当前位置: 仪器信息网 > 行业主题 > >

法布里珀罗太赫兹扫描干涉仪

仪器信息网法布里珀罗太赫兹扫描干涉仪专题为您提供2024年最新法布里珀罗太赫兹扫描干涉仪价格报价、厂家品牌的相关信息, 包括法布里珀罗太赫兹扫描干涉仪参数、型号等,不管是国产,还是进口品牌的法布里珀罗太赫兹扫描干涉仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合法布里珀罗太赫兹扫描干涉仪相关的耗材配件、试剂标物,还有法布里珀罗太赫兹扫描干涉仪相关的最新资讯、资料,以及法布里珀罗太赫兹扫描干涉仪相关的解决方案。

法布里珀罗太赫兹扫描干涉仪相关的仪器

  • 太赫兹法布里-珀罗干涉仪 太赫兹扫描法布里珀罗干涉仪(TSFPI),专门用于测量窄带太赫兹辐射的波长和强度。TSFPI 可用于脉冲以及连续的窄带THz辐射源。TSFPI由两个半透明的平行硅反射镜组成。测量太赫兹辐射参数的原理,如图1所示。 图1 TSFPI实验图TSFPI 可使用下列辐射源: 陀螺仪  光泵亚毫米波激光   反向波振荡器   自由电子激光器   差频太赫兹发生器   混频太赫兹发生器   量子级联激光器p-Ge激光器新型太赫兹源 TSFPI 还能够测量宽带太赫兹源的波长和强度图2 镜子间隔500μm时TSFPI透射谱曲线 图3 光声检测器Tydex GP-1P测出的信号幅值与TSFPI镜间距的关系曲线。 太赫兹辐射是由光泵亚毫米波激光的产生,λ=432μm TSFPI 重要参数表规格参数值工作频率范围,THz0.1-15自由光谱范围,THz0.01-1.8镜间距,mm0-9.5/1.8光谱调整精度,μm± 1.25光孔高度,mm110自由孔径,mm52尺寸(LxHxW), mm232×151×120重量,Kg5.0 主要特性:TSFPI的宽工作频率范围:0.1-15THz高击穿阈值 大口径: 52毫米镜面定位精度高:1.25μm易于使用 TSFPI包括以下设备: 1. TSFPI干涉仪装置; 2. 充电器和控制单元; 3. 镜像翻转控制软件; 4. 电缆; 5. 用户指南。 可以为TSFPI提供以下额外附件:光声探测器GC-1P/T/D用于0.1-15THz内某个特定波长范围的BPF(带通滤波器)
    留言咨询
  • THz太赫兹扫描干涉仪 400-860-5168转2831
    THz太赫兹扫描干涉仪产品负责人:姓名:王工(Karl)电话:(微信同号)邮箱:THz太赫兹扫描干涉仪,精度高,成本低,适合初步搭建实验系统。THz太赫兹扫描法布里-珀罗干涉仪(TSFPI)主要用于测量窄带太赫兹辐射的波长和强度分布,同时也可用于脉冲和连续窄带太赫兹辐射源。TSFPI由两个半透明平行硅镜组成,其中一个安装在电机驱动的线性致动器上。通过反射镜的平移(扫描)来测量太赫兹辐射参数,如图1所示。THz太赫兹扫描干涉仪TSFPI可与如下太赫兹源结合使用:■ 回旋管;■ 光泵亚毫米波激光器;■ 回波振荡器;■ 自由电子激光器;■ 差频太赫兹发生器;■ 混频太赫兹发生器;■ 量子级联激光器;■ p-Ge激光器;■ 其他新颖的太赫兹源。THz太赫兹扫描法布里-珀罗干涉仪还能够测量宽带太赫兹源的波长和强度分布,以及根据法布里-珀罗干涉仪的透射光谱对太赫兹辐射进行滤波(图2)。THz太赫兹扫描干涉仪支持多种镜像平移模式,例如将镜像移动到给定位置、将镜像移动给定距离、连续平移和循环平移。反射镜平移速度、换档间隔、起始和结束位置也可以调整。图3 显示了由THz太赫兹扫描干涉仪TSFPI进行光泵亚毫米波激光器的激光波长测量结果。从图中可以看出,相邻TSFPI传输Tmax之间的距离约为216μm(433μm–216μm=217μm;647μm–433μm=214μm;865μm–647μm=218μm),相当于激光波长的一半。该结果与理论THz太赫兹扫描干涉仪TSFPI透射率Tmax一致:λ=2*d/m,其中d是TSFPI反射镜之间的间距,单位为μm,m是干涉阶数,λ是测量波长,单位为μm。THz太赫兹扫描干涉仪指标参数:THz太赫兹扫描干涉仪TSFPI包括如下组件: TSFPI interferometer unit Power supply and control unit Mirror translation control software Cables User guide.其他详细情况可咨询上海昊量光电设备有限公司。
    留言咨询
  • THz扫描法布里-珀罗干涉仪品牌:Tydex型号:TSFPITHz扫描法布里-珀罗干涉仪(Terahertz scanning Farby-Perot interferometer (TSFPI) )是专门设计用来测试THz波长以及窄带THz辐射强度的仪器。TSFPI有两块半透明平行的Si反射镜组成,其中一个Si镜装在线性电机上,可以通过控制Si镜之间的距离测量相应的THz数据。TSFPI 可以用于以下光源:回旋振荡管 光泵浦亚毫米波激光器 返波管 BWO 自由电子激光器 差频THz产生器 光混频THz产生器 量子级联激光器 p-Ge 激光器 规格参数:SpecificationValueOperational frequency range, THz0,1-15Free spectral range, THz 0,01-1,8Spacing between mirrors, mm0-9,5 Spacing setting accuracy, μm± 1.25 Optical axis height, mm110Free aperture, mm52Dimensions (LxHxW), mm232х151х120Mass, kg5,0
    留言咨询
  • 法布里珀罗干涉仪 FPI 法布里珀罗干涉仪(Fabry-Perot Interferometer,FPI 100)是一款共聚焦扫描 FPI,它自带光电探测器单元,设计用于测量和控制连续波激光器的模场分布。其主要特点有: 激光模式分析简单方便可选八种反射镜用于波长范围 300 到 3000 纳米自由光谱范围 1GHz 或 4GHz标准反射镜反射率 99.8%,对应 finesse 大于 400可选配光纤耦合器套件 – 方便使用 FC/APC 光纤接头进行耦合光电二极管更换套件 – 可见光/近红外/红外,通过内置聚焦透镜自动对准用户规定 finesse 值扫描选项 – 集成光电二极管放大器的独立扫描发生器 miniScan 杭州谱镭光电技术有限公司(HangzhouSPL Photonics Co.,Ltd)是一家专业的光电类科研仪器代理商,致力于服务国内科研院所、高等院校实验室、企业研发部门等。我们代理的产品涉及光电子、激光、光通讯、物理、化学、材料、环保、食品、农业和生物等领域,可广泛应用于教学、科研及产品开发。 我们主要代理的产品有:微型光纤光谱仪、中红外光谱仪、积分球及系统、光谱仪附件、飞秒/皮秒光纤激光器、KHz皮秒固体激光器、超窄线宽光纤激光器、超连续宽带激光器、He-Ne激光器、激光器附件及激光测量仪器、光学元器件、精密机械位移调整架、光纤、光学仪器、光源和太赫兹元器件、高性能大口径瞬态(脉冲)激光波前畸变检测干涉仪(用于流场、波前等分析)、高性能光滑表面缺陷分析仪、大口径近红外平行光管、Semrock公司的高品质生物用滤波片以及Meos公司的光学教学仪器等。 拉曼激光器,量子级联激光器,微型光谱仪,光机械,Oceanoptics,Thorlabs 。。。热线电话: / 传真:网址: /邮箱:
    留言咨询
  • Thorlabs 扫描式法布里-珀罗gan涉仪特性分析连续激光器的细微光谱特征光学镀膜适用于290 nm - 4400 nm自由光谱范围:1.5或10 GHzzui低精细度:150、200或1500在厂校准精细度超稳定无热Invar腔SMA或BNC耦合,用于连接示波器SA201控制器(单独出售)提供三角形或锯齿形扫描电压,用于压电传感器可以定制适用于紫外到中红外的反射镜镀膜(详情请联系我们)Thorlabs的扫描式法布里-珀罗(FP)干涉仪是一种光谱分析仪,非常适用于检查连续激光器的细微光谱特性。我们提供自由光谱范围(FSR)为1.5 GHz或10 GHz的干涉仪。干涉仪的分辨率会随着FSR和精细度的变化而变化,范围从小于1 MHz到67 MHz。FP腔只能透过特定频率的光。利用压电传感器调节腔的长度,可以调谐透过频率,如右图所示。透射光强度通过光电二极管测量,经SA201控制器中的跨阻放大器(或等效放大器)放大,然后由示波器显示或数据采集卡记录。每个法布里-珀罗gan涉仪都有一根带BNC接头的电缆,用于控制压电部件。SA30-144、SA200-18C和SA210-18C中的反射镜由红外级熔融石英(Infrasil)制成,SA200-30C中的反射镜由钇铝石榴石(YAG)制成,其他型号的反射镜由紫外熔融石英制成。内部壳体由热稳定的殷刚制成,以消除由温度变化产生的偏移。SA200和SA30型号的背面有SM1(1.035"-40)螺纹,用于安装探测器,而SA201型号有SM05(0.535"-40)螺纹。除SA200-30C之外,每个扫描式法布里-珀罗gan涉仪附带一个光电二极管探测器和一根SMA-BNC电线,用于连接探测器和放大器。光电二极管可以拆下,以便对准或换成其他探测器。Thorlabs 扫描式法布里-珀罗gan涉仪近似共聚焦FP设计,亚MHz分辨率高精细度: ≥150010%到20%共振透过率(典型值)超稳定无热化殷钢腔体低扫描电压(每FSR为2.5 V,对于633 nm)Ø 2英寸法兰,用于安装在Thorlabs的KS2或KC2(KC2/M)安装座中附带SMA转BNC电缆SA30系列FP干涉仪具有1.5 GHz自由频谱区。这些干涉仪的最小精细度是1500,分辨率小于1 MHz。提供6种波长范围,详见下表和右侧曲线所示。更多信息请看曲线标签。
    留言咨询
  • 测量THz波长与线宽的新型方法 高分辨测量可达至120MHz用户可选的频率范围容易操作的软件可按照客户要求订制 技术参数:测量频率范围1):10~100 cm-1(30GHz~3THz)光谱自由程:0.8~20 cm-1分辨率2):4 x 10-3 cm-1金属栅格间隔距离:0~12 mm(或根据客户要求选择)间隔距离精度:+ / - 5 um光束高度: 100 mm有效通光孔径: 20 mm(或根据客户要求选择)尺寸: 160 (L) x 120 (W) x 130 (H) mm3重量:2.5 kg 1: 用户选择范围:10~30cm-1 或者 30~100cm-1
    留言咨询
  • 法布里-珀罗干涉仪 400-860-5168转2255
    扫描法布里-珀罗干涉仪 特性分析连续光激光器光谱自由光谱范围1.5和10GHz精细常数高于150控制器可选Thorlabs的扫描法布里-珀罗(FP)干涉仪 经常用于检查连续激光器的光谱特性的精细结构。这些干涉仪的精细常数高于150,自由光谱范围(FSRs) 为1.5或10 GHz。共焦FP腔起到非常窄的带通滤光片的作用。通过用压电换能器调节FP腔的长度,可以调谐腔的透射波长,其中压电换能器由SA201控制器或具有相同功能的发生器驱动。透射光的强度用光电二极管测量,信号由SA201中的跨阻抗放大器(或等价的放大器)进行放大,然后通过示波器或数据采集卡进行显示或记录。准直FP干涉仪腔体的共焦设计使其对入射光的对准相对不太敏感。因此,通过将干涉仪安装在标准的可调镜座上(详细信息请参阅对准指南标签),FP干涉仪的光轴与入射光束的对准具有足够的精度。1) 控制器(BNC)至压电元件(粘贴上)电缆,FP干涉仪的不可移部分2) 光电二极管(SMA)至控制器(BNC)电缆,包含于FP干涉仪中3) 放大光电二极管输出(BNC)至示波器电缆,不包含4) 控制器触发输出(BNC)至示波器电缆,不包含5) 可选连接线,允许用户监测用于驱动压电换能器的信号SA201控制器产生重复扫描腔长所需的锯齿波或三角波电压,扫描长度为&lambda /4(或更多)以扫过干涉仪的一个自由频谱区(FSR)。SA201控制器也具有跨阻抗放大器,可用来放大FP干涉仪中光电二极管探测器的输出。强度信息用来测量共焦FP腔的透射光的强度。控制器也为示波器提供了触发信号,触发信号可以方便地在扫描开始或中途简便触发示波器。通过分开一个FSR来测量两个相同光谱特征的间隔时间,可以对示波器的时间轴进行精确校准(详细信息见法布里&mdash 珀罗教程标签中的图4及图5)。理论反射镜反射率及反射镜精细度表格文件包含了绘制上图所用的数据。扫描法布里-珀罗干涉仪:1.5GHz自由频谱区Zoom Item #SA200Free-Spectral Range (FSR)1.5 GHzFinesse200 (250 typ)Resolution7.5 MHzMax. Beam Diameter*600 µ mCavity Length50 mmMirror SubstrateUV Fused Silica***FP腔体的入射孔径比最大光束直径大。但如果光束直径超过此规格,仪器的分辨率将会降低。**SA200-18B的反射镜基底为红外级熔融石英(Infrasil)新型B系列具有扩展的工作波长范围共焦法布里-珀罗设计超稳定无热化因钢腔体扫描电压(5伏/FSR@633纳米)Ø 2英寸安装法兰推荐安装座: KS2 或KC2扫描法布里-珀罗干涉仪:10GHz自由频谱区Zoom Item #SA210Free-Spectral Range (FSR)10 GHzFinesse150 (180 typ)Resolution67 MHzMax. Beam Diameter150 µ mCavity Length7.5 mmMirror SubstrateUV Fused Silica***FP腔体的入射孔径比最大光束直径大。但如果光束直径超过此规格,仪器的分辨率将会降低。**SA210-18B的反射镜基底为红外级熔融石英(Infrasil)。扫描法布里-珀罗干涉仪控制箱Zoom Photo Amplifier SpecificationsGain Steps0, 10, 20 dBTransimpedance Gain (Hi-Z)10, 100, or 1000 kV/ATransimpedance Gain (50 O)5, 50, or 500 kV/AOutput Voltage (Hi-Z)0 - 10 V (Min Range)Output Voltage (50 O)0 - 5 V (Min Range)Bandwidth250 kHzNoise (RMS)0.1 mV @ 10 kV/A0.2 mV @ 100 KV/A1.5 mV @ 1 MV/ATTL触发输出上升沿触发开始扫描下降沿触发中间点扫描扫描电压可调节直流偏置(扫描中点处的中央信号)扫描时间可调节(0.01-10秒)三角或锯齿形扫描电压互阻式增益放大器光电二极管输出可选择输入:交流100,115或230伏SA201专门设计通过产生高稳定性,低噪声的电压斜坡信号来控制Thorlabs公司的法布里-珀罗干涉仪。该斜坡信号用来扫描干涉仪腔体的两块反射镜的空间间隔。控制器有100,115或230V可选择的交流输入,提供了斜坡电压及扫描时间的调整,使用户可以选择扫描范围及速度,并提供偏压控制使示波器上的光谱向右或向左移动。Ramp SpecificationsWaveformSawtooth or TriangleOutput Voltage Range1 - 45 V (offset + amplitude)Offset Adj. Range0 - 15 VDCAmplitude Adj. Range1 - 30 VRisetime Adj. Range1X Sweep Exp. 0.01 - 0.1 s100X Sweep Exp. 1 - 10 sSweep Expansion1X, 2X, 5X, 10X, 20X, 50X, 100XSweep Scale Error± 0.5%Output Noise1 mVRMS (~6.6 mVPP)TriggerRamp Start or Midpoint输出触发器允许用户在斜坡波形的起始阶段或中间对示波器进行外触发。从中间点触发示波器的功能使得对线型进行放大更加方便;只需将感兴趣的光谱成分移至显示屏的中央并且增加范围的时基。不需要应用偏置将信号重新移至中间;增加的范围对感兴趣的点进行了扩充。控制器的另一个方便的特性是增加斜坡信号长度的校准过的放大能力,可放大1倍,2倍,5倍,10倍,20倍,50倍与100倍,这样就可以实现极宽范围的扫描时间。输出的TTL电平触发允许用户在斜坡信号的起始点或中间点对示波器进行外触发。SA201也含有用来监测腔体透射率的高精度光电探测器放大电路。放大器提供了可调节的互阻抗增益:10千,100千与1兆伏/安,用来驱动高阻抗负载,例如示波器。应用控制器的输出同步信号,可以用示波器来显示输入激光的光谱。探测器电路包括了消隐电路,用来消除光电二极管对锯齿波下降沿的响应。
    留言咨询
  • 光纤法布里-珀罗干涉仪光纤法布里-珀罗干涉仪系列产品基于具有平滑、均匀间隔传输峰的固定干涉仪设计。FFP 的设计简洁优雅的关键在于其无透镜全光纤结构。没有准直光学器件或透镜,消除了其他法布里-珀罗元件技术的缺陷,包括未对准、环境敏感性和外来模式。FFP 波器遵循 Airy 函数。工程师可以将其设计到 OEM 系统中,因为他们知道它将提供非常接近理论数学模型的结果。FFP-I由一个无透镜的平面FabryPerot干涉仪和一个位于两个高反射多层反射镜之间的单模光纤波导组成。FFP-I是直接用光纤制造的,所以不需要对齐或模式匹配。自由光谱范围(FSR)可以完全按照客户的规格制造,TEC包可用于热稳定性和中心带通频率的小调整。FFP-TF 和 FFP-TF2 是多功能可调谐滤波器,由全光纤 Fabry-Perot 超腔组成,采用坚固、快速调谐的 Tecordia 合格封装。Luna Innovations 的光纤法布里-珀罗 (FFP) 可调谐滤波器在坚固的封装中实现了高精细度并保持低损耗。FFP-TF2 设计提供改进的标准具校准,以实现稳定的长期、高可靠性和符合 Telcordia 标准的性能。几种标准的低成本配置可随时用于快速交付。定制的高性能多频段配置也可用于特殊应用。 光纤法布里-珀罗干涉仪的主要特征:频谱切片源国际电联过滤器校准波长参考激光稳定波分复用仿真全光纤平台高分辨率和低损耗设计超腔精巧抗振动和抗冲击光纤法布里-珀罗干涉仪FFP-I参数: 光纤法布里-珀罗干涉仪FFP-TF2参数: picoWave是Micron Optics的多波长基准,可实现picometer精度的实时波长校准。结合均匀的频率间距FFP-I,光纤布拉格的波长标记光栅,内置热稳定性TEC, picoWave是理想的校准波长参考。FFP-I和FBG可以配置在串联或并联。 光纤法布里-珀罗干涉仪的应用:光学性能监控光谱分析可调谐光噪声滤波超DWDM的可调信道下降可调的来源光学传感关于昊量光电:昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!您可以通过我们昊量光电的官方网站了解更多的产品信息,或直接来电咨询,我们将竭诚为您服务。
    留言咨询
  • 一, 中红外法布里-珀罗F-P干涉仪( F-P标准具/多光束干涉仪 2.5-14um)法布里-珀罗干涉仪(英文:Fabry–Pérot interferometer),是一种由两块平行的玻璃板组成的多光束干涉仪。其中两块玻璃板相对的内表面都具有高反射率。当两块玻璃板间用固定长度的空心间隔物来间隔固定时,它也被称作法布里-珀罗标准具或直接简称为标准具。F-P(法布里-珀罗)标准具因为平板反射率高,多光束等倾斜干涉条纹极窄,所以是一种高分辨率的光谱仪器。可用于高分辨光谱学,和研究波长非常靠近的谱线,诸如元素的同位素光谱、光谱的超精细结构、光散射时微小的频移,原子移动引起的谱线多普勒位移,和谱线内部的结构形状;也可用作高分辨光学滤波器、构造精密波长计;在激光系统中它经常用于腔内压窄谱线或使激光系统单模运行,可作为宽带皮秒激光器中带宽控制以及调谐器件,分析、检测激光中的光谱(纵模、横模)成分.中红外法布里-珀罗F-P干涉仪( F-P标准具/多光束干涉仪 2.5-14um),中红外法布里-珀罗F-P干涉仪( F-P标准具/多光束干涉仪 2.5-14um)通用参数(F-P)干涉仪 标准具的FSR测量 技术参数产品特点适用于中红外平行度好端面平整度高表面质量好产品应用波长锁定器 波分复用电信网 手持光谱分析仪 光纤光栅传感系统 可调谐滤波器激光器 可调谐滤光片技术参数技术参数技术指标工作波段近红外1.3-2.0um,中红外2.5-14um直径25.4mm+/-0.05mm通光孔径22.9mm长度100mm+/-0.2mm平行度5-10 arc sec端面平整度中红外 1/4 lambda;近红外 1/10 lambda表面质量中红外80-50;近红外60-40管壳铜精细度(FSR)0.012cm-1二, ETALON热稳定透射式滤波器标准具 (1525-1565nm ,50GHz 精细度14)筱晓光子的热稳定滤波器基于先进的 ETALON 技术, 同时运用独te的光学及机械设计,采用先进的封装技术,保证该款滤波器的波长在极端环境条件下的稳定性,包括温度和湿度。我们拥有独te的Zhuan利技术,用以保证该滤波器在所有环境下波长的目标精度在 ITU + / -1.25GHz 以内可供选择。这款对准 ITU 过滤器可用于波分复用(WDM)系统信道监测和波长锁定。我们还有特殊的技术可供顾客选择特定波长对应精度。该款滤波器根据使用方式的不同分为透射式和反射式,独te的设计可以保证标准具精细度、通道间距和工作波长拥有较宽的选择范围。面向客户设计的热稳定滤波器可以很好的兼容于多种光谱应用,包括电信、波长参考和校准及光纤传感系统,测试计量、激光波长稳定控制。ETALON热稳定透射式滤波器标准具 (1525-1565nm ,50GHz 精细度14),ETALON热稳定透射式滤波器标准具 (1525-1565nm ,50GHz 精细度14)技术参数产品特点● 优良的热稳定性● 低插入损耗● 封装牢固● 光纤一端出纤易于盘纤产品应用● FBG 传感系统● 监控系统● 测试测量设备● 仪器仪表指标单位参数备注波长范围nm1525~1565可制定插入损耗dB3.0偏振相关损耗dB0.1偏振相关精度GHz+/-0.1通道间隔(FSR)GHz100可定制50G或200G热稳定性GHz≤+/-0.8精细度714可定制其他精细度带宽@3dBGHz≤16≤9对比度dB≥13≥18回波损耗dB≥20最大光功率mW500工作温度℃-5~70可定制更宽温度范围存储温度℃-40~85光纤类型N/ASMF-28e+尺寸(长x宽x高)mm30x21.5x8.5备注:*.有所指标皆为未不含接头指标,切仅在以上波长,偏振态和温度下确保有效 **.指标若有更改,恕不另行通知。测试光谱图
    留言咨询
  • 高速太赫兹扫描成像仪高速(5000帧/秒)、高分辨率(1.5mm)太赫兹成像扫描系统基于先进技术研制出一套高速(5000帧/秒)、高分辨率(1.5 mm)太赫兹成像扫描系统,主要用于工业检测领域应用。该系统主要包含线性太赫兹高速相机和太赫兹源(100GHz)设备,二者可同步协调工作成像速度高达5000帧每秒,紧凑的体积设计适于集成便于工业应用的需求。除此之外,该系统满足于绝大多数传送带的要求,扫描速度高达15m/s。系统里集成的超快线性传感传感器满足了大多数工业无损检测和质量控制等应用的需求。关键词:太赫兹高速相机,太赫兹源,太赫兹成像系统,高速太赫兹成像系统,太赫兹扫描系统u 该套设备的主要特点如下:成像速度高达5KHz扫描速度高达15m/s成像频率为100 GHz像素:256 x 1专用软件(TeraFast)可提供定制化方案u 该套系统涵盖的产品主要如下:A. 太赫兹高速相机(基于先进技术研制的半导体阵列芯片)参数如下:Number of pixels: 256 (256 x 1)Image acquisition rate: 5000 fps (5KHz)Piel size: 1.5 x 3 mm2Responsivity: 8000 v/wImaging area: 384 x 3 mm2Min detectable power/pixel: 100nw (at 5000 fps) 45nw (at 1000 fps) 14nw (at 100 fps) Dimensions of device: 450 x 160 x 44 mm3Sync out : TTL (+5 V)Included software: TeraFast ViewerInterface: mini-USBPower supply: 24V/20W太赫兹源(基于IMPATT 技术)参数信息:Type IType ⅡFrequency100 GHz100 GHzPower per pixel20 uw140 uwImaging system dynamic range24 d B30 d BOptical systemPTFE opticsReflection opticsTechnologyIMPATTSuper-Hero IMPATT 详情请见如下链接:Type I / Type II THz wave sources for High Speed Linear scanneru 该套高性价比的太赫兹成像扫描系统,应用领域广泛,主要覆盖药学、化妆品、木材加工、食品、快速消费品包装、建筑材料、汽车工业、农业、安检等众多领域。
    留言咨询
  • 皮米激光干涉仪 德国attocube公司在皮米精度位移激光干涉仪FPS的基础上,新推出了体积更小、适合集成到工业产品与同步辐射应用中的IDS型号皮米精度位移激光干涉仪。与FPS型号干涉仪相似,IDS型号同样适用于端环境如高真空与高辐射环境并且具有高精度与高采样速率。IDS产品是适合工业集成与工业网络无缝连接的理想产品。产品在工业应用中具有广泛范围前景,包括闭环位移反馈系统搭建、振动测量、轴承误差测量,实时位移测量等。 德国计量院(PTB)对IDS3010激光干涉仪的精度进行了认证。值得指出,在0-3米的工作距离内, IDS激光干涉仪的的测量数据与德国计量院激光干涉仪数据完全一致。德国计量院的认证使得IDS激光干涉仪的测量数据满足德国标准,使得IDS更加理想的成为位移台鉴定与机器加工等领域的测量工具。IDS3010激光干涉仪主机尺寸与接口IDS3010激光干涉仪应用领域IDS3010充分满足高分辨位移于定位的工业和科研需要,可应用于长度测量、同步辐射、精密仪器、半导体工业以及显微镜。IDS3010激光干涉仪产品特点 + 设计紧凑(50mm x 55mm x 195mm),适合工业集成+ 工业化界面,含HSSL、AquadB、CANopen、Profibus、EtherCAT、等界面+ 测量速度快,定位样品采样带宽10MHz+ 环境补偿单元,不同湿度、压力环境中校正反射率参数提高测量精度+ 校正简单,配备可见激光(650nm)用于校正测量激光(1530nm)+ 测量精度高,探测器分辨率高达1 pm设备选件光纤式激光探头 IDS系列激光干涉仪可提供不同型号探头(探头尺寸,光斑大小不同)。探头直径范围:1.2mm – 22mm。典型准直激光光斑:1.6mm, 典型聚焦激光光斑:70 mm。低工作温度:10mK, 1E-10mBar超高真空适用, 10MGy强辐射环境适用。激光探头技术参数表激光探头型号尺寸mm (直径与长)工作距离(低反射,高反射材料)激光类型(聚焦、准直) 光斑大小D1.2/F7Ф 1.2 7.55-9 mm30-45 mm聚焦,焦距7mm70μm@7mmD4/F8Ф 4 11.56-10 mm15-30 mm聚焦,焦距8mm70μm@8mmD4/F13Ф 4 11.511-15 mm30-45 mm聚焦,焦距13mm70μm@13mmD12/F2.8Ф 12 32.32.8 mm聚焦,焦距2.8mm2μm@2.8mmM12/C1.6Ф 14 17.40-1000 mm准直1.6mmM15.5/C1.6Ф 22 20.60-1000 mm准直1.6mmM12/C7.6Ф 14 49.30-5000 mm准直7.6mm应用案例■ IDS3010在航天飞行器形变检测上的应用德国卫星制造商OHB公司(德国OHB-System 是一家专门从事小卫星系统、分系统研制工作的企业,在小型商业卫星、小型研究卫星及相关分系统的研制、制造和操作方面具有丰富的经验)采用attocube的激光位移传感器IDS3010,对三代气象卫星(MTG)柔性组合成像仪进行了高真空光-热-力学模型试验。该试验包括在仪器的不同区域,并监控其后续光学元件相对位移测量哈特曼传感器。在真空环境中通过IDS3010激光干涉仪以小于1角秒的精度对平面基准相对位置的稳定性进行了一个多星期的持续测试。为了校准IDS3010不同探头之间的距离,需要进行初步测试(每个传感器探头与用于角度计算的距离,名义上为100 mm)。为此,平面参考镜的电动框架被用来产生任意角度的运动。这些角度是由IDS3010激光干涉仪和校准的自准直仪测量得到。IDS3010激光干涉仪在±720角秒范围内表现出良好的线性(0.1%),并且非常容易校准。再与MTG柔性组合成像仪对齐之后,即在Shack-Hartmann传感器和IDS3010传感器之间执行另一个交叉校准,以补偿IDS3010传感器相对于Shack-Hartmann传感器的时钟。三代气象卫星的柔性组合成像仪(MTG-FCI)的实验装置。紫色表示激光干涉仪组件:传感器探头支架和角角锥棱镜支架。以上信息由OHB System AG提供结果此次测量的目的是在一周多的时间内连续监测参考镜相对于卫星的稳定性,精度小于1角秒。使用如上所述attocube公司的激光干涉仪得到的测试得到角度精度甚至比一个角秒还要好。理论计算表明,其测试分辨率可以到达0.021角秒(等于5.8u°),但实际读数受试验装置振动的限制。■ IDS3010激光干涉仪在自动驾驶高分辨调频连续波(FMCW)雷达上的应用自动驾驶是目前汽车工业为前沿和火热的研究,而自动驾驶尤为重要的是需要可靠和高分辨率的距离测量雷达。德国弗劳恩霍夫高频物理和雷达技术研究所(Wachtberg,D)Nils Pohl教授和波鸿鲁尔大学(Bochum,D)的研究小组提出了一种全集成硅锗基调频连续波雷达传感器(FMCW),工作频率为224 GHz,调谐频率为52 GHz。通过使用德国attocube公司的皮米精度激光干涉仪FPS1010(新版本为IDS3010)证明了测量系统在-3.9μm至+2.8μm之间达到了-0.5-0.4μm的超高精度。这种全新的高精度雷达传感器将会应用于许多全新的汽车自动驾驶领域。图一 紧凑型FMCW传感器的照片图二 雷达测距示意图,左边为雷达,右边为移目标,attocube激光干涉仪用来标定测量结果参考文献S. Thomas, et al IEEE Transactions on Microwave Theory and Techniques 67, 11, (2019).■ IDS3010激光干涉仪在半导体晶圆加工无轴承转台形变的测量上的应用半导体光刻系统中的晶圆轻量化移动结构的变形阻碍了高通量的半导体制造过程。为了补偿这些变形,需要的测量由光压产生的形变。来自理工大学荷兰Eindhoven University of Technology 的科学家设计了一个基于德国attocube干涉仪IDS3010的测量结构,以此来详细地研究因为光压而导致的形变特性。图一所示为测量装置示意图,测量装置由5 x 5 共计25个M12/F40激光探头组成的网格,以此来实现监测纳米的无轴承平面电机内部的移动器变形。实验的目的是通过对无轴承的平面的力分布进行适当的补偿,从而有效控制转台的变形。实验测得大形变量为544nm,小形变量为110nm(如图二所示)。图一 左侧5X5排列探头测量装置示意图,右图为实物图图二 无轴承磁悬浮机台形变量的测量结果,大形变量为544nm参考文献Measuring the Deformation of a Magnetically Levitated Plate displacement sensor.■ IDS3010在X射线成像中提高分辨率的应用在硬X射线成像中,每个探针平均扫描时间的减少对于因为束流造成的损伤是至关重要的。此外,系统的振动或漂移会严重影响系统的实时分辨率。而在结晶学等光学实验中,扫描时间主要取决于装置的稳定性。Attocube公司的皮米精度干涉仪FPS3010(升之后的型号为IDS3010),被用于优化由多层波带片(MZP)和基于MZP的压电样品扫描仪组成的实验装置的稳定性的测量。实验是在德国DESY Photon Science中心佩特拉III期同步加速器的P10光束线站上进行的。Attocube公司的激光干涉仪PFS3010用来检测样品校准电机引起的振动和冲击产生的串扰。基于这些测量,装置的成像分辨率被提高到了±10nm。 图一 实验得到的系统分辨率结果参考文献Markus Osterhoff, et at. Proceedings Volume 10389, X-Ray Nanoimaging: Instruments and Methods III 103890T (2017)■ IDS3010激光干涉仪在微小振动分析中的应用电荷化理论能够描述中性玻色子系统的布洛赫能带,它预言二维量子化的四缘体具有带隙、拓扑的一维边缘模式。全球研究机构苏黎世邦理工大学的Sebastian Huber教授课题组巧妙的利用一种机械超材料结构来模拟二维的拓扑缘体,次在实验上观测到了声子四拓扑缘体。这一具有重要意义的结果时间被刊登在nature上(doi:10.1038/nature25156)。研究人员通过测试了一种机械超材料的体,边缘和拐角的物理属性,发现了理论预言的带隙边缘和隙内拐角态。这为实验实现高维度的拓扑超材料奠定了重要基石。德国attocube公司的激光干涉仪IDS3010被用于超声-空气转换器激励后的机械超材料振动分析。IDS3010能到探测到机械超材料不同位置的微小振动,以识别共振频率。终实现了11.2pm的系统误差,为声子四拓扑缘体的实验分析提供了有力的支持。图一 实验中对对机械超材料微小振动的频率分析参考文献Marc Serra-Garcia, et al. Nature volume 555, pages 342–345 (2018)■ IDS3010激光干涉仪在快速机床校准的应用德国亚琛工业大学(Rwth Aachen University,长久以来被誉为“欧洲的麻省理工”)机床与生产工程实验室(WZL)生产计量与质量管理主任的研究人员利用IDS3010让机床自动校准成为可能,这将大的提高机床的加工精度和加工效率。研究人员通过将IDS3010皮米精度激光干涉仪和其他传感器集成到机床中,实现对机床的自动在线测量。这使得耗时、需要中断生产过程、安装和卸载校准设备的手动校准变得多余。研究人员建立了一个单轴装置的原型,利用IDS3010进行位置跟踪,其他传感器如CMOS相机被用来检测俯仰和偏摆。校准结果与常规校准系统的结果进行了比较:六个运动误差(位置、俯仰、偏摆、Y-直线度、Z-直线度)对这两个系统显示出良好的一致性,值得指出的是:使用IDS3010的总时间和成本显著降低。该装置演示了自动校准机床的个原型,而且自动程序减少了机器停机时间,从而通过保持相同的精度水平提高了生产率。参考文献Benjamin Montavon et al J. Manuf. Mater. Process. 2(1), 14 (2018)■ IDS3010激光干涉仪在工业C-T断层扫描设备中的应用工业C-T断层扫描被广泛用于材料测试和工件尺寸表征。设计一个的锥束C-T系统的挑战之一是它的几何测量系统。近,瑞士联邦计量院(METAS)的科学家将德国attocube公司的IDS3010皮米精度激光干涉仪用于X射线源、样品和探测器之间的精密位移跟踪。实验共有八个轴用于位移跟踪。除了测量位移之外,该实验装置还能够实现样品台的角度误差分析。终实现了非线性度小于0.1μm,锥束稳定性在一小时内优于10ppb的高精度工业C-T。参考文献Benjamin A. Bircher, Felix Meli, Alain Küng, Rudolf Thalmann: "A geometry measurement system for a dimensional cone beam CT", 8th Conference on Industrial Computed Tomography (iCT 2018), At Wels, AU■ IDS3010激光干涉仪在增材制造3D打印方面的应用微尺度选择性激光烧结(μ-SLS)是制造集成电路封装构件(如微控制器)的一种创新方法。在大多数的增材制造中需要微米量的精度控制,然而集成电路封装的生产尺寸只有几微米,并且需要比传统的增材制造方法有更小的公差。德克萨斯大学和NXP半导体公司开发了一种基于u-SLS技术的新型3D打印机,用于制造集成电路封装。该系统包括用于在烧结站和槽模涂布台之间传送工件的空气轴承线性导轨。由于该导轨对定位精度要求很高,所以采用德国attocube公司的皮米精度干涉仪IDS3010来进行位置的跟踪。参考文献Nilabh K. Roy, Chee S. Foong, Michael A. Cullinan: "Design of a Micro-scale Selective Laser Sintering System", 27th Annual International Solid Freeform Fabrication Symposium, At Austin, Texas, USA ■ IDS3010激光干涉仪在扫描荧光X射线显微镜中的应用在搭建具有纳米分辨率的X射线显微镜时,对于系统稳定性的要求提出了更高的要求。在整个过程中实验过程中,必须确保各个组件以及组件之间的热稳定性和机械稳定性。德国attocube的IDS3010激光干涉仪具有优异的稳定性和测量亚纳米位移的能力,表现出优异的性能。IDS3010在40小时内具有优于1.25nm的稳定性,并且在100赫兹带宽的受控环境中具有优于300pm的分辨率。因此,IDS3010是对所述X射线显微镜装置中使用的所有部件进行机械控制的不二选择,使得整个X射线显微镜实现了40nm的分辨率,而在数据收集所需的整个时间内系统稳定性优于45nm。参考文献Characterizing a scanning fluorescence X ray microscope made with the displacement sensor■ 皮米精度激光干涉仪IDS3010在相位调制器的精密调制和控制上的应用相位调制器是相干合成孔径望远镜中光束合成机构的关键部件。提高相位调制器的调制精度和控制带宽有助于提高合成孔径望远镜的成像分辨率。相位调制器运动信息包括俯仰角、方位角和轴向位移3个自由度。目前3个或者多个自由度的实时测量还处于发展阶段。同时实现多自由度测量更是少之又少。来自中国科学院光电技术研究所光束控制重点实验室的方国明课题组采用德国attocube system AG公司的三轴皮米精度激光干涉位移传感器IDS3010通过获取待测目标平面内3个不共线点的位移量,而3个不共线的点可确定平面的法线,基于平面法线的性可解,从而可以获得目标的3个自由度运动信息,包括方位角、俯仰角和轴向位移。成功实现了三自由度的同时实时测量。图示: 三自由度测量原理示意图■ 皮米精度位移测量激光干涉仪助力声子四拓扑缘体观测电荷化理论能够描述中性玻色子系统的布洛赫能带,它预言二维量子化的四缘体具有带隙、拓扑的一维边缘模式。苏黎世邦理工大学的Sebastian Huber教授课题组巧妙地利用一种机械超材料结构来模拟二维的拓扑缘体,次在实验上观测到了声子四拓扑缘体。这一具有重要意义的结果时间被刊登在nature上。研究人员通过测试一种机械超材料的体、边缘和拐角的物理属性,发现了理论预言的带隙边缘和隙内拐角态。这为实验实现高维度的拓扑超材料奠定了重要基石。图示:实验装置示意图参考文献Observation of a phononic quadrupole topological insulator.Nature volume 555, pages342–345(2018)■ 激光干涉仪检测纳米精度位移台误差在实际生产中的存在可能导致损失以及客户对产品信心的丢失。光学传感器可以在质量检测中帮助减少误差产生提高成品率。attocube激光干涉仪是理想的可在各个领域提供高精度探测来减少误差的一种光学传感器。作为纳米精度位移台供应商的德国attocube公司,对位移台的精密移动的测量与鉴定是一个非常重要的任务。例如,下图左,ECS3030型号的线性位移台可在真空中进行位移。ECS3030位移台的行程是20mm。技术参数要求的是可重复精度小于50nm。利用attocube激光干涉仪对位移台上样品进行测量,位移台被程序控制来回往复移动1mm,在20mm的行程内在多个不同地点进行来回往复移动。测量结果如下图中所示。通过分析,左图中的数据提取的偏差值是13.2nm,下图右数据的直方图显示标准差是13nm。因此,位移台的可重复性技术指标是合格的。通过使用attocube激光干涉仪可以实施对于纳米精度位移台ECS3030的全自动测量。这已经是德国attocube公司对于位移台的质量检测手段。并且,这样一个简便与实用的传感器可以直接集成到生产线中去提供高产出的质量检测。■ 激光干涉仪组建高精度X射线显微镜同步辐射中心具有广泛的应用领域,生物科技(蛋白质结构),医学研究(微生物),工程研究(裂纹的变化观测),先进材料(纳米结构测量)等。以上应用需要高精度去驱动聚焦镜,样品,光学狭缝等物品(下图左),这样的机械结构需要减少热漂移与定位误差。德国attocube公司的激光干涉仪具备皮米精度分辨率,激光探头可在真空环境中使用,是同步辐射研究的良好选择。在现有激光探头中,标准激光探头M12是已经被证实可以在辐射环境中使用(大10MGy)。美国布鲁克海文实验室E. Nazaretski等人结合attocube激光干涉仪与纳米精度位移台搭建了X射线扫描成像显微镜(下图中)。通过attocube激光干涉仪作为实时检测与反馈位移台移动的工具,科学家实现了0.5nm的步进扫描(下图右)。并且,在真空环境中,系统的热漂移达到了2nm/h。综上所述,高精度的X射线显微镜可以实现纳米精度扫描成像,是实现硬X射线区域光学研究的有力工具。该显微镜使得X射线荧光光谱纳米精度成为了现实。参考文献E. Nazaretski , et.al. J. Synchrotron Rad. (2015). 22, 336–341 ■ 激光干涉仪无损探测轴承误差旋转物体的运动误差分析是高精度机械工程领域的一个主要兴趣之一。如果是高速旋转的转子,甚至1纳米的误差就会产生不想要的振动与运动误差。因此,纳米精度的运动误差监测是机械工程领域前沿的重要研究课题。一个主要的难题是:如何减小运动误差?为了减小误差,先需要测量误差。德国attocube公司的激光干涉仪可以提供一个无损,紧凑并且一插即用的解决方案。通常的线性位移测量需要一个平整的表面,而旋转运动的时候,遇到的是一个曲面(右图上)。attocube激光干涉仪测量的是一个直径为10mm的电动转子。由于attocube激光干涉仪的探头具有较大的容忍角度,激光探头很容易完成了校准并开始进行测量。转子转速为2160转每秒,两个激光探头对转子的运动误差进行了测量。右图下显示的为测量结果,红色实线为平均位置,而虚线显示了误差为5微米的两个圆环。黑色实现为实际测量数据。德国attocube公司的激光干涉仪软件使用界面友好,可提供亚纳米别的运动误差校正方案。即使是新用户,对于其激光干涉仪的使用也会很快熟悉。参考文献 Review of scientific instruments, 84, 035006 (2013) ■ 激光干涉仪校正低温非线性扫描通常扫描台在室温下扫描50微米 x 50微米的范围时候不会有显著的非线性效应。但是当在低温环境(4K或更低)中,压电陶瓷本身的性能发生变化,会产生下图右中的非线性扫描现象。通过德国attocube公司的激光干涉仪,可以在低温环境下使用激光探头对扫描台的扫描运动进行实时检测(高速扫描)。结合对扫描台的施加电压进行实时反馈控制,可解决低温下非线性扫描问题。测试数据■ 实验数据,皮米精度的稳定性图1 77mm长的腔在20个小时内的实验测量数据表明数据误差范围在55pm■ 测量速度快,定位样品采样带宽10MHz图2 样品移动速度2米/秒,移动范围1m发表文章1. Stability investigation of a cryo soft x-ray microscope by fiber interferometry Rev. Sci. Instrum. 91, 023701 (2020) 2. Vibration-heating in ADR Kevlar suspension systems James Tuttle et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 755 0120153. S. Thomas, et al IEEE Transactions on Microwave Theory and Techniques 67, 11, (2019).4. Observation of a phononic quadrupole topological insulator.Nature volume 555, pages342–345(2018)5. Benjamin A. Bircher, Felix Meli, Alain Küng, Rudolf Thalmann: "A geometry measurement system for a dimensional cone beam CT", 8th Conference on Industrial Computed Tomography (iCT 2018), At Wels, AU6. Benjamin Montavon et al J. Manuf. Mater. Process. 2(1), 14 (2018)7. In situ contrast calibration to determine the height of individual diffusing nanoparticles in a tunable confinement S. Fringes et al. J. Appl. Phys. 119 024303 (2016)8. Interferometric characterization of rotation stages for X-Ray nanotomography T. Stankevi? et al. Rev. Sci. Instrum. 88 053703 (2017)9. Measurement of forces exerted by low-temperature plasmas on a plane surface T. Trottenberg and H. Kersten Plasma Sources Sci. Technol. 26 055011 (2017)10. Mesh-type acoustic vector sensor M. K. Zalalutdinov et al. J. Appl. Phys. 122 034504 (2017)11. Markus Osterhoff, et at. Proceedings Volume 10389, X-Ray Nanoimaging: Instruments and Methods III 103890T (2017)用户单位attocube公司产品以其稳定的性能、高的精度和良好的用户体验得到了国内外众多科学家的认可和肯定,在全球范围内有超过了130多位低温强磁场显微镜用户。attocube公司的产品在国内也得到了低温、超导、真空等研究领域著名科学家和研究组的欢迎.....国内部分用户北京大学中国科技大学中科院物理所中科院武汉数学物理所中科院上海应用技术物理研究所复旦大学清华大学南京大学中科院半导体所上海同步辐射中心北京理工大学哈尔滨工业大学中国科学院苏州纳米技术与纳米仿生研究所……国外部分用户
    留言咨询
  • 马赫-曾德尔干涉仪 400-860-5168转2255
    特性两种型号可供选择:中心波长为850纳米或者1300纳米适合扫频源输出频率监测,带平衡探测输出低插入损耗平坦的波长响应集成的信号探测,用于功率监测和k-时钟信号紧凑型设计MZI干涉仪时钟箱规格SpecificationsINT-MZI-850INT-MZI-1300OpticalInterferometer Wavelength Range780-925 nm1225-1375 nmFree Spectral Range103.3 GHz ± 5%Fiber TypeNufern 780HP&trade Corning SMF-28&trade Input/Output ConnectionFC/APC Pigtail, 50 cm LongInsertion Loss* ElectricalDetector Material/TypeSi/PINInGaAs/PINDetector Wavelength Range320-1000 nm800-1700 nmTypical Responsivity (max.)0.53A/W1.0A/WMZI Output Bandwidth (3dB)DC-200 MHzConversion Gain Power Monitor**30 V/W (± 25%)60V/W (± 25%)Conversion Gain MZI Output**30 V/W (± 25%)60V/W (± 25%)Saturation Power100 mW @ 850 nm50 mW @ 1300 nmMaximum Input Power250 mW (Photodiode Damage Threshold)Electrical OutputSMAImpedance50 Ω DC-Offset ± 5 mVPower Supply± 12V, 200 mAGeneral Size120 x 80 x16 mm*包括输入和输出尾纤的接头损耗,在中心波长处测量。**使用高阻抗负载,相对于输出功率的转换增益测量结果。当阻抗为50欧姆时,该值减半。工作原理:迅速扫频激光光源通常用正弦调谐元件来实现OCT成像应用所需的光学频率扫描速度。需要准确和可靠的OCT信号重新校准,这样最终数据点在频率上才是等间距的。当使用可调谐激光器作为输入时,Thorlabs的MZI系列干涉仪时钟箱组件设计用来产生周期性(正弦)的K时钟信号。为了得到K时钟信号,正弦信号的最大值和最小值在频域必须等间隔(见下面的图1)。两个最值之间的差值是由自由光谱响应决定的,对于MZI系列该差值是103.3GHz。图1:MZI时钟信号下面的图2是该系统的原理图。内部光纤网络利用5%的输入光产生功率监测和K时钟信号。剩余的光传输到输出尾纤。特殊设计的耦合器用于为传输信号和功率监测信号实现平坦的波长相应(如下面的图3和图4)。MZI的两个信号都是用超低噪声的放大平衡光电探测器探测的。图2:MZI系列时钟箱原理图 图3:INT-MZI-1300从输入到输出的耦合比 图4:INT-MZI-1300从输入到功率监测的耦合比
    留言咨询
  • 干涉仪 400-860-5168转3912
    GEMINI-2D 干涉仪NIREOS的GEMINI-2D将您的瞬态吸收光谱仪转变为最先进的二维电子光谱仪。GEMINI-2D是一款结构紧凑、超稳定的干涉仪,可产生两束极其稳定、相位锁定、平行的飞秒激光脉冲。特点:吸收线形状的泵浦-探针(准直)几何构型。高光通量:1厘米透明孔径,不用任何光栅或输入/输出狭缝。支持各种超快放大器和光参量放大器(OPA 或 NOPA)作为输入,波长范围覆盖紫外到近红外。扫描范围和光谱分辨率自由选择,用户可以先进行快速测量,初步了解光谱特点,然后延长数据采集时间,提高信噪比和光谱分辨率。坚固耐用,工厂装配和校准后可轻松集成到任何现有的泵浦探测设备中。得益于独特的common-path几何结构设计专利,它对振动不敏感,工作非常稳定。它能够保证脉冲延迟的可控性和重复性,精度优于1阿秒。结构紧凑:尺寸仅为18 cm x 18 cm。应用:二维电子光谱(2DES)参数:版本SL光谱范围400 nm – 2300 nm (标准版)400 nm – 2300 nm (标准版)250nm – 3500nm (极宽版)250nm – 3500nm (极宽版)对称版最长时延@λ=600nm-400 fs - +400 fs-1050 fs - +1050 fs非对称版最长时延@λ=600nm-100 fs - +700 fs-100 fs - +2 ps延时稳定性≤1阿秒≤1阿秒工作模式步进扫描(用户可通过软件选择每次延迟的停留时间)步进扫描(用户可通过软件选择每次延迟的停留时间)尺寸长宽高:180mm x 180mm x 90mm长宽高:180mm x 180mm x 90mm重量2 kg2 kg二维电子光谱(2DES)是一种超快激光光谱技术,可以探测样品的电子、能量和空间分布 在选定的探测波长和固定的时间T2下,振荡瞬态信号是两个泵浦脉冲之间相对延迟T1的函数。Oscillating transient signal as a function of the relative delay T1 between the two pump pulses at a selected probe wavelengh and at a fixed population time T2.根据每个探针波长的T1函数进行傅里叶变换,就可以获得与探测波长和激发波长函数相关的二维谱图。A Forurier Transform ad a funcion of T1 for each probe wavelength allows one to retrieve the 2D maps ad a function of detection and exitation wavelengths.在三个不同布居时间T2(15 fs、45 fs和4000 fs)下,对Rhodospirillum Rubrum 样品的光收集(LH1)复合体测量得到的二维电子能谱测量的二维图。Bidimensional maps of 2D Electronic Spectroscopy measurements obtained on a Light Harvesting (LH1) complexo f a sample of Rhodospirillum Rubrum for three diferente populations time T2 (15 fs, 45 fs, 4000 fs).
    留言咨询
  • 产品概述MT Pro 是一款集单多芯一体的双光源干涉仪。结合Dimension高科技自主研发且拥有专利技术的光学系统,提升检测视场大小,多芯采用非接触式白光扫描测量,单芯采用红光相干原理而研制。能够快速一键全自动准确检测连接器表面3D形貌的各项指标参数,并显示保存测量结果。配备多款高性能检测夹具,广泛应用于实验室及生产制造。主要特性图像分辨率高达 1.5μm测量速度快,单芯 0.5s,12 芯 5s重复性高采用 0.1nm 精度激光干涉仪标定,测量结果准确Ferrule 夹具外框定位支持检测单芯,多芯(2~72 芯)测量视场 4.3*3.3mm 可测量单排 16 芯连接器自动对焦、自动测量功能自动调整校准参考镜0~8°夹具角度快速调节,无需更换夹具软件操作界面更直观图像分辨率高达1.5umMT Pro 针对多芯连接器测量设计了新的光学系统能够准确还原光纤连接器端面细节及形貌。保证后续计算得到准确结果。 多芯多模光纤表面 多芯单模光纤表面单芯光纤检测新高度MT Pro干涉仪采用全新光路设计,光纤高度测量范围单芯高达 -1000~1000nm,适合各种复杂工况的使用。 数据重复性好以下是同一个连接器连续测量 10 次的结果。光纤高度测量重复性纤芯凹陷测量重复性测量结果准确MT Pro使用了精度高达0.1nm的激光干涉仪对系统进行了准确的标定。确保 MTP/MPO 测量的ROC、Fiberheigh和 Coredip等参数准确性和一致性。自动对焦功能MT Pro 在每次测量时都启动了自动对焦保证从最佳位置开始面型扫描,从而能够最大范围还原出各种连接器的表面形貌,即使端面形状不是很理想的连接器也能够被准确测量。自动对焦功能大大简化了测量操作,特别是 APC 连接器。自动校准参考境维度科技的干涉仪校准方案是采用自动调整参考镜,而非手动调整夹具平台或用数据补偿的方案。这样做的优点是:独特MT Ferrule 外框定位测量夹具维度科技外框定位测量技术拥有技术专利,优点显著。1. 外框定位 MT Ferrule 可用于 MT4,MT8, MT12 ,MT16 ,MT24,MT32 ,MT48 ,MT72全系列 ferrule 测量无需更换夹具。2. 保证了 Ferrule 角度测量的准确性和重复性3. 长寿命不易损伤4. 避免了对被测件 PIN 孔的损坏5. 有助于分析研磨夹具角度的准确性 足够大的视场能够测量 MT160~8°夹具角度快速切换MT Pro 的独特夹具平台设计 , 能够快速实现 0~8°的宽广角度调节,无需更换夹具再次校准,能够保证更高的重复性和再现性,可检测全类型的多芯 PC 和 APC 产品。 PC ,APC测量模式切换快速简便一键式操作一键式全自动的测试流程,只需一次点击鼠标即可自动对焦、自动扫描、自动分析、自动计算,数秒内完成测量及报告存储。简洁的软件界面和卓越的3D还原能力MT Pro 干涉仪测量 软件界面采用简洁的模块化显示,直观便于操作。实时图像清晰,3D 还原图,表面粗糙度图、剖线图,及各个参数测量结果同相关信息一目了然。测量操作和设置简单易行,单多芯测量一键切换。主要规格参数注:1) X,Y 端面角度 *(°)参数针对外框夹具;2) * 重复性和再现性数值为 sigma 统计值;3) 重复性是 50 次不动连接器进行测量得到的统计值;4) 再现性是 50 次重复插拔连接器得到的统计值。主要应用用于抛光和组装过程中检查光纤插芯,跳线,尾纤和裸光纤。
    留言咨询
  • 系统参数:◆原理非接触、三维白光扫描干涉仪。◆扫描装置:闭环反馈压电陶瓷,高线性电容传感器。◆物镜:1X,2X,2.5X,5X,10X,20X,50X,100X, 工作距离分别有标准/长焦/超长焦详见物镜参数表。◆物镜座选件: 电动4位塔台可选。◆视场放大倍数:高质量分立放大倍率镜头:0.5X,1.0X,2.0X。◆成像放大视场:电动3位系统成像放大0.04-16mm,跟物镜和放大倍率有关,运用图像拼接技术可以得到更大范 围。◆光源:特殊设计长寿命白光LED。◆控制:滤光板托架,视场光阑(辅助聚焦)。◆测量阵列:1600×1600。◆样件观察:专用液晶显示屏实时观察。◆精密聚焦:电控手动和自动聚焦◆Z 轴驱动(聚焦):直流无刷微步进电机驱动,100mm行程,0.1um的精度◆样品台: 电动,俯仰±3°和XY平移(±76mm)◆计算机:带液晶显示器的高性能DELL计算机◆软件:在Microsoft Windows7下运行的ZYGO Mx软件◆尺寸(HWD):总尺寸:151×73×61cm newview:75x64x56cm 防震台:76x61x61cm◆总重量: 约229Kg newview:约91Kg性能:◆纵向扫描范围:150 um,可扩展到20mm◆纵向分辨率:<0.08nm◆横向分辨率:0.34-16.42um 与所选物镜有关◆扫描速度:≥150um/sec,与所选的CCD和扫描模式有关◆RMS重复性:<0.008nm, RMSσ◆台阶测量:准确度 ≤ 0.8%;重复性≤0.1%@1σ被测样品特性:◆材料: 各种材料的表面:透明,不透明,镀膜,非镀膜,反射,弱反射◆最大尺寸(HWD):89 x 203 x 203mm 或更大◆反射率:0.05%-100%环境要求:◆温度: 15-30℃ <1.0°C/15 分钟◆湿度: 相对湿度 5%-95%,无凝结◆隔振:需要隔离 1-120Hz 的振动(VC-C)
    留言咨询
  • OCT共路干涉仪 400-860-5168转2255
    OCT共路干涉仪特性低插入损耗平坦的波长响应带有源抗混叠滤波器的集成平衡信号探测用于660纳米对准光束输入紧凑型设计;带电源INT-COM-1300干涉仪可用于扫频源系统内部,用于共路OCT应用。它集成了光纤耦合网络,与外部共路干涉仪探头一起使用。这种耦合器为实现平坦波长响应,以及非常低的偏振相关耦合损耗进行了优化。集成的高增益平衡探测器包括了有源抗混叠滤波器,将数字条纹信号中的混频产生降至最小,从而提高成像质量。Item #INT-COM-1300Optical Wavelength Range1250 - 1350 nmFiber TypeCorning SMF28eFiber PortFC/APCInsertion Loss: 1300 nm IN to Probe* Insertion Loss: 1300n m IN to VOA IN* Insertion Loss: 660 nm IN to Probe Port* ElectricalDetector Material/TypeInGaAsDetector Wavelength Range800 - 1700 nmMaximum Responsivity (Typical)1.0 A/WOutput Bandwidth (3 dB)DC - 15 MHzTransimpedance Gain51 kV/ADC-Offset ± 5 mVSaturation Power**70 uW @ 1300 nmMaximum Input Power (Damage Threshold)**20 mWOutput Impedance50 Ω Optical ConnectorsFC/APCElectric Outport PortSMAPower Supply± 12 V, 200 mAGeneralSize 120 mm x 80 mm x 21 mm(4.42" x 3.15" x 0.827")*) 在中心波长测量,包含接头损耗**) 耦合进探头或者VOA输出端口 下面的图1给出了INT-COM-1300内部光学网络和一个基本的OCT应用装置的原理图。图1:INT-COM-1300原理图 INT-COM-1300的内部光纤网络是为扫频傅里叶域OCT系统设计的,该系统中干涉仪的参考臂和样品臂信号都沿着共路配置传播。这两个臂的反射光合束产生干涉条纹,被集成的平衡探测器中的一个通道探测到。探测器的第二个通道可能被用来补偿干涉信号中的直流成分,并用一个外部可变光学衰减器(VOA)来控制到达探测器第二个通道的光通量。95/5光纤耦合器用于把输入光分为两部分,其中95%的光束被传输到一个环行器内,然后通过WDM耦合器。WDM耦合器把入射的1300纳米光和瞄准激光合在一起,方便对准。光从WDM耦合器的探测端口出射,用于样品观察。从样品反射回来的光再次经过WDM耦合器,然后通过环行器,被平衡探测器的一个通道探测到。来自入射光分光的5%光通过一个斜率补偿耦合器传输到VOA IN端口。这个额外的耦合器用于补偿波长相关耦合比。这两个耦合器的设计使VOA IN信号几乎不依赖OCT激光器的波长,能实现宽带直流偏置补偿。这在下面的波长响应曲线中给出。图2是从1300纳米输入到探测端口测量的INT-COM-1300耦合率,而图3是从输入端口到VAO端口输入端测量的耦合率。图2:从输入耦合到探测端口的波长响应图3:从输入耦合进VAO输入端口的波长响应
    留言咨询
  • 全光谱干涉仪 400-860-5168转3912
    武汉东隆科技为意大利米兰NIREOS的中国区独家代理,欢迎您来电垂询!GEMINI是一款新颖的紧凑型干涉仪,入射光所产生的两束复制光之间具有极高的稳定性。其卓越的性能可以被应用于许多科研领域,比如时间/频率分辨荧光探测,相干拉曼光谱,泵浦探针,二维光谱以及单分子的研究。主要特点高光通量,高灵敏度(1cm通光孔径,没有任何光栅或输入/输出孔径狭缝)宽光谱范围:标准版400-2300nm、超宽带版250-3500nm≈1阿秒稳定性(对两束复制光)自定义扫描范围对振动不敏感尺寸紧凑(176 x 44 x 54.5mm)轻便(≈400g)应用领域:干涉测量 激光对产生GEMINI在探测端时间/频率分辨荧光泵浦探针光谱相干拉曼光谱GEMINI在激发端单分子表现特征 和TCSPC探测器组成的时间/频率分辨荧光系统实验配置:GEMINI干涉仪放置于和TCSPC连接的单光子探测器之前,可以在保证时间分辨的同时获得荧光的波长信息。 相干拉曼(受激拉曼散射)和泵浦探针光谱实验配置:GEMINI干涉仪置于探针/斯托克斯光束入射样品后方,可以测量受激拉曼散射和MHz调制频率的泵浦探针光谱。单分子激发-发射图GEMINI干涉仪可以在短时间内以异常高的精确度和灵敏度获得单分子的特征描述 技术规格UV-SWIRVIS-MIDIR光谱范围200-3500nm500-5000nm延时稳定性小于1阿秒运行模式阶跃扫描或连续扫描尺寸10×8×8cm重量750g 武汉东隆科技为意大利米兰NIREOS的中国区独家代理,欢迎您来电垂询!
    留言咨询
  • 西格玛光机干涉仪 400-860-5168转4674
    干涉仪通常,我们不容易直接观测到1微米量级的动态现象的,此时,我们会选择光学干涉仪进行观测。例如,测量光学镜头的面精度的干涉仪,精密测量距离或位移的测长仪,需要精密测量位移变化的速度计或振动仪等,都是利用了光学干涉原理的典型仪器。市场上销售的大部分干涉测量装置是由光学干涉部分和信号解析部分组成的。 采用先进的电信号处理技术,可以同时实现高分辨率和很宽的测量范围。 但是,我们这里介绍的光学干涉装置,并不包含干涉条纹的电信号处理内容,我们重点介绍了其光学部分。因此,虽然其可观测的范围有限,但足以进行干涉计测的基础实验和理论验证。 业务范围l 通用干涉仪,如迈克尔逊干涉仪、马赫曾德干涉仪、斐索干涉仪等;l 集成光学干涉系统;l 流体可视化光学系统;l 干涉仪组件l 干涉仪相关组件接受订制特点分辨率小于1微米非接触(非破坏)测量面(2维)测量应用实例面精度测量测长仪速度计/振动仪
    留言咨询
  • BATOP+太赫兹光谱仪 400-860-5168转3067
    太赫兹光谱仪TDS10XX - Benchtop THz时域光谱仪 TDS10XX光谱仪由光谱仪机箱及带有软件T3DS的笔记本组成。产品特点:飞秒激光波长1550nm,1060nm,780nm。透射及反射的样品室,可净化氮。小样品可选集中的太赫兹光束附件接口(外部光纤耦合装置)可选x-y-z样品变动(对于反射及透射的3D太赫兹扫描) TDS主要参数:光谱范围:0-3.5THz,由激光波长决定光谱分辨率:2GHz动态范围:>60dB太赫兹光束直径:22mm太赫兹焦点直径:1-2mm尺寸及种类:60cm*60cm*25cm, 50kg 光纤耦合THz时域光谱仪组成部分:1550nm飞秒光纤激光THz透镜发射天线THz透镜探测天线延迟线:1ns时间延迟电子元件(脉冲发生器+锁定检测)光谱仪T3D软件的笔记本电脑 主要参数如下:光谱范围:0.1-1.5THz光谱分辨率:2GHz信噪比(0.4THz):1000最小扫描时间:0.5sTHz光束直径:12mm THz时域透射光谱仪-自由空间1060nm激光组成部分:飞秒光纤激光THz透镜发射天线THz透镜探测天线延迟线:1ns时间延迟分束器及分光镜手动XY方向移动基片夹持架电子元件(脉冲发生器+锁定检测)光谱仪T3D软件的笔记本电脑 主要参数如下:光谱范围:0.1-1.5THz光谱分辨率:2GHz信噪比(0.4THz):1000最小扫描时间:0.5s从天线到THz焦点距离:50mm Mini-Z时域光谱仪 特点:紧凑及便携式集成太赫兹系统波形扫描速率达5Hz(标准)或500Hz(HS型)反射及透射间快速且容易转换防振大多在室内环境使用客户可自定软件光纤耦合泵浦激光 应用:光谱材料特征及成像无损检测厚度测量 Z3 THz时域光谱仪 特点:宽带灵敏度达3.5Hz高动态范围,在峰值处>70dB透射与反射模式兼容许多振荡器及光学激光系统时间延迟1.3ns或更长自定义软件 应用:光谱材料特征无损检测厚度测量光泵浦太赫兹探头 ZAP太赫兹光谱仪特点:超宽带(>10THz),覆盖光谱范围从毫米波到远红外。高太赫兹电场域(>100kV/cm),非线性光谱较高信噪比室温下探测大的样品室自定义软件 应用:光谱材料特性光泵浦太赫兹探头非线性光谱 Micro-Z手持式时域光谱仪 优点:便携手持式可在非实验室环境操作瞄准测量非接触实时光谱微小调整及维护可选内置显示及计算机控制 特征:紧凑,手持式太赫兹收发器头快速扫描率达500Hz特定的化学信号识别综合散射基线校正用户可扩展化学信号库USB接口来接外部电脑透射及反射模式宽带灵敏度达2THz SPS-300 傅里叶远红外太赫兹光谱仪 采用模块化设计,用作远红外/太赫兹光谱分析仪或材料光谱仪基于分束镜的双偏振Martin-Puplett 和Michelson干涉结构精确的步进扫描和快速扫描模式采用工业中最好的4um Mylar 网格分束器,用于偏振模式支持外加光源和探测器支持客户自己设计的样品室标准精密平台及集成模式100mm大口径镀金光学元件2~2000cm-1 (5μm~5mm) 光谱范围标准50mm平台,分辨率0.12cm-1为排除大气水气光谱影响而设计的10-3 Torr 真空外罩
    留言咨询
  • 海思科技 吴先生 美国Bruker三维光学表面轮廓仪-ContourGT-K1/白光干涉仪Bruker三维光学表面轮廓仪-ContourGT-K1/白光干涉仪布鲁克 (Bruker) 是表面测量和检测技术的全球领导者,服务于科研和生产领域。新一代白光干涉仪ContourGT系列结合了先进的64位多核操作和分析处理软件,专利技术白光干涉仪(WLI)硬件和前所未有的操作简易性,是历年来来进的3D光学表面轮廓仪系统。该系统拥有超大视野内亚埃级至毫米级的垂直计量范围,样品安装灵活,且具有业界的测量重复性。ContourGT系列是当今生产研究和质量控制应用中,最广泛使用和最直观的3D表面计量平台。应用: 对LED行业、太阳能行业、触摸屏行业、半导体行业以及数据存储行业等,提供全方位非接触式测量方案,样品从小至微米级别的微机电器件(MEMS),大到整个引擎部件,都可以获得表面形貌、粗糙度、三维轮廓等精准数据原理:利用干涉原理测量光程之差从而测定有关物理量的光学仪器。两束相干光间光程差的任何变化会非常灵敏地导致干涉条纹的移动,而某一束相干光的光程变化是由它所通过的几何路程或介质折射率的变化引起,所以通过干涉条纹的移动变化可测量几何长度或折射率的微小改变量,从而测得与此有关的其他物理量。测量精度决定于测量光程差的精度,干涉条纹每移动一个条纹间距,光程差就改变一个波长(~10-7米),所以干涉仪是以光波波长为单位测量光程差的,其测量精度之高是任何其他测量方法所无法比拟的。特征:◆业界的垂直分辨率,大的测量性能;0.5~200倍的放大倍率;任何倍率下亚埃级至毫米级垂直测量量程;高分辨率摄像头;◆ 测量硬件的独特设计,增强生产环境中的可靠性和重复性;较高的震动的容忍度和GR&R测量的能力专利的自动校准能力;◆ 多核处理器下运行的Vision64? 软件,大大提高三维表面测量和分析速度数据处理速度提高几十倍;分析速度提高十倍;无以伦比的大量数据无缝拼接能力;◆ 高度直观的用户界面,拥有业界的实用性,操作简便和分析功能强大优化的用户界面大大简化测量和数据分析过程;独特的可视化操作工具;可自行设置数据输出的界面
    留言咨询
  • 迈克尔逊型干涉仪 400-860-5168转2255
    迈克尔逊型干涉仪 特性偏振相关耦合比(PDCR)的波动最小带有源混叠的集成平衡型信号探测指示光束输入(660纳米)以辅助对准包含干涉仪电源 迈克尔逊型INT-MST-1300B干涉仪组件设计用于波长范围在1250到1350纳米内,带有平衡探测装置的光学相干层析成像系统中。为了使用更快的扫描激光器,集成探测器的带宽已经增大到高达100MHz。该模块包括用于迈克尔逊干涉仪的光纤耦合网络,输出为参考臂和样品臂。内部所用的耦合器已经进行优化,具有平坦的波长响应和非常低的偏振相关耦合损耗。光纤的长度是与干涉仪的两臂均匹配,误差在0.2毫米以内,同时为了提高系统的坚固性和易用性,还配有FC/APC带角度的光纤适配器。为了抑制数字条纹信号中降低成像质量的混频的产生,集成的高增益的平衡型探测器(带宽100MHz)包含了一个有源的混叠滤波器。 为了支持将INT-MST-1300B对准到光学系统中,在组件中包含了一个660纳米指示激光器的附加输入,和一个专门设计的组合了扫描激光光源(1300纳米)和准直激光器(660纳米)的WDM耦合器。Item #INT-MSI-1300BOpticalInterferometer Wavelength Range1250 - 1350 nmFiber TypeSMF-28e+Input/Output PortFC/APCInsertion Loss*from 1300 nm IN to Sample Armand to Reference Arm Insertion Loss*from 660 nm IN to Probe4.5 dB MaxPath Length Difference0.2 mm MaxElectricalDetector Material/TypeInGaAs/PINTypical Responsivity Max1.0 A/WOutput Bandwidth (3 dB)DC - 100 MHzTransimpedance Gain100 kV/ASaturation Power**35 µ WMaximum Input Power**250 mWElectrical OutputSMADC Offset Power Supply± 12 V, 200 mA(PICO M8 con.)General Size4.72" x 3.15" x 0.827"(120 mm x 80 mm x 21 mm)* 包括输入和输出尾纤的接头损耗,在中心波长处测量。** 使用高阻抗负载,半值为50欧的阻抗,来测量相对输出功率的跨阻抗增益。图1显示了在时域OCT系统中的INT-MSI-1300B的示例装置。中心波长为1300纳米的输入宽带光源,通过一个环形器和宽带50/50熔融耦合器。来自干涉仪样品臂和参考臂的背反射光在50/50熔融耦合器中合束,产生干涉条纹,经过环形器和WDM耦合器后输入到平衡探测器。平衡探测器的输出信号被数据采集装置获取,经过处理后得到重建的OCT图像。图2描述了通过将参考臂的移动反射镜替换为固定式反射镜,IN-MSI-1300B如何集成到频域OCT系统中。图1: 在时域OCT设计中的INT-MSI-1300B的示意图图2: 在示例傅里叶域OCT设计中的INT-MSI-1300B的示意图干涉仪两臂的内部光纤长度匹配在0.2毫米以内,同时50/50熔融耦合器和平衡探测器的输入之间的光程也经过匹配,以获得最佳的噪声抑制(即最大的共模抑制比CMRR)。内部耦合器已经进行了优化,具有平坦的波长响应和非常低的PDCR(偏振相关耦合比),这使得探测信号几乎与输入的偏振变化无关。图3显示了在参考臂端和样品臂端输入功率的百分比。在1300纳米(中心波长)测量的两个端口的功率相等。图 3: INT-MSI-1300B在1300纳米测量的IN端口到样品臂和参考臂端口的耦合效率
    留言咨询
  • TeraSpecta: 化学表征的强有力的新型技术ARP TeraSpectra 光谱仪基于太赫兹时域光谱(THz-TDS)技术,采用专利EO 树枝状光源,在室温下可产生0-35THz 的稳定太赫兹辐射。用户可使用前端工作界面建立时间窗口捕捉发生在不同进程的分子事件,并在整个太赫兹频段探测分子。TeraSpectra 能针对固体、液体或者气体中的纯物质和混合物质成分分析低至飞摩尔或万亿分之一。仪器能探测对其他光谱辐射不透明或者缺少发色的分子。它同样用来识别分子的精细结构诸如小至单氢原子的原子替代或者多中心手性。通过调节时间窗口,太赫兹光谱能捕捉解离与结合动力学过程,从中间态的形成至配位键结合成分子、大复合体、胶体、颗粒甚至固体表面等。此外,扫描反射光谱仪可以测量固体基质诸如皮肤与多孔材料吸收组分的深度和动力学。时域太赫兹光谱介绍 THz-TDS 时域太赫兹光谱是在飞秒至几十皮秒时畴实施的光谱测量技术。相应的傅里叶变换应测量的太赫兹脉冲经过傅立叶变换,产生太赫兹光谱。其光谱取决于样品对太赫兹光的幅度和相位的影响。该技术提供了远超于传统傅里叶红外光谱或者拉曼光谱的信息,后者仅是幅度的改变。太赫兹光可在室温下产生与探测,如此以来该技术可以探测天然态下的分析系统(诸如生物系统),而无需电离辐射。太赫兹光谱原理当太赫兹辐射与分子相互作用时,将会激发诸多共振诸如分子振动与声子振动等等,导致THz 光子被特定的相互作用或者事件影响。能量或者频率的变化体现了分子本质相互作用的信息。红外与拉曼光谱也能获取类似信息,但是不像太赫兹光谱那样可以探测诸多的共振态,因为太赫兹光子对整个分子的振动态都很敏感,而不仅仅是某个键或者某个态。分子振动范围可涵盖从简单的双原子分子的耦合运动至大的官能团分子的多原子的复杂运动。一般来说,每个原子有6 个自由度,所以一个有N 个原子组成的分子会有6N 个振动态,这些结构都容易被太赫兹光谱探测。THz-TDS 光谱相对于其他形式的光谱具有明显独特的优势。在太赫兹波段,材料具有独特的指纹光谱特性,意味着太赫兹光可以有效识别他们。例如聚合爆炸物,多晶型物质如活性药物组分与拥有单个或多个手性中心的手性物质。许多材料对太赫兹光都透明,而对其他波长的光都是不透明的。所以可通过不透明的干扰层,如包装或织物可以轻易探测样品。能够对不透明材料的或者隐藏的界面和缺陷下的样品进行光谱或成像分析。太赫光不像X 射线或者紫外光导致样品的电离,所以利用太赫兹光的测量无损无接触,对生物样品安全无害。产品技术特点描述TeraSpectra 是在室温下实现从100GHz 至35THz 的全部太赫兹波段无间隙测量的新一代研究级商业化THz-TDS 光谱仪。该产品的独特优势在于专利光源与探测器技术(EO 树枝状)的应用。使用两个二极管激光泵浦的树枝状高功率光源,光分为两个光束:一束光保持静止,而另外一束光扫描产生干涉图,表征样品与太赫兹光的相互作用。使用这种技术,可以探测平均功率大于5mW 的100GHz 至35THz 范围的信号。TeraSpectra 可用于测量使用其它光谱技术与不使用EO 树枝技术的太赫兹仪器无法获取的样品的合成与化学特征信息。作为一个高灵敏度的仪器,可以用来识别与探测一个分子与另外一个分子结合或解离。不像拉曼与红外光谱,太赫兹光能穿透与探测更深的能级。可以在低至飞摩尔或亿万分之一的浓度识别分子信号与痕迹分析。其它诸如共聚物与催化也能在分子水平上进行分析。因为测量的时间窗口也可改变,可以用来测量分子的动力学快慢事件。例如,慢的事件诸如蛋白-蛋白作用、酶反应或者其它任何由化学、温度或者其它环境刺激引起的生物过程都能通过太赫兹光谱响应分析研究。TeraSpectra 高性能技术参数 参数TeraSpectra1时间分辨率33 飞秒时间范围至 100 皮秒频率范围100GHZ to ~35 THz专利技术Next gen. EO 树状源源功率5 毫瓦探测灵敏度~ 100 飞摩尔操作环境室温空气环境模式透射/反射高性能产品特色得益于下一代枝状太赫兹源技术,使得TeraSpectra 太赫兹光谱仪具有最高性能的同时,大大降低了成本。并且摒弃了笨重的激光源与繁杂的光路调节,使用户专注于应用而非仪器调节和维护高功率专利光源拓展了光谱测量范围,使得探测诸多样品与应用成为可能。透射与反射测量模式固体, 液体与气体样品高信噪比非标记表征.室温环境操作高稳定, ~1&rdquo 直径光束均匀照射。光束可聚焦(可选)温度与环境控制样品仓(可选) 请在资料中心下载更为详细的产品资料,或直接登陆公司网站:。
    留言咨询
  • 皮米精度位移激光干涉仪(可试用)姓名:谷工(Givin)电话:(微信同号)邮箱: 昊量光电推出的皮米精度位移干涉测量仪quDIS是对纳米级别的位移波动进行量测的理想仪器,基于其独特的测量原理,相对距离的重复精度达到了前所未有的50皮米。quDIS可同时支持三个测量通道,使其可以适用于任意的多轴测量中。quDIS在原理上同样采用激光干涉法,不过与传统激光干涉仪相比,其集成了法珀腔(Reference cavity)及饱和吸收气室(GC)作为频率校准参考,通过激光波长调谐扫描,比较两种不同的干涉图样,可以实现其它设备所不具有的绝对距离测量,基于这种测量方式,使得quDIS相对其他产品测量距离可以达到20M的同时保持高精度,且与信号对比度和强度无关,由于使用整个干涉模式来提取位移信息,因此不存在非线性误差。此外,quDIS不仅可以获得位置、速度和加速度等信息,折射率、反射率或表面倾斜度等信息也可以从实时信号中提取得到。独特的法珀腔+饱和吸收气室构造 波长的线性变化的引入在此构造下使得绝对距离的测量成为可能!干涉传感头 激光束的成型是通过不同的传感器头来实现的,根据反射目标的不同,不同的应用都需要不同的准直、聚焦和光束剖面约束。quDIS的传感器头均基于光纤设计。quDIS为常规情况下的使用提供标准准直仪和定焦传感头,同时根据具体的需要以及恶劣环境下的应用,也设计了响应的特殊传感头。 用于测量高温漂移物体的传感器头的设计 镍铁合金制造的低热膨胀系数准直头产品特点: 多维度多通道位移干涉器,操作简单,即插即用 相对距离和绝对距离测量 完善的全套系统配置 实时输出数字化图像 针对不同应用提供各种传感接头及反射模块组合解决方案 长期使用保证稳定性 兼容真空与各种恶劣环境独特优势: 绝对距离高精度测量! 不存在非线性及周期性误差! 相对距离信号稳定性0.05nm! 工作距离最大20m(与传感头相关) 目标最大速度1m/s 三个传感接口,可实现多设备同步 探测器分辨率达到1pm应用领域: 极限环境下振动分析 缓慢漂移及热膨胀检测 精密设备位置控制 纳米级位移测量 层状结构中间隙和边缘的测量 位移和振动精度评估皮米精度位置测量仪参数列表:干涉仪传感头光源DFB激光器分辨率1pm功率400uW相对距离稳定性 0.05nm波长1535nm绝对距离精度0.2nm/mm线宽5MHz带宽25kHz传感器通道3工作距离0.1—20m光纤输入端口FC Narrow-Key-Slot目标速度1m/sMating Sleeves传感头真空同步多台设备同步低温
    留言咨询
  • 超宽谱太赫兹发射器 400-860-5168转2831
    超宽谱太赫兹发射器自旋电子太赫兹(THz)发射器基于一个优化的金属薄膜堆栈包括自旋电子材料。在飞秒泵浦脉冲的照射下,太赫兹脉冲产生。太赫兹带宽覆盖0.1到30太赫兹的频率,没有任何谱段间隙。发射器是完全被动的,包括集成的磁铁设计,允许简单且完全控制线性太赫兹极化。 超宽谱太赫兹发射器主要特点: ■ 无光谱间隙的超宽带太赫兹辐射 ■ 高太赫兹产生效率,被动式器件 ■ 集成磁铁,可完全轻松360°控制线性太赫兹极化 ■ 稳定性好,可长期使用 ■ 与许多光学装置兼容 ■ 太赫兹光束参数继承泵浦光束 ■ 泵浦光适用波段宽,从中红外到X射线 ■ 泵浦光和太赫兹光束的共线性使太赫兹光谱仪易于实现和直接校准超宽谱太赫兹发射器应用领域: ■ 超宽带线性太赫兹光谱■ 非线性太赫兹光谱■ 太赫兹近场显微镜■ 太赫兹扫描隧道显微镜■ X射线束层析成像■ 超快光电探测器(由泵浦脉冲包络确定的太赫兹脉冲)超宽谱太赫兹发射器指标参数:更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。您可以通过我们昊量光电的官方网站了解更多的产品信息,或直接来电咨询。
    留言咨询
  • Terapower太赫兹自校标功率计产品介绍TeraPOWER测量范围从太赫兹至亚太赫兹,结合了高灵敏度、宽光谱探测范围与最大的探测表面主要技术特点-绝对自校标功率计-大尺寸探测器区域- 宽波段红外与太赫兹测量- 适用于最多类型的红外、太赫兹与MMW源suited to a large variety of IR, THz and MMW sources电子二极管(Gunn,IMPATT,TUNNETT)BWOQCLs 激光分子激光自由电子激光-性价比高易于使用 开启了宽范围太赫兹测量的新领域实验室与工业的太赫兹和亚太赫兹应用新领域-科研测量与工业研发-连续与脉冲光源的测量与优化-光学表征与工业材料-非破坏性检测的主动成像与断层扫描可选采集模式典型技术参数 @0.1 THz参数 TeraPOWER TP-MilliTeraPOWER TP-Nano尺寸 60x60x70mm3 工作温度Room temperature 电压None接入BNC/RS232BNC/RS232/GPIB 探测区1-25mm (根据需要)数据采集模式毫米波模拟计算机采集 Nano 电压计计算机采集光谱范围0.1-30THz (l0&mu m -3mm)0.1-30THz (l0&mu m -3mm)最小测量信号 100&mu w 1&mu w灵敏度(整个太赫兹波段 )0.1 V/W1 V/W测量误差10&mu w0. 1&mu w
    留言咨询
  • 扫描隧道显微镜,YMP-6113 描述扫描隧道显微镜(STM),使人类首次能够实时地观察单个原子在物质表面的排列状态和与表面电子行为有关的物化性质,并因此获1986年诺贝尔物理学奖。YMP-6113扫描隧道显微镜采用特有的卧式探头结构,克服了原有粗调与微调逼近机构的垂直蠕动,使仪器性能更加稳定可靠。特点特有的卧式探头结构,克服了原有粗调与微调逼近机构的垂直蠕动独特的USB视频显微监控系统,可实现微探针操作与进给过程的可视化高精度压电陶瓷扫描传感器,保证扫描图像的保真性强大的图形软件与功能,支持纳米级三维立体成像和截面线显示功能操作便捷、高速扫描、高稳定性与抗干扰能力黑体辐射实验装置,YMP-6115简介黑体是一种完全的温度辐射体,其辐射能力只与本身温度有关。YMP-6115黑体辐射实验装置使用稳压溴钨灯光源模拟黑体,通过改变电源电流,获得不同色温下的黑体辐射。利用近红外光栅光谱仪测量不同色温的黑体辐射曲线,从而验证维恩位移定律、普朗克定律和斯忒藩-玻尔兹曼定律。采用开放式的结构设计,学生可以直观的观看内部光路和结构组成,帮助学生理解和掌握实验原理。同时采用铟镓砷探测器,确保在800nm-2500nm光谱范围内具有较高的信噪比和灵敏度。特点模块设的设计,方便学生掌握设计原理和测量原理;设计使用了高品质铟镓砷探测器和高性能的电路系统,使整套实验装置具有很好的信噪比和灵敏度;智能化的软件设计,每个实验模块按照实验原理和流程引导式的操作,让学生将主要精力用于实验本身,而非学习软件操作。实验内容理解和掌握光栅光谱仪的基本原理以及建立传递函数的原理和方法,并为光栅光谱仪建立传递函数。理解、掌握和验证普朗克定律理解、掌握和验证验证斯特潘-玻尔兹曼定律理解、掌握和验证验证维恩位移定律测量一般光源的辐射能量曲线(拓展)光电效应实验装置,YMP-6104系列简介YMP-6104型光电效应实验以高压汞灯作为实验光源,利用汞灯5条特征谱线(365nm、405nm、436nm、546、577nm),经过干涉滤光片后变成单色光,然后通过选择不同的光阑(2mm、4mm、8mm)后,最后转化为一束固定光斑大小的窄带单色光。这束单色光照在光电管上,在光电管的阳极与阴极之间加载直流电压后产生光电流,然后经过微电流放大器对所产生的光电流进行检测放大。通过研究不同的光照波长,光阑孔径和光强三者之间的关系,从中验证爱因斯坦的光电效应理论。特点采用一体化左轮设计滤光片-光阑采用窄带干涉滤光镜片滤出真正的单色光采用光学导轨和光学滑座,保证光路的同轴性实验方式多种多样:手动记录、USB通信、蓝牙通信和WIFI通信实验内容测量光电管在不同频率的光照下的截止电压,通过截止电压与频率的关系计算得到普朗克常数h。通过改变不同滤光片、不同光阑、不同距离,来研究光电管的伏安特性。弗兰克赫兹实验装置,YMP-6102系列简介YMP-6102弗兰克-赫兹实验证明原子内部结构存在分立的定态能级,这个事实直接证明了原子具有玻尔所设想的那种“完全确定的、互相分立的能量状态”,是对玻尔的原子量子化模型的第一个决定性的证据。直接证明了原子发生跃变时吸收和发射的能量是分立的、不连续的,证明了原子能级的存在,从而证明了玻尔理论的正确。因而获得了1925年诺贝尔物理学奖。本实验装置通过含有氩原子的四级真空电子管在旁热式灯丝的加热下产生大量的电子云,电子云通过第一栅极的筛选,然后在加速级的加速下,与氩原子发生碰撞,进行了能量交换,并且激发氩原子的能级跃迁,剩余有较大能量的电子还能冲过第二栅极反向拒斥电压而达到板极形成板极电流,该电流被微电流放大器测量得到,从而获得电流与电压的变化曲线。特点使用氩气管,无需加热;波形数6个,使用寿命超过2000小时弗兰克=赫兹管的安装方式有多个版本可供选择,使得实验更加直观可视。实验方式多种多样:手动记录、传感器采样、USB通信、蓝牙通信和WIFI通信。可升级为数字化实验实验内容记录氩原子的弗兰克-赫兹曲线计算普朗克常量h核磁共振实验装置,YMP-6105简介YMP-6105型核磁共振实验装置通过边限振荡器,将测试样品放在探测线圈中,样品和探测线圈都置于电磁场中。当边限振荡器的振荡频率接近样品的共振频率时,射频磁场能量被样品所吸收,边限振荡器停止振荡,振荡器的输出信号会突然降低,因此我们可以探测到核磁共振信号并且得到样品的g因子。特点强度可调的匀强电磁场实验共振信号清晰采用光学轨道结构,探头二维可调可拓展测量自备样品实验内容了解核磁共振的基本原理观察液体样品中氢核及固体样品中氟核共振现象利用扫场法核磁共振实验计算氢核和氟核的g因子更多精彩内容,请关注下方!
    留言咨询
  • 准直测试剪切干涉仪 400-860-5168转2255
    剪切干涉仪 特性定性的光束准直测试,适用于直径为Ø 1-Ø 50毫米的光束磁性耦合可调设计,允许快速更换剪切板英制和公制螺纹安装孔SI系列剪切干涉仪可用于确定相干光束是否准直。该设计包括一个45度安装的楔形光学平板,和一块位于中间的带刻度参考线的散射屏。散射屏用于观察由光学平板的前后表面的菲涅尔反射产生的干涉条纹。如果光束已经准直,干涉条纹会平行于带刻度的参考线。除了准直度以外,干涉条纹还对球差、慧差和像散敏感。楔形光学平板是由未镀膜的紫外熔融硅。每个板尺寸的楔角优化到可接受光束尺寸的范围;详情请看规格标签。由于光在板上的入射角为45度,条纹图案的强度取决于极化光。当偏振垂直于入射面时会产生最大强度。为了观察到的干涉条纹,入射的光的相干长度必须长于由剪切板引起的光程长度的变化。规格标签的更多信息,请参阅下表脚注。构造剪切干涉仪由三部分组成一套:一个底座,一个带有楔形光学平板的板,和一个带有扩散屏幕的板。建立该干涉仪用4-40螺丝和六角键连接观察屏幕板与底座。楔形光学平板通过磁力夹持就位,使它能够很容易地换成带有不同楔形光学平板的板。该底座是由经阳极氧化处理的铝和带有安装Ø 1/2英寸接杆的螺纹孔组成。在楔形光学平板后面的底座上有一个孔,这样光可以毫无阻碍地穿过光学平板。右边的横截面图的说明剪切干涉仪的构造和光束传播。附件对与小直径光束,相应的干涉条纹图样也小,这样就不利于观测。对于这种情形,可以购买SIVS放大观察屏配件,它可以代替标准的散射观察屏,从而增大散射屏上条纹的尺寸。SIVS包括一个已安装的发散透镜和散射屏,这种屏适合观察直径为1至10毫米的光束。该板含有可以单独提供的楔形光学平板,使各种光束的尺寸可以用一个单一的底座单元测试。点击放大上图是UVFS在光正入射时的透过率曲线。其中UVFS样品未镀膜,厚度为1毫米,数据也包含表面反射。剪切干涉仪Zoom Click to Enlarge楔形光学平板通过三个磁块夹持就位。提供5种型号,用于光束直径从1到50毫米范围定性的确定光的准直性磁铁球将平板固定在底座上可用的光束直径刻在板上根据剪切板的不同,剪切干涉仪可用于直径小到1毫米,大到50毫米的入射光。剪切干涉仪产生的干涉图样对光束发散很敏感,因此可以用来定性的确定光是否准直。如右图所示,剪切板有三个钢球,以磁性吸附的方式固定在板的底面上。当采用不同直径的光束时,这种磁性保留机制易于更换不同的平板。兼容的平板和底座型号请查看规格标签。此外,底板的背面钻有通孔,因此可以使得透射光通过楔形光学平板继续毫无阻碍地传播。底板,散射屏和剪切板包装在一个铝制手提箱内。替换剪切板Zoom 提供5种型号,光束直径从1毫米到50毫米 剪切板兼容多种剪切干涉仪主体 磁性钢球将板固定在底座上 可用的光束直径刻在板上Thorlabs提供五种可交换的剪切板,这些剪切板设计用于1毫米到50毫米的入射光束直径。这些板的磁性耦合可调设计,使得剪切板能够准确的固定在剪切干涉仪上。同一底座兼容多种剪切板(关于兼容性的详情请看规格标签),因此如果用于特殊实验的光束直径变化时,剪切板很容易进行替换。带有不同楔形角的不同板可以提供不同大小的光束。配件Zoom 用于光束直径从1毫米到10毫米 增大散射板上的条纹尺寸用于光束直径从1毫米到10毫米增大散射板上的条纹尺寸SIVS配件有助于观察由小光束直径产生的条纹图样。通过用该配件替换SI035,SI050,SI100或SI254*上的标准散射板观察屏,干涉条纹的尺寸会增大,从而使得确定光是否准直变得更容易。SIVS带有两个1/16英寸的螺丝,因此可以固定在剪切干涉仪上。如果需要,SIVS的安装板可以单独购买(SITST)。SITST具有标准的Thorlabs的SM1 (1.035英寸-40)螺纹,与任意SM1螺纹组件兼容。
    留言咨询
  • 机床校准激光干涉仪 400-860-5168转6117
    中图仪器SJ6000机床校准激光干涉仪是一种能够测量机床精度的高精度测量装置。具有测量精度高、测量范围大、测量速度快、高测速下分辨率高等优点,结合不同的光学镜组,可实现线性测长、角度、直线度、垂直度、平行度、平面度等几何参量的高精度测量。它利用激光干涉现象来实现非接触式测量,具有高精度、高分辨率、快速测量等优点,在机床加工领域有着广泛的应用。在SJ6000激光干涉仪动态测量软件配合下,还可实现线性位移、角度和直线度的动态测量与性能检测,以及进行位移、速度、加速度、振幅与频率的动态分析,如振动分析、丝杆导轨的动态特性分析、驱动系统的响应特性分析等。测量原理SJ6000机床校准激光干涉仪的测量原理主要包括相位测量和位移测量。相位测量是通过测量干涉条纹的相位差来计算被测量物体的形状、位置等参数;位移测量是通过测量干涉条纹的位移来确定物体的位移量。这两种测量原理在不同应用场景下有着各自的优势和适用性。产品优势1、激光干涉仪具有非常高的测量精度和重复性。2、激光干涉仪可以实现非接触式测量,不会对被测量物体造成损伤。3、激光干涉仪具有实时性测量能力,能够同时测量多个位置或参数,提高测量效率。产品应用1.测量机床导轨的直线度和平行度。导轨是机床中的重要零部件,直线度和平行度的误差会直接影响机床的加工精度和稳定性。激光干涉仪可以通过测量导轨上的干涉条纹来确定其直线度和平行度的偏差,从而指导后续的优化和调整。2.测量机床工作台的平面度和垂直度。机床工作台的平面度和垂直度直接影响工件的加工精度和质量。通过SJ6000机床校准激光干涉仪测量工作台上的干涉条纹,可以快速发现工作台的不平整和非垂直状态,并及时进行调整和修正,确保工件的加工精度和稳定性。3.测量机床主轴的同心度和轴向垂直度。机床主轴的同心度和轴向垂直度是决定机床加工精度的关键因素。通过激光干涉仪测量主轴上的干涉条纹,可以准确判断主轴的同心度和轴向垂直度是否达到标准要求,从而为后续的机床调整和校准提供依据。4.其它除了上述应用,激光干涉仪还可以用于测量机床各个部件之间的相对位置和尺寸关系,从而检测和纠正机床的装配误差。此外,激光干涉仪还可以用于检测机床在运行过程中的变形和振动情况,及时发现机床的故障和异常状态,保证机床的稳定性和可靠性。对数控机床进行螺距误差补偿部分技术规格稳频精度0.05ppm动态采集频率50 kHz预热时间≤ 6分钟工作温度范围(0~40)℃存储温度范围(-20~70)℃环境湿度(0~95)%RH线性测量距离(0~80)m (无需远距离线性附件)线性测量精度0.5ppm (0~40)℃角度轴向量程(0~15)m角度测量精度±(0.02%R+0.1+0.024M)″平面度轴向量程(0~15)m平面度测量精度±(0.2%R+0.02M2)μm (R为显示值,单位:μm;M为测量距离,单位:m)直线度轴向量程短距离(0.1~4.0)m 长距离(1.0~20.0)m直线度测量精度短距离±(0.5+0.25%R+0.15M2) μm长距离±(5.0+2.5%R+0.015M2) μm垂直度轴向量程短距离(0.1~3.0)m 长距离(1.0~15.0)m垂直度测量精度短距离±(2.5+0.25%R+0.8M)μm/m 长距离±(2.5+2.5%R+0.08M)μm/m注意事项:平面度测量配置需求:平面度镜组+角度镜组平行度测量配置需求:依据轴向量程范围,选择相应直线度镜组即可短垂直度测量(0.1~3.0)m配置需求:短直线度镜组+垂直度镜组长垂直度测量(1.0~20.0)m配置需求:长直线度镜组+垂直度镜组直线度附件:主要应用于Z轴的直线度测量和垂直度测量恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。如有疑问或需要更多详细信息,请随时联系中图仪器咨询。
    留言咨询
  • TeraFAST-256-HS高速线性太赫兹相机(High speed linear THz camera)品牌: Terasense型号: TeraFAST-256-HS system高速线太赫兹相机是Terasense的全新的产品,它的特点是,前所未有的成像速度为每秒5000帧,并易于集成到任何工业过程。它的超快线性传感器阵列是建立在非破坏性测试(无损检测)和质量控制(质量控制)为许多工业应用,采用高速传送带内置。该产品适用于大多数输送机的皮带速度为15米/秒。 Terasense的线性太赫兹成像系统由2部分组成:太赫兹成像相机和太赫兹发生器,两个优化和同步的彼此。该发生器配有一个专门配置的喇叭天线,其目的是覆盖整个成像区域,穿过传送带。该角均匀地传播太赫兹光束,并确保整个太赫兹辐射功率被正确地从发生器传送到相机。相机的像素大小决定了图像分辨率为1.5毫米,这点足够支持在大多数工业应用中成像。产品特征:图像采集速率:5千赫(5000 fps)扫描速度:高达15米/秒(900米/分钟)光谱范围:50 GHz–0.7 THz像素数(可扩展):256 x 1terafast® Viewer软件保修期:1.5年轻松集成到生产过程竞争优势:无电离辐射极高的图像采集率易于集成到工业过程CE认证符合性即插即用的设计和定制的解决方案成本低 太赫兹相机中的样品 输送机系统安装 产品规格:Number of pixels:256 (256 x 1)Image acquisition rate:5000 fps (5 KHz)Pixel size:1.5 x 3 mmResponsivity:8000 V/W. Imaging area:384 x 3 mm 100 nW (at 5000 fpsDimensions of device:450 x 160 x 44 mmMin detectable power/pixel:45 nW (at 1000 fps)Sync out:TTL (+5 V) 14 nW ( at 100 fps). Interface:mini-USBSoftware supplied:TeraFast® Viewer 应用:我们代号为terafast的高速相机在快速无损、非侵入性的表征成像物体,检测均匀材料或涂层表面的物体缺陷中比以往更容易和更快。它优秀的图像采集速率适用于许多工业应用与无损测试,质量控制和过程控制。医药化妆品行业木材加工行业 药品、医疗产品和工业生产线婴儿尿布的无损检测(无损检测)检测隐蔽的山谷里,内部形状,形状和/或缺陷节省检查时间很多。木材分析检查在木材里的水分。食品工业快速消费品包装 任何食品中的塑料碎片或异物检查包内的项目的可用性作为一个过程控制步骤;排除人为错误或有缺陷的包装建筑材料与建筑行业汽车工业 用于找出混凝土,地面找平,水泥中的不均匀;受潮或者墙面漆对橡胶轮胎中存在的异物或者其他物体监测,避免了人工检查带来的不便农业和畜牧业国土安全 马铃薯选择在输送带上运行的方法,目的是将马铃薯泥与泥块和石块分开。测量羊毛的厚度监测隐藏在包裹中的不明物体,机场安检,内容识别
    留言咨询
  • 激光干涉仪通用长度测量工具sj6000利用激光干涉现象来实现非接触式测量,具有高精度、高分辨率、快速测量等优点。结合不同的光学镜组,可实现线性测长、角度、直线度、垂直度、平行度、平面度等几何参量的高精度测量。在SJ6000激光干涉仪动态测量软件配合下,可实现线性位移、角度和直线度的动态测量与性能检测,以及进行位移、速度、加速度、振幅与频率的动态分析,如振动分析、丝杆导轨的动态特性分析、驱动系统的响应特性分析等。产品功能(1)可实现线性、角度、直线度、垂直度、平行度、平面度、回转轴等几何参量的高精密测量;(2)可检测数控机床、三坐标测量机等精密运动设备其导轨的线性定位精度、重复定位精度等,以及导轨的俯仰角、扭摆角、直线度、垂直度等;(3)可实现对机床回转轴的测量与校准;(4)可根据用户设定的补偿方式自动生成误差补偿表,为设备误差修正提供依据;(5)具有动态测量与分析功能,包括位移分析、速度分析、加速度分析、振幅和频率分析等,可进行振动分析、丝杆导轨的动态特性分析、驱动系统的响应特性分析等;(6)支持手动或自动进行环境补偿。动态测量应用基于时间的动态测量机器运动控制性能评价:1.运动控制器PID控制参数测试与设置2.高速运动后机器的稳定性测试与评价3.高性能运动控制器的微小步幅的测试振动监视1.扫描应用:用于定位精度不重要,但恒速对实现高质量成像非常关键的场合2.机床应用:典型应用包括要求刀具慢速、平稳轮廓运动的高质量表面精加工振动频率分析1.被测对象的振动频率分析2.FFT快速傅立叶变换分析基于距离的动态测量基于距离的动态测量,SJ6000激光干涉仪系统将沿着轴线“飞行"测量,即运动轴在不停顿的情况下以用户间隔进行数据采集。提供脉冲触发方式采集CT70正交触发盒可监控光栅、编码器、控制器等信号,配合SJ6000激光干涉仪,可实现脉冲触发启动采集和连续脉冲触发采集。适用于运动轴在不停顿的情况下,触发激光干涉仪按照间隔位置进行数据采集。产品特点1、激光干涉仪通用长度测量工具sj6000使用高性能氦氖激光器,结合伺服稳频控制系统,达到高精度稳频(0.05ppm);2、以光波长(633nm)为测量单位,分辨率可达nm级;3、使用高速光电信号采样和处理技术,测量速度可达到4m/s;4、配合有环境补偿单元,在环境变化的情况下,也可以得到较高的测量精度;5、分离式干涉镜设计,避免了测量镜组由于主机发热而引起的镜组形变。在机床领域中的应用激光干涉仪通用长度测量工具sj6000是一种能够测量机床精度的高精度测量装置。它利用激光干涉现象来实现非接触式测量,具有高精度、高分辨率、快速测量等优点,在机床加工领域有着广泛的应用。1.测量机床导轨的直线度和平行度。导轨是机床中的重要零部件,直线度和平行度的误差会直接影响机床的加工精度和稳定性。激光干涉仪可以通过测量导轨上的干涉条纹来确定其直线度和平行度的偏差,从而指导后续的优化和调整。2.测量机床工作台的平面度和垂直度。机床工作台的平面度和垂直度直接影响工件的加工精度和质量。通过激光干涉仪测量工作台上的干涉条纹,可以快速发现工作台的不平整和非垂直状态,并及时进行调整和修正,确保工件的加工精度和稳定性。3.测量机床主轴的同心度和轴向垂直度。机床主轴的同心度和轴向垂直度是决定机床加工精度的关键因素。通过激光干涉仪测量主轴上的干涉条纹,可以准确判断主轴的同心度和轴向垂直度是否达到标准要求,从而为后续的机床调整和校准提供依据。4.其它除了上述应用,激光干涉仪还可以用于测量机床各个部件之间的相对位置和尺寸关系,从而检测和纠正机床的装配误差。此外,激光干涉仪还可以用于检测机床在运行过程中的变形和振动情况,及时发现机床的故障和异常状态,保证机床的稳定性和可靠性。对数控机床进行螺距误差补偿部分技术规格稳频精度0.05ppm动态采集频率50 kHz预热时间≤ 6分钟工作温度范围(0~40)℃存储温度范围(-20~70)℃环境湿度(0~95)%RH线性测量距离(0~80)m (无需远距离线性附件)线性测量精度0.5ppm (0~40)℃角度轴向量程(0~15)m角度测量精度±(0.02%R+0.1+0.024M)″平面度轴向量程(0~15)m平面度测量精度±(0.2%R+0.02M2)μm (R为显示值,单位:μm;M为测量距离,单位:m)直线度轴向量程短距离(0.1~4.0)m 长距离(1.0~20.0)m直线度测量精度短距离±(0.5+0.25%R+0.15M2) μm长距离±(5.0+2.5%R+0.015M2) μm垂直度轴向量程短距离(0.1~3.0)m 长距离(1.0~15.0)m垂直度测量精度短距离±(2.5+0.25%R+0.8M)μm/m 长距离±(2.5+2.5%R+0.08M)μm/m注意事项:平面度测量配置需求:平面度镜组+角度镜组平行度测量配置需求:依据轴向量程范围,选择相应直线度镜组即可短垂直度测量(0.1~3.0)m配置需求:短直线度镜组+垂直度镜组长垂直度测量(1.0~20.0)m配置需求:长直线度镜组+垂直度镜组直线度附件:主要应用于Z轴的直线度测量和垂直度测量恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。如有疑问或需要更多详细信息,请随时联系中图仪器咨询。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制