便携式环境大气污染物分析仪

仪器信息网便携式环境大气污染物分析仪专题为您提供2024年最新便携式环境大气污染物分析仪价格报价、厂家品牌的相关信息, 包括便携式环境大气污染物分析仪参数、型号等,不管是国产,还是进口品牌的便携式环境大气污染物分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合便携式环境大气污染物分析仪相关的耗材配件、试剂标物,还有便携式环境大气污染物分析仪相关的最新资讯、资料,以及便携式环境大气污染物分析仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

便携式环境大气污染物分析仪相关的厂商

  • SciAps, Inc.是一家总部位于波士顿的仪器公司,专门从事生产、销售便携式分析仪器,用于测量地球上任何地方的任何元素。我们行业领先的 X 射线荧光 (XRF) 和激光 (LIBS) 分析仪广泛应用于每个主要行业,包括石油/天然气、金属和采矿、航空航天、电池和战略金属(锂、稀土元素)、废金属回收、化学和石化、军事、法医和执法。SciAps 仪器经过配置,可测量所有类型材料中的元素,因此应用一直在不断扩大,包括太空研究、大流行抗病毒涂层、农业和环境污染物的测试分析。
    留言咨询
  • 天尔分析仪器(天津)有限公司是一家致力于水质检测仪器、水质检测试剂、大数据信息化系统,集研发、生产、销售、服务、信息化建设于一体的国家高新技术企业,为客户提供水质检测产品、服务及整体解决方案.公司产品线:COD测定仪、全自动BOD测定仪、紫外多参数水质测定仪、氨氮测定仪、总磷测定仪、总氮测定仪、红外分光测油仪、紫外智能测油仪、便携综合多参数水质测定仪、铁、六价铬、锰、镍水质重金属测定仪、便携式荧光测油仪、便携式叶绿素A检测仪、PH、电导率、溶解氧、浊度测定仪、离子计、微生物检测仪、多功能消解仪、水质污染物测定仪等上百种水中物质的检测仪.产品用于:环境监测站、高等院校、各执法部门、水务系统、各排污企业等.公司技术实力雄厚,是国家高新技术企业,通过ISO9001质量管理体系认证和ISO14001环境管理体系的认证,产品线具有省级检测报告,专利及软件著作权共计30多项资质,是行业技术标杆企业;天尔仪器以“专注、诚信、创新、共赢”为服务精神,以技术为核心,质量为保障,售后为根本,创新整合带领行业发展,做令人尊敬的公众公司,为国家生态环境贡献力量.
    留言咨询
  • 400-827-8086
    上海仪真分析仪器有限公司(仪真分析)是专业从事于仪器研发、生产、销售、服务于一体的现代化企业,为环境监测、食品安全、石油化工、地质调查、能源材料和临床检测等分析实验室提供样品前处理到分析测试全方位解决方案。仪真分析拥有一流的由多位留学博士、硕士和具备专业技能的技术开发及服务团队,为中国客户提供多方位的技术服务。我们致力于市场研究与应用开发,将世界领先的分析技术及行业标准与中国发展相结合,开发出本土化的解决方案。我们的解决方案包括:水质及土壤烷基汞全自动分析系统重金属湿法消解全自动石墨消解平台挥发性有机物全自动水土吹扫捕集系统全自动LC-GC二维在线检测食品中矿物油全自动食品中新型污染物监测平台对3-氯丙醇酯、缩水甘油酯、塑化剂、二噁英等实现样品前处理和检测ICP-MS仪器高端进样器及激光剥蚀系统基于XRF的便携式、实验室及在线石油化工产品的元素分析水质及土壤合规监测常规参数的全自动分析系统环境空气/固定污染源、土壤水质,氢气杂质,臭氧消耗层物质/温室气体和食品安全/风味领域VOCs的分析检测等公司的管理理念、研发实力、销售网络和技术支持得到多个全球仪器生产商的广泛认可。仪真分析得到知名仪器公司Brooks Rand Inc., Seal Analytical,Entech,Spark Holland , Axel Semrau , LCTech , XOS , Teledyne Cetac 等公司在大中国区的独家授权,做为其增值供应商,负责集成与中国分析应用相关的仪器以及整体解决方案。 目前公司总部设在上海,在香港,北京设有办事处,为国内广大客户提供优质的服务,位于上海的实验室,为国内广大客户提供专业的全自动检测应用方案及培训基地。
    留言咨询

便携式环境大气污染物分析仪相关的仪器

  • ZR-7220型 便携式甲烷非甲烷总烃分析仪(A款)产品简介:ZR-7220型 便携式甲烷非甲烷总烃分析仪(A款)是我公司精心研制的用于非甲烷总烃监测的便携设备,采用色谱柱分离-氢火焰离子化检测器进行检测的原理,配合采样烟枪、过滤系统并全程伴热的技术路线,避免出现颗粒物和冷凝水进入仪器,对“环境空气、固定污染源中废气中总烃、甲烷和非甲烷总烃”进行现场快速、准确检测,避免现场样品采集再到实验室分析的滞后性导致样品失真引起监测结果出现偏差。本仪器能够满足固定源有组织排放时高湿、颗粒物污染的工况下对废气中的NMHC进行测量,其广泛应用于有机化工厂、表面涂装行业、印染业、家具制造业、汽车制造业、制药业等行业的非甲烷总烃的现场监测,大气环境中非甲烷总烃的监测。适用范围:l 环境空气中非甲烷总烃的测定;l固定源废气排放中非甲烷总烃的测定;l 烟气连续测量仪器准确度的评估和校准;l 其它可应用的场合。 执行标准: GB 16297-1996《大气污染物综合排放标准》 HJ/T 397-2007《固定源废气监测技术规范》 HJ 1012-2018 《环境空气和废气 总烃、甲烷和非甲烷总烃便携式监测仪技术要求及检测方法》 HJ/T 38-2017 《固定污染源废气总烃、甲烷和非甲烷总烃的测定气相色谱法》 DB11/T 1367-2016 《固定污染源废气甲烷/总烃/非甲烷总烃的测定便携式氢火焰离子化检测器法》 技术特点:l预热时间短,可以在15~20min内完成预热,现场快速检测;l分析周期短,60s分析周期,提升检测频率,快速捕捉污染变化;l四路电子压力控制器,控制分辨率达到0.01psi,温度补偿,控制稳定;l反吹气路,有效避免干扰组分参与造成数据误差;l全程高温伴热,采样管内壁硅烷化处理,无吸附;l检出限低,同时满足环境空气和固定源的非甲烷总烃现场快速检测;l配置大容量锂电池,可支撑现场检测时间≥5h(带采样管预热≥3h);l进口固态储氢瓶,储氢量大、寿命长、使用安全;l主机进样口内置滤芯,可有效过滤颗粒物,防止进入主机影响测试;l配备具有自主知识产权的柱箱模块、FID检测器模块、电气控制模块,关键部件带有恒温、减震装置,消除温度漂移,测量结果稳定可靠;l内置不同浓度校准点,根据NMHC测试高低浓度值跨度大小的不同选择所需的校准浓度;l测试数据可打印数据凭条,导出测试谱图,及结合工况信息自动计算排放速率;l仪器状态动态显示,方便用户掌握仪器工作情况;l采用进口隔膜阀,避免死体积及气体泄漏造成测试误差,使用寿命更长;l实时查询检测数据,配有蓝牙打印机,可按照选定的测试结果进行现场打印;l选配ZR-3062型一体式烟气流速湿度直读仪进行工况测量,也可手动输入工况信息;l选配PAD手操器,方便用户获取和观测数据。工作条件:l工作电源: AC(220±22)V,(50±1)Hzl环境温度:(-10~45)℃l环境湿度:(0%~95)%RHl大气压力:(60~130) kPal适用环境: 非防爆性固定污染源非甲总烃监测和环境空气非甲烷总烃监测 l电源接地线应良好接地l野外工作时,应有防雨、雪、尘以及日光爆晒等侵袭的措施
    留言咨询
  • 一、产品简介ZR-7221型便携式甲烷非甲烷总烃分析仪是用于非甲烷总烃检测的便携设备。采用氢火焰离子化检测器(FID)和特定催化氧化技术完成总烃和甲烷值的测量,然后相减的差值即为非甲烷总烃值。测量过程中,为了避免样品气中颗粒物和冷凝水进入仪器产生干扰,使用了可全程伴热、能过滤颗粒物的采样管进行预处理,确保测量数据准确可靠。直接现场出数,不需要将样品带回实验室进行检测,实现了“环境空气、固定污染源废气中总烃、甲烷和非甲烷总烃”的现场快速、准确检测。可广泛应用于有机化学工厂、表面涂装行业、印染业、家具制造业、汽车制造业、制药业等行业的非甲烷总烃的现场监测,大气环境中非甲烷总烃的监测及烟气连续测量仪器准确度的评估和校准等应用领域。二、技术特点1、优异的工作效率2、预热时间短,可以在(15~20)min内完成预热,现场快速检测。3、分析周期短,15s分析周期,提升检测频率,快速捕捉污染变化。4、四路电子压力控制器,控制分辨率达到0.01psi,温度补偿,控制稳定。5、全程高温伴热,采样管内壁硅烷化处理,无吸附。6、配置大容量锂电池,可支撑现场检测时间≥4h(注:带采样管预热≥3h)。7、主机进样口内置滤芯,可有效过滤颗粒物,防止颗粒进入主机影响测试。8、配备具有自主知识产权的催化装置模块、FID检测器模块、电气控制模块,关键部件带有恒温、减震装置,消除温度漂移,测量结果稳定可靠。9、采用进口催化剂,转化效率高,使用寿命更长。10、检出限低,同时满足环境空气和固定源的非甲烷总烃现场快速检测。11、内置不同浓度校准点,根据NMHC测试高低浓度值跨度大小选择所需的校准浓度。12、测试数据可打印数据凭条,可结合工况信息自动计算排放速率。13、仪器状态动态显示,方便用户掌握仪器工作情况。14、实时查询检测数据,可用蓝牙打印机对选定的测试结果进行现场打印。15、可选配ZR-3062型一体式烟气流速湿度直读仪进行工况测量,也可手动输入工况信息。16、可选配PAD手操器,方便用户获取和观测数据。进口固态储氢瓶,储氢量大、寿命长、使用安全。三、参考标准GB16297-1996 大气污染物综合排放标准HJ1012-2018 环境空气和废气 总烃、甲烷和非甲烷总烃便携式监测仪技术要求及检测方法DB11/T1367-2016固定污染源废气 甲烷/总烃/非甲烷总烃测定 便携式氢火焰离子化检测器法DB33/T 2146-2018固定污染源废气 挥发性有机物的测定 便携式氢火焰离子化检测器法DB51/2377-2017 VOCs的测定 便携式氢火焰离子化检测器法DB36/1101-2019 固定污染源废气 甲烷/总烃/非甲烷总烃测定 便携式氢火焰离子化检测器法DB37T3922-2020固定污染源废气总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法DB 35/T 1913-2020固定污染源废气 非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法DB 12/524-2020 固定污染源废气总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法
    留言咨询
  • ZR-3211型便携式紫外烟气综合分析仪(H款,热湿法)紫外烟气,紫外分析仪,紫外烟气分析仪,紫外差分吸收光谱产品简介 ZR-3211型便携式紫外烟气综合分析仪(H款,热湿法)采用紫外差分吸收光谱技术测量烟气中的SO2、NO、NO2和NH3,可选O2、CO、CO2、H2S传感器测量气体浓度,不受烟气中水蒸气影响,具有较高的测量精度和稳定性,特别适合高湿低硫工况测量。其中紫外差分吸收模块在热湿状态下进行测量,避免除水造成的烟气组分损失。整机采用一体便携式设计,采样管和主机为一体,携带方便。可供环境监测部门对各种锅炉排放的气体浓度、排放量进行检测,也可应用于工矿企业进行各种有害气体浓度的测量。适用范围:烟气含氧量、空气过剩系数的测定;烟气连续测量仪器准确度的评估和校准;其它可应用的场合。参考标准JF 1362-2012 烟气分析仪型式评价大纲HJ 1131-2020 固定污染源废气 二氧化硫的测定 便携式紫外吸收法HJ 1132-2020 固定污染源废气 氮氧化物的测定 便携式紫外吸收法JJG968-2002《烟气分析仪检定规程》HJ/T 397-2007《固定源废气监测技术规范》DB37/T 2704-2015《固定污染源废气氮氧化物的测定紫外吸收法》DB37/T 2705-2015《固定污染源废气二氧化硫的测定紫外吸收法》DB37/T2641-2015《便携式紫外吸收法多气体测量系统技术要求及检测方法》HJ973-2018《固定污染源废气一氧化碳的测定定电位电解法》GB 13233-2011《火电厂大气污染物排放标准》Q/0214 ZRB009-2017 烟气综合分析仪HJ1045-2019《固定污染源废气(二氧化硫和氮氧化物) 便携式紫外吸收法测量仪器技术要求及检测方法》GB/T 37186-2018 《气体分析 二氧化硫和氮氧化物的测定 紫外差分吸收光谱分析法》HJ 1045-2019 固定污染源烟气(二氧化硫和氮氧化物)便携式紫外吸收法测量仪器技术要求及检测方法功能特点采用热湿法紫外差分原理检测 SO2 、NO、NO2 和 NH3 ,适合高湿低硫工况,完全避免冷凝除湿造成的烟气组分损失;带有皮托管、烟温传感器,能够自动测量烟温、流速和含湿量;内置含湿量传感器,可同步测量含湿量,实时折算干态浓度;选配传感器(CO、CO2 、H2S) 内置电池,结束后完成反吹功能;内置蓝牙,通过手机或平板进行人机交互、数据存储;采样分析一体式结构,便携性好;数据显示和接口丰富:蓝牙打印、U 盘导出、100 万条数据存储、排放量折算、浓度折算;内置冷凝除水模块,防止传感器进水损坏,蠕动泵自动排水,自动化程度高;预热时间短,可以在现场快速达到测量要求;采用钛合金真空隔热管,隔热效果好;配有高温探针,满足不同烟温工况;自主知识产权的高稳定吸收池,采用前端维护和调整结构,可靠性高,非专业人员也可进行维护。工作原理 分析仪测量原理是基于紫外吸收光谱差分检测技术,紫外光与分子相互作用时被分子吸收导致光能的变化,由于不同分子内部电子能级的跃迁能量和几率的不同,使得不同分子具有特征吸收光谱,工作原理基于 Beer-Lambert(比尔-朗伯)定律。 分析仪的光路部分由光源、气体室、光纤和光谱仪等光学组件构成。 光源发出的紫外可见光经光学视窗进入气体室,被流经气体室的被测样气所吸收,携带被测样气吸收信息的光经透镜汇聚后耦合入光纤,经光纤传输送入光谱仪进行分光、采样处理,得到气体的吸收光谱;通过对光谱进行分析,可以分析出气体中相关组分的浓度。
    留言咨询

便携式环境大气污染物分析仪相关的资讯

  • 喜贺便携式氨分析仪再中标河南污染物监测项目!
    近日宁波海尔欣光电科技喜讯连连。此次通过与河南泰斯特环保科技有限公司合作,我司两套LGM1600系列便携式氨分析仪中标河南省鹤壁生态环境监测中心,将投用于河南省大气污染物监测能力建设项目。 图一 LGM-1600便携式氨分析仪 从LGM1600系列便携式氨分析仪的连番中标,体现了两个事实: 其一是国家对治理氨气排放的决心。转眼又到雾霾高发的冬季,许多科学研究已经证明大气中的氨是PM2.5的重要前体物,因此治雾霾必先治氨。日前我们也关注到今年5月河南省生态环境厅所发布关于《固定污染源废气氨排放连续监测技术规范》公开征求意见的公告,该文件规定了固定污染源废气排放连续监测系统中的氨排放和有关废气参数连续监测系统的组成和功能、技术性能、监测站房、安装、技术指标调试检测、技术验收、日常运行管理、日常运行质量保证以及数据审核和处理的有关要求,适用氨排放连续监测系统的建设、运行和管理。 图二 氨是雾霾的重要前体物之一 其二是宁波海尔欣光电科技LGM1600便携式氨分析仪确实受到的用户的认可。我司拥有中红外激光气体分析技术,相较与传统的近红外分析仪拥有更高的精度和灵敏度。同时考虑国内的使用环境与便利性,LGM1600便携式氨分析仪操作方便、使用过程中无需频繁对光,抽取式的设计能够利用采样系统中的过滤装置,避免原位式分析仪直接面对烟道内的粉尘影响而产生的测量偏差。在国家积极推进国产仪器的呼声下,LGM1600便携式氨分析仪的性能和服务质量将能满足各省市对于氨排放监测的要求。 图三 氨在中红外波段的吸收峰强度是在近红外的100倍,能实现更高灵敏度的测量 图四 LGM1600系列中红外(MIR)氨分析仪对比商业近红外(NIR)氨分析仪,显示更快的反应时间和更高的精度
  • 揭秘大气污染物监测
    提起当下中国的大气污染,人们首先想到的可能就是&ldquo PM2.5&rdquo ,这个环境术语现在几乎是老幼妇孺皆知。它是指那些当量直径在2.5微米以下的大气中的细颗粒物。与较粗的大气颗粒物相比,它们在大气中的停留时间长、输送距离远,而且可深入到人体的细支气管和肺泡,不溶部分沉积在肺部,诱发或加重多种呼吸系统疾病,可溶部分则通过血液循环进入全身,影响心血管系统、生殖系统等全身多个系统的健康。 但是如果进一步深究,PM2.5究竟由哪些组分组成?它们的前体是什么?有哪些技术可以用来对它们实施监测?它们的源头如何确定?等等。这些专业性的问题恐怕就得找专业人士解答了。为了寻找答案,笔者参加了近日在京举办的&ldquo 2014大气颗粒污染物监测与防治技术研讨会&rdquo ,以一探究竟。会议现场源解析 重中之重 从政府部门防治的角度而言,大气污染物来源解析肯定是最受关注的。只有先找到污染物的源头,才能谈得上下一步的防治。据会上的消息人士透露,到今年年底,国家要完成所有省会及直辖市的大气污染物源解析,而到明年年底,要完成300余个地级市的污染物源解析。要保证这些工作的顺利进行,坚实的技术支撑是不可或缺的。 目前,我国采用得比较多的源解析技术方法是属于受体模型技术方法范畴的化学质量平衡模型。首先,通过颗粒物源类调查、识别,确定主要排放源类(种类、点位和数量)。其次,采用科学规范的采样和分析方法,进行颗粒物源类和受体样品的采集及化学分析,从而构建颗粒物源类和受体化学成分谱,选用合适的CMB模型软件进行解析。这种方法不依赖详细的排放源清单信息和气象资料,能够定量解析源清单技术方法难以确定的源类。 监测技术 五花八门 至于说到用于获取PM2.5原始数据的监测技术,可以称得上是五花八门。一方面是因为,对于PM2.5而言,需要监测的参数较多,诸如:颗粒物质量浓度、颗粒物化学组分(包括:元素成分、水溶性离子、含碳组分等)、二次颗粒物前体物(包括:SO2、NOx、VOCs)等。另一方面也是由于各公司采用不同的技术路线而造成的。 以颗粒物质量浓度为例,目前常用的三种测量方法,分别是&beta 射线法、振荡天平法以及光散射法,相应仪器的代表厂家,譬如赛默飞。 美国TSI和德国GRIMM(上海奕枫代理)则在本次研讨会上分别展出了各自的光学气溶胶粒径谱仪和扫描电迁移粒径谱仪。这两型仪器不仅可以给出颗粒物的总质量浓度,而且还可以给出粒径分布的结果。而扫描电迁移粒径谱仪通过差分粒子电迁移器和凝聚核粒子计数器相结合,将可测的粒径下限推进到5nm以下。这两个&ldquo 老对手&rdquo 的展位位置也很有意思,分居于会场两侧,遥遥相对。从这一点上可以看出组委会也确实是煞费了苦心。 除了上面这一对外,笔者在会场还碰到了另外两对四家堪称是对手的厂家,分别是研制气溶胶飞行质谱的格林德科技(德国)和广州禾信;以及开发激光雷达的中科光电与怡孚和融。前者是一种单颗粒分析技术,可同时对颗粒进行物理和化学特性分析。而后者可对高空的大气颗粒物进行遥感探测。很有趣,真应了那句&ldquo 不是冤家不聚头&rdquo 。 豪华的&ldquo 配角&rdquo 阵容 说完了PM2.5,让我们再来看看另一种主要大气污染物,&ldquo 可挥发性有机物&rdquo ,也就是通常所说的VOCs。VOCs主要包括烷烃、烯烃和芳香烃以及各种含氧烃、卤代烃、氮烃、硫烃、低沸点多环芳烃等,是空气中普遍存在且组成复杂的一类有机污染物。大气中的VOCs虽然浓度不高,但对环境和人体却有重要影响。同时,作为PM2.5的前体物之一,VOCs也是造成酸雾、烟雾的重要原因。 目前,对于VOCs的检测依然是以色谱或色质联用技术为主(某些便携式仪器也有采用光离子化技术的),这也就不奇怪为什么在本次研讨会上可以看到像安捷伦、PerkinElmer这些主业为实验室仪器的跨国公司的展位。在这个领域正好可以发挥它们在色谱及质谱技术方面的优势。岛津公司虽然未设展位,但该公司的陈志凌先生在他的大会报告中,介绍了该公司的全二维色谱技术在分析PM2.5中所含有机物的应用。 新&ldquo 面孔&rdquo 在本次研讨会上,两款刚刚进入中国不久的环境监测产品也给笔者留下了深刻的印象。 瑞士DIGITEL大流量气溶胶采样装置 夏普公司手提式环境微生物监测仪 一款是来自瑞士DIGITEL(陕西桑美代理)的大流量气溶胶采样装置,这款采样装置的最大特点是能够对采样过程中的体积流量进行恒定的、精确的控制,从而保证后续测量结果有一个出色的可重现性。据桑美公司总经理凌萌先生介绍,DIGITEL公司的采样器目前已被很多欧盟国家采纳为标准气溶胶采样器。当然这款产品的价格也是不菲,市场报价为40余万人民币。 另一款产品则非常小巧,是来自SHARP(夏普)公司的手提式环境微生物监测仪。没错,您没看错,就是那家著名的日本电器及电子公司。该产品采用了夏普公司独创的加热处理技术,以增强微生物固有的荧光强度。通过荧光测定,大约10分钟即可确定环境空气中浮游的霉菌和细菌总量。稍显遗憾的是,目前这款仪器只能测定微生物总量,而无法对霉菌或细菌进行进一步的细分。此外,夏普公司的代表没有透露这款仪器的市场价格。(主编当班)
  • 碳中和目标下,盘点近年来实施的大气污染物排放标准及相应检测仪器
    “加强生态文明建设,确保实现2030年前二氧化碳排放达到峰值、2060年前实现碳中和的目标。”为了实现蓝天愿景,兑现对全世界的减排承诺,自2021年起,一系列规划和阶段性目标都会陆续落地,围绕“碳中和”这个核心风向标,更大力度推动节能减排,应对气候变化带来的挑战。我国碳达峰、碳中和愿景与美丽中国建设目标高度协同,应尽快构建新一代大气污染防治科学体系。政策把“治标和治本很好地结合起来”,并特别指出“大气污染物与温室气体要协同减排”。专家们认为加快能源转型变革对深度融合大气污染防治和气候变化应对至关重要,“十四五”期间,大气环境治理更不能放松,特别是在碳中和目标下。为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治环境污染,改善环境质量,生态环境部对之前相关标准进行了修订,将加油站在卸油、储存、加油过程,油品运输过程以及储油库储存、收发油品过程中油气排放控制要求、监测和监督管理要求进行了单独的规定,相应大气污染物排放标准已于2021年4月1日正式实施。为促进农药制造工业、铸造工业以及陆上石油天然气开采工业的技术进步和可持续发展,出台了相应工业大气污染物排放控制要求、监测和监督管理要求,同时对温室气体甲烷的排放提出了协同控制要求。相应大气污染物排放标准已于2021年1月1日正式实施。涂料、油墨及胶黏剂工业、制药工业以及VOCs无组织排放的相应大气污染物排放标准是在2019年发布并实施。无机化学工业污染物排放标准、合成树脂工业污染物排放标准、石油化学工业污染物排放标准和石油炼制工业污染物排放标准,这四项标准是在2015年发布并实施,目前仍未分离出单独的大气污染物排放标准,但其中涵盖了相应工业大气污染物排放控制要求。近年来实施的大气污染物排放标准(发布稿)标准号标准名称发布日期实施日期GB 20952-2020加油站大气污染物排放标准2020-12-312021-04-01GB 20951-2020油品运输大气污染物排放标准2020-12-312021-04-01GB 20950-2020储油库大气污染物排放标准2020-12-312021-04-01GB 39728-2020陆上石油天然气开采工业大气污染物排放标准2020-12-242021-01-01GB 39727-2020农药制造工业大气污染物排放标准2020-12-242021-01-01GB 39726-2020铸造工业大气污染物排放标准2020-12-242021-01-01GB 37824-2019涂料、油墨及胶粘剂工业大气污染物排放标准2019-05-252019-07-01GB 37823-2019制药工业大气污染物排放标准2019-07-292019-07-01GB 37822-2019挥发性有机物无组织排放控制标准2019-05-252019-07-01GB 31573-2015无机化学工业污染物排放标准2015-05-152015-07-01GB 31572-2015合成树脂工业污染物排放标准2015-05-152015-07-01GB 31571-2015石油化学工业污染物排放标准2015-05-152015-07-01GB 31570-2015石油炼制工业污染物排放标准2015-05-152015-07-01标准引用了下列文件或其中的条款涉及到了分析仪器,未来这些仪器将是重中之重。GB/T 14669 空气质量 氨的测定 离子选择电极法GB/T 14678 空气质量 硫化氢、甲硫醇、甲硫醚和二甲二硫的测定 气相色谱法GB/T 15264 环境空气 铅的测定 火焰原子吸收分光光度法GB/T 15516 空气质量 甲醛的测定 乙酰丙酮分光光度法HJ/T 27 固定污染源排气中氯化氢的测定 硫氰酸汞分光光度法HJ/T 28 固定污染源排气中氰化氢的测定 异烟酸-吡唑啉酮分光光度法HJ/T 30 固定污染源排气中氯气的测定 甲基橙分光光度法HJ/T 31 固定污染源排气中光气的测定 苯胺紫外分光光度法HJ/T 32 固定污染源排气中酚类化合物的测定 4-氨基安替比林分光光度法HJ/T 33 固定污染源排气中甲醇的测定 气相色谱法HJ/T 34 固定污染源排气中氯乙烯的测定 气相色谱法HJ/T 35 固定污染源排气中乙醛的测定 气相色谱法HJ/T 36 固定污染源排气中丙烯醛的测定 气相色谱法HJ/T 37 固定污染源排气中丙烯腈的测定 气相色谱法HJ/T 38 固定污染源排气中非甲烷总烃的测定 气相色谱法HJ/T 39 固定污染源排气中氯苯类的测定 气相色谱法HJ/T 40 固定污染源排气中苯并(a)芘的测定 高效液相色谱法HJ/T 42 固定污染源排气中氮氧化物的测定 紫外分光光度法HJ/T 43 固定污染源排气中氮氧化物的测定 盐酸萘乙二胺分光光度法HJ/T 56 固定污染源排气中二氧化硫的测定 碘量法HJ/T 66 大气固定污染源 氯苯类化合物的测定 气相色谱法HJ/T 67 大气固定污染源 氟化物的测定 离子选择电极法HJ/T 68 大气固定污染源 苯胺类的测定 气相色谱法HJ 38 固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法HJ 57 固定污染源废气 二氧化硫的测定 定电位电解法HJ 77.2 环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法HJ 533 环境空气和废气 氨的测定 纳氏试剂分光光度法HJ 539 环境空气 铅的测定 石墨炉原子吸收分光光度法HJ 549 环境空气和废气 氯化氢的测定 离子色谱法HJ 583 环境空气 苯系物的测定 固体吸附/热脱附-气相色谱法HJ 584 环境空气 苯系物的测定 活性炭吸附/二硫化碳解吸-气相色谱法HJ 604 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法HJ 629 固定污染源 废气二氧化硫的测定 非分散红外吸收法HJ 644 环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法HJ 646 环境空气和废气 气相和颗粒物中多环芳烃的测定 气相色谱-质谱法HJ 647 环境空气和废气 气相和颗粒物中多环芳烃的测定 高效液相色谱法HJ 657 空气和废气 颗粒物中铅等金属元素的测定 电感耦合等离子体质谱法HJ 683 环境空气 醛、酮类化合物的测定 高效液相色谱法HJ 685 固定污染源废气 铅的测定 火焰原子吸收分光光度法HJ 688 固定污染源废气 氟化氢的测定 离子色谱法HJ 692 固定污染源废气 氮氧化物的测定 非分散红外吸收法HJ 693 固定污染源废气 氮氧化物的测定 定电位电解法HJ 732 固定污染源废气 挥发性有机物的采样 气袋法HJ 734 固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法HJ 759 环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法HJ 777 空气和废气 颗粒物中金属元素的测定 电感耦合等离子体发射光谱法HJ 1006 固定污染源废气 挥发性卤代烃的测定 气袋采样-气相色谱法HJ 1079 固定污染源废气 氯苯类化合物的测定 气相色谱法HJ 1131 固定污染源废气 二氧化硫的测定 便携式紫外吸收法HJ 1132 固定污染源废气 氮氧化物的测定 便携式紫外吸收法

便携式环境大气污染物分析仪相关的方案

  • 便携式GC/M绍兴市某工业区大气中挥发性有机物污染状况的研究S在有机气体应急监测中的优越性
    运用便携式气相色谱质谱仪,分析研究绍兴市某工业区大气中挥发性有机污染物的组成及污染状况,主要污染物的平均浓度范围在18. 9348 µ g/ m 3之间,初步掌握工业区内挥发性有机污染物的来源 ,为今后大气污染事故的应急处理和预防,提供信息支持与技术保障 。 关键词:挥发性有机物;大气;污染
  • 便携式气质联用仪在环境污染事件中的应用实例
    HAPSITE便携式GC-MS由于体积小,分析精度高,非常适合于现场挥发性有机物的分析 ,在国内己被成功用于多起现场环境应急监测工作 。本文以次监测实例说明通过充分利用该仪器快速检测极低浓度挥发性有机污染物的功能 ,可将之进步应用于被污染环境空气的实时现场监测 ,从而复杂情况下环境污染源的快速排查工作提供强有力的技术支持。关键词 :便携式 :气质联用仪 ;环境污染源 :应用
  • 便携式烟气分析仪在环境监测中的应用
    社会、科技的日新月异,各种燃煤锅炉、垃圾焚烧、火力发电及水泥厂等污染源排放的废气对环境造成了越来越严重的破坏,给人们的生活也带来了很大影响。如何控制以及监测这些污染物的有效排放,已成为环保监测部门的工作重心。 针对废气污染物的排放,市场上也出现了形形色色的分析仪器:电化学的、化学发光方式、红外吸收法;手持的、便携式的等等。在环保部门的现场测试中,由于现场环境相对比较恶劣,且为了得到更加有效的数据,便携式的烟气分析仪就得到了广泛使用。便携式烟气分析仪具有重量轻、便携、操作简单、测量精准等特点,这对固定污染源的现场比对监测、项目验收,以及监测排放是否达标得到了大量应用。 日本HORIBA公司最新推出的便携式PG-300系列仪器,操作简单易懂,使用更加轻松,便携式设备随时随地的均可带来实验室级的精确度。其中PG-350型号仪器能在现场监测NOX/SO2/CO/CO2/O2 五种关键气体组分,可提供和实验室测量一样的准确度和可靠度,重量轻,响应速度快,彩色触摸屏让操作更加简单。广泛应用于环保部门、CEMS备用、烟道气监测、燃烧炉、催化剂研究、分析检测公司、大学实验室、发动机、燃料电池研究等。它采用HORIBA公司特有的交替流动调制型红外吸收法,即时时对传感器进行清扫、校正,更能避免零点漂移和交叉干扰,保证测量精度和仪器寿命。在现场测试中湿度比较大的场合,电化学设备SO2检测就会极不准确,而PG-350仪器采用伴热管加热和peltier除湿技术,则可高效率的除湿,很好的解决水分的干扰。 很多时候还需对脱硫效率进行监测,脱硫前的监测点需要采集样本,而电化学设备会出现“中毒”症状,导致最快半年时间就需要更换传感器核心部件,使得日常的维护成本大大增加。 从整体来看,红外烟气分析仪预热时间长,但测试稳定性和抗干扰性方面强于电化学烟气分析仪,同时专业的预处理装置解决了水分吸收等问题,保证测试结果的准确有效。

便携式环境大气污染物分析仪相关的资料

便携式环境大气污染物分析仪相关的论坛

  • 【分享】大气污染物名称代码

    最近国家环保部出了大气污染物名称代码,这对于环境管理、环保统计、大气监测、环境影响评价、排污权交易、污染事故应急处置等方面都很有用。[img]http://bbs.instrument.com.cn/images/affix.gif[/img][url=http://bbs.instrument.com.cn/download.asp?ID=197932]大气污染物代码.pdf[/url]

  • 天瑞仪器大气污染物监测与检测仪器推介专题

    近期,从东北、华北到中部乃至黄淮、江南地区,都出现大范围的雾霾天气,能见度一度低至200米,严重影响人们的出行与户外活动;雾霾中的粉尘(有毒金属粉尘与非金属粉尘)、有机污染物将严重威胁人体健康。 在此,天瑞仪器特推出“大气污染物检测”专题活动,为各环保单位提供了对大气中重金属与有机污染物的在线分析监测、实验室检测设备与方案。 其中EHM-X100大气重金属在线分析仪对空气颗粒物重金属的检测灵敏度较高,能进行低含量铅、砷等重金属的检测,同时可以实现无人值守(1~3月)的长时间自动监测;对于实验室中的大气重金属与有机污染物的检测,根据不同的检测应用技术与所需标准,从光谱、色谱、质谱三大应用技术领域共提供了8款相应的检测设备。

  • 大气污染源无组织排放监测分析

    大气污染源无组织排放监测分析首先要分清或理解下述文中所介绍的“周界外浓度最高点”、“监控点”以及“参照点”的概念:周界外浓度最高点意思就是所有测点值取最高的一个;监控点就是分散的一些数据采集、信息收集点,本处是指实际监测过程中所设立的大气监测点位;参照点有两种:一种是绝对参照点(以绝对的零点作为测量的起点),另一种是相对参照点(以人为确定的零点为测量的起点),大气监测参照点就应为相对参照点。《大气污染物综合排放标准》中规定无组织排放监控点位“二氧化硫、氮氧化物、颗粒物、氟化物的监控点设在无组织排放源的下风向2~50m范围内的浓度最高点,相对应的参照点设在排放源上风向2~50m范围内;其余污染物的监控点设在单位周界外10m范围内浓度最高点。”“周界外浓度最高点一般应设置于无组织排放源下风向的单位周界外10m范围内,若预计无组织排放的最大落地浓度点越出10m范围,可将监控点移至该预计浓度最高点”。注意了,上述规定只是针对旧污染源(或称老污染源),对新污染源并无此要求。在综合排放标准上,对于新建污染源,无组织排放全部都在场界10米内浓度最高点进行监测,这里所说新旧污染源分界时间有明确定义:1997年1月1日前设立的污染源简称为现有污染源), 1997年1月1日起设立(包括新建、扩建、改建)的污染源简称为新污染源。规定新、旧污染源也是为了有区别对待,新污染源所有项目无组织排放都是周界外10米浓度最高点,不存在参照点问题;旧污染源才存在参照点问题。这样立法的本意也是为了更好地保护环境空气质量,只要无组织监控点超标即可视为超标,无需再扣除参照点监测值。有的人认为《大气污染物综合排放标准》和《大气污染物无组织排放监测技术导则》,两者之间有些矛盾,《大气污染物综合排放标准》要求“新污染源无组织排放的监测点全部在周界外浓度最高点”,周界外浓度最高点的解释:“一般应设置於无组织排放源下风向的单位周界外10m 范围内,若预计无组织排放的最大落地浓度点越出10m范围,可将监控点移至该预计浓度最高点。”而《大气污染物无组织排放监测技术导则》,要求“二氧化硫、氮氧化物、颗粒物和氟化物的监控点设在无组织排放源下风向2~5Om范围内的浓度最高点,相对应的参照点设在排放源上风向2~5Om范围内;其余物质的监控点设在单位周界外10m范围内的浓度最高点。”这下子要确定应该执行哪个标准让人有点头晕了,其实可以这样子分析:第一条原则,综合性排放标准与行业性排放标准不交叉执行,这一点必须视情按规定执行。第二条原则,根据遵循的排放标准里的规定执行。第三条原则,教材里写的是一般规律,特殊的在各自的行业性排放标准里。第四条原则,规定点位的选择非常复杂的目的,就是要判断出污染源对环境的最大影响或判定污染因子的最大贡献值。有一种理解方式可供参考:2~50米距离范围可做为验收监测采用,10米距离范围可做为环境评价及现奖调查时采用。

便携式环境大气污染物分析仪相关的耗材

  • 大气污染PM2.5PM10环境在线监测设备
    为加强夜间管控,补齐扬尘监管短板,住房城乡建设局扬尘办在日常巡查基础上,建立了“夜查”机制,严厉打击各类夜间扬尘污染违法行为的发生。   近期,市扬尘治理力度不断加大,治理成效明显,但也存在部分责任主体对夜间施工扬尘重视程度不足,尤其是对渣土车辆进出工地、车辆覆盖冲洗等放松了管理,夜间施工扬尘成为打赢扬尘治理攻坚战的“绊脚石”。为此,市住房城乡建设局扬尘办制定了夜查轮值方案,通过远程视频监控调取建筑工地,发现违规行为及时拍照取证,同时派夜查组及时前往现场处置,有效减少了夜间扬尘违法行为。   自今年4月份以来,市住房城乡建设局扬尘办已不间断开展夜查50余次,累计出动执法人员150余人次,对市内三区建筑工地实现了全天候、全覆盖扬尘监管。大气污染PM2.5PM10环境在线监测设备的产品简介: 建筑工地扬尘噪声在线监测系统集成了颗粒物噪声实时监控、气象监测、物联网和云计算等先进技术为一体,能够较为准确定位扬尘污染的来源方向,可以在线监测各类颗粒物(包含TSP、PM10和PM2.5)的浓度,监测气象(温度、湿度、风速、风向)等参数,具有高浓度报警并自动抓拍取证等特点,是符合GB3096-2008《声环境质量标准》和GB3095-2012《环境空气质量标准》中规定,进行不同声环境功能区扬尘重点监控区监测点的连续自动监测且具有完善功能的扬尘噪音监测设备,主要适用于数字城管、智慧城市、建筑工地、垃圾场、拆迁工地、码头、产业园、社区、道路扬尘环境监测监控中心。大气污染PM2.5PM10环境在线监测设备的产品优势:(一) 产品具有CCEP、CPA双认证,配置高、低位双摄像头,监测终端系统系统集成了TSP、PM10、PM2.5、温度、湿度、风向和风速、大气压,降雨量等多个环境参数,全天候24小时在线连续监测,全天候提供工地的空气质量数据,超过报警值时还能自动启动监控设备、降尘设备,具有多参数、实时性、智能化等特性 (二) 通过传感网、无线网、因特网这三大网络传输传输数据,快速便捷地更新实时监测数据 (三) 基于云计算的数据中心平台汇集了不同区域、不同时段的监测数据,具有海量存储空间,可进行多维度、多时空的数据统计分析,便于管理部分有序开展工作,同时也为建立工地环境污染控制标准积累数据,以推动对空气污染的长效管理。(四)整个系统采用自由模块化组合,根据无组织污染监控需求,灵活增加或者削减不同监测项目,同时自由模块化组合可以在核心传感器发生故障的情况下,无需返修的前提下,可随时自行更换传感器,且不影响整套设备正常运行,解决了传统设备出现故障整机返厂费时费成本的难题。 大气污染PM2.5PM10环境在线监测设备的产品技术参数:系统配置监测指标测量范围分辨率准确度备注PM2.50-500ug/m3 1ug/m3±10%PM100-2mg/m31ug/m3±10%TSP 0~40mg/m31mg/m3±10%风速0-30m,0-60m(可选)0.1m/s±1m/s风向0~360°/16方位1°±3°噪声30~130dB31.5Hz~8kHz±1.5dB温度-30~+70℃0.1℃±0.3℃湿度0~100%RH1%RH±3%RH大气压500~1100hPa0.1 hPa±0.3hPa数据采集处理系统奥斯恩OSEN-YZ:环境监测系统V1.0市电220V供电AC220V太阳能供电系统含太阳能板及蓄电池通讯方式RS485/232通讯,USB通讯3G/4G、WIFI无线传输、ADSL 光纤等有线传输标配3米支架高度可定制户外高清LED屏幕尺寸105*55cm 四行显示 含控制系统及防水外框 高清网络摄像头(球机、枪机)高清1080P低码流一体化云台机,采用最新H.265视频压缩算法 压缩比高、图像质量好;200万像素,支持1280×960 分辨率,360°连续旋转,垂直方向:+90°-90;球机摄像头可实现扬尘超标抓拍、数据叠加,枪机摄像头可实现车牌识别、车身清洗识别功能;喷淋降尘设备数据采集测量精度高,具有多路继电器输出,可以控制多点的设备。核心部件采用高性能32位微处理器为主控CPU,便携式防震结构,工业化标准设计,适合在恶劣环境中使用,继电器指示灯指示各继电器的开关状态。可联动塔吊喷淋系统,雾炮,喷水管
  • HPCA-2 便携式污染检测仪
    HPCA-2污染度检测仪颇尔HPCA-2 便携式污染检测仪颇尔黑白箱 显微镜法颗粒计数器 颗粒度计数器 颗粒度仪 NAS1638 HPCA-2 便携式污染检测仪颇尔黑白箱适合于DL432-92方法要求 目测5~150μm颗粒污染情况 颗粒成份一目了然,快速分析污染级别 操作方便,快捷适用 颇尔便携式污染检测仪(有称黑白箱)的设计使你进行: ? 现场检测并且测出系统液压的清洁度等级; ? 并能看到颇尔过滤滤材在去除系统中污染颗粒的效率。 1.开始 1.1 含元件请参见图,元件型号请见附录。在使用该仪器前请熟悉元件型号及其名称。 1.2 检查一下未用过的分析膜片,使膜片盒保持清洁和足够的溶剂并在出差前检测电筒是否可用 1.3 将箱中的一个取样瓶定为废液收集瓶并贴上标签,此瓶用于收集在油箱中取样前冲洗软管用的废弃流体。 1.4 箱中应保留一份油液污染度比较样本和操作指南,这些就放在泡沫塑料和后面。 2. 获取油样 2.1 液样的获取必须从系统要在系统的操作温度下取样,即在系统操作过程中或系统刚刚停止即刻取样。 在取样阀取样 在用取样阀之前,要把阀外面的脏物擦掉,打开阀让足够的液体(大约500ml通过阀门流进废弃容器或流回油箱,这样在你取样前会先冲掉存在阀中的污染物,把液样收集到干净的瓶中后把瓶盖盖好关上取样阀,当灌取样品时请勿调节取样阀) 油箱中取样 当从油箱或集油槽中取样时,先把软管的一端插入真空泵突起的圆口内,将软管一直推进直到从真空泵底部伸出并拧紧端盖(顺时针),再将集液瓶旋拧到真空泵上,把软管的另一端插进油液中液位的一半开始操作真空泵,当达到瓶中的2/3液位时,把瓶子从真空泵上拧下,把液体倒入集液槽然后拧上第二取样瓶抽取第二个液样,取下取样瓶盖上瓶盖。 2.2 不要破坏软管连接或管件进行取样 2.3 要保持取样瓶清洁,取样前再打开,取样后立即盖上。 2.4 液样不要取得过满,取样在1/2至2/3液位之间即可,距瓶口不高于1/2英寸。 2.5 若取油样较多时,则需贴清标签。 3. 准备抽取油样 3.1 将溶剂过滤器插到冲洗瓶嘴上,溶剂过滤器开口较大的一端插到冲洗瓶嘴上,确保通过过滤器的正确流向并使溶剂不含污染颗粒。 3.2 支起真空泵,集液瓶及如图2所示漏斗套件。 3.3 所有与油样接触的元件和容器须在通过分析膜片前完全用过滤的溶剂冲洗一下(要有一个容器盛接)。冲洗后的漏斗要用铝泊盖住。 3.4 根据液体的种类选择合适的膜片和溶剂。 分析膜片 a) 1.2微米带格膜片用于除磷酸脂,酒精和燃料。这些应该用PALL 1.2微米无格尼龙膜片(兼容性)。 b) 对于污染严重的液体。这需要抽取25ml,1.2微米膜片使用起来有些困难,如有可能,则用PALL 的5.0 微米的膜片。
  • 颇尔HPCA-2显微镜法便携式污染检测仪
    颇尔HPCA-2显微镜法便携式污染检测仪颇尔HPCA-2 便携式污染检测仪颇尔黑白箱 显微镜法颗粒计数器 颗粒度计数器 颗粒度仪 NAS1638 HPCA-2 便携式污染检测仪颇尔黑白箱 适合于DL432-92方法要求 精确目测5~150μm颗粒污染情况 颗粒成份一目了然,快速分析污染级别 操作方便,快捷适用 颇尔便携式污染检测仪(有称黑白箱)的设计使你进行: ? 现场检测并且测出系统液压的清洁度等级; ? 并能看到颇尔过滤滤材在去除系统中污染颗粒的效率。 1.开始 1.1 含元件请参见图,元件型号请见附录。在使用该仪器前请熟悉元件型号及其名称。 1.2 检查一下未用过的分析膜片,使膜片盒保持清洁和足够的溶剂并在出差前检测电筒是否可用 1.3 将箱中的一个取样瓶定为废液收集瓶并贴上标签,此瓶用于收集在油箱中取样前冲洗软管用的废弃流体。 1.4 箱中应保留一份油液污染度比较样本和操作指南,这些就放在泡沫塑料和后面。 2. 获取油样 2.1 液样的获取必须从系统要在系统的操作温度下取样,即在系统操作过程中或系统刚刚停止即刻取样。 在取样阀取样 在用取样阀之前,要把阀外面的脏物擦掉,打开阀让足够的液体(大约500ml通过阀门流进废弃容器或流回油箱,这样在你取样前会先冲掉存在阀中的污染物,把液样收集到干净的瓶中后把瓶盖盖好关上取样阀,当灌取样品时请勿调节取样阀) 油箱中取样 当从油箱或集油槽中取样时,先把软管的一端插入真空泵突起的圆口内,将软管一直推进直到从真空泵底部伸出并拧紧端盖(顺时针),再将集液瓶旋拧到真空泵上,把软管的另一端插进油液中液位的一半开始操作真空泵,当达到瓶中的2/3液位时,把瓶子从真空泵上拧下,把液体倒入集液槽然后拧上第二取样瓶抽取第二个液样,取下取样瓶盖上瓶盖。 2.2 不要破坏软管连接或管件进行取样 2.3 要保持取样瓶清洁,取样前再打开,取样后立即盖上。 2.4 液样不要取得过满,取样在1/2至2/3液位之间即可,距瓶口不高于1/2英寸。 2.5 若取油样较多时,则需贴清标签。 3. 准备抽取油样 3.1 将溶剂过滤器插到冲洗瓶嘴上,溶剂过滤器开口较大的一端插到冲洗瓶嘴上,确保通过过滤器的正确流向并使溶剂不含污染颗粒。 3.2 支起真空泵,集液瓶及如图2所示漏斗套件。 3.3 所有与油样接触的元件和容器须在通过分析膜片前完全用过滤的溶剂冲洗一下(要有一个容器盛接)。冲洗后的漏斗要用铝泊盖住。 3.4 根据液体的种类选择合适的膜片和溶剂。 分析膜片 a) 1.2微米带格膜片用于除磷酸脂,酒精和燃料。这些应该用PALL 1.2微米无格尼龙膜片(兼容性)。 b) 对于污染严重的液体。这需要抽取25ml,1.2微米膜片使用起来有些困难,如有可能,则用PALL 的5.0 微米的膜片。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制