当前位置: 仪器信息网 > 行业主题 > >

锂离子电池隔膜热收缩检测仪

仪器信息网锂离子电池隔膜热收缩检测仪专题为您提供2024年最新锂离子电池隔膜热收缩检测仪价格报价、厂家品牌的相关信息, 包括锂离子电池隔膜热收缩检测仪参数、型号等,不管是国产,还是进口品牌的锂离子电池隔膜热收缩检测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合锂离子电池隔膜热收缩检测仪相关的耗材配件、试剂标物,还有锂离子电池隔膜热收缩检测仪相关的最新资讯、资料,以及锂离子电池隔膜热收缩检测仪相关的解决方案。

锂离子电池隔膜热收缩检测仪相关的资讯

  • 锂电池材料试验第一讲|锂离子电池隔膜拉伸测试
    随着科技的日新月异,智能手机、清洁机器人、无人机、新能源汽车等已越来越多的走进人们的日常生活。作为能量与动力的重要载体 - 锂离子电池也在被越来越多的应用。锂离子电池的性能,直接决定了科技设备的续航时间、行驶里程、载荷能力和安全性等因素。锂离子电池主要由正极材料、负极材料、隔膜和电解液等四个主要部分组成,其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。LLOYD材料力学试验机提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(Lloyd材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。今天我们首先来介绍阿美特克锂电池材料试验解决方案第一讲——锂电池隔膜拉伸测试。锂电池隔膜拉伸测试隔膜的主要作用是分隔电池的正、负极材料,防止两极接触而短路,同时还能使电解质离子通过其中。在厚度尽可能薄的前提下,需保证具有一定的物理力学强度,以满足隔膜在生产和使用过程中的种种环境。因电池生产工艺中,隔膜需要与正负极材料一同卷曲以形成我们常见的圆柱体或软包电池,足够的拉伸强度可保证隔膜在卷曲过程中不发生破裂,顺利成型。LLOYD隔膜拉伸测试采用气动夹具夹紧,在避免操作人员往复手动操作夹紧的同时,极大的提高了测试速度;同时气动夹紧排出了人为夹持过松导致的打滑现象,进一步的提高了数据稳定性。脚踏式开关可解放出操作人员的双手,以更方便和轻松的放置试样。同时为满足不同人员的操作习惯,还可通过气动辅具上的手动开关进行闭合、松开操作,为用户提供极大的便利性。拉伸试验可测定材料的一系列强度指标和塑性指标、弹性极限、伸长率、弹性模量、比例极限、面积缩减量、拉伸强度、屈服点、屈服强度和其它拉伸性能指标等。LLOYD 具有多种测试行程的主机可满足多类型隔膜的拉伸试验,同时还有单柱1400mm行程的机型可选,充分满足定制化需求的同时兼顾经济性。LLOYD材料力学试验机(Lloyd材料试验机)LLOYD(劳埃德)测试系统源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。LLOYD材料测试系统可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 锂电池材料试验第二讲|锂离子电池隔膜穿刺试验
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了最常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。LLOYD材料力学试验机提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第二讲——锂离子电池隔膜穿刺试验。锂离子电池隔膜穿刺试验锂离子电池隔膜的穿刺试验是评价隔膜抗穿刺强度的最主要方法。通过标准的探头以标准的速度穿透隔膜,捕捉穿透瞬间的最大载荷(N),除以隔膜的平均厚度(μm)即为穿刺强度(N/μm)。隔膜根据其成型工艺的不同,分为干法、湿法,而具体工艺上又有单向拉伸、双向同步拉伸,双向异步拉伸等,且根据其表面涂布材料的不同,每种膜表现出的抗穿刺性能会有很大的区别。如何能在快速的穿刺中更为准确的测算力值,精确地捕捉到穿刺瞬间的峰值,分辨出细微载荷量的变化,并保证一个较高的测试重复性是诸多隔膜厂家和用户面临的难点。在解决以上问题的同时,如何提高测试的效率是诸多厂家需要兼顾的问题。LLOYD气动穿刺治具LLOYD气动穿刺治具是专门为提高电池隔膜穿刺试验效率和稳定性开发的一款气动辅具。该治具采用稳压气缸升降,可快速、高效的固定隔膜,且保证均一、稳定的夹紧力;可定制前后隔膜入料或左右入料,符合人体工程学设计;同时入料方向可旋转,满足不同操作人员的使用习惯。试验人员放置好隔膜后,可通过手动或脚踏开关快速操作完成夹持或换位,夹持完毕后,只需按动手控盒的开始键即可快速开始试验,高效的完成5点或多点穿刺测试。LLOYD 10次穿刺试验叠加效果值得一提的是,LLOYD测试系统读数级的测试精度可更为准确的测量真实力值;高达8000Hz的数据采样率保证了真实峰值的捕捉,使测试结果无限接近于最高峰值;常规单柱机型最小分辨率可达0.00005N,能够有效的分辨出细微力值的变化和材料的区别;为材料科研和质量控制提供有力的保障。LLOYD 5点全自动穿刺测试系统在不断改善测试应用的同时,LLOYD 5点全自动穿刺系统的开发更为测试量巨大的用户提供了更为便捷、高效的测试手段。一次夹载后LLOYD系统可以自动完成5点全自动穿刺,并计算均值,更大程度的解放了用户的双手和操作时间,使一套高精度测试系统完成几倍的测试工作量,深受用户喜爱。LLOYD材料力学试验机LLOYD(劳埃德)测试系统源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。LLOYD材料测试系统可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 锂电池材料试验第三讲|锂离子电池涂层隔膜剥离试验
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。 在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。 LLOYD材料力学试验机(LLOYD材料试验机)提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(LLOYD材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第三讲——锂离子电池涂层隔膜剥离试验。锂离子电池涂层隔膜剥离试验涂布质量的好坏直接关系到电池电性能的发挥,剥离强度试验不仅可以有效的鉴定涂布质量,显示浆料涂布强度,均匀性等指标,还可以指导涂布产线的调整,使成品更加均匀可靠。测试类似可以用180度剥离,90度剥离,可变角度的剥离等多种方式,为质控和研发提供较大的扩展空间。整套测试系统由LLOYD高精度测力传感器捕捉力值的变化,采集速率可达每秒8000点,精确捕捉力值瞬间波动量。同时,LLOYD专用NexygenPlus测控软件支持多格式数据输出,及多位置数据输出,为后续数据分析提供了极大的便利性和灵活性。LLOYD材料力学试验机(LLOYD材料试验机) LLOYD(劳埃德)测试系统(LLOYD材料试验机)源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。 LLOYD材料测试系统(LLOYD材料试验机)可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 激光粒度分析仪在锂离子电池行业中的应用
    锂离子电池产业作为我国“十二五”和“十三五”期间重点发展的新材料、新能源、新能源汽车三大产业中的交叉产业,国家出台了一系列支持锂离子电池产业发展的支持政策,直接带动了我国锂离子电池行业的持续高速增长。为了规范锂离子电池行业的健康稳健发展,国家相关部门先后制订了涉及到锂离子电池全产业链的相关行业标准,而相关电池材料的粒度分布检测就是其中一项重要检测指标。下面,我们看一看这些行业标准对粒度分布的相关规定。锂离子电池材料粒度分布要求电池材料的粒度分布影响电池材料的物理性能及电化学性能,进而影响锂离子电池的容量、能量密度、充放电性能、循环性能及安全性能等。在锂离子电池材料中,需要检测粒度的粉体材料主要有正极材料及原材料、负极材料及原材料、导电添加剂、电解质、隔膜涂覆材料。正负极材料正极材料颗粒的粒径越小,越有利于Li+的嵌入和脱嵌,有利于提升锂离子电池的倍率性能;同时,粒径越小的材料首次容量越高。但是,粒径越小的材料比表面积越大,颗粒表面能升高,易团聚并与电解液发生副反应,电池内阻升高,充放过程中会积聚过多能量,温度升高,从而导致安全隐患;同时,粒径越小的材料不可逆容量增加,降低电池的循环性能。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。粒径较小的负极材料具有较大的首次容量,但不可逆容量也较大;随着粒径增大,首次充放电容量降低,不可逆容量减少。同时,粒径越小的颗粒,越有利于Li+的嵌入和脱嵌,有利于提升电池的倍率性能。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。正极材料和负极材料原料的颗粒的粒径大小影响到正极材料和负极材料的生产工艺控制及成品性能。比如,三元前驱体的粒度影响三元材料的煅烧时间及晶粒大小一致性。粒径越小的前驱体煅烧时间越短;粒径分布越窄的前驱体,煅烧时热量从材料表面传导到材料中心的时间一致性越高,晶粒生长时间一致性越高,晶粒大小一致性也越高。碳酸锂作为正极材料的锂源材料,粒度大小对正极材料的生产工艺和性能也有着重大影响。导电添加剂导电添加剂颗粒的粒径太小,容易发生团聚,不能与活性物质充分接触,导致导电作用降低;如果粒径太大,导电添加剂颗粒不能嵌入到活性物质中,同样会降低导电添加剂的导电作用。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。对于电解液的电解质来说,电解质颗粒大小越均匀,电解液性能的一致性越好。电解液作为锂离子电池的血液,承担着运输锂离子的重任,质量的好坏直接影响锂离子电池的电化学性能,并很大程度上影响锂离子电池的安全性能。涂覆隔膜涂覆隔膜是在基膜的单面或双面涂覆一层氧化铝、二氧化硅等粉体无机材料,从而提升隔膜的高温性能、穿刺强度、亲液性能等。涂覆材料粒度大小及分布对涂覆隔膜的性能起着决定性的作用。以最常用的氧化铝涂覆隔膜为例,一般采用亚微米级别的α相氧化铝材料,颗粒大小适中且粒度均匀的氧化铝能很好地粘接到隔膜表面,不会堵塞膜孔,成孔均匀,能够提高隔膜的耐高温性能和热收缩率,能够改善隔膜对电解液的亲和性,同时保持较好的机械性能,从而提高锂电池的安全性能。氧化铝涂层的粒径越大,隔膜的厚度会增加,隔膜的化学性能会迅速下降。综上所述,粒度分布测试已成为提升锂离子电池性能的重要检测手段,选择一款高性能的激光粒度分析仪就成为了研发机构、材料生产厂家、电芯生产厂家的共同需求。一款好的激光粒度分析仪应该具备良好的测试结果的真实性、重现性、分辩能力、易操作性等。测试结果的真实性是指测试结果能够反映颗粒的真实大小,尽管粒度测量不宜引用“准确性”这一指标,但这并不意味着测量结果可以漫无边际地乱给。测试结果的真实性是激光粒度分析仪最根本的分析性能,如果没有测试结果的真实性做基础,仪器的重复性、重现性等其它性能就失去了讨论的意义。测试结果的重现性是指将同一批样品多次取样的测试结果的重复误差,误差越小,表示重现性越好。重现性的好坏取决于仪器获取光能分布数据的稳定性、对杂散光的控制能力、对中精确度、光源和背景的稳定性、进样器的分散性能等。只有具备良好重现性的仪器才能对测试样品的粒度分布进行可靠的评价,有利于用于多个样品之间差异的准确识别。激光粒度分析仪的分辨能力指的是仪器对样品不同粒径颗粒的测量分辨能力以及对给定粒度等级中颗粒含量的微小变化识别的灵敏程度。一般来说,除了影响重现性的因素外,散射光能分布角度和光强的获取,低背景噪声的光学电子设计,高精度的模数转换及反演计算水平都对仪器的分辨能力有较大影响。只有高分辩能力的仪器才能准确识别测试样品的细微粒径变化。激光粒度分析仪的原理结构激光粒度分析仪的易操作性是指操作简单、故障率低、易于日常维护保养。如果仪器的易操作性不高,即便有良好的测试性能,也不能高效满足用户的测试需求。Topsizer激光粒度分析仪和Topsizer Pus激光粒分析仪就是这样两款在锂离子电池行业被广泛应用的高性能激光粒度分析仪。量程宽、重现性好、分辨能力强、自动化程度高、故障率低等优异性能保证了测试结果和分析能力,而且与国内外、行业上下游黄金标准保持一致,不仅为用户节省了方法开发和方法转移上的时间和成本,更重要的是可以避免粒径检测不准带来的经济损失和风险,无论在产品研发、过程控制还是质量控制上,都能够为用户带来真正的价值。● 测试范围:0.02-2000μm(湿法),0.1-2000μm(干法)● 重复性:≤0.5%(标样D50偏差)● 准确性:≤±1%(标样D50偏差)● 测量速度:常温测量10秒内完成欧美克Topsizer激光粒度分析仪Topsizer激光粒度分析仪是珠海欧美克仪器有限公司于2010年被英国思百吉集团全资收购后,利用思百吉集团的全球资源全新打造的旗舰产品,具有量程宽、重现性好、精度高、测试结果真实、自动化程度高等诸多优点,真正站在了当前粒度检测领域的前沿。● 测试范围:0.01-3600μm(湿法),0.1-3600μm(干法)● 重复性:≤0.5%(标样D50偏差)● 准确性:≤±0.6%(标样D50偏差)● 测量速度:常温测量10秒内完成欧美克Topsizer Plus激光粒度分析仪Topsizer Plus激光粒度分析仪是继广受赞誉的Topsizer 后,作为马尔文帕纳科的全资子公司,珠海欧美克仪器有限公司推出的又一款高端粒度分析仪器。该仪器引入了国际先进的光学设计,结合欧美克近30年的技术积累,采用全球化的供应链体系,使激光衍射法的测试范围达0.01-3600um。Topsizer Plus保持了Topsizer量程宽、重复性好、分辨力高、真实测试性能强和智能化程度高等优点,通过进一步提升光学设计、硬件和反演算法,拓展了其测试范围以及实际测试性能,代表了当前国产激光粒度仪的技术水平。
  • OPTON的微观世界|第13期 锂离子电池隔膜的显微世界
    概 述在上期里,我们借助扫描电子显微镜对锂电池负极材料进行了细微结构的表征和组成元素的分析,让我们对于电子显微技术在电池负极材料中的应用有了相应的理解。本期小编继续带领大家了解扫描电子显微镜技术在电池隔膜研究中扮演的角色。在包括锂离子电池的二次电池中,隔膜是不可或缺的重要组分。其作用在于:一、隔膜本身不导电,将电池正极和负极分隔开来,防止电池出现内部短路;二、隔膜具有微观程度上的孔洞结构,利于电极液中离子的传递,保证了充电与放电过程中离子的有效迁移。一、样品制备小编所选用的样品为聚丙烯(polypropylene,PP)型锂离子电池隔膜,为了了解锂离子电池隔膜的相关结构,小编决定从表面和截面两种状态下进行分析。对样品进行喷金处理后,直接固定在碳导电胶上从而进行平面样品的观测,截面样品的制备同样借助了 Gatan 的氩离子抛光仪(PS:具体制备方法,请查看上期内容,容小编偷个懒)。二、锂离子电池隔膜表面的 SEM 分析利用ZEISS扫描电子显微镜观察锂离子电池隔膜的表面如图1,与隔膜宏观上光滑的表面不同,放大后可以发现,隔膜表面存在着大量的孔洞结构。将样品进一步放大可以发现,隔膜表面的孔洞孔径介于100至200纳米,且由表面延伸至隔膜内部。图1. 锂离子电池隔膜表面的SEM图像三、锂离子电池隔膜截面的 SEM 分析锂离子电池隔膜的多孔程度直接影响着电解液的扩散速率,对电池的性能有很大的影响,因此分析隔膜内部的孔洞结构具有重要意义。图2为隔膜的截面扫描图像。由图像可知,采用 Gatan氩离子抛光仪抛光处理过后的表面平整光滑,其相对于普通剪切处理得到的截面更易获得理想的图像。隔膜内部的孔洞相互贯通,并且由隔膜表面延伸至内部。由放大图像可知,隔膜的孔洞是由数十纳米的纤维形成的。图2. 锂离子电池隔膜截面的SEM图像结 论通过扫描电镜对隔膜细微结构的分析,可知锂离子电池隔膜的内部存在着大量的无序孔洞结构,孔洞的尺寸在100至200纳米之间。二次电池发展至今,大量新型电池涌现,对于电池隔膜的需求也变得多样,对于功能性隔膜的报道不断发表。具有强大功能和普适性的扫描电子显微镜作为一种直观的、有效的表征手段,将在新型材料的探究中将扮演重要的角色。下期有什么精彩内容呢?敬请期待吧!
  • 梅特勒托利多 | 热分析在锂电池隔膜测试中的应用
    锂电系列 | 热分析在锂电池隔膜测试中的应用近期《经济参考报》发表了《新基建提速带动锂电池产业逆势上扬》的报道。文章称,进入2020年,在促进汽车消费和“新基建”等政策的推动下,国内动力锂电池产业显示出逆势上扬的态势。近日,工信部也召开专题会,研究部署加快5G网络等新型基础设施建设,对锂电池产业发展起到了重要推动作用。由于5G使用更大规模的阵列天线、更高的带宽,能量密度更高的锂电池就成为新基建的必然选择。锂电池市场需求巨大,但行业竞争日趋激烈,行业整合正在持续进行中,已经进入快速洗牌阶段。拥有核心技术和提高产品质量是生产厂家在激烈的竞争中生存的关键。热分析技术可以帮助企业更好地了解电池材料的受热稳定性,提高研发效率和质量控制,下面小梅就以热分析技术对电池隔膜的热力学分析为例进行详细解析。锂离子电池主要由正极、负极、电解液、隔膜以及集流体、外壳和安全元件等组成。其中电池隔膜起着隔离阴阳极、吸收电解液、同时具备微孔结构并允许某些导电离子和气体顺利通过的作用。锂电池隔膜的质量直接影响到电池的充放电性能、容量和使用寿命。目前,市场上主流的隔膜生产工艺有两种,一种是熔融拉伸法(干法),另外一种是热致相分离法(湿法),且目前主要的隔膜材料都是高分子材料,而电池由于不当使用而导致内部温度剧烈上升会使隔膜孔隙率和收缩率等重要指标发生剧烈改变,因此,在使用过程中,隔膜的热稳定性就显得尤为重要。热分析技术可以检测隔膜的熔融行为、玻璃化转变、热稳定性、失效温度、热收缩率等参数,帮助我们更好的了解隔膜的受热稳定性。用DSC测试隔膜的熔融行为DSC主要是用来测试样品在升降温过程中的热量变化情况,因此用DSC可以很好地测定高分子隔膜的熔融过程,下图是PP隔膜的测试图谱,测试结果显示,一次升温时,由于薄膜状的样品在熔融时易发生卷曲,所以往往在第一次升温曲线上容易出现假象,这对熔融温度的测定可能有一定影响。为了消除热历史对熔融温度测定的影响,我们可以采用二次升温的方式消除热历史,此时测定的熔融温度为样品本身的熔融温度。目前市面上的高分子隔膜大都是PP/PE的复合隔膜,因此,在隔膜的DSC测试中,往往会出现两个熔融峰,下图是PP/PE隔膜的测试图谱,PE和PP的熔融峰分别出现在130℃和166℃。用TGA测试隔膜的热稳定性TGA测试结果可以分析样品在升温过程中的质量变化情况,以此来反映样品的热稳定性,下图是PP隔膜的TGA测试图谱,结果显示,该PP隔膜的热分解温度是437℃,且隔膜的成分较为单一。用TMA测试隔膜的膨胀系数及收缩率高分子隔膜材料在受热时会发生一定量的收缩,这对隔膜的孔隙率会有较大的影响,进而影响锂电池的性能。例如,PE隔膜在90℃条件下等温60min收缩率应小于5%。目前,常见的隔膜收缩率的测试方法为悬挂法,即将一定长度的隔膜悬挂于特定温度的烘箱中,一段时间后拿尺子测量隔膜的尺寸,比较烘烤前后隔膜的尺寸来计算收缩率,这种方法的优点是快速,可大批量测试,但缺点也很明显,测试精度较低,且若收缩率处于临界值时难以判断,因此,使用TMA可很好地测定隔膜的收缩率。下图是PP隔膜在升温过程中的收缩率和膨胀系数的测试图谱,结果显示,PP在加热至175℃时的收缩率达到了60%。同理,也可测试不同类型的隔膜材料在恒定温度下特定时间的收缩率。用DMA测试隔膜的实际失效温度为了提升隔膜材料的耐高温性能和力学性能,目前市面上一般都都采用陶瓷粉末增强PE/PP的方法制备陶瓷隔膜或使用PI增强PE/PP隔膜,若对陶瓷隔膜进行DSC测试,其熔融温度往往与纯 PE/PP隔膜一致,但其实这时陶瓷隔膜往往还能保证一定的形貌及力学强度,并没有失效。此时,采用DSC表征隔膜的失效温度往往是不准确的,而通过DMA可较好地表征隔膜实际失效温度。下图是PE隔膜的DMA测试图谱,结果显示,其失效温度为135℃。★了/解/更/多/应/用 ★想了解梅特勒托利多其它产品在锂电行业的应用信息?您可以点击“阅读原文”查看梅特勒托利多全价值链解决方案。欢迎大家在评论区留言,告诉我们你还想学习哪方面的知识~
  • 欧波同锂离子电池显微智能分析解决方案
    锂离子电池因其清洁、能量密度高、循环性能好等优点广泛应用于我们的日常生活中。尤其是近年来, 新能源汽车、储能电站的快速发展, 锂离子电池的用量超乎想象,一台新能源汽车集成了几千个电池,达几百公斤,巨量的电池集中在一起,安全问题就尤为重要。近年来锂电池电动车、汽车和储能电站均发生过燃爆事故,因此,锂电池质量、安全等方面的研究越来越被人们重视,对锂电池的质检技术也提出了更高的要求,这涵盖了正负极材料、隔膜、铜箔、铝箔,甚至外包装材料。 欧波同集团长期从事光镜、电镜领域的微观分析工作,通过和广大客户的交流,我们发现现在客户的微分析存在效率低、人的主观因素影响大、非标准化等问题,为此我们成立了汇鸿科技公司,利用智能化软件实现显微分析的自动化、标准化。 一、锂离子电池材料显微智能分析系统(LIBMAS) 锂离子电池是指以锂离子嵌入化合物为电极材料电池的总称,它主要依靠锂离子在正极和负极之间移动来工作。由于材料加工过程中的缺陷,锂电池在使用或储存过程中仍会出现一定概率的失效[1],例如,多孔电极在充放电过程中发生体积膨胀和收缩,导致颗粒逐渐出现裂纹,这些裂纹沿着原有缺陷萌生和扩展,导致材料出现机械断裂和电极结构解体,造成电极材料粉化。这些材料的失效严重降低了锂电池的使用性能,影响其使用的可靠性和安全性。 图一:汇鸿锂离子电池显微智能分析系统 针对锂电池使用过程中产生的各种失效问题,汇鸿智能科技为客户量身定制了专属软件,满足客户所有需求,采用先进AI技术及图像处理技术,可快速准确进行单晶团聚识别、开裂球识别、二次球颗粒分布均匀性判断、截面孔隙统计、隔膜孔隙统计等锂电池材料分析。 1)识别: 通常在制备三元正极材料时,采用共沉淀法[2]使纳米级一次粒子团聚堆积成球形二次粒子,但这种堆积结构容易形成裂纹,导致电池性能衰减。 图二:软件智能区分开裂球和普通球 通过汇鸿LIBMAS,可快速统计并计算开裂球占比,获得开裂球裂缝信息,从而改善工艺条件,如图二。 正极颗粒内部通常是二次球颗粒形成的多晶结构,我们将二次球颗粒抛开,发现循环充放电后的颗粒截面出现大量裂痕,如图三。使用LIBMAS对截面孔隙进行识别,快速获得截面孔隙结果。 图三:二次球截面孔隙识别2)团聚体颗粒识别: 正极三元颗粒通常需要在高温纯氧下进行烧结,烧结而成的三元产品一般具有典型的团聚体形貌,即由粒径约几百纳米的一次粒子组成的,在几个到十几个微米之间的二次球颗粒。以往采用人工统计分析,需要在SEM成像后,手动逐个测量,工作量大,而且存在人为测量的误差;采用汇鸿智能分析软件,则可以一键操作,简化流程,在短时间内快速获得标准化的统计结果,如图四。 图四:一次颗粒团聚形成的二次球颗粒识别 电极材料的颗粒尺寸影响电池的容量、倍率性能和循环性能[3]。小尺寸颗粒可以缩短锂离子固相扩散路径,内部多孔颗粒可以提供更多的锂离子迁移通道。但是粒径过小会导致库仑效率和充填密度低下,影响整体电池的容量。通过汇鸿LIBMAS可高效识别一次颗粒大小(长、宽、周长、面积等)以及分布情况,如图五。 图五:软件自动区分团聚颗粒及团聚颗粒截面 3)单晶颗粒识别: 相对于单独的纳米粒子,团聚体颗粒具有比表面积小,颗粒流动性好,压实密度高和电极浆料可加工性好等优点。然而在团聚体反复充放电过程中,电极不断膨胀和收缩,内部颗粒十分容易破碎。相比易产生颗粒粉碎的多晶正极材料,许多研究[4,5]已经开始从晶体结构本身出发,探究单晶三元正极材料的性能,结果表明单晶三元具有更好的机械强度,从而抑制颗粒破碎,在高温循环方面也具有更好的热稳定性。诸如此类的研究都需要准确识别出单晶颗粒及其内部分布情况,汇鸿科技LIBMAS可以自动识别团聚颗粒中轮廓清晰的单晶颗粒,并测量、统计其直径,如图六。 图六:单晶颗粒的识别 4)大小二次球识别: 除此之外,汇鸿LIBMAS还可以精准识别图像上所有大二次球颗粒与小颗粒,根据面积判断计算大颗粒与小颗粒分布的均匀性。如图七。图七:大小二次球颗粒分布均匀性识别和统计 5)隔膜孔隙率统计: 锂电池隔膜作为锂电池的重要组成部分,是具有纳米级微孔结构的高分子功能材料,其主要功能是防止两极接触而发生短路,同时使电解质离子通过。相关研究证实[6],隔膜的微孔孔径分布越均匀,电池的电性能越优异。 孔径的分布主要采用扫描电子显微镜( SEM) 进行观测,但仅靠肉眼观测图片,对孔隙率的表征存在一定误差且效率低下。因此,若要更准确形象地获得材料的孔隙率,需要将图像处理软件与SEM 结合,以实现隔膜孔隙分布及其定量分析的需求。 图八:隔膜孔隙识别及孔隙率统计 汇鸿LIBMAS可以快速获取隔膜的孔隙率信息,检测隔膜孔隙率、孔隙直径及纤维直径并统计分析,从而形象地描述隔膜表面的结构细节,提高锂电池隔膜孔隙率评定的准确性,如图九。 二、锂离子电池异物分析系统(LIBIAS) 目前行业对锂电正极材料中金属及磁性异物的分类主要有以下三个方面:金属及非金属大颗粒、磁性异物、Cu/Zn单质[7]。异物引入的方式有原材料带入和制造过程中产生。为了有效控制锂离子电池正负极材料中非金属/金属/磁性异物的含量,一般会使用专业的设备与软件对初筛后的原材料中异物颗粒进行形貌与成分统计。行业内以往使用光镜或手动测量的方法,然而这些传统检测方式往往在数据结果的准确性、全面性、一致性上有或多或少的不足,给精确检测带来比较大的挑战。目前,锂电池材料中异物颗粒的检测主要面临的问题有:1)异物来源广、溯源难,2)数据量大、费时费力,3)颗粒易团聚、识别难度高。图一:同一颗粒分别在光学显微镜(左)、电子显微镜(右)下的图像及EDS能谱识别颗粒主要成分为Fe 图二:电镜图像下滤膜上所有颗粒分布情况图三:滤膜上的颗粒团聚现象 针对传统软件的不足,欧波同集团旗下的汇鸿科技公司开发了“锂离子电池异物分析系统”(LIBIAS)。这是集准确、高效和易操作功能为一体的全自动清洁度分析系统,可以实现高清BSE图像采集拍摄和图像处理、元素定量测试等功能。包括:1)简易上手的测试程序,2)开放的标准库编辑系统,3)一键生成对应报告图表。 图四:颗粒类型占比饼状图(左),三元统计相图(右) 汇鸿智能科技是一家专注于工业领域微观智能图像分析应用解决方案服务商。以“坚持原创,用信息技术引领工业分析”为愿景,可以为用户提供全场景的锂电池智能化显微分析解决方案。汇鸿智能科技研发的”锂离子电池材料显微智能分析系统(LIBMAS)”和“锂离子电池异物分析系统(LIBIAS)”,将高分辨性能的扫描电镜与智能化的分析软件相结合,解决从锂电原材料,到正负极极片、隔膜,锂电清洁度全系列的锂离子电池相关分析,助力研究人员开发出性能更优越的锂电产品。 参考文献:[1] Wang Qi-Yu, Wang Shuo, Zhou Ge, Zhang Jie-Nan, Zheng Jie-Yun, Yu Xi-Qian, Li Hong. Progress on the failure analysis of lithium battery. Acta Phys. Sin., 2018, 67(12): 128501. doi: 10.7498/aps.67.20180757.[2] https://doi.org/10.1016/j.powtec.2009.12.002[3] 杨绍斌,梁正. 锂离子电池制造工艺原理与应用[M].[4] https://www.science.org/doi/abs/10.1126/science.abc3167.[5] 肖建伟, 刘良彬, 符泽卫, 等. 单晶LiNixCoyMn1-x-yO2 三元正极材料研究进展[J]. 电池工业, 2017, 21(2): 51-54.[6] 毛继勇,许汉良.锂离子电池用隔膜孔隙率对电池性能的影响[J].广州化工,2018,46( 14) : 78-80.[7] 惠升,詹永丽,黎江.锂电正极材料金属及磁性异物过程控制的研究[J].世界有色金属,2021(17):166-168. 作者:沈宁单位:欧波同个人简介:沈宁,OPTON创新研究中心BD工程师 ,硕士毕业于上海大学纳米化学与生物学研究所,主要研究方向为石墨烯量子点及其修饰物的应用,期间负责研究所内透射电镜/扫描电镜的使用,培训和维护,硕士期间参与发表四篇专利,两篇SCI学术论文。现负责欧波同集团锂电行业应用市场的开发,对设备选型、技术应用、市场需求有着丰富的经验。
  • 约稿|锂离子电池显微智能分析解决方案全解析
    为帮助广大材料领域科研工作者了解前沿表征与检测技术,解决材料表征与检测技术难题,开展相关表征与检测工作,仪器信息网广泛向业内技术专家、仪器厂商约稿,并整理相关学术文章和讲座视频,以期对材料表征技术进行全面的介绍和综述。相关内容将收录至【材料表征与检测技术盘点】专题,并在仪器信息网平台全渠道推送,后续还将把干货整理成册,以供更多人士阅读。征稿活动进行中,欢迎来稿,征稿活动详情点击:【材料表征与检测技术盘点】专题:https://www.instrument.com.cn/zt/CLBZ以下为欧波同集团供稿,以飨读者:欧波同锂离子电池显微智能分析解决方案锂离子电池因其清洁、能量密度高、循环性能好等优点广泛应用于我们的日常生活中。尤其是近年来, 新能源汽车、储能电站的快速发展, 锂离子电池的用量超乎想象,一台新能源汽车集成了几千个电池,达几百公斤,巨量的电池集中在一起,安全问题就尤为重要。近年来锂电池电动车、汽车和储能电站均发生过燃爆事故,因此,锂电池质量、安全等方面的研究越来越被人们重视,对锂电池的质检技术也提出了更高的要求,这涵盖了正负极材料、隔膜、铜箔、铝箔,甚至外包装材料。欧波同集团长期从事光镜、电镜领域的微观分析工作,通过和广大客户的交流,我们发现现在客户的微分析存在效率低、人的主观因素影响大、非标准化等问题,为此我们成立了汇鸿科技公司,利用智能化软件实现显微分析的自动化、标准化。1、 锂离子电池材料显微智能分析系统(LIBMAS)锂离子电池是指以锂离子嵌入化合物为电极材料电池的总称,它主要依靠锂离子在正极和负极之间移动来工作。由于材料加工过程中的缺陷,锂电池在使用或储存过程中仍会出现一定概率的失效[1],例如,多孔电极在充放电过程中发生体积膨胀和收缩,导致颗粒逐渐出现裂纹,这些裂纹沿着原有缺陷萌生和扩展,最终导致材料出现机械断裂和电极结构解体,造成电极材料粉化。这些材料的失效严重降低了锂电池的使用性能,影响其使用的可靠性和安全性。图一:汇鸿锂离子电池显微智能分析系统针对锂电池使用过程中产生的各种失效问题,汇鸿智能科技为客户量身定制了专属软件,满足客户所有需求,采用先进AI技术及图像处理技术,可快速准确进行单晶团聚识别、开裂球识别、二次球颗粒分布均匀性判断、截面孔隙统计、隔膜孔隙统计等锂电池材料分析。1) 开裂球识别:通常在制备三元正极材料时,采用共沉淀法[2]使纳米级一次粒子团聚堆积成球形二次粒子,但这种堆积结构容易形成裂纹,导致电池性能衰减。图二:软件智能区分开裂球和普通球通过汇鸿LIBMAS,可快速统计并计算开裂球占比,获得开裂球裂缝信息,从而改善工艺条件,如图二。正极颗粒内部通常是二次球颗粒形成的多晶结构,我们将二次球颗粒抛开,发现循环充放电后的颗粒截面出现大量裂痕,如图三。使用LIBMAS对截面孔隙进行识别,快速获得截面孔隙结果。图三:二次球截面孔隙识别2)团聚体颗粒识别:正极三元颗粒通常需要在高温纯氧下进行烧结,烧结而成的三元产品一般具有典型的团聚体形貌,即由粒径约几百纳米的一次粒子组成的,在几个到十几个微米之间的二次球颗粒。以往采用人工统计分析,需要在SEM成像后,手动逐个测量,工作量大,而且存在人为测量的误差;采用汇鸿智能分析软件,则可以一键操作,简化流程,在最短的时间内快速获得标准化的统计结果,如图四。图四:一次颗粒团聚形成的二次球颗粒识别电极材料的颗粒尺寸影响电池的容量、倍率性能和循环性能[3]。小尺寸颗粒可以缩短锂离子固相扩散路径,内部多孔颗粒可以提供更多的锂离子迁移通道。但是粒径过小会导致库仑效率和充填密度低下,影响整体电池的容量。通过汇鸿LIBMAS可高效识别一次颗粒大小(长、宽、周长、面积等)以及分布情况,如图五。图五:软件自动区分团聚颗粒及团聚颗粒截面3)单晶颗粒识别:相对于单独的纳米粒子,团聚体颗粒具有比表面积小,颗粒流动性好,压实密度高和电极浆料可加工性好等优点。然而在团聚体反复充放电过程中,电极不断膨胀和收缩,内部颗粒十分容易破碎。相比易产生颗粒粉碎的多晶正极材料,许多研究[4,5]已经开始从晶体结构本身出发,探究单晶三元正极材料的性能,结果表明单晶三元具有更好的机械强度,从而抑制颗粒破碎,在高温循环方面也具有更好的热稳定性。诸如此类的研究都需要准确识别出单晶颗粒及其内部分布情况,汇鸿科技LIBMAS可以自动识别团聚颗粒中轮廓清晰的单晶颗粒,并测量、统计其直径,如图六。图六:单晶颗粒的识别4)大小二次球识别:除此之外,汇鸿LIBMAS还可以精准识别图像上所有大二次球颗粒与小颗粒,根据面积判断计算大颗粒与小颗粒分布的均匀性。如图八。图八:大小二次球颗粒分布均匀性识别和统计5)隔膜孔隙率统计:锂电池隔膜作为锂电池的重要组成部分,是具有纳米级微孔结构的高分子功能材料,其主要功能是防止两极接触而发生短路,同时使电解质离子通过。相关研究证实[6],隔膜的微孔孔径分布越均匀,电池的电性能越优异。孔径的分布主要采用扫描电子显微镜( SEM) 进行观测,但仅靠肉眼观测图片,对孔隙率的表征存在一定误差且效率低下。因此,若要更准确形象地获得材料的孔隙率,需要将图像处理软件与SEM 结合,以实现隔膜孔隙分布及其定量分析的需求。图九:隔膜孔隙识别及孔隙率统计汇鸿LIBMAS可以快速获取隔膜的孔隙率信息,检测隔膜孔隙率、孔隙直径及纤维直径并统计分析,从而形象地描述隔膜表面的结构细节,提高锂电池隔膜孔隙率评定的准确性,如图九。二、锂离子电池异物分析系统(LIBIAS)目前行业对锂电正极材料中金属及磁性异物的分类主要有以下三个方面:金属及非金属大颗粒、磁性异物、Cu/Zn单质[7]。异物引入的方式有原材料带入和制造过程中产生。为了有效控制锂离子电池正负极材料中非金属/金属/磁性异物的含量,一般会使用专业的设备与软件对初筛后的原材料中异物颗粒进行形貌与成分统计。行业内以往使用光镜或手动测量的方法,然而这些传统检测方式往往在数据结果的准确性、全面性、一致性上有或多或少的不足,给精确检测带来比较大的挑战。目前,锂电池材料中异物颗粒的检测主要面临的问题有:1)异物来源广、溯源难,2)数据量大、费时费力,3)颗粒易团聚、识别难度高。图一:同一颗粒分别在光学显微镜(左)、电子显微镜(右)下的图像及EDS能谱识别颗粒主要成分为Fe图二:电镜图像下滤膜上所有颗粒分布情况图三:滤膜上的颗粒团聚现象针对传统软件的不足,欧波同集团旗下的汇鸿科技公司开发了“锂离子电池异物分析系统”(LIBIAS)。这是集准确、高效和易操作功能为一体的全自动清洁度分析系统,可以实现高清BSE图像采集拍摄和图像处理、元素定量测试等功能。包括:1)简易上手的测试程序,2)开放的标准库编辑系统,3)一键生成对应报告图表。图四:颗粒类型占比饼状图(左),三元统计相图(右)汇鸿智能科技是一家专注于工业领域微观智能图像分析应用解决方案服务商。以“坚持原创,用信息技术引领工业分析”为愿景,可以为用户提供全场景的锂电池智能化显微分析解决方案。汇鸿智能科技研发的”锂离子电池材料显微智能分析系统(LIBMAS)”和“锂离子电池异物分析系统(LIBIAS)”,将高分辨性能的扫描电镜与智能化的分析软件相结合,解决从锂电原材料,到正负极极片、隔膜,锂电清洁度全系列的锂离子电池相关分析,助力研究人员开发出性能更优越的锂电产品。参考文献:[1] Wang Qi-Yu, Wang Shuo, Zhou Ge, Zhang Jie-Nan, Zheng Jie-Yun, Yu Xi-Qian, Li Hong. Progress on the failure analysis of lithium battery. Acta Phys. Sin., 2018, 67(12): 128501. DOI: 10.7498/aps.67.20180757.[2] Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3]O2 prepared by a carbonate co-precipitation method.DOI:10.1016/j.powtec.2009.12.002[3] 杨绍斌,梁正. 锂离子电池制造工艺原理与应用[M].[4] Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode.DOI:10.1126/science.abc3167[5] 肖建伟, 刘良彬, 符泽卫, 等. 单晶LiNixCoyMn1-x-yO2 三元正极材料研究进展[J]. 电池工业, 2017, 21(2): 51-54.[6] 毛继勇,许汉良.锂离子电池用隔膜孔隙率对电池性能的影响[J].广州化工,2018,46(14) : 78-80.[7] 惠升,詹永丽,黎江.锂电正极材料金属及磁性异物过程控制的研究[J].世界有色金属,2021(17):166-168.作者:沈宁单位:欧波同个人简介:沈宁,OPTON创新研究中心BD工程师 ,硕士毕业于上海大学纳米化学与生物学研究所,主要研究方向为石墨烯量子点及其修饰物的应用,期间负责研究所内透射电镜/扫描电镜的使用,培训和维护,硕士期间参与发表四篇专利,两篇SCI学术论文。现负责欧波同集团锂电行业应用市场的开发,对设备选型、技术应用、市场需求有着丰富的经验。
  • AI助力新能源分析: 锂离子电池材料显微智能分析方案
    随着我国新能源汽车产业的规模越来越大,对动力锂电池的需求,也逐步增加。电动汽车的主要能量源是动力电池,其发展和应用在很大程度上受动力电池性能影响。锂离子电池发展至今,凭借其高电压、高能量密度、良好的循环性能和绿色环保等优势成为在新能源应用中广泛的化学储能器件之一。图1:锂离子电池的组成示意图 锂离子电池是指以锂离子嵌入化合物为正极材料电池的总称,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。随着对锂离子电池的研究不断深入,电池工业界正在迅速向更高能量密度和更低成本的电池技术努力,以达成零碳排放的目标。 但是目前在锂电池使用或储存过程中仍会出现一定概率的失效,一类是锂离子电池的材料自身缺陷引起的失效,例如正负极的结构衰退,电解液分解,隔膜的老化等;另一类是锂离子电池使用及存储环境引起的失效,例如环境温度过高,充放电过快,过度充放等,都严重降低了锂电池的使用性能、一致性、可靠性和安全性。图2:锂离子电池失效模式 虽然产品的诞生伴随着失效,但只要充分了解失效原因,掌握分析失效的方法和利器,就能从根本上找到并解决失效问题。对于锂电池来说,其失效归根结底是材料的失效。例如,正极材料因局部Li+脱嵌速率不一致导致材料所受应力不均而产生的颗粒破碎;硅负极材料因充放电过程中发生体积膨胀收缩而出现的破碎粉化;隔膜孔隙阻塞等。电池性能和电池材料性质有着息息相关的关系,准确把握材料的特性,是解决电池问题并提升电池性能的重要途径之一。 软件特点简介 汇鸿智能科技是一家专注于工业领域微观智能图像分析应用解决方案服务商。以“坚持原创,用信息技术引领工业分析”为愿景,可以为用户提供全场景的锂电池智能化显微分析解决方案。汇鸿智能科技研发的”LIBMAS—锂离子电池材料显微智能分析系统”(以下简称LIBMAS),将高分辨性能的扫描电镜与智能化的分析软件相结合,解决从锂电原材料,到正负极极片、隔膜,锂电清洁度全系列的锂离子电池相关分析,助力研究人员开发出性能更优越的锂电产品。 针对传统软件自动化程度不足,操作复杂的弊端,汇鸿智能科技可为客户量身定制专属软件,满足客户所有需求,采用先进AI技术及图像处理技术,可快速准确进行单晶团聚识别、二次颗粒分布均匀性、开裂球识别、截面孔隙统计、隔膜材料孔隙分析等锂电池材料分析。 应用案例0101开裂球、截面孔隙识别 通常在制备三元正极材料时,采用共沉淀法使亚微米一次粒子致密堆积成球形二次粒子,但这种堆积结构容易形成裂纹,导致电池性能衰减。图1:软件智能区分开裂球和普通球 通过汇鸿LIBMAS,可快速统计并计算开裂球占比,获得开裂球裂缝信息,从而改善工艺条件,如图1。 在锂电池中,锂离子在正极晶格中反复脱嵌,随着电流密度和颗粒尺寸的增加,仅仅几个循环就出现晶间裂纹。而产生的裂纹对电池性能、SOC、以及锂离子传输路径都会有一定影响。图2:二次球截面孔隙识别 正极颗粒内部通常为二次球颗粒形成的多晶结构,导致正极晶格在循环中容易发生各向异性体积变化,而产生孔隙。我们将二次球颗粒抛开,发现循环充放电后的颗粒截面出现大量裂痕,如图2。使用LIBMAS对截面孔隙进行识别,以轮廓中心点为圆心画出同心圆,以各同心圆圆环内的孔隙率计算同心圆孔隙率RSD,见图3。 图3:二次球截面孔隙率统计及RSD计算 0202团聚颗粒识别 正极三元颗粒通常需要在高温纯氧下进行烧结,烧结而成的三元产品一般具有典型的团聚体形貌,即由粒径约几百纳米的一次粒子组成的粒径在几个到十几个微米之间的二次颗粒。图4:一次颗粒团聚形成的二次球颗粒识别 通常团聚体颗粒内部较为密实,一次粒子之间连接处存在晶界。通过汇鸿LIBMAS可高效识别一次颗粒大小(长、宽、周长、面积等)以及分布情况,如图4、图5。图5:软件自动区分团聚颗粒及团聚颗粒截面 相对于单独的纳米粒子,这种形貌的团聚体颗粒具有比表面积小,颗粒流动性好,压实密度高和电极浆料可加工性好等优点。 然而在团聚体反复的充放电过程中,团聚体内部也反复经受一次颗粒体积变化产生的应力冲击,容易在一次颗粒之间的晶界处发生破碎。破碎后的颗粒不仅增大了活性物质的比表面积,进而加剧了活性物质和电解液之间的副反应。而且破碎后的一次粒子之间失去了有效的电接触,也进一步增加了电极材料的阻抗,不利于循环性能的保持。 03单晶颗粒识别图6:单晶颗粒的识别 团聚体的破碎受多种因素影响。减小体积变化程度可以减小应力应变对团聚体的损伤;另外,从前驱体和烧结工艺入手以尽可能增强烧成的团聚体颗粒内部密实度,增强一次粒子之间的结合力,从而提高团聚体颗粒抗破碎的能力。 另外,相比易产生颗粒粉碎的多晶正极材料,许多研究已经开始从晶体结构本身出发,探究单晶三元正极材料的性能,结果表明单晶三元具有更好的机械强度,从而抑制颗粒破碎,在高温循环方面也具有更好的热稳定性。诸如此类的研究都需要准确识别出单晶颗粒及其内部分布情况,汇鸿LIBMAS可以自动识别团聚颗粒中轮廓清晰的单晶颗粒,并测量、统计其直径,如图6、7。 图7:单晶颗粒尺寸统计及分布图 04大小二次球识别 除此之外,汇鸿LIBMAS还可以精准识别图像上所有大二次球颗粒与小颗粒,根据面积判断计算大颗粒与小颗粒分布的均匀性。如图8、9。图9:大小二次球颗粒分布均匀性统计05隔膜孔隙率统计 锂电池隔膜作为锂电池的重要组成部分,是具有纳米级微孔结构的高分子功能材料,其主要功能是防止两极接触而发生短路,同时使电解质离子通过。相关研究证实,隔膜的微孔孔径分布越均匀,电池的电性能越优异。 孔径的分布主要采用扫描电子显微镜( SEM) 进行观测,但仅靠肉眼观测图片,对孔隙率的表征存在一定误差且效率低下。因此,若要更准确形象地获得材料的孔隙率,需要将图像处理软件与SEM 结合,以实现隔膜孔隙分布及其定量分析的需求。图10:隔膜孔隙识别及孔隙率统计 汇鸿LIBMAS可以快速获取隔膜的孔隙率信息,检测隔膜孔隙率、孔隙直径及纤维直径并统计分析,从而形象地描述隔膜表面的结构细节,提高锂电池隔膜孔隙率评定的准确性,如图10、11。 图11:隔膜孔隙率统计结果及孔隙面积分布图 针对锂电行业的特殊需求,汇鸿智能科技开发了一整套智能化锂离子电池材料分析系统。汇鸿智能科技公司是一家国际前沿微观AI图像分析生态平台开发公司,以“AI 即专家”为使命, 驱动AI技术,加速实验室智能化升级,构建实验室全场景智慧,为工业分析和质量控制赋能。
  • 锂离子电池原料的含水量检测
    p strong 一、前言 /strong br/   锂电池与我们生活息息相关,扮演着不可或缺的角色。比如我们每天不离手的手机以及笔记本电脑,家用电器等。作为交通工具的飞机、混合动力车、电动车等对锂离子电池的需求也显著增加。在锂离子电池的制造过程中,有很多东西是必须严格控制的,一是粉尘,二是金属颗粒,三是水分。 br/ strong 二、水分对锂电池的影响及市场现状 /strong br/ strong 2.1 水分会对锂离子电池造成哪些不良影响? /strong br/   主要表现为电池容量小,放电时间变短,内阻增大,循环容量衰减,电池膨胀等现象,因此在锂离子电池的制作过程中,必须要严格控制环境的湿度和正负极材料、隔膜、电解液的含水量。 br/ strong 2.2 锂离子电池水分控制方法检测现状? /strong br/   目前市场上水分含量测定的技术方法最常用的是加热失重法和卡尔费休法,由于锂电池行业所测样品含水量极低,加热失重法水分测定仪的精度根本达不到,这种方法被直接排除。 br/ strong 三、分析与方法 /strong br/ strong 3.1 仪器 /strong br/   AKF-BT2015C 锂电池卡氏水分仪 br/ strong 3.2 技术参数及特点 /strong br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201801/insimg/2f8bdcbf-c688-4dfd-aa4d-bedd9c41a0f0.jpg" title=" 1.jpg" / /p p strong 特点: /strong br/ 1. 卡氏顶空样品瓶加热技术,有效避免加热炉膛和反应杯污染; br/ 2. 禾工独创的样品瓶连接器,让载气无须穿刺样品瓶隔垫即可进入到样品瓶内部,密封性好,减少隔垫耗材的同时可拆卸方便; br/ 3. 精确流量控制设计,载气消耗量仅为同类进口产品管式加热炉的十分之一; br/ 4. 大功率散热槽设计,迅速冷却样品瓶,提高工作效率; br/ 5. 7& quot 高分辨率彩色触摸屏界面,多参数显示,直观简洁;一键测定,操作极为简便; br/ 6. 防凝结保温管路无死体积设计,保证挥发后的水分管壁系统无残留; br/ 7. 加热温度最高达300° ,0-100ml 气体流量自由调节,满足大多数固体原料水分测定需求; br/ 8. 全自动恒流极化检测,无需人工设定终点,检测精度高,水分测量分辨率达到0.1ug br/ 9. 一键启动,操作简单,稳定可靠,故障低,使用寿命长; br/ strong 3.3 分析原理 /strong br/   样品用卡氏加热炉专用密封进样小瓶装载,用顶空瓶连接器密闭后进入加热槽中,样品中的水分(还可能有其他挥发性的溶剂)以蒸气的形式完全释放,通过干燥载气(如干燥的空气或者氮气)由顶空瓶经加热伴管路转移到KF 滴定杯中,然后卡尔费休水分测定仪进行检测并显示测量数据。 br/ strong 3.4 检测方法 /strong br/ 1.将电解液注入电解池以及电解电极的阴极室内,液位至下刻度线,加入微量水然后电解至平衡。 br/ 2.将气源连接至卡氏加热炉,将干燥样品瓶装入加热槽,温度设置为250℃,流量调整为50mL/min,吹扫样品瓶和管路内可能存在水分,等待再次平衡。 br/ 3.将样品瓶移至冷却槽冷却后取出,用电子天平称取约0.5~3g 样品置于样品瓶内,然后在水分仪上点击开始测量,同时将样品瓶装入加热槽。 br/ 4.输入样品称取的重量,等待测量结束后显示最终测量结果。 br/ strong 四、数据与结论 /strong br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201801/insimg/c2469d3d-16f8-4766-a1cb-7d8da27630e8.jpg" title=" 2.jpg" / /p p strong 结论说明: /strong br/   通过本实验方法,可以精确测得锂离子电池原料的水分含量,检测结果精度与重复性均达到进口同类产品的水平。AKF 库仑法卡尔费休水分测定仪和KH-1 卡氏加热炉顶空进样器联用,能自动扣除漂移,操作便捷,能准确可靠的测出锂电池跟原料的含水量。 /p
  • 中国锂离子电池检测仪器设备市场解析|2018年
    p   近十年间,在能源技术变革以及新兴科技的带动下,全球锂离子电池产量进入飞速增长期,根据公开数据,预计2018年全球锂电池增速维稳,产量有望达到155.82GWH,市场规模将到达2313.26亿元。中国是锂电池重要的生产国之一,2017年中国锂电池产量突破100亿只,增速达27.81%,2018年预计全国锂电池产量达到121亿只,增速22.86%。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201808/uepic/06d25d4d-9770-4f94-90cf-561334abdcf6.jpg" title=" 01.jpg.png" alt=" 01.jpg.png" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图1锂电产业链到测试仪器设备对应关系图 /span /p p   锂离子电池产业的蓬勃发展,也为锂离子电池检测领域带来新的机遇。锂电检测设备除了生产制造环节必需的电芯分选检测系统、充放电检测系统、保护板检测系统、线束检测系统、BMS检测系统、模组EOL检测系统、电池组EOL检测系统、工况模拟检测系统等外。锂电新技术研发、开发也离不开各种分析测试仪器,如电镜表征锂电正极材料或包覆材料结构及形貌、热分析仪或X射线衍射仪分析锂电正极材料结晶性能、粒度仪及比表面仪器分析锂电正负极材料粒度、孔径等。图1展示了从锂电产业链到测试方法的对应关系。 /p p   随着锂离子电池基础科学研究仪器水平不断提升,几乎各类先进科学仪器都逐渐在锂离子电池的研究中出现,且针对锂离子电池的研究、制造也开发了许多锂电行业专用的仪器设备。图1展示了从锂电产业链到测试方法的对应关系,图2则展示了不同空间分辨率对应的部分的表征方法。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201808/uepic/12d49b40-626a-4708-986a-8546871af96b.jpg" title=" 02.jpg.png" alt=" 02.jpg.png" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图2 锂离子电池实验技术的空间分辨分布图 /span /p p   从市面锂电检测相关市场调研报告或资料统计来看,多数主要针对生产制造环节的锂电检测系统,却鲜有涉及研发必需的各类分析仪器。然而,纵观目前国内锂电企业,低端产能过剩,高端产能不足是行业现状,锂电产品质量走向高端是必然发展趋势。走向高端则必须保持高研发投入,来保证不断材料改进和技术革新。基于此,仪器信息网( a style=" color: rgb(0, 176, 240) text-decoration: underline " target=" _self" href=" https://www.instrument.com.cn/" span style=" color: rgb(0, 176, 240) " https://www.instrument.com.cn/ /span /a )特组织了“中国锂离子电池检测仪器设备市场调研”活动,以期从市场应用角度,对锂电检测设备及仪器做更全面的梳理归纳,对近年来锂离子电池检测行业整体产业链发展现状、市场发展行情、锂电检测涉及到的仪器设备品类,各仪器设备品牌在市场中的占有率以及各自市场拓展情况等信息进行调研分析,为各锂电检测仪器设备商在以后的仪器销售和推广活动中提供决策参考。此次调研,面对的调研对象包括仪器信息网注册用户、锂电科研开发用户、锂电生产企业、锂电第三方检测机构、锂电检测领域专家以及部分锂电检测相关仪器设备主流生产厂商等。 /p p    a style=" color: rgb(0, 176, 240) text-decoration: underline " target=" _blank" href=" https://www.instrument.com.cn/survey/Report_Census.aspx?id=151" strong span style=" color: rgb(0, 176, 240) " 《中国锂离子电池检测仪器设备市场研究报告(2018版)》 /span /strong /a 内容包含了锂电行业行业监管体制及相关产业法规政策、标准,锂电及锂电检测发展现状,锂电检测用户调研分析,锂电检测设备商市场分析,锂电检测涉及各种分析检测仪器设备品牌分布分析等。 /p p    a style=" text-decoration: underline " target=" _blank" href=" https://www.instrument.com.cn/survey/Report_Census.aspx?id=151" span style=" text-decoration: underline color: rgb(0, 176, 240) " strong 《中国锂离子电池检测仪器设备市场研究报告(2018版)》 /strong /span /a 得到了广大调研用户、相关企业以及业内专家的大力支持。近200余位来自锂电生产、研发、第三方检测机构、高校院所等领域的锂电检测用户参与在线调研。结合仪器信息网大数据平台,还对锂电仪器设备商近三年在仪器信息网发布的300篇锂电相关解决方案数据进行了统计分析。同时,报告详细统计分析2017年国内锂电检测相关文献,考察具有研究生教育能力的高校和研究院所,初步对近18年来锂电相关博士学位论文和优秀硕士学位论文6713篇数据统计。在此,谨对报告所有参与者表示最衷心的感谢 strong ! /strong /p table align=" center" tbody tr class=" firstRow" td colspan=" 2" style=" border: 1px solid windowtext padding: 0px 7px " width=" 568" valign=" top" p style=" text-align:center" strong span style=" font-size:19px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:red" 关于《中国锂离子电池检测仪器设备市场研究报告(2018版)》 /span /strong /p /td /tr tr td style=" border-right: 1px solid windowtext border-width: medium 1px 1px border-style: none solid solid border-color: -moz-use-text-color windowtext windowtext -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 149" p style=" text-align:center" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:red" 报告适合对象 /span /strong /p /td td style=" border-width: medium 1px 1px medium border-style: none solid solid none border-color: -moz-use-text-color windowtext windowtext -moz-use-text-color padding: 0px 7px word-break: break-all " width=" 419" valign=" top" p class=" MsoListParagraph" style=" margin-left:28px" span style=" font-family:Wingdings" △ span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 重点业务板块包含锂电检测的仪器设备企业/检测机构; /span /p p class=" MsoListParagraph" style=" margin-left:28px" span style=" font-family:Wingdings" span style=" font-family:Wingdings" △ span style=" font:9px & #39 Times New Roman& #39 " /span /span span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 锂电领域呈增长趋势的仪器设备企业/检测机构; /span /p p class=" MsoListParagraph" style=" margin-left:28px" span style=" font-family:Wingdings" span style=" font-family:Wingdings" △ span style=" font:9px & #39 Times New Roman& #39 " /span /span span style=" font:9px & #39 Times New Roman& #39 " & nbsp & nbsp /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 将锂电作为重点拓展领域的仪器设备企业/检测机构; /span /p p class=" MsoListParagraph" style=" margin-left:28px" span style=" font-family:Wingdings" /span span style=" font-family:Wingdings" △ span style=" font:9px & #39 Times New Roman& #39 " /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 仪器设备产品为锂电检测重要或高占比品类的仪器设备企业; /span /p p class=" MsoListParagraph" style=" margin-left:28px" span style=" font-family:Wingdings" /span span style=" font-family:Wingdings" △ span style=" font:9px & #39 Times New Roman& #39 " /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 仪器设备品类齐全,涵盖了锂电检测诸多检测仪器品类的大综仪器设备企业; /span /p p class=" MsoListParagraph" style=" margin-left:28px" span style=" font-family:Wingdings" /span span style=" font-family:Wingdings" △ /span span style=" font-family:Wingdings" /span span style=" font-family:Wingdings" ...... /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " /span /p /td /tr tr td style=" border-right: 1px solid windowtext border-width: medium 1px 1px border-style: none solid solid border-color: -moz-use-text-color windowtext windowtext -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 149" p style=" text-align:center" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:red" 获取报告可能带来哪些收益? /span /strong /p /td td style=" border-width: medium 1px 1px medium border-style: none solid solid none border-color: -moz-use-text-color windowtext windowtext -moz-use-text-color padding: 0px 7px word-break: break-all " width=" 419" valign=" top" p class=" MsoListParagraph" style=" margin-left:28px" strong span style=" font-family:Wingdings" √ /span /strong span style=" font-family:Wingdings" span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 对锂电检测市场至上而下系统性整体把握; /span /p p class=" MsoListParagraph" style=" margin-left:28px" span style=" font-family:Wingdings" strong span style=" font-family:Wingdings" √ /span /strong span style=" font-family:Wingdings" span style=" font:9px & #39 Times New Roman& #39 " /span /span span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 锂电不同产业链阶段对检测仪器设备需求把握; /span /p p class=" MsoListParagraph" style=" margin-left:28px" span style=" font-family:Wingdings" strong span style=" font-family:Wingdings" √ /span /strong span style=" font-family:Wingdings" span style=" font:9px & #39 Times New Roman& #39 " /span /span span style=" font:9px & #39 Times New Roman& #39 " & nbsp & nbsp /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 对锂电封装后端锂电检测系统市场格局把握; /span /p p class=" MsoListParagraph" style=" margin-left:28px" span style=" font-family:Wingdings" strong span style=" font-family:Wingdings" √ /span /strong span style=" font-family:Wingdings" span style=" font:9px & #39 Times New Roman& #39 " /span /span span style=" font:9px & #39 Times New Roman& #39 " & nbsp & nbsp /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 对锂电封装前端检测仪器市场格局把握; /span /p p class=" MsoListParagraph" style=" margin-left:28px" span style=" font-family:Wingdings" strong span style=" font-family:Wingdings" √ /span /strong span style=" font-family:Wingdings" span style=" font:9px & #39 Times New Roman& #39 " /span /span span style=" font:9px & #39 Times New Roman& #39 " /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " & nbsp 对锂电开发、科研检测仪器设备品类、各品类主流品牌、各品牌等市场格局把握; /span /p p class=" MsoListParagraph" style=" margin-left:28px" span style=" font-family:Wingdings" strong span style=" font-family:Wingdings" √ /span /strong span style=" font-family:Wingdings" span style=" font:9px & #39 Times New Roman& #39 " /span /span span style=" font:9px & #39 Times New Roman& #39 " & nbsp & nbsp /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 对锂电开发、科研检测仪器设备用户分布把握; /span /p p class=" MsoListParagraph" style=" margin-left:28px" span style=" font-family:Wingdings" strong span style=" font-family:Wingdings" √ /span /strong span style=" font-family:Wingdings" span style=" font:9px & #39 Times New Roman& #39 " /span /span span style=" font:9px & #39 Times New Roman& #39 " & nbsp & nbsp /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 锂电检测领域业务投资、拓展规划等导向参考; /span /p p class=" MsoListParagraph" style=" margin-left:28px" span style=" font-family:Wingdings" strong span style=" font-family:Wingdings" √ /span /strong span style=" font-family:Wingdings" span style=" font:9px & #39 Times New Roman& #39 " /span /span span style=" font:9px & #39 Times New Roman& #39 " /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " ....... /span /p /td /tr /tbody /table p    strong 报告链接 /strong : a style=" text-decoration: underline color: rgb(255, 0, 0) " target=" _blank" href=" https://www.instrument.com.cn/survey/Report_Census.aspx?id=151" span style=" color: rgb(255, 0, 0) " strong 《中国锂离子电池检测仪器设备市场研究报告(2018版)》 /strong /span /a /p p    span style=" color: rgb(0, 176, 240) " strong 欢迎感兴趣的网友和我们联系购买报告事宜,电话:010-51654077转 销售部 /strong /span /p p br/ /p p span style=" color: rgb(255, 0, 0) " strong & nbsp & nbsp & nbsp 报告节选: /strong /span /p p    strong 一 锂电池行业监管体制及相关产业法规政策 /strong /p p   ...... /p p   2.1 相关法律、法规与政策(2007-2018) /p p   ...... /p p   2.2 相关标准 /p p   ...... /p p   表 电池相关标准发布情况 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201808/uepic/da42376b-e785-4643-bcda-5bfa22228928.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p   表 电池检测相关标准发布情况 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201808/uepic/2ee83f81-7764-4535-8e2f-88fb8b4ecbb5.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p   ...... /p p    strong 二 锂电及锂电检测发展背景 /strong /p p   ...... /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201808/uepic/5f286267-b748-4f32-a0f8-f0d797ad87d2.jpg" title=" 03.jpg.png" alt=" 03.jpg.png" width=" 450" height=" 269" / /p p   ...... /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201808/uepic/6c628d9f-6ae2-43e8-8d77-cd78c08d1497.jpg" title=" 04.jpg.png" alt=" 04.jpg.png" width=" 450" height=" 308" / /p p   ...... /p p & nbsp & nbsp & nbsp strong 三 锂电检测仪器设备市场调研分析 /strong /p p & nbsp & nbsp & nbsp ...... /p p    strong 四 锂电研发用检测仪器设备市场分析 /strong /p p   ...... /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201808/uepic/8ea20ccf-f148-40e4-86cd-7ef3fdba0766.jpg" title=" 05.jpg.png" alt=" 05.jpg.png" width=" 450" height=" 281" / /p p   ...... /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201808/uepic/77d4360c-765d-47cf-b644-b44644c1803f.jpg" title=" 06.jpg.png" alt=" 06.jpg.png" width=" 450" height=" 296" / /p p   ...... /p p   3 2017年锂电研发用电镜市场分布情况 /p p   ...... /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201808/uepic/e06873f6-50ed-4630-bfa1-fc0b9a8f7c56.jpg" title=" 07.jpg.png" alt=" 07.jpg.png" width=" 450" height=" 271" / /p p   ...... /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 表 锂电研发用电镜不同品牌用户在各地区分布数据表 /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201808/uepic/992b6593-5342-4b53-a3a1-7576e9cc118f.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 表 锂电研发用电镜各地区品牌渗透数据表 /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201808/uepic/4600a0aa-d5e7-4bb7-b821-27cf760d4d17.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201808/uepic/ca4cc6a1-a049-43df-8b15-078dd12e4357.jpg" title=" 08.png" alt=" 08.png" width=" 450" height=" 281" / /p p   ...... /p p & nbsp & nbsp & nbsp 4 2017年锂电研发用电化学工作站市场分布情况 /p p & nbsp & nbsp & nbsp ...... /p p    strong 五 小结 /strong /p p   ...... /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201808/uepic/c0d39595-d1e6-4330-9b2e-037a61e4044c.jpg" title=" 09.png" alt=" 09.png" width=" 600" height=" 380" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 仪器厂商发布锂电解决方案数量与用户关注度柱状图 /span /p p   ...... /p p    span style=" color: rgb(255, 0, 0) " strong 正文目录 /strong /span /p p   一 锂电池行业监管体制及相关产业法规政策...... 6 /p p   1 锂电池行业监管体制....... 6 /p p   2 锂电行业相关法律、法规与政策、标准....... 7 /p p   二 锂电及锂电检测发展背景....... 15 /p p   1 锂电产业链概况....... 15 /p p   2 锂电检测行业概况及对仪器设备的需求....... 15 /p p   三 锂电检测仪器设备市场调研分析....... 18 /p p   1调研用户样本情况分析....... 18 /p p   2 锂电封装后之电池检测系统市场概况....... 20 /p p   3 锂电封装后之电池检测系统用户调研分析....... 23 /p p   4 锂电封装前之检测仪器市场用户调研....... 25 /p p   四 锂电研发用检测仪器设备市场分析....... 27 /p p   1近18年发表锂电相关学位论文发布情况及主要发布单位....... 28 /p p   2 2017年锂电研发用检测仪器品类分布分析....... 31 /p p   3 2017年锂电研发用电镜市场分布情况....... 32 /p p   4 2017年锂电研发用电化学工作站市场分布情况....... 36 /p p   5 2017年锂电研发用电池性能检测系统市场分布情况....... 38 /p p   6 2017年锂电研发用X射线衍射仪(XRD)市场分布情况....... 40 /p p   7 2017年锂电研发用热分析仪市场分布情况....... 43 /p p   8 2017年锂电研发用X射线光电子能谱仪(XPS)市场分布情况....... 45 /p p   9 2017年锂电研发用红外光谱仪市场分布情况....... 46 /p p   10 2017年锂电研发用比表面测试仪市场分布情况....... 48 /p p   11 2017年锂电研发用拉曼光谱仪市场分布情况....... 49 /p p   12 2017年锂电研发用电感耦合等离子体发射光谱仪(ICP)市场分布情况....... 51 /p p   五 小结....... 51 /p p   1锂电检测研发端:仪器种类繁多,仪器商众,进口品牌独占鳌头....... 52 /p p   2锂电检测封装后锂电检测系统端:行业整合加速,品牌意识将加强....... 53 /p p   3仪器信息网大数据之锂电检测仪器设备商:锂电产业热潮中,蜂拥关注,拓展尚处摸索期....... 54 /p
  • 赛默飞离子色谱助力锂离子电池品质提升
    赛默飞离子色谱助力锂离子电池品质提升关注我们,更多干货和惊喜好礼您是否留意到,有一样东西,没有它就没有智能手机和平板电脑,没有它也没有重生的苹果及现在的小米,没有它您也享受不到微信带来的各种便利,当然您更不能坐在舒适、安静及环保的新能源汽车里环游世界,这都是锂电池的功劳。不管您是生活在繁华的大都市还是宁静的小乡村,它影响着我们工作和生活的方方面面。锂电池是1912年由Gilbert N. Lewis早提出并研究,1991年索尼公司商品化了锂离子电池,2019年诺贝尔化学奖颁给了约翰B古迪纳夫等三人,以表彰他们在锂电领域做出的贡献。我国也非常重视锂电产业,近几年出台多部政策鼓励新能源汽车的发展,在政策的推动下,中国锂电产业规模迅猛增长。2018年,中国锂电产业规模约占产业规模的41%,跃居首位,且持续高速增长,据专家预测到2025年,我国锂电产业规模将超过6000亿元,市场前景广阔。锂离子电池的四大关键材料为正极、负极、电解液及隔膜,其中电解液在电池正负极之间进行离子和离子化合物的传输,它的含量和性能直接决定了电池的电导率、容量和输出电压,因此电解液中不同锂盐含量和配比直接影响电池的性能,故锂盐含量的监控就变得尤为重要。 赛默飞解决方案赛默飞Integrion高压离子色谱仪可助您轻松实现锂盐监控,若您选择小粒径柱,分析速度能让您有点小激动。 Thermo Scientific™ 图 常见6种锂盐快速分离色谱图(点击查看大图)Thermo Scientific™ Dionex™ Integrion 高压离子色谱仪图 碳酸酯溶剂在线去除系统(点击查看大图) 滑动查看更多 赛默飞-Integrion高压离子色谱分析电解液中锂盐具有以下特点:仪器高耐压可达6000psi(PEEK材质),兼容小粒径色谱柱;分析效率高,15min内可完成常规锂盐的分析;柱容量高,分离度好,目标物之间无相互干扰,定量结果准确可靠;选配在线处理系统,兼容碳酸酯溶剂直接进样,无需担心样品水解。赛默飞离子色谱交流群飞飞Hi 老兄,新买的新能源汽车充满电放几天就没电了,咋回事呢?赛老师是电池里的杂质离子引起的“自放电”。飞飞杂质离子来自哪呢?赛老师电解液中碳酸酯和锂盐、正极和负极材料、隔膜和阻燃剂等都能引入杂质离子,即使ppb级别的杂质离子都能影响电池性能。飞飞什么手段能监控ppb级别的杂质离子呢?赛老师赛默飞家的Integrion离子色谱可以助您轻松实现ppb级别杂质离子准确定量,并且配备“只加水”特色技术,省去您配淋洗液的麻烦。图 电解液中常见杂质阴离子分离图谱(点击查看大图)图 “只加水”离子色谱仪原理图(点击查看大图)图 淋洗液自动发生器(Eluent Generator,EG)原理图(点击查看大图)图 在线浓缩、中和、去除重金属离子及疏水性化合物系统(点击查看大图) 滑动查看更多 赛默飞-Integrion高压离子色谱分析锂离子电池材料杂质离子特点:配备“只加水”技术,可帮您消除每次配制淋洗液的烦恼;多步高压梯度,多组分同时分析时,可兼顾分离度及分析效率;OH体系灵敏度优于碳酸体系,适用于痕量杂质分析;淋洗液和再生液通道完全隔离的微膜抑制器,无交叉污染;可满足电解液碳酸酯溶剂及锂盐、正极和负极材料、隔膜、阻燃剂及粘胶中ppb级别杂质离子监控;可满足标准GB/T 24533-2019及GB/T 18282-2014的要求;选配在线处理系统,实现样品在线浓缩、中和、去除重金属离子及疏水性化合物。赛默飞为电池研发者提供了离子与质谱联用方案,为电池充放电过程中副反应产物定性、为活性物质降解机理提供监控方案,助力研发者掌握电池内部化学变化规律,为我们提供更高性能的电池。图 六氟磷酸锂降解机理途径研究图 电解抑制器原理图(点击查看大图)图 离子色谱串联质谱(IC-MS/MS)(点击查看大图) 滑动查看更多 赛默飞离子色谱与质谱联用特点:Chromeleon变色龙统一操作软件,可实现离子色谱与质谱的同时控制;联用接口——在线电解抑制器,持续稳定的在线脱盐,无需修改IC分离方法,完美对接质谱;质谱检测器平台提供单杆质谱、三重四极杆质谱以及高分辨质谱等完整质谱选项;可助您探索电池充放电过程内部化学变化的奥妙。 总结从电解液中锂盐含量的监控,到电池材料杂质离子检测,再到电池内部物质转化的研究,赛默飞离子色谱均能为您提供优质的解决方案。 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 锂离子电池产业政策研究及检测标准分析
    p   随着锂离子电池应用领域的不断扩大,其安全问题现已经成为了各方关注的焦点。 /p p   本文简要汇总了我国锂电池工业产业最新发展趋势及世界主要发达国家对于锂电池工业产业的政策倾斜,提出了我国锂电池产业发展的建议 研究了锂离子电池安全性检测标准现状及存在的问题,提出了应对策略和建议。 /p p    strong 1 我国锂电池工业产业现状 /strong /p p   锂离子电池作为新能源产品具有显著的优势,世界各国开始将锂电池工业作为引领未来能源发展的支持产业之一。 /p p   目前, 中国已成为仅次于日本的锂离子电池生产大国。 据不完全统计,中国锂离子电池的产量已经占到全球的 70%,达到了 16 亿只,市场价值近 50 亿美元,其中 70%以上出口。 我国锂电池行业已经从传统的小型电子产品,逐步向电动自行车、电动汽车等领域拓展。 /p p   电动汽车的核心技术是动力电池。 从新能源汽车产业链上来看, 因有色金属资源具有极强的地域性,上游原材料企业将会非常集中 对核心技术的掌控,使中游电池厂商将成为行业发展最大的受益者 而整车厂商在这场行业盛宴中利润微薄。 目前,新能源汽车价格居高不下, 原因之一是动力电池组成本太高,如一辆造价 26 万元的丰田普锐斯,电池成本在 8 万元左右,占了整车成本的三分之一。 因此,国内电动汽车厂商纷纷加大投入, 用于新型锂电池材料、制作工艺、技术的开发研究,期待尽快研制出成本较低的动力锂电池组,以降低电动汽车整车成本,加快行业发展。 /p p   动力锂离子电池的主要材料有:正/负极材料、电解液和隔膜。 随着国家对该行业的重视和投入力度的加大, 越来越多新的公司加入到动力电池的研发和生产中来,未来市场格局将面临改变。 以电解液为例进行分析: 电解液是锂离子电池四大关键材料之一,号称锂电池的“血液”,是锂离子电池获得高电压、高比能等性能的保证。 电解液占锂离子电池成本的 12%左右,毛利率接近 40%。 锂离子电池对电解液要求比较高,但目前用量却很少。 比如一块手机电池只用 3 g, 比重很小,2 000 t 电解液可供生产 6 亿块手机电池。 /p p   目前全球锂电池电解液市场供求基本平衡,主要是靠现有锂电池市场。 但是,汽车动力电池对电解液的需求量较大, 一辆车需要 40 kg 左右。 预计到2012 年,新能源车的年产量将达到 100 万辆,按每辆新能源汽车电池电解液 40 kg 计算,100 万辆混合动力汽车将带动 4 万吨电解液的需求。 /p p   目前国内电池生产商电解液的配套已基本实现国产化,生产企业主要有国泰华荣化工、杉杉股份、珠海赛纬电子、天津金牛、汕头金光、广州天赐等 10余家,年生产能力都在千吨级以上,可满足我国目前的锂电池生产需要,并有部分出口。总体来看, 我国锂离子电池的生产尚处于起步时期。 由于国家对于锂离子电池工业的政策支持,我国不少电池厂以及一些有实力的企业集团均看到了中国锂离子电池的潜在市场, 正准备或已不惜投巨资生产理离子电池, 这些作法将会进一步促进我国锂离子电池工业产业的发展 & nbsp 。 /p p   strong  2 主要发达国家锂电池工业产业投资政策 /strong /p p    strong 2.1 /strong 美国美国锂电暂任主席、 美国布罗德普公司董事长瑞夫· 布罗德博士,在第四届华南锂电高层论坛发表的演讲中提到了最近美国政府提出的新经济刺激计划。 根据布罗德博士介绍,当前美国政府正前所未有地加大财政力度支持工业界发展。 在美国政府的财政资助计划中, 有 20 亿美金是用于电池工业的发展 其中约 12 亿美金,主要用在做锂电池和锂电池芯的发展方面。 瑞夫· 布罗德博士称,在这一整个工业界绝无仅有的资助行动当中, 锂电池行业被放在重点当中,是“重中之重”。 /p p   2009 年 8 月份,奥巴马总统签署了一项为 48 个电池有关的项目提供资金援助的计划, 这次援助计划的目的是为电动/混合动力汽车开发更有效的电池和电力驱动系统,援助的总金额达 24 亿美元,推出后将极大刺激中西部地区的发展。 奥巴马总统宣称美国政府需要的是“面向未来的汽车,以及用来驱动这种汽车的技术”。 /p p   虽然这一揽子援助计划主要面向的是汽车电池及电力驱动系统, 但面向消费领域的电池技术也能从中受益。 因为几乎所有的消费电子类产品如电动工具等都非常需要电力强劲、 能持续工作数日的电池来供电, 而现有的产品则只能提供几个小时的电力供应。 /p p   strong  2.2 /strong 德国2009 年年初, 德国政府拿出 5 亿欧元用于资助电动汽车的研发。 其中资助锂离子电池的研发费用为 5 900 万欧元。在 2007 年制定的“高科技战略”中,德国政府已将电动汽车的关键技术———锂离子电池作为攻坚项目。 /p p   为了完成这一项目,产业界五大巨头巴斯夫、博世、EVONIK、LiTec、 大众和科学界与应用界的 60 家单位结合,组建了锂离子电池“创新联盟”:企业界出资 3.6 亿欧元,联邦科研部资助 6 000 万欧元。据悉,以上还仅仅是联邦一级的研发投入。 为了抢占市场先机,各州政府也有一批资金的投入。 例如北威州的投入就达 6 000 万欧元。北威州之所以舍得投入,除了想成为“电动汽车的模范区域”之外,更重要的是想让 “北威州的轿车工业尽快生产世界领先的电动汽车”。 /p p    strong 2.3 /strong 日本日本经济产业省近日披露,日本力争在 2010 年将新型锂离子电池用于下一代电动汽车。 日本日立制作所宣称, 将投资 200 亿日元至 300 亿日元,到2015 年将目前面向混合动力车生产的锂电池产能提高约 70 倍。 据称,日立将通过加大投资和扩大其位于茨城县东海事业所的产能, 尽快实现大容量新型锂离子电池的量产, 产品将主要向美国通用汽车公司提供。 /p p   2009 年 5 月 15 日,丰田、日产汽车公司及松下电器公司等相关企业签署协议, 合力开发统一规格的新一代汽车锂电池,并计划在 2 年内实现量产。 东芝公司决定, 斥资 500 亿日元开发电动汽车用的锂离子电池, 这种高效动力电池将于两年内进入半商品化生产,计划在 2011 年之前将高性能锂离子电池增至适于不同特性的 3 个种类, 即除了目前的普通型之外, 还将分别开发支持混合动力车和电动汽车等高输出功率型以及高能源密度型的锂离子电池。普及电动汽车的一个关键问题是需要建立足够的电力补充设施。 为此,东京电力公司宣布,将带头参与有关的基础建设, 明年在首都 圈先建 200 多个充电站,3 年后增加将到 1 000 个以上。 日本各大汽车公司也积极响应、参与有关研究和工程,热切期盼“脱石油”时代能尽早来到日本。 目前,东京电力公司已经成功开发出了大型快速充电器, 每 10 min 完成充电,所能行驶的路程是 60 km,充电时间大大缩短,进一步加快了日本普及使用电动车的步伐。据日本汽车研究所预计,按照现在混合动力车的普及程度推算,到 2020 年,日本国内的混合动力车将达到约 360 万辆。 如果高性能锂离子电池得到普及,混合动力车有可能进一步达到 720 万辆的水平。 /p p    strong 2.4 对我国锂电池工业产业发展的建议 /strong /p p   1) 加强科研投入力度。 国家应该将高能量密度、 高效率新型锂离子电池的研发提升到国家级战略高度,制定和实施有关新型锂离子电池材料、生产工艺、制造技术的“973”等高层次课题专项,吸引广大锂离子电池科学家及相关企事业单位广泛参与。 /p p   2) 明确产业方向,理顺管理职能。国家应该将锂离子电池工业产业作为国家“十二五”期间重点支柱的基础产业之一,加大投入力度,同时,成立专门管理锂离子电池工业产业的行业协会组织, 统一管理和协调我国锂离子电池工业产业的发展。 /p p   3) 提高锂离子电池工业知识产权。 目前锂离子电池材料、 制作工艺等关键技术的知识产权均属国外所有,要想在锂离子电池工业产业中占据高地,必须研发创造属于我国知识产权的关键技术。 /p p   4) 加快锂离子电池标准化体系建设。 提高我国锂离子电池工业标准化水平, 使锂离子电池标准体系建设适应快速发展的锂离子电池工业, 积极应该国际社会技术性贸易壁垒 。3 锂电池安全性检测标准简介及问题分析 /p p   3 strong .1 锂电池安全性检测主要标准 /strong /p p strong /strong   锂离子电池由于存在燃烧、爆炸等安全性隐患,国际社会针对锂离子电池安全性制定了一系列的规章、制度以及国际标准、行业标准等。我国锂离子电池产品检验主要依据的相关标准主要有:联合国《关于危险货物运输建议书》第 38.3条款锂电 池 运 输 安 全 性 能 测 试 (UN 38.3) GB-T8897.1-2003 《原电池 第 1 部分 总则》 GB 8897.2-2005 《原电池 第 2 部分 外形尺寸和技术要求》 GB8897.4-2008 《原电池 第 4 部分 锂电池的安全要求》 GB/T 18287-2000 《蜂窝电话用锂离子电池总规范》 GB/T 19521.11-2005《锂电池组危险货物危险特性检验安全规范》 GB/Z 18333.1-2001 《电动道路车辆用锂离子蓄电池》 YD 1268.1-2003 《移动通信手持 机 锂 电 池 的 安 全 要 求 和 试 验 方 法 》 QC/T 743-2006 《电动汽车用锂离子蓄电池》 QB/T 2502-2000《锂离子蓄电池总规范》 SN/T 1414.3-2004 《进出口蓄电池安全检验方法 第 3 部分 锂离子蓄电池》 SJ/T11169-1998 《锂电池标准》。 /p p   现行的国际主要锂离子电池安全性检测标准主要有:IEC 62133:2002 《含碱性或其他非酸性电解质的蓄电池和蓄电池组-便携式密封蓄电池和蓄电池组的安全性要求》 IEC 62281:2004《运输中锂原电池和电池组及 锂 蓄 电 池 和 电 池 组 的 安 全 》 UL 1642:2006《锂电池》 IEEE 1625:2004《便携式计算机用蓄电池标准》 IEEE 1725:2006 《蜂窝电话用蓄电池标准》。 /p p    strong 3.2 锂电池安全性检测标准分析 /strong /p p   目前, 国内外锂离子电池安全性检测标准基本都是符合性检测型标准,即标准规定短路、过充电、强制放电、振动、冲击、挤压、针刺、重物撞击、跌落、温度试验、低气压等电气、机械和环境方面的试验项目, 用以模拟电池在正常使用以及可预见的误用时的应用情况,确保产品在这些情况下的安全性。 这种标准形式具有判据清晰、操作性好的优点,只需针对成品电池进行试验室检测即可判定是否符合标准,缺点则是无法全面有效地保障产品的质量与安全性, 因为安全性作为产品性能的一个组成方面是在产品设计与制造过程中形成并确立的, 现行标准的考核对象与此存在偏差, 此外安全试验是破坏性检验,只能采用抽样检测的方式进行,这种方法本身也存在一定的风险概率。 /p p   对比国内外标准可见, 我国锂电池安全标准欠缺整体规划。 一方面国家与行业两级标准间,以及各类行业标准间缺乏协调,标准对象存在一定的交叉、重复,另一方面标准没有统一的指导思想,既 span style=" color: rgb(127, 127, 127) " /span 有单纯的安全标准,又有包括电性能、环境适用性能及安全性能等全部要求的总规范性质的标准。 相比较而言,国外标准在工作思路及相互间关系上则较为统一、协调,如 IEC 针对产品安全性单独制定标准,其他标准如产品总规范规定电性能等其他要求, 安全要求直接引用安全标准 IEEE 则针对不同用途分别制定包括安全要求在内的产品总规范。 /p p    strong 4 关于锂离子电池安全性检测标准工作的建议 /strong /p p   工业和信息化部已经成立了电子产品安全标准工作组,准备开展锂离子电池安全标准工作,并提出了制定便携式锂离子电池安全标准的工作目标 。 结合我国锂离子电池工业产业发展及安全标准现状,建议我国锂离子电池安全性检测标准制定工作注意以下几个方面: /p p    strong 1) 建立统一的锂离子电池安全性检测国家标准。 /strong 考虑到锂离子电池的生产、营销、使用等遍及国民经济各领域, 应以最高级别的国家标准的形式制定统一的锂离子电池安全性检测标准。 为保持安全标准的统一, 应将现行国家与行业标准的技术内容以包含或整合的方式加以替代 将来随着锂离子电池的发展,通过标准修订的方式更新其安全要求,不再另行制定其他安全标准。 /p p    strong 2) 统一的安全标准应该与锂离子电池的产品情况相适应。 /strong 目前锂离子电池大致划分为能量型和功率型两大类,两类产品在材料、设计结构等方面存在一定差异,在相同的安全前提下,其标准的试验方法乃至要求都可能不同。便携式电池属于能量型, 包括手机、 笔记本电脑、 数码相机和摄像机用锂离子电池等, 而电动工具、 电动自行车和电动汽车用锂离子电池可归为功率型, 建议分别制定能量型和功率型锂离子电池安全标准。制定锂离子电池安全标准时要掌握 “适度”原则, 即标准应寻求并建立产品安全与性能的最佳结合点,因为安全性越好往往意味着电性能越差。 /p p    strong 3) 锂离子电池安全性检测标准内容应涵盖产品设计及制造工艺,并建立相应的监管认证机制 /strong 。绝大多数锂离子电池的安全问题是由现行安全标准难于模拟的内部短路缺陷所引起的, 因此应将锂离子电池的设计和制造过程全面纳入质量控制体系方能有效避免产品内部短路的隐患。 新制定的安全性检测标准应将其内容拓展至产品上游的设计与生产环节。 建议国家质检部门在依据新的安全性标准开展锂离子电池强制安全认证工作时, 除最终产品安全性检测外,还应对包括产品设计与工艺评审、制造过程监督等内容进行认证, 并参照质量体系认证做法,建立定期复查与随机抽检的制度,如此将可确保标准内容最大限度地得以贯彻与实施。 /p p    span style=" color: rgb(127, 127, 127) " i 文章摘自 /i /span span style=" color: rgb(127, 127, 127) " i span style=" font-size: 16px " Chinese Battery Industry(电池工业),第16卷第3期2011年6月 /span /i /span i style=" font-size: 16px color: rgb(127, 127, 127) " (魏宇锋,张继东,费旭东,吴晓红,陈 相,上海出入境检验检疫局) /i /p
  • 岛津推出锂离子电池应用数据集册
    目前,市场上使用的充电电池主要分为铅酸电池、镍镉电池、镍氢电池和锂离子电池。铅酸电池主要用于动力电池领域,缺点是重金属铅对人体和环境的污染;镍镉电池主要用在笔记本、手机等消费电子领域,存在记忆效应、寿命短且有镉污染等问题;镍氢电池是镍镉电池的替代品,缺点是高温性差,具有记忆效应。唯有锂离子电池具有能量高密度、高电压、寿命长、无记忆效应等优点,近些年逐渐替代镍镉电池、镍氢电池,占据了消费电子领域大部分市场。中国制造2025,是中国政府实施制造强国战略的第一个十年行动纲领,其中节能与新能源汽车、新材料占据了十大领域的两席之地。锂离子电池产业已被列入国家“863计划”和“973计划”,是政府大力支持和发展的新能源产业之一。 作为新兴的绿色优质能源,锂离子电池的制造工艺要求非常高,关键材料的性能对电池的整体性能(比如电池容量、安全性能、使用寿命等)影响非常巨大,需要完善的质量监控手段严格控制制造过程。为了精确的对各个关键部件材料的质量工艺进行控制,锂离子电池各关键部件的分析检测方法就成为国内检测机构的重要工作之一。此外,废旧锂电池回收处理,有助于形成“生产-回收-再生产”的循环链,解决废旧锂电池污染和废物利用的问题,实现新能源汽车的持续发展。锂离子电池领域涉及仪器范围较广,有FTIR、XPS、SPM、XRD、EDX、GC/GCMS等。 岛津公司作为全球著名的分析仪器厂商,自1875年创业以来,始终秉承 “以科学技术向社会做贡献”的宗旨,不断钻研相关领域的最新技术。岛津公司秉承“为了人类和地球的健康”这一企业理念,为您奉上《岛津锂离子电池应用数据集册》,涉及锂离子电池正负极、隔膜材料、电解液成分检测以及电池原位充放电检测技术等领域,希望我们的努力能为您带来有益的帮助。
  • 线上直播 | 锂离子电池关键材料的全生命周期评价
    随着化石能源的日益枯竭,以及“碳达峰”和“碳中和”的紧迫要求,发展先进的清洁能源和可替代能源势在必行。动力电池尤其是锂离子电池被全球广泛认为是“双碳行动”发展的重中之重。阿美特克集团多个产品在锂离子电池关键材料的开发、工艺、测试、分析、诊断及梯次回收利用中被广泛使用,随着多年来技术的开发与改进,新设备、新技术、新方案、新应用不断涌现,推动了锂离子电池的快速发展。如何实现锂离子电池更高安全性?更高能量密度?更长寿命?更高功率?阿美特克技术大咖将会在本次直播中为您划重点!直播主题:《锂离子电池关键材料的全生命周期评价》直播时间:3月29日-31日欢迎扫描以下二维码,报名参加直播日期直播主题2022/3/2914:00-16:00正负极材料及电解质分析(上)APT和SIMS在锂离子电池研究中的应用GATAN &EDAX助力锂离子电池电子显微分析2022/3/3014:00-16:00正负极材料及电解质分析(下)ICP等离子体光谱仪在锂离子电池材料分析中的应用锂离子电池浆料及电解液中的粘度与流变分析技术应用2022/3/3110:00-11:00锂离子电池性能评价锂离子电池测试的挑战及策略2022/3/3114:00-16:00锂离子电池隔膜检测锂离子电池隔膜物理强度测试与锂电池强制内短路测试锂离子电池的软包装阻隔性能检测解决方案表面检测系统在锂离子电池隔膜领域的应用关于阿美特克阿美特克是电子仪器和机电设备的全球领导者,年销售额约为50亿美金。为材料分析、超精密测量、过程分析、测试测量与通讯、电力系统与仪器、仪表与专用控制、精密运动控制、电子元器件与封装、特种金属产品等领域提供技术解决方案。全球共有18,000多名员工,150多家工厂,在美国及其它30多个国家设立了100多个销售及服务中心。
  • 快速分析锂离子电池电解液的劣化
    1. 前言随着全球工业化的进展,能源需求的增长,研究高性能的储能装置受到相关领域的广泛关注,锂离子电池是目前综合性能优异的电池体系。锂离子电池属于二次电池,可以充电后,再次使用,常用在电动汽车,手机,便携笔记本电脑中,属于绿色环保能源。具有体积小,寿命长,高电压,高功率密度,无记忆效应等特点。1.1 锂离子电池工作原理锂离子电池主要通过锂离子的“嵌入/脱出”实现电池能量的存储和释放。过渡金属的嵌锂化合物常用于正极材料,他们的晶格结构对电池的容量至关重要。如以LiCoO2为例,充电过程发生的反应如下:充电时,在外电场作用下,Li+从LiCoO2晶格脱出,穿过电解液隔膜,嵌入石墨负极,电子通过外电路从正极流出,流入负极,正极电压升高,负极电压降低,电池端电压升高,完成充电。放电时,Li+从石墨负极脱出,嵌入LiCoO2正极,电子经外电路从负极流出,对负载做功,流入正极,正极电压降低,负极电压升高,电池端电压降低,实现放电做功。 1.2 锂离子电池电解液正极材料,负极材料,隔膜材料,电解液材料是锂离子电池的四大关键部分。研发电池的关键材料是国内外开发的重点。其中电解液被称为锂离子电池的“血液”,是正负极材料之间传输电子的通道,是获得高功率,高能量密度,长寿命的锂离子电池的保证。电解液通常由纯度高的有机溶剂、锂盐、添加剂等组成。随着锂离子电池不断的充放电过程,电池会出现劣化,其中电解液状态是评价电池劣化的最主要因素之一,也是评价电池劣化的最直观的方法。因此,分析电解液的劣化非常重要。电解液分析的传统方法,如GC / LC-MS、核磁共振、傅里叶红外,这些方法在样品制备和前处理方面,耗时长,操作繁琐。另外,对于电解液中含量较少的成分,传统的方法很难检测出它们的变化差异。而三维荧光结合多变量分析方法,能够以更短的时间、更容易、高灵敏度的检测电解液的变化。客户可以使用三维荧光进行电解液中成分变化的筛选,联合传统分析方法确定变化的具体物质。因此三维荧光提供了一种快速寻找电池劣化的原因,可以有效减少或避免在研发或使用过程产生这种劣化的原因,大幅提高分析效率。 详细的应用数据请点击:https://www.instrument.com.cn/netshow/sh102446/s926995.htm荧光分光光度计F-7100和多变量分析软件3D SpectAlyze日立荧光分光光度计具有超高的扫描速度,无需复杂的样品前处理,能够快速测定样品。另外,日立具有专用多变量分析软件3D SpectAlyze,因此可以提供数据测量和解析一体化,从而获取样品的详细信息。使用荧光分光光度计结合多变量分析软件可以快速评价荧光强度发生变化的体系。
  • 【内含PDF】国仪量子扫描电镜在锂离子电池中的应用
    锂离子电池锂离子电池(LIB)是21世纪以来最为热门的储能器件之一,具有能量密度高、单体输出电压高、循环性能优越、可快速充放电和使用寿命长等优点,被广泛应用于消费电子产品、电动汽车和新能源电站的储能电源系统等[1]。LIB主要是由正极材料、负极材料、隔膜、电解液和外壳组成。其中,正极材料作为锂离子的主要来源,负极材料是提供比容量的重要因素,隔膜提供锂离子传输的微孔通道。其结构示意图如图1所示,充电时,锂离子(Li+)从正极脱出在电解液中穿过隔膜到达负极并嵌入到负极晶格中,此时正极处于贫锂态,负极处于富锂态;而放电时,Li+再从富锂态的负极脱出再次在电解液中穿过隔膜到达贫锂态的正极并插入正极晶格中,此时正极处于富锂态,负极处于贫锂态[2]。图1 锂离子电池结构示意图基于国仪量子自主研制的扫描电子显微镜,在锂离子电池领域中可以对正极材料、负极材料、隔膜等进行快速、可靠的材料检测,避免因原料质量低、引入杂质、加工工艺不当引起的电池失效。助力锂电材料的深入研究,进而从各个方面改善锂离子电池性能。国仪量子电子显微镜产品全景图扫描电镜在锂电正极材料中的应用正极材料是锂离子电池中的“锂源”,通常既要提供充放电时在正负极之间往返的锂离子,又要提供锂离子电池首圈充放电形成的固体电解质相界面(简称SEI)膜时于负极所消耗掉的锂离子。电池功率受到正极材料的结构、掺杂改性、表面包覆及制备工艺等多种因素的影响[1]。开发具有安全、经济、高性能、大容量等优点的正极材料将有效地促进LIB的广泛应用[3]。如图2和图3所示,扫描电子显微镜不仅可以对正极材料的浆料和极片进行粒径分析和整体形貌的拍摄,而且为特定的正极材料体系深入研究和探索提供了有力条件。使用扫描电子显微镜可以对调浆后的正极材料以及经涂布、辊压后极片表面的正极活性物质分布、导电添加剂均匀性程度和分散性进行检测。另外借助扫描电子显微镜可对正极材料及其前驱体的单颗粒形貌、颗粒分布情况进行表征。据扫描电子显微镜呈现的结果可以针对性帮助正极材料进行设计和改进,大幅度提高材料的结构稳定性及LIB的性能。图2-1 正极浆料/10kV/ETD图2-2 正极极片/3kV/Inlens图3-1 三元正极前驱体/3kV/Inlens图3-2 磷酸铁/3kV/BSE图3-3 锰酸锂/5kV/ETD图3-4 磷酸铁锂/15kV/ETD扫描电镜在锂电负极材料中的应用负极的锂离子插入能力是决定锂离子电池性能的主要因素。为了追随先进正极材料的发展,需要开发大容量的负极材料来提高整个锂离子电池的性能。自1991年对石墨商业化生产以来,石墨一直作为主要的负极材料。石墨具有成本低、无毒性、重复循环和结构稳定等优点[4]。由图4和5可知,扫描电镜可以对调浆后的材料以及涂覆后的极片进行表面形貌分析,同时对石墨负极进行尺寸、形状图像分析,以帮助解释不同石墨负极引起的LIB性能差异。利用扫描电子显微镜可以清晰观察到石墨表面的片层结构形貌。图4-1 负极浆料/3kV/Inlens图4-2 负极极片/10kV/ETD图4-3 负极极片/3kV/Inlens图5-1 石墨负极/5kV/ETD图5-2 球形石墨表面/3kV/ETD扫描电镜在锂电隔膜中的应用作为锂电池的关键材料,隔膜在其中扮演着隔绝电子的作用,既可以阻止正负极直接接触,又可以允许电解液中锂离子自由通过。隔膜对于保障电池的安全运行有至关重要的作用[5]。当前,市场上商业化的锂电隔膜主要是以聚乙烯(PE)和聚丙烯(PP)为主的微孔聚烯烃隔膜,这类高分子材料凭借着较低的成本、良好的力学性能、优异的化学稳定性和电化学稳定性等优点被广泛应用于锂电隔膜中。国仪量子扫描电子显微镜可以在低压下直接观察到隔膜表面的精细结构,并且根据拍摄的形貌图像照片可以对隔膜进行孔径和孔隙率分析(图6)。图6-1 隔膜/5kV/ETD图6-2 干法拉伸隔膜/0.5kV/Inlens锂电材料分析测试前沿解决方案国仪量子以先进的量子精密测量技术为核心,聚焦科学仪器主航道,推出了一系列“人无我有”“人有我优”的高端科学仪器,针对锂离子电池行业推出了系统化的原材料检测分析与产品质量检测方案。基于国仪量子自主研制的扫描电镜、比表面及孔径分析仪、电子顺磁共振波谱仪等高端科学仪器,可分别对锂离子电池的负极材料、正极材料、隔膜等原材料进行检测,避免因原料质量低、引入杂质和加工工艺不当而引起的电池失效。欢迎扫描下方二维码下载PDF!参考资料[1]陈港欣,孙现众,张熊 等. 高功率锂离子电池研究进展[J].工程科学学报,2022,44(04):612-624.[2]郭炳焜, 徐徽, 王先友, 等. 锂离子电池[M]. 长沙: 中南大学出版社, 2005: 48-65.[3]李仲明,李斌,冯东,曾天标.锂离子电池正极材料研究进展[J].复合材料学报,2022,39(2): 513-527.[4]彭盼盼,来雪琦,韩啸,伊廷锋.锂离子电池负极材料的研究进展[J].有色金属工程,2021,11(11): 80-91[5]王振华,彭代冲,孙克宁.锂离子电池隔膜材料研究进展[J].化工学报,2018,69(1): 282-294
  • 干货 | 锂离子动力电池及其关键材料的发展趋势
    p   进一步提高电池的能量密度是动力电池发展的主题和趋势, 而关键材料是其基础. 本文从锂离子动力电池正、负极材料, 隔膜及电解液等几个方面, 对锂离子动力电池关键材料的发展趋势进行评述. 开发高电压、高容量的正极新材料成为动力锂离子电池比能量大幅度提升的主要途径 负极材料将继续朝低成本、高比能量、高安全性的方向发展, 硅基负极材料将全面替代其他负极材料成为行业共识. 此外, 本文还对锂离子动力电池正极、负极材料等的选择及匹配技术、动力电池安全性、电池制造工艺等的关键技术进行了简要分析, 并提出了锂离子动力电池研究中应予以关注的基础科学问题. /p p strong   1 引言 /strong /p p   发展新能源汽车被广泛认为是有效应对能源与环境挑战的重要战略举措. 此外, 对我国而言, 发展新能源汽车是我国从“汽车大国”迈向“汽车强国”的必由之路 [1] . 近年来, 新能源汽车产销量呈现井喷式增长, 全球保有量已超过130万辆, 已进入到规模产业化的阶段. 我国也在2015年超过美国成为全球最大的新能源汽车产销国. 以动力电池作为部分或全部动力的电动汽车, 因具有高效节能和非现场排放的显著优势,是当前新能源汽车发展的主攻方向. 为了满足电动汽车跑得更远、跑得更快、更加安全便捷的需求, 进一步提高比能量和比功率、延长使用寿命和缩短充电时间、提升安全性和可靠性以及降低成本是动力电池技术发展的主题和趋势. /p p   近日,由中国汽车工程学会公布的《节能与新能源汽车技术路线图》为我国的动力电池技术绘制了发展蓝图. 该路线图提出,到2020年,纯电动汽车动力电池单体比能量达到350Wh/kg,2025年达到400Wh/kg,2030年则要达到500W h/kg 近中期在优化现有体系锂离子动力电池技术满足新能源汽车规模化发展需求的同时, 以开发新型锂离子动力电池为重点, 提升其安全性、一致性和寿命等关键技术, 同步开展新体系动力电池的前瞻性研发 中远期在持续优化提升新型锂离子动力电池的同时, 重点研发新体系动力电池, 显著提升能量密度、大幅降低成本、实现新体系动力电池实用化和规模化应用. /p p   由此可见, 在未来相当长的时间内, 锂离子电池仍将是动力电池的主流产品. 锂离子电池具有比能量高、循环寿命长、环境友好、可以兼具良好的能量密度和功率密度等优点, 是目前综合性能最好的动力电池, 已被广泛应用于各类电动汽车中 [2~7] . /p p   本文简要介绍了锂离子动力电池的产业技术发展概况, 并从锂离子动力电池正、负极材料, 隔膜及电解液等几个方面, 对锂离子动力电池关键材料的发展趋势进行评述. 本文还对锂离子动力电池正、负极材料的选择及匹配技术、动力电池安全性、电池制造工艺等关键技术进行了简要分析, 并提出了锂离子动力电池研究中应予以关注的基础科学问题. /p p strong   2 锂离子动力电池产业技术发展概况 /strong /p p   从产业发展情况来看, 目前世界知名的电动汽车动力电池制造商包括日本松下、车辆能源供应公司(AESC)、韩国LG化学和三星SDI等都在积极推进高比能量动力锂离子电池的研发工作. 综合来看, 日本锂电池产业的技术路线是从锰酸锂(LMO)到镍钴锰酸锂三元(NCM)材料. 例如, 松下的动力电池技术路线早期采取锰酸锂, 目前则发展镍钴锰酸锂三元、镍钴铝酸锂(NCA)作为正极材料, 其动力电池主要搭载在特斯拉等车型上. 韩国企业以锰酸锂材料为基础, 如LG化学早期采用锰酸锂作为正极材料, 应用于雪佛兰Volt车型, 近年来三星SDI和LG化学已经全面转向镍钴锰酸锂三元材料(表1) [8] . /p p    img src=" http://img1.17img.cn/17img/images/201803/insimg/2d0662ae-8c3d-4524-aa6c-4ba35fb5d971.jpg" title=" 1.jpg" / /p p   目前国内主流动力锂电池厂商, 如比亚迪等仍以磷酸铁锂为主, 磷酸铁锂电池在得到了大规模普及应用的同时, 其能量密度从2007年的90W h/kg提高到目前的140W h/kg. 然而, 由于磷酸铁锂电池能量密度提升空间有限, 随着对动力电池能量密度要求的大幅提升, 国内动力电池厂商技术路线向镍钴锰三元、镍钴铝或其混合材料的转换趋势明显(表2). /p p    img src=" http://img1.17img.cn/17img/images/201803/insimg/fd4ccbd7-67aa-49c0-bf98-30020d1d0ed3.jpg" title=" 2.jpg" / /p p strong   3 锂离子动力电池关键材料的发展趋势 /strong /p p   锂离子电池采用高电位可逆存储和释放锂离子的含锂化合物作正极, 低电位可逆嵌入和脱出锂离子的材料作负极, 可传导锂离子的电子绝缘层作为隔膜,锂盐溶于有机溶剂作为电解液, 如图1所示. 正极材料、负极材料、隔膜和电解液构成锂离子电池的4种关键材料. /p p   3.1 正极材料 /p p   锰酸锂(LMO)的优势是原料成本低、合成工艺简单、热稳定性好、倍率性能和低温性能优越, 但由于存在Jahn-Teller效应及钝化层的形成、Mn的溶解和电解液在高电位下分解等问题, 其高温循环与储存性能差. 通过优化导电剂含量、纯化电解液、控制材料比表面 [11] 以及表面修饰 [12] 改善LMO材料的高温及储存性能是目前研究中较为常见且有效的改性方法. /p p   磷酸铁锂(LFP)正极材料有着良好的热稳定性和循环性能, 这得益于结构中的磷酸基聚阴离子对整个材料的框架具有稳定的作用. 同时磷酸铁锂原料成本低、对环境相对友好, 因而使得LFP成为目前电动汽车动力电池中的主流材料 [12~16] . 但由于锂离子在橄榄石结构中的迁移是通过一维通道进行的, LFP材料存在着导电性较差、锂离子扩散系数低等缺点. /p p   从材料制备角度来说, LFP的合成反应涉及复杂的多相反应,因此很难保证反应的一致性, 这是由其化学反应热力学上的根本性原因所决定的 [16] . 磷酸铁锂的改进主要集中在表面包覆、离子掺杂和材料纳米化三个方面.合成工艺的优化和生产过程自动化是提高LFP批次稳定性的基本解决方法. 不过, 由于磷酸铁锂材料电压平台较低(约3.4V), 使得磷酸铁锂电池的能量密度偏低,这一缺点限制了其在长续航小型乘用车领域的应用. /p p    img src=" http://img1.17img.cn/17img/images/201803/insimg/4796d208-e8dd-4b71-a5fc-296ecba8d6c1.jpg" title=" 3.jpg" / /p p   镍钴锰三元(NCM)或多元材料优势在于成本适中、比容量较高, 材料中镍钴锰比例可在一定范围内调整, 并具有不同性能. 目前国外量产应用的动力锂电正极材料也主要集中在镍钴锰酸锂三元或多元材料, 但仍然存在一些亟需解决的问题, 包括电子导电率低、大倍率稳定性差、高电压循环定性差、阳离子混排(尤其是富镍三元)、高低温性能差、安全性能差等 [17] . 另外, 由于三元正极材料安全性能较差, 采用合适的安全机制如陶瓷隔膜材料也已成为行业共识 [18] . /p p   考虑到安全性等问题, 通过改进工艺(如减少电极壳的重量等)来提高电池能量密度的空间有限. 为了进一步提高动力锂离子电池的能量密度, 开发高电压、高容量的正极新材料成为动力锂离子电池比能量大幅度提升的主要途径(图2) [19,20] /p p   3.1.1 高电压正极材料 /p p   开发可以输出更高电压的正极材料是提高材料能量密度的重要途径之一. 此外, 高电压的另一显著优势是在电池组装成组时, 只需要使用比较少的单体电池串联就能达到额定的输出电压, 可以简化电池组的控制单元. 目前主流的高电压正极材料是尖晶石过渡金属掺杂的LiM x Mn 2?x O 4 (M=Co、Cr、Ni、Fe、Cu /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201803/insimg/3b01137b-1330-47a0-a313-51c9d4f2f033.jpg" title=" 4.jpg" / /p p style=" text-align: center "   图 2 比较各种类型的高电压、高容量正极材料的体积能量密度、功率、循环性、成本和热稳定性的雷达图 [20] (网络版彩图)等) /p p   最典型的材料是LiNi 0.5 Mn 1.5 O 4 , 虽然其比容量仅有146mAh/g, 但由于工作电压可达到4.7V, 能量密度可达到686W h/kg [20,21] . 本课题组 [22] 以板栗壳状的MnO 2为锰源, 通过浸渍方法合成了由纳米级的多面体聚集而成微米球状的尖晶石镍锰酸锂(LNMO)材料. 该结构对电解液的浸入和锂离子的嵌入和脱出十分有利,且可以适应材料在充放电过程中的体积变化, 减小材料颗粒之间的张力. 该研究还发现, 含有微量Mn 3+的LNMO电化学性能更优, 充放电循环80圈后放电比容量还能保持在107mAh/g, 容量保持率接近100%.LiNi 0.5 Mn 1.5 O 4 的比容量衰减制约了它的商业化进程,其原因多与活性材料以及集流体与电解液之间的相互作用相关, 由于电解液在高电位下的不稳定性, 如传统碳酸酯类电解液会在4.5V电压以上氧化分解, 使得锂离子电池在高电压充放电下发生气胀, 循环性能变差. /p p   因此, 高电压正极材料需要解决电解液匹配问题.解决上述问题的方法包括以下3个方面. (1) 材料表面包覆 [23~25] 和掺杂 [26~28] . 例如, Kim等 [28] 近期通过表面4价Ti取代得到LiNi 0.5 Mn 1.2 Ti 0.3 O 4 材料, 透射电子显微镜显示材料表面形成了坚固的钝化层, 因此减少了界面副反应, 30℃下全电池实验结果表明在4.85V截止电压, 200个循环后, 容量保持率提高了约75%. 然而, 单独的表面涂层/掺杂似乎不能提供长期的循环稳定性(如≥500个循环), 在应用中必须考虑与其他策略相结合. (2) 使用电解液添加剂或其他新型电解质组合 [29~31] . /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201803/insimg/e33aa180-4c60-4e9a-af6d-315f29391fd1.jpg" title=" 5.jpg" / /p p style=" text-align: center "   图 3 具有良好电化学稳定性的用于高电压LiNi 0.5 Mn 1.5 O 4 材料的LiFSA/DMC电解液体系.& nbsp /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " (a) LiFSA/DMC混合电解液中的组分结构示意图 (b) 两种不同配比情况下, 溶剂分子典型平衡轨迹的DFT-MD模拟 (c) 铝电极在LiFSA/DMC混合电解液中的高电压稳定性 (d) 全电池在40° C, C/5倍率下的循环性能 [31] (网络版彩图) /span /p p   如图3所示, Yamada课题组 [31] 利用简单的LiFSA/DMC(1:1.1, 摩尔比)电解液体系实现了LiNi 0.5 Mn 1.5 O 4 /石墨全电池在40℃温度下循环100次后容量保持90%, 尽管高度浓缩的系统的离子电导率降低了一个数量级(30℃时为约1.1 mS/cm), 但依然保持了与使用商业碳酸酯电解液体系相当的倍率性能. (3) 使用具有离子选择透过性的隔膜 [32~35] . 已经证明使用电化学活性的Li 4+x Ti 5 O 12 膜 [32] 以及锂化Nafion膜与商业PP膜的复合隔膜 [33] 能够极大地改善LiNi 0.5 Mn 1.5 O 4 的循环寿命. /p p   此外, 一些由LiNi 0.5 Mn 1.5 O 4 衍生的新型尖晶石结构高电压材料如LiTiMnO 4 [36] 、LiCoMnO 4 [37,38] 等, 以及橄榄石结构磷酸盐/氟磷酸盐也被广泛研究, 如LiCoPO 4 [39] 、LiNiPO 4 [40] 、LiVPO 4 F [41] 等 [42] . /p p   3.1.2 高容量正极材料 /p p   由于锂离子电池负极材料的比容量远高于正极材料, 因此正极材料对全电池的能量密度影响更大.通过简单的计算可知, 在现有的水平上, 如果将正极材料的比容量翻倍, 就能够使全电池的能量密度提高57%. 而负极材料的比容量即使增加到现有的10倍, 全电池的能量密度也只能提高47% [43] . /p p   镍钴锰三元材料中, Ni为主要活性元素, 一般来说,活性金属成分含量越高, 材料容量就越大.低镍多元材料如NCM111、NCM523等能量密度较低, 该类材料体系所能达到的动力电池能量密度为120~180Wh/kg, 无法满足更高的能量密度要求. 高容量正极材料的一个发展方向就是发展高镍三元或多元体系. /p p   高镍多元体系中, 镍含量在80%以上的多元材料(NCA或NCM811)能量密度优势明显, 用这些材料制作的电池匹配适宜的高容量负极和电解液后能量密度可达到300Wh/kg以上 [44] . 但是高镍多元材料较差的循环稳定性、热稳定性和储存性能极大地限制了其应用. 一般认为当镍的含量过高时, 会引起Ni 2+ 占据Li + 位置, 造成阳离子混排, 阻碍了Li + 的嵌入与脱出, 从而导致容量降低 [20,45,46] .另外, 材料表面与空气和电解液易发生副反应、高温条件下材料的结构稳定性差和表面催化活性较大也被认为是导致容量衰减的重要原因 [20,45,47] . /p p   解决上述问题的方法有如下3种. /p p   (1) 对材料进行有效的表面包覆或体相掺杂 [48~50] . 例如, 最近Chae等 [50] 利用湿化学法在NCM811表面包覆了一层N,N-二甲基吡咯磺酸盐,有效地阻隔了材料与电解液界面, 抑制了电解液在高镍三元材料表面的催化分解, 1C倍率下前50圈的平均库仑效率达99.8%, 容量保持率高达97.1%. /p p   (2) 开发具有浓度梯度的高镍三元体系 [51~55] . Sun课题组 [53~55] 采用共沉淀方法制备了具有双斜率浓度梯度三元材料,如图4所示, 这种材料的内部具有更高含量的镍, 有利于高容量的获得和保持, 外层有更高含量的锰, 有利于循环稳定性和热稳定性的提升. 通过Al掺杂, 具有浓度梯度的LiNi 0.61 Co 0.12 Mn 0.27 O 2 在经过3000次循环后,其容量保持率从65%大幅度提高到84%. /p p   (3) 开发与高容量正极材料相适应的电解液添加剂或新型电解液体系 [56~58] . /p p   目前高镍多元材料量产技术主要掌握在日韩少数企业手中, 如日本的住友、户田, 韩国的三星SDI、LG、GS等. 根据不同的应用领域, 材料的镍含量在78~90 mol%, 克容量集中在190~210mA h/g. 各公司正尝试将其应用于电动汽车领域, 其中尤以特斯拉采用的镍钴铝(NCA)受到广泛瞩目. 需要指出的是, NCA和NCM811两种材料在容量、生产工艺等方面具有很多相似性, 松下18650电池正极采用NCA正极, 电池能量密度约为250Wh/kg, 但NCA材料因存在铝元素分布不均、粒度难以长大等问题, 主要应用于圆柱电池领域, 圆柱型电池在在电池管理系统方面需要的技术与成本较高. /p p   除 此 之 外 , 基 于 Li 2 MnO 3 的 高 比 容 量 (200~300mAh/g) 富 锂 正 极 材 料 zLi 2 MnO 3 · (1?z)LiMO 2(0 /p p   3.2 负极材料 /p p   锂离子电池负极材料分为碳材料和非碳材料两大类. 其中碳材料又分为石墨和无定形碳, 如天然石墨、人造石墨、中间相碳微球、软炭(如焦炭)和一些硬炭等 其他非碳负极材料有氮化物、硅基材料、锡基材料、钛基材料、合金材料等 [61] . /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201803/insimg/6e6b8975-e32c-4aee-9021-c6d0edef3ad9.jpg" title=" 6.jpg" / /p p style=" text-align: center "   图 4 Al掺杂的具有双斜率浓度梯度三元材料LiNi 0.61 Co 0.12 Mn 0.27 O 2 [54,55] . /p p & nbsp span style=" font-family: 楷体, 楷体_GB2312, SimKai " (a) TEM EDS元素分析成像 (b) TEM 线性元素扫描分析 (c) Al掺杂和无掺杂的三元材料循环性能对比 (网络版彩图) /span /p p   负极材料将继续朝低成本、高比能量、高安全性的方向发展, 石墨类材料(包括人造石墨、天然石墨及中间相碳微球)仍然是当前锂离子动力电池的主流选择 近到中期, 硅基等新型大容量负极材料将逐步成熟, 以钛酸锂为代表的高功率密度、高安全性负极材料在混合动力电动车等领域的应用也将更加广泛. 中远期, 硅基负极材料将全面替代其他负极材料已成为行业共识. /p p   硅基负极材料被认为是可大幅度提升锂电池能量密度的最佳选择之一, 其理论比容量可以达到4000mAh/g以上 [62,63] , 与高容量正极材料匹配后, 单体电池理论比能量可以达到843Wh/kg, 但硅负极材料在充放电过程中存在巨大的体积膨胀收缩效应, 会导致电极粉化降低首次库仑效率并引起容量衰减 [64~67] . /p p   研究者尝试了多种方法解决该问题. /p p   (1) 制备纳米结构的材料, 纳米材料在体积变化上相对较小, 且具有更小的离子扩散路径和较高的嵌/脱锂性能, 包括纳米硅颗粒 [68~70] 、纳米线/管 [71~74] 、纳米薄膜/片 [75~77] 等. /p p   (2) 在硅材料中引入其他金属或非金属形成复合材料, 引入的组分可以缓冲硅的体积变化, 常见的复合材料包括硅碳复合材料 [78~82] 、硅-金属复合材料等 [83~85] . Cui课题组 [81] 通过先后在硅纳米颗粒表面包覆二氧化硅和碳层, 再将二氧化硅层刻蚀之后得到蛋黄蛋壳结构的硅碳复合材料, 如图5所示, 并利用原位透射电镜研究了碳壳与硅核之间的空隙对材料稳定性及电化学性能的影响. 由于蛋黄蛋壳的结构在硅和碳层之间预留了充足的空间, 使硅在嵌锂膨胀的时候不破坏外层的碳层, 从而稳定材料的结构并得到稳定的SEI膜. 在此基础上, 通过对碳包覆之后的纳米颗粒进行二次造粒,在大颗粒的表面再包覆碳膜, 最后刻蚀制备出类石榴的结构 [82] , 复合材料尺寸的增大减小了材料的比表面积, 提高了材料的稳定性, 材料的1000周循环容量保持率由74%提高到97%, 如图5所示. /p p   (3) 选用具有不同柔性、界面性质的黏结剂, 提高黏结作用 [86~88] 最近,Choi等 [88] 通过形成酯键使传统黏结剂聚丙烯酸PAA与多聚轮烷环组分PR交联结合得到具有特殊结构的双组分PR-PAA黏结剂, 如图6所示, 很大程度上提高了硅负极在充放电过程中的稳定性. /p p   (4) 采用体积变化相对缓和的非晶态硅材料, 如多孔硅材料等 [89,90] . /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201803/insimg/c68c0215-a21a-4fa0-9f73-1a0fca0d02f5.jpg" title=" 7.jpg" / /p p style=" text-align: center "   图 5 具有蛋黄蛋壳的结构的硅碳复合锂离子电池负极材料 [81,82] . /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " & nbsp (a) 蛋黄蛋壳的结构合成示意图及TEM图 (b) 类石榴的结构合成示意图 (c) 硅纳米粒子、 蛋黄蛋壳结构硅碳复合材料、类石榴结构硅碳复合材料的循环性能对比 (网络版彩图) /span /p p   应用方面, 日立Maxell宣布已成功将硅基负极材料应用于高能量密度的小型电池 日本GS汤浅公司则已推出硅基负极材料锂电池, 并成功应用在三菱汽车上 特斯拉则宣称通过在人造石墨中加入10%的硅基材料, 已在其最新车型Model 3上采用硅碳复合材料作为动力电池负极材料. /p p   3.3 电解液 /p p   高安全性、高环境适应性是锂离子动力电池对电解液的基本要求. 随着电极材料的不断改善和更新, 对与之匹配的电解液的要求也越来越高. 由于开发新型电解液体系难度极大, 碳酸酯类有机溶剂配伍六氟磷酸锂盐的常规电解液体系在未来相当长一段时间内依然是动力电池的主流选择. /p p   在此情形下, 针对不同用途的动力电池和不同特性的电极材料, 优化溶剂配比、开发功能电解液添加剂就显得尤为重要.例如, 通过调整溶剂配比含量和添加特殊锂盐可以改善动力电池的高低温性能 加入防过充添加剂、阻燃添加剂可以使电池在过充电、短路、高温、针刺和热冲击等滥用条件下的安全性能得以大大提高 通过提纯溶剂、加入正极成膜添加剂可以在一定程度上满足高电压材料的充放电需求 通过加入SEI膜成膜添加剂调控SEI膜的组成与结构, 可以实现延长电池寿命 [91] . 近年来, 随着Kim等 [92] 第一次成功地将丁二腈(SN)作为电解液添加剂来提高石墨/LiCoO 2 电池的热稳定性, 以丁二腈(SN)和己二腈(ADN) [93] 等为代表的二腈类添加剂因其与正极表面金属原子极强的络合力并能很好地抑制电解液氧化分解和过渡金属溶出的优点, 已经成为学术界和工业界普遍认可的一类高电压添加剂. 而以1,3-丙烷磺酸内酯(PS [94] 和1,3-丙烯磺酸内酯(PES) [95] 等为代表的另一类高电压添加剂,即正极成膜添加剂, 则是通过在正极表面优先发生氧化反应并在正极表面形成一层致密的钝化膜, 从而达到阻止电解液和正极活性物质接触、抑制电解液在高电压下氧化分解的效果. /p p   目前, 高低温功能电解液的开发相对成熟, 动力电池的环境适应性问题基本解决, 进一步提高电池的能量密度和安全性是电解液研发的首要问题. 中远期, 锂离子动力电池电解液材料的发展趋势将主要集中在新型溶剂与新型锂盐、离子液体、添加剂等方面, 凝胶电解质与固态电解质也是未来发展的方向. 而以固态电解质为关键特征之一的全固态电池在安全性、寿命、能量密度及系统集成技术等都具有潜在的优异特性, 也是未来动力电池和储能电池领域发展的重要方向 [96] . /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201803/insimg/58812389-5862-4e1d-a7b7-b4dc7b4fc4d9.jpg" title=" 8.jpg" / /p p style=" text-align: center "   图 6 SiMP负极PR-PAA黏结剂的应力释放机理 [88] .& nbsp /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " (a) 减小提起物体用力的滑轮机理 (b) PR-PAA黏结剂用于缓解因硅颗粒充放电过程中体积变化而产生应力的示意图 (c) 充放电过程中PAA-SiMP电极破碎和生成SEI膜的示意图 (网络版彩图) /span /p p   3.4 隔膜 /p p   目前, 商品化锂离子动力电池中使用的隔膜材料主要是微孔的聚烯烃类薄膜, 如聚乙烯(polyethylene,PE)、聚丙烯(polypropylene, PP)的单层或多层复合膜.聚烯烃类隔膜材料由于其制造工艺成熟、化学稳定性高、可加工性强等优点在一段时间内仍然是商品化隔膜材料的主流, 尤其是PE的热闭孔温度对抑制电池中某些副反应的发生及阻止热失控具有重要意义.发展基于聚烯烃(尤其是聚乙烯)隔膜的高性能改性隔膜材料(如无机陶瓷改性隔膜、聚合物改性隔膜等),进一步提高隔膜的安全特性和电化学特性仍将是隔膜材料研发的重点 [18] . /p p   最近, 本课题组 [97] 通过使用耐高温的聚酰亚胺做黏结剂将纳米Al 2 O 3 涂覆在商业PE隔膜单层表面将隔膜的热稳定性提高到了160℃. 本课题组 [98] 还在前期开发的SiO 2 陶瓷隔膜的基础上, 在其表面和孔径间原位聚合包覆上一层耐高温的聚多巴胺保护层, 如图7所示, 使隔膜在230℃高温下处理30min, 不但不收缩并且保持良好的机械性能, 可以有效保障电池安全. l’Abee课题组 [99] 以耐热性的聚醚酰亚胺树脂为基材, 将其用NMP加热溶解后重新浇铸成膜, 得到的聚醚酰亚胺隔膜, 其热稳定性可达到220℃.随着锂离子电池在电动汽车等领域的应用, 建立隔膜构造、隔膜孔径尺度与分布的有效调控方法, 以及引入电化学活性基团等使聚烯烃隔膜多功能化, 将是隔膜发展的重要方向. 针对耐热聚合物隔膜等的研发及产业化工作也将得到大力推进. /p p   综上所述,锂离子动力电池关键材料的发展趋势将如图8所示, 正极材料向高电压、高容量的趋势发展 负极则以发展硅碳复合材料为主, 通过发展新型黏结剂和SEI膜调控技术使得硅碳复合负极材料真正走向实际应用 电解液近期内将以发展高电压电解液和高环境适应性电解液材料为主, 中远期则将以固态电解质材料为发展目标 多种材料复合且结构可控的隔膜材料将是锂离子动力电池隔膜的重点发展方向. /p p strong   4 锂离子动力电池的关键技术和基础科学问题 /strong /p p   4.1 锂离子动力电池的关键技术 /p p   锂离子动力电池是一个复杂的系统, 单一部件、材料或组分的优化未必对电池整体性能的改善有突出效果 [100] . 发展面向电动汽车的高比能量、低成本、长寿命、安全性高的动力电池, 需对锂离子动力电池体系的关键技术予以重点关注, 解决在最终应用过程中影响性能的制约因素. /p p   4.1.1 正极、负极材料等的选择及匹配技术 /p p   锂离子动力电池的寿命、安全性和成本等基本性能很大程度上取决于其电极材料体系的选择和匹配. 因此如何选择高比能量、长寿命、高安全、低成本的材料体系是当前锂离子动力电池的重要技术. /p p   4.1.2 动力电池安全性 /p p   安全性是决定动力电池能否装车应用的先决条件 /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201803/insimg/a49c15af-1975-4d11-bfe5-e1f5440c1331.jpg" title=" 9.jpg" / /p p style=" text-align: center "   .图 7 包覆上耐高温聚多巴胺保护层的SiO 2 陶瓷隔膜 [98] .& nbsp /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " (a) 隔膜结构及合成示意图 (b) 隔膜形貌表征 (c) 隔膜热收缩性能对比(网络版彩图) /span /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201803/insimg/35ce98d1-12c4-439a-b44f-0aa5561115de.jpg" title=" 10.jpg" / /p p style=" text-align: center "   图 8 锂离子动力电池关键材料技术现状及发展趋势总结(网络版彩图) /p p   随着锂离子电池能量密度的逐步提升, 电池安全性问题无疑将更加突出. 导致锂离子电池安全性事故发生的根本原因是热失控, 放热副反应释放大量的热及有机小分子气体, 引起电池内部温度和压力的急剧上升 而温度的急剧上升反过来又会呈指数性加速副反应,产生更大量的热, 使电池进入无法控制的热失控状态,导致电池终发生爆炸或燃烧 [101,102] . 高比能的NCM和NCA三元正极、锰基固熔体正极均较LFP材料的热稳定性差, 使人们在发展高能量密度动力电池的同时不得不更加关注安全问题 [103] . 解决电池安全性问题至少需要从两方面着手: (1) 防止短路和过充, 以降低电池热失控的引发几率 (2) 发展高灵敏性的热控制技术,阻止电池热失控的发生 [104] . /p p   4.1.3 电池制造工艺 /p p   随着动力电池应用的不断加深, 单体电池向着大型化、易于成组的方向发展. 在这一过程中, 单体电池的制造技术尤为重要. 提高产品一致性, 从而使电池成组后的安全性、寿命更高, 使其制造成本更低将是未来锂离子电池制造工艺的发展方向. (1) 开发生产设备高效自动化技术, 研发高速连续合浆、涂布、辊切制片、卷绕/叠片等技术, 可以降低生产成本 (2)开展自动测量及闭环控制技术研发, 提高电池生产过程测量技术水平, 实现全过程实时动态质量检测, 实现工序内以及全线质量闭环控制, 保证产品一致性、可靠性 (3) 建立自动化物流技术开发, 实现工序间物料自动转运, 减少人工干预 (4) 开展智能化生产控制技术研发, 综合运用信息控制、通讯、多媒体等技术,开发有效的生产过程自动化控制及制造执行系统, 最大程度地提高生产效率, 降低人工成本. /p p   4.2 锂离子动力电池的基础科学问题 /p p   4.2.1 研究电极反应过程、反应动力学、界面调控等基础科学问题 /p p   目前, 元素掺杂、包覆等方法被广泛应用于材料改性, 但究其原因往往“知其然不知其所以然”, 如LFP可以通过异价锂位掺杂显著提高电子导电性, 但其究竟是晶格掺杂还是通过表面渗透还存在争议. 另外,一般认为LFP较低的电子导电性和离子扩散特性是导致倍率特性不佳的主要原因, 但研究表明, 锂离子在电极/电解液界面的传输也是影响LFP倍率特性的重要因素. 通过改善界面的离子传输特性, 可以获得更好的倍率特性. 因此深入研究电极上的表面电化学反应的机理, 尤其是关于SEI膜的形成、性质以及电极与电解液的相互作用等, 可以明确材料的结构演化机制和性能改善策略, 为材料及电池性能的改善提供理论指导 [6] . /p p   4.2.2 发展电极表界面的原位表征方法 /p p   锂离子电池电极材料的性能主要取决于其组成及结构. 通过原位表征技术系统研究材料的组成-结构-性能间构效关系对深入了解电极材料的反应机理,优化材料组成与结构以提高其性能及指导高性能新材料开发与应用均有十分重要意义 [105,106] . 例如, 原位Raman光谱可以通过晶格(如金属-氧配位结构)振动实时检测材料的结构变化, 为找寻材料结构劣化原因提供帮助 [107~109] . 同步辐射技术不仅可通过研究电极材料中原子周围化学环境, 获取电极材料中组成元素的氧化态、局域结构、近邻配位原子等信息, 还可原位获得电池充放电过程电极材料的结构演化、过渡金属离子氧化态以及局域结构变化等信息, 精确揭示电池反应机理 [110,111] 固体核磁共振谱(NMR)则可提供固态材料的局域结构信息, 得到离子扩散相关的动力学信息 [112,113] . /p p strong   5 结论 /strong /p p   锂离子动力电池是目前最具实用价值的动力电池, 近几年在产业化方面发展迅速, 有力地支撑了电动汽车产业的发展. 然而, 锂离子动力电池仍然存在许多有待解决的应用问题, 特别是续航能力、安全性、环境适应性和成本, 需要在动力电池基础材料、电池制造和系统技术全产业链上同时进行研究. 可以预期相关技术将在近年内取得长足进步并实现规模应用.随着电动汽车的快速发展, 锂离子动力电池将迎来爆发增长的黄金期. /p p style=" text-align: right "    strong span style=" font-family: 楷体, 楷体_GB2312, SimKai "   作者:刘波(厦门大学) 张鹏 赵金保 /span /strong /p p    /p p br/ /p
  • 浅谈现有锂离子电池检测标准
    p   由于安全问题而发生锂离子电池产品召回的案例日益增多。Li+的活性和高能量密度的特性,会给锂离子电池安全性带来较大的问题。目前,对锂离子电池的安全性能,尤其是一些潜在的微小结构缺陷所带来的安全隐患的筛查,检验方法和标准落后于锂离子电池技术的发展,评价方法和评价体系尚未适应锂离子电池安全性能评估的要求。有鉴于此,本文作者对国内外现有的一些具有代表性的标准进行了归纳和分析,以期为检测技术的发展提供参考。 /p p    strong 1 电池安全性能检测标准简介 /strong /p p   目前,应用得较为广泛的国际标准是国际电工委员会(IEC)的锂离子电池标准。根据各自的需求,国际航空运输协会(IATA)、联合国危险货物运输专家委员会及国际民用航空组织(ICAO)等机构,也制定了相关的锂离子电池运输安全标准,并得到广泛应用。此外,一些国家及组织,如美国保险商实验室(UL)、美国电气及电子工程师学会(IEEE)和日本国家标准局(JIS)制定的关于锂离子电池的安全标准,也有广泛的影响。这些标准的检测项目相似,但是测试的条件有所不同。 /p p   应用较多、影响范围较广泛的国际标准有4个。联合国《联合国危险物品运输试验和标准手册》(UN38.3) /p p   和IEC62281:2012《运输中锂原电池和电池组及锂蓄电池和电池组的安全》均侧重于锂离子电池在运输中的安全测试和安全要求,主要针对锂离子电池在运输过程中的外部环境及机械振动进行模拟,试验项目包括高度模拟、温度试验、振动、冲击、外短路、撞击、过度充电和强制放电等8项,要求电池在测试过程中,应保证包装不脱落、不变形、无质量损失、不漏液、不泄放、不短路、不破裂、不爆炸且不着火。UL1642:2009《锂电池》适用于在产品中作电源用的一次(非充电的)和二次(可充电的)锂电池,标准的目的是减少锂电池在产品使用时着火或爆炸的危险。标准中关于电池的电性能测试,包括短路试验、不正常充电试验和强制放电试验 机械试验包括挤压试验、撞击试验、冲击试验和振动试验 环境试验包括热滥用、温度循环试验、高空模拟试验和抛射体试验等。试验要求,被测电池在试验过程中不起火、不爆炸、不漏液、不排气、不燃烧,且包装不破裂。IEEE1625:2008《笔记本电脑用可充电电池标准》和IEEE1725:2006《移动电话用可充电电池标准》主要是对便携式计算机和蜂窝电话用蓄电池的设计、生产和开发建立统一的准则,主要涉及电池和电池组有关的电子、物理结构、化学成分、加工流程、质量控制及包装技术等领域。相对于其他电池标准普遍重视电池或电池组的情况,上述标准分别对电芯、电池、主机节点、电源附件、消费者和环境等几个方面进行了综合性考虑。这两项标准均侧重于设计和制造过程,针对电池后期的使用问题,尤其是安全性问题涉及不多。 /p p   目前,国内外常用的锂离子电池标准列表归纳于表1。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/34f9e075-349d-4134-93b8-3c9ec7601566.jpg" title=" 003.jpg.png" alt=" 003.jpg.png" / /p p    strong 2 现有标准的侧重点分析 /strong /p p   现行的主要标准可概括为以下几类: /p p    strong 2.1 主要针对运输过程中的外部环境和机械振动 /strong /p p   如UN38.3、IEC62281:2012等,通过高度模拟、温度试验、振动、冲击、外短路和撞击等测试项目,模拟锂离子电池在运输过程中可能发生的危险,对于锂离子电池在使用过程中的安全问题涉及较少。 /p p    strong 2.2 主要针对设计和制造过程 /strong /p p   如IEEE1625、IEEE1725等。以IEEE1725为例,标准将手机锂离子电池系统分为4个板块,即电芯、电池组、主机及电池充电器部分,全面明确地对电芯的设计、原材料、制造工艺和成品测试评估等进行了要求,为电芯乃至手机等通信产品的安全性提供可靠评估保障。上述标准主要针对电池的设计和制造过程,对于锂离子电池后期使用中的安全问题涉及不多。且诸如此类的IEEE锂离子电池标准,由于对象为不同设备中的锂离子电池的设计和制造,针对性较强,适用范围受到一定的限制。 /p p    strong 2.3 主要针对锂离子电池电性能和安全性 /strong /p p   如UL1642、GB8897.4等,通过短路、不正常充电、强制放电试验挤压、撞击、冲击、振动、热滥用、温度循环、高空模拟试验及抛射体等测试项目,要求被测锂离子电池在试验过程中不起火、不爆炸、不漏液、不排气、不燃烧且包装不破裂。比较上述两类标准,此类标准的核心是锂离子电池的安全性,更注意温度导致的电池安全风险,但判定依据难以量化,只能用被测电池的爆炸、起火、冒烟、泄漏、破裂和变形等来区分,不利于检出可能存在潜在危险的电池。 /p p    strong 3 现有标准的不足 /strong /p p   过充过程成为了导致锂离子电池发生不安全行为的危险因素:当发生过充时,由于发生了不可逆的化学反应,电能转变成热能,导致电池温度迅速升高,从而引发一系列的化学反应。尤其是当散热性较差时,往往导致比单纯的热冲击更严重的问题,可能发生电池起火,甚至爆炸。 /p p   根据对现有主要标准的分析不难发现,现有的标准对锂离子电池安全性能的检测方法和评判依据还显得不足。这些标准中,有部分是针对锂离子电池的外部环境和设计制造过程的标准 即便是针对安全性能的标准,也缺少明确的可量化衡量的检测方法和评判体系,尤其是爆炸、起火、冒烟、泄漏、破裂和变形等判断依据,过于宽泛。 /p p   迫切需要一种针对锂离子电池热效应及电池温度变化,可定量分析并判定安全风险的检测方法。近几年,国内外研究者在不断研究更科学、高效的检测方法和手段,其中通过对于热效应及电池温度方面的研究,取得不少进展。通过检测电池的表面温度,结合电化学模型,利用量热法计算得到电池充电过程中放出的热量和热传导系数,之后建立热效应理论模型,可模拟计算电池内部的温度,进而来描述电池的热行为。人们已经建立了多种类型的热效应模型,但采取的测温手段主要是传统的热电偶测温法。热电偶操作比较复杂,且只能有限布点,不能全面地掌握样品温度分布 同时,热电偶还带有延时性,不能及时反映锂离子电池的温度变化情况,不利于建立实时温度变化曲线。 /p p   在理论研究方面,目前,人们倾向于利用理论模拟的方法体现锂离子电池的热安全性能,并设计了很多模型,通过分析热性能来计算,得到锂离子电池在不同工作环境下的温度曲线。这些理论模型的原理是通过测量锂离子电池的表面温度来评价内部温度,再与利用热电偶等方式测出的温度进行比对,一方面说明理论模型的预判性和正确性 另一方面对安全性进行评价。理论模型的建立可以使学者对于锂离子电池的热效应有较全面的认识,但对于安全性能的检测和评价却不直观。 /p p    strong 4 结束语 /strong br/ /p p   安全性能已经成为锂离子电池的一个重要指标,成为除成本因素外另一个制约锂离子电池应用的关键指标。由于锂离子电池的特性,在最初的使用阶段并不会显示出电化学行为的异常。这些潜在的缺陷给判断锂离子电池是否合格带来困难。本文作者归纳和总结了国内外常用的锂离子电池安全性能检测标准,通过分析发现,目前国内外对锂离子电池安全性的潜在风险缺乏检测方法和评判依据,未形成快速、有效的锂离子电池安全性检测方法或筛选方法。 /p p   随着消费者对锂离子电池电性能及安全性要求的日益提升,各电池制造商以及各国主管部门、行业协会等有必要对锂离子电池安全性能的检测手段进行研究,建立一套直观、快速、有效的检测方法,在现有标准体系的范围内,提高要求,进一步细化标准,明确判定依据,弥补现有锂离子电池检测标准和体系的不足,提高锂离子电池安全性能检测水平,保证锂离子电池行业的可持续发展,维护消费者在电池使用过程中的安全。 /p p    span style=" color: rgb(127, 127, 127) " i 文章摘自Battery Bimonthly(电池),2015,45(3),(蔡春皓,段冀渊,寿晓立,杨荣静, 中华人民共和国上海出入境检验检疫局) /i /span /p
  • 助力新能源发展,分享锂离子电池前沿内容
    锂离子电池是一种先进的电池技术,主要由正极、负极、隔膜和电解质四个部分组成。目前,全世界都在关注新能源的研发,针对锂离子电池从原材料前体制作到最终电池生产,Micromeritics拥有可供电池生产各个阶段使用的不同仪器。 为帮助广大用户更深入了解Micromeritics在锂离子电池方面的技术手段,本次研讨会将会讲解锂离子电池的基础知识,以及Micromeritics的不同表征仪器在锂离子电池的研发、生产环节中的应用。内容将涉及锂离子电池中的正极、负极、隔膜、固态电解质等多孔材料的比表面、孔径分布、孔容、颗粒尺寸、密度和粉体宏观性质的测量分析,同时结合部分理论知识和应用案例让大家更好地理解学到的知识。 如您对锂离子电池方面的专业内容感兴趣,欢迎参加我们的网络研讨会。 时间2022年4月28日14:00-15:00 主题锂离子电池基础知识及Micromeritics产品在该领域的应用 主讲人张晓天博士 应用科学家 如何报名参加Step 1: 扫描下方二维码 Step 2:点击“报名观看”,填写信息并提交完成注册 Step 3:直播开始前,通过原报名链接或二维码进入直播间 Step 4:已报名用户请选择“我已报名 直接进入”,通过验证后即可观看Micromeritics 是提供表征颗粒、粉体和多孔材料的物理性能、化学活性和流动性的全球高性能设备生产商。我们能够提供一系列行业前沿的技术,包括比重密度法、吸附、动态化学吸附、压汞技术、粉末流变技术、催化剂活性检测和粒径测定。 公司在美国、英国和西班牙均设立了研发和生产基地,并在美洲、欧洲和亚洲设有直销和服务业务。Micromeritics 的产品是全球具有创新力的知名企业、政府和学术机构旗下 10,000 多个实验室的优选仪器。我们拥有世界级的科学家队伍和响应迅速的支持团队,他们能够将 Micromeritics 技术应用于各种要求严苛的应用中,助力客户取得成功。
  • 岛津原子力显微镜-锂电池隔膜观测
    岛津原子力显微镜锂离子电池锂电池的结构由正极、负极、隔膜材料构成。 对于隔膜而言,其作用是分隔正极和负极,避免内部短路;同时,隔膜具有孔隙,可以吸附电解液使锂离子在充放电过程中可以双向通过。 目前常用的隔膜材料是聚乙烯(PE)、聚丙烯(PP)或者两者的混合物。制作工艺有干法和湿法两种,制作过程又包括流延、拉伸、定型等步骤。工艺和过程都会影响隔膜的孔隙孔径、孔隙率等。常用的观测方法是扫描电镜法,但是因为PE、PP都是绝缘材料,会形成严重的荷电效应,导致观察图像失真。因此,原子力显微镜非常合适的观察工具。 以上三张图片是用原子力显微镜对不同制作工艺的隔膜材料进行成像的图,范围为5μm×5μm。因为原子力显微镜获得的形貌图像为三维图像,因此隔膜多孔结构可被很显著的表现出来。 对于锂电池隔膜,除了常温下的孔隙结构,还需要测试孔隙在不同温度下的变化。因为当电池体系发生异常时,温度升高,为防止产生危险,希望隔膜可以在快速产热温度(120~140℃)开始时,因热塑性发生熔融,关闭微孔,隔绝正极与负极,防止电解质通过,从而达到遮断电流的目的。 岛津原子力显微镜具备完善的环境控制功能。使用样品加热单元从室温梯度加热到125°C和140°C,并观察其表面形状,范围为5μm×5μm。随着温度的升高,可以看到由于隔膜熔化,孔隙逐渐收缩。对于该实验,使用岛津专门设计的环境控制舱既可以在真空环境下进行,也可以完全模拟锂电池内部的温度/湿度/电化学环境进行。 本文内容非商业广告,仅供专业人士参考。
  • 锂离子电池用X射线异物检测仪问世
    精工电子纳米科技有限公司成功开发了一款检测仪器,既可自动进行元素分析,又可在数分钟内快速检测出锂离子可充电电池和燃料电池的电极中可能掺杂的20μm左右的微小金属异物。此试验机将在9月7日-9日展出。   锂离子可充电电池和燃料电池中掺杂金属异物是导致电池的成品率及寿命缩短的重要原因。特别是锂离子可充电电池会发热,有可能引发起火。近年来,随着在汽车・ 电油混合汽车以及住宅方面的应用,电池也逐渐大型化,因此防止金属异物的掺入变得更重要了。所以,以电池厂商为中心,为了防止金属异物的掺入,进行了复杂的故障分析。   金属异物的掺入途径是通过活性物质[1]、分离器[2]等材料以及涂漆等生产工程中掺入等多方面原因。以往所进行的故障分析是把不良电池拆除,通过X射线穿透检查仪和显微镜检测出金属异物存在的地方,再使用扫描电子显微镜和X射线荧光分析仪等特定对象元素,然后推测掺入的途径。但是,这些方法由于仪器性能的限制,很难检测出50μm以下的金属异物,并且检测所需时间非常长也是问题之一。并且,由于使用别的仪器对检测出的异物进行元素分析,有可能找不到需要检测的地方。   最近SIINT把通过X射线穿透进行金属异物的检测和使用X射线荧光进行元素分析的两项技术相融合,开发了世界首台可检测并且分析20μm左右的微小金属异物的X射线异物检查仪。   把电极板和分离器、装在容器里的活性物质放到仪器里,选择检查顺序后,只需点击开始测量,从X射线穿透图像的拍照到金属异物的检测及其元素分析都可自动运行。并且,分析结果中包括样品中的金属异物个数和各个异物的组成及其尺寸、显微镜的观察图像都可输出。由于无需前处理并且完全自动,所以无论是谁都可以简单地进行故障分析・ 抽样检查。   X射线异物检测仪的主要特征:   1、可在数分钟内检测出A4大小样品中20μm左右的金属异物   例如要检测A4大小的电池电极中20μm左右的金属异物,以往的X射线穿透检查仪需要数小时以上的摄像时间※1。SIINT通过采用最新的X射线管球和检测器以及新图像处理技术,大大缩短了摄像时间,检测速度成功达到了以往的100倍以上。A4大小的电池电极可在3~6分钟内完成摄像、识别20μm左右的金属异物并自动检测。   2、元素识别速度大幅提升   对检测出的金属异物,自动使用X射线荧光法进行元素分析。本仪器配备了我司独自研发的高亮度X射线光学系统,20μm左右的金属异物的元素识别速度是以往仪器的10倍。   3、一体化的操作,提高作业效率   X射线穿透检查仪和元素分析仪以及显微镜都包含在一台仪器内,各个系统联合起来可全自动输出测量结果。因此,操作人员只需放置好样品,即可获得测量结果,大大提升了作业效率。   [1]活性物质:通过与电解质的化学反应,吸收电子或者放出电子的物质。吸收电子的活性物质称为正极活物质,放出电子的活性物质称为负极活性物质。   [2]分离器:用带有无数微小的孔的薄膜(聚乙烯:PE或者聚丙烯:PP),把正极和负极绝缘起来。
  • 锂离子电池用X射线异物检测仪问世
    世界首台*1 使微小金属异物的快速检测及元素分析自动化   精工电子纳米科技有限公司(简称:SIINT,社长:川崎贤司,总公司:千叶县千叶市)是精工电子有限公司(简称:SII,社长:新保雅文,总公司:千叶县千叶市)的全资子公司,其主要业务是测量分析仪器的生产与销售。SIINT成功开发了一款检测仪器,既可自动进行元素分析,又可在数分钟内快速检测出锂离子可充电电池和燃料电池的电极中可能掺杂的20μm左右的微小金属异物。此试验机将在9月7日-9日的日本国内最大的分析仪器展「分析展/科学仪器展2011」(幕张Messe)展出。 X射线异物检查仪(样机)   锂离子可充电电池和燃料电池中掺杂金属异物是导致电池的成品率及寿命缩短的重要原因。特别是锂离子可充电电池会发热,有可能引发起火。近年来,随着在汽车・ 电油混合汽车以及住宅方面的应用,电池也逐渐大型化,因此防止金属异物的掺入变得更重要了。所以,以电池厂商为中心,为了防止金属异物的掺入,进行了复杂的故障分析。   金属异物的掺入途径是通过活性物质*2・ 分离器*3等材料以及涂漆等生产工程中掺入等多方面原因。以往所进行的故障分析是把不良电池拆除,通过X射线穿透检查仪和显微镜检测出金属异物存在的地方,再使用扫描电子显微镜和X射线荧光分析仪等特定对象元素,然后推测掺入的途径。但是,这些方法由于仪器性能的限制,很难检测出50μm以下的金属异物,并且检测所需时间非常长也是问题之一。并且,由于使用别的仪器对检测出的异物进行元素分析,有可能找不到需要检测的地方。   最近SIINT把通过X射线穿透进行金属异物的检测和使用X射线荧光进行元素分析的两项技术相融合,开发了世界首台可检测并且分析20μm左右的微小金属异物的X射线异物检查仪。   把电极板和分离器、装在容器里的活性物质放到仪器里,选择检查顺序后,只需点击开始测量,从X射线穿透图像的拍照到金属异物的检测及其元素分析都可自动运行。并且,分析结果中包括样品中的金属异物个数和各个异物的组成及其尺寸、显微镜的观察图像都可输出。由于无需前处理并且完全自动,所以无论是谁都可以简单地进行故障分析・ 抽样检查。   【X射线异物检测仪的主要特征】   1.可在数分钟内检测出A4大小样品中20μm左右的金属异物   例如要检测A4大小的电池电极中20μm左右的金属异物,以往的X射线穿透检查仪需要数小时以上的摄像时间※1。SIINT通过采用最新的X射线管球和检测器以及新图像处理技术,大大缩短了摄像时间,检测速度成功达到了以往的100倍以上。A4大小的电池电极可在3~6分钟内完成摄像、识别20μm左右的金属异物并自动检测。   2.元素识别速度大幅提升   对检测出的金属异物,自动使用X射线荧光法进行元素分析。本仪器配备了我司独自研发的高亮度X射线光学系统,20μm左右的金属异物的元素识别速度是以往仪器的10倍。   3.一体化的操作,提高作业效率   X射线穿透检查仪和元素分析仪以及显微镜都包含在一台仪器内,各个系统联合起来可全自动输出测量结果。因此,操作人员只需放置好样品,即可获得测量结果,大大提升了作业效率。   *1 敝司调查   *2 活性物质:通过与电解质的化学反应,吸收电子或者放出电子的物质。吸收电子的活性物质称为正极活物质,放出电子的活性物质称为负极活性物质。   *3 分离器:用带有无数微小的孔的薄膜(聚乙烯:PE或者聚丙烯:PP),把正极和负极绝缘起来   本产品的咨询方式   中国:   精工盈司电子科技(上海)有限公司   TEL:021-50273533   FAX:021-50273733   MAIL:sales@siint.com.cn   日本:   【媒体宣传】   精工电子有限公司   综合企划本部 秘书广告部   【客户】   精工电子纳米科技有限公司   分析营业部 营业二科   TEL: 03-6280-0077(直线)   MAIL:info@siint.co.jp
  • 约稿|锂离子电池电化学原位XRD检测技术应用解析
    p style=" text-indent: 2em " span style=" text-indent: 2em " 据Technavio最新报告数据,锂离子电池全球市场规模在2020-2024年期间有可能增长478.1亿美元,且市场的增长动力将在预测期内加速。 /span /p p style=" text-indent: 2em " 无论是锂电实验室研究,还是商业化锂电失效分析,锂电材料关心的结构、动力学等性能,均与电池材料的组成与微结构密切相关,对电池的综合性能有复杂的影响。准确和全面的理解锂电池材料的构效关系需要综合运用多种检测技术。 /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/meetings/ldc2020/" target=" _blank" style=" text-align: center white-space: normal " img src=" https://img1.17img.cn/17img/images/202004/uepic/31be3033-f2b6-4ee0-aa1b-18b601b8e62b.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 600" height=" 131" border=" 0" vspace=" 0" style=" max-width: 100% max-height: 100% width: 600px height: 131px " / /a /p p style=" text-align: center " strong span style=" color: rgb(0, 0, 0) " 4月24日,锂电检测技术网络研讨会在线直播: /span /strong a href=" https://www.instrument.com.cn/webinar/meetings/ldc2020/" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 点击免费报名参会 /span /strong /a /p p style=" text-indent: 2em " 锂电材料晶体结构表征手段主要包括 X 射线衍射技术(XRD)、扩展 X 射线吸收精细谱( span style=" text-indent: 2em " EXAFS)、中子衍射(neutron& nbsp diffraction)、核磁共振(NMR)、电镜(EM)、拉曼散射(Raman)等。 /span /p p style=" text-indent: 2em " XRD是目前应用最为广泛的研究晶体结构的技术。XRD主流商业化产品中,进口品牌包括日本理学、布鲁克、马尔文帕纳科、岛津等;国产品牌包括丹东通达、丹东浩元、丹东奥龙、北京普析通用等。 /p p style=" text-indent: 2em " 近日,仪器信息网有幸邀请国产XRD生产厂商丹东通达分享了锂离子电池电化学原位XRD检测技术应用,及对应应用方案。 /p p style=" text-align:center" span style=" color: rgb(255, 0, 0) font-size: 18px " strong i 专题约稿|锂离子电池电化学原位XRD检测技术应用 /i /strong /span /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " ——“锂电检测技术系列——晶体结构分析技术”专题约稿 /span /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 作者:丹东通达科技有限公司 /span /p p style=" text-indent: 2em " 可充电电池的发展促成了电动汽车的复兴,同时电动汽车的快速发展推动着可充电电池技术的快速进步,随着研发的深入,传统的研究方法已经不能满足对电池反应过程,容量衰退机制,热失控原因的深入理解与探索。因此,人们开发出了一系列的原位研究技术,它们具有的动态,实时,直观等特点,因此可以用来对电池材料的形貌与结构演变,氧化还原反应过程,固态电解质界面膜进行监视和探索。电池原位研究方法主要包括In situ XAS、in situ XRD、in situ TEM、in situ AFM、in situ Raman、in situ SEM,NPD,IR,...,这些研究方法及测试技术占据基础研究和应用技术开发的主导地位,将锂离子电池技术的研究推到前所未有的深度和广度。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/02b4c206-68f3-4020-a35c-2a5c6a626391.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-align: center text-indent: 0em " 丹东通达X射线多晶粉末衍射仪系列 /span /p p style=" text-indent: 2em " X射线衍射(XRD)是研究电极材料晶体结构性质的一种重要的工具,除此之外还能够用来研究化学反应的机理,在电化学系统之中,X射线衍射可以用于研究新型可充放电锂离子电池电极材料。 /p p style=" text-indent: 2em " 其实,原位XRD技术(In situ X Ray Diffraction,In situ XRD)早在20世纪60年代就已经运用到材料研究中,电池原位X射线衍射技术是指在电池的充放电过程中进行XRD扫描,主要可用来观察充放电过程中电极材料所发生的结构和物相转变,精确揭示电池反应机理。Thurston等最早设计的原位电池装置,利用同步辐射光源的硬X射线探测体电极材料,直接观察到晶格膨胀和收缩、相变及多相的形成。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 312px " src=" https://img1.17img.cn/17img/images/202004/uepic/d97ded1d-b7f3-45fe-80b9-cc7bc67801ef.jpg" title=" 3.png" alt=" 3.png" width=" 450" height=" 312" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " span style=" color: rgb(0, 176, 240) " 首台国产X射线单晶衍射仪TD-5000& nbsp /span /p p style=" text-indent: 2em " 丹东通达科技有限公司长期致力X射线分析仪器的研究与生产工作,生产的TD系列x射线粉末衍射仪一直占据国内国产粉末衍射仪的销售及应用的大多数市场份额。同时丹东通达科技牵头与中山大学等单位合作承担国家重大科学仪器专项,研发第一台国产x射线单晶衍射仪,对晶体学及相关领域的科学研究具有重大意义。 /p p style=" text-indent: 2em " 丹东通达科技有限公司依据In situ XRD原位测试技术理论及市场需求,结合多年研发XRD经验,采用合作伙伴武汉市蓝电电子股份有限公司配套的LAND电池测试系统,在TD3500型衍射仪上进行改造调整,完成锂离子电池的原位XRD解决方案: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/85add2a7-cac7-451f-a75b-125d3ffce7fe.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-indent: 2em " 此方案是一种可以实现实时监测电极材料相变和结构演变的有效测试手段。依托TD-3500衍射仪及电池原位检测装置及电池测试系统完成测试整个过程是对同一个材料的同一片区域位置进行扫描分析,得到的谱图解析出信息(无论是晶胞参数、峰强度,还是其他参数)具有较高的可比性,可以得到一系列实时的结构变化信息,有助于深入认识材料在充放电过程中发生的反应,对如何改进材料具有较高的指导意义。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 315px " src=" https://img1.17img.cn/17img/images/202004/uepic/4b3a9c5d-5623-4d20-a342-abb6623341a1.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 450" height=" 315" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 通达科技原位解决方案: /span span style=" color: rgb(0, 176, 240) text-align: center text-indent: 0em " LAND电池测试系统控制软件 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 290px " src=" https://img1.17img.cn/17img/images/202004/uepic/90c15cce-e321-4711-9a6c-944ac8959d6e.jpg" title=" 6.png" alt=" 6.png" width=" 500" height=" 290" border=" 0" vspace=" 0" / /p p br/ /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) " 通达科技原位解决方案:电池测试XRD控制软件 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/65934fbd-4c78-4381-a863-965291c9739c.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) text-indent: 0em " 通达科技原位解决方案:测试谱图 /span /p p style=" text-indent: 2em " strong 关于丹东通达科技有限公司 /strong /p p style=" text-align: left text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 100px height: 85px " src=" https://img1.17img.cn/17img/images/202004/uepic/e2c87797-a84b-42b0-8294-043ed51109f5.jpg" title=" 8.jpg" alt=" 8.jpg" width=" 100" height=" 85" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 丹东通达科技有限公司位于中朝边境——辽宁省丹东市。公司是国家高新技术企业、辽宁省双软企业、ISO质量体系认证企业,并获得多项发明专利及实用新型专利,是辽宁省政府、丹东市政府重点扶持的高科技企业,并于2013年5月15日成立院士专家工作站。公司是X射线分析仪器及无损检测仪器的专业生产企业,是2013年国家科技部【国家重大科学仪器设备开发专项】项目承担单位。 /p p style=" text-indent: 2em " 在国家重大专项资金的支持下,公司生产的TD系列分析仪器及TD系列无损检测仪器均已接近或达到世界先进水平,广泛应用于化学、化工、机械、地质、矿物、冶金、建材、陶瓷、石化、药物等材料研究领域。产品除了满足国内用户的需求外,还远销美国、韩国、阿塞拜疆等国家。 /p p style=" text-indent: 2em " 公司加大科技投入,已完成分析仪器及无损检测仪器两大系列产品的系列化工作。分析仪器包括:TD系列X射线衍射仪、台式X射线小型衍射仪、X射线荧光光谱仪、X射线衍射/荧光一体机、X射线晶体定向仪、多功能全自动蓝宝石晶体定向仪、X射线晶体分析仪、激光粒度仪等产品;无损检测仪器包括:便携式X射线探伤机、移动式X射线探伤机、X射线实时成像系统、微焦点X射线检测系统、TD系列X射线管道爬行器及X射线管等产品。 /p p style=" text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 附:锂电检测系类专题约稿征集中 /strong /span /p p style=" text-indent: 2em " span style=" text-indent: 2em " 为促进锂电检测技术发展,近期,器信息网结合锂离子电池检测项目品类,从2019年起策划组织系列锂电检测系列专题报道,为专家、仪器设备商、用户搭建在线网上展示及交流平台。 /span span style=" text-indent: 2em color: rgb(0, 176, 240) " (锂电检测系列专题内容约稿征集进行中,欢迎投稿: /span span style=" text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " 15311451191,yanglz@instrument.com.cn /span span style=" text-indent: 2em color: rgb(0, 176, 240) " ) /span /p table border=" 0" cellspacing=" 0" cellpadding=" 0" style=" white-space: normal " tbody tr class=" firstRow" td width=" 53" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " strong span style=" font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) " 系列序号 /span /strong /p /td td width=" 359" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " strong span style=" font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) " 锂电检测技术系列专题主题 /span /strong /p /td td width=" 126" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " strong span style=" font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) " 专题链接 /span /strong /p /td /tr tr td width=" 53" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) " 1 /span /p /td td width=" 359" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) " 锂电检测技术系列——电性能检测技术 /span /p /td td width=" 126" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) " a href=" https://www.instrument.com.cn/zt/lidian1" 【链接】 /a /span /p /td /tr tr td width=" 53" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) " 2 /span /p /td td width=" 359" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) " 锂电检测技术系列——形貌分析技术 /span /p /td td width=" 126" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) " a href=" https://www.instrument.com.cn/zt/lidian2" 【链接】 /a /span /p /td /tr tr td width=" 53" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) " 3 /span /p /td td width=" 359" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) " 锂电检测技术系列——成分分析技术 /span /p /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: center " span style=" font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) " a href=" https://www.instrument.com.cn/zt/lidian3" 【链接】 /a /span /p /td /tr tr td width=" 53" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) " 4 /span /p /td td width=" 359" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) " 锂电检测技术系列——晶体结构分析技术 /span /p /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: center " span style=" font-size: 12px font-family: Arial, sans-serif color: rgb(68, 68, 68) " 5 /span span style=" font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) " 月上线 /span /p /td /tr tr td width=" 53" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) " 5 /span /p /td td width=" 359" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) " 锂电检测技术系列——X射线光电子能谱分析技术 /span /p /td td rowspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: center " span style=" font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) " 即将上线 /span /p /td /tr tr td width=" 53" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) " 6 /span /p /td td width=" 359" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" font-size: 12px font-family: 宋体 color: rgb(68, 68, 68) " 锂电检测技术系列——安全性和可靠性分析仪器及设备 /span /p /td /tr /tbody /table p style=" text-indent: 2em " br/ br/ /p
  • 锂电池材料试验第四讲|锂离子电池的强制内短路测试
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。 在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。 LLOYD材料力学试验机(LLOYD材料试验机)提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(LLOYD材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第四讲——锂离子电池的强制内短路测试。锂离子电池的强制内短路测试。强制内短路测试既可以应用在18650,21700等圆柱形电池,也可以应用于方形软包电池。测试前,需要在规定环境的手套箱中对电池进行拆解,在混入模拟微小金属颗粒的标准金属镍片后对电池进行封装。在达到规定的温度和时间条件后,放置于强制内短路测试系统中以0.1mm/s的速度对电池放置镍片的位置进行施压,在匀速达到规定的压力同时,实时监测锂电池压力的变化和表面温度的变化。当观测到电压发生50mV压降或者当施压载荷达到400N(方形电池)或800N(圆柱形电池)时,停止加压并保持30s,然后撤压。如果在达到规定的压力前发生50mV压降,说明此电池未达到强制内短路测试的安全标准;如果当压力达到400N或800N而为发生电压降,说明此电池可极大程度的避免因外部颗粒原因造成内短路现象。而一套高精度的强制内短路测试系统,需要一台高精度、高采样率载荷施加系统,此系统需同时监测和记录锂电池微量的电压变化和温度变化,并可以灵活的设定试验条件以满足更为严苛的测试和研发需求。强制内短路测试系统在载荷量的施加与记录方面,LLOYD LD系列测试系统可实现0.5%读数级的载荷精度,并以1000Hz的采样率记录载荷的变化。此系统采用32位A/D转换,具有极高的力值分辨率。在达到载荷精度和分辨率的同时,其电压和温度记录也可高达250Hz,是目前业内同类测试中精度最高,采样率最高的测试系统。此系统配有防爆高低温环境箱,即可满足标准强制内短路测试的温度要求,可以变换温度模拟不同温度下的电池的力学性能研究。温箱本身达到防爆级,即使在电池发生剧烈燃烧、爆炸等情况下依然可以保障试验人员与系统的安全性,并带有主动排风系统,可将测试中电池的烟气排出,有效的保障实验室环境。锂电池的力学测试在满足强制内短路测试要求的同时,LLOYD LD测试系统还可以兼顾各种高精度的电池力学强度测试,如锂电池三点弯曲强度,抗压强度,锂电隔膜拉伸强度、延伸率测量,锂电隔膜穿刺强度,铝塑膜的拉伸和穿刺性能等。LLOYD测试系统专注于各类定制化解决方案,协助您完成更为专业的标准化和定制化测试,助力锂电产品的测试和研发。更多详细方案,请垂询AMETEK 中国区办事处或各地分销商。LLOYD材料力学试验机(LLOYD材料试验机) LLOYD(劳埃德)测试系统(LLOYD材料试验机)源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。 LLOYD材料测试系统(LLOYD材料试验机)可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 锂离子电池· 燃料电池用 X射线异物分析仪「SEA-Hybrid」发售
    为确保电池容量、防止发热起火、成品率改善等作贡献 精工电子纳米科技有限公司(简称:SIINT,社长:川崎贤司,总公司:千叶县千叶市)是精工电子有限公司(简称:SII,社长:新保雅文,总公司:千叶县千叶市)的全资子公司,其主要业务是测量分析仪器的生产与销售。新产品「SEA-Hybrid」可快速检测出锂离子可充电电池和燃料电池的电极中可能掺杂的20&mu m大小的微小金属异物并进行元素分析。 X射线异物分析仪 「SEA-Hybrid」  构成锂离子电池和燃料电池的电极材料和隔膜中如果掺有金属异物的话,不仅会降低电池容量及缩短使用寿命,还会导致发热起火。SIINT致力于电池中的金属异物检测仪的开发,在今年9月份日本的分析展上展出了样机,现已经投产并开始销售。  「SEA-Hybrid」把电极板和隔膜以及装在容器里的活性物质放到仪器中,选择检查程序后,只需点击开始测量,从X射线透视图像的拍摄到金属异物的检测及其元素分析都可自动运行。并且,分析结果中包括样品中的金属异物个数和各个异物的组成及其尺寸、显微镜的观察图像都可输出,由此可简单地知道金属异物的掺入途径。因为无需前处理且完全自动,所以可以方便地进行抽样检查和故障分析。SIINT将销售此仪器到电池厂家、原材料厂家等,为电池的品质提高作贡献。 【SEA-Hybrid的主要特征】 1.  可在几分钟内对250× 200mm大小的样品检测出20&mu m大小的金属异物 例如要检测250× 200mm(约B5尺寸)大小的电池电极板中20&mu m大小的金属异物,以往的X射线透视检查仪需要十小时左右的摄像时间。SIINT通过新型X射线透视方法的开发,成功缩短了时间。检测速度成功达到了以往的100倍以上,可在3~10分钟内完成。 2.电极板的微小金属异物也可进行元素分析 对样品中检测出的金属异物可自动使用X射线荧光法进行元素分析。以往,对于电极板中可能存在的20&mu m左右的微小金属异物,只能分析存在于样品表面的异物。这是由于存在于内部时,异物产生的X射线荧光被基材所吸收,信号强度非常微弱。「SEA-Hybrid」采用独自研发的高能量X射线光学系统,可对电极・ 有机薄膜内部所含的20&mu m大小的微小金属异物进行元素分析。 3. 一体化的操作,提高作业效率 与以往的技术相比,金属异物的检测速度、元素分析速度大幅提高,并且把显微镜等都组合在一台仪器内,各个系统联动可全自动输出测量结果。因此,操作人员只需放置好样品,即可获得测量结果,大大提升了作业效率。 【SEA-Hybrid的主要规格】 被测样品尺寸 宽250× 深200mm 异物检测时间 3~10分钟左右(250× 200mm全面摄像、20&mu m大小异物的检测时间) 异物元素分析时间 1~4分钟左右 每检测出1个(根据异物尺寸及元素的不同,有时会发生变化) 装置 X射线发生系统冷却用水 仪器自身尺寸 1340(宽)× 1000(深)× 1550(高)mm 【价格】 5,800万日元~(不含税) 【销售目标台数】 20台(2012年度) 以上 本产品的咨询方式 中国: 精工盈司电子科技(上海)有限公司 TEL:021-50273533 FAX:021-50273733 MAIL:sales@siint.com.cn 日本: 【媒体宣传】 精工电子有限公司 综合企划本部 秘书广告部 井尾、森 TEL:043-211-1185 【客户】 精工电子纳米科技有限公司 分析营业部 营业二科 浅井、村松 TEL: 03-6280-0077 http://www.siint.com/
  • 负极材料粒度分布对锂离子电池性能的影响
    负极材料作为锂离子电池的核心材料,对锂离子电池的能量密度、充放电性能、循环性能、生产工艺等起着至关重要的作用。负极材料的主要技术指标包括粒度、比表面积、振实密度、真密度、灰分、pH值等。其中,粒度分布作为负极材料的重要技术指标,它还影响比表面积和振实密度,从而影响锂离子电池的生产工艺和综合性能。一、粒度分布对锂离子电池性能的影响负极材料的粒度分布主要从以下几个方面影响锂离子电池的生产工艺和性能:1、粒度分布影响体积能量密度负极材料的颗粒大小应当具有合适的粒度分布,体系中的小颗粒能够填充在大颗粒的空隙中,有助于增加极片的压实密度,从而提高电池的体积能量密度。2、粒度分布影响充放电性能负极材料的颗粒越小,锂离子嵌入时所需要克服的范德华力也就越小,嵌入越容易进行,而且颗粒越小,锂离子嵌入和脱出的通道越短,越有利于快速达到充分嵌锂状态,从而具有更好的充放电性能。3、粒度分布影响循环性能实验表明,颗粒越小的石墨负极有较大的初次容量,但不可逆容量也较大;随着粒径增大,初次充放电容量降低,不可逆容量减少。同时,石墨颗粒越小,与电解液接触的比表面积越大,初次充放电过程中形成的SEI膜所消耗的电荷就越多,不可逆容量损失也就越大。因此,合理的粒度分布不仅能够提升锂离子电池的初次容量和初次效率,而且能够提升锂离子电池的循环性能。4、粒度分布影响生产工艺负极材料的粒度分布会直接影响电池的制浆和涂布工艺。在相同的体积填充份数情况下,材料的粒径越大,粒度分布越宽,浆料的黏度就越小,这有利于提高固含量,减小涂布难度。颗粒的粒径以及分布宽度对浆料黏度的影响二、负极材料对粒度的要求在负极材料相关的标准中,对材料颗粒的粒度分布提出明确的要求,具体如下:三、欧美克高性能激光粒度分析仪如何满足锂离子电池材料粒度检测要求负极材料的研发、生产及来料检验普遍采用激光粒度分析仪进行粒度检测,选择高性能的激光粒度仪是获得准确粒度分布信息的重要保证。对于一款高性能的激光粒度分析仪,往往采用合理的光学结构、高性能的光电元器件以及科学的反演模型,从而体现出良好的重复性、重现性、真实性、分辨率等测试性能。珠海欧美克仪器有限公司从1993年开始从事激光粒度分析仪的研发、生产和应用,积累了丰富的激光粒度分析仪研发、生产和应用经验。从1999年开始,欧美克激光粒度分析仪系列产品在锂离子电池研发、生产领域逐步获得行业认可。下面,从几个小案例管中窥豹,看看欧美克如何匠心智造每一款产品,又是如何站在行业应用的角度为用户提供粒度解决方案的。1、大角散射光的球面接收技术(DAS)的应用确保散射光能信息的准确获取对少量的大/小颗粒及样品各个粒径组分的准确识别,需要仪器制造商在无盲区光学设计、高精度元器件、装配工艺、算法及软件智能控制上不断优化,提高产品分辨能力。例如早先的激光粒度仪将多个光电转换元件探测通道放置在一块或两块平面上,然而傅立叶透镜的聚焦面通常呈弧形分布,平面布置的探测器很难将所有角度的散射光能信息都准确地聚焦获取。以欧美克LS-609型激光粒度分析仪为例,在散射光能探测器的设计时,将常见的失焦影响较大的多个大角探测器通道以分个独立的方式放置在与其散射角相对应的傅立叶透镜焦点位置,保证所有散射光角度的信号都是无混杂的,提高了散射光分布角度分辨能力。与此同时,各个独立的探测器有利于在探测器上布置杂散光屏蔽装置,同时也防止了散射光在不同探测器上的相互干扰,进一步降低系统的噪声,提高细微差异的分辨能力。大角散射光的球面接收技术(DAS)2、优良的测试性能准确反映出测试样品的细微差别(1)Topsizer对粉体材料的大、小颗粒具有高超的分辨能力欧美克Topsizer激光粒度分析仪测试含有少量大颗粒的石墨原材料的粒度分布图和粒度分布表如下图所示,可以看到对于体积含量在0.5%以下的极少量60-100μm的颗粒,以及体积含量在1%左右的2μm以下颗粒,均能够灵敏的检测出来其详尽的粒度分布。显示了Topsizer对粉体材料的大、小颗粒具有高超的分辨能力,对于电池产品的安全性能和容量性能有更准确的指导意义。如果对于对少量小颗粒特别关注,在软件上,甚至可以采用数量分布替代体积分布的计算方法,进一步放大小颗粒的权重,对小颗粒数量上的变化进行更易识别的测试和生产质控。但需要注意的是,对于分布较宽的样品,由于大小颗粒在尺寸上差异本身就很大,同样体积的大小颗粒的数量相差将会异常大,取样和分散测量上的少许波动会导致测试结果数量分布上较大的偏差。下图是应用欧美克Topsizer激光粒度仪对D50为0.1μm左右的超细隔膜材料氧化铝的粒度测试粒度分布图。(2)LS-609激光粒度仪具有优良的重现性下图是欧美克LS-609激光粒度仪对磷酸亚铁锂3次取样分散测试粒度分布的叠加图,及特征粒径的统计结果,显示该仪器对磷酸亚铁锂的测试拥有优良的重现性。 此外,不同使用环境还可以选配不同的进样器,分析软件还具有用户分级、权限管理、数据完整性及可追溯功能,欧美克激光粒度分析仪真正做到了性能可靠、操作简单、维护量少,是值得信赖的高性能激光粒度分析仪。参考文献【1】沈兴志,珠海欧美克仪器有限公司,高性能激光粒度分析仪在电池材料测试中的应用【2】珠海欧美克仪器有限公司,激光粒度分析仪在锂离子电池行业中的应用【3】苏玉长,刘建永,禹萍,邹启凡,中南大学材料与工程学院,粒度对石墨材料电化学性能的影响【4】旺材料锂电,锂离子电池负极材料标准最全解读【5】中国粉体网,粒度对负极材料有什么影响?
  • 响应设备更新政策 | 锂离子电池材料表征解决方案
    锂离子电池随着消费者对新能源汽车需求的不断提高,高性能锂离子电池的竞争日益激烈。为提升锂离子电池的安全性、比容量等关键技术参数,在严格控制现有原材料质量的基础上,还需不断开发出新型正负极、隔膜和电解质材料。牛津仪器的多技术联用解决方案为锂电行业的材料研发提供了全面、可靠、多维的分析结果。Part 1应用案例AZtecLive:EDS 技术能够准确地测定三元正极材料中过渡金属元素的含量配比AZtecWave:基于 SEM 的能谱、波谱一体化解决方案表征掺杂元素的准确定量及分布图AZtecBattery:自动清洁度检测系统,可快速进行正极颗粒的形态学参数统计,并一键获得等效圆直径、拟合椭圆长径比、圆度等信息EBSD:定量分析正极材料的结晶状态、晶粒尺寸、晶界分布、取向分布、应力状态、循环相变等行为RISE 联用分析正极材料烧结后的物相、极片尺度上的物相分布、正极材料循环相变动态原位电池测量能够在电池工作的同时(充电放电)对电池的组件进行表征: &bull 实验测量的同时通入实际有关的气体 &bull 在电池充放电的过程中提供稳定观测手段 &bull 在电池工作同时观测电极结构变化原位负极电沉积测量: &bull 实时表征负极材料薄膜的形貌与粗糙度 &bull 观测不同电压下的电池化学反应&bull 调控实验环境,如通入气体、温度及湿度Part 2应用案例快速反馈电解液配方组成,表征扩散系数、电导率及离子迁移数等关键性能参数实现电解液快速质量控制及失效分析EBSD 可用于研究固态电解质晶粒的形态及晶体择优学取向,为从显微结构层面优化固态电解质的服役性能提供指导Extreme 无窗 EDS 系统可有效探测锂元素,并采集锂元素的面分布图RISE 拉曼-电镜联用:充放电前后隔膜差异性分析隔膜上疏水区域和亲水区域可透过 AFM 的相位成像技术捕捉 AFM 可用来研究 SEI 复杂的形成过程并改进 SEI 以实现更好电池效能与寿命
  • 长纤维高性能锂离子电池研究取得重要突破
    纤维锂离子电池为智能织物等各种可穿戴电子产品提供能源供给。批量生产柔性、安全和可清洗的纤维电池线轴,是推动便携式和可穿戴电子产品发展的关键。目前,主流研究方向是制造直径为数十至数百微米的纤维锂离子电池,然而迄今为止,研制的纤维电池只有几厘米长,且整个电池能量密度低,大规模生产长纤维高性能锂离子电池仍然是一个挑战。近期,科技部高技术研究发展中心(基础研究管理中心)受托管理的国家重点研发计划“纳米科技”重点专项“新型纤维状储能器件的重大科学技术问题”项目取得重要研究进展。复旦大学科研团队经过协同攻关,将钴酸锂正极和隔膜包裹的纤维负极扭在一起制造出不同长度的纤维锂离子电池,并发现电池的内阻随着长度的增加而减小。研究团队将纤维锂离子电池编织成大面积纺织品,将其集成到日常服装中,破坏性实验证明,经各种方式折叠或被汽车碾压后,该电池未发生燃烧或爆炸,即使经机器清洗或被刀片刺穿后,仍可继续为平板电脑充电,呈现出良好的安全性能。此外,将该纤维锂离子电池纺织品制成保健夹克,用于个人实时健康管理,对接受康复体育锻炼的囊性纤维化患者、骨髓瘤或肝硬化患者的早期诊断具有一定效果。该研究成果有望实现高性能纤维锂离子电池的大规模生产,为下一代智能纺织品、生物医学和商业可穿戴设备开辟一条全新的路径。相关研究成果于2021年9月发表在Nature上。
  • 全程守护!光学显微镜在锂离子电池生产中大放光彩
    锂离子电池相关技术,自上世纪60年代开始研究,并在90年代初,首次进行商业化于摄像机之上。经过逐代的技术革新,锂离子电池技术成功商业化走向市场,成为主流的电池技术。当前锂离子电池被广泛应用于我们生活中的各个场景,诸如智能手机、笔记本电脑,以及电动汽车、电动自行车等各个领域。作为重要的动力源,锂离子电池的生产需要严格的质量监控。光学显微镜作为常用的检测设备,在锂电池的生产中有着广泛的应用。奥林巴斯DSX1000数码显微镜极片涂布工艺检查极片涂布的效果对电池容量、一致性以及安全性有重要影响,生产过程中需要检查涂布后的极片是否满足工艺要求。对于起伏明显的缺陷/样品,要求显微镜具有较大的景深,才能在视野下同时看清不同焦平面的样品形貌。数码显微镜DSX1000提供了大景深物镜的选择,帮助用户应对此类型样品的检查。数码显微镜DSX1000提供全套17种物镜,包含大景深物镜使用数码显微镜DSX1000采集2D/3D图像后,用户可借助分析软件对样品的形貌特征进行测量。DSX1000系统不仅支持线宽、表面积、角度和直径等2D特性的测量,还支持高度、体积、横截面积和其他3D特性的测量。使用数码显微镜DSX1000测量极片浆料的涂布厚度对于涂布厚度的测量,用户除了对极片截面直接进行观察测量;也可通过采集3D图像、并使用软件的轮廓测量功能的方式,就可由轮廓线的高度差得到涂布厚度的大小。数码显微镜DSX1000一键3D功能帮助进行快速完成图像采集和后续的数据测量工作极片分切工艺检查毛刺对电池的危害巨大,尺寸较大的毛刺可能直接刺穿隔膜,导致电池内部短路。因此需要对电极毛刺进行严格监控。而极片分切工艺是电池制造中毛刺产生的主要过程,因此在此工艺段需要重点关注毛刺的检查。毛刺检查任务有两个重点:检查毛刺是否存在测量毛刺尺寸大小使用数码显微镜DSX1000检查分切后的极片边缘是否存在毛刺并测量毛刺尺寸大小电池的电极毛刺朝向不固定,需要从多个角度进行检查,确保没有遗漏。数码显微镜DSX1000的光学显微镜放大头部可以向左或向右倾斜进行观察,最大倾斜角度为90°。多角度倾斜观察的设计可帮助用户灵活应对毛刺检查。倾斜观察效果进行毛刺检查时,一般是先在低倍下进行极片的宏观检查,发现异常后再切换到更高的放大倍率进行毛刺的判定和测量。数码显微镜DSX1000放大倍率可覆盖23X~8220X,帮助用户实现对同一样品从宏观到微观的检查。DSX1000对同一样品进行变倍观察(从20X到2000X)材料表面粗糙度控制为了保证电子能在集流体和电极材料间进行有效转移,生产中需要控制集流体金属箔表面的粗糙度大小。使用激光显微镜OLS5100测量负极集流体(铜箔)的表面粗糙度激光共聚焦显微镜OLS5100为非接触式的测量工具,无需担心损伤样品及因样品损伤导致的测量数据错误。奥林巴斯激光共聚焦显微镜OLS5100即使在弱反射信号下也能采集到所需的数据。因此对于光反射率低的样品(如,黑色电极材料)也能轻松进行表面粗糙度的测量。对于同一个样品,OLS5100可完成符合标准的线粗糙度和面粗糙度测量任务。激光显微镜OLS5100可同时获得样品的激光图、真彩色图和高度图生产全程清洁度监控在锂离子电池的生产过程中,残留的颗粒污染物特别是金属颗粒物可能导致产品性能不良或使用寿命缩短,严重时可能导致电池起火爆炸,因此生产中需要进行严格的清洁度管控。哪些环节需要监控清洁度?电极材料来料磁性异物检查、极耳焊接后残留金属颗粒物检查、电池外壳颗粒污染物检查、生产环境沉淀颗粒检查… … 全自动清洁度检测系统CIX100帮助用户高效完成锂电池生产中的清洁度分析任务。全自动清洁度检测系统CIX100清洁度检测系统CIX100分析的特点:可轻松检测2.5微米以上的颗粒污染物专利偏光检测技术,一次扫描即可识别反光和非反光颗粒全自动分析流程,无需繁杂的人员培训支持多种国际清洁度分析标准一机多用,兼具金相显微镜材料分析功能
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制