当前位置: 仪器信息网 > 行业主题 > >

可视化农艺性状田间采集系统

仪器信息网可视化农艺性状田间采集系统专题为您提供2024年最新可视化农艺性状田间采集系统价格报价、厂家品牌的相关信息, 包括可视化农艺性状田间采集系统参数、型号等,不管是国产,还是进口品牌的可视化农艺性状田间采集系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合可视化农艺性状田间采集系统相关的耗材配件、试剂标物,还有可视化农艺性状田间采集系统相关的最新资讯、资料,以及可视化农艺性状田间采集系统相关的解决方案。

可视化农艺性状田间采集系统相关的资讯

  • 托普云农高通量植物表型采集分析平台全新上线!
    随着智慧农业发展,植物表型研究成为农业科技创新的前沿阵地。深耕智慧农业十余年,托普云农基于在植物表型领域的深厚积累,隆重推出高通量植物表型采集分析平台,实现植物表型测量的高通量、高精度、无损化、可复现。01 重磅上线盆栽植物数字表型采集分析系统左:盆栽植物二维/三维数字表型采集分析系统右:高光谱植物数字表型采集分析系统温室型植物表型采集分析平台左:逆境模拟及植物生长监测平台右:温室型高通量植物表型采集分析平台田间植物表型采集分析平台左:田间无人机式高通量植物表型采集分析平台右:田间轨道式高通量表型采集分析平台左:田间无人车式高通量植物表型采集分析平台右:田间固定式植物表型监测系统02 核心优势高通量可进行植物单器官、单株到群体的表型分析实现自动化传送、自动化采集自动解析识别,一次可获得上百种参数单器官表型分析单株表型分析群体表型分析高精度在可见光、高光谱成像基础上通过自研算法与计算机技术实现植物快速、高精度测量提升株高、冠幅、生物量等参数的测量准确性可见光二维成像可见光三维成像高光谱成像高效率二维单株分析时间小于5秒三维单株解析时间小于2分钟高光谱单株分析时间小于5秒三维单株动态展示无损化采用无接触测量法能够全程监测作物从出苗到成熟的每一个生长阶段实现精准的重复对比分析辣椒缺水状态的重复对比实验多维度对植物的器官-单株-群体从二维图像解析/三维高精度重构/高光谱曲线交互分析等维度解析植物的形态结构和生理功能满足多维度综合型实验数据需要让结果更全面、更精准三维、高光谱成像下植物病害识别展示高光谱成像下30个植被指数可视化动态展示应用广托普云农高通量植物表型采集分析平台,能够测量不同生境下,植物器官-单株-群体等表型数据,并提供智能分析、数据挖掘等功能。广泛适用于遗传育种、分子生物学植物生理学、植物病理学生态学、环境科学、植物保护等研究领域多年深耕精研,托普云农以科研端、产业端真实需求为导向,运用先进的光谱成像、图像识别、深度学习等技术,精心打造多元化植物表型仪器,并与多家科研机构携手,推动表型产品快速落地应用。托普云农期待与更多伙伴携手,以科技力量洞察生命之秘!
  • 抗药性菌株可视化检测新技术获国家发明专利
    近日,中国农业科学院植物保护研究所智慧植保创新团队的“检测炭疽病菌对甲氧基丙烯酸(QOI)类杀菌剂抗药性的组合物及其应用”获得国家发明专利授权。 该团队克服了传统植物病原菌抗药性检测方法中存在的检测周期长、操作繁琐、效率低等诸多缺点,建立了一种炭疽病菌对QOI类杀菌剂抗药性的田间快速检测方法,可用于田间抗性菌株快速检测、早期预警和快速选药,为构建药剂智能筛选和药效智能评价提供了技术手段。 据介绍,该技术成果操作简单,结果准确、判断直观,通过荧光染色或胶体金检测技术,实现了结果可视化,可指导用户田间地头科学智能选药,实现了精准选药和精准用药。
  • 江苏海门:打造数字化高标准农田,为乡村振兴蓄势赋能
    耕地,是人类社会赖以生存的基本资源和条件,习总书记曾多次强调要像保护大熊猫一样保护耕地,由此可见,高标准农田建设的重要性。为建设更高标准和质量的高标准农田,农业农村部农田建设管理司司长郭永田说,高标准农田建设要做到数量和质量并重,要聚焦永久基本农田、粮食生产功能区和粮食生产主产区等重点区域,一步步优化布局,夯实粮食安全基础。 高标准农田,三分靠建设,七分靠管护。在此政策基础上,托普云农深入发挥了自身数字农业建设优势,提出“1+1+N”的高标农田建设方案,打造了集“土壤健康、高效节水、绿色农田、环境生态”于一体的高标农田数字化决策综合平台,提高了高标农田的综合生产能力和抵抗自然能力。 江苏海门,素有“江海门户”之称,近年来,海门区坚持规模化、产业化、科技化、品牌化“四化并重”的方针,推动农业迈向高质量发展之路,创造了一个又一个农耕神话和海门特色。对于粮食产业发展而言,海门区政府实施高标准农田建设计划,扩大粮食种植面积,提高粮食产量。为此,托普云农将物联网、大数据等信息技术与农业生产、经营管理等领域深度融合,推广使用高端智能化农机装备,在海门正余镇打造了首个“无人农场”高标准农田项目。 在海门正余镇的高标准农田里,农田作物的生长状况监控预警主要是依靠智能设备来实现的。智能设备检测土壤状况;智能灌溉系统和水肥一体化设施改善土壤生态;智能气象站、测报灯、孢子捕捉仪等对农田环境进行实时监测和预警,用数字化手段高效推进高标准农田的绿色、安全、优质的管护。此外,智能农机监管系统、质量安全追溯系统、专家系统、知识库等手段可以实现有据可查、全程监控、精准管理、资源共享的高标准农田。 而这些所有的应用都是围绕着唯一的农业大数据中心进行运作,为其提供精确详细的数据支撑。通过数字化决策平台,就可以直观展示农田的灌溉情况、耕地面积、设备分布情况及环境监测等数据信息。 海门的“无人农场”高标建设通过整合现代农艺和信息技术,多设备协同作业,实现了农业生产环境的智能感知、分析、决策、预警以及农业生产耕、种、管、收各环节的智能化、无人化、精准化、可视化。目前,新岸村1000亩稻麦种植基地和正基村5000平方米玻璃温室大棚已经建成,且农业生产成效显著。 随着高标准农田的推进,正余镇已经具备了农机从传统人工操作向无人操作转变的基础,有效提升了自身的农业现代化水平,促进了农业增产、农民增收和农村经济繁荣,对海门地区的数字化高标准农田建设的示范推广有着重要意义,为乡村振兴、农业现代化发展蓄势赋能。
  • 岛津成像质谱显微镜应用专题丨米曲可视化
    镜质合璧 还原真实成像质谱显微镜用于米曲中磷脂和葡萄糖的可视化分析 引言米曲是清酒酿造中的关键元素。它在清酒酿造中的主要作用被认为是提供分解淀粉和蛋白质的消化酶。众所周知,米曲成品的成分对清酒的品质(味道和香气)有很大的影响。然而,目前为止对米曲质量的评估经常依赖于首席酿酒师的经验。这意味着此领域相关科学知识的不足,且仍有发展空间。当首席酿酒师评估米曲质量时,米曲的物理结构,即外观和质地似乎是质量指标之一。在过去的研究中利用扫描电子显微镜来研究米曲的内部结构,但直到近几年,评估米曲结构和成分关系的研究仍然进展甚微。由于岛津iMScope成像质谱显微镜可同时观察样品结构和成分分布,在本应用报告中,我们将iMScope应用于发酵领域,并尝试可视化分析米曲结构和成分分布。 如图1所示,质谱成像(MSI)是非常适合观察米曲结构以及决定其有效成分分布的技术。MSI应用于食品的论文,已有芦笋中天冬酰胺和姜黄根中姜黄素分布可视化的应用报告⑴,⑵。本文针对食品科学研究中的“发酵”新应用领域,尝试着将米曲内的结构和成分分布可视化。由于米曲非常易碎,在进行MSI分析时,未经前处理制作米曲切片几乎是不可能的。因此,我们研究了各种切片制备方法,并成功实现从生米到蒸米和米曲过程中的代谢物可视化分析。图1 质谱成像(MSI)工作流程 实验 2-1试剂使用羧甲基纤维素(CMC)(FUJIFILM Wako)为包埋剂,配制浓度为4%的CMC水溶液,并将溶液放入70℃的恒温箱过夜来确保完全溶解。本实验中使用的基质是α-氰基-4-羟基肉桂酸(CHCA)和N-(1-萘基)聚乙烯二胺二盐酸盐(NEDC)(Merck),溶剂为乙腈、异丙醇和甲醇(FUJIFILM Wako)、超纯水。 2-2切片制备使用清酒酿造用的抛光率为70%的山田锦大米(白鹤酒造株式会社)制成的蒸米和米曲。生米可视化研究中使用市售大米。如前所述,这些样品材料极其脆弱。因此,采用冷冻切片机制备切片并使用粘性冷冻膜(cryo-lab)回收获得的切片。将米粒包埋在上文所述的4%羧甲基纤维素溶液中,在-80℃冷冻。切片厚度为20 μm,获得的薄膜利用导电双面胶带(3M公司)固定在ITO涂层玻璃载玻片上(无MAS涂层,表面电阻:100 Ω/m2)(松浪玻璃工业株式会社)(图2)。图2 米曲切片制备 2-3基质涂敷在检测米粒切片和米曲切片中的磷脂时,使用岛津iMLayer基质升华系统将CHCA沉积在样品表面(图3),接着喷涂CHCA溶液(3)。基质升华的膜厚度为0.5 μm。利用由乙腈、异丙醇、超纯水(3: 1: 6)构成的含0.1 %甲酸的混合溶剂溶解CHCA,调节其浓度为10 mg/mL。已知可以有效电离葡萄糖的基质NEDC,利用iMLayer进行升华,升华时设置温度为220℃、时间为10分钟。NEDC基质升华后,利用5%甲醇溶液进一步进行重结晶。图3 iMLayer基质升华系统 2-4质谱成像MSI检测使用岛津iMScope成像质谱显微镜进行。激光照射次数为100次/点。正离子模式检测磷脂,空间分辨率为25 μm,负离子模式检测葡萄糖,空间分辨率为50 μm。检测范围:正离子模式m/z 400-800,负离子模式m/z 180-230。在所有检测中,激光强度均设置为45,检测器电压为2.1 kV。 2-5构建MS图数据分析和MS图像构建采用岛津MSI分析软件Imaging MS Solution和IMAGEREVEAL MS进行。IMAGEREVEAL MS是通过统计学功能实现非靶向分析的软件。它拥有卓越的校正函数(图像过滤、像素插值),并含有“相似图片提取”功能。本文后半部分所示的葡萄糖可视化数据是利用IMAGEREVEAL MS软件进行分析。 结果 3-1生米、蒸米和米曲中磷脂的分布图4显示了生米、蒸米和米曲切片中胆碱的分布。胆碱是一种在米曲制作过程中分布和数量会发生巨大变化的典型成分。生米的结果在碾米之前测得,且结果表明胆碱累积在大米胚芽中。在碾碎后的蒸米中,来自胆碱的峰急剧下降,但在米曲的内部则观察到极强的峰。这表明胆碱在米曲发酵过程(即米曲制作过程)形成。因此,使用MSI 可以观察到米曲制作过程中胆碱数量和空间分布发生急剧变化的现象。图4 生米、蒸米和米曲中胆碱的分布 在米曲的内部还观察到各种磷脂(包括溶血磷脂)的累积(图5)。尤其是溶血磷脂酰胆碱LPC(16:0),m/z 496.34和LPC(18:2),m/z 520.34显示这一趋势(4)。而磷脂m/z 748.35和786.30的MS图像显示出其在米曲中的不均匀分布。这种异质性被认为由曲霉(米曲霉,Aspergillus oryzae)侵入蒸米中生长出雾状菌丝导致,这个过程就被称为“hazekomi”。下一部分我们将介绍一种将hazekomi过程可视化的方法开发以及将这种方法与MSI结合使用的结果。图5 米曲(山田锦,稻米抛光率:70 %)中溶血磷脂和磷脂的分布 3-2hazekomi可视化及其与MSI的配合使用⑸,⑹haze指的是米曲霉菌丝在蒸米表面扩散时呈现的白点,在首席酿酒师进行米曲目检时被作为一个结果指标。在早期的hazekomi可视化研究中,Yoshii等人发表了一篇基于扫描电子显微镜(SEM)观察的报告,他们通过将米曲霉传播过程直接可视化的方式成功观察到了米曲中米曲霉的生长,该结果有助于改善制曲过程(7)。 利用SEM将hazekomi过程可视化时,观察微观区域的能力是一个重要特征。不过,我们认为将整个米曲hazekomi过程可视化的方法以及可获取成分分布信息的技术也是有用的。为了解决这一问题,我们引入了采用β-葡萄糖醛酸酶(GUS)作为标志基因的GUS报告系统用于hazekomi可视化。具体来说,通过构建米曲霉GUS表达株以及生产使用该菌株的米曲(以下称为GUS米曲)来实现对制曲过程中米曲霉生长的清晰观察。GUS米曲的使用实现了通过颜色反应来可视化米曲霉位置,而当这种技术和MSI配合使用时,可获取关于成分分布的信息。这两种技术的结合同时实现了整个米曲的hazekomi可视化以及成分分布的可视化研究。 在此我们将对这种旨在把GUS报告基因系统应用于米曲的创新研究进行阐述。GUS报告基因系统最初是为了将植物组织中菌丝体的可视化而开发的。在植物组织中,常见做法是将样品浸泡在5-溴-4-氯-3-吲哚-β-D-葡萄糖苷(X-Gluc)溶液中,这是一种用于着色的显色底物。拥有极硬细胞壁的植物组织即便是长期浸泡在X-Gluc溶液中,也能够毫无问题地维持样品观察所需的形态。 不过,如前所述,米曲非常脆弱,且其性状和植物组织完全不同。这意味着采用现有的着色方案将极为困难。事实上,我们证实了在米曲浸泡在X-Gluc溶液中固定着色所需时间内,样品的形态由于吸水而发生了很大的改变。为了避免这一问题,必须改变添加X-Gluc的方式。因此,我们构思了一种通过将X-Gluc溶液喷洒在GUS米曲切片上的方法来可视化分析hazekomi过程。 图6显示了采用这种方法得到的结果。这里制曲使用的是抛光率为70%的抛光白鹤锦稻米(白鹤酒造株式会社的酒米),并在制曲开始24h、31h以及43h后取样。随着制曲的进行,可以观察到靛蓝色从曲的表面渗透到内部。尤其是在43小时之后、制曲完成时,不仅在曲的表面,在内部也能检测到浓烈的靛蓝色,表明米曲霉已经到达了稻米内部。 曲的一个主要作用是在酿造(发酵)阶段提供各种酶,以便形成酵母菌所需的营养。观察到的主要酶为α-淀粉酶或葡萄糖淀粉酶,这两者会形成作为酵母生长所需的葡萄糖。此外,也有报道表示α-淀粉酶可能是影响曲霉菌丝体侵入性生长的非常重要的酶。图6 GUS米曲中hazekomi过程的可视化分析(比例尺:1 mm(插入图片:200 μm)) 尽管既往研究中报道了制曲后葡萄糖的增加,但hazekomi和葡萄糖分布之间的关系尚未明确。在制曲过程每个阶段的米曲质谱图中,确实观察到了葡萄糖峰强度的升高(图7)。已有报道表明NEDC可以增加癌组织中葡萄糖检测的灵敏度(8)。因此,当使用NEDC作为葡萄糖MSI的基质时,[M+Cl]-= m/z 215.02在负离子模式下被检测到。 为了研究GUS米曲的hazekomi过程和葡萄糖分布之间的关系,使用GUS染色切片相邻的切片进行了MSI,比较获得的葡萄糖离子强度和GUS染色图像的分布,图8显示其结果。 观察葡萄糖分布及与GUS染色图像的叠加可以了解到从制曲初始阶段到后期阶段,葡萄糖从外到内增加。这一结果表明hazekomi和葡萄糖分布之间存在相关性。 另外,有些区域由于X-Gluc为深色且葡萄糖强度很高而成像为蓝色(黑色箭头显示),同时在本实验中也能看到有些部分虽然也观察到了hazekomi,但葡萄糖强度低,例如以黑色圆圈表示的区域。这些结果表明位置不同,hazekomi产生的葡萄糖量存在差异性。今后,可以通过包含各种代谢物(例如氨基酸、糖类、糖醇)分析的探讨来实现从化学角度更好地了解hazekomi现象。 虽然目前的考察着重于葡萄糖并解释了伴随hazekomi过程葡萄糖分布的变化,但可以想象,形成的酶的扩散范围和活性也会受到诸如米粒特征等其他因素的影响。这种新的可视化技术(GUS米曲和MSI的融合)预期可以改进米曲和其他曲衍生产品的制曲流程。图7 利用NEDC基质获得的葡萄糖峰的时间依赖性变化图8 GUS米曲中葡萄糖([M + Cl]–)的可视化(比例尺:1 mm) 结论 在本研究中,分析了磷脂在山田锦大米(清酒酿造米)中的空间分布,并利用白鹤锦米(白鹤酒造株式会社的专有清酒米)可视化分析hazekomi过程和葡萄糖分布之间的关系。同时还利用白鹤锦米制备了一种表达GUS的米曲品系,并用于揭示hazekomi过程和葡萄糖分布之间的关系。这种新的可视化技术利用了GUS米曲和MSI相结合,可有助于更好地了解米曲和其他曲衍生产品的制曲流程并改进制曲方法。由于本实验中采用的岛津iMScope成像质谱显微镜能同时实现微观区域的光学显微镜观察以及显微镜下的质谱分析,将iMScope应用于各种酒曲和其他麦芽的分析,可以获得发酵领域相关新科学知识。 iMScope QT(图9)是iMScope的新一代产品,于2020年6月发布。在延续iMScope TRIO卓越的显微镜观察功能和空间分辨率的同时,新的iMScope QT提供了更高的质量分辨率、检测灵敏度和分析速度,让分析变得更轻松。同时,由于能够分析更宽的质量范围,期待MSI技术可以进一步扩展在不同研究领域应用的可能性。图 9 iMScope QT (1) K. Miyoshi, Y. Enomoto, E. Fukusaki, and S. Shimma, Shimadzu Application Note (No. 57).(2) S. Shimmaand T. Sagawa, Shimadzu Application Note (No. 63).(3) S. Shimma, Y. Takashima, J. Hashimoto, K. Yonemori, K. Tamura, and A. Hamada, J. Mass Spectrom., 2013, 48, 1285(4) N. Zaima, N. Goto-Inoue, T. Hayasaka, and M. Setou, Rapid Commun.Mass Spectrom., 2010, 24, 2723.(5) A.P.Wisman, Y. Tamada, S. Hirohata, K. Gomi, E. Fukusaki, S. Shimma, J. Biosci.Bioeng., 2020, 129, 296(6) A.P.Wisman, Y. Tamada, S. Hirohata, K. Gomi, E. Fukusaki, and S. Shimma, J. of Brew.Soc.Japan (in press).(7) M. Yoshii and I. Aramaki, J. of Brew.Soc.Japan, 2001, 96, 806.(8) J. Wang et al., Anal.Chem., 2015, 87, 422. 文献题目《成像质谱显微镜用于米曲中磷脂和葡萄糖的可视化分析》 使用仪器岛津iMScope TRIO 作者Shuichi Shimma *1, 2, Yoshihiro Tamada *3, Adinda Putri Wisman *1, Shuji Hirohata *3, Katsuya Gomi *4 Eiichiro Fukusaki *1,2*1 大阪大学工程研究生院生物技术系*2 大阪大学岛津组学创新研究室*3 白鹤酒造株式会社*4 日本东北大学农学研究生院未来生物产业的生物科学与生物技术系
  • 稳态瞬态荧光光谱仪在力学存储/可视化行为的自充能、可持续力致发光的应用研究
    自充能、可持续力致发光力致发光是指材料在力学刺激下产生的一种发光行为。由于其独特的力学-光学响应特性,力致发光为实现力学传感及其可视化提供了新思路和新途径。目前发现的力致发光材料多数仅表现出动态力学刺激下的瞬态发射行为,极大地限制了其在力学的可视化显示和成像方面的应用。可持续力致发光材料能够在力学刺激停止后继续保持发光行为,对可持续力致发光材料的开发是应对上述问题的有效方式。此前,研究人员通过陷阱工程设计,在特定材料体系中获得了力学刺激后可持续的力致发光现象。然而,该类可持续力致发光材料在使用前必须经历预辐照,在其结构内部预先储存能量,这不仅增加了实际应用时操作的难度,也难以实现该类材料的循环稳定使用。因此,实现无需预辐照的自充能、可持续力致发光成为当前研究的热点之一。中国科学院兰州化学物理研究所王赵锋团队在国际知名期刊Advanced Science上发表的题为“Self‐charging persistent mechanoluminescence with mechanics storage and visualization activities”的研究论文。本文研制出一种自充能、可持续力致发光材料——Sr3Al2O5Cl2:Dy3+/PDMS(SAOCD/PDMS),该材料在力学的刺激下,无需预辐照即可产生明亮的长寿命力致发光,有效避免了此前材料在使用时的预辐照需求,极大提升了长寿命力致发光材料的应用便利性。本工作通过将SAOCD (SAOCD) 粉末复合到PDMS基质中,创建了一种新型的力致发光材料,即自充能、可持续力致发光材料。无需任何预辐照,所制备的SAOCD/PDMS弹性体可以直接在力学刺激下表现出强烈且持久的力致发光,这极大地促进了其在力学照明、显示、成像和可视化中的应用。通过研究基体效应以及热释光、阴极发光和摩擦电特性,界面摩擦起电诱导的电子轰击过程被证明是机械刺激下SAOCD中自充能能量的原因。基于独特的自充电过程,SAOCD/PDMS进一步展现出力学存储和可视化读取行为,为机械工程、生物工程和人工智能领域 处理力学相关问题带来了新颖的思路和方法。 自激活、长寿命力致发光材料的设计制备与性能研究 图1 SAOCD/PDMS复合弹性体的制备流程、性状及力致发光性能 当施加拉伸、摩擦、压缩等力学刺激时,复合弹性体呈现出直接的自激活力致发光,不需要额外的预辐照(图1c)。复合弹性体的力致发光性能随SAOCD颗粒中Dy的含量增加呈现出先增后减的趋势(图1d)。随着施加应变的增加,SAOCD/PDMS弹性体的ML强度随之增加,其在应力/应变传感方面表现出良好的应用价值。此外,该复合弹性体的力致发光还表现出良好的热稳定性(图1f)。图2 (a)SAOCD的力致发光和余辉示意图;(b)SAOCD/PDMS复合弹性体在拉伸、摩擦、压缩条件下的力致发光和余辉照片;(c)不同浓度Dy离子掺杂SAOCD/PDMS复合弹性体的摩擦余辉光谱图。 该材料在力学的刺激下,无需预辐照即可产生明亮的长寿命力致发光(图2),有效避免了此前材料在使用时的预辐照需求,极大提升了可持续力致发光材料的应用便利性。图3 SAOCD的自激活力致发光及余辉机理明确了SAOCD/PDMS的自激活力致发光和余辉的物理过程,即在外力刺激下SAOCD与PDMS产生界面摩擦电作用,SAOCD的电子转移到PDMS表面,SAOCD与PDMS间形成高能电场,PDMS表面电子被加速,轰击SAOCD,使得SAOCD中的电子受激从价带跃迁至导带,一部分直接和发光中心结合产生力致发光,另一部分被陷阱捕获,外力撤除后自发释放转移至发光中心产生余辉。机械力学信息的存储与可视化读取器件研究图4 (a)力致发光复合材料的应力存储和可视化读取示意图;(b)SAOCD/PDMS复合弹性体对机械力学信息的存储、读取原理及功能展示。 通过利用SAOCD/PDMS材料中特有的自充能物理过程,进一步发展出了一种力学信息的存储与可视化读取技术(图4)。在机械刺激下,力学信息将会以陷阱捕获载流子的方式在材料内部进行存储,随后,在热刺激下,所存储的力学信息将以可视化的形式得到读取,所存储和读取的力学信息主要包括力学强度、发生时间及其空间分布等。作者简介王赵锋简介:中国科学院兰州化学物理研究所研究员,博士生导师,2006年毕业于兰州大学材料化学专业,获理学学士学位,2011年毕业于兰州大学材料物理与化学专业,获工学博士学位。2011年至今,先后于中国科学院兰州化学物理研究所固体润滑国家重点实验室、美国德克萨斯州立大学化学与生物化学系、美国康涅狄格大学材料科学研究所进行科学研究。主要研究方向为摩擦/力致发光材料及应用,在Nat. Commun., Angew. Chem. Int. Ed., Adv. Funct.Mater., Nano Energy, Mater. Horiz., Adv. Sci.等期刊发表论文100余篇(被引用5000余次,h因子40),编写书籍章节两部,申请/授权国家发明**10余项,研究成果被国内外知名媒体如中国科学报、中国科普博览、人民日报、中科院之声、New Scientist、Nanowerk、Science Trends等专题报道。现为国内知名期刊《稀土学报(英文版)》、《材料导报》、《发光学报》青年编委,以及中国机械工程学会表面工程分会青年学组特邀专家。2015年获美国环境保护署P3提名奖,2017年获甘肃省自然科学二等奖,2018年获中科院高层次人才计划择优支持,2020年获甘肃省杰出青年基金支持,所带领的研究团队获2021年度甘肃省“青年安全生产示范岗”荣誉称号,2022年获中科院区域发展青年学者称号。相关产品推荐 本研究的力致发光光谱数据采用卓立汉光搭建的组合荧光系统采集,配置Omni-λ300i系列“影像谱王”光栅光谱仪对光谱进行分光。目前,该组合荧光系统已经升级为OmniFluo900 系列稳态瞬态荧光光谱仪,如需了解该产品,欢迎咨询。 免责声明 北京卓立汉光仪器有限公司公众号所发布内容(含图片)来源于原作者提供或原文授权转载。文章版权、数据及所述观点归原作者原出处所有,北京卓立汉光仪器有限公司发布及转载目的在于传递更多信息及用于网络分享。 如果您认为本文存在侵权之处,请与我们联系,会*一时间及时处理。我们力求数据严谨准确, 如有任何疑问,敬请读者不吝赐教。我们也热忱欢迎您投稿并发表您的观点和见解。
  • 位可视化定量研究热带农田土壤重金属微区环境行为方面取得重要进展
    近日,中国热科院环植所农业环境研究团队在热带农田土壤重金属原位微区过程研究方面取得重要进展。创新性的应用X射线显微计算机断层扫描结合扫描电镜-能量色散能谱法,发现了土壤孔隙结构特性影响重金属镉微区分布。该研究结果为揭示土壤结构异质性对重金属环境行为的影响机制提供了新的研究思路和方法。  热带作物受镉(Cd)等重金属的污染已成为制约热区农产品质量安全与农业可持续发展的重要问题。土壤异质性导致重金属环境行为过程复杂,一直是重金属污染治理的难点。传统基于总量和平均量的研究方法难以反映由空间、物理、化学和生物共同作用产生的土壤异质性对重金属环境行为的影响。为突破该问题,研究团队建立了X射线显微计算机断层扫描结合扫描电镜-能量色散能谱土壤重金属微区可视化研究方法,结合全景组织细胞定量分析系统,实现了对土壤孔隙内及周围Cd微区分布的原位定量研究。基于团队前期研究发现的团聚体铁、磷形态影响热带农田土壤Cd固持的重要作用,通过该方法分析得到了原状土壤孔隙及周围Fe、P、Cd的微区分布特性,进一步揭示了热带农田土壤的孔隙特性(包括孔隙大小和持水能力)通过控制Fe、P元素微区赋存,影响土壤Cd微区分布特征的微观机制。  该研究成果以“The role of pores in micro-zone distribution of Cd in a tropical paddy soil: Results from X-ray computed tomography combined energy dispersive spectroscopy analysis”为题发表于《Journal of Hazardous Materials》。中国热科院环植所魏超贤助理研究员和林必桂高级工程师为论文共同第一作者,刘贝贝副研究员为论文通讯作者。该研究得到了海南省自然科学基金、海南省重点研发计划等项目资助及农业农村部热区绿色低碳重点实验室、国家农业环境儋州观测实验站、海南省生态循环农业重点实验室等平台的支持。
  • 智能化管理,实现噪声监测“自动化”与数据“可视化”
    2023年,16部门发布“声十条”,提出2024年底前,设区的市级城市完成功能区声环境质量自动监测系统建设工作,并与省级和国家生态环境监测系统联网。鼓励有条件的县级城市开展功能区声环境质量自动监测;2025年1月1日起,设区的市级以上城市全面实现功能区声环境质量自动监测,统一采用自动监测数据评价。不仅如此,一系列行业领域噪声自动检测技术规范等也陆续发布。据了解,“十四五”期间,国家将实现全国地级及以上的城市建成3800多个自动监测站点,目前,全国噪声领域科研及产业发展已形成一定规模。随着技术的进步,现代噪声监测系统正朝着智能化、网络化方向发展,利用物联网、大数据分析等技术实现远程实时监控和预警,使得噪声管理更加精准高效,市场更加广阔。为了解当前噪声监测技术进展、应用成效、行业状况及挑战机遇,向大家展现当前噪声监测市场现状,仪器信息网开展了“噪声监测现状与市场动态”主题约稿活动,本篇文章为北京爱唯施环境科技有限公司回稿内容。生产生活中工业运营的噪声会导致一系列问题,从居民健康污染到居民不动产贬值等。减轻工业噪音污染的一揽子方法往往导致更大更贵的一揽子工程。那么,运营者在部署噪声管理策略时,首先的难点是如何在最低的投入下减少系统的总监控成本和资源。工程噪音控制、声屏障和限制营业时间只是有效噪音管理实践的几个例子,这些方法通常需要大量投资,而精确智能化部署可以减少超额监测成本,确保更有效地缓解噪音。澳大利亚Envirosuite公司(简称:EVS),旗下子公司爱唯施,有30多年的环境管理经验,以自主开发的智能环境管理软件和噪声监测设备为平台,向客户提供实时及持续的噪声监测,分析报告,溯源预测等功能为一体的专业噪声管理方案。(1)智能噪声监测软件实现环境数据可视化和自动化:EVS 的Omnis和Anoms是基于云的数据管理平台,提供24/7的噪声监测与数据分析,以专用算法和建模将远程设备的数据可视化,实时设定、监控和导出报告,以实现自动管理其辖区的多个环境参数。包括预测潜在的环境噪音问题,跟踪噪音水平随时间的变化,以及环境影响评估等。同时提供噪声事件回放以及噪声阈值警报功能,可用于即时调查违规的噪声事件(频谱图或波形格式),还可以根据导致超标的原因进行噪声分类,帮助了解哪些噪声源不合规,以便进行降噪措施调整以提高噪音合规性。图:EVS 的智能噪声监测软件实现环境数据可视化和自动化(2)适用于任何环境的全天候实时噪声监测设备:EVS 提供专业的全天候噪声监测设备EMU3700 ,可部署在机场、工业、市政运营区内或周边社区的任何场地。EMU3700能够捕获准确的噪音和天气数据,这些数据与EVS噪音监测软件的专有算法相结合。为用户提供可视化的数据分析与见解。用户友好界面可实时查看噪音和天气数据。使操作人员能监控从设备端到远程的数据。包括测量指数,多种标准的报告格式,警报和报告的触发级配置。产品符合AS/NZS 62368-1 CE & FCC等安全性和合规性标准,独立IEC61672:2013 1级型批认证。Envirosuite的NMT 3700系列专门设计用于在恶劣环境中进行永久、移动和便携式的无人值守操作和噪声监测。产品可以安装部署于采矿作业、工业设施,机场,城市环保和建筑工地等各种行业应用。案例1:北京首都国际机场噪声监测项目北京首都国际机场于2005开始使用EVS为其安装25个噪声监测终端NMT和ANOMS 机场噪声管理软件,通过不同站点安装NMT噪声监测设备,实时监测记录站点周边的噪声数据, 并通过ANOMS远程管理软件进行噪声监测与分析报告,管理雷达、飞行计划、天气和投诉等一系列环境管理解决方案。爱唯施对后期运维方面的站点校准、硬件软件使用和技术支持、对硬件故障进行判断和排除、对软件服务进行定期维护和检测。用我们的解决方案跟踪噪声、航班,解决投诉,有效处理了机场与居民、航空公司和其他利益相关者的关系。为机场环境管理和噪声合规提供了稳定而有力的支持。图:Envirosuite 噪声监测智能化管理系统案例2:北京生态环境监测中心 声环境质量自动监测项目北京生态环境监测中心采用EVS噪声管理方案进行城市声环境监测,监测系统于 2007 年安装、2008 年 2 月通过最终验收,已经过多年连续工作,系统在全市包括 1 个监控中心(C/S 架构,服务器及系统软件、客户端软件)、18套噪声监测设备(16套设备在线运行, 2套设备备用),爱唯施提供专业技术人员和团队,对本系统提供运行维护服务保障。为项目提供专业的噪声监测管理和报告,运行多年来以其专业性和运行稳定性为国家站噪声采集和分析提供了重要数据,获得了一致的好评和认可。噪声监测市场在全球范围内呈现出增长的趋势,中国噪声监测系统行业也在不断发展壮大。&zwnj 这些趋势反映了社会对噪声污染问题的关注度提高以及对噪声监测和管理需求的增加。Envirosuite使用专有技术和实时可视化数据来帮助行业和社区的噪声监测管理并保持合规性,EVS的环境智能技术提供灵活和量身定制的解决方案来帮助您应对噪音及振动的挑战,通过改善环境性能使世界变得更加美好。
  • 东方德菲新品推荐---微观可视化驱油工作站
    化学驱油技术是一项比较大的系统工程,涉及高分子化学、油田化学、地质、油藏等多个学科,比注水开发研究要复杂的多, 针对微观可视化驱油机理研究问题,北京东方德菲仪器有限公司与中石油勘探开发研究院提高采收率国家重点实验室共同研发生产了系统集成型可视化驱油系统,即VMF100微观可视化驱油工作站。 VMF100微观可视化驱油工作站,通过可视化的微流控技术,记录和分析驱替液在微纳尺度通道芯片中的驱油过程。VMF100是定量描述不同化学驱油体系微观驱油机理的实验工作站,高效识别剩余油,并表征高含水期微观剩余油的渗流特征,VMF100工作站具有高集成化、高操控精度、芯片多样化、 分析可视化等特点,是微观驱油机理研究必不可少的设备之一。微观可视化驱油工作站由原油注入系统、驱替液压力注入系统、压力监测系统、芯片密封系统、微纳孔道芯片,微观视频系统、操作分析软件组成。该工作站可以完美记录和控制饱和油及驱替的动态过程,评价剩余油再启动能力,并分析剩余油的渗流特征。 微观可视化驱油工作站的功能 1、精密控制和记录饱和油的动态过程原油注入系统采用精密注射泵恒流控制模式,将原油注入微孔道芯片内形成饱和油。微观视频系统可以记录整个饱和油的动态过程。如下图2、精密控制和记录驱油的动态过程驱替液注入系统采用压力恒流模式,将驱替液注入饱和油芯片形成动态驱替。微观视频系统可以详细记录整个驱替的动态过程,如下图:3、剩余油分类识别统计剩余油识别分类统计软件可以定量处理石英芯片的驱替实验视频以及 数值模拟水驱油实验视频,分析整个实验过程中各种类型(膜状流、滴状流、柱状流、多孔状和簇状流)剩余油的数量、面积分布随含水饱和度的变化情况等,结果数据可做进一步处理。 VMF100的性能指标:1.原油注入系统驱动方式:微步进处理器驱动设置方式:彩色LED触屏设置注射范围:0.5ul-50ml直接推力:16kg流速范围:1.28pl/min-88.28ml/min稳定精度:0.05%最小推进速度:0.18um/min2.驱替液注入系统驱动方式:压力驱动方式压力流量设置方式:软件程序控制及本机独立控制压力流量显示方式:彩色LED显示屏通道数量:双通道或三通道zuida压力:200Bar流速范围:7.5nl/min-5ml/min流速精度:7.5nl/min3.压力监测系统压力传感器:全氟油压力传感器压力数据显示及输出:实时显示/输出压力数据压力测量范围:0-115PSI压力测量精度:0.0007PSI4.芯片密封系统密封方式:强磁性密封zuida耐压:500PSI密封尺寸:1/16 peek 管密封5.微纳孔道芯片芯片材质:石英玻璃刻蚀方式:湿法刻蚀模型类别:仿真均质模型、非均质裂缝模型、平行通道模型、环道模型模型尺寸:1.5cm×1.5cm ,可根据客户要求定制孔道尺寸:20um×7um ,可根据客户要求定制芯片尺寸:6cm ×6cm6.显微视频系统主机:体式显微镜采集系统:2000万像素彩色CMOS相机放大范围:3.75×-67.5×工作距离:71mm物镜:0.5平场复消色差物镜光源:LED光源实验平台:强磁实验台7.系统集成1)内置部件:流量剂专用支架流量池专用通孔压力监测系统安装板内置多孔电源2)外置部件:仪器箱体配有24寸触控电脑8.软件功能1)基础功能-剩余油分析:视频记录饱和油的动态过程视频记录驱油的动态过程实时记录驱油压力的动态变化分析不同类型剩余油的数量分布分析不同类型剩余油的面积分布2)拓展功能1-孔道参数:孔道配位数分布孔道孔喉比分布孔道等效半径分布孔道最窄半径分布3)拓展功能2-微观接触角:自动识别微观孔道接触角孔道微观接触角概率密度曲线
  • 托普云农:以现代种业标准,助力制种大县建设任务
    近日,国家发改委、农业农村部联合印发的《“十四五”现代种业提升工程建设规划》的发布,为“十四五”我国种业基础设施建设布局的总体思路、框架体系、重点项目、保障措施等作出了全面的部署安排。《规划》围绕种业振兴重点任务,聚焦资源保护、育种创新、测试评价和良种繁育四大环节,提出布局建设一批国际一流标准工程的更高要求。 农业现代化,种子是基础。为对标农业农村现代化总目标,按照种业振兴行动方案部署,加快改善提升现代种业基础设施条件,托普云农从制种基地开始,从数字化育种、数字化制种到种子检验实验室、种质资源库建设多维度的建立了针对制种大县建设的专门解决方案,助力完成制种大县的建设任务。 制种大县是保障农业供种数量、质量的重要基础,已成为我国粮食和重要农产品种源供给的主要来源,对国家粮食安全和重要农产品有效供给有重要意义。——《中共中央国务院关于全面推进乡村振兴加快农业农村现代化的意见》制种基地信息化建设方案 从科技赋能角度,托普云农依托全套的智能化仪器设备,助力企业健全田间各项基础设施。从智能排管系统、田间监测网络到作物全生命周期管理,应用物联网技术,实现制种信息化、应用物联网技术,实现制种信息化、过程自动化、结果智能化。通过各项先进技术的运用,对田间病虫害、水肥管理、数字化种植进行统一化管理和运营。配合公共数据管理平台,实现农机可视化操作,以信息技术赋予专有二维码,达到产品质量安全可追溯,最终整体实现对种植户的种、管、收、储、加、销等全过程提供一体化服务,全面提升种业产业链的效率和效益。 另一方面,依托物联网基地种子信息化平台,使用大数据系统帮助地方政府相关职能部门智慧管理种质资源,利用遥感、物联网等技术定期采集更新检测区种质资源信息等数据,推动大数据生物育种应用,建设生物种质资源数据库和信息共享服务、农作物种子管理平台,构建基地种子的生长追溯系统。育种信息化系统建设方案 从建立种质资源库开始,托普云农借助物联网系统,在通过设备控制贮藏环境,分级管理,长期贮存作物种质的同时,采用综合监管云平台实时对每个库的设备运行状态进行视频监管和数据监管。通过从材料管理到数据分析的一揽子过程,形成统一的数据仓、多维度全流程的数据管理、直观的可视化展示、完善的分析策略,切实提高育种效率,降低育种专家劳动强度。 针对核心种源繁殖基地的建设,实现制种信息化,可以通过托普云农智能光照培养箱和智能人工气候室等培养设备,配和相关环境监测、植物生理、作物性状分析、测产、考种、种子储存等全流程现代育种设备的使用,达成育种工作信息化、数字化、全流程可追溯化。 通过多年的研发升级,托普云农以图像识别为核心的知种APP已在科研育种中得到成熟应用,利用人工智能改变传统的科研数据采集方式。识别软件配合智能装备,实现品种性状分析数据采集的网络化、智能化及数字化,确保品种正本清源。种子检验实验室建设方案对标国际种子检验协会种子质量控制指标,建立健全必要的质量控制、检验仪器,全面提升种子质量。托普云农为您提供种子检验实验室建设的成套解决方案,实现从图纸到实验室建立的全过程服务。 通过标准实验室建设,构建专业的种子检验环境,通过对种子纯度、净度、千粒重、发芽率、种子活力等多项指标的检验,为种子推向市场提供数据支持。 托普自主研发包含净度室、水分室、纯度室、活力健康测定等系列产品,例如种子风选仪、培养箱、自动数粒仪、超高清种子X光机等检验设备的广泛应用,可为选育优质农作物种子,解决种业“卡脖子”问题提供基础条件,丰富现代种质资源。 制种基地信息化、育种系统信息化和种子检验实验室三大方案因不同地区农业发展的差异而呈现不同的形式组合。邛崃市位于三大制种基地之一的四川省,作为高端种业发展区,近年来,邛崃市立足本土优势,着力打造中国的“种业硅谷”,托普云农为其设计的“一个中心,三个系统”的解决方案正发挥着积极的作用。方案打通各部门信息资源数据交换的壁垒,实现信息的全程感知和溯源,在助力建设制种大县的路上画上浓墨重彩的一笔。
  • 激光超声波可视化检测仪技术填补国内空白
    11月28日,激光超声波可视化检测仪技术在西安航空基地正式通过科技成果鉴定。这一技术的国产化,填补了业界空白,大大缩小了与世界发达国家在无损检测仪器研发与生产方面的差距,是我国无损检测领域的一项重大突破。   无损检测在各制造行业的品质管理中,一直扮演着举足轻重的角色。其中,超声波检查因其安全、经济、简便而得到了广泛应用,但无法对任意复杂形状以及非金属物体内部缺陷实现高效、直观地检测。随着碳纤维复合材料、陶瓷基复合材料等新型材料的广泛应用,航空工业也得到了前所未有的发展,但迄今对这些新型材料的无损检测还缺乏有效的手段。   由西安金波检测仪器有限责任公司研发的激光超声波可视化检测仪,成功突破了无损检测领域中的这一世界科研难题。该检测仪的问世,对任何形状物体及绝大多数材料的内外部探伤,小到电子元器件,大到飞机机身部分均可进行无损检测,并可在高温、有毒等恶劣环境下工作。使用激光超声波可视化检测仪对飞机机翼、火车车轴等高速运载工具部件以及发电设备、压力容器等产品进行定期检查,可以最大限度地延长其安全使用寿命,避免重大事故的发生。   如果传统的超声波无损检测技术被比喻为“收音机”技术,则激光超声波可视化无损检测技术就属于“电视机”技术。激光超声波可视化检测仪由检测单元和激光单元组成,可简单地将超声波的传播过程可视化,并根据波形变化检查出被测物体内部或表面的损伤,通过计算机屏幕清晰、实时地观察。由于激光超声波可视化检测仪技术实现了无损检测的可视化,对物体内部存在的缺陷及损伤的识别变得非常容易,且可防止无损检测中经常发生的漏检和误判。   金波公司研发的“激光超声波可视化探测仪”,是西安航空基地入区企业科技创新的典型范例。西安航空基地具有集飞机设计研究、生产制造、试飞鉴定、教学为一体的航空产业体系,同时具备各类与航空产业有关的高科技研发群,对于“激光超声波可视化检测仪”的使用、推广、乃至产品改良都提供了得天独厚的广阔空间与平台。依托激光超声波可视化检测仪,目前西安航空基地已成立无损检测服务平台与工程技术研发中心,先后为近百家西安航空基地入区企业及国内航空、航天、军工、核电、电力领域企业提供服务,出具检测报告80余份,解决了众多目前无法解决的难题,大大提高了我国的无损检测技术水平,进一步提升了航空产品的可靠性与安全性。
  • 我国科学家发展无酶荧光可视化快速检测有机磷农残新策略
    近日,中国科学院合肥物质科学研究院固体物理研究所研究员蒋长龙团队基于比率荧光材料构建可视化传感平台,实现快速定量检测环境和食品中的草甘膦。相关研究成果发表在Journal of Hazardous Materials上。  草甘膦凭借其高效、快速等特点成为国际上使用量最大的除草剂,在有机磷农药中占有重要位置。但较高的使用量及不合理的使用方法会造成农产品中草甘膦残留量超标,高残留、毒性强等问题将直接影响到消费者安全。因此,发展快速、高选择性地检测草甘膦残留方法成为了控制和处理有机磷农残污染与危害的关键环节。目前人们通常采用实验室仪器或酶抑制法等检测方法来保证农残检测的灵敏度和选择性,但这些方法通常存在对环境要求苛刻以及操作复杂等问题。因此,建立高选择性及高灵敏的草甘膦残留快速定量分析方法对贸易、环境、食品和人体健康都具有重要意义。  鉴于此,研究人员基于比率荧光纳米传感器开发了一种新型且无酶的便携式传感平台用于草甘膦的快速可视化检测。该传感器由设计制备的蓝色碳点(CDs)和金纳米团簇(Au NCs)构成,当草甘膦与碳点反应时,聚集诱导猝灭(ACQ)导致碳点的蓝色荧光快速猝灭,而金纳米团簇的橙色荧光保持不变。由于该传感器不依赖于酶,仅通过荧光色度变化,所以在极短时间(2秒)内即可实现对草甘膦的快速可视化响应及读数检测,检测限(LOD)低至4.19 nM,远低于国家标准。此外,研究人员还结合3D打印技术及智能手机颜色识别器,开发了便携式荧光检测平台,可在实时/现场条件下对草甘膦进行快速可视化定量监测,为农药残留现场快速检测提供了新的策略。  上述研究工作得到了国家自然科学基金项目、安徽省重点研究与开发计划、国家重点研发计划和安徽省博士后科研计划的支持。     论文链接图1 比率荧光传感器快速可视化定量检测草甘膦残留示意图图2 基于智能手机的监测平台可视化定量检测草甘膦
  • 研究员开发便携式传感平台实现有机磷农残的快速可视化检测
    草甘膦凭借其高效、快速等特点成为国际上使用量最大的除草剂,在有机磷农药中占有重要位置。但较高的使用量及不合理的使用方法会造成农产品中草甘膦残留量超标,高残留、毒性强等问题将直接影响到消费者安全。   因此,发展快速、高选择性地检测草甘膦残留方法成为了控制和处理有机磷农残污染与危害的关键环节。目前人们通常采用实验室仪器或酶抑制法等检测方法来保证农残检测的灵敏度和选择性,但这些方法通常存在对环境要求苛刻以及操作复杂等问题。因此,建立高选择性及高灵敏的草甘膦残留快速定量分析方法对贸易、环境、食品和人体健康都具有重要意义。   近日,中国科学院合肥物质科学研究院固体物理研究所研究员蒋长龙团队基于比率荧光材料构建可视化传感平台,实现快速定量检测环境和食品中的草甘膦。相关研究成果发表在Journal of Hazardous Materials上。   该传感器由设计制备的蓝色碳点(CDs)和金纳米团簇(Au NCs)构成,当草甘膦与碳点反应时,聚集诱导猝灭(ACQ)导致碳点的蓝色荧光快速猝灭,而金纳米团簇的橙色荧光保持不变。由于该传感器不依赖于酶,仅通过荧光色度变化,所以在极短时间(2秒)内即可实现对草甘膦的快速可视化响应及读数检测,检测限(LOD)低至4.19 nM,远低于国家标准。   此外,研究人员还结合3D打印技术及智能手机颜色识别器,开发了便携式荧光检测平台,可在实时/现场条件下对草甘膦进行快速可视化定量监测,为农药残留现场快速检测提供了新的策略。   上述研究工作得到了国家自然科学基金项目、安徽省重点研究与开发计划、国家重点研发计划和安徽省博士后科研计划的支持。图1 比率荧光传感器快速可视化定量检测草甘膦残留示意图图2 基于智能手机的监测平台可视化定量检测草甘膦
  • 科学岛团队双模态传感策略用于氨基甲酸酯类农残可视化快速检测
    近期,中科院合肥物质院固体所蒋长龙研究员团队在可视化检测环境中的西维因检测研究方面取得新进展。相关研究成果作为主封面发表在国际著名期刊ACS Sustainable Chemistry & Engineering 上。西维因作为一种有效的广谱氨基甲酸酯杀虫剂,已广泛用于防治农作物害虫。然而,过量使用或错误的使用方式会导致西维因残留,西维因在土壤、水果、粮食等介质中留存时间长,且易通过呼吸道和皮肤接触进入人体内,会对人体造成严重危害。因此,西维因残留的检测研究引起了极大的关注。近年来,农药残留的定性定量检测仍然侧重于仪器检测,如表面增强拉曼光谱、电化学分析、色谱等,但这些技术由于检测耗时长和复杂的样品预处理,不能满足现场快速检测需求,限制了它们的实际应用。因此,开发便携式和可靠的实时分析方法来检测西维因残留,对环境污染物监测和农业食品安全具有重要意义。为此,研究人员利用氨基修饰的金纳米颗粒、硅量子点和碲化镉量子点作为传感中心,设计了一种双模态(比色-比率荧光)传感体系,能够可视化定量检测痕量西维因残留。当西维因进入传感体系后,会通过静电效应触发金纳米颗粒团聚,导致紫外可见吸收光谱变化,伴随着肉眼可观察到的自然光下的溶液颜色变化。同时,金纳米颗粒的团聚引发荧光共振能量转移(FRET)效应,硅量子点的蓝色荧光发射强度逐渐增加,而碲化镉量子点的红色荧光强度显著降低,从而导致体系荧光颜色由红到蓝的显著转换。研究发现,双模态传感体系具有更高的检测灵敏度与准确性,比色模式下检测限为49.6 nM,比率荧光模式下检测限为16.3 nM,实现了对实际样品中痕量西维因残留的高灵敏度、即时可视化检测。此外,结合3D打印技术与颜色识别应用(APP),研究团队还构建了具有高兼容性的便携式智能荧光检测平台,以扩展其实际应用。该工作为氨基甲酸酯类农药残留检测提供新策略,并拓宽了便携式可视化定量检测装置在化学传感中的应用。上述研究工作得到了国家自然科学基金项目、国家重点研发计划以及安徽省重点研究与开发计划项目的支持。图1. 双模态传感体系快速可视化定量检测西维因残留的机理示意图,该工作受邀作期刊封面报道。图2. (A)智能传感平台的检测示意图;(B)智能手机对荧光图像的RGB分析;(C)具有高兼容性的便携式传感平台;(D)紫外光下,荧光传感体系在加入浓度为0至200 μM的西维因后的图像;(E)荧光颜色变化(B值/R值)与西维因浓度的线性关系图。
  • 2193万元!铜陵生态环境可视化智慧监管系统项目招标
    据生态环保招投标信息平台数据显示,8月17日,安徽省铜陵市公共资源交易中心网站发布铜陵市生态环境可视化智慧监管系统及公共场所视频监控资源整合共享项目招标公告。项目采取不见面开标方式,预算金额2193万元。项目概况铜陵市生态环境可视化智慧监管系统及公共场所视频监控资源整合共享项目的潜在投标人应在铜陵市公共资源交易中心网站免费下载获取采购文件,并于2023年09月06日 10时00分(北京时间)前提交投标文件。一、项目基本情况项目编号:2023CGSH159项目名称:铜陵市生态环境可视化智慧监管系统及公共场所视频监控资源整合共享项目预算金额:2193万元最高限价:2193万元采购需求:本项目为铜陵市生态环境可视化智慧监管系统及公共场所视频监控资源整合共享项目,一标段为生态智慧监管前端及后台应用系统建设,采购内容包括双光谱热成像球机、热成像双光谱网络云台摄像机、180度全景摄像机、高清枪式摄像机、智能广播设备、环保专网整合、生态环境可视化智慧监管系统等,最高投标限价为1047万元;二标段采购内容为视频整合共享应用系统建设,最高投标限价为1146万元。具体采购标的名称、数量、参数以及技术要求等,详见招标文件。合同履行期限:一标段、二标段供货期均为合同签订后180日历天内供货并安装、调试完毕。本项目不接受联合体投标。 二、申请人的资格要求1. 满足《中华人民共和国政府采购法》第二十二条规定;2. 落实政府采购政策需满足的资格要求:本项目符合财政部、工业和信息化部制定的《政府采购促进中小企业发展管理办法》第六条第3款之规定,为非专门面向中小企业采购项目。具体原因如下: 按照本办法规定预留采购份额无法确保充分供应、充分竞争,或者存在可能影响政府采购目标实现的情形。对此项内容如有疑问,可通过书面形式或登录铜陵市公共资源交易平台线上提交两种方式向采购人进行质疑。3. 本项目的特定资格要求:无三、获取招标文件时间:2023年08月17日 至 2023年09月06日 ,每天上午9:00至12:00,下午13:00至17:00(北京时间,法定节假日除外 )地点:铜陵市公共资源交易中心网站方式:本项目只接受已入安徽省公共资源交易市场主体库的企业参与投标。投标单位应及时办理入库手续在中心网站(网址:http://ggzyjyzx.tl.gov.cn)自行下载采购文件。入库方式详见中心网站下载专区“安徽省公共资源交易市场主体库入库须知”,因未及时办理入库手续导致无法参与投标的,责任自负。售价:0元四、提交投标文件截止时间、开标时间和地点时间:2023年09月06日 10时00分 (北京时间)地点:铜陵市公共资源交易中心开标九室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、本项目采用网上不见面开标,投标文件解密、询标通知、客观分公示、否决通知等,通过系统在线方式完成。投标人须在投标截止时间之前使用CA锁自行登陆不见面开标大厅,并在解密指令发出后30分钟之内完成解密,投标人未按规定完成解密,视为放弃投标。投标人在项目开、评标期间应保持在线状态,授权委托人应保持电话畅通,随时通过交易系统接受评标委员会发出的询标等信息,并在规定时间内答复。技术支持咨询电话:400-998-0000。不见面开标大厅登录方式:铜陵市公共资源交易中心网站,选择不见面开标大厅登录。具体操作详见中心网站下载专区的《铜陵市不见面开标大厅-操作手册(投标人)》。2、无七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:铜陵市生态环境局地址:铜陵市长江东路601号联系方式:0562-26155082.采购代理机构信息名称:安徽秉弘工程项目咨询有限公司地址:铜陵市北斗星城B1座1303室联系方式:183562778283.项目联系方式项目联系人:周女士电话:18356277828 附件:项目需求.pdf招标文件.pdf
  • 农科院建立植物细胞无机磷可视化高效检测技术
    近日,中国农业科学院农业资源与农业区划研究所土壤植物互作创新团队建立了植物细胞无机磷可视化高效检测技术,并揭示了植物细胞无机磷分布调控新机制,相关研究成果发表在《自然—植物》(Nature Plants)上。研究提出了一种快速比色无机正磷酸盐(PI)成像方法--无机正磷酸盐染色法(IOSA),该方法可以对细胞内PI进行高分辨率的半定量成像。水稻根系伸长区细胞无机磷分布模式。中国农科院供图磷是植物生长发育必需的营养元素。植物根系主要吸收无机正磷酸盐,其也是植物体内磷循环利用的最主要形态。当磷素充足时,植物体内无机磷含量能占到总磷的80%左右。因此,明确植物无机磷的细胞分布模式是研究植物磷素高效利用调控机制的关键。然而,目前对植物组织细胞间无机磷的分布和储存模式仍不清楚,主要原因是缺乏高效的植物细胞无机磷可视化检测技术。研究团队建立了植物细胞无机磷可视化高效检测技术。与现有检测技术相比,该技术具有费用低、耗时短、操作简单、不受植物种类及组织部位限制等诸多优势。利用该技术,研究人员明确了水稻和拟南芥组织细胞无机磷主要的分布模式;发现了已知磷素核心调控因子的新功能,并筛选克隆到了新的水稻叶片细胞磷再利用调控因子。该研究为磷养分分子调控机制研究提供了技术支撑,也为作物磷高效遗传改良提供了新基因资源。该研究得到国家自然科学基金重点项目、优青项目、面上项目,以及中国农科院科技创新工程等项目资助。
  • 自带“可视化功能”的成像技术,让你的分析更有“深度”
    仪器信息网讯 基质辅助激光解吸电离飞行时间质谱成像技术(MALDI-TOF Imaging),作为直观反映组织器官中分子水平化合物的空间分布与变化的可视化方法,目前已在基础与临床医学研究中受到广大科研工作者的关注。   岛津的成像质谱显微镜(Imaging Mass Microscope, iMScope TRIO ),前端是搭载高分辨光学显微镜的大气压基质辅助激光解吸电离源(Atmospheric Pressure -MALDI),后端配置离子阱和飞行时间串联质谱仪(IT-TOF)。iMScope TRIO 是光学与成像质谱分析完整融合的独特技术,拥有领先的5μm高空间分辨率,可进行高精度多级质谱结构解析,为未知物的结构解析提供丰富的碎片信息,是具备高端性能的革新性分析系统。   成像质谱分析保留样品组织的位置信息的同时,可以直接使用质谱仪测定生物体分子和代谢物,既可以对样品进行形态学上的细微观察,也可以得到样品上特定部位的化学信息。因此,除了在医学和药学领域中的应用外,近年来在农业、食品安全、中药、环境以及特殊类型样品中也得到了广泛的应用。   岛津公司于2014年推出成像质谱显微镜 iMScope TRIO 以来,在诸多领域发挥其独有的高清晰度成像、光学图像融合、定性定位分析的特长。本文介绍了岛津日本合作实验室大阪大学Shimma教授基于iMScope TRIO 在领域拓展方面开展的部分工作。   1.姜黄素在姜黄干样品中分布的可视化分析:通过观察轴向和径向切片,对姜黄素的分布进行了详细的分析。发现姜黄具有非常规则的内部结构,而姜黄素就被封闭在管状结构中。 轴向切片中姜黄素具有线性分布特征,具有管状结构分布在植物体内的可能性   2.芦笋中抗高血压有效成分Asparaptine的分析:使用iMScope TRIO 对芦笋中的Asparaptine 进行了定位分析。Asparaptine的分布方式是从中心向外扩展,从下端向尖端扩展。同时在鳞片和维管束周围分布有大量的Asparaptine。通过借助MALDI-MSI技术,我们成功实现了对一种此前尚不明晰其分布的物质的详细定位信息的分析和确认。 芦笋的尖部、中部、下端和鳞片中的Asparaptine 分析   3.果蝇质谱成像方法建立以及脑部GABA成分的空间分布:首次对果蝇这种特殊样品建立了成像方法,可应用于昆虫体内杀虫剂成分可视化分析。使用上述方法,对果蝇脑部的γ─氨基丁酸(GABA)分布进行可视化,为神经递质的研究提供更可靠的空间分布信息。给药后的果蝇腹部检测出大量吡虫啉成分果蝇脑部GABA成分的分布   4.马毛中药物成分的直接检测:通过负离子模式分析,成功在马毛中检测出目标药物。给药后的马毛样本中,在距毛囊16.48 mm 位置处观察到较强的药物信号。根据马毛的平均生长速度。可推算出给药时间,大约在24-25天前。由于磷酸酯可在体内迅速代谢,直接在毛发中检测到未变化药物同样是一项十分重要的成果。 给药后的马毛中DexaSP 分布检测结果   iMScope TRIO 通过叠加不同检测原理的图像进行分析,为成像分析提供了强大的工具,并提高研究水平。   基于此,2020年7月9日,岛津“镜质合璧,还原真实”新品发布会将在仪器信息网举办,届时岛津将携新一代iMScope 成像质谱显微镜产品首次与中国用户见面。   届时尽请关注!
  • 连发3篇hiPSC文章,单细胞可视化培养系统颠覆传统,分离效率高达100%!
    人类诱导多能干细胞 (hiPSC) 是通过基因编辑技术(如 CRISPR-Cas9)对已经高度分化的人体细胞进行重新逆分化得到的多能干细胞。传统的hiPSC细胞系构建与培养过程操作复杂、耗材昂贵且费时费力。特别是对于异质编辑细胞池中构建的克隆hiPSC系的培养,受到了传统细胞培养方法的桎梏,很难构建一个高效的hiPSC构建与培养工作流程。此外,现有的单细胞分离和培养方法通常对细胞的处理条件要求苛刻,操作步骤繁琐,无法充分保证单克隆性。为应对hiPSC细胞系构建与培养过程中的诸多挑战,iotaSicences公司采用了以GRID技术为核心的高度自动化的单细胞可视化培养系统isoCell,构建了用于 hiPSC细胞系培养的平台。该平台采用全自动化流程,操作条件温和,对单细胞无损伤,具有高通量、自动化、高成活率等优势,可确保分选出的细胞100%为单细胞。柏林医学大学多能干细胞和类器官研究中心的Harald Stachelscheid团队使用isoCell在Stem Cell Research期刊上发表了三篇构建不同功能的hiPSC细胞系的科研应用文章,展示了isoCell在hiPSC细胞系构建和培养方面的优势。图1 单细胞可视化培养系统isoCell实物图 1. 以isoCell为核心的hiPSC细胞培养平台isoCell系统组成的细胞培养平台是基于GRID技术的高度自动化的实验平台。GRID是指在细胞培养基上采用FC40液体分隔出的网格小室,体积小(耗材少),光学透明度高,可以容纳细胞在内生长,且各个小室之间物质不流通。isoCell系统配备了荧光和成像系统,用于在整个克隆工作流程中记录 GRID 小室的图像(见下图)。图2 GRID实物图 isoCell 可自动执行所有液体处理步骤,包括构建 GRID、将单细胞注射到GRID小室中以及交换培养基和收获单克隆集落,在整个工作流程中自动检测每一个 GRID 小室,并确保每一个单克隆hiPSC细胞系来源于单个细胞。图3 isoCell操作流程图 2. 生成具有 SLC16A2:G401R 或 SLC16A2 敲除的 iPSC系X染色体相关的AHDS综合征的发病特点是由编码甲状腺激素转运蛋白MCT8(单羧酸转运蛋白8)的SLC16A2基因突变引起精神运动发育严重受损。该团队使用CRISPR/Cas9技术(靶向 SLC16A2 的外显子3)将AHDS患者错义变体G401R和新型敲除缺失变体 (F400Sfs*17) 引入男性健康供体的hiPSC系(BIHi001-B)。通过isoCell培育成功地获得了SLC16A2基因敲除的hiPSC单克隆细胞系(BIHi001-B-7)和(BIHi001-B-8),并证明了这些新细胞系在模拟 MCT8 缺陷对人类神经发育的影响方面的实用性。文章以Generation of iPSC lines with SLC16A2:G401R or SLC16A2 knock out为题发表于Stem Cell Research期刊上。图4 WB验证SLC16A2 敲除的hiPSC系无法表达SLC16A2蛋白 3. 生成 THRB-GS(E125G_G126S) 和 THRB-KO 人类 iPSC 系以研究非典型甲状腺激素信号传导THRB是一种依赖甲状腺激素 (TH) 结合来调节基因表达的核受体。相同的受体也可以介导细胞质中信号通路的激活。目前尚无法区分这两种机制中的哪一种是造成 TH 生理效应的原因。该团队结合基因编辑与isoCell的单细胞培养基技术,成功建立了一种在 THRB DNA 结合域中具有两个突变 (E125G_G126S) 的hiPSC 细胞系(BIHi001-B-2/3),该突变消除了THRB的核受体作用,因此可以用该细胞系专门研究THRB的信号通路激活作用。该团队还生成了 THRB 敲除细胞系(BIHi001-B-6)以消除所有 THRB 效应。通过比较WT结果和这两种细胞系,将甲状腺激素的影响归因于潜在的机制。文章以Generation of THRB-GS(E125G_G126S) and THRB-KO human iPSC lines to study noncanonical thyroid hormone signalling为题发表于2024年2月的Stem Cell Research期刊上。图5 基因测序验证BIHi001-B-2/3和BIHi001-B-6细胞系敲除或突变了对应基因 4. 使用 CRISPR-Cas9 生成了两个 BAX/BAK 双敲除人类诱导多能干细胞系 (iPSC)脑缺血损伤很多是由于脑缺血状态下细胞凋亡导致的。Bcl-2基因相关的X 蛋白 (BAX) 和BCL2 拮抗因子(BAK)是 BCL2 家族的两个促凋亡因子,BAX 和BAK是线粒体凋亡的执行基因,与细胞凋亡密切相关。该团队使用 CRISPR-Cas9技术构建了两个 BAX/BAK 双敲除人类诱导多能干细胞BIHi005-A-17和BIHi250-A-1,并通过isoCell培养获得了对应的hiPSC单克隆细胞系。所得细胞系核型正常,具有典型的形态并表达未分化状态的典型标记,并通过基因技术验证了细胞系已敲除BAK基因。在后续的研究中,研究人员就可以将该BAX/BAK 双敲除的hiPSC细胞系广泛应用于脑缺血等细胞凋亡相关领域的发病机制与治疗干预机制研究中。文章以Generation of two human induced pluripotent stem cell lines with BAX and BAK1 double knock-out using CRISPR/Cas9为题发表于2024年4月的Stem Cell Research期刊上。图6 通过基因测序及WB验证BIHi005-A-17和BIHi250-A-1以敲除BAK与BAX基因 5. 结论以isoCell构建的hiPSC细胞培养平台可以对hiPSC细胞进行全自动化且温和地单细胞培养。通过isoCell特有的GRID小室网格技术与可视化分选相结合,可以确保每一个单克隆hiPSC细胞系均来自单个细胞,且节省培养耗材。isoCell的培养条件温和,在以上案例中协助科研人员构建了多个基因改造hiPSC单克隆细胞系,成活率高。 单细胞可视化培养系统isoCell的优势:✔ 全自动化流程✔ 操作条件温和,对单细胞无损伤✔ 全培养、分析流程可追踪✔ 单细胞率高达100%✔ 单克隆细胞系构建成活率高✔ 结构紧凑,体积小,节省耗材单细胞可视化分选培养系统-isoCell已在Cell、Advanced Science、Small Methods、Nature Communications等知名期刊发表多篇文章,如下摘引了近年三篇具有代表性的文献和大家分享。Soitu C, Stovall‐Kurtz N, Deroy C, et al. Jet‐Printing Microfluidic Devices on Demand[J]. Advanced Science, 2020, 7(23): 2001854.Gangoso E, Southgate B, Bradley L, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigeneticimmunoediting to elicit immune evasion[J]. Cell, 2021, 184(9): 2454-2470. e26.Deroy C, Nebuloni F, Cook P R, et al. Microfluidics on Standard Petri Dishes for Bioscientists[J]. Small Methods, 2021, 5(11): 2100724.Deroy C, Wheeler J H R, Rumianek A N, et al. Reconfigurable microfluidic circuits for isolating and retrieving cells of interest[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25209-25219.Oliveira N M, Wheeler J H R, Deroy C, et al. Suicidal chemotaxis in bacteria[J]. Nature Communications, 2022, 13(1): 7608.样机体验:为更好地服务中国科研工作者,Quantum Design 中国也建立了样机演示实验室,将为大家提供为专业的售前、销售、售后技术支持,欢迎各位老师通过拨打电话010-85120280、发送邮件info@qd-china.com、点击此处或扫描下方二维码参观试用!扫描上方二维码/点击此处,即刻咨询/体验! 用户名单用户评价路易莎埃姆斯,研究科学家:The Native Antigen Company(LGC 临床诊断集团旗下公司)“使用 isoCell 进行单细胞克隆工作从一开始就简单可靠,并且已无缝地融入我们的流程中。 该程序对细胞很温和,我们看到非常好的存活率,可以筛选大量克隆。 我们收到的客户服务是优质的。”相关产品1、单细胞可视化分选培养系统—isoCellhttps://www.instrument.com.cn/netshow/SH100980/C551413.htm
  • 合肥物质院固体所在可视化检测农药残留方面取得新突破
    近期,中国科学院合肥物质科学研究院固体物理研究所能源材料与器件制造研究部蒋长龙研究员团队在氨基甲酸酯农药和有机磷农药残留分析检测方面取得新进展,设计制备了两种高效的比率荧光纳米探针,并结合智能手机的颜色识别器,实现对食品和环境水体中农药的可视化定量检测。相关研究成果发表在Chemical Engineering Journal和ACS Sustainable Chemistry & Engineering上。   氨基甲酸酯类化合物主要用作杀虫剂、杀螨剂、除草剂和杀菌剂,已成为农药的一大类别。有机磷农药主要用于防治植物病、虫、草害,其挥发性强,遇碱失效。这两种农药广泛用于农业生产中,在农作物中会存在不同程度的残留。但它们在自然界中降解速度较慢,其残留随呼吸、皮肤吸收或误食进入体后,药物毒素会对人体器官功能受损,严重者会出现呼吸麻痹,甚至死亡,严重危害人体健康。目前,国内外用于农药残留检测的主要分析方法仍然局限于酶抑制法和免疫测定等,这些方法通常存在成本高、操作复杂、耗时长等问题。因此,发展快速、低成本、特异性强、灵敏度高的农药检测新方法具有非常重要的意义。   鉴于此,研究人员基于2, 3-萘二醛(NDA)和亚硫酸盐诱发的类 Strecker 反应原理,构建了一种无酶比率荧光探针,以 CdTe 量子点 (CdTe QD) 作为背景荧光,用于氨基甲酸酯农药(CPs)的全谱视觉识别。CPs加入后,通过亲核缩合反应产生绿色荧光的异吲哚,该荧光探针出现了从红色到绿色的明显颜色变化,实现对氨基甲酸酯的快速可视化响应,检测限(LOD)低至18.6 nM,远低于国家最大残留标准。   此外,通过集成绿色碳点和CdTe量子点(CdTe QD)构建了比率荧光探针,用于甲基对硫磷(MP)的高选择性定量检测。在碱性条件下,MP能迅速水解生成对硝基苯酚(p-NP), 氢键加强的瞬时反应导致碳点和p-NP之间的内滤效应猝灭绿色荧光,从而导致探针产生由绿到红的灵敏荧光色度变化,检测限低至为8.9 nM。   上述工作得到了国家重点研发计划、国家自然科学基金项目和安徽省重点研究与开发计划的支持。
  • 岛津成像质谱显微镜应用专题丨板蓝根可视化
    质谱成像技术揭示板蓝根中化学成分的空间分布 板蓝根(Isatidis Radix)为十字花科菘蓝属植物菘蓝(Isatis indigotica Fortune)的干燥根,具有清热、解毒、凉血、利咽等功效。作为清热解毒类的代表药物,板蓝根与广泛用于各类感冒的预防和治疗,在严重急性呼吸综合征(SARS)、甲型H1N1流感等疾病的防治中发挥了积极作用。新型冠状病毒肺炎(COVID-19)爆发以来,各版《诊疗方案》和“三药三方”中也不乏板蓝根的身影。板蓝根的抗病毒抗炎药效显著,但化学成分复杂,质量评价难度较高,因而一直是国内外研究的热点。 目前研究学者已经从板蓝根中分离得到近400个化合物,综合文献报道主要可归纳为生物碱、含硫化合物、苯丙素、核苷、氨基酸、有机酸、酚、黄酮、蒽醌、萜、醇、醛、酮、腈、酯、糖、甾醇、肽、鞘脂等19大类。研究药用植物化学成分的空间分布,有助于了解其形态学结构和功能。尽管板蓝根的化学成分研究已经十分深入,但其分子空间分布鲜见报道。质谱成像(mass spectrometry imaging,MSI)技术是近年新兴的分子成像技术,通过直接测定样品表面的离子信号获得其空间分布信息,具有非靶向、无需标记和多成分同时检测的优势。与光学图像采集技术结合后,既可观察到高分辨率的形态图像,又可对特定的分子进行鉴定和可视化分布分析,在生命科学领域显示出巨大的应用前景。本文首次采用高分辨质谱成像技术对板蓝根化学成分的空间分布进行分析。利用大气压基质辅助激光解吸电离-离子阱-飞行时间质谱(atmospheric pressure matrix assisted laser desorption combined with ion trap-time-of-flight mass spectrometry,AP-MALDI-IT-TOF/MS)扫描不同产地药材横切面,鉴定所含化合物,并观察化合物空间分布模式和富集位置,结合偏最小二乘回归(partial least squares regression,PLSR)算法,对不同样品进行分类。研究思路见图1。 图1 AP-MALDI-IT-TOF/MS成像技术揭示板蓝根中化学成分的空间分布 1. iMScope TRIO 成像质谱显微镜测试条件质谱成像技术在植物、动物、人体组织中的内源性成分和药物代谢组分的可视化检测方面发展迅猛,但在中药分析领域的应用才刚开始起步,且多用于新鲜采集的原植物或中药材。而真正用于市场流通和临床应用的中药材为干品,制备满足MSI测试需要的切片比较困难,故相关研究鲜见报道。在制备板蓝根干品冰冻切片时,其干燥、坚硬、易碎的结构带来了极大的挑战,故对冷冻切片的厚度、温度,切片固定方式,基质种类和添加方式等进行了详细的优化。板蓝根药材经明胶包裹冷冻后,先用双面碳导电胶贴牢后,再用冰冻切片机切制40 μm的组织切片,分别喷涂2, 5-DHAP溶液和1, 5-DAN溶液作为正、负离子的基质。主要质谱条件如下:激光照射直径:40 μm,像素间隔80 μm,扫描范围:m/z 100-500,m/z 500-1000。 2. 板蓝根中化合物的AP-MALDI-IT-TOF MSI可视化分布根据离子的准确质荷比、同位素丰度比,与对照品和液质一、二级数据比对,并结合文献检索和数据库搜查,初步鉴定了多个化合物类别118个质谱峰(见图2)。成像质谱显微镜将光学显微镜和质谱仪的优势整合,既可观察到形态图像,又可对分子进行鉴定和可视化分布分析,在软件上可简便且高精度地重叠观察光学显微镜图像与质谱分析图像,详细解析感兴趣区域。本文采用AP-MALDI-IT-TOF MSI技术首次揭示了板蓝根中化合物的空间分布, 图3和 图4展示了板蓝根横切面的木栓层、皮层、韧皮部、形成层、木质部及部分化合物在特定空间区域的分布。综合分析,板蓝根中化合物大多富集于营养储存的组织韧皮部,与之相比,水分输送组织木质部中集中分布的成分较少。 图2 板蓝根MALDI-IT-TOF MS成像化合物鉴别结果图3 板蓝根横切面光学图 (a) 和oxindole (b)、3-[2' -(5' -hydroxymethyl) furyl]-1(2H)-isoquinolinone-7-O-β-D-glucoside (c)、coniferin (d)、guanine (e)、histidine (f)、 proline (g)、arginine (h)、cyclo(L-Phe-L-Tyr) (i)等成分正离子质谱成像图 图4 板蓝根横切面光学图 (a) 和 isatindigoside F (b)、clemastanin B (c)、maleic acid (d)、malic acid (e)、citric acid (f)、sucrose (g)、isovitexin (h)、vanillin (i) 等成分负离子质谱成像图 3. PLSR法区分不同产地板蓝根药材将4个产地的各3批板蓝根药材分别划分到4个组。以样品横切面的AP-MALIDI-IT-TOF MSI数据为Y值,组别为X值,在正、负离子模式和m/z 100-500、m/z 500-1000两个扫描范围内,分别建立PLSR回归模型。由图5可见,在4个模型中,样品规格的预测值和实际值均呈现良好的相关关系,说明采用PLSR法可对不同产地的板蓝根进行准确的区分。 图5 MALDI-IT-TOF MS成像结合PLSR回归区分不同产地板蓝根样品 正离子m/z 100-500范围 (A)、负离子m/z 100-500范围 (B)、正离子m/z 500-1000范围(C)、负离子m/z 500-1000范围 (D) 本文相关内容由中国食品药品检定研究院的聂黎行研究员提供,详细研究内容已正式发表于Frontiers in Pharmacology - Ethnopharmacology, 2021, https://doi.org/10.3389/fphar.2021.685575。 文献题目《Microscopic Mass Spectrometry Imaging Reveals the Distributions of Phytochemicals in the Dried Root of Isatis indigotica》 使用仪器岛津iMScope TRIO 作者Li-Xing Nie1,2, Jing Dong3, Lie-Yan Huang2, Xiu-Yu Qian2, Shuai Kang2,4*, Zhong Dai2 and Shuang-Cheng Ma1,2*1 Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China2 National Institutes for Food and Drug Control, National Medical Products Administration, Beijing, China3 Shimadzu China Innovation Center, Beijing, China4 College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
  • 我国团队研制出纳米探针,借助手机实现农药残留可视化定量检测
    从中国科学院合肥科学物质研究院了解到,该院固体所研究员蒋长龙团队设计制备了两种高效的比率荧光纳米探针,并结合智能手机的颜色识别器,实现对食品和环境水体中农药的可视化定量检测。相关研究成果日前发表在《化学工程杂志》和《ACS可持续发展化学与工程学研究》上。图 1. 比率荧光探针可视化检测氨甲基酸酯农药残留的机理示意图。 图 2. 比率荧光探针快速可视化定量检测有机磷农药残留的机理示意图。  氨基甲酸酯类化合物主要用作杀虫剂、杀螨剂、除草剂和杀菌剂,已成为农药的一大类别。有机磷农药主要用于防治植物病、虫、草害,其挥发性强,遇碱失效。这两种农药广泛用于农业生产中,在农作物中会存在不同程度的残留。但它们在自然界中降解速度较慢,其残留随呼吸、皮肤吸收或误食进入人体后,药物毒素会使人体器官功能受损,严重者会出现呼吸麻痹甚至死亡。  目前,国内外用于农药残留检测的主要分析方法仍然局限于酶抑制法和免疫测定等,这些方法通常存在成本高、操作复杂、耗时长等问题。因此,发展快速、低成本、特异性强、灵敏度高的农药检测新方法具有非常重要的意义。  鉴于此,研究人员构建了一种无酶比率荧光探针,以CdTe量子点作为背景荧光,用于氨基甲酸酯农药的全谱视觉识别。氨基甲酸酯农药加入后,通过亲核缩合反应产生绿色荧光的异吲哚,该荧光探针出现了从红色到绿色的明显颜色变化,实现对氨基甲酸酯的快速可视化响应。  此外,研究人员还通过集成绿色碳点和CdTe量子点构建了比率荧光探针,用于甲基对硫磷的高选择性定量检测。在碱性条件下,甲基对硫磷能迅速水解生成对硝基苯酚, 氢键加强的瞬时反应导致碳点和对硝基苯酚之间的内滤效应猝灭绿色荧光,从而导致探针产生由绿到红的灵敏荧光色度变化,并且检测限远远低于国家最大残留标准。
  • 时空分辨药物代谢组学——中枢神经系统新药研发的可视化利器
    中国医学科学院北京协和医学院药物研究所贺玖明研究员团队以封底文章在《药学学报》英文刊(APSB)2022年第8期(IF:14.903)发表了题为“A temporo-spatial pharmacometabolomics method to characterize pharmacokinetics and pharmacodynamics in the brain microregions by using ambient mass spectrometry imaging”的研究论文,建立了一种时空分辨的代谢组学方法(基于AFADESI-MSI的时空药物代谢组学),可全景式描绘脑中药物代谢和效应的时空特征,为中枢神经系统作用新药研发提供了一种有力的可视化工具和新的视角。  封底图 | 表征鼠脑中中枢神经药物的微区域药代动力学和药效学的时空代谢组学方法策略和工作流程  研究背景  中枢神经系统(CNS)具有复杂而脆弱的结构,在大脑的许多微区域之间具有高度的互连性和相互作用。大脑是人体复杂的器官,可以细分为许多微区域。脑中多种内源性功能代谢物在不同的微区分布不均匀。脑微区的代谢酶、受体、配体、蛋白和血流的功能差异也会导致药物的空间分布和疗效差异。大脑是中枢神经系统疾病的靶点,大多数中枢神经系统药品只有在进入大脑后才会发挥作用。因此了解药物及相关内源代谢物在大脑中的原位分布的信息对于评估药物疗效、毒理学和药代动力学具有重要意义。  目前研究大脑的常用功能性脑成像技术(包括组织化学标记、免疫荧光、MRI、PET、全身放射自显影等),仅提供脑组织结构的图像,不能在分子水平上进行分析,可监测的物质种类也有限。另一方面,脑内药物分析通常使用的基于组织匀浆或微透析采样的高效液相色谱-质谱(HPLC-MS)技术获得的结果仅能反映采样微区的平均代谢水平,而缺乏分子在整个大脑中的空间分布的信息。质谱成像技术(MSI)不需要复杂的预处理和特殊的化学标记,具有高通量、高灵敏度和高分辨率的特点,可检测已知或未知小分子代谢物的定性、定量和空间分布信息。  本研究使用AFADESI-MSI空间代谢组学研究表征了临床中枢神经系统药物奥氮平(OLZ)和大鼠脑内内源性代谢物,并进行了给药期间的时空变化以及脑微区药物动力学和药效学研究,成功地展示了OLZ及其作用相关代谢物的时空特征,并为中枢神经系统药物作用的分子机制提供了新的见解。  研究思路  研究方法  1. 实验分组/研究材料:饲养一周的雄性 Sprague-Dawley 大鼠  (1) 实验组:4组(3只/组),口服OLZ溶液(50mg/mL)后 20 分钟、50 分钟、3 小时和 12 小时用高浓度乙醚。  (2) 对照组:1组,3只/组  2.技术路线  2.1. 鼠脑的微区划分:15个微区,包括尾状壳核(CP)、大脑皮质(CTX)、海马(HP)、下丘脑(HY)、丘脑(TH)、小脑皮质(CBC)、小脑髓质(CM)、髓质 (MD)、脑桥 (PN)、大脑导水管 (CA)、中脑 (MB)、穹窿 (FN)、梨状皮质 (PC)、嗅球 (OB) 和胼胝体 (CC)。  2.2 质谱成像:AFADESI-MSI分析(全扫描及MS2扫描)  2.3代谢物定性:人类代谢组数据库 (www.hmdb.ca)、Metlin、MassBank和LIPID MAPS  研究结果  1.通过AFADESI-MSI绘制大鼠大脑中的内源性代谢物和药物图谱  无论是正离子模式还是负离子模式,使用AFADESI-MSI空间代谢组学均可从治疗组和对照组脑组织切片中获得内源性代谢物信息。在100-500 Da的低质量范围内,可以检测到氨基酸、核苷、核苷酸、有机酸、脂肪酸等极性小分子代谢物和γ-氨基丁酸 (GABA)、肌酸、肉碱、乙酰肉碱和磷脂酰胆碱等神经递质类代谢物;在500-1000 Da的高质量范围内,可以检测到一些脂质,包括鞘磷脂(SM)、磷脂酰乙醇胺(PE)、磷脂酰胆碱(PC)、溶血磷脂酰胆碱(LysoPC)和磷脂酰肌醇 (PI) 等。原型药物 OLZ 及其代谢物 2-羟甲基 OLZ 在正离子模式下被检测,结果如图1C1和D1所示。这些结果表明,非靶向质谱成像的方法可以在一次实验中同时绘制外源性药物和内源性代谢物的图谱,并可以获得它们的空间分布特征和微区域丰度变化。  图1 | 使用 AFADESI-MSI 从脑组织切片获得的外源性药物和内源性代谢物的质谱成像结果  2.鼠脑中奥氮平(OLZ)及其代谢物的时空变化  OLZ是一种用治疗精神分裂症的药物,大脑是其主要靶器官。本实验为探究给药时间药物在大脑各功能微区的分布情况,分别在给药后20 min、50 min、3 h和12 h收集治疗组和对照组大鼠脑组织进行MSI分析。OLZ 及其代谢物 2-羟甲基 OLZ 的在鼠脑分布结果如图2A所示。  这些结果表明,OLZ 可以很容易地穿透脑血屏障,主要分散在脑室和脑实质组织中,但并不是均匀分布在大脑的所有微区域中。给药后20分钟发现OLZ主要分布在大脑皮质中。50分钟后,OLZ的水平显著增加。随着时间的推移,大脑中的药物信号迅速下降到成像检测限以下。同时作者发现,2-羟甲基OLZ主要分布在穹窿中,其在各个微区的分布格局与OLZ不同。  这些结果表明,OLZ药物的吸收、分布和代谢的速率在大脑的不同微区不同,表明微区对药代动力学有影响。它还证明了所提出的基于AFADESI-MSI 的时空药物代谢组学方法能够同时说明药物及其代谢物在大脑复杂微区域中的水平和空间分布的变化。  图2 | 脑微区OLZ和其代谢产物2-羟甲基OLZ的时空变化  3.OLZ 对神经递质类代谢物的的微区调控  OLZ药物治疗精神分裂的作用机制是阻断多巴胺 D2 受体或血清素 2A 受体调节神经递质类代谢物(NTs)。然而OLZ的微区效应和分子作用机制仍不清楚。因此作者分析了与OLZ生理活动密切相关的NTs的时空变化,包括GABA、Glu、谷氨酰胺 (Gln) 和腺苷。NTs的AUC变化率如图3B1-B7所示。  GABA(γ-氨基丁酸)是中枢神经中的一种神经递质,可抑制神经中枢。空间代谢组检测结果显示GABA(m/z 104.0706)主要分布在下丘脑中,药物干预后下丘脑的 GABA 受到轻微调节。但同时在梨状皮质和嗅球中观察到药物干预后GABA显著上调。Glu 是中枢神经中的一种主要神经递质,对神经细胞具有兴奋作用。在药物干预后,Glu及其代谢物Gln的时空动态模式在脑部微区中呈现出相对一致的变化趋势。腺苷广泛分布在中枢神经系统中,是大脑中的一种兴奋性和抑制性神经递质,并在脑中不均匀分布。并且在给药3小时后海马和下丘脑中的高水平腺苷显著增加,表明当药物积累时腺苷的上调会更加明显。组胺、乙酰胆碱(Ach)、牛磺酸等神经递质类物质都有各自特征的微区分布,以及在给药后具有上调的趋势。  上述神经递质类物质的靶向成像分析结果表明,该方法可以检测到与中枢神经药物作用机制相关的大量原型药物及其代谢物和内源性代谢物的空间分布和变化。这对于阐明中枢神经系统药物的作用机制和了解精神分裂症及相关疾病具有重要意义。   图3 | 药物对脑内NTs分布和AUC变化率的影响  4. OLZ 药物干预的微区代谢调控  组织和器官的内源性代谢变化可以反映药物刺激的效果。为探索药物干预后的微区代谢效应,通过药物代谢组学测试研究了内源性代谢物的分子谱及其动态变化的分布信息。分别在OLZ和生理盐水给药后 50分钟采集每组治疗和对照大鼠的三个脑组织样本进行微区域分析。  OPLS-DA结果表明,基于正离子模式和负离子模式下脑微区的定量分析,对照组和治疗组分别明显分开。总共筛选和鉴定了 90 种差异内源性代谢物,作为药物作用相关效应物,它们在大脑微区域中发挥了巨大作用。其中81种被MS2鉴定,9 种被同位素模式鉴定。差异代谢物包含了很多种类型的代谢物,包括氨基酸、脂肪酸、甘油磷脂、有机酸、多胺和酰基肉碱。  经过分析确定了治疗组和对照组之间显著差异的七种代谢途径,包括丙氨酸、天冬氨酸和谷氨酸代谢、D-谷氨酰胺和D-谷氨酸代谢、牛磺酸和亚牛磺酸代谢、淀粉和蔗糖代谢、甘油磷脂代谢、精氨酸和脯氨酸代谢、精氨酸生物合成、嘌呤代谢和柠檬酸循环(TCA循环)。下面对影响较大的丙氨酸、天冬氨酸、谷氨酸和甘油磷脂代谢的异常代谢途径进行重点分析。  图4 | 对照组和治疗组中鉴定的差异代谢物的层次聚类分析 (HCA)  4.1 丙氨酸、天冬氨酸和谷氨酸代谢紊乱  异常的Glu-Gln循环在精神分裂症的病理生理过程中起重要作用。丙氨酸、天冬氨酸和谷氨酸代谢途径代谢物在老鼠脑的时空分布如图5所示。柠檬酸在大脑大部分微区分布均匀;与对照组相比,表达显著提高,结果提示药物干预加速了TCA循环的代谢,为机体提供了更多能量。Glu也均匀分布在各个微区,药物干预后呈下调趋势。它的代谢物Gln 和 GABA,主要在下丘脑和的多个微区中上调。  根据通路分析和代谢谷氨酸脱羧酶(GAD)酶反应,推测OLZ直接激活GAD促进GABA合成。GABA可增加糖酵解中己糖激酶的活性,从而加速葡萄糖的代谢。空间分布结果表明葡萄糖分布在大脑的所有微区,但给药后主要分布在梨状皮质和嗅球中,给药后20分钟血糖水平显著升高。  图5 | 丙氨酸、天冬氨酸和谷氨酸代谢途径代谢物的时空分布  4.2.甘油磷脂代谢途径的紊乱  甘油磷脂有助于控制肝脏脂质代谢,促进记忆力,增强免疫力,延缓衰老。甘油磷脂代谢途径代谢物的时空分布如图6。这项研究的结果表明,在给药后,大多数脂质在大多数微区域中显示出上调。OLZ在临床应用中具有代谢副作用,如体重增加、血脂异常、高甘油三酯血症和胰岛素抵抗。实验结果证明,脂质代谢的上调可能导致OLZ治疗期间的副作用。  图6 | 甘油磷脂代谢途径代谢物的时空分布  相关讨论  作者开发的时空药物代谢组学方法,使用质谱成像技术MSI来表征大脑中枢神经药物的药代动力学和药效学。结果表明,该方法可有效识别与药物作用相关的内源性分子效应物。评估OLZ药物对脑组织的微区域效应,并证明其穿过血脑屏障后的微区域药代动力学和药效学方面的有效性。该方法清楚地展示了原型药物及其代谢物 2-羟甲基OLZ在大鼠大脑不同微区的药代动力学。也在脑部微区现一些神经递质类物质和其它小分子极性代谢物,并显示出与药物干预相关的多种代谢途径。发现天冬氨酸、谷氨酸和甘油磷脂代谢途径的调节可能与 OLZ 临床使用观察到的治疗和不良反应有关,为了解其作用的分子机制提供了关键信息。  小鹿  与基于LC-MS的常规药物代谢组学分析手段相比,基于AFADESI-MSI的时空药物代谢组学技术具有同时检测内源性和外源性物质的静态水平变化,并提供大脑不同微区的动态时间依赖性趋势和空间分布信息的优势,能够非常准确地呈现原位和微区域分子变化规律。在此基础上将药代动力学和药效学与代谢途径相关联,有利于获得关键信息,从而更深入地了解药物作用的分子机制。基于AFADESI-MSI 的时空药物代谢组学技术不仅是阐述中枢神经系统药物的原位药代动力学和药效学全面有效的工具,也可为脑组织内源性代谢物的变化以及其它动物组织的原位代谢研究提供重要信息。  该研究工作,药物所2017级硕士研究生刘丹为作者,贺玖明研究员为独立通讯作者。工作得到国家自然科学基金和医科院创新工程项目的资金资助。
  • Seeing is believing—Real View TA样品观察热分析将想象的世界可视化!
    郑重通知各位热分析实验室的实验猿们:2018余额已经不足,那些没有做完的实验,没有解析的数据,以及没有上交的报告,是时候该加班加点来完成它啦!但是,理想很feng满,现实却很骨感,许多实验看着容易,做起来却很困难。特别是一些复杂样品,经常会出现预料之外的结果;或者测定未知样品,数据已经得到,但是却不知怎么去解析,只能靠想象:是不是发生了这种现象?某某现象到底是什么?为什么会发生这种现象?......我是谁? 我在哪里?我要干什么?这个时候我们不禁要想,如果有一种方法来验证和帮助我们解析复杂图谱就好了 日立Real View TA样品观察热分析系统(RV),为您排忧解难,通过该系统可以对程序升温过程中的样品进行实时观测,可用连续的图像记录样品状态变化的情况,而且可以自动将图像与测定条件和结果进行对应,获得可信度更高的信息。下面我们来看一下RV样品观测系统的原理,我们在炉体上方加一个CCD摄像头,摄像头与坩埚之间都采用石英材料,这样通过摄像头,我们就能进行样品观测,并且我们将观测系统整合到热分析软件中,通过日立热分析软件就可同时实现热分析数据和实时观测数据的采集。目前日立Real View TA样品观察热分析系统可用于日立DSC、STA、DMA。 下面我们来展示两个RV的例子1. DSC_PET通过RV,我们可以很清晰的观测到样品在玻璃化转变,结晶,熔融各个过程中样品的状态2. STA_颜料对于一些在程序升温过程中有颜色变化的材料,更需要RV来验证。如图所示,样品经过第一个失重梯度由深绿色变成黑色,经过第二个失重梯度由黑色变成灰色,经过第三个失重梯度由灰色变成白色。 综上所述,日立Real View TA样品观察热分析系统将想象的世界可视化,使热分析解析更加简便,可靠。 关于日立TA7000系列热分析仪详情,请见:日立 DSC7020/DSC7000X差示扫描热量仪https://www.instrument.com.cn/netshow/SH102446/C313721.htm日立 STA7000Series 热重-差热同步分析仪https://www.instrument.com.cn/netshow/SH102446/C313727.htm日立 TMA7000Series 热机械分析仪https://www.instrument.com.cn/netshow/SH102446/C313737.htm日立 DMA7100 动态机械分析仪https://www.instrument.com.cn/netshow/SH102446/C313739.htm 关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。更多信息敬请关注日立高新官方网站:http://www.hitachi-hightech.com/cn/
  • 低场核磁技术:让食品中水分研究可视化——访中国农业科学院农产品加工研究所魏益民教授
    p span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai"   中国农业科学院农产品加工研究所魏益民教授,曾任西北农林科技大学副校长,中国农业科学院农产品加工研究所所长,主要研究方向涉及谷物化学与小麦加工关键技术 植物蛋白挤压组织化理论与技术 食品产地溯源及确证、食品加工过程安全控制等,主持多项国家科技攻关计划、现代农业(小麦)产业技术体系建设专项、国家自然科学基金等项目。 /span /p p span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai"   从食品水分分析技术平台,到智能物料干燥分析系统,魏益民教授开展了一系列的研究工作,不仅解了企业的“燃眉之急”,也对仪器设备开发和应用拓展起到了很大的促进作用。其中,与苏州纽迈分析仪器股份有限公司(简称:纽迈分析)以及河北金沙河面业集团有限责任公司(简称:金沙河面业)的合作就是很好的案例。日前,仪器信息网编辑特别采访了魏益民教授,听他讲一讲学术研究及其背后的精彩故事。 /span /p p style=" TEXT-ALIGN: center" img title=" DSC05714_副本.jpg" alt=" DSC05714_副本.jpg" src=" https://img1.17img.cn/17img/images/201810/uepic/211ac2bc-41e2-46d4-bc75-fab1c2b4a7e6.jpg" / br/ strong 中国农业科学院农产品加工研究所魏益民教授 /strong /p p    span style=" COLOR: rgb(255,0,0)" strong 低场核磁技术:水分状态及运动轨迹研究的有效手段 /strong /span /p p   水乃万物之源。在国际上水的研究是一个非常重要的领域,具体到农林产品、食品和能做成食品的所有原料,水分的研究更是必不可少。 /p p   采访伊始,魏益民教授先给我们普及了食品领域与水分有关的一些学问。“在农产品的收获、安全储藏、安全运输、加工和食品制造中,都离不了水这个命题。比如,国标规定小麦安全储藏的水分含量在12.5%以下,面粉安全储藏的水分含量在14.5%以下;另外,种子发芽需要合适的水分条件;食品制作过程中的煎、炸、炒、烩、煮、蒸都离不开水分;果品、蔬菜等的保鲜与水分息息相关;挂面制作及烘干的工业过程中,水分更是一个至关重要的因素......” /p p   魏益民教授介绍说:“食品的含水量不仅和食品的口感、新鲜度、脆度等有关,而且在食品工业中,加水量的多少和生产成本和商业利润有着密切的关系,从这个角度来说,水分的研究在食品领域有着重要的商业意义。” /p p   据介绍,目前关于水分的研究课题,包括含水量、水分存在状态、运动轨迹和水分活度等。现有对食品中水分的研究主要是绝对含水量的测量,一般采用加热蒸发至恒重的方法计算得出。但是必须注意的是,蒸发过程中跑掉的除了水分之外,还可能有别的挥发物质。因此,结果往往不是很准确。 /p p   “我研究的课题主要围绕水分和食品的关系。多年的研究发现,核磁分析和成像技术是研究水分存在状态和运动轨迹的有效手段。”魏益民教授介绍道,从原理上来说,根据氢原子核的弛豫时间,可以判别自由水、弱吸附水和强吸附水的比例,进而可以研究水分在食品中的存在状态。通过核磁成像,还可以把水分研究从不可视状态变成可视状态,从而可以看到水分的扩散轨迹。 /p p   其实,早在进行高水分组织化植物蛋白课题研究的时候,魏益民教授课题组就曾尝试使用纽迈分析的低场核磁设备进行测试,发现高水分和低水分含量食品中水分的存在状态和分布是不同的。魏益民教授说:“也就是从那个时候开始,我们发现,食品中的水分可以用低场核磁技术来更好地表征。这个思路一直存在我的脑子里。”而在之后研究“食品水分分析技术平台”时,魏益民教授也成功地将低场核磁技术引入其中。 /p p   “核磁技术在食品领域最大的意义就是区分水分存在的状态,看到水分的运移过程,以此来研究水分的运移规律。” 魏益民教授说,“核磁技术用于食品中水分的研究,能提供的不仅仅是含量,而且能够在分子水平上观察水分子的运动规律。这项研究非常有价值。” /p p span style=" COLOR: rgb(255,0,0)" strong   食品水分分析技术平台:一次突发事件的启发造就的专利成果 /strong /span /p p   既然低场核磁是研究水分存在状态及运动轨迹的有效手段,那么如何介入并进行系统研究呢?其实,魏益民教授一直在关注这方面的研究,包括进行高水分组织化植物蛋白研究的时候,就已经开始了初步的尝试。而金沙河面业冬季大雪降温危机事件将这件事情正式提上了日程。其中,“食品水分分析技术平台”的建立是第一步,为之后低场核磁技术的引入奠定了基础。 /p p   2004年,魏益民教授就与金沙河面业开始了接触,也曾多次被邀约去解决挂面干燥能耗的问题,迟迟未果的原因在于魏益民教授“不打无准备之仗”。魏益民教授说:“我不是学这个学科的,之前对烘房没有研究,为此做了很多准备工作,也找了很多食品干燥方面的书籍来进行基本理论的学习,并准备了在线自动温度湿度自动记录仪、微型气象工作站等进口的仪器设备。” /p p   2012年冬天,一场突如其来的大雪导致气温骤降,金沙河面业的锅炉房温度不达标准要求,金沙河面业的生产线面临严重危机。魏益民教授第一时间赶到现场,并采取了一系列的行动:首先,关好门窗,加盖布帘,减少能耗浪费 其次,挂上温湿度仪,监测现有生产线的适宜温度湿度范围 第三,安置微型气象工作站,测排风口的环境要素。“结果显示,不同车间排风口的差异达40%。这说明烘房的操作工艺是盲目的、凭经验的,没有科学依据的。” 最终,在魏益民教授的指导下,他们研究了用能最少生产线烘房的操作参数。之后,所有车间都照此参数执行。第三天中午,锅炉温度正常了,危机解除。 /p p   “这次事件给了我们很大的启发:挂面干燥的理想模型是什么?有什么样的规律?基于什么样的机理?通俗来讲,挂面的水分是怎样从挂面里面跑出来的?是匀速的?还是梯度的?这是一个非常重要的课题,不仅是节约能源的问题,还可以节约成本、减少污染、绿色环保。而在此之前,对烘房气象要素变化及挂面内部水分动态变化的结果并没有一个微观描述,没有人对此进行过研究。” /p p   “但是,谁来做呢?” 魏益民教授说:“这其中涉及了热能与动力工程、环境科学、气象学、食品干燥技术等学科,这些都不是我的特长。”碰巧的是,在一次国际会议上,魏益民教授偶遇了两个合适的人才,一个是做微型传感器的,一个是做粮食干燥的,并将他们引进到研究所,开始了相关的研究。 /p p   为了不造成太大的浪费,他们放弃了建造模拟烘房进行节能试验的研究,而是选择先进行微观模型研究,然后再到车间放大。基于此,该课题组为解决模拟条件,辗转寻找合适的仪器,并进行自己加工改造。具体来说,在现有的恒温恒湿箱的基础上,他们添置了风扇,配置了可以自动记录重量的天平等,最后将这些仪器组合在恒温恒湿箱里,并且集成到电脑里操作和结果显示,做成一个由电脑控制的可以自动进行水分含量在线控制的系统,取名为“食品水分分子技术平台”,并申请了发明专利。 /p p   “食品水分分析技术平台”将整个干燥过程和水分检测过程自动化,实现了过程控制、在线监测、数据记录、数据输出一体化,并为其它设备的在线(或准在线)设计了接口,为深入研究和系统地观察挂面的干燥过程提供了可能和相关实验平台。基于此平台,魏益民教授研究了挂面在不同温湿度条件下的干燥曲线,最终以最短的时间研究了什么干燥条件是最节能的干燥工艺。相对于常规方法,该平台可以自动记录,自动绘图,不仅减少了工作量,还实现了动态观察。据悉,在此平台研究的基础上,金沙河面业烘房能耗节约达22%-23%。 /p p span style=" COLOR: rgb(255,0,0)" strong   三方共合作,助力食品干燥模型的建立 /strong /span /p p   由经验到理论,从现象到机理,魏益民教授的研究在不断深入。“解决怎么干燥最合理之后,下一步就要研究水分是怎样跑出来的过程问题。” 魏益民教授谈道,低场核磁技术是研究食品中水分存在状态及运动轨迹的有效手段,而要开展更进一步的研究,首先要解决的便是仪器的问题。 /p p   讲到这儿的时候,魏益民教授给我们讲述了一个非常精彩的三方合作共赢的故事。在这个故事中,纽迈分析和金沙河面业都非常积极,给予了很大的支持。据介绍,鉴于当时研究的需要,魏益民教授需要一台100多万的低场核磁仪器,于是找到了纽迈分析的负责人杨培强。最终,魏益民教授、纽迈分析以及金沙河面业在技术、仪器及经费等方面达成合作,三方按照一定的比例共同为这台低场核磁仪器“买单”。这件事情中,令魏益民教授没想到的是,纽迈分析不仅提供了仪器,还提供了一定的研发经费。这也是他对纽迈分析特别“点赞”的地方。魏益民教授说:“我不仅筹到了仪器和科研经费,更重要的是获得了一个捷足先登的学术平台。” /p p   将低场核磁技术引入到食品水分分析技术平台后,魏益民教授开始了系统的研究。首先,根据研究的需要,魏益民教授在纽迈分析的帮助下对仪器进行了改造。“我们要做成在线仪器,称之为‘on-line’,首先要解决的就是把环境引到探头里面,同时保证遇冷空气时不结露。此外,还要在恒湿箱侧面做了微型取样洞等。” /p p   基于此,魏益民教授开展了多方面的研究:挂面在干燥过程不同阶段的水分状态 挂面干燥过程中的水分运移规律 还进一步研究了不同形状(圆和方)面条的水分迁移规律等。这其中,最令其自豪的一件事情就是硕士生在J. of Food Engineering上发表的文章《Study on the Water State and Distribution of Chinese Dried Noodles during the Drying Process.》。改论文投稿不到两周即被接受,一个月即发表,并被编辑点评具有数个亮点:方法学上创新,包括申请专利的食品水分分析技术平台以及核磁技术的应用;采用油脂包被的方法有效减少噪音、增加信号强度,利用低场核磁成像技术可以清楚地研究挂面的收缩界面;研究了直径2-3mm挂面中水分的迁移规律;将扫描灰度图的信号数字化,趋势和规律更清晰,更有利于工业应用等。 /p p   通过低场核磁技术的应用,魏益民教授课题组不仅揭示了挂面干燥过程中水分的迁移规律,还探究了在工业上的应用。“工业应用的前提是寻找理想的干燥曲线,而理想的干燥曲线即是在保证质量、产量、能耗三者平衡的前提下的一种干燥模型,是工业化的科学依据,且最经济、最环保、最有效。这也是我们最终的目的。”谈到这,魏益民教授还特别强调,“只有得到数学模型才能智能化。” /p p   基于“食品中水分分析技术平台”,魏益民教授与纽迈分析的合作项目“智能物料干燥分析系统”就特别体现了智能化。据介绍,智能物料干燥分析系统由低场核磁共振成像及分析系统,温度、湿度、风速动力控制系统,自动重力测定系统,迁移观察系统,显示和运算系统组成,具有自动绘制物料干燥、挥发、吸附等过程特性曲线等功能,极大提高了研究效率。据悉,该平台也在为未来近红外监测模块开发做准备。 /p p   最后,魏益民教授还特别指出,“当前,中国大多数食品制造业的工艺考控制还停留在经验层面,我们建立的这个‘食品水分技术分析平台’不仅可以对接核磁,还可以对接气质;不只是针对食品领域,还能够进行中药材、木材、挥发物、种子等多领域的研究。” /p p span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai"    strong 后记: /strong 采访中我们得知,魏益民教授先后上过四所大学,专业涉及了农学、质量分析控制,甚至项目管理,其研究方向更是横跨了多个学科。为了专心科研,他毅然辞掉西北农林科技大学副校长职务,一手创建中国农业科学院农产品加工研究所。魏益民教授自定义为开拓者,他说,“我最大的功劳就是留下了近100个学生,建立了中国唯一一个小麦和小麦制品研究的全方位平台。” /span /p p span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai"   对国产仪器,魏益民教授也有着自己的情怀。在研究过程中,其课题组不仅亲自进行仪器的改造和集成,而且及时地把对仪器的建议反馈给合作伙伴。魏益民教授还特别提到,外国的仪器设备往往不是某一个仪器设备企业研究出来的,很多都是某一科学家在研究过程中的成果,只是由他们及时地产业化了。这种机制值得我们学习。 /span /p
  • 全国耕地质量信息化工作推进会召开,托普云农贡献数字耕保智慧
    “藏粮于地,藏粮于技” 粮食生产根本在耕地,出路在科技。7月27至28日,全国耕地质量信息化工作推进会在南浔召开。农业农村部耕地质量监测保护中心主任谢建华,农业农村部耕地质量监测保护中心总农艺师马常宝,浙江省农业农村厅二级巡视员朱勇军,市人大常委会副主任胡国荣,市农业农村局局长张云威,副区长卫良,各省(自治区、直辖市)耕地质量监测保护机构相关负责人出席会议。浙江托普云农科技股份有限公司(以下简称“托普云农”)作为企业代表应邀参会,并作《信息化赋能耕地质量监测保护》专题报告。托普云农技术负责人作主题报告现场参观,绿色农田建设成效凸显会议期间,与会人员实地参观了由托普云农技术支持的善琏镇皇坟村绿色农田、浙江省“浙农田”、“浙农优品”等数字化应用场景。与会领导、专家一行实地考察皇坟村绿色农田,托普云农董事长陈渝阳陪同并作介绍皇坟村绿色农田围绕建设标准、生产效率、科技含量、智能程度、质量效益“五高”集成的总体目标,通过田间应用智能农情监测系统、智能灌溉系统、无人整地装备、植保无人机等新装备、新技术,全面感知区域农业产业发展状况,并在现代化农业数字中心展开多维数据分析,打造农业种植标准化方案和专家知识库,实现虫情监测与绿色防控、农田灌溉与排水、智能农机与无人机飞防、品种选育与质量安全追溯的科学化,耕地利用效率和粮食生产效益不断提高,逐渐形成了可普及推广的绿色农田增收新模式。与会领导、专家一行参观皇坟村现代化农业数字中心在浙江,围绕农田政府管理和服务主体重要需求,托普云农全资子公司——浙江森特还支撑建设了“浙农田”数字化应用场景,以粮食生产功能区“非粮化”整治子场景为突破口,打造粮功区管护、农田建设管理、耕地质量管理、农田服务等应用。自上线以来,累计服务26万次,完成高标农田上图入库1878.53亩,粮功区整治优化225.7万亩,为保障全省粮食安全提供了坚实支撑。托普云农全资子公司——浙江森特技术支撑的“浙农田”数字化应用场景科技赋能,夯实“耕”基筑牢粮仓粮安天下,地为根基。要把中国人的饭碗牢牢端在自己手中,守住“谷物基本自给、口粮绝对安全”的国家粮食安全战略底线,前提是保证耕地数量稳定,重点是实现耕地质量提升。新时代新征程上,托普云农坚持科技赋能,激发耕地质量保护工作创新动力。一方面,积极参与《耕地质量信息分类与编码》、《耕地质量长期定位监测点布设规范》等相关行业标准修订、报批与发布工作,为规范开展耕地质量监测保护工作提供技术依据。另一方面,与农业农村部耕地质量监测保护中心开展全面战略合作,依托各自优势,围绕耕地质量监测保护数字化发展方向、耕地质量监测保护数字化管理试点示范、耕地质量监测保护数字化相关科研课题等展开深入研究。托普云农与耕保中心开展全面战略合作耕地保护是一个系统工程,为了切实保障和提升耕地质量,托普云农充分挖掘数字技术利用潜力,通过在各省市布设耕地质量综合监测点,构建集耕地质量信息采集存储、监测预警、分析评价、服务保障等功能于一体的省、市、县三级贯通的耕地质量保护大数据平台,实现耕保工作的信息化、智能化。通过建设适宜耕作、旱涝保收、高产稳产的高标准农田,实现耕地质量和利用效率提高。通过研发土壤三普专用工具、土壤理化性状分析仪器,打造从勘察、规划到设计、施工的全栈式智能土壤样品库,配合土壤检测调查工作开展,助力粮食安全与生态环境安全。托普云农打造的耕地质量保护大数据平台土壤三普专用科学仪器当前,我国人多地少的国情没有变,耕地“非粮化”、“非农化”问题依然突出,耕地保护任务仍然艰巨。托普云农始终秉持“用科技改变传统农业,用服务缔造美好生活”的使命,努力构建智能、高效、规范、协同的立体化耕地质量监测保护格局,力求全面精准高效做好数字耕保工作,为耕地质量信息化建设和国家农业发展贡献更多的智慧与力量。
  • 科学岛团队发展可视化快速检测多菌灵残留新策略
    近期,中科院合肥研究院固体所能源材料与器件制造研究部蒋长龙研究员团队,在基于光致电子转移的比率荧光传感体系,用于快速可视化定量检测环境和食品中多菌灵残留研究方面取得新进展。相关研究成果发表在国际分析领域TOP期刊Analytical Chemistry上。   多菌灵是一种苯并咪唑类农药,具有广谱杀菌特征,在农业生产中应用广泛。但多菌灵在自然界中降解速度较慢,其残留随呼吸、皮肤吸收或误食进入体后,药物毒素会对肾脏造成破坏,甚至导致肾功能受损、精神恍惚等中毒症状,严重危害消费者安全。目前,国内外用于多菌灵残留检测的主要分析方法仍然局限于实验室仪器及免疫分析法等,这些方法通常存在成本高、操作复杂、耗时长等问题。因此,发展快速、低成本、特异性强、灵敏度高的多菌灵检测新方法具有非常重要的意义。   鉴于此,研究团队基于光致电子转移(PET)机理建立了简单、高效、可靠的比率荧光传感体系,并开发了新型便携式传感平台用于多菌灵的快速可视化定量检测。该传感器由超薄石墨氮化碳纳米片(g-C3N4 nanosheet)和罗丹明B(RB)构成,多菌灵通过静电作用与氮化碳纳米片反应,并由光致电子转移引发氮化碳纳米片的蓝色荧光猝灭,而罗丹明B橙色荧光保持不变。传感器通过由蓝到紫的灵敏荧光色度变化,实现对多菌灵的快速可视化响应及读数检测,检测限(LOD)低至5.89 nM,远低于国家最大残留标准。此外,借助3D打印技术及智能手机颜色识别器,研究团队设计的便携式智能传感平台成功应用于实际样品中多菌灵检测,并表现出良好的抗干扰能力,为农药残留现场高灵敏度快速检测提供了新策略。   上述研究工作得到了国家重点研究与发展计划、国家自然科学基金项目、安徽省重点研究与开发计划的支持。图1. 比率荧光传感器快速可视化定量检测多菌灵残留的机理示意图。图2. (A)便携式多菌灵检测传感平台设计与基本操作流程;(B)荧光颜色对不同浓度多菌灵的响应;(C)传感平台操作界面;(D)R/B比值与多菌灵浓度的线性关系。
  • 化学所印刷微生物可视化检测芯片方面取得进展
    细菌、病毒、真菌等与生命健康相关。临床常用的细菌检测方法是平板计数法,需要将菌液培养1-2天,操作繁琐,费时费力,亟待发展快速灵敏的细菌检测新方法,这是纳米生物检测领域的重要目标之一。中国科学院化学研究所绿色印刷院重点实验室宋延林课题组在纳米光子结构的印刷制备、光学性质调控、机理研究和生物检测应用等方面取得了系列进展(Angew. Chem. Int. Ed., 2021, 60, 24234;Chem. Rev., 2022, 122, 5, 5144–5164;Matter, 2022, 5, 1865-1876;Adv. Mater. Interfaces, 2022, 9, 2102164;Sci. Bull., 2022, 67 , 1191–1193;ACS Nano, 2022, 16, 10, 16563–16573)。科研人员利用绿色印刷技术精确地控制纳米光子结构的组装过程,通过周期性地排列结构单元实现了显著的光子共振增强效应,为超灵敏可视化检测生物标志物提供了新途径。近日,该课题组将一维纳米结构的光学信号放大作用与蒸发过程中毛细力驱动的颗粒预富集相结合,设计出快速超灵敏的微生物检测芯片。研究以聚苯乙烯微球悬浮液为墨水,在基底上印刷制备了大面积的一维纳米光子结构,并利用聚苯乙烯微球表面大量的羧基高效偶联抗体,特异性地识别待检测样本中的致病菌。研究发现,将毛细力诱导的咖啡环效应引入微生物检测,可在基底上对目标病原体进行预富集,提高检测效率。除了捕获细菌,纳米光子结构还具有强的光场局域能力,可显著增强细菌的散射光信号,提高检测灵敏度,能够在单细胞水平上对其物理特征如生理环境、活性、繁殖状态进行可视化分析。进一步,研究实现了连续监测水、血清、尿液以及蔬菜等样本中的细菌情况。这种生物检测芯片制备简单、成本低,能够结合普通的商业显微镜或者手机直接获取检测结果,在医疗诊断、食品安全、环境监测和农业等领域具有广阔的应用前景。相关研究成果发表在Advanced Materials上。研究工作得到国家自然科学基金、科技部、中科院和北京市的支持。基于一维纳米光子结构生物芯片快速、超灵敏检测细菌感染
  • 食品安全检测技术发展方向:快速、智能、可视化 —访中国检验检疫科学研究院首席专家/副院长张峰
    仪器信息网讯 食品安全关系每个人的健康与生命安全。随着我国经济总量与居民生活水平的提高,国家对食品安全工作也提出了更高的要求。2021年是“十四五”开局之年,未来,我国食品安全监管方向主要有哪些?食品安全检测技术发展又有哪些新方向? BCEIA期间,仪器信息网特别就以上问题采访了中国检验检疫科学研究院首席专家/副院长、市场监管总局食品安全抽检监测秘书处秘书长、国家科技奖获得者张峰。中国检验检疫科学研究院首席专家/副院长市场监管总局食品安全抽检监测秘书处秘书长国家科技奖获得者 张峰仪器信息网:今年的食品安全风险监控高峰论坛的主题为“面向绿色未来的食品安全”,请您谈谈,您心目中的“面向绿色未来的食品安全”是怎样的?在如今的新发展阶段、新发展格局下,我国食品质量与安全监管发展方向主要有哪些?张峰:食品安全是关系到国计民生的重大问题。新时代下,我们要严格落实总书记提出的“四个最严”要求,通过发展新技术,构建面向未来的绿色食品安全监管体系和技术体系。所谓的绿色食品安全,首先要做到源头“绿色”,即食品的种/养殖环境应保证生态友好;另外,从全产业链来讲,不管从种/养殖到加工流通,还是最后到餐桌,都要实现绿色的目标。除了生产流通环节外,监管检测方面也应达到绿色要求。检测过程应尽量减少有机试剂的使用,实现技术的绿色化、检测环境的友好化。在保证食品安全的同时,保护生态环境、提高技术安全,从而真正落实总书记“建设美丽中国,努力走向生态文明新时代”的要求。我国食品安全监管的未来发展,会聚焦智慧监管、事前监管,实现食品监管的关口前移,形成全链条集约化、智能化、快速精准化的监管模式。同时,加强冷链食品储运过程风险监测和防控,完成非食用物质名录的制定,加强对特殊食品的监管。仪器信息网:随着社会经济的不断发展,对于科学仪器的要求也越来越高。您认为,未来,我国食品质量与安全相关检测技术应当朝哪些方向发展,才能更好地贴近国家发展总体规划?张峰:近几年分析科学以及其他相关基础科学有了很大发展和进步,这些先进的技术同时也被应用到食品安全监管及检测技术方面。首先,在智能化方面。目前食品生产、检测、风险分析技术已经逐渐智能化,未来食品安全检测将继续在这方面深入延伸。例如,在了解所有生产产品的基本数据基础上,可建一个庞大的数据库,无论是哪个产地食品,通过数据库即可判断它的基质组成、脂肪和糖等成分含量信息,这样在开发检测方法时,就可以智能推荐前处理技术、仪器分析手段和分析方法等,从而实现标准化。第二个方面是可视化。目前实验室的分析检测大部分利用各种光谱、色谱、质谱等技术,但这些技术得到的检测数据往往非常枯燥,不能直观地反映出食品中有害物质的具体分布和含量变化情况。而目前的一些成像技术,如光学成像技术、光谱成像技术等,可以得到可视化的检测数据。尤其是最近迅猛发展的质谱成像技术,可以让检测变得更直观。例如,在检测动物性产品时,通过质谱成像可以很直观的看到各个部位的成分分布以及它们的动态变化规律,这为食品安全监管提供了很好的帮助。另外,快检和现场检测技术仍然是未来发展的大方向。随着生活水平的提高,人们对食品安全要求越来越高,采购时都希望能买到安心、放心的食品。这就需要在农贸市场、超市、田间等进行现场快速检测,第一时间把风险遏制住。因此,一些快检技术如胶体金技术、拉曼技术、小型质谱技术、各种便携光谱技术等仍是未来发展的重要方向。不过这些技术可能需要和一些基础数据库相结合,才能比较准确的做出判定。此外,组学技术应用到食品风险分析,特别是未知风险的判定以及加工过程的风险判定,也是目前食品安全检测大的发展方向。仪器信息网:请您介绍下,当前我国食品质量与安全行业相关前沿热点问题有哪些?基于此,您团队聚焦了哪些研究方向?取得了哪些最新的研究成果?张峰:首先是快速检测技术。目前我们团队在做一些快检技术的研发工作。在快速、高选择性的质谱离子源研发方面,已经取得了突破,并在国内外发表了文章,且申请了专利。该成果主要是将免疫、分子印迹等一些选择性技术和一些新材料集成到离子源基板上,从而提升质谱离子源的选择性。这等于将分离过程集成到离子源上,而前端不再需要色谱,从而实现质谱直接进样的快速检测。第二方面是关于未知风险的侦查工作,这也是目前很重要的命题之一。我们知道,化学性食品风险物质,仅有CAS标号的就已经超过1.4亿个,而纳入监管目录的只有2000多种,且新的化学有害物质每天都在增长,这些物质可能以各种方式污染食品,比如环境污染,或者是以盈利为目的的故意添加等。然而这些物质如何被发现则是个重大命题。我们团队以食品中化学性有害物为研究对象,按照结构对其进行分类,通过对它们质谱裂解行为的研究和总结,得出同类物质质谱裂解的独特规律,并筛选出特征离子碎片作为该类化合物的标志物。以此实现对实际样品中具有相似结构的同类新风险物质的快速精准侦查。目前该技术已经应用到食品安全抽检监测中。成果在2019年获得了国家科技进步奖的二等奖。第三方面主要是食品组学的研究,组学技术不仅能用于产地和品种的真伪识别,也可用于食品加工过程的风险判定。虽然这种风险判定可能比较复杂,但利用组学技术可以尽可能多的得到产品的信息,然后通过PCA或其他化学计量学技术找到特征标志物,从而反映它在加工过程当中出现的新风险。详细内容见:
  • 万深发布万深PhenoGA-F田间作物表型分析测量仪新品
    万深PhenoGA-F田间作物表型分析测量仪Instrument for Measuring plant phenotype — Model PhenoGA-F一、概述:基因型、表型和环境是遗传学研究的铁三角。表型(性状)是基因型和环境共同作用结果,而基因型与表型之间有着多重关系。研究者用测序和基因组重测序来评估等位基因差异定位数量性状等已变得很普遍,但其需大量性状数据来佐证。然而这类分析测量的结果受人员、工具和环境等的干扰很大,还会损伤到植物。故迫切需要高效、准确的万深PhenoGA-F田间作物表型分析测量仪来做可视化的精确数据分析和表型测试,如测试对压力和环境因素的表型反应、生态毒理学测试或萌发测定、遗传育种研究、突变株筛选、植物形态建模、生长研究等。二、主要性能指标:1、万深PhenoGA-F田间作物表型分析测量仪是顶视版本,在明亮的田间环境下,由顶视的超大变焦镜头自动对焦2410万像素的佳能EOS单反相机直联电脑获取植物顶视的RGB彩色图,并做自动分析。2、可获得植物在不同生长阶段的表型数据有:投影叶面积及其差异值、投影叶片长和卷曲度、叶片数、叶冠层的构型数据、精准的茎叶夹角,叶冠层随时间改变的相对生长速率、叶色平均值及其对表征的贡献评估等。可用其所配的自动测高仪来自动测量和记录作物的植株高。具有分析特性如下:1)常规分析:拍摄分析范围120cm*80cm,可变焦调小视野至30cm*20cm,适合对各类作物在60cm高度内时的表型分析。分析投影外接圆直径及面积,外周长,拟合椭圆主副轴及偏角,凸包内径、面积及周长,植株高(由便携式植株自动测高仪实现,测量误差≤±0.25cm)、宽,最小外接矩形长、宽,植株紧实度。2)顶视的表型分析:叶冠直径、叶冠层面积、叶冠层占空比、叶片分布紧密度等(冠层尺寸的测量误差≤±0.2cm),叶片数(自动计数+鼠标个别修正),叶片投影面积及其动态变化,叶片颜色,果实外观品质、花形和花色等,并可编辑。3)颜色分析:RGB、LAB颜色值,具有叶片颜色自动矫正分析特性(可按英国皇家园林协会RHS比色卡2015版来自动比色)。可按指定颜色数进行聚类分割,并统计颜色分布及面积占比。4)生长分析:作物叶冠绝对生长、相对生长曲线,相对生长趋势。5)批量化精准测量茎叶夹角或分支角(真实夹角重复测量误差≤±1.0°)。6)其它:不同生长时期自动批量化处理分析,多植株网格分析,直线、角度等几何测量,各测量结果可编辑修正。3、可接入条码枪来自动刷入样品编号,具有按条码标识跟踪分析的特性,各项分析数据和标记图片可导出。自动分析(约1个样品 /分钟)+鼠标指示测量或修正。三、标配供货清单:1、折叠式可拖带的田间表型拍摄架(重12.8kg) 1套2、夹持式电脑放置平台(重2.2kg) 1套3、自动对焦2410万像素的佳能EOS单反相机 1套4、PhenoGA-F田间作物表型分析测量仪软件U盘 1个5、PhenoGA-F田间作物表型分析测量仪软件锁 1个6、叶色色彩矫正板+尺寸自动标定板 各1块7、标定板升降支撑架 1付8、手持式条形码阅读器 1付9、分枝角测量用掌式便携背光板 1付10、激光测距仪1台/测距仪夹1付/手机固定夹1付/碳纤维2米伸缩杆1付/横向标示杆及螺钉各1个/反射垫1张(送内六角扳手1个/便携黑筒1个/卷尺1把,需手机扫测高仪的二维码下载APP登入使用)11、强光遮挡用塑料布 1张12、品牌笔记本电脑(酷睿i5 九代以上CPU/8G内存/256G硬盘/14”彩显/无线网卡,Windows 完整专业版)1台 选配:1、可选配真正3D成像的手持式扫描仪,以获得植物真3D模型。2、可选配侧视拍摄组件,以做骨架和株形分析:骨架长度,分叉数(分枝数、分节数),茎秆分节数,分节长、粗等。3、可选配红外热成像相机(分辨率 384*288像素,测温范围-20-150℃,测温精度为最大测温范围绝对值的±2%),以测定叶温和叶温分布。4、可选配近红外成像相机(NIR),以定性分析植物叶片水分分布情况。5、可选配RootGA根系动态生长监测分析仪,以分析植株根系的胁迫响应等。创新点:PhenoGA-F田间作物表型分析测量仪是在田间做顶视分析的版本,由顶视的超大变焦镜头自动对焦2410万像素的佳能EOS单反相机直联电脑来获取作物顶视的彩色图,进行自动分析。可获得植物在不同生长阶段的表型数据有:投影叶面积及其差异值、投影叶片长和卷曲度、叶片数、叶冠层的构型数据、精准的茎叶夹角,叶冠层随时间改变的相对生长速率、叶色平均值及其对表征的贡献评估等。可用其所配的自动测高仪来自动测量和记录作物的植株高。 万深PhenoGA-F田间作物表型分析测量仪
  • 自带“可视化功能”的成像技术,让你的分析更有“深度”
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong span style=" text-indent: 2em " 仪器信息网讯 /span /strong span style=" text-indent: 2em " 基质辅助激光解吸电离飞行时间质谱成像技术(MALDI-TOF Imaging),作为直观反映组织器官中分子水平化合物的空间分布与变化的可视化方法,目前已在基础与临床医学研究中受到广大科研工作者的关注。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 岛津的成像质谱显微镜(Imaging Mass Microscope, iMScope i TRIO& nbsp /i ),前端是 strong 搭载高分辨光学显微镜的大气压基质辅助激光解吸电离源(Atmospheric Pressure -MALDI) /strong , strong 后端配置离子阱和飞行时间串联质谱仪(IT-TOF)。 /strong iMScope i TRIO& nbsp /i 是光学与成像质谱分析完整融合的独特技术,拥有领先的5μm高空间分辨率,可进行高精度多级质谱结构解析,为未知物的结构解析提供丰富的碎片信息,是具备高端性能的革新性分析系统。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 成像质谱分析保留样品组织的位置信息的同时,可以直接使用质谱仪测定生物体分子和代谢物,既可以对样品进行形态学上的细微观察,也可以得到样品上特定部位的化学信息。因此,除了在医学和药学领域中的应用外,近年来在农业、食品安全、中药、环境以及特殊类型样品中也得到了广泛的应用。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 岛津公司 strong 于2014年推出成像质谱显微镜 iMScope i TRIO& nbsp /i 以来,在诸多领域发挥其独有的高清晰度成像、光学图像融合、定性定位分析的特长 /strong 。本文介绍了岛津日本合作实验室 strong 大阪大学Shimma教授基于iMScope i TRIO& nbsp /i 在领域拓展方面开展的部分工作 /strong 。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " br/ /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 1.姜黄素在姜黄干样品中分布的可视化分析:通过观察轴向和径向切片,对姜黄素的分布进行了详细的分析。发现姜黄具有非常规则的内部结构,而姜黄素就被封闭在管状结构中。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 229px " src=" https://img1.17img.cn/17img/images/202006/uepic/8836d4b4-9fea-4393-b991-a4ed888b4e16.jpg" title=" 1.png" alt=" 1.png" width=" 600" height=" 229" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " strong span style=" text-align: justify text-indent: 2em " 轴向切片中姜黄素具有线性分布特征,具有管状结构分布在植物体内的可能性 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 2em " br/ /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2.芦笋中抗高血压有效成分Asparaptine的分析:使用iMScope i TRIO /i 对芦笋中的Asparaptine 进行了定位分析。Asparaptine的分布方式是从中心向外扩展,从下端向尖端扩展。同时在鳞片和维管束周围分布有大量的Asparaptine。通过借助MALDI-MSI技术,我们成功实现了对一种此前尚不明晰其分布的物质的详细定位信息的分析和确认。 & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 388px " src=" https://img1.17img.cn/17img/images/202006/uepic/ef44e6ca-ea8c-42a4-9efa-fa1f77260e78.jpg" title=" 2.png" alt=" 2.png" width=" 600" height=" 388" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " strong 芦笋的尖部、中部、下端和鳞片中的Asparaptine 分析 /strong /p p style=" text-indent: 2em line-height: 1.75em " strong br/ /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 3.果蝇质谱成像方法建立以及脑部GABA成分的空间分布:首次对果蝇这种特殊样品建立了成像方法,可应用于昆虫体内杀虫剂成分可视化分析。使用上述方法,对果蝇脑部的γ─氨基丁酸(GABA)分布进行可视化,为神经递质的研究提供更可靠的空间分布信息。 /span /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 218px " src=" https://img1.17img.cn/17img/images/202006/uepic/59dd0c6e-d0c9-42b9-8093-e5992653b81d.jpg" title=" 3.png" alt=" 3.png" width=" 600" height=" 218" border=" 0" vspace=" 0" / & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /p p style=" text-align: center text-indent: 2em line-height: 1.75em " strong 给药后的果蝇腹部检测出大量吡虫啉成分 /strong & nbsp & nbsp & nbsp & nbsp /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 399px " src=" https://img1.17img.cn/17img/images/202006/uepic/7de7f4fa-d0e3-435c-9432-fcba56308d4c.jpg" title=" 4.png" alt=" 4.png" width=" 600" height=" 399" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp & nbsp strong 果蝇脑部GABA成分的分布 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " br/ /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 4.马毛中药物成分的直接检测:通过负离子模式分析,成功在马毛中检测出目标药物。给药后的马毛样本中,在距毛囊16.48 mm 位置处观察到较强的药物信号。根据马毛的平均生长速度。可推算出给药时间,大约在24-25天前。由于磷酸酯可在体内迅速代谢,直接在毛发中检测到未变化药物同样是一项十分重要的成果。 /span br/ /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/010bad1f-4e37-4900-b7b8-284a581772bf.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " strong 给药后的马毛中DexaSP 分布检测结果 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " iMScope i TRIO& nbsp /i 通过叠加不同检测原理的图像进行分析,为成像分析提供了强大的工具,并提高研究水平。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 基于此,2020年7月9日, strong span style=" color: rgb(0, 112, 192) " 岛津 /span /strong span style=" color: rgb(0, 112, 192) " span style=" color: rgb(227, 108, 9) " strong “镜质合璧,还原真实” /strong /span strong 新品发布会 /strong /span 将在仪器信息网举办,届时岛津将携 strong 新一代iMScope 成像质谱显微镜产品首次与中国用户见面 /strong 。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 届时尽请关注! /strong /p p br/ /p
  • 打造高标准农田建设古林样板 夯实宁波现代农业发展基础
    宁波,地处东南沿海,水网纵横交错,是典型的江南水乡兼海港城市。改革开放四十年来,宁波农业现代化步伐不断加快,尤其是近年来,宁波高度重视现代农业发展,打造高标准农田,建设数字乡村,融合城乡发展,实现从传统农业到高效生态农业进而向绿色现代农业发展的历史性跨越,真正营造了农业强、农村美、农民富的现代农业新面貌。 提到现代农业发展,不得不说的就是高标准农田的建设,这是保障国家粮食安全、实现乡村产业振兴、推动农业高质量发展的重要支撑。我国多次提出加强耕地保护,大力推进高标准农田建设。2021年开局之年,中央一号文件更是提出实施新一轮高标准农田建设规划,提高建设标准和质量,健全管护机制,争取在 2022年建成10亿亩旱涝保收、高产稳产高标准农田。 在宁波现代农业建设进程中浓墨重彩的一笔莫过于海曙区古林优质高效水稻大田种植数字农业技术集成示范项目。这个由海曙区农业农村局、古林镇农办联合浙江托普云农科技股份有限公司等多家单位联合打造的高标准农田无人农场样板工程项目,充分利用了海曙区古林土地规模化流转的优势,建立起了一套完整的优质高效水稻精准化种植技术体系。 所谓高标准农田建设,应该达到“田地平整肥沃、水利设施配套、田间道路通畅、林网建设适宜、科技先进适用、优质高产高效”的总体目标。而这些在宁波古林的数字大田全部化作现实 ,以“农机可视化、种植信息化、灌溉智能化”等三化为核心,托普云农将虫情监测预警与绿色防控、墒情监测预警与灌溉、农机与无人机设备和新型的物联网、无人机遥感、无人机驾驶等技术结合,通过建设数字化高标准农田,成功解除了制约农业生产的关键障碍因素,抵御自然灾害能力显著增强,农业特别是粮食综合生产能力稳步提高。 在古林数字大田里,随处分布着区块整齐、标准统一的沟渠、道路、田块,还布设了众多智能装备、物联网设施以及无人机等设备,园区围绕数据中心设置了两座小型气象站、5个四情监测站、20套土壤墒情监测点等等,让田间管理智能起来。如果说这些监测设备是“耳目”,那么数据中心就是整个园区的“大脑”他们通过实时的监测和高清拍摄,可以清楚了解到项目园区内的土壤温度、灌溉时间、病虫害等信息,将信息及时传送到数据中心和农户手中,并辅助农户进行科学下一步农事管理决策,实现现代农业新型生产方式。 数字化高标准农田建设让上万亩地实现了全部机械化种植,这是过去的农业发展从未设想过的情景。作为华东地区唯一大田种植数字农业项目、农业农村部建设试点项目之一,截至目前,古林大田数字农业已经能够实现从育苗—耕—种—田间管理—收—烘干的全流程自动化生产加工,成为了浙江乃至整个华东地区重要的水稻大田种植的数字技术推广示范基地。 高标准农田的数字化建设会因不同地区农业发展差异,而有多种模式,而古林大田数字农业项目充分利用了大数据、云计算、物联网等现代信息技术与农业种植传统深度融合,改变了传统的高标准农田应用模式,打造了高标准农田建设的古林样板,有力推动了宁波地区的现代农业发展创新与应用推广。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制