当前位置: 仪器信息网 > 行业主题 > >

光子计

仪器信息网光子计专题为您提供2024年最新光子计价格报价、厂家品牌的相关信息, 包括光子计参数、型号等,不管是国产,还是进口品牌的光子计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光子计相关的耗材配件、试剂标物,还有光子计相关的最新资讯、资料,以及光子计相关的解决方案。

光子计相关的论坛

  • 利用激光可快速高效创建单光子

    为研究原子的纠缠态和自旋波等提供了便利条件科技日报 2012年04月21日 星期六 本报讯 据物理学家组织网4月19日报道,美国佐治亚理工学院的物理学家利用激光从超冷的铷原子气体云内激发单个原子,开发出了一种能快速、有效创建单光子的新方式,并有望应用于光量子信息处理之中。相关研究结果发表在当日出版的《科学快讯》(《科学》杂志快速在线版)上。 这套新的单光子系统为研究原子的纠缠态和自旋波等提供了“肥沃的土壤”。科研人员能相当高效地将里德伯激发转化为单光子,随时获取所需的状态,速度可比现有系统快近千倍。 里德伯原子是指一个价电子被激发到高量子态的高激发原子。其价电子离原子实很远,能级结构类似于氢原子。为了获取里德伯原子,研究人员利用激光照射数百个密集的铷87原子。它们都被激光所冷却,并被限制在光学晶格中。激光照射将使单个原子从铷原子气体云中转化为接近电离的里德伯态。原子处于这种高度激发的状态时,将在10微米至20微米的范围内,与其他里德伯原子发生强烈的相互作用。通过修改单个里德伯原子的能量水平并在其周围保有相应的空间,可阻止额外的原子被转化为里德伯态。 一旦高度激发的原子被制成,科学家便可利用额外的激光场将激发转化为具有同样统计属性的量子光场。由于场由单个里德伯原子生成,其只包含一个光子,这可被用于多种协议之中,对于量子信息系统等领域的研究也十分重要。研究人员表示,在首次实验中,生成的单光子的性能已超过了其他类型的单光子。随着效率和生产率的进一步提升,以及和“长寿的”量子存储器的融合,这一单光子来源或可实现光量子的信息处理。 下一步,研究团队将致力开发两个光场之间的光子量子闸。如若成功,将支持他们制成原子和光的复杂纠缠态,这将为量子网络和量子计算添加宝贵的性能。(张巍巍)

  • 潘建伟等实现世界最佳单光子源

    2013年02月08日 来源: 中国科学报 作者: 蒋家平 2月4日,英国《自然》子刊《自然—纳米技术》以长文形式,发表了中国科学技术大学教授潘建伟、陆朝阳等人关于量子点脉冲共振荧光确定性高品质单光子源的研究工作。这是我国量子点光学量子调控领域发表在《自然》系列期刊上的第一篇论文。 量子点是一种通过分子束外延方法制备的纳米晶体,又被称为“人造原子”,可以为量子保密通信和光学量子计算提供理想的单光子源。此前,美国加州大学、斯坦福大学和英国剑桥大学等研究组实现了基于非共振激发量子点产生的单光子源。然而,由于单光子发射时间抖动、激子退相干等,不可避免地引起光子品质下降,光子全同性只能达到70%左右,无法进一步应用于可扩展量子信息处理。 要发展能够真正实用化的光量子信息技术,关键技术之一是实现确定性的高品质单光子源。为此,微尺度物质科学国家实验室的潘建伟、陆朝阳等在国际上首次发展了一套新颖的量子点脉冲共振光学激发、多重滤波技术,显著消除了消相干效应,解决了单光子源的确定性和高品质这两个基本问题。 实验产生的单光子源信噪比超过300:1,二阶关联函数小于1.5%,光子全同性优于97%,这些技术指标使得中国在这一领域的研究跻身世界前列,为可扩展光学量子计算和基于自旋的固态量子网络的实现奠定了基础。审稿人称赞这是一个“令人惊喜的高质量实验”。(记者蒋家平)

  • 利用光子反弹可对角落处物体成像

    中国科技网讯 受光子放大和光子在室内被物体和墙壁反弹现象的启发,美国麻省理工学院、哈佛大学、威斯康星大学和莱斯大学的科学家利用先进的光学系统追踪反弹的光子,从而能够“看到”隐藏在屋内拐角处无法直接看到的物体。该技术在未来有望成为减灾和无损生物医学成像的无价之宝。 麻省理工大学研究生奥特克莱斯特·古普塔表示,当光子从墙上反弹并射在室内拐角处暗藏物体上被反射回来时,利用光子环绕和反弹的时间数据,他们能够获取有关物体几何形状的信息。 先进光学系统主要由超快激光器和两维超快扫描照相机组成,它们的工作频率可达每秒万亿次。科学家用它们能在1秒钟内拍摄数10亿张图像,通过分析反弹光子的运动状况“看到”室内拐角处的物体。 超快扫描照相机与其他照相机不同,它是根据光子进入照相机的时间来成像。古普塔说,这样的成像方式为人们提供了了解光子需要多长时间被反弹回来的良好途径。如果在拐角处存在某种物体的话,光子返回得越快则进入超快扫描照相机的时间就越早。他们用超快扫描照相机捕捉和计算光子数,每张图像上有3个或更少的光子。通过快速大量的成像来生产扫描图像,帮助他们决定光子传输的距离(以厘米计算)。当数据收集完成后,他们便能了解拐角处暗藏物体的基本几何形状和3维成像。 新的成像技术具有众多潜在的应用,其中包括在救灾方面的应用。古普塔认为,如果有房屋倒塌,新技术能够帮助救灾人员知道废墟内是否有人存在。事实上,新技术几乎适用于各种各样的灾害现场,特别是需要了解内部具体情况以及角落处是否有人的火灾,火灾的危险程度以及有害环境,由此人们不会冒险派人进入燃烧的房屋内,新技术可以极大地减少救灾人员可能面对的威胁。 此外,新技术十分有望被用作无损或非侵害生物医学成像,帮助医生掌握病人皮下组织的情况。这是科学家目前要着手研究的课题。古普塔表示,根据典型的时间表,研发展示到产品推出,新技术商业化需要5年至10年的时间。(驻美国记者 毛黎) 《科技日报》(2012-08-17 二版)

  • 利用能探测到单光子的超高速摄像机,科学家首次捕捉激光在空气中飞行画面

    利用能探测到单光子的超高速摄像机,科学家首次捕捉激光在空气中飞行画面

    据《新科学家》(New Scientist)27日报道,利用能探测到单光子,每秒200亿帧的超高速摄像机,科学家首次捕捉到了激光在空气中飞行的画面。在10分钟内,研究者记录了光子与空气碰撞时产生的200万次激光脉冲。该技术可用于巡查环境角落,显示屏幕上看不到的物体,还可用在需要精准计量时间信息的地方。http://ng1.17img.cn/bbsfiles/images/2015/01/201501301545_533612_1623180_3.gif苏格兰赫利瓦特大学的主要研究者加里皮说:“这是我们第一次看到光经过身边时的情形。”在通常情况下,科学家只能通过物体上的反射来看到光。想看到激光器发出的激光则更加棘手,因为光子是在聚焦光束中运动,而且方向都相同。赫利瓦特大学的乔纳森·里奇解释说,他们研究的相机能以光速拍摄,记录下光脉冲在空中飞行的过程。摄像机结合了脉冲激光源的工作原理。在录像中,记录了光脉冲里的光子在空中飞行。里奇说,人们可以看到光子在一系列镜子上发生的反射。当光脉冲与空气分子碰撞时,会随机散射出光子,这些光子中有些会被摄像机拍下来。里奇表示:“光由光子构成,速度为每秒钟3亿米,没有什么东西比光跑得更快。光子飞行的速度如此之快,普通相机是无法拍下它们的运动的。而我们的新相机极为灵敏而且极快,能拍摄单个的光子,当它们在空中旅行时,还能给光脉冲录像。”该相机由爱丁堡大学开发,其感光部件由单光子光敏像素阵列构成。这些像素有两种特性:一是对单个光子敏感的能力——每个像素的敏感性是人眼的10倍左右;二是它们的速度——每个像素被激活只要67皮秒(万亿分之一秒),比人眨一下眼的时间要快10亿倍。“这些特性让我们能实现‘飞光成像’。”里奇说,当光在空中飞行,从物体上散射开来时,这种成像方法连光本身也能拍下来。http://ng1.17img.cn/bbsfiles/images/2015/01/201501301545_533614_1623180_3.jpg这种迷你型数码摄像机是进行激光研究的同类产品中第一种可以轻松携带的。该摄像机具有一个32×32的探测器网格,能记录光子到达的时间和速率——每秒200亿帧。根据发表在《新科学家》杂志上的报告,摄像机可以从侧面对射向一系列镜面的激光束进行拍摄。http://ng1.17img.cn/bbsfiles/images/2015/01/201501301546_533615_1623180_3.jpg加里皮教授称,略有点模糊的激光图像正说明了摄像机在捕捉激光飞行路径时的超高精确性。“激光脉冲具有某种形状,”她说,“这并不只是一个穿过空气的矩形。”

  • 新型光子芯片能测量更多光量子态

    据报道,无线电和真空管问世以来,电子计算和通信有了很大发展。今天,消费设备的处理能力和内存等级在几十年前是无法想象的。但是,随着计算和信息处理设备的体积越来越小、功能越来越强,量子物理定律强加的一些基本限制正在出现,这一领域未来的发展前景可能与光子学密切相关。光子学是与电子平行的光学基本概念,光子学理论上类似于电子,但如果用光子代替电子,光子装置处理数据的速度比电子装置快得多。量子计算机。  目前,光子学领域的基础研究仍然非常活跃,但由于缺乏重要的设备,无法进行实际应用。美国 加州在理工大学开发新的光子芯片,延迟线特别是光子量子信息处理器,可以生成和测量光量子态。  根据光子的基本特性,不同种类的光子被分为能量、动量、偏振等特征,由这些不同特征决定的光子状态称为光量子态。  这种新的光子芯片基于在光学领域广泛使用的铌酸锂材料,在芯片一侧产生所谓的光压缩状态,在另一侧测量。时钟和数据恢复/重定时光压缩状态,简单地说,据悉在量子等级中降低“噪音”的光,近年来光压缩状态技术被用于加强激光干涉引力波天文台(LIGO)的灵敏度测量,LIGO天文台是利用激光束探测引力波的探测装置,如果科学家使用基于光的量子装置处理数据,低噪音照明状态也很重要。  加州理工大学电子工程与应用物理学副教授阿尔雷扎马兰迪 (Alireza Marandi)说:“我们可以利用它突破许多传统非线性光学研究的局限,甚至打破许多传统假设。”  另一方面,据马兰迪介绍,光子芯片技术显示了以太赫兹主频运行量子光学处理器的最终发展方向,专用时钟/计时比苹果笔记本电脑MacBook Pro的计算处理器快上千倍,未来5年内可以通信。据合著者、博士后学者拉杰维尔奈尔拉 (Rajveer Nehra)介绍,该研究报告指出:“光学一直是实现量子计算最有希望的方法之一。因为在可扩展性和室温下的超高速逻辑操作中有内在的优点。但是,可扩展性应用的主要课题之一是在纳米光子学中生成和测量足够的量子状态。电子元器件是信息技术产业发展的基石,也是保障产业链供应链安全稳定的关键。面对成千上万种功能迥异的电子元器件,以及复杂的供应渠道和货源,往往一个器件的品质就可能影响到整个产品设计,加上近期电子元器件价格大涨,如何提升采购效率降低采购成本对于控制企业产品成本,提高产品竞争力有着极其现实的意义。随着互联网的发展,用户都在便捷地通过型号搜索并比较渠道。[url=https://www.szcxwdz.com]创芯为电子[/url]为不同规模的企业提供电子元器件采购的平台。主要产品包括电源管理[url=https://www.szcxwdz.com]芯片[/url]、处理器及微控制器、接口芯片、放大器、[url=https://www.szcxwdz.com]存储器[/url] 、逻辑器件、数据转换芯片、电容、二极管、三极管 、电阻、电感、晶振等,并提供相关的技术咨询。在售商品超60万种,原?或代理货源直供,绝对保证原装正品,并满?客??站式采购要求,当天订单,当天发货,还可免费供样!

  • 我国成为第2个紫外单光子探测器技术拥有国

    一根燃烧的蜡烛1秒钟可以发射出100亿亿个以上的光子,要探测到能量如此小的单个紫外光子一直是世界技术难题。记者昨天获悉,南京大学电子科学与工程学院长江特聘教授陆海为首的研究团队近来获得突破,在国内首先研制出超灵敏度的固体紫外单光子探测器,从而使中国成为继美国之后第二个掌握这一核心技术的国家。  “自然界中波长小于280纳米的紫外光几乎为零,所以我们探测它相当于在暗室中探测光,只要发现一个小光点就一定是目标。”陆海介绍说,可探测400纳米以下紫外辐射的紫外光探测器,是火焰探测、环境监测、生物医药、空间科学等领域所急需的关键部件,也是关系到国家安全的关键技术,可以用来检测海上油污、卫星遥感监测雾霾等。  光子是光的最小能量量子,也是光作为信息载体的最小传输单位。一根蜡烛1秒钟释放出的超100亿亿个光子中,假设紫外光子只占万分之一,那么在完全不考虑飞行损耗的情况下,1公里以外,面积为1平方厘米的镜头1秒钟只能接收到1000个紫外光子。专门用来捕捉这些“小家伙”的单光子探测器一直是世界各国研究和竞争的焦点。  陆海举例说,导弹的飞行尾焰中存在像指纹一样的特殊紫外光谱成分,但距离越远能够传输过来的紫外光就越微弱。利用超灵敏度紫外单光子探测器就有可能在上千公里以外探测和分辨出来袭飞弹,为反制或者规避提供宝贵时间。之前,国际上只有美国罗格斯大学、弗吉尼亚大学、通用电气研发中心三家美国单位成功研制碳化硅单光子探测器。而南大研究团队此次获得突破后,跻身成为第四家。  南大研究团队研制出的紫外单光子探测器,基于碳化硅半导体芯片技术,能灵敏捕捉到紫外单光子,并且打破了过去依赖于超低温条件的瓶颈。“我们的探测器在150℃下仍能正常工作,这是原来任何单光子探测技术都无法达到的。”陆海说。这一突破也引起了国际关注,欧洲的《今日半导体》杂志专门长文报道了南大的这一研究成果。  同时,该探测器有显著的成本优势,有望向民用领域大规模推广,比如高压输电线和高铁供电线路上出现电晕、污闪时,可用其远程检测和定位。“目前,紫外火灾报警器用的真空紫外光敏管,综合成本很高。”陆海拿出一枚耳钉大小的器件介绍说,未来用如此小的单光子探测器件,不仅造价更便宜,而且防爆、使用寿命更长。  眼下,南大研究团队在该领域的部分研究成果已开始进入产业化阶段。过量的紫外线照射易诱发皮肤癌,韩国三星公司日前发布的Note4手机就装备了微型紫外线传感器,受到消费者欢迎。而南大研究团队正在和华为合作的贴片封装紫外探测器,尺寸比米粒还小,也将安装到手机或智能手环中,藉由它,用户可随时随地检测所处环境的紫外线强度,以及时防护。

  • 用于光子相关纳米粒度仪的数字相关器

    用于光子相关纳米粒度仪的数字相关器

    用于光子相关纳米粒度仪的数字相关器动态光散射原理(光子相关普法PCS和光子交叉相关普法pccs)的纳米激光粒度仪的关键技术是提取悬浮液在溶液中的纳米颗粒的散射光的自相关函数或互相关函数,计算纳米颗粒的扩散系数,从而分析颗粒粒度。数字相关器是基于动态光的散射原理(光子相关光谱法PCS和光子交叉相关普法pccs)的粒度测试技术中提取散射光信号的自相关函数和互相关函数的装置。目前,国内应用较多此类装置主要是进口美国Brookhaven公司BI-9000AT、BI-9010AT和Turbocorr数字相关器,这些装置只能完成自相关运算而无法进行互相关运算,因此只适合用于pcs法测试纳米颗粒粒度,而无法适用于PCCS法测试纳米颗粒粒度,从而对测试环境、所测样品浓度以及测试稳定性等方面具有较大的局限性,只有制作专用大规模集成电路(ASIC),或基于DSP技术,或多片芯片及联组成,不但有很大的局限性,而且价格昂贵。另外,国内有人尝试采用软件的方式实现数字相关器,即先用光子计数器将散射光光子计数并储存在存储器中,然后根据计算计算机软件将其数据从存储器中读出进而进行相关运算,虽然这样能计算出散射光强的相关函数,但由于软件所需的处理时间内的光子丢失造成计算的相关函数偏差较大。因此,采用软件的数字相关器实时性很差,不能满足颗粒粒度分析的要求。微纳专利的用于光子相关纳米激光粒度仪的数字相关器,是一种基于动态光散射原理测试纳米及亚微米颗粒粒度测试技术中用于获得散射光信号自相关函数和互相关函数的数字相关器。本专利发明实现了光子脉冲技术、自相关运算、互相关运算以及与计算机通讯功能,具有采样速度快、延迟时间范围广、相关通道多的特点,完全满足纳米颗粒粒度测试中获取高速变化的动态散射光信号的自相关函数和互相关函数的高难度需求。 winner802 纳米激光粒度仪http://ng1.17img.cn/bbsfiles/images/2015/12/201512030937_576113_3050076_3.jpg产品简介:Winner802是我公司最新推出的基于动态光散射原理的纳米激光粒度仪,同时也是国内首款采用数字相关器的纳米激光粒度仪。本款仪器采用我公司自主研制的高速数字相关器和高性能光电倍增管为核心部件,具有操作简便、测试快捷、分辨率高等特点。适用范围:Winner802适用于各种纳米级、亚微米级固体颗粒与乳液。技术参数:规格型号Winner802执行标准 GB/T 19627-2005/ISO 13321:1996 GB/T 29022-2012/ISO 22412:2008测试范围1-10000nm(与样品有关)浓度范围0.1mg/ml--100mg/ml(与样品有关)准确度误差1%(国家标准样品D50值)重复性误差1%(国家标准样品D50值)激光光源光纤半导体激光器,λ= 532nm, 探测器光电倍增管(PMT)散射角90o样品池体积4mL温控范围5-40 ℃(精确到0.1℃)测试速度5 Min体积480mm×270mm×170mm重量12Kg数字相关器主要参数自相关通道:256 基线通道:4最小分辨时间:6ns 延迟时间:100ns-10ms(可调) 运算速度:162M/S产品特点和优势:先进的测试原理采用动态光散射原理和光子相关光谱技术,根据颗粒在液体中的布朗运动速度测定颗粒大小。大小颗粒运动速度不同,激光照射这些颗粒,不同大小的颗粒将使散射光发生快慢不同的涨落起伏。光子相关光谱法就根据特定方向的光子涨落起伏分析其颗粒大小。 极高的分辨能力使用PCS技术测定纳米级颗粒大小,必须能够分辨纳秒级信号起伏。本仪器的核心部件采用我公司研制的CR256数字相关器,具有识别8ns的极高分辨能力和极高的信号处理速度。 高灵敏度和信噪比采用专业级高性能光电倍增管(PMT),对光子信号具有极高的灵敏度和信噪比。 超强的运算能力采用自行研制的高速数字相关器CR256进行数据采集与实时相关运算,其数据处理速度高达162M,从而实时有效地反映颗粒的动态光散射信息。Winner802光子相关纳米激光粒度仪是国家科技型中小企业创新基金的项目成果,也是过内首款采用动态光散射原理的纳米粒度仪。其测量原理建立在液体颗粒布朗运动基础之上,颗粒越小,运动速度越大,运动速度越慢。它采用HAMAMATSU高性能光电倍增管和由微纳自主研发的高速数字相关器作为核心部件,通过测试某一角度的散射光的变化并求出自相关函数(即扩散系数),根据Stokes-Einstein方程计算出颗粒粒径及分布,它具有快速、高分辨率、重复及准确等特点,同时还是纳米颗粒粒度测试的首先产品。

  • 双光子激光扫描显微镜的检测模式及其在生物医学领域的应用

    双光子激光扫描显微镜的检测模式及其在生物医学领域的应用

    [align=center][b]双光子激光扫描显微镜的检测模式及其在生物医学领域的应用[/b][/align][align=center][font=宋体]刘皎[/font][sup]1[/sup],吴晶[sup]1[/sup][/align][align=center]1. [font=宋体]北京大学医药卫生分析中心,北京,[/font]100191[/align][b][font=黑体][[/font]摘要] [/b]双光子激光扫描显微镜(two-photon laser scan microscope, TPLSM[font=宋体])具有低光毒性、高时空分辨率、高信噪比等优点,结合了激光扫描共聚焦显微镜和双光子激发技术,广泛应用于脑科学、免疫学、肿瘤、胚胎发育等生物医学相关研究领域。本文结合作者所在的北京大学医药卫生分析中心共聚焦平台的工作经验,概述了[/font]TPLSM适用的样本、检测模式以及在生物医学领域的应用,以期为相关科研技术人员提供参考。[b][font=&][Abstract][/font] [/b]Two-photon laser scan microscopy (TPLSM) has the advantages of low phototoxicity, high spatial and temporal resolution, and high signal-to-noise ratio.TPLSM combines laser scanning confocal microscopy with two-photon excitationtechnology and it is widely used in brain science, immunology, tumor, embryodevelopment and other biomedical related research fields. Based on the author'swork experience in the confocal center of Peking University Medical and HealthAnalysis Center, this paper summarizes the applicable samples, detection modesand applications of TPLSM in the biomedical field, in order to provide referencefor related scientific researchers and technicians.[b][font=黑体][[/font]关键词] [/b]显微镜双光子,检测模式,应用[b]1 引言[/b]双光子激发技术的基本原理是在高光子密度情况下,荧光分子可同时吸收2个长波长光子,产生一个一半波长光子去激发荧光分子的相同效果。双光子激光扫描显微镜(two-photon laser scan microscope, TPLSM[font=宋体])在激光扫描共聚焦显微镜的基础上,以红外飞秒激光作为光源,长波长的近红外激光受散射影响小,易穿透标本,可深入组织内部非线性激发荧光,对细胞毒性小且具有高空间分辨率,适合生物样品的深层成像及活体样品的长时间观察成像[/font][1]。使用高能量锁模脉冲激光器,物镜焦点处的光子密度最高,在焦点平面上才有光漂白及光毒性,焦点外不损伤细胞。双光子效应只发生在焦点处,所以双光子显微镜无需共聚焦针孔,也能做到点激发点探测,提高了荧光检测效率[2]。[b][/b]双光子激光扫描显微镜显微镜可以通过XYZ,XYT,XYλ,XYZT,XYλT等多种模式实现多维成像,亦可进行更复杂实验的拍摄,比如二次谐波成像(Second Harmonic Generation Imaging,SHG[font=宋体])、双光子荧光寿命成像([/font]Two-photon Fluorescence Lifetime Imaging Microscopy, TP-FLIM[font=宋体])、荧光寿命[/font]-[font=宋体]荧光共振能量转移成像([/font]FluorescenceLifetime - Fluorescence Resonance Energy Transfer Imaging, FLIM-FRET[font=宋体])等实验以满足对样品的定性、定量、定位、共定位等多维度多功能的研究。[/font]TPLSM已成为生命科学各领域重要的研究工具,可在细胞及亚细胞水平对活体动物的神经细胞形态结构、离子浓度、细胞运动、分子相互作用等生理现象进行直接的长时间成像监测,还能进行光激活染及光损伤等光学操纵,广泛应用于脑科学、免疫学、肿瘤、胚胎发育等生物医学相关研究[3-5]。本文拟通过按TPLSM常见的检测模式分别阐述其在生物医学领域的应用,以其为相关科研技术人员提供参考。[b]2. TPLSM适用的样本[/b]TPLSM适用的样本非常广泛,从液体、固体等形式的材料或制剂、细菌、细胞、细胞团、类器官、组织切片、到各种模式动物(如线虫、果蝇、斑马鱼、小鼠、大鼠、兔、猴等)及其[font=宋体]脑、脊髓、肝脏、肺、皮肤等器官[/font],都可以通过搭载不同载物台进行测试。相对于传统激光扫描共聚焦显微镜200μm的成像深度极限,双光子显微镜成像深度可达800μm,如果是透明化样品可更厚。TPLSM尤其适合活体动物成像,且比小动物荧光成像有更高的分辨率和信噪比,一般TPLSM的XY轴分辨率为200 nm左右,Z轴分辨率为300 nm左右。[b]3. TPLSM的检测模式[/b]3.1 二维成像模式TPLSM可以实现点扫描、点探测,得到生物样品高反差、高分辨率、高灵敏度的二维图像,从而获得细胞/组织等光学切片的物理、生物化学特性及变化。也可以对所感兴趣的区域进行准确的定性、定量及定位分析。激光扫描显微镜的zoom功能,可以用来调节扫描区域的放大倍数。但受物镜分辨率的限制,一味的增大zoom值,不能得到相应的高清图像,需根据实际情况参考piexl size进行设定。TPLSM可以实现XY、XZ或XT的二维成像模式,XT线扫会在后文与XYT时间序列成像一起进行举例说明(图2b)。3.2 三维成像模式3.2.1 Z轴序列三维成像(XYZ)[align=left]TPLSM可沿Z轴方向通过电动载物台的连续扫描对样品进行无损伤的光学切片(XYZ),获得三维立体图像。同理,通过沿Y轴方向连续扫描,可获得连续的XZY图像。如图1所示TPLSM[font=宋体]可以顺利观察到可以观察到血管清晰形态结构:单个胚胎的胎盘微血管(图[/font]1a)、肝脏血窦微血管(图1b)和后肢微血管(图1c)[6]。[/align][align=center][img=,690,230]https://ng1.17img.cn/bbsfiles/images/2022/12/202212151626576232_4807_3237657_3.png!w690x230.jpg[/img][/align][align=center]图1(a)胚胎胎盘微(b)肝脏血窦和(c)后肢的微血管三维成像[/align]3.2.2 时间序列扫描模式(XYT)[align=left]按照一定的时间间隔重复采集,则可实现对该样品的实时监测(XYT)。此类实验可观察组织区域内特异荧光探针标记的单个细胞或细胞内不同部位接受刺激后的整个变化过程。[font=宋体]如图[/font]2[font=宋体]([/font]a[font=宋体]),可以根据微血管[/font]XYT[font=宋体]序列扫描的成像结果中某一血细胞在前后两张图的位置移动和这两帧图的扫描时间间隔计算血流速度。若血流速度很快,[/font]XYT扫描不足以捕捉实际流速,可以使用XT线扫计算。如图2(b),微血管XT扫描图像中绿色荧光背景里的黑色线条代表单个血细胞的流动轨迹,每条线条的横坐标代表血细胞移动的距离(distance / μm[font=宋体]),纵坐标代表此段时间([/font]time/ ms[font=宋体]),根据这两个数据可以计算出单位时间内血细胞的流动速度([/font]μm / ms)[6]。[/align][align=center][img=,690,262]https://ng1.17img.cn/bbsfiles/images/2022/12/202212151627102569_8367_3237657_3.png!w690x262.jpg[/img] [/align][align=center]图2 微血管(a)XYT扫描结果和(b)XT一维扫描结果图像计算血流说明示意图[/align]3.2.3 光谱扫描模式(XYλ/XYΛ)通常配置有可调节接受范围的检测器的TPLSM,可以实现从400nm-800nm的发射波谱扫描。通过配置具有连续可调波长的双光子激光器,还可以实现750nm-1300nm激发波谱扫描。这对于开发研制特殊染料探针的课题来说是很方便、全面的检测功能。3.3四维成像模式(XYZT/XYλT/XYΛT)基于上述三维成像模式,结合时间序列扫描,可以实现TPLSM的四维成像。3.4二次谐波成像(SHG)SHG是一个二阶非线性过程,且一般为非共振过程,适合富含胶原纤维的样本成像,如角膜、鼠尾肌腱、皮肤等。生物组织产生的二次谐波最主要的转换源自胶原,不同生物组织中的二次谐波信号强弱与组织中的胶原含量密切相关,含胶原丰富的组织包括结缔组织和肌肉组织等二次谐波信号也比较强,另外还有一些能产生强二次谐波的生物结构是微管,如细胞分裂中纺锤体。对于具有中心对称性的生物结构,如果局部中心对称性的破坏也会产生二次谐波:在两中心对称介质的界面,不同物态分子的相互作用使局部微观场特性在交界面(如细胞膜)发生突变,从而产生界面二次谐波[7]。除了动物组织外,一些含有特殊分子结构的植物组织也能产生二次谐波。二次谐波显微成像具有高空间分辨率、深成像深度、低损伤、以及对结构对称性的高度敏感性的特点,如果能与其他成像技术结合,将成为生物样品研究的有力工具[8]。3.5双光子荧光寿命成像(TP-FLIM)[9]FLIM技术是研究细胞内生命活动状态的一种非常可靠的方法。荧光寿命是荧光团在返回基态之前处于激发态的平均时间,是荧光团的固有性质,因此其不受探针浓度、激发光强度和光漂白效应等因素影响,且能区分荧光光谱非常接近的不同荧光团,故具有非常好的特异性和很高的灵敏度。此外,由于荧光分子的荧光寿命能十分灵敏地反映激发态分子与周围微环境的相互作用及能量转移,因此FLIM技术常被用来实现对微环境中许多生化参数的定量测量,如细胞中折射率、黏度、温度、pH值的分布和动力学变化等,这在生物医学研究中具有非常重要的意义。目前FLIM技术在细胞生物学中一些重要科学问题的研究、临床医学上一些重大疾病的诊断与治疗研究以及纳米材料的生物医学应用研究等方面均有广泛应用,并取得了许多利用传统的研究手段无法获取的数据。FLIM检测需要脉冲激光,TPLSM带有的高能量锁模脉冲激光器可以满足激发要求。3.6荧光寿命-荧光共振能量转移成像(FLIM-FRET)[10]传统的FRET过程分析通常是基于荧光强度成像来实现,分析的结果容易受光谱串扰的影响。而将FLIM技术应用于FRET过程分析,利用FLIM技术可定量测量这一优势,可非常灵敏地反映供体荧光分子与受体荧光分子之间的能量转移过程。当受体分子与供体之间的距离10nm时,供体的能量转移到受体,受体从基态发生能量跃迁,从而影响供体的荧光寿命。与没有受体分子的时候相比,发生FRET的供体分子的荧光寿命降低。因此,FRET-FLIM联合能够实时监测生物细胞中蛋白质的动态变化,如蛋白质折叠、分子间(蛋白-蛋白,蛋白-核酸)相互作用和细胞间信号分子传递、分子运输以及病理学研究等。[b]4 结论和展望[/b]综上,TPLSM应用灵活,具备多种检测模式,适用于多种样本,亦可实现多种实验目的,如荧光的定量、定性、定位、共定位,动态荧光的测定等。一些特殊的实验模式,将TPLSM在生物医学领域的应用进一步扩大。通过结合其他技术(多手段联合拓展,如膜片钳、原子力显微镜、光电联用等),TPLSM必将成为助力生物医学领域研究的有力工具。双光子荧光成像由于具有天生的三维层析能力以及深穿透能力,在活体生物组织成像上广受欢迎。双光子显微镜镜下空间增大后,可广泛应用于猴、大小鼠、兔等较大的模式动物的活体成像。且可结合电生理技术、光遗传技术,广泛应用于麻醉、清醒或运行行为等生理状态下的动物脑科学神经相关研究,在单细胞、单树突精度上对神经元群体活动进行监控。如结合膜片钳技术,对活体脑组组急性切片神经元进行双光子深层成像[11];结合光遗传技术,实现视觉皮层同一神经元和神经元群体的稳定操控和长期多次重复记录[12];对在健身球上移动的头部固定小鼠小脑进行成像,探讨觉醒状态和运动行为对胶质网络中钙离子的激发的影响[13];结合多种疾病模型,探讨大脑皮层神经元及胶质细胞活性的改变及作用等[14]。随着多种双光子显微镜系统的出现,双光子显微镜成像技术将以其实时、无损地探测、诊断及检测能力,在生物医药及临床医学应用中发挥更大作用。[b]参考文献[/b][1] [font=宋体]李娟[/font],[font=宋体]张岚岚[/font],[font=宋体]吴珏珩[/font].[font=宋体]双光子显微镜的应用优势与维护要素[/font][J].[font=宋体]中国医学装备[/font],2021,18(12):158-163.[2] HendelT,Mank M, Schnell B,et al.Fluorescence changes of genetic calcium indicatorsand OGB1correlated with neural ac tivity and calcium in vivo and in vitro[J].JNeurosci, 2008,28(29):7399-7411.[3] DolginE.What leva lamps and vinaigrette can teach us about cellbiology[J].Nature,2018,555(7696):300-302.[4] Noguchi J,Nagaoka A, Watanabe S,et al.in vivo two-photon uncaging of glutamate revealingthe structure-function relatio nships of dendritic spines in the neocortex ofadult mice[J]. J Physiol,2011,589(Pt 10):2447-2457.[5] BishopD,Nikiél, Brinkoetter M,et al.Nearinfrared branding efficiently correlateslight and electron microscopy[J]. Nat Methods,2011,8(7):568-570.[6] [font=宋体]刘皎[/font],[font=宋体]丛馨[/font],[font=宋体]何其华[/font].[font=宋体]活体小鼠微血管血流倒置双光子激光扫描显微镜检测方法的建立[/font][J].解剖学报,2022,53(02):261-265.[7] [font=宋体]屈军乐[/font],[font=宋体]陈丹妮[/font],[font=宋体]杨建军[/font],[font=宋体]许改霞[/font],[font=宋体]林子扬[/font],[font=宋体]刘立新[/font],[font=宋体]牛憨笨[/font].[font=宋体]二次谐波成像及其在生物医学中的应用[/font][J].[font=宋体]深圳大学学报[/font],2006,(01):1-9.[8] [font=宋体]孙娅楠[/font],[font=宋体]赵静[/font],[font=宋体]李超华[/font],[font=宋体]等[/font].[font=宋体]二次谐波结合双光子荧光成像方法观察人源胶原蛋白透皮吸收情况[/font][J].激光生物学报,2017,26(1):24-29.[9] [font=宋体]刘雄波,林丹樱,吴茜茜,严伟,罗腾,杨志刚,屈军乐,荧光寿命显微成像技术及应用的最新研究进展。物理学报,[/font]2018,67(17):178701-1-178701-14[10] [font=宋体]罗淋淋,牛敬敬,莫蓓莘,林丹樱,刘琳,荧光共振能量转移[/font]-荧光寿命显微成像(FRET-FLIM[font=宋体])技术在生命科学研究中的应用进展。光谱学与光谱分析,[/font]2021,41(4):1023-1031[11] Isom-BatzG,Zimmem PE.Collagen injection for female urinary incontinence after urethralor periurethral surgery[J].J Unol,2009,181(2):701-704.[12] JuN,Jiang R,Mrcknik SL,et al.Long-term all-optical interrogation of corticalneurons in awake-behaving nonhuman prim ates[J].LOSBiology,2018,16(8):e2005839.[13]Nimmerjahn A,Mukamel EA, Schnitzer MJ.Motor behavior activates Bergmann glialnetworks[J].Neuron,2009,62(3):400-412.[23] Huang L, Lafaille JJ, YangG.LearningDependent dendritic spine plasticity is impaired in spontaneousautoimmune encep halomyelitis[J].Dev Neurobiol,2021,81(5):736-745.[14] Huang L,Lafaille JJ,Yang G.LearningDependent dendritic spine plasticity is impaired inspontaneous autoimmune encep halomyelitis[J].Dev Neurobiol, 2021,81(5):736-745.

  • 爱因斯坦,你错了吗——中微子比光子速度还快??

    爱因斯坦,你错了吗——中微子比光子速度还快??

    爱因斯坦相对论遇挑战 现代物理学或被重写http://ng1.17img.cn/bbsfiles/images/2011/09/201109271500_319654_1609327_3.jpg意大利格兰萨索国家实验室“奥佩拉”项目研究人员使用一套装置,接收730公里外欧洲核子研究中心发射的中微子束,发现中微子比光子提前60纳秒(1纳秒等于十亿分之一秒)到达,即每秒钟多“跑”6公里。“我们感到震惊。”瑞士伯尔尼大学物理学家、“奥佩拉”项目发言人安东尼奥·伊拉蒂塔托说。  英国《自然》杂志网站22日报道这一发现。研究人员定于23日向欧洲核子研究中心提交报告。你认为,中微子比光子速度快,是怎么证明出来的呢?“中微子是一种基本粒子,不带电,质量极小,几乎不与其他物质作用,在自然界广泛存在”。如何来证明观测到的中微子和光子是同一个时间点发出的呢?

  • 【求助】单/双光子显微镜原理示意图(较形象)

    [size=2]求助各位同行: 在报告、讲座中经常看到各位专家、厂家用比较漂亮的双光子显微系统的原理示意图,直观上可以形象地区分激光扫描共聚焦显微镜与双光子显微镜的异同,请教大家是否有这方面的图片? 多谢各位!!![/size]

  • 动态光散射中光子相关谱测量系统的空间相干性问题

    动态光散射中光子相关谱测量系统的空间相干性问题

    动态光散射中光子相关谱测量系统的空间相干性问题王少清娄本浊陶冶薇任中京(济南大学理学院济南250022)提要:利用光干涉的简化模型讨论了动态光散射中光子相关谱测量系统的空间相干性要求的物理本质。利用相干面积概念对光子相关谱测量系统空间相干性判据的几种常见表述进行了规范。提出了一种具有普遍意义的简明判据。关键词:光子相关谱;动态光散射;空间相干性;相干面积;信噪比On the Spatial Coherence Problem of a photon Correlation Spectrum Measurement System in Dynamic Light ScatteringWang Shaoqing Lou Benzhuo Tao Yewei Ren Zhongjing(Science School of Jinan University Jinan 250022)Abstract:Using a simplified model of light interference,we discussed the physical essence of the spatial coherence demand on a photon correlation spectrum measurement system in dynamic light scattering.By using the concept of “coherence area”,we standard-ized three familiar statement about the spatial coherence criterion on a photon correlation spectrum measurement system.In the end,we brought forward a general and compendious criterion.Key words:photon correlation;dynamic light scattering;spatial coherence;coherence area;signal-noise ratio动态光散射是研究大分子和亚微米颗粒在液体中动态行为的最有效方法。通过测量悬浮液中散射粒子产生的散射光中的微小频移和角度依赖性,可以获得表征高分子结构的丰富信息,也可以获得纳米微粒的平均流体力学半径和粒度分布。随着激光、微电子和计算机技术的发展,动态光散射技术得到了广泛的应用。由于散射光的频移很小(1-106Hz) ,用传统的光谱分析法难以分辨,所以在动态光散射实验中采用光子相关谱法来获得散射光的频移。图1给出光子相关谱测量的基本实验装置。由激光器1发出的激光经聚焦后照射在样品池2中的散射粒子上,粒子的散射光经光学系统3后进入PMT(光电倍增管) 4 ,PMT 的光电脉冲经过甄别/ 放大系统5 进入相关器6 ,由相关器对光电脉冲进行相关处理后将相关数据输入计算机7 进行数据处理,得所需的信息。http://ng1.17img.cn/bbsfiles/images/2013/05/201305281050_441881_388_3.jpg在光子相关谱测量中,PMT 输出信号1的信噪比(输出信号中涨落部分与噪声部分之比) 大小是测量成功与否的关键因素。而PMT 输出信号的信噪比大小又主要由测量系统的空间相干性来决定。对于光子相关谱测量系统空间相干性优劣的判别标准,不同的文献有各种不同的表述。其中比较有代表性的几种表述分别为:(1)PMT的接受面积为一个相干面积;

  • 【讨论】关于光子带-2012

    最近网上疯狂的转载宣传的2012年,地球进入光子带的说法,是不是合理的?请物理界的大侠们给出个正解

  • 面对机场车站的“弱光子安检仪”你过还是不过?

    成都双流机场的“弱光子安检仪”何许物也?作为社会热议的话题近日终于有了说法。 环保部于10月10日向四川省环保厅下发加急文件《关于对X射线人体安检设备辐射安全管理相关问题的复函》(下称复函)。环保部核与辐射安全监管三司在复函四川省环保厅时指出,X射线人体安检设备应严格限定其使用范围和对象,不得在公共场所对公众大规模使用。同时,环保部要求四川省环保厅严格执法,对未经许可违法生产、销售、使用X射线人体安检设备的单位,责令立即停止违法行为,确保公众安全。http://img1.gtimg.com/news/pics/hv1/223/65/2140/139170298.jpg“弱光子人体安检仪”。图片来源于知乎用户,下同。四川省环保厅一位工作人员对媒体证实,该省环保厅一直在等待环保部的相关复函。四川省环保厅将于今明两日组织专家召开专题研讨会,预计下周正式对外发布对整改公告。此外,该名工作人员还表示,此前接到成都火车站使用该类安检仪的举报、以及国庆前夕舆论热议双流机场X射线人体安检仪时,都去现场看过的,但因现场无法确定该设备是否属于豁免类射线装置,故未责令立即停止使用该设备,而是向环保部上报了《关于X射线人体安检设备辐射安全管理相关问题的函》。“十一”前夕,另一位四川省环保厅人士对媒体实,已就“弱光子人体安检仪”问题召开了专家座谈会,讨论内容包括该类设备实践的正当性、对于人体的具体伤害以及专业技术咨询。此外,四川省环保厅当时也已致函相关的市一级环保行政主管部门,要求对该类设备依法依规进行管理,同时加强监督检查。该工作人员表示,未经许可使用该类设备属违法行为。上述环保部复函中提到,根据国家标准《电离辐射防护与辐射源安全基本标准》(GB 18871-2002)的相关要求和国际辐射防护实践,不得采用电离辐射设备进行大规模人体相关普查性质的检测,因此使用单位应确定使用X射线人体安检设备的正当性并严格限定其使用范围和对象,不得在公共场所对公众大规模使用。http://img1.gtimg.com/news/pics/hv1/222/65/2140/139170297.jpg 辐射对比图该文件称,根据中国《线装置分类办法》(原国家环境保护总局公告2006年第26号),X射线人体安检设备属“其它高于豁免水平的X射线机”范畴,为Ⅲ类射线装置。 根据《放射性同位素与射线装置安全和防护条例》(国务院令第449号)和《放射性同位素与射线装置安全许可管理办法》(环境保护部令 第3号)的相关要求,生产、销售、使用X射线人体安检设备的辐射工作单位应填报环境影响登记表和取得省级环保部门(或其委托的市级环保部门)颁发的辐射安全许可证,纳入辐射安全监管。澎湃新闻此前曾报道,近期将成都双流机场推至舆论风口浪尖的所谓“弱光子人体安检仪”,并不是第一次出现,实际应用场所也远不止机场。根据该设备生产商安徽启路达光电科技有限公司的宣传资料,其产品早已在多地火车站(包括成都站)、法院、看守所甚至矿区采用。http://img1.gtimg.com/news/pics/hv1/220/65/2140/139170295.jpg 安检通道电离辐射警示标志极其不起眼从网络流传的双流机场安检处照片中发现,弱光子透视安检仪上的电离辐射警示标志极其不起眼,除了机箱背后底部的隐蔽位置,有一个不足巴掌大的“当心电离辐射”警示标志外,其他地方都没有警示标示。此外官方材料中提到对孕妇等特殊人群划定更高标准,但这是基于电离辐射的考虑。在现场宣传中,却变成了“为防止意外摔倒,请老人、小孩、孕妇、残疾人走人工安检通道”。 针对上述情况,成都双流机场于10月1日凌晨发布消息称,9月29日已将“电离辐射”警示标志由安检仪机箱位置移至安检仪入口端醒目位置。但对于媒体10月12日关于“是否仍在使用X射线人体安检仪”的提问,双流机场安检处方面表示不予回复。 面对火车站、机场等公共场所安检通道安装的“弱光子安检仪”,你过还是不过?

  • 中国科大观察到光子“非波非粒,亦波亦粒”的量子特性

    近日,中国科学技术大学郭光灿院士领导的中科院量子信息重点实验室李传锋研究组首次实现了量子惠勒延迟选择实验,制备出了粒子和波的叠加状态,极大地丰富了人们对玻尔互补原理的理解。研究成果作为封面文章,发表在9月的《自然—光子学》上。英国著名量子物理学家Adesso教授和Girolami教授在同期杂志的“新闻与观察”栏目以《波-粒叠加》为题,撰文评述了这一研究成果。《自然—物理学》杂志也以《选择的问题》为题,在“研究亮点”栏目报道了该成果。 光是什么?这是个古老的科学问题。三个世纪以来粒子和波的概念就一直是对立的,比如牛顿最初的粒子说和胡克及惠更斯的波动说。现在人们对光的理解可以归结为玻尔的互补原理,即光具有波粒二象性,波动性和粒子性这两种属性即对立又互补,一个实验中具体展示哪种属性取决于实验装置。比如在由两块分束器构成的马赫-曾德干涉仪中,单个光子被第一个分束器分到两个路径上,在第二个分束器所在位置重合。如果我们选择加入第二个分束器,则构成干涉仪,有干涉条纹,观测到波动性,反之如果选择不加第二个分束器,则不能构成干涉仪,没有干涉条纹,观测到的是粒子性。马赫-曾德干涉实验是可以用量子力学解释的。 然而,存在一种隐变量理论认为,光子是有自由意志的,在进入干涉仪之前光子就“察觉”到有没有第二个分束器,然后光子根据它“察觉”到的信息决定自己经过第一个分束器的方式,从而展现粒子性或波动性。为了检验这种隐变量理论和量子力学孰是孰非,玻尔的学生惠勒于1978年提出了著名的延迟选择实验,即实验者延迟到光子已经完全经过第一个分束器之后再选择加不加第二个分束器。 在经典的惠勒延迟选择实验中,探测光的波动性和粒子性的实验装置,即加与不加第二个分束器,是相互排斥的,因此光的波动性和粒子性不能够同时展现出来。李传锋研究组设计出一种量子实验装置,巧妙地利用偏振比特的辅助来控制测量装置,使得测量装置处于探测波动性与探测粒子性的两种对立状态的量子叠加态上。他们利用自组织量子点产生的确定性单光子源作为输入,实现了量子的惠勒延迟选择实验,排除了光子有自由意志的假设,并首次观测到了光的波动态与粒子态的量子叠加状态。实验结果显示,处于波粒叠加态上的光子,既不象普通的粒子态那样没有干涉条纹,也不象普通的波动态那样表现出标准的正弦形干涉条纹,而是展现出锯齿形条纹这样一种“非波非粒,亦波亦粒”的表现形式。 《波-粒叠加》一文高度评价这项工作:“量子惠勒延迟选择实验的实现挑战互补原理设定的传统界限,在一个实验装置中展示光子可以在波动和粒子两种行为之间相干地振荡”。《选择的问题》一文则评价该成果“重新定义了波粒二象性的概念”。 量子实验装置的引入,使得人们可以从一个全新的视角来观察世界,就好像给人们安上了一双“量子的眼睛”,能够看到经典探测装置观察不到的物理现象。此项研究工作拓展和加深了人们对玻尔互补原理的理解,揭示了互补原理和叠加原理间的深层次关系,也使得人们对“光是什么”这个萦绕千年的问题有了更进一步的理解。 该项研究受到科技部和国家自然科学基金委的资助。http://www.cas.cn/ky/kyjz/201209/W020120904508113858909.jpg《自然—光子学》杂志封面

  • 【新闻】法国科学家发明光子捕捉装置爱因斯坦梦想成真

    1927年,爱因斯坦曾设想出一个能捕捉光的盒子,在假想的实验中仅释放一个光粒子或光子,以此计算出质量和能量之间的关系。80年后的今天,法国物理学家把这一梦想变成现实,他们发明了可以捕捉光子并监控它从产生到消失整个过程的光子盒。  据法新社14日报道,这一装置仅2.7厘米见方,由一个空腔组成,盒面使用的材料是极反光的超导镜子,它能够在七分之一秒的时段里捕捉并监控一个光子。别小看这段时间,在这段时间内,一个自由的光子可以完成从地球到月球大约十分之一的距离。  光子可能是物理学中存在的最基本粒子。一个电灯泡通电后,每秒释放的光子数量高达10的15次方。但是,当你一看到光子,它就消失了,因为它在与你的视网膜接触之际就消耗了使它存在的能量。  计算光子的常规方法是使用光检波器,它通过撞击光子吸收能量而运转。但是,撞击会损坏光子,因此科学家需要一个“透明的”计数器。  法国研究小组说,他们通过让一束铷原子穿过捕获光子的盒子而找到了答案。光子的电场会轻微地改变原子的能量水平,但这种情况不足以使原子从电场中吸收能量。当一个原子穿过光子的电场时,会使绕原子核运行的电子略微迟缓,而这一推迟时间可以使用现代原子钟技术测量,即把电子的轨道视为“钟摆”以测量出准确时间。  这项研究成果本周将发表在英国《自然》周刊上。

  • 双光子显微镜——THG成像

    [b]摘要[/b]在神经科学和神经外科中对活体大脑组织中神经元的成像能力是一项基本要求。尤其是需求一种具有测微计尺分辨率的大脑形态学的非侵入探针的开发,因为它可以在临床诊断上提供一种非侵入式光学活体组织检查的手段。在这一领域,双光子激光扫描显微镜(2PLSM)是一个强大工具,并已成为活体生物样品最小侵入性损害的高分辨率成像的标准方法。但是,(2PLSM)基于光学方法提供足够分辨率的同时,对荧光染料的需求妨碍了图像对比度的提高。本文中,我们提供了一种活体大脑组织以细胞分辨率的高对比度成像方法,无需荧光探针,使用光学三次谐波发生进行成像。我们利用细胞水平的特殊几何学和大脑组织的液体内容物来获取THG的部分相匹配,提供了一种荧光对比度机制的替代方法。我们发现THG大脑图像允许快速、无侵入性标记的神经元、白质结构、血管同时成像。而且,我们利用THG成像来引导微吸管指向活体组织中指定的神经元。这个工作是一个无标记活体大脑成像的主要步骤,并开启了活体大脑中激光引导的微注射技术发展的可能性。[b]材料与方法[/b]THG成像对于THG成像实验,我们使用了一台商业化双光子激光扫描显微镜([color=#ff0000]TrimScope, Lavision BioTec[/color])。光源是一个光学参量震荡器(Mira-OPO,APE),810nm泵浦光来自一个Ti:Sa锁模激光器(Coherent Chameleon Ultra II)。使用一个20X,0.95N.A水浸物镜(Olympus XLUMPFL-IR)将光聚焦到样品上。使用epidetection几何学描述THG实验。使用分光镜(Chroma T800lpxrxt)将背景散射THG光子从入射激光束中分离出来,用一个THG波段的带通滤波器(Chroma HQ390-70X)过滤。检测器是GaAsP高灵敏度光电倍增管(Hamamatsu H7422-40),400nm处量子效率为25%。最高分辨率成像(1024×1024像素)的典型获取时间为1.6s,我们用于目标定向实验的512 X 512像素成像时间为0.6s。 为与前向端口比较,使用了一个定制的投射端口。这个端口使用了一个1.4N.A油浸物镜,一个长波分光镜(UQG optics)和一个400nm的相干窄带滤波器。对于THG与SR-101联合实验我们用1200nm的OPO来同时产生两种信号。使用一个594nm带通和561nm隔断的分光镜将SR-101荧光从THG信号中分离。SR-101信号使用一个PMT检测(Hamamatsu H6780-20)。Nile Red和THG成像也是由1200nm的OPO同步激发。在这个案例中THG信号由投射端口测量,Nile Red荧光通过一个593∕40 nm的带宽滤波器检测。对于THG和GFP联合成像,用来泵浦OPO的Ti:Sa激光被调谐到970nm并耦合到显微镜中。组织块的GFP和THG信号使用同一个检测器连续测量。但使用一个不同的(561∕40 nm)带通滤波器检测GFP。使用显微镜软件(Imspector Pro)获取图像并以16bit 的tiff格式存储,图像分析使用Image J(MacBioPhotonics)进行。[b]主要结果[/b] [img=,575,768]http://qd-china.com/uploads/bio-product/21.jpg[/img]Fig. 1.无标记活体大脑的三次谐波显微成像(A)脑组织THG成像的epidetection几何学图示。插图:THG原理。注意基质中没有光学激发发生。(B) 树突处的聚焦激光束。通过将激光聚焦体积设定到树突直径的几倍大小,可以获得部分相匹配,显著的THG信号将会产生。(C)细胞体内的聚焦激光束。由于不好的结构相匹配状态,没有THG信号产生。(D) 小鼠大脑组织的活神经元成像。体细胞以暗影存在。 [img=,466,500]http://qd-china.com/uploads/bio-product/22.jpg[/img]Fig. 2.活体大脑组织的THG成像(A)小鼠皮质的THG图像 (B) 与A同位置的Nile Red染色的双光子荧光图像 (C) 大鼠凹陷的脑回THG图像(水平切面) (D)小鼠脑胼胝体THG图像,轴突纤维束被清晰得分辨。Movie S1是这个结构的一个3D投影 (E)小鼠大脑纹状体的THG图像(冠状面)。白质和神经元细胞清晰可见。明亮的粒状结构是垂直穿行图像平面的轴突纤维。Movie S2是这个区域的3D投影。(F)麻醉活小鼠的脑皮质上层的血管THG图像(z栈平均投影密度是50um) [img=,510,767]http://qd-china.com/uploads/bio-product/23.jpg[/img]Fig. 3. THG与双光子成像的叠加 (A)小鼠额前叶脑皮质的THG图像 (B)SR-101标记的星细胞双光子图像 (C) A、B的叠加提供了神经网络中星细胞的分布信息 (D) 小鼠额前叶皮质的THG图像 (E) GFP标记的生长抑素神经元的双光子荧光图像 (F)D、E的叠加显示了生长抑素神经元在脑前叶皮质结构中的分布 [img=,461,768]http://qd-china.com/uploads/bio-product/24.jpg[/img]Fig. 4.THG成像深度与自动化细胞检测 (A-C) 小鼠额前叶皮质的THG图像,成像深度分别为100, 200, and 300 μm 。每幅图像都是3个以2微米深度间隔独立图像的最大密度投影(D) 110 μm深度处神经元细胞的自动检测THG图像。细胞检测的运算法则定义为以红色显示的神经元 (E)红色标记:来自A-C的图像栈的细胞可见性对比。黑色标记:作为一个深度功能的平均检测到的THG密度。 [img=,531,768]http://qd-china.com/uploads/bio-product/25.jpg[/img]Fig. 5. 无标记目标定向和细胞活性(A)小鼠新大脑皮层的THG图像 (B) 在对一个神经元进行THG引导膜片钳之后同一位置的THG图像 (C)一个200um深处钳住神经元的大视野THG图像(5幅深度间隔2um的图像平均) (D)记录以100pA电流脉冲刺激B中被钳住的神经元的动力势训练 (E) 测量在THG扫描期间静止膜电位的改变。即使以最高的能量,也只观察到4%的电压变化,保持了完全的可逆性。0.8秒的周期相应于图像扫描时间。(F)最大观察到的静止膜电位Vs扫描时的激光能量。没有非线性效应出现。

  • 特殊硅结构可基于单光子产生多个电子空穴对

    能使太阳能电池最大转化效率提升至42%2013年01月30日 来源: 中国科技网 作者: 张巍巍 中国科技网讯 据物理学家组织网1月29日(北京时间)报道,美国加州大学戴维斯分校的科研人员通过计算机模拟证实,利用特殊的“硅BC8”结构,能够基于单个光子产生多个电子空穴对,大幅提升太阳能电池的转换效率。相关研究报告发布在最新一期的《物理评论快报》上。 太阳能电池以光电效应作为基础,当一个光子或是光粒子击中单个硅晶体时,便会产生一个带负电荷的电子以及一个带正电荷的空穴,而收集这些电子空穴对就能够生成电流。作为论文的合著者,该校化学系的朱莉亚·加利表示,传统的太阳能电池能基于每个光子产生一个电子空穴对,因此其理论最大转换效率约为33%。而新途径能够基于单个光子产生多个电子空穴对,从而切实提升太阳能电池的效率。 科研人员借助劳伦斯伯克利国家实验室的超级计算机模拟了硅BC8的行为,这种硅结构形成于高压环境,但其在正常压力下也很稳定。模拟结果显示,硅BC8纳米粒子确实基于单个光子生成了多个电子空穴对,即使当它暴露于可见光时亦是如此。 此次研究的主要作者、博士后研究员斯蒂芬·魏博曼谈到,这一途径可使太阳能电池的最大转化效率提升至42%,超越任何现有的太阳能电池,意义十分重大。“事实上,如果利用抛物面反射镜为新型太阳能电池聚集阳光,我们有理由相信,其转换效率或可高达70%。”他补充说道。 有些遗憾的是,通过与传统的硅纳米粒子相结合,目前制成的太阳能电池模型仅能在紫外线的照射下工作,还不能在可见光照射下正常工作。此前哈佛大学和麻省理工学院的科学家曾发表论文指出,当普通硅太阳能电池被激光照射时,激光所发出的能量或可营造出局部的高压以形成硅BC8纳米晶体。因此,施加激光或是化学压力都可能使现有的太阳能电池转化为高效的新型太阳能电池。(记者 张巍巍) 总编辑圈点 太阳能电池或许是最清洁和方便的能源。但目前的电池板有一点不能令人完全满意:光电转化效率。近几年,国际上开发出不少新材料,都能提高太阳能电池的效率,高的能达到20%。这一次,美国科学家发明的新微观结构,更是让半导体的效率上限翻番。当然这是计算机模拟的结果,大规模应用为时尚早。从经验来看,低能耗生产新式光电池,难度不可小觑。 《科技日报》(2013-01-30 一版)

  • 为什么ICPMS的炬管产生带电离子而ICPOES中产生特定波长光子?

    刚刚看到ICPMS的培训材料,它里面是这么比较ICPMS和ICPOES的炬管功能的区别的:“在ICP-OES中,炬管通常是垂直放置的,等离子体激发基态原子的电子至较高能级,当较高能级的电子“落回”基态时,就会发射出某一待测元素的特定波长的光子。在ICP-MS中,等离子体炬管都是水平放置的,用于产生带正电荷的离子,而不是光子。实际上,ICP-MS分析中要尽可能阻止光子到达检测器,因为光子会增加信号的噪音。正是大量离子的生成和检测使ICP-MS具备了独特的ppt量级的检测能力,检出限大约优于ICP-OES技术3~4个数量级。”但我还是没搞明白,为什么炬管从竖着放变成横着放就能从产生光子变成产生带电离子了呢?希望有大虾答疑解惑~~~

  • 滨松光子学商贸(中国)有限公司刚刚发布了元器件销售工程师(计测领域)职位,坐标北京,速来围观!

    [b]职位名称:[/b]元器件销售工程师(计测领域)[b]职位描述/要求:[/b]职位描述:1、负责公司光电探测器产品在测绘仪器、核计测应用仪器、光测定仪行业中的销售;2、熟悉产品系列,掌握产品原理和应用技术,为客户提供售前、售后技术支持;3、及时响应客户的需求和问题,维护并发展客户关系;4、开拓新市场、新应用;任职资格:1、本科以上学历,理工科背景,核物理、核工程、光电、电子、半导体、精密仪器专业优先考虑;2、1年以上电子器件类销售经验优先考虑,优秀应届生亦可;3、有较强的市场开拓和沟通能力,有开拓性的思路,有信息获取、判断和规划的能力;4、善于观察和沟通,善于建立广泛有效的关系网;5、英语流利;6、有责任心,工作积极主动,有良好的团队合作和客户服务意识。7、有相关工作经验优先考虑,应届生可以培养。[b]公司介绍:[/b] 滨松光子学商贸(中国)有限公司(简称滨松中国)是日本滨松光子学株式会社(简称滨松集团)在中国的销售、技术支持、售后服务等市场活动中心,全面负责滨松集团在中国所有产品的销售业务。 成立于1953年的日本滨松光子学株式会社(以下简称滨松集团),是世界上科技水平最高、市场占有率最大的光科学、光产业公司。使用滨松集团11200支20英寸光电倍增管的东京大学小柴昌俊教授的中微子实验获得20...[url=https://www.instrument.com.cn/job/user/job/position/47911]查看全部[/url]

  • 光子晶体 reflectance 超过100%,如何解释?

    氧化钛光子晶体测紫外可见反射谱,其中有一个样品reflectance超过100%,在150%附近了,重复了很多次了,不知道如何解释。用硫酸钡做基线,仪器是 Cary 5000 Spectrophotometer 带的 The Praying Mantis accessory上做的。由于是光子晶体,因此样品是块体材料( 2 mm),这个有影响?

  • 【分享】新型纳米装置将光子变为机械能

    【分享】新型纳米装置将光子变为机械能

    新型纳米装置将光子变为机械能[img]http://ng1.17img.cn/bbsfiles/images/2009/05/200905231039_151503_1644912_3.jpg[/img]一个名为拉链空穴的小装置能够将激光变为机械能。(图片提供:Matt Eichenfield,Jasper Chan/《自然》)研究人员日前研制出一种纳米装置,能够在遭遇激光时产生振动。这种设备非常灵敏,甚至能够感知单个光子的能量。研究人员相信,它将加速光学通讯系统的发展,同时帮助科学家更为精密地探知物质的一些基本属性。 据美国《科学》杂志在线新闻报道,偏振光束似乎没有实现机械功的能力(这是因为光子作为光波的载体是没有质量的),但是它们在原子水平上却能够达到一个惊人的数量。例如,科学家目前已经能够利用激光捕捉、控制及操作单个的原子。现在的问题是相同的原理是否能够作用于纳米量级——其成分要比原子水平大得多,但在大小上仍然仅相当于一米的十亿分之一。 这也正是美国帕萨迪纳市加利福尼亚州理工学院(Caltech)的一个研究小组试图要解决的问题。首先,研究人员制造了一对外部覆盖着硅微芯片材料的厚度仅为几百纳米的支架。随后,他们利用化学手段在每个支架的表面腐蚀了一连串的小洞。研究小组将这一装置称为“拉链空穴”,这是因为它与一个拉链看起来很像。研究人员在5月14日出版的《自然》杂志上报告说,这些小洞能够引导和捕捉激光束的能量,同时使装置产生振动。而振动的频率取决于激光轰击支架的强度,参与该项研究的Caltech的物理学家Oskar Painter这样表示。 这一装置的表现就像是一部音频扬声器,后者隔膜的振动取决于放大器传送的电子信号的强度。相反,像扩音器一样,拉链空穴能够通过自身的振动改变光的强度。Painter指出,总体而言,这些功能使得拉链空穴能够扮演一部完全由光控制的微型无线电发射机和接收机的角色,但它同时要比类似大小的电子装置拥有更大的操作范围。 德国加兴市马普学会量子光学研究所的物理学家Tobias Kippenberg表示,科学家可以利用这种纳米量级的装置探究物质在量子范围的属性,而这是普通电子装置无法实现的。Painter解释说,由于这种装置的振动发生频率在每秒钟1000万次到1.5亿次之间,因此能够极大地改善原子力显微镜的分辨能力。用这种装置来研究分子和原子,每秒钟可以完成数千次操作。Kippenberg表示:“这种装置在基础研究和新应用上都具有光明的前景。”(

  • 最新纳米光子设备有望将网速提高100倍

    澳大利亚的研究人员日前发现,使用一种新型纳米光子设备能够大幅提高数据处理速度,有望将网速提高100倍。光纤宽带是目前最流行的上网方式,其利用光信号进行信息传输。科学家们近年来发现,螺旋向前的光束中的光子带有轨道角动量,其携带的信息量在理论上不受限制,在量子通信和光通讯等领域得到广泛关注。但光纤两端的编码、处理方式会影响数据传输速度。[url=http://www.861718.com/jishu/show-2484.html]阅读全文请前往仪商网[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制