当前位置: 仪器信息网 > 行业主题 > >

高精度液晶显示低温恒温水槽

仪器信息网高精度液晶显示低温恒温水槽专题为您提供2024年最新高精度液晶显示低温恒温水槽价格报价、厂家品牌的相关信息, 包括高精度液晶显示低温恒温水槽参数、型号等,不管是国产,还是进口品牌的高精度液晶显示低温恒温水槽您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高精度液晶显示低温恒温水槽相关的耗材配件、试剂标物,还有高精度液晶显示低温恒温水槽相关的最新资讯、资料,以及高精度液晶显示低温恒温水槽相关的解决方案。

高精度液晶显示低温恒温水槽相关的论坛

  • 【原创】液晶显示恒温槽的操作

    液晶显示恒温槽的操作:1.槽内加入液体介质,液体介质液面不能低于工作台板20㎜。   2.液体介质的选用:   A.工作温度低于5℃时,液体介质一般选用酒精。   B.工作温度5℃—80℃时,液体介质一般选用纯净水。C.工作温度80℃—90℃时,液体介质一般选用水油混合液。D、工作温度在90℃—100℃时,液体介质一般选用油。   3.循环泵的连接:   A.内循环泵的连接,将出液管与进液管用软管连接即可(随机配一根软管)。B.外循环泵进行外循环连接,将出液管用软管连接在槽外容器进口,将进液管接在槽外容器出口。 4.插上电源,开启后板盖“电源”开关,通电后按仪表说明操作。

  • 恒温水槽选购前用户的注意事项

    恒温水槽,从各大学实验室,各类研究所,到各类企业研究科研机构,到处可以看见恒温水槽的身影,是实验室不可或缺的一种仪器。 然而因为用户对于恒温槽市场需求量大,使用普遍,造成很多不是专业研发生产恒温槽的厂家以次充好,跟风生产和销售劣质恒温槽给用户,致使广大用户蒙受经济损失不说,更导致了实验研发阶段出现问题,延误大家的宝贵时间。造成更大的损失。 下面,我们就来讨论一下需要购买恒温水槽时需要注意的事项,恒温油槽的用户在选购之前需要注意的一些问题事前问清楚,免得受到无良商家欺骗, JS误导而造成不必要的麻烦和损失。 低温恒温槽外壳材质和使用的水泵是否有保证。上海乔跃电子有限公司外壳采用金属板,控制箱直接安装在水箱上。旁边有冷凝水管进出水嘴两只,水箱内采用进口优质水泵作为循环动力,解决了温水不匀的弊病,使仪器的控温精度和水的均匀度都能达到较高的要求。 考虑到安全因素,我们规定将高于100℃的恒温槽做成内循环。如根据客户要求改成外循环后,客户应特别注意引出管连接处的牢固性,严防脱落,以免烫伤。有些无良JS使用劣质接口和水管,在使用时很容易发生意外然后又推脱责任。我们乔跃始终以客户体验放首位,恒温槽在生产时严格测试把关,从根本上杜绝此类问题的发生。 恒温水槽,顾名思义,恒温才是其最主要的功能。如果买回一个恒温水槽,结果不能恒温或者温度不稳定,将给客户带来太多麻烦。我们乔跃电子有多年生产恒温水槽的经验,从恒温水槽的加热模块,到恒温水槽的恒温控制模块,在技术研发和加工能力上,都走在行业的前列,温度控制精度最高可达0.005℃。 还有,好的低温恒温槽外观应该很精致。外观也是评判恒温水槽的好坏的重要标准。我们乔跃生产的恒温槽加工精细,做工精美,可以说和劣质产品恒温槽有天壤之别。 以上几点,客户在购买恒温水槽之前一定要了解清楚之后才能购买,知己知彼,方能买到合适自己的仪器。

  • 低温恒温水槽故障处理?

    我有一台低温恒温水槽,PREMA B401L,正常接通电源,设定温度后,按COOLING键随机死机,有高人能帮忙解决吗?谢谢!

  • 低温恒温槽的选择技巧

    一、首先就是要弄清楚水槽的分类。   1.按照恒温水槽的控温范围分类:  可以分为普通恒温水槽,低温恒温槽和超低温恒温槽,普票恒温槽的温度一般是室温以上,低温恒温槽的控温范围一般是-20-100度,超低温恒温操的温控范围一般再-40-100度,这些简单的分类中又以超低温恒温槽的技术含量最高,应用范围也最广泛。  2.按照恒温水槽的容积划分:分为小型的恒温槽,中型恒温槽和大型恒温槽  3.恒温槽的循环方式划分可以分为:外循环,内循环,内外兼具的循环方式  4.按照样式可以分为立式和卧式的按照控温的精度可以分为:一般恒温槽和超精度恒温槽二、根据自己的试验要求可以进行如下的选择:  1. 选择合适容积,一般水槽的大小在5-30l之间,您可以根据您自己的做实验的要求,根据试验的规模来选择使相应容积的水槽,使实验进展顺利。当然您也可以根据您们实验室的规模选一个合适容积的水槽,以备下次试验的使用。  2..选择一个合适的温控范围,一个实验器材的温控范围,在试验的成败与否上面起到很关键的作用,因此你也可以根据试验的要求选择适合的温控范围,当然您若是感觉挑选起来相当的繁琐的话,您也可以买一个温控范围稍微大一些的仪器,因为此类仪器的温控范围大,几乎适合所有的试验的要求,对压缩机的要求也是相当的高,当然此类仪器的价格也相当的高一些.  3.选择合适的控温精度,低温恒温槽的控温精度对试验的成功一样起着至关重要的作用,一般恒温槽的控温精度有±0.1,±0.3,±0.01,±0.05,但是高精度的水槽的控温是±0.002~0.005,±0.005~0.01,超高精度的水槽由于具有精细的温度波动,因此将实验的恒温条件控制的相当的准确,将因温度波动给试验带来的一切环境因素几乎减少为零,因此超高精度的恒温水槽也广泛受到各行业用户的喜爱。

  • 关于电热恒温水槽的性能介绍

    关于电热恒温水槽的性能介绍

    电热恒温水槽是针对医疗卫生、医药工业、生物化学和农业科学等科研和工业生产部门做细菌培养、发酵及其它恒温试验用。具有使槽内温度与均匀、智能控温更精确等特点。亦可作为普通温度计及其它温度测量仪表制造中的定标用途。此外,电热恒温水槽具有内外循环水流的特点,在使用容量在1000ml-5000ml的三角烧瓶,一体化孔板流量计由于其底面积较大以及高度较高,造成水温不均匀现象更加严重,此时对温度均匀度要求较高的情况下,就地温度显示仪有必要加人循环泵强制水流循环以提高水温均匀性。其另外一个用途是利用其具有外循环的特点,用来建立第二恒温场。电热恒温水槽的设备特点:●采用AIS隐藏式恒温方法,温度均匀性可达到±0.1℃。●具有自整定功能,LED高亮数码管显示,清晰直观。设定温度后,仪表自行判断加热所需功率,并显示加热状态,无温度过冲之弊,控温精确而稳定。具有断电自动恢复记忆功能。●循环系统具有过滤功能,防止杂物进入循环系统,更好的保证了电热恒温水槽设备的使用寿命。●循环泵可以把槽内被恒温液体外引,建立第二恒温场。●槽内恒温液可外引,也可在槽内直接进行低温、恒温实验。●内胆采用优质镜面不锈钢材料制成,圆角造型,具备耐腐蚀、耐酸、易于清洁等特点。●采用圆桶式内胆,搅拌更加均匀无死角,可采用槽内部无盘管设计,可以充分利用槽内实验空间。●备有下放液口方便更换介质。http://ng1.17img.cn/bbsfiles/images/2013/11/201311111711_476476_2803766_3.jpg

  • 关于电热恒温水槽的详细应用介绍

    关于电热恒温水槽的详细应用介绍

    http://ng1.17img.cn/bbsfiles/images/2013/11/201311041542_475277_2803766_3.jpg电热恒温水槽是针对医疗卫生、医药工业、生物化学和农业科学等科研和工业生产部门做细菌培养、发酵及其它恒温试验用。具有使槽内温度与均匀、智能控温更精确等特点。亦可作为普通温度计及其它温度测量仪表制造中的定标用途。电热恒温水槽的设备特点:●采用AIS隐藏式恒温方法,温度均匀性可达到±0.1℃。●具有自整定功能,LED高亮数码管显示,清晰直观。设定温度后,仪表自行判断加热所需功率,并显示加热状态,无温度过冲之弊,控温精确而稳定。具有断电自动恢复记忆功能。●循环系统具有过滤功能,防止杂物进入循环系统,更好的保证了设备的使用寿命。●循环泵可以把槽内被恒温液体外引,建立第二恒温场。●槽内恒温液可外引,也可在槽内直接进行低温、恒温实验。●内胆采用优质镜面不锈钢材料制成,圆角造型,具备耐腐蚀、耐酸、易于清洁等特点。●采用圆桶式内胆,搅拌更加均匀无死角,可采用槽内部无盘管设计,可以充分利用槽内实验空间。●备有下放液口方便更换介质。电热恒温水槽的使用技巧:1.打开电热恒温水槽电源开关,电源指示灯亮表示电源接通。2.使用电热恒温水槽时必须加入温水能缩短加热时间和节约用电。3.恒温控制器之刻度,仅作温度对照指示,并非温度批示刻度。4.将电热恒温水槽中的仪表设定到所需要的温度,加热指示灯亮表示电热管之电源接通加热,当温度表上之温度到达所需使用之温度时,稍待数分钟后,既性自动恒温控制。

  • 浅析恒温水浴锅与恒温水槽区别

    浅析恒温水浴锅与恒温水槽区别  实验仪器恒温水浴锅与恒温水槽在加热或使用方法具体有哪些区别呢,下面为大家介绍一下:  恒温水浴锅主要用于对需要加热的样品进行所需某一温度的精确控制,以实现在对不同样品在同一种温控环境下作出比较,或同一样品在不同温度下所呈现的不同状态进行比对。由于恒温水浴锅内的水处于静止状态,所以在不同点会产生较小的温度差异。水浴锅一般用于对三角瓶的加热,在不取下水浴锅盖板的情况下,只能使用容量不大于1000ml的三角烧瓶。  恒温水槽具有内外循环水流的特点,在使用容量在1000ml-5000ml的三角烧瓶,由于其底面积较大以及高度较高,造成水温不均匀现象更加严重,此时对温度均匀度要求较高的情况下,有必要加人循环泵强制水流循环以提高水温均匀性。其另外一个用途是利用其具有外循环的特点,用来建立第二恒温场。  恒温水浴锅和恒温水槽主要区别在于水温均匀性上,水浴锅水温均匀性(≤0.5℃),恒温水槽水温均匀性(≤0.05℃),同时恒温水槽增加了外循环功能,极大的扩展了使用范围。

  • 恒温水槽和恒温水浴的特点及区别

    恒温水槽具有内外循环水流的特点:在使用容量在1000ml-1500ml的三角烧瓶,由于其底面积较大及高度较高,造成水温不均匀现象更加严重,此时对温度均匀度要求较高的情况下,有必要加入循环泵强制水流循环以提高水温均匀性。其另外一个用途是利用其具有外循环的特点,用来建立第二恒温场。 恒温水浴主要用于对需要加热的样品进行所需某一温度的精确控制,以实现在对不同样品在同一种温控环境下作出比较,或同一样品在不同温度下所呈现的不同状态进行对比。由于恒温水浴内的水处于静止状态,所以在不同点会产生较小的温度差异。水浴锅一般用于对三角瓶的加热,在不取下水浴锅盖板的情况下,只能使用容量不大于1000ml的三角烧瓶。 恒温水浴和恒温水槽主要区别在于:水温均匀性上,水浴锅水温均匀性(小于等于0.5C),恒温水槽水温均匀性(小于等于0.05C),同时恒温水槽增加了外循环功能,极大地扩展了使用范围。

  • 【求助】高精度恒温油(水)、低温槽标准测试仪建标名称及其它问题.

    1.烘箱、培养箱、恒温箱应该是对设备内的温度场进行校准,依据JJF1101-2003 《环境试验设备温度、湿度校准规范》来进行,测试设备内温度场的温度偏差温度波动度和温度均匀度三项参数,建标名称可以叫环境试验设备温度校准装置比较合适,这样它就包括了烘箱、培养箱等多种能够提供温度试验环境的设备,多功能温度检定装置是不合适的,如果标准器同时可以测湿度场的话也用这规范,可以测恒温恒湿箱以及试验室的温度湿度进行校准,建标名称就叫环境试验设备温度、湿度校准装置。2.我们还将购置一台:高精度恒温油(水)、低温槽标准测试仪。请问:建标名称怎样填写(如XXX检定/标准装置)?相对规程有几个(好象有四个规程)?谢谢!

  • 【原创大赛】低温恒温水浴槽故障维修

    【原创大赛】低温恒温水浴槽故障维修

    实验室有台低温恒温水浴槽,最近表现不佳,同事反映在使用过程中会有漏电的现象,不敢轻易使用。于是忙里偷闲,决定一探究竟。http://ng1.17img.cn/bbsfiles/images/2014/11/201411191614_523643_1669358_3.jpg 首先运行设备,进行简单的调试,确定故障现象和故障原因。 插上电源,打开设备开关,由于没有电笔,只能以身试电,用手试探性接触机身金属部位,没有出现漏电时产生的那种发麻感觉。设置温度,点击泵和制冷按钮,启动设备,调试设备的制冷性能,泵和压缩机运转正常,水温逐渐往下降,再次接触机身金属部位,也没有发现漏电现象。如此运行多次,都很正常,没有出现故障现象,因此也未能找到漏电原因。比较纳闷,怀疑是天气干燥,产生的静电误认为是设备漏电了。再次询问“触电”的当事人,其确定为设备漏电而非静电。 在确定故障存在的情况下继续调试排查,检查设备的加热功能。设置温度、开泵、启动,此时故障出现了,只要点击“启动”按钮,实验室的漏电保护开关就自动跳闸,进一步证实了故障的存在,并看到了表观现象,此时表现出来的也不是简单的漏电。http://ng1.17img.cn/bbsfiles/images/2014/11/201411191613_523642_1669358_3.jpg 通过“望”“闻”“问”“切”之后,发现在设备外部无法寻求故障原因,也无法对故障进行对症下药,看来中医疗法不行,只能引用西医了,于是决定开膛破肚,寻求病根。 低温恒温水浴槽主要由压缩机进行降温,加热棒对水进行加热升温,通过循环水泵实现水的内部或者外部循环。http://ng1.17img.cn/bbsfiles/images/2014/11/201411191616_523644_1669358_3.jpg 上图是低温恒温水浴槽制冷用的压缩机,其占据了设备几乎一半的体积和大部分重量,通过压缩机上的标签可以看到,该款低温恒温水浴槽使用了1p的压缩机,满水槽的水从18℃下降到3℃大约需要25 min。 由于在前期调试的过程中运行制冷程序未出现跳闸或者漏电的现象,而且水温也下降到了设定温度,因此将压缩机及其控制电路出现故障的可能性排除。http://ng1.17img.cn/bbsfiles/images/2014/11/201411191617_523646_1669358_3.jpg 整个设备的电源输入输出及程序控制部分都集中在上半部分的盒子里。盒子背面为电源、开关、制冷保险和加热保险,见上图。拆开外壳上的螺丝,就能看到其内脏。http://ng1.17img.cn/bbsfiles/images/2014/11/201411191618_523648_1669358_3.jpg 对电路部分进行细致检查,发现各接头连接完好,而且包裹的都很严实,加热棒的棒头和晶闸管也都裹上了胶。结合内部结构进行分析:调试时泵能正常运行,水温显示也正常,控制面板也未发现异常,因此将泵、热电偶和电路板暂且排除在外。每次都是在加热时才出现故障,因此将矛头指向了加热棒。将加热棒的电源剪断,然后重新开机调试,故障消失。找到了故障原因,还需要进一步确认和备件的更换,于是继续拆解。 拧掉固定螺丝,将控制面板从设备上端移走http://ng1.17img.cn/bbsfiles/images/2014/11/201411191619_523649_1669358_3.jpg 加热棒的固定螺丝藏在上端的防水胶里,将防水胶去除干净就能露出庐山真面目了http://ng1.17img.cn/bbsfiles/images/2014/11/201411191621_523650_1669358_3.jpg 要想将加热棒从水槽中拿出来,还需要将水槽中的隔离网拆卸下来,隔离网的拆卸很简单,只要拧下两颗固定螺丝就行。由于水槽较小,而且加热棒贯穿了整个水槽,因此拆卸的时候需要用点巧劲和小技巧,相对而言,安装的时候就轻松很多。http://ng1.17img.cn/bbsfiles/images/2014/11/201411191622_523651_1669358_3.jpg拆下加热棒,故障原因和症结一目了然。购买新的加热棒,安装后,低温恒温水浴槽又恢复了往日的生机。小结:1、此次故障表现出两种不同的症状,同事反映能正常使用,但是使用过程中会出现设备表面带电的现象,而在检修过程中发现设备加热模式不能正常使用,加热时启动设备后漏电保护开关跳闸,分析其原因可能是使用时的水位不同,同事在使用时水位较低,在检修过程中水位高;2、低温恒温水浴槽使用时需要控制水位,尤其在加热模式下运行时,如果水位较低,加热棒的上端会大量裸露在外面,出现空烧的现象,容易损坏加热棒。从拆卸下来的加热棒可以看出,其上端部分颜色异常,而且此次加热棒的损坏部位正位于其上端部分;3、加热棒可以直接从厂家购买也可以找其它厂家定做,各有利弊,如果有版友遇到相似问题可以择优选择。

  • 【求助】请问测粘度的恒温水槽哪家好?

    实验室用乌式粘度计测粘度,要用恒温水槽,大家都用是哪家的,控温好不好,价格大概是多少?标准上要求控温在[size=3][font=宋体]±[/font][font=Calibri]0.05[/font][font=宋体]℃。[/font][/size]

  • 【资料】液晶显示器

    目前相比CRT显示器,LCD显示器图像质量仍不够完善。色彩表现和饱和度LCD显示器都在不同程度上输给了CRT显示器,而且液晶显示器的响应时间也比CRT显示器长,当画面静止的时候还可以,一旦用于玩游戏、看影碟这些画面更新速度块而剧烈的显示时,液晶显示器的弱点就暴露出来了,画面延迟会产生重影、脱尾等现象,严重影响显示质量。 LCD显示器的工作原理 :从液晶显示器的结构来看,无论是笔记本电脑还是桌面系统,采用的 LCD显示屏都是由不同部分组成的分层结构。LCD由两块玻璃板构成,厚约1mm,其间由包含有液晶材料的5μm均匀间隔隔开。因为液晶材料本身并不发光,所以在显示屏两边都设有作为光源的灯管,而在液晶显示屏背面有一块背光板(或称匀光板)和反光膜,背光板是由荧光物质组成的可以发射光线,其作用主要是提供均匀的背景光源。 背光板发出的光线在穿过第一层偏振过滤层之后进入包含成千上万液晶液滴的液晶层。液晶层中的液滴都被包含在细小的单元格结构中,一个或多个单元格构成屏幕上的一个像素。在玻璃板与液晶材料之间是透明的电极,电极分为行和列,在行与列的交叉点上,通过改变电压而改变液晶的旋光状态,液晶材料的作用类似于一个个小的光阀。在液晶材料周边是控制电路部分和驱动电路部分。当LCD中的电极产生电场时,液晶分子就会产生扭曲,从而将穿越其中的光线进行有规则的折射,然后经过第二层过滤层的过滤在屏幕上显示出来。 液晶显示技术也存在弱点和技术瓶颈,与CRT显示器相比亮度、画面均匀度、可视角度和反应时间上都存在明显的差距。其中反应时间和可视角度均取决于液晶面板的质量,画面均匀度和辅助光学模块有很大关系。 对于液晶显示器来说,亮度往往和他的背板光源有关。背板光源越亮,整个液晶显示器的亮度也会随之提高。而在早期的液晶显示器中,因为只使用2个冷光源灯管,往往会造成亮度不均匀等现象,同时明亮度也不尽人意。一直到后来使用4个冷光源灯管产品的推出,才有很大的改善。 信号反应时间也就是液晶显示器的液晶单元响应延迟。实际上就是指的液晶单元从一种分子排列状态转变成另外一种分子排列状态所需要的时间,响应时间愈小愈好,它反应了液晶显示器各像素点对输入信号反应的速度,即屏幕由暗转亮或由亮转暗的速度。响应时间越小则使用者在看运动画面时不会出现尾影拖拽的感觉。有些厂商会通过将液晶体内的导电离子浓度降低来实现信号的快速响应,但其色彩饱和度、亮度、对比度就会产生相应的降低,甚至产生偏色的现象。这样信号反应时间上去了,但却牺牲了液晶显示器的显示效果。有些厂商采用的是在显示电路中加入了一片IC图像输出控制芯片,专门对显示信号进行处理的方法来实现的。IC芯片可以根据VGA输出显卡信号频率,调整信号响应时间。由于没有改变液晶体的物理性质,因此对其亮度、对比度、 色彩饱和度都没有影响,这种方法的制造成本也相对较高。 由上便可看出,液晶面板的质量并不能完全代表液晶显示器的品质,没有出色的显示电路配合,再好的面板也不能做出性能优异的液晶显示器。随着LCD产品产量的增加、成本的下降,液晶显示器会大量普及。

  • 【求助】求薄膜制样机及恒温水槽信息

    造明年计划,想买一台薄膜制样机,制样能满足GB/T 1040-1992(也就是以前的GB/T 13022-1991)就行了,谁能推荐个制取式样质量好的?同时想买个恒温水槽,主要是想低于100℃时槽内上下层温度一致。计划赶得挺急,这两天就要,谁有觉得用着不错的,请推荐一下。[em09502]

  • 【第5季仪器心得】 BWS-20恒温水槽与水浴锅 使用心得体会

    [align=center][font=Calibri][font=Calibri]【第[/font]5季仪器心得】[/font][font=宋体] [/font][font=宋体]BWS[/font][font=宋体]-20恒温水槽与[/font][font=宋体]水浴[/font][font=宋体]锅[/font][font=宋体] [/font][font=宋体] [/font][font=宋体]使用心得体会[/font][/align][img=,690,516]https://ng1.17img.cn/bbsfiles/images/2024/04/202404230859530725_4845_2227357_3.jpg!w690x516.jpg[/img][font=宋体] [/font][font=宋体]关于设备的使用经验:[/font][font=宋体]BWS-10,20型恒温水浴锅的使用[/font][font=宋体]先[/font][font=宋体]检查水浴锅各接线处是否良好[/font][font=宋体]。[/font][font=宋体][font=宋体]检查完毕后,加水于锅内,可按需要的温度加入热水,缩短加热时间。合上开关,接通电源。选择恒温温度。按一下[/font][font=宋体]SET键,使SV屏显示“SP”,“[/font][/font][font=宋体]上[/font][font=宋体]”上升温度 “[/font][font=宋体]下[/font][font=宋体]”下降温度,调节好设定温度时,[/font][font=宋体]需[/font][font=宋体]按[/font][font=宋体]两[/font][font=宋体][font=宋体]下[/font][font=宋体]SET键,回到工作模式。工作结束后,将电源开关关闭,断开电源。[/font][/font][font=宋体] [/font][font=宋体]自己的使用感悟:[/font][font=宋体]在任何时候水必须浸没加热圈和测温探头,严禁干烧[/font][font=宋体]。[/font][font=宋体]如水浴锅长时间不用,应将工作池内水排掉,用软布擦拭干净并晾干,防止生锈。防止腐蚀性液体进入锅内。[/font][font=宋体]这些也纳入了我们的操作规程里面。[/font][font=宋体] [/font][font=宋体]仪器的优点和不足:[/font][font=宋体]整体上设备的外观我们没有保护好,图片中大家看到的腐蚀的问题很严重,主要原因是日常做酸水解法和碱水解法的脂肪。里面用到了乙醇、乙醚、石油醚这些有机溶剂本身也具有腐蚀性。[/font][font=宋体] [/font][font=宋体]总结[/font][font=宋体]总结一些设备的特点:[/font][font=宋体]恒温控制:能够实现高精度的恒温控制,保证实验的稳定性和准确性[/font][font=宋体];[/font][font=宋体]宽温度范围:温度范围广泛,可根据实验需求调节温度,满足不同实验的要求[/font][font=宋体];[/font][font=宋体]大容量设计:有大容量的水槽或水浴锅,可以容纳较多的样品,提高实验效率[/font][font=宋体];[/font][font=宋体]安全可靠:有多重安全保护措施,如过温保护、漏电保护等,确保实验过程安全可靠[/font][font=宋体];[/font][font=宋体]操作简便:设有直观的操作界面和简单易懂的操作指南,方便用户进行操作和调节。[/font][font=宋体] [/font]

  • 真空压力控制技术在低温恒温器高精度温度恒定中的应用

    真空压力控制技术在低温恒温器高精度温度恒定中的应用

    [color=#990000]摘要:针对低温恒温器中低温介质温度的高精度控制,本文主要介绍了低温介质减压控温方法以及气压控制精度对低温温度稳定性的影响,详细介绍了低温介质顶部气压高精度控制的电阻加热、流量控制和压力控制三种模式,以及相应的具体实施方案和细节。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=left][size=18px][color=#990000]1. 引言[/color][/size][/align] 在低温恒温器中,低温介质(液氦和液氮等)温度波动产生的主要原因是沸腾的低温介质顶部气压(真空度)的变化。因此,为了实现低温介质内部的温度稳定,就需要对低温介质顶部的气压进行准确控制。 国内外针对低温恒温器的温度控制大多采用以下三种技术途径: (1)主动控制方式:在浸没于低温介质的真空腔里直接引入加热电路,利用温度计对真空腔温度的实时监测数据,与目标温度值进行比较后来控制加入到加热电路中的电流。 (2)被动控制方式:对低温介质顶部气压进行控制,使低温介质温度稳定。 (3)复合控制方式:复合了上述两种控制方式,在浸没于低温介质的真空腔里直接引入加热控制电路之外,还同时对低温介质上部的气压进行控制。 电阻加热控温方式已经是一种非常成熟的技术,本文将主要针对低温介质顶部气压控制方式,介绍气压控制精度对低温温度稳定性的影响,以及高精度气压控制的实现途径和具体方案。[align=center][img=真空度控制,690,396]https://ng1.17img.cn/bbsfiles/images/2021/12/202112080959307199_6660_3384_3.png!w690x396.jpg[/img][/align][align=center][color=#990000]图1 液氦饱和蒸气压与温度关系曲线[/color][/align][size=18px][color=#990000]2. 气压控制精度与温度稳定性关系[/color][/size] 以液氦为例,液氦的饱和蒸汽压与对应温度变化曲线如图1所示。 由图1可以看出,在很小的温度范围内,上述曲线可以用直线段来描述,所以可以得到4K左右的温度范围内,气压大约100Pa的波动可引起1mK左右的温度波动。由此可以认为,如果要实现1mK以下的波动,气压波动不能超过100Pa。[size=18px][color=#990000]3. 顶部气压控制的三种模式[/color][/size] 低温介质顶部气压控制一般采用三种模式:电阻加热、流量控制和压力控制。[size=16px][color=#990000]3.1 电阻加热模式[/color][/size] 在低温恒温器的恒温控制过程中,电阻加热模式是在低温介质中放置一电阻丝加热器,如图2所示,真空计检测顶部气压变化,通过PID控制器改变加热电流大小来调节和控制顶部气压,将顶部气压恒定在设定值上。从图2可以看出,电阻加热模式比较适合增加顶部气压的升温控温方式,但无法实现减压降温。[align=center][color=#990000][img=真空度控制,690,569]https://ng1.17img.cn/bbsfiles/images/2021/12/202112081000054776_8294_3384_3.png!w690x569.jpg[/img][/color][/align][align=center][color=#990000]图2 电阻加热模式示意图[/color][/align][size=16px][color=#990000]3.2 流量控制模式[/color][/size] 流量控制模式是一种典型的减压降温模式,如图3所示,真空泵按照一定抽速连续抽取低温恒温器来降低顶部气压,真空计、电动针阀和PID控制器构成闭环控制回路,通过电动针阀调节抽气流量使顶部气压准确恒定在设定真空度上。由此可见,流量控制模式比较适合降低顶部气压的降温控温方式,但无法实现增压升温。[align=center][color=#990000][img=真空度控制,690,504]https://ng1.17img.cn/bbsfiles/images/2021/12/202112081000399321_2525_3384_3.png!w690x504.jpg[/img][/color][/align][align=center][color=#990000]图3 流量控制模式示意图[/color][/align] 另外流量控制模式中,真空泵的连续抽气使得低温介质的无效耗散比较严重。[size=16px][color=#990000]3.3 压力控制模式[/color][/size] 压力控制模式是一种即可增压也可减压的控温模式,如图4所示,当采用真空泵抽气时为减压模式,当采用增压泵时为增压模式,由此可实现宽温区内温度的连续控制。所采用的调压器自带一路进气口(大气压),结合真空泵在对顶部气压进行恒压控制的同时,可有效避免低温介质的大量无效耗散。[align=center][color=#990000][img=真空度控制,690,518]https://ng1.17img.cn/bbsfiles/images/2021/12/202112081000533816_3012_3384_3.png!w690x518.jpg[/img][/color][/align][align=center][color=#990000]图4 压力控制模式示意图[/color][/align] 另外,这里的增压方式也可以采用低温介质中增加电加热器来实现。[size=18px][color=#990000]4. 其他实施细节[/color][/size] 在上述三种控制模式实施过程中,还需特别注意以下细节: (1)真空计的选择 真空计是测量顶部气压变化的传感器,是决定低温恒温器温度控制稳定性的关键,所以一定要选择高精度真空计。 目前高精度真空计一般为电容薄膜规,一般整体精度为0.2%。 如前所述,在液氦4K左右的恒温控制过程中,要求气压波动不超过100Pa,及±50Pa,如果对应于100kPa的气压控制,则真空计的精度要求需要高于±0.05%。由此可见,对于温度波动小于1mK的恒温控制,还需要更高精度的真空计。 (2)PID控制器的选择 在恒温控制过程中,PID控制器通过A/D转换器采集真空计的测量值,计算后再将控制信号通过D/A转换器发送给执行器(电动针阀、调压器和加热电源等)。为此,要保证能充分发挥真空计的高精度和控制的准确性,需要A/D和D/A转换器的精度越高越好,至少要16位,强烈建议选择24位高精度的PID控制器。 (3)调压器的配置 调压器是一种集成了真空压力传感器、控制器和阀门的压力控制装置,但真空压力传感器的精度远不如电容薄膜规,控制器精度也比较低。为此在使用调压器时,要选择外置控制模式,即采用电容薄膜规作为控制传感器。 另外,需要特别注意的是,调压器中控制器的A/D和D/A转换器精度较低,因此对于高精度和高稳定性的顶部气压控制而言,不建议采用控压模式,除非采用特殊订制的高精度调压器。[hr/]

  • 【原创】葡萄酒中酒度测定是否需要高精度恒温水浴

    国家标准中规定:葡萄酒中酒度测定值在允许的范围内可以偏差±1%(voL),温度相差1℃,酒度值相差0.2度以下。即使相差4℃,都在酒度许可的范围内。因此,一般葡萄酒厂化验多采用恒温水浴的偏差±0.5℃,化验结果相差不大,完全符合国家葡萄酒中酒度测定要求。 但在省技术监督局对葡萄酒企业进行QS(食品质量安全认证)时,提出必须购买他们经销的高精度恒温水浴,从国家标准的化验要求和企业实际需要出发,是否可以不用购买高精度恒温水浴呢?

  • DCW-2008低温恒温槽

    低温恒温槽性能特点:  ■采用无氟环保制冷技术,符合环保要求。  ■具有自整定智能PID自动调节控制功能  ■采用优质全封闭风冷式压缩机制冷,噪音小。  ■上下限温度报警可设定  ■全封闭风冷式压缩机制冷系统具有过热,过载自动保护  ■具有超温报警系统,确保仪器安全  ■具有断电保护功能,可自动延时三分钟  ■内胆采用优质不锈钢材料  ■槽内冷液可外引,冷却机外实验容器  ■设有外循泵,可建立机外第二恒温场  ■触摸软键可快速设定温度,操作方便  ■采用大频幕液晶显示,方便直观了解工作状态  ■采用模糊控制理论,自动识别设定温度与环境温度之差,确认是否单加热或制冷加热的同时工作,从而达到节能降耗  DCW-2008主要技术参数:  温度范围:-20~100℃  温度波动度:±0.05℃  数显分辨率:0.1/0.01℃  工作槽容积:280×250×140mm  槽深度:140mm  循环泵流量:6 L/min  工作槽开口:235×160mm  排水口:有  净重:35 Kg  包装尺寸:515×450×600mm

  • 【资料】关于仪器采用内存接口的液晶显示模块问题

    摘要:提出了一种采用内存接口的液晶显示模块。该模块是在现有点阵式液晶显示屏上附加一个MCU(Micro-Controller Unit 微处理器)及相关硬件,利用内存与外部控制器进行接口,从而解决了液晶显示统一接口和显示速度的问题。关键词:液晶接口 内存 微处理器 点阵式液晶接口简单,能以点阵或图形方式显示出各种信息,因此在各种电子设计中得到广泛应用。但是,它的接口必须遵循一定的硬件和时序规范,根据不同的液晶驱动器,可能需要发出不同的命令进行控制才能显示数据。而且命令的执行需要耗费一定时间,在系统大量的实时数据的情况下,如果直接控制液晶显示,可能会消耗过多的时间,从而影响数据的处理。因此,由于某种需要必须采用不同的液晶模块,这就需要修改软件。为了解决这些问题,文提出采用内存接口的液晶显示模块,在现有点阵式液晶显示屏上附加一个MCU(Micro-Controller Unit微处理器)及相关器件,利用内存与外部控制器进行接口,从而解决了统一接口和显示速度的问题。 1 系统设计 1.1 设计思想我们知道,人眼有视觉暂留现象,每0.1秒时间内变化一次的影像看上去会认为是连续的,而且只在0.1秒之内变化的影像人眼很难察觉到。根据这一物理现象,我们采用内存与外部控制器接口设计一种液晶接口模块,外部控制器将欲显示的数据直接写入接口内存,根据接口刷新液晶的显示。刷新率在每秒10次以上,就可达到连续显示的目的。当然,刷新率越高人眼就越能感觉图像变化的连续与流畅。 1.2 硬件设计 采用内存与外部控制器接口,具有统一的硬件接口规范。因为外部控制器和模块内的MCU需要同时读写内存,接口内存采用带有BUSY线的2K双RAM IDT 7132,MCU选用常用的AT89C51,液晶模块为市面普及的采用HITACHI公司HD61202液晶控制器的单5V供电的128×64点阵液晶。液晶显示模块的设计必须具备很强的通用性,可以被广泛应用到各种系统中。目前系统一般为3V电平或5V电平系统,因此液晶显示模块的设计也必须同时考虑应用于这两种系统。液晶显示模块硬件结构框图如图1所示。外部控制器将欲显示的数据写入双口RAM,MCU则不断扫描内存,根据内存中的数据进行相应的处理,不断刷新液晶显示屏上的显示。综合考虑液晶和系统操作的时序,AT89C51单片机运行在12MHz时钟下,设计系统的刷新率达到每秒18次。 外部控制器的数据、地址、控制总线通过接插件引入液晶显示模块。因为双口RAM IDT7132的输入输出为TTL电平,BUSY信号为开漏极输出,因此无论是3V还是5V的系统,地址和控制总线可以直接引入。而数据总线因为是双向系统,如果直接与双口RAM连接,在双口RAM输出数据的时候可能会对3V系统造成损害,因此设计一个总线驱动器,采用74LVC245进行总线电平转换。74LVC245在3V供电时,输入5V的电压信号这样就实现了与3V和5V电平系统的接口。双口RAM的BUSY信号是用来标示双口RAM的两个口同时在访问相同的内存单元,而且至少有一个口处于写该单元状态。双口RAM通过仲裁逻辑使后访问该单元的BUSY信号有效,并屏蔽该口的操作,直到没有访问,竞争BUSY信号才变为无效。通过检测BUSY信号可有效地确保内存读写的安全。模块内采用27C040保存16×8的256个ASCII字符点阵的16×16点阵的汉字库,方便用户使用。考虑到液晶背光电流较大,加入了液晶背光的控制,可根据需要开关背光。 1.3 软件设计软件部分涉及接口操作、点阵操作及液晶操作等,这里仅对接口有关部分进行介绍。 1.3.1 接口内存分配 接口内存的分配如表1所示。 表1 接口内存分配表液晶屏幕上共有128×64=8192点,每个点用内存中的一位为0或1来表示点亮或熄灭。在双口RAM中分配0000H~03FFH的内存用来直接与屏幕上的点相对应,称为直接显示映射区。这样,用户只需将欲显示的点阵写入内存中的指定地址,就可在屏幕上指定位置直接显示出来。 另外,为方便使用,还设计了简单的命令接口,分配0400~0507H的空间作为命令接口的内存,具体分配详见表1。其中,0400H~04FEH的内存也作为字符显示映射区,在设置了显示模式后,将欲显示的字符写入该区域的指定地址,即可在屏幕指定位置显示出该字符。 1.3.2 命令接口简介 外部控制器将命令按照预定格式写入命令接口的内存。显示模块的单片机检测到有命令时,首先将命令读出,将命令字地址内容变为00H,并将该命令字最高位置为1写入命令结果地址内,表示该命令正在被执行。当命令执行完后,命令执行的结果(规定最高位为0)写入命令结果地址。这样,外部控制器可以通过检测命令字地址的内容和命令执行结果来确认显示模块当前的工作状态,发布命令。基本命令字如表2所示,当然根据具体应用还可增加如绘制各种图形、填充等的命令字。 表2 命令字及其参数1.3.3 接口模块工作方式 设计了两种显示模式:显示模式1和显示模式2。在显示模式1时,MCU不断扫描显示映射区并检查双口RAM中用户写入的命令。在显示模式2时,MCU不断监测字符显示映射区的变化,将用户写入的字符转化成点阵,写入直接显示映射区,然后扫描显示映射区进行显示。此时MCU只执行改变显示模式或初始化命令。其它的命令一概忽略。这样外部控制器就不需要了解具体的液晶操作,操作液晶像读写内存一样简单快捷,因此外部控制器可以处理大量的实时数据,并进行实时显示。 2 应用实例 液晶显示模块在我们设计的一套蓝牙系统中得到了成功应用,蓝牙模块采用Ericsson Rok 101,主控制器采用TI公司的MSP430F149。通过蓝牙传送的动画和所有控制信息均在液晶显示模块上显示,效果很流畅,达到了设计要求。 本文提出的液晶显示模块采用内存和外部控制器进行接口,具有统一的接口规范。外部控制器将欲显示的内容直接写入液晶显示模块提供的内存接口即可实现显示,不需要直接进行繁复费时的液晶控制和点阵处理操作,有利于控制器对大量数据进行实时处理。目前市面上有大屏幕的彩色液晶采用了类似方案,但价格昂贵。对一般应用来说,本文提出的液晶显示模块具有很强的通用性,而且增加的硬件成本不到单独购买一块点阵式液晶的20%,因此可广泛应用。

  • SSW-420-2S电热恒温水槽的使用和注意事项

    SSW-420-2S电热恒温水槽的使用和注意事项

    1内容1.1操作1.1.1[color=black]在水槽内加水至水槽总高度的1/2~2/3处。[/color]1.1.2[color=black]将电源开关拨“开”处,温控仪面板即有数字显示电源接通。[/color]1.1.3[color=black]打开电源开关后,开关电源指示灯亮,系统才开始工作。。[/color]1.1.4[color=black]超温2[/color][font=宋体][color=black]℃[/color][/font][color=black],报警灯亮,系统自动停止加热。[/color]1.1.5[color=black]设定方法:[/color][color=black]1)按一下设置键,出现 [/color][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111231646049412_7932_1736936_3.jpg[/img][color=black] 用于设定温度值([/color][font=宋体][color=black]℃[/color][/font][color=black])。[/color][color=black]2)再按一下设置键,出现 [/color][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111231646050545_4479_1736936_3.jpg[/img][color=black] 过2秒钟后,自动返回到温度显示,完成设定。[/color][color=black]3)工作按键:按下工作键工作灯亮处于工作状态时,系统才加热控温。[/color][color=black]4)左移键:参数设定光标,按一下,光标循环左移一位。[/color][color=black]5)增加/减少键:增加/减少参数设置位的数值。[/color]6)使用完成后填写SSW-420-2S电热恒温水槽使用记录FORM-EM-050A。1.2[color=black]维护[/color]1.2.1[color=black]水槽内外应经常保持整洁,外壳喷塑处切忌用有反应的化学溶液擦拭,以免发生化学反应。[/color]1.2.2[color=black]仪器如长期不使用,需套好塑料薄膜防尘罩放在干燥室内,以免温度控制仪器受潮而影响使用。[/color]1.2.3[color=black]仪器不宜在高电压、大电流、强磁场、带腐蚀性气体环境使用,以免仪器干扰损坏及发生触电危险。[/color]1.水槽外壳有效接地,以保证使用安全。2.在未加水之前,切勿按下电源开关,以防烧毁电热管。3.非必要时,请勿拆开温度控制侧板装置,以策安全。

  • 【求助】SP2100 液晶显示屏问题

    我这有台北分的SP2100[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]液晶显示屏好像显示不全面了,FID检测器部分只显示一个温度,前面的符号没啦!另外设置量程的地方也找不到了,有没有遇到过这种情况的给指点一下!

  • 【简讯】液晶显示器中铟元素对肺部存在威胁

    液晶显示器已经越来越多的走进我们的生活,但是,最近日本的科学家在研究中发现,液晶显示器中含有一种叫做铟的元素,而这种元素对人的肺有着巨大的威胁,铟在被人体吸入后,会造成肺炎甚至肺癌,目前已经有两名在液晶显示器工厂工作的工人,由于吸入过多的铟氧化物而住进医院,他们肺中的细微金属颗粒已经大大高出平常人水平,在针对这些工人的一项调查中,2/3的工人肺部都出现了异常状况,但是,究竟液晶显示器会不会对普通消费者也存在相同的威胁目前还在研究之中。

  • 高精度半导体恒温箱保养说明

    高精度半导体恒温箱是半导体行业常用的设备之一,作为比较常用的设备,其保养也是相当重要,那么无锡冠亚高精度半导体恒温箱的保养有哪些要点呢?怎么进行保养比较好呢?  高精度半导体恒温箱由蒸发器出来的状态为气体的冷媒;经收缩机绝热收缩后期,变成高温高压状态,被收缩后的气体冷媒,在冷凝器中,等压冷却冷凝,经冷凝后转变成液态冷媒,再经节流阀膨胀到低压,变成气液混合物。此中低温低压下的液态冷媒,在蒸发器中摄取被冷物资的热量,从头变成气态冷媒,气态冷媒经管道从头进来收缩机,开头新的轮回,这便是高精度半导体恒温箱轮回的四个过程。  高精度半导体恒温箱密封部位调养,鉴于装配式高精度半导体恒温箱是由若干块保温板拼而成,因而板之间存在必需的间隙,施工中这类间隙会用密封胶密封,为了避免空气和水份进来,因而在利用中对一些密封无效的部位实时修理.  高精度半导体恒温箱地面调养,通常小型装配式高精度半导体恒温箱的地面利用保温板,利用高精度半导体恒温箱时应为了避免地面存有大量的冰和水,假如有冰,处理时切不可利用硬物敲打,损害地面。  高精度半导体恒温箱装配完结或长久停用后再次利用,降温的速率要适宜:每日操纵在8-10℃为宜,在0℃时应保留一段时间。  高精度半导体恒温箱库板调养,留意利用中应留意硬物对库体的碰撞和刮划,鉴于不妨变成库板的凹下和锈蚀,严重的会使库体片面保温功能下降。  高精度半导体恒温箱的保养是离不开我们操作人员的细心操作,所以,我们在日常操作中也要善待我们的设备,不要太过粗暴。

  • 液晶显示控制电路芯片VKL060点阵式液晶显示驱动,段码屏芯片厂家

    液晶显示控制电路芯片VKL060点阵式液晶显示驱动,段码屏芯片厂家

    型号:VKL06 / 品牌:永嘉微电/VINKA封装:SSOP24 / 年份:新年份原厂工程服务,技术支持 (C36-10)[img=,690,215]https://ng1.17img.cn/bbsfiles/images/2023/11/202311021459316022_7714_6207987_3.png!w690x215.jpg[/img][font=&][color=#333333]简述:VKL060 SSOP24是一个点阵式存储映射的LCD驱动器,可支持最大60点(15SEGx4COM)的 LCD屏。单片机可通过I2C接口配置显示参数和读写显示数据,可配置4种功耗模式,也可通 过关显示和关振荡器进入省电模式。其高抗干扰,低功耗的特性适用于水电气表以及工控仪表类产品。 [/color][/font][img=,690,512]https://ng1.17img.cn/bbsfiles/images/2023/11/202311021459572442_4888_6207987_3.png!w690x512.jpg[/img][img=,690,566]https://ng1.17img.cn/bbsfiles/images/2023/11/202311021459570432_4139_6207987_3.png!w690x566.jpg[/img][img=,690,601]https://ng1.17img.cn/bbsfiles/images/2023/11/202311021500390578_6880_6207987_3.png!w690x601.jpg[/img]RAM映射LCD控制器和驱动器系列:VK1024B 2.4V~5.2V 6seg*4com 6*3 6*2 偏置电压1/2 1/3 S0P16 省电模式VK1056B 2.4V~5.2V 14seg*4com 14*3 14*2 偏置电压1/2 1/3 SOP24 省电模式VK1056C 2.4V~5.2V 14seg*4com 14*3 14*2 偏置电压1/2 1/3 SSOP24 省电模式VK1072B 2.4V~5.2V 18seg*4com 18*3 18*2 偏置电压1/2 1/3 SOP28 省电模式VK1072C 2.4V~5.2V 18seg*4com 18*3 18*2 偏置电压1/2 1/3 SOP28 省电模式VK1072D 2.4V~5.2V 18seg*4com 18*3 18*2 偏置电压1/2 1/3 SSOP28 省电模式VK1088B 2.4V~5.2V 22seg*4com 22*3 22*2 偏置电压1/2 1/3 QFN32(4*4mmPP=0.4mm)超小体积VK1128C 2.4V~5.2V 32seg*4com 32*3 32*2 偏置电压1/2 1/3 QFN48 (5*5mmPP=0.35mm)超小体积VK0192M 2.4V~5.2V 24seg*8com 偏置电压1/4 LQFP44 省电模式VK0256 2.4V~5.2V 32seg*8com 偏置电压1/4 QFP64 省电模式VK0256B 2.4V~5.2V 32seg*8com 偏置电压1/4 LQFP64 省电模式VK0256C 2.4V~5.2V 32seg*8com 偏置电压1/4 LQFP52 省电模式VK0384 2.4V~5.2V 48seg*8com 偏置电压1/4 LQFP64 省电模式VK1621 2.4V~5.2V 32seg*4com 32*3 32*2 偏置电压1/2 1/3 LQFP44(QFP44正方形)/LQFP48/SSOP48/SDIP28;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 省电模式VK1622 2.4V~5.2V 32seg*8com 偏置电压1/4LQFP44/LQFP48/LQFP52/LQFP64/QFP64;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 省电模式VK1623 2.4V~5.2V 48seg*8com 偏置电压1/4 LQFP100/QFP100;DICE/DIE 裸片(绑定COB);COG(绑定玻璃) 省电模式VK1625 2.4V~5.2V 64seg*8com 偏置电压1/4 LQFP100/QFP100;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 省电模式VK1626 2.4V~5.2V 48seg*16com偏置电压1/5 LQFP100/QFP100;DICE/DIE裸片(绑定COB) 省电模式————————————————————————————————————高抗干扰LCD液晶控制器及驱动系列:VK1C21A 2.4~5.2V 32seg*4com 偏置电压1/2 1/3 3线/4线通讯接口 SSOP48;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK1C21B 2.4~5.2V 32seg*4com 偏置电压1/2 1/3 3线/4线通讯接口 LQFP48;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK1C21C 2.4~5.2V 32seg*4com 偏置电压1/2 1/3 3线通讯接口 LQFP44;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK1C21D 2.4~5.2V 18seg*4com 偏置电压1/2 1/3 3线通讯接口 SOP28 高抗干扰/抗噪/低功耗VK1C21DA 2.4~5.2V 18seg*4com 偏置电压1/2 1/3 3线通讯接口 SSOP28 高抗干扰/抗噪/低功耗VK1C21E 2.4~5.2V 14seg*4com 偏置电压1/2 1/3 3线通讯接口 SOP24 高抗干扰/抗噪/低功耗VK1C21EA 2.4~5.2V 14seg*4com 偏置电压1/2 1/3 3线通讯接口 SSOP24 高抗干扰/抗噪/低功耗VK2C21A 2.4~5.5V 20seg*4com 16*8 偏置电压1/3 1/4 I2C通讯接口 SOP28;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK2C21AA 2.4~5.5V 20seg*4com 16*8 偏置电压1/3 1/4 I2C通讯接口 SSOP28;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK2C21B 2.4~5.5V 16seg*4com 12*8 偏置电压1/3 1/4 I2C通讯接口 SOP24;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK2C21BA 2.4~5.5V 16seg*4com 12*8 偏置电压1/3 1/4 I2C通讯接口 SSOP24;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK2C21C 2.4~5.5V 12seg*4com 8*8 偏置电压1/3 1/4 I2C通讯接口 SOP20;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK2C21D 2.4~5.5V 8seg*4com 4*8 偏置电压1/3 1/4 I2C通讯接口 NSOP16;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK2C22A 2.4~5.5V 44seg*4com 偏置电压1/2 1/3 I2C通讯接口 LQFP52;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK2C22B 2.4~5.5V 40seg*4com 偏置电压1/2 1/3 I2C通讯接口 LQFP48;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK2C23A 2.4~5.5V 56seg*4com 52*8 偏置电压1/3 1/4 I2C通讯接口 LQFP64;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK2C23B 2.4~5.5V 36seg*8com 偏置电压1/3 1/4 I2C通讯接口 LQFP48;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK2C24A 2.4~5.5V 72seg*4com 68*8 60*16 偏置电压1/3 1/4 1/5 I2C通讯接口 LQFP80;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK2C24B 2.4~5.5V 56seg*4com 52*8 44*16 偏置电压1/3 1/4 1/5 I2C通讯接口LQFP64;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗————————————————————————————————————超低功耗LCD液晶控制器及驱动系列:VKL060 2.5~5.5V 15seg*4com 偏置电压1/2 1/3 I2C通讯接口 SSOP24 超低功耗/抗干扰VKL075 2.5~5.5V 19seg*4com 偏置电压1/2 1/3 I2C通讯接口 SSOP28 超低功耗/抗干扰VKL128 2.5~5.5V 32seg*4com 偏置电压1/2 1/3 I2C通讯接口 LQFP44 超低功耗/抗干扰VKL144A 2.5~5.5V 36seg*4com 偏置电压1/2 1/3 I2C通讯接口 TSSOP48超低功耗/抗干扰VKL144B 2.5~5.5V 36seg*4com 偏置电压1/2 1/3 I2C通讯接口 QFN48(6*6超小体积) 超低功耗/抗干扰————————————————————————————————————静态显示LCD液晶控制器及驱动系列:VKS118 2.4~5.2V 118seg*1com 偏置电压 -- 4线通讯接口 LQFP128 可视角大,对比度好,不闪烁VKS232 2.4~5.2V 116seg*2com 偏置电压1/1 1/2 4线通讯接口 LQFP128 可视角大,对比度好,不闪烁————————————————————————————————————(永嘉微电/VINKA原厂-FAE技术支持,主营LCD驱动IC; LED驱动IC; 触摸IC; LDO稳压IC; 水位检测IC)LCD驱动、液晶显示IC、LCD显示、液晶显示、显示LCD、段码液晶屏驱动、LCD液晶显示、段码屏LCD驱动、LCD显示驱动芯片、LCD显示驱动IC、液晶驱动原厂、LCD屏驱动、液晶屏驱动、驱动LCD、驱动液晶、LCD驱动控制器、液晶显示驱动原厂、段码LCD驱动、液晶段码屏驱动、液晶显示驱动芯片、点阵式液晶显示驱动、点阵式液晶显示IC、液晶驱动IC、液晶驱动芯片、LCD芯片、液晶芯片、液晶驱动控制器、液晶IC、段码驱动显示IC、笔段式液晶驱动、LCD液晶显示驱动、液晶LCD显示驱动、段码屏驱动厂家、段码驱动IC、段码驱动芯片、段码屏显IC、LCD显示IC、笔段式LCD驱动、LCD显示芯片、段码屏显示IC、段码屏显示芯片、LCD段码液晶驱动、段码LCD液晶驱动、段码驱动原厂、液晶显示芯片、段式液晶驱动、段码显示IC、LCD液晶屏驱动、笔段LCD驱动、LCD段码屏驱动、液晶屏驱动IC、液晶屏驱动芯片、液晶段码LCD驱动、液晶LCD段码驱动、LCD驱动器、液晶驱动电路、LCD驱动IC、断码LCD驱动、段码屏驱动原厂、LCD驱动厂家、LCD屏驱动IC、点阵式LCD驱动、LCD屏驱动芯片、点阵段码屏驱动、点阵液晶屏驱动、段码液晶驱动芯片、段码屏驱动、LCD驱动原厂、LCD驱动芯片、LCD段码驱动、LCD液晶驱动、液晶驱动IC原厂、液晶显示驱动IC、点阵LCD驱动、段式LCD驱动、LCD显示驱动、液晶显示驱动、段码液晶驱动

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制