当前位置: 仪器信息网 > 行业主题 > >

等离子体增强原子层沉积系统

仪器信息网等离子体增强原子层沉积系统专题为您提供2024年最新等离子体增强原子层沉积系统价格报价、厂家品牌的相关信息, 包括等离子体增强原子层沉积系统参数、型号等,不管是国产,还是进口品牌的等离子体增强原子层沉积系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合等离子体增强原子层沉积系统相关的耗材配件、试剂标物,还有等离子体增强原子层沉积系统相关的最新资讯、资料,以及等离子体增强原子层沉积系统相关的解决方案。

等离子体增强原子层沉积系统相关的方案

  • 等离子增强原子层沉积系统沉积高均匀性和高保型性介电薄膜
    ★超薄,纳米尺度介电薄膜与金属/金属性薄膜是MEMS/NEMS器件、其它IC部件,传感器,光学器件或催化剂关键部件★IC业中的高精度30器件, 如高深宽比沟槽与穿透性硅通孔, ALO工艺是唯可以在这些器件上实现高保形,平整,无缺陷,无针孔的薄膜材料。★可规模化生产的ALO工艺, 几种金属/金属性材料与介电材料: Pt, Ir, Ru, Cu, Ag, Au, TiN, AIN, TiAIN, ln203与Al203.★沉积工艺可选:传统热ALO或者等离子增强ALD。
  • 原子层沉积(ALD)在半导体先进制程的应用
    原子层沉积(ALD)是一种可以将物质以单原子膜的形式,一层一层镀在基底表面的先进沉积技术。一个ALD循环包括两个先后进行的半反应。在一定的真空环境下,前驱体和共反应物交替地通入反应腔体,饱和吸附并在衬底表面发生化学反应形成单原子层。每个半反应间通入惰性气体进行清洗,确保完全除去过量的反应物和生成的小分子副产物。理论上,经过一个循环工艺,基底表面便镀上了一层单原子膜。通过增加循环次数,原子层将依次沉积在表面上,形成薄膜。
  • 中智科仪逐光IsCMOS像增强相机拍摄激光诱导等离子体羽流
    本次实验采用中智科仪的逐光IsCMOS像增强相机(TRC411),拍摄了激光诱导等离子体羽流的形貌演化过程。基于逐光IsCMOS像增强相机的纳秒级快门门控、高精度的时序同步技术和变延迟序列推扫功能,记录了等离子体羽流的完整演化过程。
  • 纳秒重复脉冲等离子体放电增强湍流氢-空气火焰向爆轰的过渡
    采用LaVision公司的高速图像增强器和和高速相机作为测试设备,对纳秒重复脉冲等离子体放电增强湍流氢-空气火焰向爆轰的过渡过程进行了实验测量研究
  • 原子层沉积技术——精准、逐层“3D打印”催化剂!
    原子层沉积技术(ALD),亦称原子层外延技术(ALE),是一种基于有序、表面自饱和反应的化学气相薄膜沉积技术。由于ALD沉积的绝大多数金属和氧化物材料本身就是某些反应中的催化剂,因此ALD在催化领域的应用也很早就引起了人们的关注。此外,作为一种自下而上的新方法,ALD独有的三维共形性、高均匀性、原子级精准控制和低生长温度等特点,如同“3D”打印一般实现了高均一性催化剂的精细可控合成。
  • 利用原子层沉积ALD技术制备新型锂离子电池正材料
    传统液态锂电池正材料晶石型LiNi0.5Mn1.5O4 (LNMO),在电池循环过程中其表面和近表面会发生许多副反应以及不可逆的相变,大的影响电池的循环容量和稳定性。为了解决这一问题,孙学良院士课题组使用美国Arradiance公司生产的型号为GemStar-8 的台式ALD沉积系统,设计了新型多位点Ti掺杂的锂离子电池正材料,将无定形TiO2包覆在晶石型LNMO表面并热处理,实现了Ti元素在晶石结构表面和内部的多位点掺杂,其中表面的Ti部分进入晶石结构四面体配位的位点,其余的Ti替代八面体配位的过渡金属,这种多位点掺杂效应对材料的电化学性能起到了决定性的作用,相比于原始的LNMO,掺杂后的材料表现出了更低的表面阻抗,这是由于四面体配位的Ti能够减缓过渡金属迁移到八面体空位上,保证了锂离子的快速传导。相关工作发表在2017年的Advanced Materials上 (DOl: 10.1002/adma.201703764)。
  • 粉末工程的革命—粉末型原子层沉积(PALD)设备选型
    原子层沉积技术(ALD)是一种自限制性的化学气相沉积手段,通过将目标反应拆解为若干个半反应,实现表面涂层的原子层级厚度控制。利用该技术制备的涂层具有:共形,无针孔,均匀的特点,对于复杂的表面界面以及高纵深比样品有较好的沉积效果。
  • 且谈石墨负极沥青包覆的替代技术 —— 原子层沉积
    Forge Nano 以其专有的原子层沉积技术实现基底表面可控的涂层材料原位生长。而如何对大规模的粉末材料进行 ALD 包覆,则是行业内的难题。Forge Nano 通过多年的技术积累,是目前掌握解决方案的企业。
  • 原子层沉积在微电子方面的应用
    自摩尔定律问世以来,微电子器件的特征尺寸一直在不断缩小,以提高集成电路的集成度和性能。由于短沟道效应的限制,鳍式场效应晶体管和环栅场效应晶体管等非平面型器件已逐渐被半导体行业所采用。为了满足制造具有这些复杂结构的芯片的要求,ALD因其可以在三维结构上生长高度均匀的保形薄膜的特点,已被广泛用于集成电路先进制程中的关键步骤。ALD技术在很大程度上依赖于所涉及的表面化学,它可以显著影响沉积膜的特性,如膜厚、形貌、组分和保形性。此外,ALD前驱体对薄膜沉积也起着至关重要的作用。ALD前驱体通常为金属有机化合物,前驱体的挥发性、热稳定性和自限制反应性会显著影响薄膜的ALD生长行为。因此,全面了解ALD的表面化学机制和前驱体化学结构设计是进一步开发和利用ALD技术的关键。在本文中,作者等人对原子层沉积的最新进展进行了详细介绍。
  • 原子层沉积 ALD 在纳米材料方面的应用
    在微纳集成器件进一步微型化和集成化的发展趋势下,现有器件特征尺寸已缩小至深亚微米和纳米量级,以突破常规尺寸的极限实现超微型化和高功能密度化,成为近些年来的热点研究领域。微纳结构器件不仅对功能薄膜本身的厚度和质量要求严格,而且对功能薄膜/基底之间的界面质量也十分敏感,尤其是随着复杂高深宽比和多孔纳米结构在微纳器件中的应用,传统的薄膜制备工艺越来越难以满足其发展需求。ALD 技术沉积参数高度可控,可在各种尺寸的复杂三维微纳结构基底上,实现原子级精度的薄膜形成和生长,可制备出高均匀性、高精度、高保形的纳米级薄膜。
  • 微波等离子体化学气相沉积(MPCVD)系统中真空压力控制装置的国产化替代
    目前微波等离子体化学气相沉积(MPCVD)系统中的真空压力控制装置普遍采用美国MKS公司的控制阀和控制器。本文介绍了采用MKS公司产品在实际应用中存在控制精度差和价格昂贵的现象,介绍了为解决这些问题的国产化替代方案,介绍了最新研发的真空压力控制装置国产化替代产品,并验证了国产化替代产品具有更高的控制精度和价格优势。
  • 利用原子层沉积ALD制备全固态电池界面层材料
    全固态电池由于其具有高能量密度和高安全性能,被认为是具有潜力的下一代电池体系。然而,全固态电池仍有许多挑战亟待解决。其中界面问题(包括界面不匹配、界面副反应和界面空间电荷效应)是影响全固态电池性能的主要因素之一。有效地解决界面问题是攻克全固态电池难关的重中之重。界面修饰及改性是被广泛报道改善界面问题的重要途径。其中,制备界面层材料的技术及界面层材料的性质将是界面层稳定性的决定因素。ALD/MLD技术有望在固态电池界面修饰及改性上扮演重要的角色,包括界面改性材料的制备(图4A),固态电解质的制备(图4B),ALD界面材料用于阻隔电与固态电解质副反应(图4C),改善固态电解质与金属锂的润湿性(图4D),保护金属负(图4E)以及薄膜/三维固态电池的制备(图4F)等。ALD/MLD有望解决全固态电池的界面问题,满足人们对于高安全性以及高能量密度电池的需求,成为下一代电池的有力竞争者。孙教授团队对近几年ALD/MLD技术在固态电池中的应用作以归纳、总结与分析,并对ALD/MLD在固态电池中的应用作以展望相关工作发表在2018年的Joule上(DOI: 10.1016/j.joule.2018.11.012)。
  • 利用便携式傅立叶变换红外光谱 (FTIR) 分析等离子体处理过的碳纤维增强复合材料 (CFRP)
    前言由于兼具质量轻、伸缩性好和抗冲击性强等独特性质,工程级的 CRFP 广泛应用于商用和军用航空领域 。CFRP 是一种有机材料,其物理和化学应力与航空制造业中使用的金属有明显的不同 。Agilent 4100 ExoScan FTIR 是一种实用性很高的无损分析仪,可用于检测由于高温暴露对 CFRP 造成的破坏性的化学氧化变化 。在本应用简报中,我们将展示 4011 ExoScan 同样能够有效地测量等离子体处理对 CFRP 剥离层的修复和激活特性,以使 CFRP 各部分之间实现最佳的键合 。
  • 解说等离子技术用于表面涂层
    等离子聚合反应单体被导入等离子反应腔。等离子使气体原子化并使其沉积在工艺部件的表面。应用.疏水层的沉积.亲水层的沉积.保护或绝缘层的沉积.防扩散层
  • 双电弧等离子体源共沉积制备新型高效铂镍催化剂
    N. Todoroki等人以高活性氧还原反应(oxygen reduction reaction,ORR)为目标,设计了一种新型基于铂-镍合金纳米颗粒堆叠薄膜(nanoparticle-stacking thin film,NPSTF)结构的电催化剂。合成所得铂-镍NPSTF的质量活性比商用碳负载的铂催化剂要高十倍。铂-镍NPSTF显著的ORR活性增强被归因于1)由底层镍原子诱导的表面铂富集层的电子性质修饰;2)由铂-镍纳米颗粒堆叠而实现的活性表面区域的增加。
  • 半导体制造解决方案
    高性能电动汽车等高新技术领域对高效动力转换的需求与日俱增,在这些领域高效动力转换必不可少。SiC 和 GaN 材料的使用降低了能耗。牛津仪器通过原子层沉积(ALD)技术、等离子体辅助蚀刻和沉积技术优化了工艺,提高了器件的能效。
  • 等离子体原子层刻蚀实现无损伤刻蚀
    提供等离子体原子层刻蚀实现无损伤刻蚀。原子层蚀刻(ALE)是一种技术允许每次精确除去一个原子层,是使用常规刻蚀无法达到的控制水平。 牛津仪器的设备和工艺已通过充分验证,正常运转时间可达90%以上,一旦设备安装完毕,可立即投入使用。PlasmaPro 100系列市场应用广,包括但不限于: MEMS和传感器、光电子、分立元器件和纳米技术。它具有足够的灵活性,可用于研究和开发,通过打造质量满足生产需求。
  • 应用分享-燃烧环境下激光诱导等离子体成像
    中智科仪逐光IsCMOS时间分辨像增强相机兼具皮秒级时间分辨率以及皮秒级同步触发精度,一方面可以对等离子体形成和演化过程进行瞬时冻结成像,另一方面借助精确的外同步延迟触发功能采集不同时间延迟下的多幅图像对等离子体形成和演化过程进行重构。中智科仪逐光IsCMOS时间分辨像增强相机已经成为激光诱导等离子体发光瞬态过程和演化规律诊断和研究的强有力工具。
  • 原子层沉积 ALD 在太阳能电池方面的应用
    应用于光伏太阳能电池的材料可分为硅基材料(单晶,多晶,非晶),CdTe, CuInGaSe和CuInGaS。太阳能电池类型可以分为4大类:a第一代硅基太阳能电池(单晶,多晶);b第二代薄膜太阳能电池(a-Si,CeTe,CIGS);c第三代太阳能电池包含量子点太阳能电池,聚合物太阳能电池,染料敏化太阳能电池以及聚光型太阳能电池;d钙钛矿结构太阳能电池。ALD 镀层可以作为表面钝化层,缓冲池,窗户层,吸收层,电子/空穴接触或者透明导电氧化物。
  • 氟基脱模剂对碳纤维增强塑料(CFRP)粘结性能的影响 - LUMiFrac
    由于相比传统的结构连接方法(如铆接)有很多优势,粘接剂连接越来越多地应用于许多行业,。尤其适在纤维增强复合材料行业,因为铆钉会打断纤维,从而削弱了层合板的力学性能。在航空结构中,粘接可以应用于金属-金属接头、复合材料-复合材料接头和复合材料-金属接头,以及部件的装配和修补。粘接接头的质量取决于胶粘剂、制造工艺、环境和载荷工况,以及被粘接基材的表面。CFRP(碳纤维增强塑料)组件用粘合剂粘合的表面通常是纹理表面,这是由于在生产过程中使用过程中使用脱模布或机械预处理,如砂光或铣削。脱模布用于纤维增强塑料的制造,有两个目的:在运输和储存过程中保护零件表面以及在随后的工作步骤中(如胶粘剂粘接),产生具有所需表面特性的可粘接表面。然而脱模布的使用并不简单。脱模布不仅很难去除,而且由脱模布产生的表面在粗糙度和元素组成方面发生了改变。本文研究了氟基脱模剂对碳纤维增强复合材料粘接性能的影响。在筛选范围内,研究了14种氟基脱模剂——ETFE脱模薄膜、PTFE涂层玻璃织物以及PTFE纤维织物。初步研究表明ETFE薄膜在粘附方面具有优势。研究内容包括:用剥离试验测定脱模剂的撕裂强度 测定了大气压等离子体预处理前后的元素组成(XPS)和表面特征(SEM),通过离心黏附试验表征了拓扑结构变化对和黏附强度的影响。
  • 利用原子层沉积系统ALD沉积不同薄膜材料获得周期有序微格结构
    通过高分子网状模板沉积不同薄膜材料(Au, Cu, Ni, SiO2, poly(C8H4F4))获得周期有序微格结构,其密度在0.5 mg/cm3 to 500 mg/cm3之间。以压力法测得杨氏模量和强度,并且进行了密度定标。在低相对密度的情况下,观察到与微格材料无关的50%或更高的压力应变恢复。一个分析模型的预测了在可恢复性“伪超弹性”与不可恢复塑性形变之间的转换关系,并适合所有研究材料。此次研究的材料在储能应用,可展开结构,声,冲击,振动阻尼研究方面有着很高的关注度。
  • 利用便携式傅立叶变换红外光谱 (FTIR)分析等离子体处理过的碳纤维增强复合材料(CFRP)
    由于兼具质量轻、伸缩性好和抗冲击性强等独特性质,工程级的 CRFP 广泛应用于商用和军用航空领域。CFRP 是一种有机材料,其物理和化学应力与航空制造业中使用的金属有明显的不同。Agilent 4100 ExoScan FTIR 是一种实用性很高的无损分析仪,可用于检测由于高温暴露对 CFRP 造成的破坏性的化学氧化变化。 在本应用简报中,我们将展示 4011 ExoScan 同样能够有效地测量等离子体处理对 CFRP 剥离层的修复和激活特性,以使 CFRP 各部分之间实现最佳的键合。
  • 粉末原子层沉积的应用
    粉末技术经过多年的发展,已经形成多样化的制备及加工技术。其中,表面包覆技术作为提升粉末物理化学性能的重要手段,长期以来一直缺乏有效的精密手段。与传统的表面改性不同,粉末原子层沉积技术PALD 是真正可以实现原子级/分子层级控制精度的粉末涂层技术,并保持良好的共形性。
  • 应用:表面等离子体共振光谱
    表面等离子体共振(SPR)光谱以及对应的局部表面等离子体共振(LSPR)光谱,已被认为是标记化学和生物传感以及纳米结构表征的宝贵工具。SPR光谱学常见的应用是在生物传感领域,尤其是键和力的研究,例如抗体-抗原相互作用。 另一方面,LSPR光谱主要用作痕量分子检测的信号增强技术。
  • 电泳沉积制备临床应用电极纳米涂层的机械稳定性
    涂层的机械稳定性对于医疗批准和临床应用至关重要。在这里,电泳沉积(EPD)是一种多用途的涂层技术,先前已显示其可显著降低脑刺激铂电极的术后阻抗。然而,前人很少系统地研究所得涂层的机械稳定性。在这项工作中,对Pt基底上由激光生成的铂纳米颗粒(PtNP)的脉冲直流电泳沉积,进行3D神经电极检测,并使用琼脂糖凝胶、胶带和基于超声的应力测试检查体外机械稳定性。EPD生成的涂层在琼脂糖凝胶测试以及体内刺激实验代表模拟大脑环境中高度的稳定。通过循环伏安法,对NP改性表面的电化学稳定性测试,多次扫描可以提高涂层稳定性,这可以通过高侵入性胶带应力测试后更高的信号稳定性来证明。通过激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)分析大鼠神经刺激后的脑切片。测量显示,与未涂覆的对照相比,涂覆电极刺激区域附近的Pt水平更高。尽管植入电极附近的局部浓度升高,但发现的总铂质量低于系统毒理学相关浓度。大鼠脑内4周DBS后Pt的生物分布:a)用无涂层和PDC涂层电极刺激的脑切片的光学显微镜和LA-ICP-MS叠加图像;和b)注射Pt-NPs的脑切片的光学显微镜和LA-ICP-MS叠加图像。比例尺为2mm。在叠加图片中,红色信号表示磷的强度,绿色信号表示铂的浓度。
  • 应用IC-ICP-MS测定胶州湾表层沉积物中溴酸盐
    本文采用离子色谱-电感耦合等离子体质谱联用技术(IC-ICP-MS)分析测定了胶州湾表层沉积物中溴酸盐、碘酸盐以及亚硒酸盐含量。方法对三种离子的检出限(S/N=3)分别为0.05、0.08和8.15 μg/kg;加标回收率为77.52%~104.56%;对某样品连续测试7次,BrO3-、IO3-以及SeO32-相对标准偏差(RSD)分别为2.50%、1.80%、2.30%。结果显示,胶州湾所选8个站位中均检测出3种离子,BrO3-含量最高,高达2755.58 μg/kg,SeO32-次之,、IO3-含量最少;BrO3-和SeO32-呈现出由西南向东北递增的趋势,离岸低,近岸高,IO3-则是显示出由中心向南北两侧递减的迹象。
  • 应用IC-ICP-MS测定胶州湾表层沉积物中溴酸盐、碘酸盐以及亚硒酸盐
    本文采用离子色谱-电感耦合等离子体质谱联用技术(IC-ICP-MS)分析测定了胶州湾表层沉积物中溴酸盐、碘酸盐以及亚硒酸盐含量。方法对三种离子的检出限(S/N=3)分别为0.05、0.08和8.15 μg/kg;加标回收率为77.52%~104.56%;对某样品连续测试7次,BrO3-、IO3-以及SeO32-相对标准偏差(RSD)分别为2.50%、1.80%、2.30%。结果显示,胶州湾所选8个站位中均检测出3种离子,BrO3-含量最高,高达2755.58 μg/kg,SeO32-次之,、IO3-含量最少;BrO3-和SeO32-呈现出由西南向东北递增的趋势,离岸低,近岸高,IO3-则是显示出由中心向南北两侧递减的迹象。
  • 硬质涂层的力学测量
    类金刚石涂层(DLC)是目前改善许多零部件机械摩擦和摩擦学性能最常用的涂层之一[1,2]。类金刚石碳项包括不同类型的涂层或薄膜,其结构由非晶碳形成。数据链路控制器的主要类型有• 无氢类金刚石(通常称为 a-C),• 四面体非晶碳(ta-C),• 氢化四面体非晶碳(ta-C:H)。作为 DLC 涂层的一部分,还包括含有少量掺杂剂(如金属)的非晶碳膜。DLC 涂层通常采用物理气相沉积(PVD)或化学气相沉积(CVD)的方法沉积,有时采用等离子体增强(PECVD)的方法沉积。DLC 薄膜的典型厚度在几个微米的范围内,尽管有些 DLC 薄膜可以薄到几十纳米。本应用报告总结了使用压痕、划痕、摩擦学和涂层厚度测量来完整表征 DLC 涂层的机械性能、附着力和厚度。
  • 电化学原子力显微镜(EC-AFM)实时监测铜在金表面的电沉积
    近年来,对电化学过程的理解如电沉积(也称电镀)在各种科学技术中的作用变得非常凸显,包括括微电子、纳米生物系统、太阳能电池、化学等其他广泛应用。〔1,2〕电沉积是一种传统方法,利用电流通过一种称为电解质的溶液来改变表面特性,无论是化学的还是物理的,使得材料可适合于某些应用。基于电解原理,它是将直流电流施加到电解质溶液中,用来减少所需材料的阳离子,并将颗粒沉积到材料的导电衬底表面上的过程[3 ]。此项技术会普遍增强导电性,提高耐腐蚀性和耐热性,使产品更美观。良好的沉积主要取决于衬底表面形貌〔4〕。因此,一项可以在纳米等级上测量,表征和监测电沉积过程的技术是非常必要的。有几种方法被应用到了这种表面表征。例如像扫描电子显微镜(SEM)和扫描隧道显微镜(STM)。这些技术可以进行纳米级结构的测量,但是,其中一些为非实时下的,一些通常需要高真空,而另一些则由于其耗时的图像采集而不适用于监测不断变化的过程。[2,5] 为了克服这些缺点,电化学结合原子力显微镜(通常称为EC-AFM)被引入进来。 这种技术允许用户进行实时成像和样品表面形貌变化的观测,并可以在纳米级的特定的电化学环境下实现。[ 6 ]在此次研究中,成功地验证了铜颗粒在金表面的沉积和溶解。利用Park NX10 AFM在反应过程中观察铜颗粒的形态变化,并在实验过程中使用恒电位仪同时获得电流-电压(CV)曲线。
  • 应用分享-激光诱导等离子体发光成像
    中智科仪逐光IsCMOS像增强相机兼具纳秒级时间分辨率以及单光子探测能力。功能设计上超越传统,实现外触发和内延迟的同步调节,即在触发激光器等外部设备工作的同时进行超窄门宽的快门控制,前者可实现触发抖动小于35ps,延迟精度可达10ps量级。后者满足高帧频拍摄,在一次曝光时间内可通过Burst模式完成多次累积采样。经过规范化,规模化的测试及应用,中智科仪逐光IsCMOS时间分辨像增强相机已经成为激光等离子体发光瞬态过程、演化规律的光学诊断研究高效优选方案。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制