当前位置: 仪器信息网 > 行业主题 > >

加热台

仪器信息网加热台专题为您提供2024年最新加热台价格报价、厂家品牌的相关信息, 包括加热台参数、型号等,不管是国产,还是进口品牌的加热台您都可以在这里找到。 除此之外,仪器信息网还免费为您整合加热台相关的耗材配件、试剂标物,还有加热台相关的最新资讯、资料,以及加热台相关的解决方案。

加热台相关的资讯

  • 加热台面性能对陶瓷电热板的影响
    陶瓷电热板主要用于样品金属元素分析前对样品进行加热、消解、赶酸处理,分体控制与大尺寸设计的特点,避免人员受到酸雾的伤害和大批量处理样品,安全保障、提高实验工作效率。作为一款新型的实验室用电热板,加热台面已不同于以往的传统台面,采用陶瓷作为加热台面有哪些优势呢?陶瓷加热台面又跟其他材质台面有哪些不同?优势特点1、玻璃陶瓷材质的台面耐磨损、防腐蚀、易清洁且不会生锈,让陶瓷电热板使用寿命更长久。 2、分体控制系统,控制器与加热体分离控制,避免了实验人员在加热消解过程受到酸雾的直接伤害,人体安全。 3、数显控温系统,精确控制温度,升温速度快,加热均匀,温度可达到400℃满足大部分样品消解。4、样品处理能力强:加热台面为500x400mm,可放置48个50ml三角瓶。5、超薄机身,机身的厚度为5cm左右的,便于放置实验室通风柜内且不占用多余空间。不同加热台面材料性能比较 台面使用温度防腐性易清洁性HT-300陶瓷电热板400℃不长锈一抹即净不锈钢台面400℃易长锈,寿命短长锈,难清洁喷涂化工陶瓷台面300℃涂层磨损后易长锈不易清洁喷涂特氟龙台面250℃涂层磨损和易长锈难清洁适用样品范围实验陶瓷电热板在很多领域得以广泛应用,主要有食品、纺织、塑料、地质、冶金、煤炭、生物医药、石油化工、环境监测、污水处理、电池制造、化妆品、保健品等多个领域。
  • 世界首台兆瓦级高温超导感应加热装置!!!
    由我国研制的世界首台兆瓦级高温超导感应加热装置,日前在黑龙江正式投用。该装置可以利用加热新技术,对大尺寸金属工件快速高效加热,节能减排,带动企业高质量发展。这台兆瓦级高温超导感应加热装置正在处理一块重达500多公斤的铝锭。过去,温度从20℃加热到403℃,至少需要9个小时。现在,通过应用这个装置,只需十分钟就可以完成。据了解,高温超导感应加热装置是利用了超导体在低温下可实现稳定的零电阻超导态的特性,不仅可以用于铝、铜等非铁磁性有色金属型材挤压、锻压,还能用于熔炼、高端合金热处理等。与原来普遍采用的电阻炉相比,这套装置能将传统工频感应炉的能效转化率提升一倍,节能50%,碳排放减少一半以上。
  • 世界首台套井下大功率电加热提干装置 试验成功
    截至3月20日,在曙采超稠油蒸汽驱杜84-33-69井现场,辽河油田采油工艺研究院井下大功率电加热提干装置,自1月11日成功投运,已连续平稳运行70天,加热功率突破1兆瓦,在每小时5.5吨的注汽速度下,井底蒸汽干度提高36%。超稠油蒸汽驱杜84-33-69井现场这标志着世界首台套1兆瓦井下大功率电加热蒸汽提干装置试验成功,迈出了辽河油田实现能耗及碳排总量双控降的坚实一步,在国内外稠油热采领域开辟出一条崭新的绿电消纳、降碳减排之路。研究背景作为国内陆上最大的稠油生产基地,辽河油田主要通过蒸汽锅炉实现注蒸汽热采开发,期间产生的热损失会极大增加能耗和碳排放量,严重制约油田绿色低碳转型发展。油田生产现场为实现国家“碳达峰、碳中和”目标,辽河油田围绕集团公司“清洁替代、战略接替、绿色转型”发展战略,加大清洁能源替代和控碳减碳力度,油田公司加大了井下大功率电加热技术攻关力度,按照 400千瓦、1兆瓦、3兆瓦“三步走”战略部署开展技术攻关与应用,助力辽河油田实现绿色转型发展。井下大功率电加热技术采油院企业高级专家张福兴表示:“以往稠油注汽都是在井口烧天然气,这套装置通过电加热器实现井口内外转换,可以在井下对蒸汽进行二次加热,相当于一个地下的清洁锅炉,大大提高了加热效率,可以通过降低锅炉出口干度的方式减少天然气用量,与此同时通过电加热达到提升井底蒸汽干度的效果。”井下大功率电加热技术工作原理看似简单,但每次技术升级难度极大。十三年的攻关历程,才带来了井下大功率电加热技术的成功突破。2011年:率先研发出150千瓦、450℃电点火装备,在多个油田推广应用90余井次,增油降本效果显著。2021年:成功研发出国内领先的400千瓦井下大功率电加热提干技术。2022年:着手研究1兆瓦井下大功率电加热技术。2023年:成功研发出世界首台套1兆瓦井下大功率蒸汽提干装置。从400千瓦到1兆瓦,意味着什么?张福兴表示,这是革命性、颠覆性的突破。科研人员多次深入现场在没有任何成熟经验借鉴参考下,科研团队通过成百上千次理论计算、仿真模拟及室内试验,历时15个月研发,成功突破450℃高温、4千伏高电压绝缘、每米5000瓦高功率密度、外径38毫米极限预制工艺、井口长期高温高压密封技术等7大行业性难题,总体技术达到国际领先水平。项目组计划在深层SAGD、超稠油蒸汽驱开展包括杜84-33-69井在内的3口井先导试验3年,试验期内预计总节约天然气36.75万方,累增油1.2万吨。下一步,项目组将依托集团公司科技专项《稠油大幅度提高采收率关键技术研究》及板块公司先导试验项目《稠油开发井下大功率电加热技术研究与试验方案》,推动传统地面燃气锅炉向新型井下清洁蒸汽发生器转变,在规模推广1兆瓦大功率电加热技术的基础上,加快攻克3兆瓦井下蒸汽发生技术,全面提升电气化率,完成能耗结构调整、实现绿色转型发展。到2030年,井下大功率电加热技术将在辽河油田超稠油蒸汽驱、深层SAGD等领域实现规模应用。从世界首座电热熔盐储能注汽试验站到世界首台套1兆瓦井下大功率电加热蒸汽提干装置,永攀科研高峰的辽河人不惧失败不畏挑战再次攻克难关创造奇迹。
  • 卡式加热炉水分仪对比卤素加热水分仪,您选对了吗?
    在锂离子电池的制造过程中,有很多东西是必须严格控制的,一是粉尘,二是金属颗粒,三是水分。水分对锂离子电池影响巨大,主要会造成以下不良后果: 1、电解液变质,使电池铆钉生锈。2、电池内部压力过大,爆裂使得电解液喷溅,电池碎片也容易伤人。 3、高内阻(High ACR),不能进行大电流放电,电池的功率比较低。4、高自放电(HSD),电池在不使用的情况下,电量也会损耗。5、低容量,电池内部水分过高,损耗了电解液的有效成分,也损耗了锂离子,使得锂离子在电池负极片发生不可逆转的化学反应。6、低循环寿命 7、电池漏液,当电池内部的水分多的时候,电池内部的电解液和水反应,其产物将是气体和氢氟酸,氢氟酸是一中腐蚀性很强的酸,它可以使电池内部的金属零件腐蚀,进而使电池最终漏液。 目前市场上水分含量测定的技术方法最常用的是卡尔费休方法和加热失重方法,由于锂电池行业所测样品含水量极低,加热失重法水分测定仪的精度根本达不到,这种方法被直接排除。卡尔费休方法检测,精度没有问题,但是由于样品本身固体粉末无法溶解,直接进样的方法会污染反应杯和电极,样品也无法检测,因此,采用卡尔费休间接进样的方法,也就是用卡式加热炉(也有叫卡式干燥炉)进样,结合卡尔费休水分测定仪检测就成为目前唯一的可以选择的测量方式。卡式加热炉作为卡尔费休水分测定仪的辅助组成部分,它要求加热后的样品水分挥发后能够无任何残留地进入到卡尔费休水分仪电解池中测量,这对仪器的加热组件,管路组件,密封组件等提出了非常高的要求,长期以来,国产仪器厂家在这一块儿是个空白,被国外公司所垄断,进口仪器价格十分昂贵,在十几万和二十几万之间,日常维护成本也非常高。另外,国内一些卡尔费休水分仪的生产厂家声称自己的产品可以应用在锂电行业,但也仅仅局限于电解液等液体样品,正负极材料,极片等固体样品根本无法检测。早在2011年,在浙江大学,中科院宁波材料所等一批老师的帮助下,我们开始进行卡式加热炉结构设计和材料筛选的工作,经过几年摸索,样机成型,并结合我禾工公司的AKF-3库伦法卡式水分测定仪,组成一套国产的第一台带卡式加热炉的卡尔费休水分测定仪,AKF-BT2015C锂电池水分测定仪客户二次购买率超过60%!锂电市场占有率40%,国产设备占有率100%。 AKF-BT2010C锂电池专用水分测定仪:采用卡尔费休间接进样的方法,用卡式加热炉(也有叫卡式干燥炉)进样,加热后的样品水分挥发后能够无任何残留地进入到卡尔费休水分仪电解池中测量。适用于锂离子动力电池行业正负极材料及其原材料,电解液等,包括磷酸铁锂材料、磷酸铁、钴酸锂、锰酸锂、镍酸锂、三元材料,负极膜片,石墨粉等,同时适用其他不溶解固体材料的测量。 典型用户:钱江锂电科技有限公司(4套)、个旧圣比和实业有限公司(1套)、海门容汇锂业有限公司(2台)、惠州基安比新能源有限公司(1台)、山东临沂杰能新能源(2套)、南阳嘉鹏新能源(1套)、山西中科忻能科技有限公司(2套)、四川南光新能源有限公司(1套)、新乡中科科技公司(1套)、浙江谷神能源(2套)、无锡市明杨电池有限公司(2套)、北京般若涅利(1套)、包头石墨烯材料研究院(1套)、重庆中欣维动力(1套)、贵州赛德丽新能源(1套)......
  • 奥豪斯:加热磁力搅拌器,常见十问
    Q1: 磁力搅拌器能昼夜连续工作吗?奥豪斯磁力搅拌器可以跨昼夜连续工作,我们有过连续运行720个小时的工作经历。Q2: 加热磁力搅拌器有安全方面的设计吗?奥豪斯加热磁力搅拌器是双重安全设计:a. SafetyHeat&trade 检测系统,配备两个独立安全控件,持续监控设备,可在出现过热情况之前关闭加热功能 b. 在日常运行中,当加热温度大于40℃时,大而鲜亮的高温警示灯将持续亮起,哪怕关机了,警示灯也亦然工作。Q3: 对于热敏感型样品,加热磁力搅拌器有什么解决方案吗?奥豪斯提供设计有SmartHeat&trade 功能的加热磁力搅拌器,可以设置温度,那么后续如何设定,机器都不允许超过设置的温度;同时在加热磁力搅拌器两种工作模式下,机器也将遵循此设定,不超过温度设定值。Q4: 我们有时会需要加热快一些、有时又需要加热慢一些,有解决方案吗?当然,,奥豪斯提供带三种加热模式的加热磁力搅拌器:标准加热模式、小兔子快速加热模式和小乌龟慢速加热模式,可满足您丰富的实验需求! Q5: 对于环境条件较为恶劣的实验室,加热磁力搅拌器有什么应对方案?奥豪斯提供耐腐蚀外层、且为金属外壳材质的加热磁力搅拌器,散热好、皮实耐用! Q6: 对于磁力搅拌器,从搅拌器表面到容器是否有最小、最大或最佳距离?相应介质的体积和粘度决定距离。例如,可以达到5厘米以下的少量水,距离为0 cm,也就是当容器与磁力搅拌器表面接触时。 Q7: 普通烧杯中用来搅拌水或水溶液的搅拌子的合适尺寸是多少?一般来说,38 mm的搅拌子可以满足大多数应用,奥豪斯的加热磁力搅拌器有标配哦! Q8: OHAUS奥豪斯的搅拌子支持消毒吗?奥豪斯磁性搅拌子涂有聚四氟乙烯(特氟龙),支持多种方式灭菌:高压灭菌、煮沸灭菌、酒精灭菌等等。 Q9: 磁力搅拌器有推荐的速度吗?要达到稳定的混合,不建议转速太慢,常见应用在400到800 rpm。 Q10: 奥豪斯磁力搅拌器运行所需的环境条件是什么?相对湿度不应超过80%。环境温度应在+5°C到+40°C之间。 奥豪斯集团成立于1907年,拥有遍布各地的营销、研发和生产基地。通过不断为各地用户提供优质的称量产品与完善的应用方案,奥豪斯产品已遍及环保、疾控、食药、教学科研、食品、新能源和制药工业等各种应用领域,赢得了广泛的认可与青睐。我们致力于提供符合各国安全、环境及质量体系的产品,涵盖电子天平、台秤、平台秤、案秤、摇床、台式离心机、加热磁力搅拌器、涡旋振荡器、干式金属浴、实验室升降台和电化学产品等。
  • WIGGENS柔性金属浴,全能型加热好帮手
    实验室常见的加热仪器,如:加热板、加热套、金属浴、水(油)浴等加热板是通过面传导方式对样品进行加热,适用于有平面导热面的容器,如烧杯,三角瓶等。加热套多用于相应配套容积的圆底烧瓶等容器。金属浴加热块,受限于金属模块加热腔形状的不同,只能适用于特定形状的加热容器。水(油)浴会受到热传导介质的温度局限,容器表面有水(油)的附着情况。推荐使用WIGGENS最新自主研发的柔性金属浴,用一台仪器即可完成对不同形状容器,宽广温度范围的加热控制。wiggens柔性金属浴,使用自主研发生产的高品质合金颗粒作为热传导介质,不锈钢底板对合金颗粒进行加热,快速进行热量传递,PTFE 成型的保温层,形成集热效应。合金颗粒流动性强,对容器包裹性好,加热均匀,导热快。配合使用wiggens 专利的红外加热(IR)技术和ACC 自整定温度控制技术,实现更快的加热效果和更好的温度稳定性WIGGENS柔性金属浴可以对样品进行快速,洁净的加热,适用于各种形状的容器。在相当一部分应用领域,非常适合取代实验室常用的小油浴锅,干浴模块,电加热套等加热方式,是一款名副其实的全能型加热仪器,加热操作的好帮手。
  • 加热磁力搅拌器,您买对了吗
    作为常用实验室样品前处理设备之一,加热磁力搅拌器广泛应用于科研院校、环境保护、卫生防疫、石油化工等领域。那么,加热磁力搅拌器要怎么选择呢?安全至上多重防护更安心多重防护设计:一目了然,防患未然。1.SafetyHeatTM智能过热监测系统,在出现过热情况之前及时关闭加热功能,保护实验的安全。2.醒目高温警示,无论关机与否,当加热器高于40℃时,高温警示灯都能持续工作。应用为本各取所需选材质多种材质的盘面可广泛应用各类酸碱及有机溶液。1.陶瓷盘面,抗化学腐蚀性好、可达高温,耐腐蚀、耐高温、易打理.2.陶瓷涂层的不锈钢盘面,耐腐蚀、传热快、易清洁。3.铝盘, 热传导性能好,灵敏度高.搅拌有力混匀给力且持久强劲搅拌能力保障混匀效果。1.磁场强度高,对磁子控制能力强,不易跳子。2.磁场控制好,搅拌充分混合,温度均匀,提高反应效率、节省时间。控温有度精准而少浮动控温准确确保样品温度稳定。1.控温精度高、稳定时温度浮动小。2.防温度过冲性能好、样品受过温影响小。智能交互个性而不张扬智能交互功能增强使用体验。1.多种选配温度探针,实时知晓样品温度,PTFE涂层温度探针连接线,耐高温、防腐蚀。2.SmartHeat,允许用户设定最 高温度,防止过热,有效保护温度敏感型样品。3.SmartRate,提供快速或慢速的升温模式,迎合不同的加热需求,提高工作效率。奥豪斯集团成立于1907年,拥有遍布各地的营销、研发和生产基地。通过不断为各地用户提供优质的称量产品与完善的应用方案,奥豪斯产品已遍及环保、疾控、食药、教学科研、食品、新能源和制药工业等各种应用领域,赢得了广泛的认可与青睐。我们致力于提供符合各国安全、环境及质量体系的产品,涵盖电子天平、台秤、平台秤、案秤、摇床、台式离心机、加热磁力搅拌器、涡旋振荡器、干式金属浴、实验室升降台和电化学产品等。
  • 旋转蒸发仪您真的用对了吗?(加热锅篇)
    Hei-VAP台式旋转蒸发仪是德国Heidolph汇总了全球几百位科学家对旋转蒸发仪使用的建议和需求,通过与用户的密切合作,共同开发出来的。其中设计都是来自各位科学家们的实际体验感受和需求不断设计调整,包括蒸发管夹套、冷凝管的防回流斜角、2200cm² 冷凝管表面积、LED环形指示灯、加热锅倾倒把手...这些细节设计看似微不足道,但是在实际的使用过程中,无论从操作的安全性还是便捷性上,都为旋转蒸发仪的整体使用带来了质的改变,也真正体现了Heidolph研发团队助力科研的理念。对于旋转蒸发仪来讲,好的设备是成功的一半,同时如何正确地操作设备,提升仪器的使用寿命,降低维护成本也是所有科研工作者非常关注的一项课题。在旋转蒸发仪加热锅的使用过程中,经常遇到的就是如上两种情况,无论是哪一种,看起来都不太美观,那么如何解决呢?首先,市面上大部分的加热锅的内胆均采用不锈钢材质,一方面是源于不锈钢良好的导热性能,并且坚固耐用,美观大方。同时相比其他材质的加热锅,不锈钢内胆在水垢等杂质的清理上更加便捷。之所以出现上述两种情况,其主要的原因在于:您加热锅中使用的“水”。实验过程中,很多实验人员对旋转蒸发仪非常爱惜,对加热锅也希望给予万千宠爱,一切原材料都选择最好的。所以对于加热锅中的水,一部分实验人员会采用“去离子水”。殊不知,高纯去离子水,恰恰是加热锅生锈的罪魁祸首。去离子水,常简称DI水(deionized water),是一种排除了钠,钙,铁,铜,氯化物和溴化物等矿物离子的纯净水形式。国际标准化组织ISO/TC 147规定的“去离子”的定义为:“去离子水完全或不完全的去除离子物质。” 由于去离子水中的离子数可以被人为的控制,从而使它的电阻率、溶解度、腐蚀性、病毒细菌等物理、化学及病理等指标均得到良好的控制,去离子水也被广泛应用于实验室。但,如果把去离子水作为加热锅浴液是否可行呢?一般来讲,这种去离子水会存在一定的酸碱性问题,当去离子水遇到不锈钢时,会自然发生一定的电化学反应,简单来讲即是电荷的转移。这种转移的结果会导致不锈钢中的金属元素的电子被吸取,而暴露出来的部分阳极电子,比如正价铁离子,遇到空气中的氧气时,因为铁的电极电位总比氧的电极电位低,所以铁作为负极便会遭到腐蚀。我们会看到在发生氧腐蚀的表面会形成许多直径不等的小鼓包,次层是黑色粉末状溃疡腐蚀坑陷,导致不锈钢容器被损坏。同时,这种反应是不可逆的,这也是为什么高纯去离子水是不能够采用不锈钢容器存储或者运输的重要原因之一。同样的,实验室中的蒸馏水或脱盐水也并不适用于不锈钢加热锅。蒸馏水通常是指溶解于其中的阴离子和阳离子已被除去的水。因此,水有恢复这些阳离子和阴离子的趋势,以便再次饱和它们,所以它变得“饥饿”。为了满足饥饿感,水会溶解金属中的离子和空气中的二氧化碳,从而变成碳酸。这导致了蒸馏水的pH值在5左右,即在酸性范围内,金属就会发生腐蚀。所以,真正的爱护您的加热锅,请尽量不要使用上述的水质进行加热操作。除了去离子水或高纯水,实验室里常用的就是普通的自来水溶液。自来水成本低,不易生锈。但是使用自来水进行操作的加热锅,一段时间内,不可避免会发生水垢的堆积。水垢,实际上就是自来水中钙和镁的堆积。由于全国各地水质硬度存在一定差异,使用自来水后的加热锅的状况也略有不同。虽然水垢对加热锅本身的影响不大,但是极其影响美观,长时间下来也会影响导热效率。所以定期清洁水垢也是实验室水浴锅维护的必备课程。清理水垢,常用的包括小苏打、醋酸、柠檬酸等等,在实验室中,我们建议您使用低浓度柠檬酸来定期对加热锅进行清洁。一方面柠檬酸可以有效溶解水垢,使您的加热锅清洁如新,另一方面柠檬酸属于弱酸性有机酸,不含氯离子,对金属成分的损害最小,可以更好地保障加热锅不受损伤。另外,您在使用自来水进行加热的过程中,添加一定比例的纯水,也可以延缓水垢的生成。END关于HeidolphHeidolph集团是创新型实验室前处理设备的制造厂商。磁力搅拌器、顶置式搅拌器、台式旋转蒸发仪、工业大型旋转蒸发仪、蠕动泵、混匀器、恒温摇床等相关产品构成了Heidolph实验室设备的产品线。集团总部位于德国南部的纽伦堡附近的施瓦巴赫市。作为Heidolph集团全资子公司,海道尔夫仪器设备(上海)有限公司于2019年正式成立,旨在为中国用户提供更为直接、更快速的服务。如需更多详细信息请致电400-021-7800或邮件sales@heidolph-instruments.cn,我们将竭诚为您服务。
  • 李昌厚:横向加热石墨炉AAS的特点研究
    李昌厚(中国科学院上海生物工程研究中心上海 200233)摘要:本文根据分析工作的实际需要和作者的实践,从原子化温度、扣背景、原子化时间、重复性和灵敏度等几个方面研究了横向加热石墨炉原子吸收分光光度计(AAS)的特点,并对横向加热和纵向加热AAS的有关问题进行了讨论。0、前言 石墨炉AAS的加热方式有两种:一种是沿光轴方向加热,叫做纵向加热;另一种是与光轴垂直方向加热,叫做横向加热[1]。从仪器学理论[1]的角度来看,横向加热石墨炉AAS有十大优点[2](适合复杂体系、温度均匀、消记忆效应、消拖尾、对试样要求低、原子化温度低、降低炉体要求、温度梯度小、原子化时间短、灵敏度高)。从仪器学和应用的实际要求来看,横向加热石墨炉AAS的十大优点是纵向加热石墨炉AAS 无可比拟的。目前,因为横向加热的AAS难度大、成本高,所以,全世界只有6家[2]AAS生产企业能够生产横向加热的AAS。但是有人说:纵向加热石墨炉AAS的原子化温度最高可达3000℃,而横向加热AAS最高只能达到2650℃,所以纵向加热石墨炉AAS比横向加热石墨炉AAS好。也有人说:氘灯扣背景是横向加热石墨炉AAS一种很好的扣背景方法,但是也有人说:只有具有塞曼扣背景的横向加热石墨炉AAS才能叫横向加热石墨炉的AAS,氘灯扣背景的石墨炉AAS仪器,不能算是横向加热石墨炉的AAS仪器。本文将从仪器学理论和分析化学应用实践的角度,讨论这些问题。作者抛砖引玉,希望引起业内同仁对这个问题的重视和讨论,以帮助广大科技工作者正确理解这个问题,共同努力来提高我国各类AAS仪器及其应用的水平。1、关于AAS的原子化温度1)AAS的基本原理是先将被测物质由分子变成原子,随后原子蒸气中的原子对入射产生吸收,通过检测入射光和出射光的变化来分析元素的含量。横向加热AAS加热温度的最大特点是石墨管里温度基本均匀、原子蒸气浓度基本均匀。AAS的使用者不应一味追求原子化温度高,不是纵向加热的3000℃就比横向加热的2650℃好。只要原子化后,原子蒸汽浓度能满足AAS检出限(或灵敏度)的要求就可以了;并且,要求在相同温度下,原子蒸汽的浓度越高越好、原子蒸汽浓度越均匀越好。一般元素在1500℃-2500℃都能开始原子化;而有些元素1500℃以下、甚至几百度就能开始原子化[2]。目前还没有发现温度必须达到2600℃以上才能开始原子化的元素。纵向加热石墨炉的AAS,即使制造商说仪器能提供3000℃的原子化温度,也只是说石墨管中心这一点处的温度是3000℃,并非整个石墨管里(包括两端)的温度都能达到3000℃;实际上,纵向加热石墨管中心点的温度达到3000℃时,两端的温度只有1600℃左右。原子蒸气的浓度也和温度一样,并且呈正太分布[2]。而横向加热石墨炉AAS的最高加热温度是2650℃,是指石墨管里中心点处的温度是2650℃时,两端的温度可以达到2000℃,比纵向加热高出400℃;并且,横向加热时原子蒸气浓度在石墨管中的分布基本上是均匀的。从整个石墨管里的温度、原子蒸气浓度来看,横向加热优于纵向加热。因为横向加热石墨炉AAS仪器原子化器的温度均匀,所以石墨管内原子化蒸汽浓度均匀,在石墨管中心温度为2650℃的情况下,石墨管里整个空间的原子蒸汽浓度高。因为纵向加热AAS石墨管内的原子化器的温度不均匀,在石墨管中心温度为3000℃情况下,石墨管里两头的原子蒸汽浓度比较低;从下面的图表,可以清楚看出;当加热温度为2000℃时,横向加热时石墨管里的温度基本上为均匀分布的2000℃,而同样情况下,纵向加热时石墨管里的温度不均匀,呈正态分布,石墨管中心温度为2000℃时,两端的温度只有1600℃。2)一般元素对原子化温度的要求[3] 据文献报道[3]、[4]:很多元素1000℃左右就开始原子化(大多如此);各元素原子化温度不同,第一族至第八族元素共61种, 1000℃以下没有能较好原子化的元素。值得提出的是:纵向加热时石墨管中心的温度3000℃时,两端的温度只有℃1600℃[2],石墨管里的温度呈正态分布,原子蒸汽也是呈正态分布;横向加热2650℃,整个石墨管里的温度基本上是平坦的,原子蒸汽的分布基本上也是平坦的。所以,从仪器学角度看,如果只是石墨管中心温度高,而两端的温度梯度太大,说明石墨管里的原子蒸汽也是梯度分布,这样会影响AAS的灵敏度、稳定性、峰拖尾等等。特别应该指出的是:从仪器学理论来讲,Campbell[7]等提出的“原子化起始温度”概念、马怡载等[8] 和王平欣等[9]定义的“原子化出现温度”的概念都非常重要;马怡载等说的是产生0.004吸光度(即:产生1%吸收)时所对应的温度为“原子化出现温度”;王平欣等说的是指产生2倍噪声的吸光度时所对应的原子化温度为“原子化出现温度”。这些概念,对理解石墨管里的原子化温度非常重要。一般来讲,他们说的这些温度基本上都是指在一定条件下,这些温度下产生的原子蒸汽浓度能够测出它们对光的吸收(或者说能产生1%吸收)。也就是说,在这个温度下元素开始原子化产生的原子蒸汽浓度,就能满足检测到2倍噪声的吸光度值的要求。这也就是我们说的原子化温度。马怡载等测出的54种元素的“原子化出现温度”中,最高的为2573K(Tu),其余53种都在此温度以下。所以,横向加热石墨炉AAS的2650℃,完全能满足分析工作的要求。不会有2600℃以上才能开始原子化,更不会有3000℃才会产生“原子化出现温度”的元素。根据李攻科[5]、[6]等人报道,“元素的理论原子化效率,是原子化温度的函数;在一定的原子化温度范围内(如:900℃ -2300℃),理论原子化效率与原子化温度呈线性递增关系”;“… … 在一定的原子化温度范围内,理论原子化效率随原子化温度变化的斜率是相近的”。所以,在同一种加热方式下,AAS仪器能给出温度高者为好;但是,纵向加热的理论极限值是3000℃,横向加热是2650℃,如果温度再增高就会产生多布勒增宽,使谱线变宽,再以峰高计算时会降低灵敏度。上表中的温度不是绝对数值,只能供读者参考;因为随着仪器不同、仪器条件选择的不同、环境的不同等等,数字可能会有变化。2、关于横向、纵向加热的原子化时间、原子化温度、灵敏度和重复性与纵向加热的比较[2]1)原子化时间比较(数据来自各厂商当时市场在用仪器的使用手册)上表中的温度不是绝对数值,只能供读者参考;因为随着仪器不同、仪器条件选择的不同、环境的不同等等,数字可能会有变化。2)关于横向、纵向加热的原子化时间、原子化温度、灵敏度和重复性与纵向加热的比较[2]由表所述,在相同条件下,同一种元素的同样原子蒸气浓度的情况下,横向加热比纵向加热温度低。3)灵敏度比较(数据来自各厂商当时市场在用仪器的使用手册)综上所述,横向加热的灵敏度比纵向加热高。但是,有些AAS使用者在仪器条件的选择、样品前处理上没有认真思考,没有根据仪器学理论要求,没有选择仪器在最佳条件下工作,所以,有些人用横向加热仪器做出的灵敏度不如纵向加热仪器,就误认为横向加热石墨炉AAS的灵敏度不如纵向加热石墨炉AAS的灵敏度高。对于仪器学理论和仪器条件的学习是值得AAS使用者应该特别注意、应该认真研究的问题,所有AAS的使用者都应该对此引起高度重视。4)重复性[2]试样在石墨里的位置、均匀程度等状态,会直接影响其原子化程度,即原子蒸汽浓度;而横向加热试样处在石墨管内的平台上,纵向加热试样处在石墨管内壁上(凹面上)。二者的加热效率是横向加热大大优于纵向加热。因此二者的RSD明显不同。如表所述,横向加热的RSD优于纵向加热的RSD。结论:综上所述,可以得出横向加热AAS与纵向加热AAS优缺点的比较结论如下:(1)横向加热石墨炉AAS的原子化时间短,利于保护炉体、延长炉体寿命;纵向加热石墨炉的原子化时间长,不利于保护炉体、容易损坏炉体;(2)横向加热AAS的灵敏度比纵向加热的灵敏度高;主要是因为前者温度均匀,原子蒸汽浓度均匀所致;(3)横向加热AAS的重复性(RSD)优于纵向加热的AAS;也是因为石墨管内温度均匀所致;3、关于横向加热氘灯扣背景和塞曼扣背景[2]1)横向加热AAS氘灯扣背景的优缺点:优点:空心阴极灯的光不分束(总光能量强大);紫外区光强度大;制造难度小、价格便宜;缺点:只能适用于UV区(但是AAS主要用在紫外区)2)横向加热塞曼扣背景的优缺点:优点:全波段扣背景(但AAS可见区很少使用全波段,基本上使用在紫外段) 缺点:空心阴极灯的光要分成两束光;紫外区光能量弱(AAS主要用在紫外区);制造难度大;价格贵!3)氘灯扣背景的横向加热AAS与塞曼扣背景AAS灵敏度(特征质量)的比较:国产的氘灯扣背景横向加热(某国产)与美国塞曼扣背景横向加热(某国产)灵敏度(特征量)的比较(数据来自有关商家的用户手册);共21个元素;国产TAS-990的灵敏度有19个元素优于美国AA-800。4、结论: 综上所述,可以得出以下结论:1)石墨炉横向加热AAS优于纵向加热的AAS,理由如下:①横向加热石墨炉AAS,其石墨管内原子蒸汽浓度均匀、温度曲线平坦;纵向加热石墨炉AAS的原子蒸汽浓度不均匀、温度曲线呈正态分布;②没有或很少元素要求3000℃才能够开始原子化;③ 使用者不能盲目追求原子化的温度(高);温度过高时会产生多普勒增宽,使谱线变矮、变宽,降低灵敏度,还会可能损坏炉体;④ 横向加热石墨炉AAS有十大优点[2];特别是灵敏度、重复性、原子化时间、原子化温度等技术指标都优于纵向加热石墨炉AAS;2)氘灯扣背景的横向加热AAS,在检测一些元素的灵敏度优于塞曼扣背景的横向加热AAS;并且性价比高、结构简单、操作简便。3)塞曼扣背景只是AAS扣背景的方法之一,有一定优势;氘灯扣背景也是横向加热AAS扣背景的方法之一,也有一定优点;所以,不能简单的说氘灯扣背景的AAS不是横向加热的AAS。4)横向加热AAS最主要的缺点是:仪器结构比较复杂、加工难度大;这也是为什么目前全世界只有六家公司能够生产横向加热AAS仪器的主要原因。5、主要参考文献[1]李昌厚著,仪器学理论与实践,北京:科学出版社,2006 [2]李昌厚著,原子吸收分光光度计仪器及其应用,北京:科学出 版社,2006[3]邓勃等编著,原子吸收光谱分析,北京:化学工业出版社,2004[4]邓勃著,原子吸收光谱分析的原理、技术和应用,北京:清华大学出版社,2004 [5]李攻科等,杨秀环,张展霞, GFAAS中理论原子化效率与原子化温度的关系研究光谱学与光谱分析,2001, 20(l),76 [6]李攻科等,杨秀环,张展霞,原子吸收光谱分析中石墨炉的原子化效率,光谱学与光谱分析, 2002,22(1),278[7] Campbell W C ,Ottaway J M.Atom –formation processes in carbon-furnaceatomizers used in atomic absorption spectrometry .Talanta ,1974,21(8):837[8] 马怡载等,石墨炉原子吸收光谱法,北京:原子能出版社[9] 王平欣等,“出现温度”观念及其在考察原子化机理过程中的应用,光谱学与光谱分析,1986,5(6),56Abstuact:According to the theory of instrumention and analysiss chemistry, The characteristics for Graphite fumace atomic absorption transverse heating and Longitudinal heating of graphite fumace atomic absorption in atomization temperature ,background correction ,atomization time ,repeatability and sensitivity aspect etc compared .Meanwhilsomproble discussed in this paper.作者简介李昌厚,男,中国科学院上海生物工程研究中心原仪器分析室主任、兼生命科学仪器及其应用研究室主任、教授、博士生导师、华东理工大学兼职教授,终身享受国务院政府特殊津贴。主要研究方向:长期从事分析仪器研究开发和分析仪器应用研究。主要从事光谱仪器(紫外吸收光谱、原子吸收光谱、旋光光谱、分子荧光光谱、原子荧光、拉曼光谱等)、色谱仪器(液相色谱、气相色谱等)及其应用研究;特别对《仪器学理论》和分析仪器指标检测等有精深研究;以第一完成者身份,完成科研成果15项。由中科院组织专家鉴定,其中13项达到鉴定时国际上同类仪器的先进水平,2项填补国内空白;以第一完成者身份获得国家级和省部级科技成果奖5项(含国家发明奖1项);发表论文183篇,出版专著5本;现任中国仪器仪表学会理事、《生命科学仪器》付主编;曾任中国仪器仪表学会分析仪器分会第五届、第六届付理事长;国家认监委计量认证/审查认可国家级常任评审员、国家科技部“十五”、“十一五”、“十二五”和“十三五”重大仪器及其应用专项的技术专家组成员或组长、上海市科学仪器专家组成员、《光学仪器》副主编、《光谱仪器与分析》副主编、《生命科学仪器》副主编、上海化工研究院院士专家工作站成员等十多个学术团体和专家委员会成员等职务。
  • 电子束加热控制器研制
    成果名称电子束加热控制器单位名称中科院物理研究所联系人郇庆联系邮箱qhuan_uci@yahoo.com成果成熟度□正在研发 □已有样机 □通过小试 □通过中试 √ 可以量产合作方式√ 技术转让 √ 技术入股 □合作开发 √ 其他成果简介: 电子束加热是实验中经常用到的样品加热、蒸发和处理方式,加热中需要给灯丝提供电流、提供所需的高压电源甚至还需要束流检测和反馈控制。该电子束加热控制器集成了电子束加热所需的全部功能,可以在手动、恒压、恒发射电流、恒加热功率以及束流反馈等多种模式下工作。采用ARM为核心的主控系统和5.6寸触摸液晶屏,操作简便、界面友好。具备以太网口、USB口等多种数字接口,可实现数据存储输出、固件的远程更新和远程故障诊断。目前该设备已在国内外多家单位进行了尝试性推广,包括中科院物理所、清华大学、北京大学、复旦大学、中国科技大学、武汉物数所、美国伊利诺伊大学芝加哥分校等,反响很好。其主要技术指标为: 最大输出功率: 250W 输出电压范围: 0~2KV 输出电流范围: 0~125mA 灯丝电流: 0~3A 工作模式: 手动/自动(恒压、恒发射电流、恒加热功率、恒束流) 束流检测范围: 100pA~1mA 最小分辨率为1pA 应用前景: 主要用于电子束加热样品台、电子束加热蒸发源等装置,也可单独作为手动高压电源使用。应用范围广,估计每年国内市场需求在百套以上。知识产权及项目获奖情况: 发明专利:201410527768.4 201510220859.8
  • 戏说纵向加热石墨炉(收官之作)
    前 言:   自从70年代起其至今,我使用过好几款仪器的石墨炉,如:PE403,PE5000,PE3010,GGX-3,180-80,Z-8000,Z-5000,Z-2000,ZA3000等。凑巧的是,上述仪器的石墨炉全部是纵向加热类型的。为了活跃论坛这个&ldquo 草根&rdquo 平台,我就将这些年对纵向加热型石墨炉的认识和体会展现给版友。   遗憾的是,一来本人的理论水平有限,二来有关石墨炉的文献与论文,从60年代的石墨炉鼻祖利沃夫和马斯曼起,一直到目前的国内外众多的原吸大咖止,比比皆是,令人目不暇接,且全部是正说。因此,如果我也采用&ldquo 正说&rdquo 石墨炉的形式,则深感力不从心,故只能&ldquo 戏说&rdquo 了,望大家见谅!   (一)纵向石墨炉的历史:   1959年,前苏联科学家利沃夫(L,vov)设计出了石墨炉坩埚原子化器。   1967年,德国学者马斯曼(H.Massmann)从利沃夫的石墨原子化器得到灵感,设计出电热石墨炉并于1970年被PE公司应用到商品原吸仪器上。   由于马斯曼设计的纵向电加热石墨炉首次成为商品仪器,所以之后有人就将这种纵向加热结构的石墨炉称之为&ldquo 马斯曼炉&rdquo ,以示纪念。   (二)纵向石墨管的结构:   首先要搞清楚何为&ldquo 纵向&rdquo ?所谓的纵向就是指作用在石墨管上的加热电流I的流通方向与通过石墨管光轴的方向一致。见图-1 所示:   图-1 纵向加热石墨炉示意图   纵向加热石墨炉的整体外观和结构示意以及实体分解如图-2,3,4所示:   图-2 纵向石墨炉外观图(Z-2000)   图-3 纵向石墨炉结构示意图   图-4 纵向石墨炉实体分解图(Z-2000)   从图-3 和图-4 可以看出,纵向石墨炉主要是由:石墨管,石墨环,电极和石英窗组成。   由于纵向石墨炉问世最早,结构相对简单,石墨管加工的一致性好且成本低廉,加之技术成熟,所以该类型的石墨炉应用较为广泛 目前国内外的原子吸收光度计的生产厂家绝大部分仍然采用的是该类型的石墨炉。   (三)纵向石墨管的种类:   无论是纵向石墨炉还是横向石墨炉,最终做热功的还是石墨管 为此有必要介绍一下纵向石墨管的种类和特点。图-5 所示的就是一部分纵向加热的石墨管的外观图。   图-5 形形色色的纵向石墨管   不知大家注意没有,在上图中最右侧的那个&ldquo 高大上&rdquo 的石墨管,就是我在70年代时使用过的美国PE-403型原子吸收分光光度计中石墨炉上的石墨管,可惜当时没有想起要保存下一只该管子的实物作为留念,不能不说是一件憾事!   (1)筒形石墨管:   纵向加热石墨炉从问世开始(以PE公司原吸为代表),石墨管就是筒形的,直至目前许多国内外仪器生产厂家例如:PE公司,热电公司,瓦里安公司,GBC公司的部分型号的仪器仍然使用着这种石墨管。如下面所示:   图-6 几种进口仪器使用的筒形石墨管   最早的传统筒形石墨管有一个弱点,那就是:由于管子的管壁厚度一致,也就是管子整体的任何一个部位的电阻值是均匀的,所以当石墨管通电加热时,理论上管子的整体的温度应该是均匀一致的才对。这种石墨管的剖面图如下:   图-7 传统筒形石墨管的剖面图   可是遗憾的是,由于纵向石墨管两端紧贴着两个质量很大的石墨环和电极之故(见图-4),所以在原子化加热开始的瞬间,石墨管两端的温度就会因为石墨环和电极的热传导作用而低于石墨管的中央部分的温度 其后经过暂短的时间后(约零点几秒),管子整体才会达到热平衡。这,就是在许多资料中所经常被垢病的&ldquo 温度梯度&rdquo 现象。   为了克服这种&ldquo 温度梯度&rdquo 的弊端,于是后人们便产生了提高筒形石墨管两端电阻值的设想。这样原来的一个阻值均匀的石墨管整体R就会被等效看做为三个串联的单体,即(R左R中  那么如何提高筒形石墨管两端的电阻值呢?方法只有一个,那就是减少管子两端管壁的厚度。我们在初中物理学到过,一个导电体的截面积与其电阻值成反比。所以减少石墨管两端管壁的厚度就可以提高电阻值。但是要想减少管子两端管壁的厚度,却不能通过将管子外径切削变薄来实现 其原因是:石墨管两端还要保持与石墨环大面积的紧密接触才能减少热损耗。所以即要想提高电阻又要保持管子与石墨环的紧密接触,那只能在管子的内壁上做文章。具体的做法是:用车刀在管子内壁两端刻上几刀沟槽,这样既不影响管子与石墨环的接触也可以提高了两端的电阻值了,可谓一举两得。其示意图和实体图见图-8和图-9 所示:   图-8 改良后的筒形石墨管示意图   图-9 改良后的筒形石墨管剖面实体图   (2)鼓形石墨管:   改良型石墨管尽管缩短了管子整体的热平衡时间,但是效果还是不太理想。于是有的仪器厂家就设想:如果让纵向石墨管中央放置样品的部位先行到达原子化温度不就可以忽略石墨环的散热影响了吗?要想做到这一点,就要从改良型筒形石墨管做反向思维了 那就是让石墨管的三部分变为(R左R右)了,于是乎,鼓形石墨管则应运而生了 其外观如下次:   图-10 鼓形石墨管外观   看到上面的鼓形石墨管,也许有人会问:这种石墨管的外径中间粗(8mm)两端细(7mm),如果依照前面导体的截面积与电阻成反比的定律,那么此管子的中央部位外径比两端的要粗1mm,其截面积一定大啊!按道理应该中间部位的电阻要小于两端才对,怎么反而说比两端的阻值要大呢?   下面我将此类管子的实际剖面图展现出来,大家就一目了然了,见图-11所示:   图-11 鼓形石墨管的剖面实例图   从上面的照片可以看到,尽管鼓形管的中间外径较两端大1毫米,但是其管壁厚度却小于两端的厚度,两者之差为(2mm-1.5mm)=0.5mm 千万别小看了这区区的0.5毫米的厚度,他却使石墨管中央部分的截面积整整小了约1/4。这样的差别,就会使该管子在原子化加热的瞬间,其中间部位迅速到达预设的原子化温度。如果用肉眼从石墨炉上盖的进样孔观察石墨管的升温状态就会发现这一过程 如图-12,13所示:   图-12 鼓形石墨管在原子化阶段升温瞬间的状态   图-13 鼓形石墨管在原子化阶段迅速达到平衡的状态   从上面两张照片图可以清晰地看到,鼓形石墨管在原子化开始的瞬间的确是从中央部位先行到达预设的原子化温度的,然后再向两端迅速延伸直至达到整体的热平衡,而这个平衡时间是非常短暂的。目前此类型石墨管主要是应用在岛津和日立的原吸上面。   此外这种鼓形石墨管还有一个优点,那就是管子中间的凹陷部位注入样品后液体不会向两端扩散 这样就保证了全部样品集中在温度最高的区域,有利于原子化。   (3)异形石墨管:   这类石墨管主要是喇叭型和哑铃型两类 由于目前几乎难以见到,故不再赘述。   (4)双进样孔鼓型石墨管:   这是一种新型的石墨管,其特点是:石墨管中央注入样品的部位被分割为两个空间 这样设计的目的是可以加大进样量,对低含量的样品起到了一个富集的效果 但是采用这种石墨管的仪器对自动进样器的精度要求是很高的,目前为止,这种双孔进样方式只有日立ZA3000型原子吸收上采用 而在横向加热石墨管上是不能实现的。该型管子的外观图和剖面图如下所示:   图-14 双孔石墨管的外观图  图-15 双孔石墨管剖面图   (5)平台石墨管:   此类石墨管就是在管子的中央安放一个悬浮的石墨平台,样品加注在平台上以完成原子化过程。平台石墨管的设计理念就是实现石墨炉分析鼻祖B.V.L&rsquo vov提出的&ldquo 恒温原子化&rdquo 的理念而问世的。该石墨管的剖面图如下:   图-16 平台石墨管   (四)纵向石墨炉的特点:   (1)升温速率:   众所周知,无论石墨炉是何种形式的,其最终做功而产生的焦耳热的关键部件是由石墨管来完成的。而影响石墨炉灵敏度和重现性的一个重要的因素则是:升温程序由灰化阶段转为原子化阶段瞬间的升温速率的快慢。   为何这个转换速率对分析的灵敏度的影响是那样大呢?其实原因很简单:当样品完成灰化步骤后,石墨管由灰化阶跃到原子化阶段的时间越短(即升温速率快)样品产生的基态原子数目越多,自然检测到的信号就越强。反之,如果石墨管升温速率慢的话,一部分样品在还未形成基态原子前就会被载气吹跑掉了,自然灵敏度就下降了。这也就是为何石墨炉在原子化阶段采取停止载气的做法的缘由 任何事物都是一分为二的,虽然可以通过停止载气来提高检测信号的灵敏度,但是样品信号的背景值也会随之加大了,熊掌鱼翅不可兼得。   那么影响石墨管升温速率的因素又是什么呢?答案是:石墨管本身的质量的大小 在同等的升温条件下,质量越小升温速率越快。举一个试验例子:如果将一个大铁球和一个小铁球同时放到火炉中,哪一个先红?毋庸置疑,还是小铁球先红(即达到热平衡早),我想这个试验结果大家均会给予认可的。目前的纵向石墨管无论是筒形的还是鼓形的其质量均在1克左右 见下表-1:   表-1   而横向石墨管的质量均比纵向石墨管大的多,一般在2.5~5.4克之间,见下表-2:   表-2   对于横向加热的石墨管而言,由于其本身的质量大于纵向石墨管,所以实际上更加注意升温速率的问题 这些石墨管的设计理念与纵向鼓形石墨管的设计如出一辙,其结构也是中央管壁薄两端管壁厚,从而造成管子整体中央电阻值大二两端小,并且这个厚薄的差异较纵向鼓形石墨管还要明显,远远大于0.5mm。见下图所示:   图-17 PE公司横向石墨管剖面图   图-18 Jena公司横向石墨管侧面图   图-19 GBC公司横向石墨管侧面图   所以,在升温速率上:从整体来看纵向石墨管优于横向石墨管(质量不同) 从局部来看二者接近(使用空间一样)。   (2)温度梯度:   自从纵向加热石墨炉问世以来,关于石墨管整个腔体内空间的温度梯度问题一直就是一个饱受诟病的争论焦点。为此,石墨炉分析鼻祖利沃夫(L,vov)先生就提出了一个&ldquo 恒温原子化&rdquo 的理念。大家熟悉的平台石墨管就是出于这个目的而研发出来的。   前面已经讲到,由于纵向石墨管两端存在石墨环和水冷电极的散热作用,故在原子化的瞬间致使管子的整体产生了一个两端低,中间高的&ldquo 温度梯度&rdquo 现象 这是一个不争的事实。   但是经过了一个暂短的时间后,石墨管会立即达到热平衡了。见下图所示:   图-20 筒形石墨管原子化阶段的升温模型   图-21 鼓形石墨管原子化阶段的升温模型   从上面的两张图的比较可以看出,鼓形管由于中间部分的温度高,故其升温速率要稍高于筒形管。   那么,横向加热的石墨管的究竟有没有&ldquo 温度梯度&rdquo 呢?见下模型图:   图-22 横向石墨炉工作原理   图-23 横向石墨管原子化阶段的升温模型   从图-22,23可以看出,横向石墨管在与电极接触的上下两端,同样也存在水冷电极的散热效应,所以对于横向石墨管整体而言同样也存在着温度梯度,只不过是在光轴通过的区域没有温度梯度罢了。因此纵向与横向石墨管的温度梯度的区别是:从整体来看,二者均有,仅是部位不同 从光轴观察空间来看,在原子化的瞬间,横向石墨管优于纵向石墨管 但是管子温度到达平衡后,二者相差无几了。既然横向石墨管的中间部位没有温度梯度的弊端,但是目前有些横向石墨管(例如PE的)仍然采用平台式的,这是为什么?   现在的问题关键是,纵向石墨管在原子化的瞬间,管子整体确实存在着温度梯度,这是一个无可争辩的事实。这个过程可用下面的模型图来说明:   图-24 鼓形石墨管原子化瞬间的升温模型图   通过上面的模型图不难看出几点:   1)在原子化瞬间鼓形管的确存在温度梯度,并且鼓形管的中央已经先行到达了预设的原子化温度(参看图-12)。   2)当石墨管整体温度到达平衡后,两端与石墨环接触的狭小部位的温度严格地讲要略低于整体的温度,这是因为石墨环的电阻要小于石墨管,因此在做功时其温度肯定比石墨管低,但是却要比水冷电极的温度高多了 由此看来,石墨环在这里不仅仅起到加持石墨管的作用,另一个不可忽略的作用就是:在石墨管和电极之间起到一个温度缓冲的隔离作用 如此就可将石墨管两端的温度梯度的影响降到了最小的程度。   3)鼓形石墨管的容积约600微升,而样品为20微升,仅占总容积的1/30,且位居管子中部。我的疑问:管子两端瞬时的温度梯度能对管子中央部位的20微升的样品产生多大的影响?我想这可能就如同地球一样,尽管南北两极温度很低,但是生活在赤道的居民没有感到寒冷吧?   4)当鼓形石墨管温度平衡后与横向加热石墨管的状态所差无几(参看图-13)。   5)石墨环的质量越小,温度梯度的影响也就越小。   6)石墨炉电路采用温控方式可以减少温度梯度的影响。   (3)零点漂移:   纵向石墨管从室温升高至3000° 时,管子本身因热涨的原因会延伸1毫米。由于纵向石墨管的延伸方向与光轴呈现同心圆的状态,所以尽管子受热膨胀,但是不会因物理挡光而使零点信号漂移。这个状态可由下图模型说明:   图-25 纵向石墨管受热膨胀方向与光轴的关系   但是当横向石墨管在受热膨胀时,其延伸方向会与光轴方向形成正交,从而影响了零点的位移。所以经常听到使用横向加热石墨炉的用户反映:&ldquo 为何我的石墨炉在空烧时会产生一个很大的吸收啊?&rdquo 其原因就在于此。这种横向石墨管在加热时的位移模型图如下所示:   图-26 横向石墨管受热膨胀方向与光轴方向的正交关系   实际上,这种石墨管膨胀方向与光轴形成正交的结果还不仅仅是零点的漂移的问题,因为石墨管在原子化阶段,管腔里面的待测元素和背景的活动非常复杂,据说要用量子力学来解释。正因如此,一直以来许多科学大咖对这个课题的研究从未停止过。   (五)纵向石墨管的加工和价格:  通过前面的介绍可以看到,无论是筒形的和鼓形的石墨管,均是圆桶形的 因此加工起来就非常简单了,仅仅使用车床切削即可 并且由于加工工序简单,所以加工出来的成品的同一性,如尺寸,质量等就很容易保证,所以价格低廉。   而横向石墨管又别称&ldquo 异形石墨管&rdquo ,所以加工起来就相对复杂多了,需要好几道工序,如PE800的石墨管,不但要切削,还要大量的铣床工序,这可以从下图的外观造型上得到印证,所以其价格较为昂贵就在所难免啦!   图-27PE800石墨管   备 注:   (1)由于本文为&ldquo 戏说&rdquo ,可能难免有些观点不严谨或不科学,那么各位看官就权且当做饭后茶余的消遣罢了 不妥之处,尽可莞尔一笑。   (2)由于本文仅仅是谈谈个人多年来对于自己使用的纵向石墨炉的体会和看法,之所以例举了横向石墨炉的一些特点,也仅仅是为了做对比说明,仅此而已,并无丝毫褒贬和厚此薄彼之意,特此说明。
  • Talboys Professional型系列加热板及加热磁力搅拌器半价促销
    Talboys Professional型系列 加热板及加热磁力搅拌器 半价促销 促销期:4月15日至6月30日。 仪器包含: 主机一台; 不锈钢外置温度探头: 探头固定夹套装; 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 智能全自动加液COD加热消解仪研制
    table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr td width=" 131" p style=" line-height: 1.75em " 成果名称 /p /td td width=" 517" colspan=" 3" p style=" line-height: 1.75em " 智能全自动加液COD加热消解仪 /p /td /tr tr td width=" 131" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 517" colspan=" 3" p style=" line-height: 1.75em " 山东鲁仪分析仪器有限公司 /p /td /tr tr td width=" 131" p style=" line-height: 1.75em " 联系人 /p /td td width=" 227" p style=" line-height: 1.75em " 耿佃刚 /p /td td width=" 103" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 187" p style=" line-height: 1.75em " luyichina@sohu.com /p /td /tr tr td width=" 131" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 517" colspan=" 3" p style=" line-height: 1.75em " □正在研发 & nbsp □已有样机 & nbsp □通过小试 & nbsp □通过中试 √可以量产 /p /td /tr tr td width=" 131" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 517" colspan=" 3" p style=" line-height: 1.75em " √技术转让 & nbsp & nbsp √技术入股 & nbsp & nbsp √合作开发 & nbsp & nbsp & nbsp √其他 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 成果简介: /strong br/ & nbsp & nbsp /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201603/insimg/451c6609-e7d0-4cb3-8e5e-b58caa87a537.jpg" title=" 呵呵.png" width=" 350" height=" 376" border=" 0" hspace=" 0" vspace=" 0" style=" width: 350px height: 376px " / /p p style=" line-height: 1.75em " & nbsp br/ /p p style=" line-height: 1.75em " & nbsp & nbsp 本仪器为国内外先进水平,其主要特点和功能是,先进的12孔单元加热消解、单孔计时、尾气吸收、全自动加液,即时温度、回流计时时间同步显示,并且测量溶液真实温度,智能自动屏蔽加热元件和测温元件有故障的加热孔,完全避免加热失败。采用溶液直接测温,完全摒弃加热元件的间接测温模式,准确测量溶液的真正温度,使消解真正符合国标的要求。本设备最大可节省电能91.7%,节省水资源99%。 br/ & nbsp & nbsp & nbsp & nbsp 加热方式:& nbsp 高热传导的高纯石墨& nbsp & nbsp PID单孔控温& nbsp & nbsp & nbsp br/ & nbsp & nbsp & nbsp & nbsp 隔热材料:& nbsp 陶瓷纤维及独特降温风道技术 br/ & nbsp & nbsp & nbsp & nbsp 显示:& nbsp & nbsp & nbsp & nbsp & nbsp 3.5寸彩色液晶显示屏 br/ & nbsp & nbsp & nbsp & nbsp 消化管: & nbsp & nbsp 300ml(满容量H2O 20℃) br/ & nbsp & nbsp & nbsp & nbsp 处理能力:& nbsp 12个/批 br/ & nbsp & nbsp & nbsp & nbsp 电源:& nbsp & nbsp & nbsp & nbsp & nbsp 220V± 10% AC& nbsp & nbsp & nbsp & nbsp 50Hz& nbsp br/ & nbsp & nbsp & nbsp & nbsp 额定功率:& nbsp 3.6KW(300W*12) br/ & nbsp & nbsp & nbsp & nbsp 节电:& nbsp & nbsp & nbsp & nbsp & nbsp ≥91.7%(1个样品,与传统加热消解仪相比) br/ & nbsp & nbsp & nbsp & nbsp 节水: & nbsp & nbsp & nbsp ≥99%(1个样品,与传统加热消解仪相比) br/ & nbsp & nbsp & nbsp & nbsp 控温精度: & nbsp ≤± 0.1℃ br/ & nbsp & nbsp & nbsp & nbsp 加液精确度:≤0.5% br/ & nbsp & nbsp & nbsp & nbsp 加液准确度:≤± 0.1ml /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp & nbsp 1、本项目经济效益非常明显,保守估计市场容量可达1-1.5万台,销售额可达3-5亿元,有力地提升了相关产业竞争力。本项目系列产品具有广泛的使用范围和广阔的市场前景。 br/ & nbsp & nbsp & nbsp 使用COD消解仪的用户最保守的估计也有10-15万家,这些企业大都需要COD消解仪,并且有的单位还往往使用多台,这些设备都到了更换、或者更新换代的时间,按保守估计,按平均10%的客户选用该仪器,也需要1-1.5万台。所以市场空间是非常大的。 br/ & nbsp & nbsp & nbsp 2、本项目对经济社会可持续、协调发展的支撑作用 br/ & nbsp & nbsp & nbsp 符合当前社会需要低碳、环保的呼声,节电、节水,社会效益也非常有优势,在越来越强调“安全第一,以人为本”的大环境下,有效避免人员直接操作浓硫酸的安全隐患。 br/ & nbsp & nbsp & nbsp 3、本项目对行业技术进步的支撑作用 br/ & nbsp & nbsp & nbsp 本仪器完全可以消除在严格执行国标过程中存在的问题,有效避免因现有技术缺陷而引起的结果偏差大的问题,更主要的是该项目的实施使国家环保标准从技术上真正得到落实,而不需要对国家标准的各种变通,保证了国家标准的严肃性和权威性,这是国家职能部门执法的有利支持和保证,是建立法制国家的必要选择。 br/ & nbsp & nbsp & nbsp 4、本项目的社会效益显著,并且项目实施中可能形成的示范基地、中试线、生产线及其规模,或对所依托的重大工程建设或重大装备研制产生的作用。 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 知识产权及项目获奖情况: /strong br/ & nbsp & nbsp & nbsp 1、专利情况(自主知识产权,专利权人为本公司负责人 耿佃刚) br/ & nbsp & nbsp & nbsp 201420020209x& nbsp & nbsp 实用新型& nbsp & nbsp & nbsp 一种快速降温的消解装置 br/ & nbsp & nbsp & nbsp 2014200203783& nbsp & nbsp 实用新型& nbsp & nbsp & nbsp 一种测定水质中化学需氧量的加热消解恒温器装置 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp 2、入选济南市发展计划扶持项目 /p /td /tr /tbody /table p br/ /p
  • 西北油田加热炉玻璃管液位计法兰改造获成功
    p /p p   日前,西北油田采油二厂采油管理三区对加热炉玻璃管液位计法兰改造获得成功。改造后可调节法兰,在更换玻璃管液位计时,既方便快捷,又节约生产成本。 /p p   该采油管理区所管理的231口生产油井均为稠油井,需要安装加热炉加温输送原油。其加热炉玻璃管液位计是便于职工观察水位,及时补水,确保加热炉正常运行。然而,原来加热炉玻璃管液位计法兰均为固定法兰,不便于更换玻璃管液位计,工序繁多麻烦,还易把液位计损坏。尤其在冬季中,玻璃管液位计非常冻裂,更换频次增多。有时,如法兰固定螺丝锈蚀,又要动用电气焊切割,更换起来更费时费力,一次还要增加1000元至2000元的生产成本。 /p p   日前,该采油管理设备技术人员经过潜心研究,把法兰与加热炉结合部增加一个长度约3公分的内丝扣短接,将原来的固定法兰,改造为可以调节法兰。这样,在更换安装玻璃管液位计时可随意调节法兰,既方便快捷,又不会损坏液位计,还不用动用电气焊切割增加生产成本。截止目前,该采油管理区已在18台加热炉改用了这种可调节法兰。下步,全厂667台加热炉将全部推广应用。 /p p br/ /p
  • WIGGENS加热磁力搅拌器“有两把刷子”
    WIGGENS加热磁力搅拌器“有两把刷子” 加热磁力搅拌器是实验室常用的加热仪器。需要加热的时候,我们通常有两种要求:第一是温度精度高;第二是要求加热速度很快。 对于同一套加热控制系统,温度精度高和加热速度快这是相互对立的两个要求。温度精度高,要求加热速度和设定值呈现极限函数接近关系;加热速度快,要求加热曲线成线性比例关系。 为了解决加热速度和温度精度问题,WIGGENS的WH240系列加热磁力搅拌器,采用了一个主机两套温控逻辑,有“两把刷子”PID1型主要针对,加热体积小,对温度精确度要求较高的样品加热。PID2型主要针对,加热体积较大,对温度过冲有一定的忍耐度,对加热速度要求较高的样品。 我们通过试验,看一下两套PID在实际工作中的不同表现 以最常见的加热1000ml 水为例, 设定温度85℃。采用PID1控制,加热到设定温度用时45min,几乎没有温度过冲。温度直接稳定在85℃;采用PID2控制,加热到设定温度,用时22分钟,温度有大约2℃过冲,经过三分钟后稳定在预设温度。 通过WIGGENS研发中心的大量的试验测试得知,在加热体积在500ml以下时,推荐使用PID1型控制。因为加热体积比较小,PID1 和 PID2 在到达设定温度的时间上相差很小,PID1型温控过冲会较小,更有利于精确温控。在需要加热样品量较大,如1000ml, 采用PID2控制,在加热速度上会有明显提升,用时比PID1型减少一半以上的时间。 在对化学反应,小体积样品控温等,采用PID1型控制;当用作加热融化,加热溶解,培养基煮沸等,适合使用PID2型控制。 WIGGENS产品中的加热磁力搅拌器WH240系列,均采用2套PID控制方式。双重PID集成在一台加热仪器上,对仪器的使用范围和效能最大发挥。客户再也不用为加热精度和速度这问题而困扰。实现了一机多用,一机多能的功效,是实验室加热磁力搅拌器的理想选择。
  • CPHI精彩抢先看:海道尔夫加热搅拌解决方案
    海道尔夫加热搅拌解决方案随着科研领域用户们对加热搅拌实验的精确度、高效性、安全性的需求日益提高,海道尔夫提供完整的实验室加热搅拌任务解决方案,旨为用户提供更好的操作体验以及理想的实验结果。此次CPHI展会现场海道尔夫将为观展用户们提供如下解决方案和样机,诚邀您莅临海道尔夫展位操作体验!磁力搅拌器海道尔夫Hei-PLATE Mix 'n' Heat系列加热磁力搅拌器,配备高等级防护外壳,耐腐蚀、防刮擦铝合金陶瓷涂层加热盘面,让搅拌实验不再受“溢出的液体物料、弥漫的油气污染、苛刻的实验环境”的困扰,理想的控温及搅拌性能,800W加热功率,搭配不同的附件可有效扩展应用范围,满足实验室用户对加热搅拌实验结果的均一性、高效性的需求。双旋钮设计可分别控制搅拌及加热功能,LED环形指示灯实时显示设备运行状态带背光的显示屏可显示参数的设定值和实际值800W加热功率有效缩短加热时间,可外接Pt 1000温度传感器用于精确温度控制Expert/Ultimate型号可对加热和搅拌功能独立定时,三种转速启动模式可选,搅拌方向可选,具备搅拌子跳子检测与自动调节功能Expert/Ultimate型号通过接口可连接免费的Hei-Control软件,对您的实验数据进行记录和控制顶置式搅拌器Hei-TORQUE 系列顶置式搅拌器紧凑小巧、易于使用、高扭矩输出、精确的设置选项和用于数据记录的接口。所有型号均允许24小时连续操作,包括在聚合物研究中具有挑战性的高粘度应用。非常适合大量、高粘度介质的搅拌或在反应釜系统中的应用。使用快速无钥匙夹头,可实现单手轻松更换搅拌桨而无需额外工具密封外壳符合IP 54防护等级要求,耐腐蚀性强穿透式搅拌桨设计便于随时调整搅拌桨位置确保理想的搅拌效果的同时,噪音显著降低VISCO JET® 搅拌桨让搅拌大量凝胶成为可能Hei-TORQUE Ultimate型号可编辑实验程序、保存实验方法。实现间歇运行,具备定时及倒计时功能Hei-TORQUE Ultimate型号可连接免费的Hei-Control软件,对您的实验数据进行记录和控制安全加热,精确搅拌END关于HeidolphHeidolph集团是创新型实验室前处理设备的制造厂商。磁力搅拌器、顶置式搅拌器、台式旋转蒸发仪、工业大型旋转蒸发仪、蠕动泵、混匀器、恒温摇床等相关产品构成了Heidolph实验室设备的产品线。集团总部位于德国南部的纽伦堡附近的施瓦巴赫市。作为Heidolph集团全资子公司,海道尔夫仪器设备(上海)有限公司于2019年正式成立,旨在为中国用户提供更为直接、更快速的服务。如需更多详细信息请致电400-021-7800或邮件sales@heidolph-instruments.cn,我们将竭诚为您服务。
  • 实验室新品推荐 --- 加热磁力搅拌器
    广州语特仪器科技有限公司现推出质优价美的新品加热磁力搅拌器。MC-HS170 除了最基本的加热与搅拌功能外, 另可定时,可控制升温速率,加热功率高(800W), 加热盘面积大(170X170MM),堪称是实验室的上佳之选。 功能特点介绍: 微处理PID温度控制。 反馈控制系统能够保持恒定的转速。 自动调节功能和温度校准功能。 多种升温模式控制功能。(最佳模式 / 快速模式 / 慢速模式 / 用户模式 / 点模式) 升温速率可以在0 ~ 100%的范围内调节。 加热器和顶盘的结合式设计使得有超强的热传导率和快速升温的能力。 无刷直流马达和强劲有力的磁力可以确保快速和精确的搅拌速度。 在粘度媒介状态下,平稳启动的系统也能使搅拌子无耦合。 数字显示屏可以精确控温,加热速率可调节。 先进的等待启动/等待关闭定时功能。 定时功能可以运行时立即启动,或实际温度达到设定温度时启动。 独立的加热器开/关按键。 标配的外置温度感应器可以实时监测准确的样品温度。 过温警报指示灯可以防止意外的伤害。 过温和低温限制设置功能。 原装进口,品质保证广州语特公司首代英国Bibby,德国Miccra,德国MC.ART,德国Kirsch,瑞士Gerber的实验仪器设备。如需订购,敬请垂询。 关于语特 和 英国Bibby / 德国Miccra / 德国MCART/ 德国CAT / 瑞士Gerber Instruments广州语特仪器科技有限公司专注于搅拌器/分散乳化机等实验室样品制备等通用仪器, 熔点仪/光度计/冰点仪等分析仪器,以及PCR等生命科学仪器。 作为英国比比(Bibby )在中国南方的首代,广东,广西,四川,重庆,云南,海南,贵州和西藏是我司的服务范围。语特公司也是德国Miccra, MCART,瑞士Gerber Instruments 在中国的总代 也代理德国CAT产品。l 英国BIBBY 成立于上个世纪50年代,作为英国最大的实验室科学仪器生产商, 旗下有5个子品牌:Stuart,Techne,Jenway,Electrothermal, PCRmax. 专注于样品前处理等通用实验室仪器(如:熔点仪, 搅拌器, 混匀器,摇床, 培养箱,干浴器/氮吹仪,水浴,菌落计数器, 纯水蒸馏器),分子生物学研究设备(基因扩增仪PCR,荧光定量PCR,杂交箱);分光光度计/超微量紫外等分析仪器,及平行反应工作站相关产品。 l 德国Miccra 成立于上个世纪,是德国乃至全球最专业的分散乳化专家。顶级分散乳化产品从实验室仪器,中试产品到工业设备, 分散头种类组合高达上百种;应用领域覆盖了化工,化妆品,制药,食品,环保等各大领域。l 瑞士Gerber Instruments 有超过120的历史,是专注于乳食品行业的典型代表。其产品冰点仪, 乳脂离心机, 食品专用PH计, 流出式粘度计等, 风靡欧洲及其它大陆国家。 l 德国MC.ART ,号称实验室小型“机器人”的提供者。其典型代表产品有:全自动分散乳化系统,自动抓取机器人,自动加液机器人,自动封装机器人,自动过滤机器人等实验室自动控制智能设备,以及实验室自动化的定制. 其补充产品有: 搅拌器, 循环水浴, 与德国科奇合作的防爆冰箱, 以及分液漏斗振荡器等.l 德国CAT 成立于上个世纪50年代,是德国样品制备仪器方面的专家之一。其顶置式搅拌器种类多样,从手持式,教学用,到科研通用型,高粘度型,是CAT的代表产品线。
  • 中科院沈阳自动化所加热炉优化控制研究取得进展
    p style=" text-indent: 2em " 冶金行业一直是我国工业的能源消耗大户,是推进节能降耗的重点行业。高炉热风炉和加热炉等装置是节能降耗的关键环节,因此,其燃烧控制与优化问题一直是国内外专家学者研究和关注的重点。 /p p style=" text-indent: 2em " 11月6日,中国科学院沈阳自动化研究所发布消息,该所一项研究成果,为人工智能技术应用于冶金行业加热炉能耗优化控制提供了新方法。 /p p style=" text-indent: 2em " 据介绍,该所科研团队以加热炉的优化控制为切入点,提出了一种基于迁移学习的加热炉炉温预测算法。实现加热炉的优化控制,首先要克服加热炉生产过程中原料来源多样、生产条件多变、工况波动频繁等难题,对加热炉各个加热区的温度精准预测。同时,还需要满足工况对实时性的要求,对预测算法的计算效率和计算时间等性能指标提出了更高的要求。 /p p style=" text-indent: 2em " 为了应对这些挑战,研究团队设计了基于时间卷积网络和迁移学习技术的多区炉温预测框架,并通过生成对抗网络来提升预测精度,建立了实时的炉温预测模型。实例研究表明,团队所提出的基于迁移学习的炉温预测框架在每个加热区快速建模的基础上都能极大提升预测精度。相关学术成果发表于Sensors,也为人工智能技术应用于冶金行业加热炉能耗优化控制提供了新方法。 /p p style=" text-indent: 2em " 近年来,沈阳自动化所数字工厂研究室依托“中科云翼”工业互联网平台开展了基于工业大数据的人工智能方法研究,取得了一系列高水平研究成果,为人工智能和大数据技术与制造工艺的深度融合提供了理论方法和技术支撑。 /p p br/ /p
  • 从原理入手!让我们走进这款WIGGENS红外加热板
    红外线加热板具有操作模式多样化、简单,耐腐蚀,清洁容易等特点,可应用于农业、土壤、环保、食品、科研院所、大专院校等实验、化验室,用于样品加热、烘烤、消化、赶酸等工作。红外线加热的原理:利用物体对光的吸收。红外线的传热形式是辐射传热,由电磁波传递能量。在远红外线照射到被加热的物体时,一部分射线被反射回来,一部分被穿透过去。当发射的远红外线波长和被加热物体的吸收波长一致时,被加热的物体吸收远红外线,这时,物体内部分子和原子发生“共振”——产生强烈的振动、旋转,而振动和旋转使物体温度升高,达到了加热的目的。WIGGENS红外线加热板SLK 1/2/2-T产品介绍* WIGGENS 红外线加热板采用微晶玻璃面板 (Glass Ceramic), 表面光滑 , 无 细孔 , 不易磨损 , 抗化学腐蚀 , 清洁容易, 导热效率高, 均匀度好, 可以承受热震700℃剧烈温度变化, 大幅度满足实验室快速加热与安诠考虑的双重要求* SLK1 / SLK2 红外线加热板具有 24 段温度设定 ,飞梭式设定旋钮 ,大屏幕液晶显示设定温度及实际温度* 旋钮定时功能,设定工作时间及实际工作时间大屏幕液晶显示,工作状态一目了然,可以定时:0-1800s* SLK2-T 可以外接温度传感器,直接控制待加热液体的温度, 控制温度范围: +40~+300℃;温度控制稳定性: ±2℃ ~±5℃ ( 决定于待加热液体物化性质及容器材质形状)* 前面板顶部导流槽设计,确保意外情况下液体不会浸入前面板电源部分茂默科学力求解决行业内客户对科学仪器选型难、维护难的处境。欲了解更多WIGGENS产品,Welcome to consult~
  • 德国LAUDA制冷加热恒温浴RE106现货促销
    为感谢新老用户对德国LAUDA恒温浴的一贯信任与支持,我公司特别安排此次德国LAUDA制冷加热恒温浴RE106现货促销活动,凡在2010年7月15日到2010年9月30日订购此台制冷加热恒温浴恒温浴的用户均可享受最优惠的价格,恒温浴数量有限,订完为止。 LAUDA RE106,具体技术指标如下: 工作温度范围: -20...150oC 控温精度:+/- 0.02oC 加热功率:1.5kW 冷量输出:(20oC)0.2kW (0oC)0.15kW (-20oC)0.05kW 泵最大压力:0.4bar 泵最大流量:17L/min 浴槽容积:4...6L 浴槽开口尺寸/深度:150x130/160mm
  • 世界顶级加热磁力搅拌器,德国IKA全球首发
    功能强大,高度智能化!RET control-visc and RET control-visc白色款,将称重功能植入加热磁力搅拌器,此举全球首创。施陶芬, 2014.05 - IKA全新推出一款堪称无所不能的磁力搅拌器。其内置称重功能为IKA?专利技术,扭矩监控异常灵敏,即使再复杂的搅拌任务它都能胜任;该款磁力搅拌器拥有格外强劲的马达和尖端科技,它完美利用作用力,即使是高粘度复杂介质(如纤维等粘胶类物质),也能得到强烈混合;可调安全回路(50-380℃)确保加热盘安全运行,这一性能大大提升该款磁力搅拌器的安全系数和实现无人看守操作功能。RETcontrol-visc该新款系列有两个型号可选,即RET control-visc 和RET control-visc白色。RET control-visc采用不锈钢加热盘面,加热速率快;RET control-visc白色款加热盘面带有白色陶瓷涂层,具有更高的抗化学腐蚀性能,亦适合于实验室滴定操作。集成温度控制系统配合外接PT100温度探针使得控温精度可高达+/-0.2 K。同时,可选配PT1000双头温度探针,可同时监控样品温度及加热介质温度。RETcontrol-visc白色作为IKA磁力搅拌器家族最高端的型号,RET control-visc拥有诸多尖端技术。TFT显示屏幕可显示多种操作参数,可提供更优质的显示质量和简便导航;内置控制系统可监控扭矩的变化趋势及检测搅拌子是否偏离;内置定时功能;具有三种加热模式:快速升温模式、精确控温模式及二者结合的控制模式;可实现间歇操作;锁机键可有效避免设定参数被意外改动。BNC接口可连接PH电极,样品PH值可显示于主屏幕,同样地,PH电极也能够进行校准。RS232及USB接口可实现对机器进行电脑控制,所有测试数据得以控制并记录。同时,基于免费的固件升级,以确保用户随时随地享用到最新软件。产品应用视点:产品特点特点介绍应用方向专利称重功能内置称重系统,最大承重5Kg用于化学实验中需要持续添料及监控重量变化的实验TFT显示屏幕TFT大屏幕显示,可清晰显示多种参数,操作方便设置及操作方便PH监测自带BNC接口,可连接PH计,实时监测PH变化全部化学及材料学实验,尤其对酸碱度较敏感的反应体系;检测行业的滴定实验定时带有计时及倒计时功能,最长时间为99h59min59s用于实验中的时间记录及控制,以及无人看守实验操作高精温度控制PT100及双头PT1000两种温度探针选择,控温精度可达±0.2℃控温精度是全部加热化学实验的基本要求三种控温模式aPID,fPID,2 pt三种模式可满足不同的加热速率及控温要求可监控介质温度连接双头PT1000温度探针时,可同时监控盘面温度、介质温度及样品温度用于对温控精度要求较高的实验,或需要监控介质温度的实验USB接口可连接电脑用于连接实验室软件,并可对软件进行更新RS232接口用于连接电脑可通过软件对设备进行远程操控并记录数据扭矩监控检测物料粘度的变化趋势用于搅拌过程中物料粘度变化较大的体系,通过粘度判断反应阶段,如材料合成及同分异构体分析搅拌子跳子监测自动检测搅拌是否稳定并进行调整确保稳定均衡的搅拌可调安全温度安全温度范围 50-380℃确保操作安全盘面两种可选不锈钢盘面及带白色陶瓷涂层盘面可选确保稳定的热传导性及传导速率,优良的耐腐蚀性能间歇操作可通过计时控制实现间歇操作提高搅拌的均一性,适用于搅拌量较大或者粘度偏高的物料搅拌锁机键触摸按钮可实现锁机功能确保设置参数不会被意外改动,保证操作安全强劲马达出色的搅拌能力,在物料粘度较大时仍能进行搅拌操作用于物料体系粘度偏大的小处理量实验可连接软件可通过实验室软件进行操作控制及操作用于远程控制三种操作模式ABC三种操作模式可直接在TFT屏幕上进行选择适用于不同的操作条件热警提示热警提示防止烫伤报错提醒ER报错提示有效避免操作失误导致的潜在危害参与 RET 有奖问答,更有惊喜奖品拿:http://www.ika.cn/owa/ika/content.news_detail?iNews=521&iDiv=1
  • 上海比朗全新无菌均质器(套装加热型均质器)上市
    产品名称:套装加热型均质器   商品货号:BILON-13   产品品牌:BILON   产品简介:加热,超静音,带LED照明和紫外消毒功能,含多种配套用品   产品说明:   应用领域:食品微生物分析 动物组织、生物样品、化妆品的均质处理 肉、鱼、蔬菜、水果、饼干 药品的微生物分析等。   主要特征:   ●国际领先的踏板压印功能,使得粉碎更加细致 。   ●箱门:四块强化透明窗口,可确认粉碎运行程度。   ●窗口传感器功能(箱门手柄:start/stop功能,未关紧时红灯亮起)。   ●LED指示灯便于检查内部均质情况   ●踏板距离调节功能:厚/薄样品均可全部粉碎   ●提示功能:(粉碎完成后,自动发出蜂鸣声)   ●通过LCD确认运行状态、速度、时间的功能   ●均质开始时,绿灯闪烁。   ●均质结束时,红灯亮起。   技术参数:   ★进口电机:工作噪音小于55分贝   ★高温保护:温度升至80℃终止运转   ★有效容积:3~400ml   ★规格:W280*D440*H260mm   ★拍击间距:0~50mm可调   ★观察窗:4个   ★压印踏板:2块   ★速度调节:1~10级   ★工作时内部启动LED照明   ★温控范围:室温-60℃,可任意设定   ★消毒功能:拍击箱内消毒灯,可对工作腔预消毒。   标准配置   均质器BILON-13型1台,凹凸压印踏板2块(进口),样品架法国Bagrack400型1个,不锈钢废液收集盘1个,封口夹20个,全封闭均质袋20只(加拿大原装)。   BILON品牌,用心服务 比朗商城套装加热型均质器详细信息http://www.bilon.cc/goods-1535.html
  • 滨松激光加热光源助力更高效、更精确的激光焊接
    如今,用激光进行塑料焊接(Plastic Welding)以及锡焊(Soldering)已是一种十分常见的加工方法。非接触性、高自由度、高速度、高精密是此类方法的突出优点。然而,需要达到理想的焊接效果,怎样的加工条件是最好的?我们都知道,假如使用放大镜将光聚焦在一张纸上,如果纸是黑色的,就很容易被点燃,白色的则相对困难,这是由其温度升高情况不同而造成的。激光加工也是一样,拿塑料焊接来说,待加工的塑料往往颜色、厚度各异,如果不去测量加工过程中物体表面的温度,则难以准确判定是否达到了预期的加工效果。对于新的待加工物来说,找到理想的加工条件就将花费很多时间。 可以说,温度信息是缩短寻找最佳加工条件周期的一项重要参数。以前,加工操作和合格判定多是通过交由经验丰富的工人来获得保障。但这种依赖于“人”的模式,显然不能满足工业发展的需求。如果能把握温度信息的反馈,就可实现“可视化”,即便是经验尚浅的人,也能进行精确高效的加工。那么,我们要如何获取此信息呢? 将温度信息一滴不差的收起来 获得温度信息的唯一方法,是测量来激光自加工过程中的红外光强度。但这里我们需要捕捉的,是高能量激光中那缕极其微弱的红外光,前后者的强度比率大约是一亿比一。常规操作是无效的,拥有极高灵敏度的弱光探测器才能派上用场。此外,红外光产生与物体被照的位置是一致的。想要精确测量,观测点和照射点的形状、位置都须做到同步。然而,受制于工艺水平,目前市面上许多此类激光器的该两部分是分离的,使用时主要通过一些人为的调试来尽可能保障效果,易用性和精确性都不够理想。 而滨松激光加热光源LD-HEATER及SPOLD,可以将以上问题都解决。滨松激光加热光源将激光照射和红外探测都集成在了同一个激光头中。因此,不必进行光轴调整,照射和探测就可完美的同步进行。由于照射光和监控信息的光程相同,所以不管大小、近远、光的形状,观测到的都是相同的。而滨松本身十分擅长微弱光的探测,探测器的灵敏度即可以得到很好的保障。高精度的实时温度监测技能加身后,会有怎样的直接变化呢?曾有客户反馈,在以前,新待加工物从试生产到批量生产,需半年左右(包括修正模具的时间)。配备滨松LD-HEATER后,大概仅需1/3的时间就可完成。如今,已有激光加热光源设备在客户的产线中工作了10年,且保持了0故障率。如此超高的稳定性,也为带来了生产效率的提升。 LD-HEATER和SPOLD有何不同? 这里我们提到了两个不同的名字,LD-HEATER以及SPOLD。同是激光加热光源的它们有什么不同呢? LD-HEATER是多功能的,实时温度监测功能为其标准配置,适用于试生产时期的加工条件寻找,以及问题分析。秉承即使是不完全了解激光的人都可以使用的理念,滨松工程师在开发时也考虑了足够的安全性。而SPOLD更低廉、更小巧、更多产品系列,易于在大规模生产现场使用。它是尽可能简化了的光源,以期能集成到其他的设备中。 不过,两者在许多核心的基本性能上是相同的。除了上述的高稳定性外,最为突出的则是其内部均配备了光束整形系统,输出的直接为平顶光,保证了加工的高效以及高度均匀性。如今某球知名的智能腕表生产商已将此系列激光加热光源置入了其产线中,其焊接达到的高防水性则让客户十分满意。此外, OLED屏的焊接也是目前的一个典型应用,其可进行高质量的无损拆解,这也源于激光器核心性能的保障。 简单来讲,LD-HEATER与SPOLD在生产的不同阶段扮演着不同的角色。在LD-HEATER给出加工条件后,可将相对低成本以及内嵌式的SPOLD配备入大规模生产系统,以保障已确定的加工条件与预期相同。而一旦实际生产中出现问题,也可以继续使用LD-HEATER找到问题所在。 不过,并不是所有SPOLD都配备了实时温度监测功能,客户可根据自身的需求进行选配。而此功能发挥的作用与LD-HEATER的也不尽相同,我们将此称为LPM(Laser Process Monitor,激光过程控制器)。 低成本,实现批量生产时的加工质量监控 一般来讲,激光加工的时间很短,在线探测异常并尽快做出反应非常重要。在实际生产现场,可能会发生很多难以直接察觉的未预料到的事情,比如设备或磨具状态的变化。而这些变化很可能导致待加工材料随着时间而改变,进而影响到最终的加工效果。而通过温度差异则可探知异常的发生,装配了LPM的SPOLD在加工中就可实现这样监测。 滨松目前提供3款配备LPM的SPOLD:L11785-61M,L12333-411M/-511M LPM采集由热产生的红外光后,可输出相应的模拟信息。如果加工出错,红外光的强度就会改变,LPM输出值也会不同。也就是说,其可以提供的是一个信息对比。如果是稳定的设备和材料,执行稳定正确的加工过程,输出信号也将是稳定的。一旦出现异常的信号,则可判定加工过程存在异常。 不过LPM并不是一个单独的模块,只能装配在SPOLD中才可很好的发挥作用。带有LPM的SPOLD只通过一根光纤来同步完成激光照射与红外探测,同样不用进行调整,也能确保加工区域和红外光信息获得区域是统一的。 当然,滨松也提供不带有LPM的SPOLD产品,可实现更低的成本,以及更小的体积。 不带有LPM的SPOLD系列:L11785,L13920 除了性能优异的产品外,由于产品研发是从应用端开始着手的,滨松对于不同材料之间的加工工艺非常熟悉,因此还可向客户提供帮助进行工艺选择的增值服务。 滨松最早的激光技术起源于激光核聚变的研究。为实现激光核聚变的能源开发,滨松与大阪大学的激光工程学院合作,共同推进用于固态激光激发的高功率输出LD的研发,在不断成熟的过程中,滨松也希望将自身的激光技术带入产业应用中。以此为原点,便积极推进了各种激光技术的研发。结合自身在光子技术应用中的广阔视野和经验,以期为激光技术打开新的应用领域。
  • IKA关注您的安全——带手柄加热套温暖上市
    在很多合成实验中,加热、搅拌都是同时进行的,最常用的温度往往在100~150℃,如果使用油浴的话则经常遇到硅油蒸汽附着到仪器上很难清洗的问题。德国IKA? 一直以来都贴心地为您提供金属烧瓶加热套,以及平行反应所需的不同孔径加热块并配套方形托盘,通过优化的材质为您提供均匀、高效的加热效果,使用环境也因此变得清洁而有序。然而我们并没有因此停止脚步——当您发觉到加热结束后取下加热套或加热块时有些烫手时,德国IKA? 也同样非常担心您的安全。经过反复的测试和优化,我们终于让搅拌器的选配件更加完美——带手柄的100 / 250 / 500 / 1000 / 2000 ml圆底烧瓶加热套,还有带手柄的方形加热托盘(可适配已有的加热块),已全新上市!德国IKA? 磁力搅拌器RET基本型和控制型、RCT基本型、RH基本型和数显型,多种型号为您提供丰富的选择,它们的共同点是都具备最环保、最高效的加热效果——盘面直径为135mm,却可以提供高达600W的加热输出功率!而统一的盘面直径也可以通用方形加热托盘或圆底烧瓶加热套。以下为全新上市的带手柄加热套或加热托盘,详情请垂询德国IKA 。 Heating_Block_Flask_Carrier_1000mlHeating_Block_Flask_Carrier_1000ml_with_inlayHeating_Block_Square_Carrier 关于IKA ( www.ika.cn )IKA 集团是实验室前处理,量热分析, 混合分散工业技术的市场领导者. 磁力搅拌器, 顶置式搅拌器,分散均质机, 混匀器,恒温摇床, 研磨机,旋转蒸发仪, 加热板,量热仪, 实验室反应釜等相关产品构成了IKA实验室分析的产品线, 而工业技术主要包括用于规模生产的混合设备, 分散乳化设备,捏合设备, 以及从中试到扩大生产的整套解决方案. 集团总部位于德国南部的Staufen, 在美国,中国,印度, 马来西亚,日本, 巴西等国家都设有分公司.IKA成立于1910年,IKA集团现在可以自豪地回顾过去100年的历史.
  • 在线热像仪应用 — 材料 激光加热的温度检测
    激光加热的温度检测使用激光方式对金属材料进行加热是近年来发展比较快速的新技术,激光加热 具有加热温度高、加热速度快、加热目标灵活等优点,但也正是这些优点,使 得在加热过程中的温度检测存在难点,本文介绍使用RSE60H高温型在线热像仪 对激光加热的现场检测案例,特别是快速、高温的温度趋势分析功能,为此类 温度检测提供有效方案。检测案例: 某高校和某激光设备制造商合作项目,使用激光加热设备对金属材料进行加热,需要看到金属表面的温度变化情况,这对 材料加工工艺非常重要,如果温度控制不当,会造成材料报废或质量不合格。 该现场存在两个检测难点: 1、激光加热的时间非常短:通常激光加热以零点几秒或几秒为周期,且在这么短暂的加热周期中,需要看到温度瞬间的 升高和散热冷却的过程变化,所以对于热像仪的帧频有较高的要求,目前市面上普通的帧频为9Hz的红外热像仪无法追踪 这么快速的变化,而RSE60H的帧频达到25Hz,也就是说,每40毫秒采样一次,可以满足对于快速变化的温度检测需求。 2、温度高:激光加热后的金属温度会瞬间上升到1000℃-1500℃以上,普通的红外热像仪的高温量程上限为1000℃或 1200℃,这就需要特别涉及的测温至2000℃的高温型红外热像仪进行温度检测。在激光移动的过程中,在铁板某一位置处有停留(红框处),导致热量积累使铁板的温度上升到1500℃,同样,右侧 是部分温度数据的导出,红色字体为最高温度值和对应的时刻。 另外,时间轴也可以用计算机时间来标识,案例中的时间轴用开始时间标识。
  • 加热磁力搅拌器的盘面有哪些?
    加热磁力搅拌器是实验室常用的仪器,主要实现加热和搅拌功能:加热功能:在底盘设置加热装置,也会设置相应的装置对加热进行监控,工作的盘面会安装有温度传感器(热电偶)。搅拌功能:通过位于工作盘下面的永久磁铁进行驱动磁力搅拌子,永久磁铁可以穿透工作盘面,磁铁直接固定于马达的转轴上,通过马达转动,带动搅拌子转动。 加热磁力搅拌器的顶部盘面,起到了承载工作介质,热传导,磁力传导,抗腐蚀等作用。顶部盘面是加热磁力搅拌器的关键部件之一。过多年的发展,盘面也形成了多种不同材质和规格:1、纯金属盘面 一般用铝合金或不锈钢等金属材质作为盘面,具有经济,加工简便的优势。多用于经济型的加热磁力搅拌器。最高温度一般低于350℃。在使用过程中,局限于金属本身的性质,容易受到化学试剂腐蚀和氧化作用。长期使用之后,金属盘面会受到腐蚀影响,严重得情况甚至发生腐蚀,锈穿的现象,极大影响仪器的使用性能。2、陶瓷盘面 为了解决金属盘面的耐腐蚀性问题,在金属盘面上覆盖了一层陶瓷,做成陶瓷盘面。陶瓷对酸碱等溶剂的耐腐蚀性远优于金属。因为有了陶瓷的保护,盘面的耐腐蚀性得到了极大提升。3、陶瓷玻璃盘面 陶瓷玻璃又称微晶玻璃,是经过高温融化、成型、热处理而制成的一类晶相与玻璃相结合的复合材料。陶瓷玻璃具有机械强度高、热膨胀性能可调、耐热冲击、耐化学腐蚀、低介电损耗等优越性能,是新一代的加热磁力搅拌器的盘面材料。陶瓷玻璃具有可以透过红外线的性质,可以采用红外辐射的高效率加热方式。陶瓷玻璃盘面一般用于高性能加热磁力搅拌器。WIGGENS的WH220/240,SLR等系列采用最新的陶瓷玻璃盘面,红外辐射加热方式,具有耐化学腐蚀,热传导性高,加热效率高等优点。WH220/240系列最高温度达500℃,红外辐射加热,对需要大体积、快速加热的工作,如:培养基融化等,可以有效提高工作效率。红外辐射加热相比普通加热磁力搅拌器,同等的工作效能对电能的消耗可以节省30%以上,是名副其实的实验室绿色仪器。
  • 二碳箱气套式与水套式加热该如何选择?
    细胞生长需要适宜的温度。哺乳动物细胞培养温度一般为36.5±0.5℃,偏离这一温度范围,细胞的正常代谢会受到影响,甚至死亡。总的来说,培养细胞对低温的耐受力比对高温强。温度上升不超过39℃,细胞代谢强度与温度成正比。39-40℃培养1h,细胞受到一定损伤但仍可能恢复;41-42℃培养 1h,细胞受到严重损伤,但不致全被杀死,个别仍可能恢复;43℃以上培养1h,细胞将被杀死。相反,温度不低于0度,对细胞代谢虽有影响,但并无伤害作用;把细胞置于25-35℃,细胞仍能生存和生长,但速度减缓;放在4℃数小时后,再回到37℃,细胞仍能继续生长。细胞代谢随温度降低而缓慢,温度降至冰点以下,细胞可因胞质结冰受损而死亡。温度控制对培养细胞的健康和生长非常关键。CO2培养箱能够对温度提供准确稳定的控制,主要有两种温控类型:水套式和气套式。它们的区别主要在它的加热方式上,其实气套式与水套式这两种加热方式对实验结果影响不大、都能够达到可靠的效果,只是在温度恒定和加热快慢上有所区别,所以用户可根据自身的实验环境和实验室条件来选择。1、水套式加热水套式加热方式是通过一个独立的水套层包围内部的箱体来维持温度恒定的,其主要优点是:水是一种很好的绝热物质,当遇到断电的时候,水套式系统就可以较长时间保持培养箱内的温度准确性和稳定性。但水套式需要对水箱进行定期加水、清空和清洗,并要经常监控水箱运作的情况,若清理不及时可能会有潜在的污染隐患。2、气套式加热气套式加热主要是通过设置在箱体气套层内的加热器直接对内箱体进行加热的,也叫六面直接加热;气套式和水套式相比较,加热速度更快。为了不影响培养,培养箱应在培养区域外安装一个风扇,可以帮助培养室内的空气循环,而不会干扰细胞培养;当箱门开启或关闭时,这种温和的空气循环可以加快内部温度,CO2浓度和湿度的恢复。此加热方式特别适用于短期培养以及需要箱门频繁开关取放样的实验。另外,对于用户来说气套式设计比水套式更简单化。
  • 【步琦维修小课堂】浴锅选用何种加热介质及保养
    对于BUCHI Rotavapor R-300 (旋转蒸发仪),我们有两个不同尺寸的浴锅可供选择:浴锅 B-301浴锅 B-305用于最大容积为 1 L 的蒸发瓶,只适合以水为加热介质的应用环境。用于最大容积为 5 L 的蒸发瓶,适合以水和油为加热介质的应用环境。▲ 浴锅 B-301 & B-305如何避免因使用不合适的加热液体造成浴锅腐蚀?BUCHI 建议用水作为浴锅的加热介质。根据水的硬度,去离子水和蒸馏水的混合比例最高可达 1:1。如果使用纯蒸馏水或去离子水,则每升水中应添加约 1 g 硼砂 (Na2B4O7 x 10 H2O)。如果使用油浴,BUCHI 建议使用聚乙二醇 PEG-400作为油浴介质,不建议客户使用普通硅油。使用时,加热介质不宜加的过满,以免蒸发瓶旋转时,液体溢出。如果液位因为蒸发变低,应及时补充加热介质,避免触发过热保护。同时 BUCHI 建议至少每个月应全部更换一次加热介质。如何清洁,保养浴锅?液体进入设备内部可能造成短路,浴锅和旋转驱动装置不得浸入水中,或将水倾倒到上面。浴锅外壳只能用湿布擦洗。 1浴锅槽内部应定期清洁,最迟在:浴锅变得污浊时开始形成钙沉淀时浴锅的钢质表面开始生锈时2清洁步骤: 断开浴锅和旋转驱动装置的电源。让浴锅冷却并排空槽内的加热介质。如浴锅槽内有少许钙沉淀,则可用非刮擦式清洁用具 (如家用清洁剂和海绵) 进行清除。顽固的钙化物要用稀释的醋酸进行溶解。之后对浴锅槽内进行彻底冲洗。
  • IKA新品——1/4加热块系统/反应系统火辣登场
    KIA新型加热块系统,铝合金&ldquo 饼状&rdquo 结构,导热性能良好,单个加热盘面最多可同时配置4块加热块。其中,&ldquo 饼状&rdquo 的结构可互换,单个加热盘面可进行不同的配置和组合。IKA的这一新品,适用于所有工作盘面为&phi 135mm的加热磁力搅拌器。 IKA新型加热反应系统,加热介质温度可高达180 0C,加热升温快,温度分布均匀一致,容器内部化学反应容易观察,而且可有效消除水/油浴加热锅等引起的一系列问题:例如:着火点、液体溅出和清洁困难等。 东南科仪自1992年成立以来,始终贯彻&ldquo 向中国引进世界最先进的检测仪器&rdquo 的服务宗旨,以专业、全面的技术支持和售后服务赢得了良好声誉,并拥有广泛而稳固的客户群体和分销网络,是国内极具实力的实验室基础仪器集成供应商。东南科仪作为IKA产品的中国代理商,自代理开始,一直将IKA公司的新产品率先引入中国。 以上两种新品,东南科仪现正发售,价格优惠,而且有多个型号与颜色可供选择!详情欢迎致电:020-83510088! 广州:天河北林和东华庭路4号天河商务大厦1506-07 (510610) 电话:020-83510088(十线) 传真:020-83510388 E-mail:dongnan@sinoinstrument.com 北京:海淀区交大东路60号舒至嘉园3座 (100044) 电话:010-62268660 62260833 传真:010-62238297 E-mail:beijing@sinoinstrument.com 上海:延安西路1590号增泽世贸大厦10E (200052) 电话:021-52586771 52586772 52586773 传真:021-52586778 E-mail:shanghai@sinoinstrument.com 成都:成都市高升桥路2号瑞金广场2-10F(610041) 电话:028-68222672 传真:028-68222699 E-mail:cd@sinoinstrument.com
  • Professional 磁力加热搅拌器促销
    Professional 磁力加热搅拌器 库存2台,促销:6100.00元/台 数量有限,先到先得 货 号: EPFO-985626 中文名称: P-HPS75磁力加热搅拌器(售完为止) 英文名称: Professional Hotplate-Stirrers 型 号: 铝质面板:17.8× 17.8cm;温控范围:室温+5℃-400℃ 品 牌: 产品类别: 磁力加热板、搅拌器及加热搅拌器 尺 寸 长:30.7cm 宽:21.6cm 高:9.9cm 价 格: 10186.00 促销价: 6100.00 促销时间:2011年12月2日-2011年12月31日 产品描述: ● 型号:P-HPS75; ● LED屏; ● 铝质面板; ● 低平结构设计; ● 微处理器控制系统; ● 最高加热温度限制,温度探头保护功能,搅拌保护功能,铃声提醒功能; ● 随机配备:20.3cm不锈钢外置温度探头及固定夹套装,3.8cm PTFE涂层搅拌子。 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制