来源:Internet

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制