当前位置: 仪器信息网 > 行业主题 > >

自由落体式辐射剖面测量系统

仪器信息网自由落体式辐射剖面测量系统专题为您提供2024年最新自由落体式辐射剖面测量系统价格报价、厂家品牌的相关信息, 包括自由落体式辐射剖面测量系统参数、型号等,不管是国产,还是进口品牌的自由落体式辐射剖面测量系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合自由落体式辐射剖面测量系统相关的耗材配件、试剂标物,还有自由落体式辐射剖面测量系统相关的最新资讯、资料,以及自由落体式辐射剖面测量系统相关的解决方案。

自由落体式辐射剖面测量系统相关的仪器

  • TriOS RPMS是一款性价比高、轻便、低功耗、下降速度可调的自由落体式剖面高光谱辐射测量系统。该系统能有效的避开船体阴影的影响,获取高精度的水下环境光场(向下辐照度和向上辐亮度),广泛地适用于近岸浑浊水体及清洁大洋水体的漫射衰减系数和遥感反射率的测量。此外,该系统可按用户需求进行定制集成向上辐照度、叶绿素和CDOM荧光传感器等。 软件功能能实时查看设备状态包括实时深度、姿态及辐射值。能及时显示向上辐亮度和向下辐照度随深度变化情况,界面友好,能实时处理所测数据获取漫射衰减系数、光合有效辐射、遥感反射率和归一化离水辐亮度等。性能对比与高性能的美国Biospherical公司生产的多波段C-OPS进行了现场对比测量,性能优异。特点及应用特点轻便,功耗低自由落体式下降,速度可调0.1~1.0 m/s可有效避开船体阴影影响高光谱、高灵敏度辐照度和辐亮度测量精度高,积分时间自适应,也可手动设置模块化系统,用户可根据需求选购最新的纳米涂层技术,防污染耐压深度最大可达300 m应用离水辐亮度、漫射衰减系数和遥感反射率测量海色卫星数据印证光化学、生物光学、海洋生态学研究水下环境光场研究遥感反演模型的建立藻类水华研究技术参数RAMSES传感器参数列表ACC余弦辐照度ARC辐亮度ASC球形辐照度UVUV/VISVISVISVIS波长(nm)280~500280~720320~950320~950320~950检测器256 通道硅光电检测器光谱采样[nm/pixel]2.22.23.33.33.3光谱精度0.20.20.30.30.3实际通道100200190190190ACC余弦辐照度ARC辐亮度ASC球形辐照度UVVISVISVIS波长(nm)280~500320~950320~950320~950典型饱和度 (IT: 4 ms)单位:Wm-2 nm-120 (300 nm)*17 (360 nm)*18 (500 nm)*10 (400 nm)*8 (500 nm)*14 (700 nm)*1Wm-2 nm-1 sr-1 (500 nm)20 (400 nm)*12 (500 nm)*15 (700 nm)*典型NEI (IT: 8 s)单位:μWm-2 nm-10.85 (300 nm)**0.75 (360 nm)**0.80 (500 nm)**0.4 (400 nm)**0.4 (500 nm)**0.6 (700 nm)**0.25 μWm-2 nm-1 sr-10.8(400 nm)**0.6(500 nm)**0.8(700 nm)**收集器类型余弦检测器FOV:空气中7°球形检测2Pi精度优于6~10%(取决于波长范围)优于6%优于5%积分时间4 ms~8 s传感器技术规格测量原理辐照度或辐亮度T100响应时间≤ 10 s (脉冲模式)测量角度40°±10°数据存储-测量间隔≤ 8 s(脉冲模式)外壳材质不锈钢(1.4571/1.4404)或钛合金(3.7035)大小(L x Φ)ACC:260 mm x 48 mmASC:245 mm x 48 mmARC:300 mm x 48 mm重量不锈钢:~ 0.9 kg 钛:~ 0.7 kg数字接口RS-232 (TriOS)系统兼容性RS-232(TriOS协议)电源8~12 VDC (± 3 %)功耗≤ 0.85 W最大压力SubConn:30 bar防水等级IP68采样温度+2~+40 °C环境温度+2~+40 °C保存温度-20~+80 °C流入速度0.1~10 m/s校准/维护间隔24个月选配传感器倾角传感器:±45°压力传感器:0~5 Bar、0~10 Bar、0~50 Bar可选 RAMSES-ACC-VIS RAMSES-ACC-UV RAMSES-ASC-VIS RAMSES-ARC文献资料一、水质研究:叶绿素、蓝藻、TSM、CDOM反演监测1.基于光谱匹配的内陆水体反演算法——《光谱学与光谱分析》20102.水体光谱测量与分析Ⅰ:水面以上测量法——《遥感学报》20043.水下光谱辐射测量技术——《海洋技术》20034.A Novel Statistical Approach for Ocean Colour Estimation of Inherent Optical Properties and Cyanobacteria Abundance in Optically Complex Waters——《Remote Sensing》20175.Atmospheric Correction Performance of Hyperspectral Airborne Imagery over a Small Eutrophic Lake under Changing Cloud Cover——《Remote Sensing》2017二、光学模型研究1.秋季太湖水下光场结构及其对水生态系统的影响——《湖泊科学》20092.A model to predict spatial spectral and vertical changes in the average cosine of the underwater light fields: Implications for Remote sensing of shelf-seawaters——《Continental Shelf Research》20163.A practical model for sunlight disinfection of a subtropical maturation pond——《Water Research》20174.A spectral model for correcting sun glint and sky glint——《Conference paper: Ocean Optics》20165.Absorption correction and phase function shape effects on the closure of apparent optical properties——《Applied Optics》2016三、卫星数据验证1.Assessment of Atmospheric Correction Methods for Sentinel-2 MSI Images Applied to Amazon Floodplain Lakes——《Remote Sensing》20172.Impact of spectral resolution of in situ ocean color radiometric data in satellite matchups analyses——《Optics Express》20173.Response to Temperature of a Class of In Situ Hyperspectral Radiometers——《Journal of Atmospheric and Oceanic technology》20174.The impact of the microphysical properties of aerosol on the atmospheric correction of hyperspectral data in coastal waters——《Atmos. Meas. Tech.》20155.The Potential of Autonomous Ship-Borne Hyperspectral Radiometers for the Validation of Ocean Color Radiometry Data——《Remote Sensing》2016四、光合作用研究1.Basin-scale spatio-temporal variability and control of phytoplankton photosynthesis in the Baltic Sea: The first multiwavelength fast repetition rate fluorescence study operated on a ship-of-opportunity——《Journal of Marine Systems》20172.Chlorophyll a fluorescence lifetime reveals reversible UV?induced photosynthetic activity in the green algae Tetraselmis——《Eur Biophys J》20163.Physiological acclimation of Lessonia spicata to diurnal changing PAR and UV radiation: differential regulation among downregulation of photochemistry, ROS scavenging activity and phlorotannins as major photoprotective mechanisms——《Photosynth Res》20164.Primary production calculations for sea ice from bio-optical observations in the Baltic Sea——《Elementa: Science of the Anthropocene》20155.The Use of Rapid Light Curves to Assess Photosynthetic Performance of Different Ice- Algal Communities——《Norwegian University of Science and Technology》2017五、光学参数测量1.A novel method of measuring upwelling radiance in the hydrographic sub-hull——《J. Eur. Opt. Soc.》20162.Pelagic effects of offshore wind farm foundations in the stratified North Sea——《Progress in Oceanography》20173.Penetration of Visible Solar Radiation in Waters of the Barents Sea Depending on Cloudiness and Coccolithophore Blooms——《Oceanology》20174.Physical structures and interior melt of the central Arctic sea ice/snow in summer 2012——《Cold Regions Science and Technology》20166.Role of Climate Variability and Human Activity on Poopó Lake Droughts between 1990 and 2015 Assessed Using Remote Sensing Data——《Remote Sensing》2017六、光胁迫研究1.A (too) bright future? Arctic diatoms under radiation stress——《Polar Biol》20162.Comparison of bacterial growth in response to photodegraded terrestrial chromophoric dissolved organic matter in two lakes——《Science of the Total Environment》20173.Effects of halide ions on photodegradation of sulfonamide antibiotics: Formation of halogenated intermediates——《Water Research》20164.Effects of light and short-term temperature elevation on the 48-h hatching success of cold-stored Acartia tonsa Dana eggs——《Aquacult Int》20165.Effects of light source and intensity on sexual maturation, growth and swimming behaviour of Atlantic salmon in sea cages——《Aquacult Environ Interact》2017七、水下光场研究1.Effects of an Arctic under-ice bloom on solar radiant heating of the water column——《Journal of Geophysical Research: Oceans》20162.Influence of snow depth and surface flooding on light transmission through Antarctic pack ice——《Journal of Geophysical Research: Oceans》2016八、藻类水华监测1.A Novel Statistical Approach for Ocean Colour Estimation of Inherent Optical Properties and Cyanobacteria Abundance in Optically Complex Waters——《Remote Sensing》20172.Empirical Model for Phycocyanin Concentration Estimation as an Indicator of Cyanobacterial Bloom in the Optically Complex Coastal Waters of the Baltic Sea——《Remote Sensing》2016
    留言咨询
  • 自由落体式损伤仪 400-860-5168转4586
    产品描述自由落体式损伤仪是一种专门针对动物医学研究而设计的挫伤装置,从X、Y、Z轴的三维方向对动物体的目标部位进行定位,然后采用自由落体的原理,通过调节打击头高度模拟脊髓被位移骨头或软组织撞击时的力,建立一种针对动物的高效、可复制的脊髓损伤模型,为疾病的预防和治疗提供实验支持。 产品特点 适用于:小鼠、大鼠 具有自动抬升机制,撞击后,可自动将打击头抬高,避免二次撞击 自动撞击开始到打击头抬升的时间可以设置 具有触摸屏控制器,自动控制电磁铁释放撞击头 装置结构简单,操作简便 配备脑部固定器可实现三维定位,整体可高温高压灭菌 打击高度可调技术参数 重锤规格:10g(小鼠)、40g(大鼠) 打击头直径:1.5mm(小鼠)、3mm(大鼠)适用领域 适用于动物脑损伤造模实验。 型号说明产品名称 型号说明单位自由落体式损伤仪MP-1020小动物/小鼠/大鼠台 自由落体式损伤仪IMP-1020L大小动物通用台*我公司可根据客户的特殊应用、特殊需求提供功能定制服务,也可以提供相关的实验服务,详情请来电咨询。
    留言咨询
  • HyperOPS 剖面式高光谱观测系统,是一套自由落体式剖面高光谱光学测量系统,用于测量水生系统中的光学特性。由两个辐射计(一个测量水中上行辐亮度,一个测量下行辐照度或上行辐照度)、压力、倾斜传感器组成。独特的光学轮廓自由落体、风筝状背板设计,能有效避开船体阴影的影响,可获取高精度的水下环境光场(向下辐照度和向上辐亮度)。HyperOPS 非常轻巧,使用轻便,几乎任何人都可以手动部署。可以快速组装,在小型或大型船舶上进行投放,是各种水生环境中测量光学特性的通用平台。产品优势l 体积小,采用流线形设计l 数据质量高,测量时有效避免了船体阴影的干扰l 标配压力传感器和倾斜传感器l 配置灵活,可随意组合多种传感器l 支持定制,可定制化集成生物、生态、水质、水文、气象等多学科传感器系统组成搭载传感器标准配置:1个辐亮度传感器和1个辐照度传感器可选配置:表观光学传感器(Satlantic HyperOCR/TriOS RAMSES等)、其他(定制集成);甲板单元内置可充电电池,用于采集保存数据及供电,并且配套采集、显示软件数据采集器可根据需求集成生物、生态、水质、水文、光学等多学科传感器脐带缆盘标配50米零浮力缆,承重150k,用于剖面投放自由落体式剖面架用于固定传感器和数采仓,可根据不同的传感器定制
    留言咨询
  • 产品概述 自由落体脑损伤模型打击器按自由落体原理制作的一打击器,主机用于动物脑损伤模型的制作。自由落体脑损伤模型打击器由撞针、下落打击棒、金属套管和脑定位仪四部分组成。撞针直径4.5mm,高度20mm,打击棒重40克和20克两种,金属套管高度30cm,脑定位仪包括底板,大鼠适配器,鼠耳杆等。角度调节颅脑打击器搭配可旋转适配器,头部冠状方向可旋转±30°,保证颅脑切面与打击头垂直打击精准打击颅脑打击器精准控制打击速度(0.5-5.6m/s)、打击深度(0-5.00mm)和打击时间(0-5.00s),精度高,底盘稳不产生抖动自动识别零界面颅脑打击器接触校零装置,自动识别打击零界面,减少人为判断的误差触屏操作颅脑打击器具有触屏界面,操作更便捷技术参数1、X、Y、Z轴人工自由调节2、撞针直径4.5mm3、金属管高度30mm4、打击棒重40克和20克两种5、金属套管高度30cm6、适用动物:小鼠、大鼠、豚鼠、兔、猫、狗等
    留言咨询
  • 自由落体脑损伤模型打击器按自由落体原理制作的一打击器,主机用于动物脑损伤模型的制作。自由落体脑损伤模型打击器由撞针、下落打击棒、金属套管和脑定位仪四部分组成。撞针直径4.5mm,高度20mm,打击棒重40克和20克两种,金属套管高度27cm,脑定位仪包括底板,大鼠适配器,鼠耳杆等。
    留言咨询
  • 自由落体脑损伤模型打击器是用于制作大鼠小鼠的脑损伤模型,对大鼠和小鼠的脑部进行定位后,定点定力地打击大小鼠的脑部,造成大小鼠脑损伤,仪器操作简单,原理经典,自由落体脑损伤模型打击器按自由落体原理制作的一打击器,主机用于动物脑损伤模型的制作。自由落体脑损伤模型打击器由撞针、砝码、金属管和脑定位仪四部分组成。撞针直径4.5mm(可定制合适的尺寸),高度20mm,打击棒重40克和20克两种,金属套管高度30cm。 配合脊髓夹持器进行脊髓打击配合脑定位仪底座进行颅脑打击自由落体打击器配合定位仪和脊髓固定器使用主要技术指标:1、X、Y、Z轴人工自由调节2、撞针直径4.5mm(可定制合适的尺寸)3、金属管高度30mm4、打击棒重40克和20克两种5、金属套管高度30cm6、适用动物:小鼠、大鼠、豚鼠、兔、猫、狗等 颅脑撞击器的主要应用:俯卧位固定大鼠头部及四肢,消毒后,于正中线由前向后切开头皮,切口后端再以45度角向左前下延伸,形成三角型皮瓣。向头侧翻开皮瓣,剥离骨膜,充分暴露左侧颅骨。以左侧颅骨眼眶凹陷为支撑点,用持针器咬开小块颅骨,暴露硬脑膜,并向后在左顶骨扩大成直径6mm的圆形骨窗,注意保护脑膜。将撞杆头端置于骨窗硬脑膜外,其外垂直金属套管,用40克打击棒沿外周金属套管从20cm高度自由落下冲击撞针,下落冲击力4×20cm.g,造成大鼠左侧大脑半球局部脑挫裂伤。请关注玉研仪器的更多相关产品。如对产品细节和价格感兴趣,敬请来电咨询!
    留言咨询
  • 1、设备技术参数:護理床自由落体耐冲击试验机用于YY 0571-2013(及未来将发布的现行标准代替版YY 9606.252-20XX IEC 60601-2-52国内转化)yi用电动床机械强度相关标准的测试。1.1 床垫支承台冲击影响测试: 调节yi用电动床床垫支承台至水平位置,从床垫支承台上方180mm高处向标准要求的相应位置跌落冲击体,冲击体跌落位置应在床垫支承台范围内可调,跌落次数调节范围至少覆盖0~20次每分钟。冲击体垂直行程范围应至少覆盖100-500mm范围,测试参数应实时显示。冲击体参数:冲击体直径大约200mm并且有螺旋压缩弹簧与冲击面隔开。此冲击体能在与冲击面中心区域的平面的垂线方向自由移动。装置的总重量应是25kg±0.1kg而冲击体及它的相关部件(剪掉弹簧)应有17kg±0.1kg的质量。复合的弹簧的弹性系数(对系统)应是6.9N/mm±1N/mm而总的运动部件的摩擦力在0.25N~0.45N之间。当弹簧系统被压缩到载荷为1040N±5N时,其剩余的压缩距离不得小于60mm。冲击面应是干、细砂粒充填的垫子。(冲击体具体参数见YY 0571-2013中图BB.1)1.2 设备应充分考虑适配市面绝大部分yi用电动床,配置多种规格工装夹具以方便测试。测试参数应实时显示。1.3 电源输入:AC220V 50Hz.
    留言咨询
  • 1、设备技术参数:护理床自由落体耐冲击试验机用于YY 0571-2013(及未来将发布的现行标准代替版YY 9606.252-20XX IEC 60601-2-52国内转化)医用电动床机械强度相关标准的测试1.1 床垫支承台冲击影响测试: 调节医用电动床床垫支承台至水平位置,从床垫支承台上方180mm高处向标准要求的相应位置跌落冲击体,冲击体跌落位置应在床垫支承台范围内可调,跌落次数调节范围至少覆盖0~20次每分钟。冲击体垂直行程范围应至少覆盖100-500mm范围,测试参数应实时显示。冲击体参数:冲击体直径大约200mm并且有螺旋压缩弹簧与冲击面隔开。此冲击体能在与冲击面中心区域的平面的垂线方向自由移动。装置的总重量应是25kg±0.1kg而冲击体及它的相关部件(剪掉弹簧)应有17kg±0.1kg的质量。复合的弹簧的弹性系数(对系统)应是6.9N/mm±1N/mm而总的运动部件的摩擦力在0.25N~0.45N之间。当弹簧系统被压缩到载荷为1040N±5N时,其剩余的压缩距离不得小于60mm。冲击面应是干、细砂粒充填的垫子。(冲击体具体参数见YY 0571-2013中图BB.1)1.2 设备应充分考虑适配市面绝大部分医用电动床,配置多种规格工装夹具以方便测试。测试参数应实时显示。1.3 电源输入:AC220V 50Hz.
    留言咨询
  • ZH-ZYQ型自由落体脑损伤模型打击器 自由落体脑损伤模型打击器按自由落体原理制作的一打击器,主机用于动物脑损伤模型的制作。自由落体脑损伤模型打击器由撞针、下落打击棒、金属套管和脑定位仪四部分组成。撞针直径4.5mm,高度20mm,打击棒重40克和20克两种,金属套管高度27cm,脑定位仪包括底板,大鼠适配器,鼠耳杆等。 技术参数:1、大鼠脑立体定向仪2、脑定位仪包括底板,大鼠适配器,鼠耳杆等3、x、y、z轴人工自由调节4、撞针直径4.5mm5、金属管高度20mm6、打击棒重40克和20克两种7、金属套管高度27cm8、适用动物:小鼠、大鼠、豚鼠、兔、猫、狗等使用举例:  俯卧位固定大鼠头部及四肢,消毒后,于正中线由前向后切开头皮,切口后端再以45度角向左前下延伸,形成三角型皮瓣。向头侧翻开皮瓣,剥离骨膜,充分暴露左侧颅骨。以左侧颅骨眼眶凹陷为支撑点,用持针器咬开小块颅骨,暴露硬脑膜,并向后在左顶骨扩大成直径6mm的圆形骨窗,注意保护脑膜。将撞杆头端置于骨窗硬脑膜外,其外垂直金属套管,用40克打击棒沿外周金属套管从20cm高度自由落下冲击撞针,下落冲击力4×20cm.g,造成大鼠左侧大脑半球局部脑挫裂伤。
    留言咨询
  • 仪器简介:美国LAB电脑控制全自动高加速度冲击试验机/冲击试验台/冲击台/自由落体冲击试验机/(冲击响应谱SRS)AutoShock-II™ 是全自动机械冲击测试系统,用于测量和确定产品或包装的抗冲击性能。LAB AS-II可执行常规的“半正弦波、方波、或者锯齿波等波形的冲击试验,以实现实际环境中产品所遭受的冲击波及冲击能量,从而系统的改进或优化产品结构或包装结构。LAB公司提供的全自动电脑 控制冲击系统和数据分析系统是您最佳的选择。AutoShock-II 采用了世界上最先进的刹闸系统和夜压平衡升降系统,具有卓越的润滑性能,重现性高、无二次反弹冲击波产生等特点。液态氮刹闸系统非常经济实惠、安全可靠,加上可靠的液压升降装置,定位准确,同时最大程度降低了支柱和轴承的磨损,从而保证了机器的可靠性。AutoShock-II低脚吸震装置TM的独特设计,降低了冲击试验机的整体高度,从而易于操作者装卸样品,轻松的完成测试。LAB将方波产生气缸装置嵌入吸震底座,最大程度上节省了占地空间。l AutoShock-II 符合OEM、ASTM、MIL-STD、IEC和ISO等各种国际标准。.技术参数:冲击台面尺寸: 可选最大加速度: 600G (选项:最大100,000G)最大速率变化:7.3m/s(半正弦、梯形波—额定负载)(可扩展到12.2m/s)脉冲时间: 1.0ms ~ 65ms (选项:0.01~0.1ms)冲周波形:半正弦波+方波+钜齿波(冲击响应谱SRS)额定负载: 可选最大样品重量 : 可选主要特点:美国LAB电脑控制全自动高加速度冲击试验机(冲击试验台/冲击台/自由落体冲击试验机)基于Windows的最先近控制系统 :全自动远端控制界面自动完成测试设置。操作者只需简单的输入测试数值,AutoShock-II 将自动配置参数,并控制机器准确完成冲击试验(冲击响应谱SRS)。.全自动控制冲击试验模式:在方波和DBC(破坏边缘曲线)测试时,氮气压力伺服自动控制,不需人工每次手动调节,减少繁琐的人工操作,且保证了冲击试验测试数据精度和准确度。
    留言咨询
  • C-OPS:便携式光学剖面测量系统 C-OPS是什么? C-OPS是一款用于研究海洋光学特性的辐射测量系统。它由两部个辐射计组成:其中一个测量水体上行辐亮度,另一个测量下行辐照度或上行辐照度。两部辐射计都有19个波段并被安装在可以自由下落的框架上。框架可以进行优化调节,使之在加较浅的近海岸水体中以较低的速率沉降,而在较深的开阔洋面以较高的速率沉降。可选的配件包括:测量水上入射辐照度的参比辐照度传感器;BioShade,用于测量漫射的影带组件;BioGPS,提供坐标和时间的部件。为什么选择C-OPS?老的光学测量系统系统并不能很好地解决浅水中的光学复杂性,主要是由于较大的仪器体积,过于接近采样平台,或不能很好地控制仪器的沉降速率等。在新的C-OPS系统中,这些问题都不存在。C-OPS的不同之处?是浅水中海洋水色研究、卫星校准和确认的理想仪器在垂直深度剖面上测量水体的辐亮度和辐照度快速的采样频率(15Hz),缓慢的自由下落,可调节的浮力,可人工布放,最深达300米的水下。和NASA一起设计研发基于Biospherical公司先进的微型辐射计技术制造 C-OPS非常轻便,可以使用人工来布放。此外,自由下落的系统阻止了船体阴影带来的任何的影响。完美的系统集成使它可以和潜水设备以及水上设备一起工作来测量辐射参数(可应用于浑浊的近岸带水体和清澈的大洋水体) 微型辐射计这一新的C-OPS辐射剖面测量系统和它所有的附件的核心部件都是微型辐射计&mdash &mdash 一种革命性的光电探测器集成的新方法。 美国Biospherical仪器研发集团开发了一种小型的、卓越的光电探测器,叫做&ldquo 微型辐射计&rdquo 。微型辐射计由一带微处理器的过滤光电二极管,一个可控增益的前置放大器,一个24-bit的模数转换器和一个串口&mdash &mdash 所有这些部件集成在一个只有一支钢笔大小的小电路板上。黄铜材质的外套管为内部元件提供保护,并阻隔外部电子噪音。 虽然每一个微型辐射计都是一个单独工作的光电探测器,多个微型辐射计可以被组合在一起形成一个多波段辐射计。聚合器(左)把几组微型辐射计和辅助传感器集合在一起,它还控制输入微型辐射计或从微型辐射计输出的数据。聚合器同时控制电源调节和附加传感器如倾角、温度、输入电压和电流以及移动存储设置(如micro SD卡)。一个包含的19支微型辐射计的组合放置在耐压舱中,它可以作为单机的多通道海洋水色传感器,因其小巧的体形,一支手可以轻松拿起。 C-OPS的浮力装置结合了空气填充的浮体和硬质泡沫浮体。随着仪器的下沉,增大的水压将气囊压扁,浮力降低,从而使沉降速率增大。大水表面的沉降速率一般小于3cm/s,10m以下水深处的沉降速率将会超过30cm/s。测量入射球形辐亮度的水上参比传感器。它的光学附件包括:用于测量漫射的影带组件(Bioshade);提供坐标和时间的GPS组件(BioGPS)。由电池供电的甲板控制单元。这一&ldquo Microradiometer Master Controller&rdquo 为Windows系统的笔记本电脑(厂家提供)供电并提供测量数据,当然,用户的其它电脑也可以使用。随机提供的还有Biospherical的用户软件。甲板单元还包含一个输出串口控制器,它允许水上参比传感器和水下传感器根据不同的电缆长度进行相应的调节,同时为它们提供最佳的电源供给。打开电源时甲板单元会显示传感器目录,这一特性在处理电缆和通讯连接的问题时非常有用。C-OPS所使用的微型辐射计的介绍 每一个微型辐射计都有自己完整的控制和数据采集系统:微处理器、24-bit数据转换器(ADC)、基准电压、温度传感器和前端静电计。静电计组合了三个增益级,以控制电流-电压的转换。多支微型辐射计,测量不同波段的辐射,被集成为一个微型辐射计组,或一个完整的仪器,然后由一个叫做聚合器的电子部件(aggregator)控制从每一个微型辐射计采集数据信号。所有的微型辐射计都被同步,以保证所有波段的数据在同一时刻测量。聚合器同时也包含一个电源调节电路和数据通讯界面,也可能还装备了一个内置的数据存储器(micro SD-1GB)来支持远程数据记录。技术参数微型辐射计参数探测器:Si (13 mm2),InGaAs (7 mm2),或GaAsP (7 mm2)光电流&mdash 电压转换:三个增益级的静电计放大器:1,200和40,000模数转换器(ADC):24-bit双极,4-125Hz数据频率动态范围(可用):9个十进制数量级线性:使用一个可调节的光源,在信号电流范围为1 x 10-12 - 1 x 10-5 的条件下,对所有的微型辐射计进行测量。通常地,与一个参比静电计对,误差1%速度:ADC采样速率从4-125Hz可调节,通常设为125Hz,每个采样周期内进行平均响应时间:小于0.01s,增益变化所需时间小于0.1s电子灵敏度:在电流分辨率10-15的情况下,ADC分辨率是0.5&mu A。饱和电流为160&mu A。三级增益信号的范围为1.6 x 1011,定义为除以最小可分辨信号的饱和信号。噪音:当ADC以125Hz的频率采样,而内置微型辐射计对每25个样品进行平均的情况下,数据频率为5Hz,此时,探测器的噪音为15-20fA。光学灵敏度:这一灵敏度取决于光谱范围和入射光学系统(辐亮度和辐照度)。它被表达为辐亮度(&mu W cm-2 nm-1 sr-1)和辐照度(&mu W cm-2 nm-1)在5Hz的数据频率条件下的噪音等值信号(Noise Equivalent Signals):通道辐亮度(Radiance)辐照度(Irradiance)320nm2.9x10-69.0x10-5395nm5.0x10-66.9x10-5490nm1.8x10-62.3x10-5683nm9.9x10-71.1x10-5780nm6.8x10-78.0x10-6 注意:辐亮度传感器已经过水下使用的校准。还要注意的是辐亮度传感器可以直接指向太阳而不会饱和。暗补偿:在为每一个增益水平校准时测量并设定暗补偿值。在野外补偿值也自动地测量并应用,以此来适应不同的温度。微型辐射计电源:5 V DC,4mA光学过滤器:10nm全宽光谱范围:250-1650nm(1100-1650的光谱范围需要使用InGaAs探测器)C-OPS系统参数尺寸:13波段或19波段个微型辐射计组成的系统安装在一个防护罩内,如下参数适用于19通道的传感器:直径:2.75 inches(约7cm)应用水深:标准型最大125m水深,还有300m水深的版本可供选择波长选择:波长可以从250-1650nm之间选择速度:一个单独的19波段的光学仪器可以在超过30Hz的频率下工作。包括3个19波段辐射计的完整的系统的操作频率可以大于15Hz。数据频率:使用RS232或RS485的条件下,光学仪器的通讯频率是115,200 baud;使用RS232的条件下,甲板单元的通讯频率为115,200 baud。电源需求:19通道的光学仪器:7.5V,90mA。三个仪器的19通道系统:甲板单元需0.30A的电流。辐亮度仪器的视野:在水中,7° 半角辐照度仪器的Cosine Error:天顶角小于60° 的情况下为± 3%;天顶角60-70° 的情况下为± 5%;天顶角70-80° 的情况下为± 10%自由下落速度:1cm的深度分辨率,可调节的最终速度为6-35cm/s,可手动调节倾角和翻滚。辅助传感器:水温、水压、倾角和翻滚可选配件:BioShade:用于测量漫射的影带配件,测量水上辐照度的参比传感器BioGPS:GPS配件用户自定义长度的电缆,电缆卷轴附件介绍BioSHADEBioSHADE是一个使用在C-OPS水面参比传感器上的影带附件。这一附件可以进行180度的旋转,使它能够在航向不稳定的船只上使用。当在船只上使用时,影带进行平稳连续的扫描;当在陆地上操作时,可以将系统设定为将影带对着太阳直射而相应运动,以此来测量漫射辐照度。操作C-OPS的软件中也包含控制BioSHADE的命令,用户可在软件中开启或关闭影带功能,也可以设置运动的速率。在使用船舶进行走航式测量时,内置的pitch和roll传感器以及高的采样频率在消除船体运动带来的影响方面非常有用。 BioSHADE可以和Bio GPS、一个或多个水面参比传感器一起集成在C-OPS网络中。这一整个集成都由一根电缆连接到远处(最远可达150m)的系统控制单元&ldquo deckbox&rdquo 和电源。Deckbox会根据电缆长度自动地补偿,为系统提供最优的电源供给。BioGPSBioGPS是一个固定在C-OPS水面参比传感器上配合使用的GPS信号接收器。GPS的数据将和C-OPS的数据结合在一起,方便用户无论在定点垂直剖面测量还是在船上走航测量时都能准确地记录测量点的位置。Bio GPS可以和BioSHADE、一个或多个水面参比传感器一起集成在C-OPS网络中。 这一整个集成都由一根电缆连接到远处(最远可达150m)的系统控制单元&ldquo deck box&rdquo 和电源。Deck box会根据电缆长度自动地补偿,为系统提供最优的电源供给。 C-HOIST从船上布放仪器C-HOIST起吊机是一种用于下放和回收仪器的装置,它通常挂在一个固定在船上的吊杆上来作业。C-HOIST装配有一个不锈钢的滑轮和一个2.1马力、12V直流电驱动的电机头。它的总承载力为300磅(约136kg)。这一装置通常使用90Ah的铅酸电池驱动,正常的情况下一次充电可以完成25次(每次约6分钟)的操作。适用绳索的直径为5-20mm,没有长度的限制。C-HOIST将和一个控制单元(deck box)一起工作,允许用户在不同的布放中使用不能的下放速度。电动马达还有刹车功能,用户可以让滑轮在任何需要的时候静止。T-MAST T-MAST伸缩支架,用于水面参比传感器系统。伸缩长度从1.12m到3m。这一系统由美国航天航空管理局(NASA)研发,借助它用户可以将辐射计升高到船舶的高层构架之上,从而消除船体阴影和反射的影响。T-MAST的折叠状态T-MAST的完全展开状态
    留言咨询
  • CSSoil100一体式土壤剖面水温盐自动观测系统一、产品简介CSSoil100 一体式土壤剖面水温盐自动观测系统是 Campbell Scientific 推出的集 CR300 和 SoilVUE10 为一体的土壤多参数测量系统。SoilVUE&trade 10 是一款基于 Campbell TrueWave&trade TDR 测量技术的土壤剖面水分传感器。它集土壤水分、电导率与温度测量为一体,是专为从事环境研究的科研人员和环境监测网络而研制。SoilVUE &trade 10 体现了土壤水分原位测量技术的创新和进步,是土壤剖面水分等状况监测的较佳选择。Campbell Scientific 专有的 TrueWave&trade TDR 技术将行业先进的信号上升时间与先进的波形分析技术相结合,从而准确确定高频信号的真实传输时间。测量过程将获取高时间分辨率和平滑的波形信号,其性能可以与其它 TDR 测量相媲美。值得一提的是,并非所有的 TDR 的传感器都可以达到这样的测量性能。二、产品特点1. 单个土壤剖面水分传感器可以同时测量 6 个(0.5 m 型号)或9 个(1 m 型号)深度下的土壤体积含水量、相对介电常数、体积电导率和温度;2. 安装快速、简便,对土壤原状的影响降至低; 传感器输出为 SDI-12(1.4 版)数字信号;3. 针对野外长期监测而设计。三、产品组成SoilVUE10传感器:测量土壤体积含水量、相对介电常数、体积电导率和温度CR300数据采集器:数据采集存储四、产品参数SoilVUE10传感器介电常数体积电导率温度体积含水量测量范围1~800~1 dS/m-30~+40 ℃0~100%测量精度±1±2%(0~2.5dS/m)或±5%(全量程)±0.15 ℃±1.5%测量深度0.5 m 型号∶5,10,20,30,40,50cm(共6个深度)1m型号∶5,10,20,30,40,50,60,75,100 cm (共9个深度)通讯通讯∶PakBus,Modbus,DNP3, SDI-12,TCP UDP等数据存储30 MB工作环境温度:-40~+60℃;相对湿度:0~100%RH(非凝结)电流消耗动态电流~64 mA (12Vdc),静态电流~2.5 mA(12Vdc)供电太阳能、直流、交流(需转成直流)尺寸直径∶5.2cm(不含螺纹)或5.8 cm(包含螺纹)长度∶0.55m(0.5m型号)或1.05m(1m型号)重量1.9kg(0.5m型号)或3.6kg(1m型号)CR300数据采集器输入连接6个单端或3对差分(独立配置)模拟电压精度精度参数不包括传感器和测量噪声。±(测量值的0.1%+偏移),-40°至+70℃±(测量值的 0.04%+偏移),0°至 40℃时钟精度±1 min/每月工作环境非结露-40°至+70℃(标准)CPU驱动/程序80MB串行闪存数据存储30MB 串行闪存平均待机功耗1.5mA(12Vdc)平均功耗23mA(12Vdc,处理器持续工作)5mA(12Vdc,以1s的扫描速率扫描单个模拟通道)供电16至32Vdc(CHG端口)(对于电源转换器或者太阳能板供电输入,电流限制在0.9 A)五、产地:美国
    留言咨询
  • 波浪动力剖面测量系统型号:WIRWALKERTM ------WIRWALKERTM—依靠波浪动力进行剖面测量的系统------ ? 快速垂直剖面,依靠波浪动力,无需电池,全机械构造。? 标准300m深度剖面,最大可选1000m。? 可搭载任何RBR的产品,如RBRconcerto3和RBRmaestro3系列多参数水质仪。? 可搭载用户定制的传感器配置,以及其它制造商的产品。? 系统可锚定进行剖面观测,也可自由漂流进行剖面观测。? 整个系统性能优越,易于使用。? WIREWALKERTM系统可以集成RBR的感应耦合数据传输模块,通过铱星或GSM来实现数据的无线远程传输。-------------------------物理规格------------------------- 尺寸:水下剖面浮体(profiler):~1600(高)×600(宽)×165(厚)mm海面浮标体(buoy):~900(高)×740(直径)mm重量:水下剖面浮体:~22kg(空气中)海面浮标体:~16kg(空气中)深度等级:标准300m,最大1000m------------------------可选配置--------------------------? WIREWALKERTM 系统 (标准型)系统组成:1、 海面浮标体1个,带有闪光灯。2、 水下剖面浮体1个,带有仪器安装框架,耐压300m。3、 爬行包塑钢缆1条,直径5mm (3/16") ,带换向止动装置。4、 卸扣、转环和2个20kg的配重。? WIREWALKERTM系统 (集成RBR感应耦合模块)系统组成:1、 海面浮标体1个,带有闪光灯。2、 水下剖面浮体1个,带有仪器安装框架,耐压300m。3、 爬行包塑钢缆1条,直径5mm (3/16") ,带换向止动装置。4、 卸扣、转环和2个20kg的配重。5、 集成RBR感应耦合传输模块。 -----------------WIREWALKERTM系统介绍------------------1、 WirewalkerTM携带测量仪器可获得高质量的2维深度—时间序列观测数据。2、 对于传统的锚系观测来说,垂直锚链上搭载了很多昂贵的测量仪器。有了WirewalkerTM,我们只需要1台仪器就可以实现快速剖面测量。WirewalkerTM利用波浪作为动力沿着锚系钢缆上下爬行,可以获得高质量的剖面数据。3、 WirewalkerTM系统工作原理:海面上有一个小的浮标体,浮标体下方连接一条钢缆,钢缆的下方悬挂配重,使钢缆保持垂直状态,保证整条钢缆可以跟随海面浮标体进行上下起伏运动。Wirewalker™ 依附于钢缆之上,当钢缆在波浪作用下下沉时,Wirewalker™ 内部的凸轮会夹紧钢缆,并跟随钢缆一起下沉,当钢缆在波浪作用下上升时,凸轮会松开钢缆。这样Wirewalker™ 就会在波浪动力下沿着钢缆往下爬行。当Wirewalker™ 到达预期剖面深度底部时,会碰触机械停止装置,此时会彻底释放内部凸轮,Wirewalker™ 就会沿着钢缆自由上升到钢缆顶部,也就是海面浮体下方位置,此时凸轮会进行重置。Wirewalker™ 就会如此反复的沿着钢缆上下爬行。 4、 WirewalkerTM在大部分海况使用过程中,典型的剖面测量速度为10m/min(往返)。5、 与大部分传统的浮标或者电动马达驱动的水下剖面浮体相比,Wirewalker™ 既可以锚系定点观测,又可以随着海流自由漂流(拉格朗日)。在无扰动的水体中Wirewalker™ 剖面测量可到达距离海面1m以内。6、 对于自容式工作的仪器设备,可以非常简单的安装到Wirewalker™ 上,并进行浮力调节。装载压舱物也不必像传统浮力驱动剖面浮体那样精确,只需要增加一些泡沫块,使Wirewalker™ 的上升速度控制在大约0.5m/s即可。7、 Wirewalker™ 不需要电池来进行驱动。其设计操作简单,坚固耐用,可以用于很多恶劣的海洋环境中。Wirewalker™ 借助于海面波浪的起伏来实现其上下爬行,搭载的电池仅仅是为了给仪器设备供电。从电导率、温度和压力观测,到光学、洋流和湍流测量,Wirewalker™ 的平稳自由上升可以从任何快速采样的海洋传感器收集高质量的数据。8、 卓越性能:从南大洋到苏必利尔湖,Wirewalker™ 已证明其自身的卓越性能。部署范围从开放的海洋、自由漂流站到海浪带系泊处。在过去的十年里,Wirewalker™ 在海面波浪的驱动下,已经完成了50多万次剖面任务,18000多公里的垂直剖面距离。
    留言咨询
  • 介绍:便携式环境监测系统,主要测量辐射与组件的背板温度。系统包含2个箱子:采集箱与设备运输箱。设备连接采用航空插头连接方式,便于携带和就地安装测量。 采集箱表面外置显示屏,用户可以实时查看当前数据的实时值。同时数据采集器内置的内存卡和内置锂电池一次充电可保持120小时的测试。可保证数据的存储以及在外部供电断电的情况下保证数据不丢失。测量:可测量水平辐射、斜辐射,也可两种辐射同时测量,太阳能板背板温度等。也可以根据客户的需求做相应方案的变更。优点:该系统以其便捷性,可选用的高精度辐射表,非常适用于光伏电站运维人员的巡检,对现场长期监测的辐射表的比对和校准,光伏行业技术人员的实验和测试,第三方的检测以及光伏电站综合效率的验收及校核。便携箱特点l 符合航空局规定最大运输尺寸,可置于托运。l 坚实的开细胞核结构,坚固重量轻,可伸缩拉杆,聚氨酯轮轴l 高品质O型密封圈不易老化,二级锁扣l 内置高级硬质海绵可以根据设备情况自由组配。l 特制设备面板及相关配件l 机箱上盖配有存线兜及相关配件包等。
    留言咨询
  • ST-W2土壤剖面水蚀测量系统1、应用:l 用于径流场收集径流样品、径流流速与流量的测量;l 用于小范围山体滑坡径流监测;l 用于地质灾害研究;l 用于水利学试验研究;l 用于生态学野外监测;l 用于林业生态系统恢复研究;用于山体小流域水利变化研究等2、工作原理:水蚀是指土壤因降雨而松弛,或者被水流剥离,土壤粒子被冲到斜面下方,冲走的土壤积存到水道或下游流域。受水蚀影响后,不仅表土层受到影响,还会使土壤失去蓄水能力和养分保持力。本系统应用一种导流分散装置,测量与收集一定区域的径流场中的试验样品,研究径流物的成分,同时利用自动采集器记录径流发生的时间,测量径流量与径流强度,该过程为全自动测量系统。具体过程为,利用平缓导流槽收集径流小区中的地表径流,引入分流箱,然后流经翻斗计数器进行计量,仪器自动选择收集的样品,多余流水直接旁路到仪器外。在土壤30cm处设有一个壤中流接收导流槽,用于测量壤中流的流量,同时流入下层取样瓶,用于分析泥沙和化学物质。由12个样品采集瓶收集地表径流样品,另外12个瓶子收集壤中流样品,为进一步分析侵蚀物颗粒和成分提供样品。特点: l 机械的全自动采集装置; l 可以设定自动采集样品的阶段; l 易安装组件3、组成:l 微处理器控制的自动采样装置;l 导流、分流系统;l 样品采集瓶;l 流量测量仪;l 连接导管等;l 该系统为交流供电(可选太阳能供电);l 可选的气象监测单元;用于配合测量径流发生的条件,如监测影响土壤侵蚀的因子,降雨,风速,风向,大气温湿度,辐射及土壤湿度等;l 可选的土壤水利特性测量单元;用于确定影响土壤水平衡的因子,如土壤湿度,土壤水势,入渗,蒸发及土温等;4、系统功能:l 记录与侵蚀过程相关的水利学参数;l 记录表层径流的开始时间和强度,自动间隔采样,采集的样品可以用于径流物和沉淀物的浓度分级,可收集沉淀物;l 软件可以控制并记录相应的采样瓶收集的量与阶段。l 根据可选的气象与土壤参数测量单元,可以获知发生径流(土壤侵蚀的条件)时的气象资料与土壤条件等。5、技术参数l 数据采集器,可编程高精度,可以应用Ecograph软件进行设置,采样瓶顺序采样,阶段与采样时间同时控制;l 处理器:采用18位A/D转换器,精度±0.025%l 存储:128Mb可无限扩展,内存可存储130,000个读数,可使用PC卡或闪存可(可存储65,000个读数)l U盘存储:兼容USB1.1或USB2.0驱动,每兆约90,000采集数字点l LCD液晶显示,2线16字母的LCD液晶显示和6个按键用于查看通道及数采状态和功能执行l 通讯:RS232、USB、以太网等l 采样间隔:10ms至天,可自定义l 输出值种类:平均值, 最大值, 最小值, 取样值 (Sample), 向量值, 累计值 ( Totalize )等l 工作条件:温度-45~70℃,湿度85%(无水汽凝结)l 时钟精准度:约±1分钟/年0-40℃;约±4分钟/年-40-70℃l 供电电压:10~30VDCl 翻斗容量:500mll 采样瓶数量:12*2l 采样瓶容量:500mll 双层测量装置可以区分地表径流和壤中出流l 采样时间:1-60分钟可自定义l 导流槽3米,分为两个部分,下部口径为:35mm,上部口径为:52mm;l 径流场坡面最佳角度为10-20度,南方多雨地区坡面角度应更小一些,另外径流场面积也应该相应缩小;l 供电:220VAC、太阳能供电可选; 6、产地:中国
    留言咨询
  • FastOcean APD采用多波长快速重复荧光技术,测量原位总初级生产力Gross Primary Productivity (GPP)。是测量光合生物的可变荧光的有力工具。FastOcen APD系统包含两个多波长快速荧光计,分别用于环境光和暗适应状况下测量,外加PAR光合有效辐射传感器和可编程电池包,用于现场总初级生产力GPP测量。 应用:总初级生产力(GPP)的剖面测量和实时分析。卫星数据海上实证,使用新的算法估计GPP和光吸收特征:全自动同步环境光和暗适应的传感器三个激发波长:450,530和624 nm 多激发波长组合连续测量FastPro8软件提供自动数据处理,演示,归档和导出自动重新计算所有相关参数,除去样品空白和其他用户修改参数两个FastOcean APD的系统内的传感器可以用于实验室工作,可以结合FastAct系统一起工作快速重复率荧光Fast Repetition Rate fluorometry (FRRf)是一种重要的测量PSII光合系统II 电子传递(JPSII)和光化学效率(?PSII)的方法,该方法被广为使用。 由于测量光合系统II反应中心的浓度([RCII])或PSII光吸收系统的光吸收存在困难,该方法很难用于估计初级生产力gross primary productivity (GPP)。近来发表的文献,Oxborough et al. (2012)采用了新的方法去分析FRRf数据,并建立了分析[RCII]浓度和aLHII(PSII光吸收系统的光吸收)的方法。Chelsea公司将该分析方法整合到多波长FastOcean传感器系统和FastPro8软件,通过暗适应2s,然后在环境光下进行测量,最终实时计算初级生产力GPP。单个FastOcean探头可以用于测量用于计算GPP的光响应曲线(PE Curve)系统组成:FastPro8软件FastOcean APD 剖面测量系统能通过编程后,通过电池包自动运行,也可通过FastPro8软件实时操作。连续采样频率为10Hz,LED强度单位为(photons m-2 s-1 x 1022)。 数据处理和分析:FastPro8能够实时显示数据分析结果,也能够下载自动剖面测量数据用于分析。
    留言咨询
  • 水面高光谱辐射自动云台测量系统(AWRAMS,Above-Water Radiance Auto Measuring System)是一款水色遥感表观光学特性自动测量系统,将采集的表观光谱信息,记录在本地存储单元,并通过网络自动上传至预设的服务器。该仪器为精确的高光谱分析应用提供极大的方便,可在UV/VIS范围测量水面处向下太阳辐照度,海面辐亮度及天空辐亮度,并且服务器后台配套处理软件可以处理、计算得到离水辐亮度和遥感反射率等参数,形成数据产品。为水体生物光学模型提供关键参数,通过水色要素反演,可得到水体叶绿素、悬浮物质和有色溶解有机物CDOM浓度等。此外,还可用来估算浮游植物的丰度和初级生产力,检测赤潮、藻华,验证卫星水色观测数据等。水面高光谱辐射自动云台测量系统系统由1个辐照度传感器和2个辐亮度传感器组成。辐亮度传感器的观测角度可手动调整,此特殊角度设计可使上行水面辐亮度传感器与下行天空辐亮度传感器与水面的夹角相同,方便计算离水辐亮度与遥感反射率,用于遥感建模,可用于固定平台连续测量。水面高光谱辐射自动云台测量系统云台系统介绍 云台系统为可按照预设策略,控制转台角度,采集辐射量并自动上传的传感器辅助测量系统,包括硬件平台和配套处理软件。可快速获取控制点经纬度,用于各类样区的定位、编辑和标绘。1)基座和动力部分。2)方位角转台:采用高精度闭环伺服控制,保证精度和分辨率。基座及传感器转动部分:均采用316 L防腐不锈钢加工而成,在沿海、湖泊、河流等使用场合,均可做到防腐防锈。设备防护级别为IP67级别,可以耐受雨淋、风沙、日晒,环境工作温度范围为-10℃~50℃。3)定位可选用GPS/北斗定位信号:保证精度范围在2 m,授时误差小于0.5 s。4)4G无线网络模块:可使系统随时进行数据通讯,并可将监控视频或图像上传至云服务器。5)系统由24 V直流供电:供电电压范围可以适应18~30 V,对各种蓄电池/风光互补发电系统具有良好的适应性。 软件功能介绍 配套处理软件可以得到光谱ES、LW、Rrs和nLW等参数产品。软件使用图形用户界面设计,界面简洁、友好,无需用户过多设置,导入数据和设备文件即可处理出需要的数据文件,并可进行图像浏览和保存。特点及应用特点高分辨率辐照度和辐亮度测量辐亮度传感器相对天顶角的测量角可调带云台,可在方位角自控水平旋转,方位角可按预设与太阳方位角关联太阳方位角根据GPS地理位置和授时自动计算可无人值守运行,按预设程序自动定时测量数据可通过网络自动上传至预设的服务器本地可将数据存储于SD卡,以备网络通讯不畅时缓存数据带有摄像头,可记录或上传被测位置水面和天空的现场情况可带有后备电源系统,在断电后可连续运行48小时传感器式设计,可连续采集光谱数据低功耗,适合野外使用应用范围广,适合各种野外环境,从赤道到两极都可使用精度高,积分时间自适应,也可手动设置最新的纳米涂层技术,防污染应用离水辐亮度测量、遥感反射率测量水色要素反演——叶绿素、蓝藻、CDOM、悬浮物质等卫星数据验证——卫星数据的地面实证海洋水色遥感研究、湖泊研究藻类水华研究、海洋生产力估算气候学——大气研究极地生物研究、海岸带研究遥感反演模型的建立,光学模型研究技术参数RAMSES传感器参数列表ACC余弦辐照度ARC辐亮度ASC球形辐照度UVUV/VISVISVISVIS波长(nm)280~500280~720320~950320~950320~950检测器256 通道硅光电检测器光谱采样[nm/pixel]2.22.23.33.33.3光谱精度0.20.20.30.30.3实际通道100200190190190ACC余弦辐照度ARC辐亮度ASC球形辐照度UVVISVISVIS波长(nm)280~500320~950320~950320~950典型饱和度 (IT: 4 ms)单位:Wm-2 nm-120 (300 nm)*17 (360 nm)*18 (500 nm)*10 (400 nm)*8 (500 nm)*14 (700 nm)*1Wm-2 nm-1 sr-1 (500 nm)20 (400 nm)*12 (500 nm)*15 (700 nm)*典型NEI (IT: 8 s)单位:μWm-2 nm-10.85 (300 nm)**0.75 (360 nm)**0.80 (500 nm)**0.4 (400 nm)**0.4 (500 nm)**0.6 (700 nm)**0.25 μWm-2 nm-1 sr-10.8(400 nm)**0.6(500 nm)**0.8(700 nm)**收集器类型余弦检测器FOV:空气中7°球形检测2Pi精度优于6~10%(取决于波长范围)优于6%优于5%积分时间4 ms~8 s传感器技术规格测量原理辐照度或辐亮度T100响应时间≤ 10 s (脉冲模式)测量角度40°±10°数据存储-测量间隔≤ 8 s(脉冲模式)外壳材质不锈钢(1.4571/1.4404)或钛合金(3.7035)大小(L x Φ)ACC:260 mm x 48 mmASC:245 mm x 48 mmARC:300 mm x 48 mm重量不锈钢:~ 0.9 kg 钛:~ 0.7 kg数字接口RS-232 (TriOS)系统兼容性RS-232(TriOS协议)电源8~12 VDC (± 3 %)功耗≤ 0.85 W最大压力SubConn:30 bar防水等级IP68采样温度+2~+40 °C环境温度+2~+40 °C保存温度-20~+80 °C流入速度0.1~10 m/s校准/维护间隔24个月选配传感器倾角传感器:±45°压力传感器:0~5 Bar、0~10 Bar、0~50 Bar可选 RAMSES-ACC-VIS RAMSES-ACC-UV RAMSES-ASC-VIS RAMSES-ARC文献资料一、水质研究:叶绿素、蓝藻、TSM、CDOM反演监测1.基于光谱匹配的内陆水体反演算法——《光谱学与光谱分析》20102.水体光谱测量与分析Ⅰ:水面以上测量法——《遥感学报》20043.水下光谱辐射测量技术——《海洋技术》20034.A Novel Statistical Approach for Ocean Colour Estimation of Inherent Optical Properties and Cyanobacteria Abundance in Optically Complex Waters——《Remote Sensing》20175.Atmospheric Correction Performance of Hyperspectral Airborne Imagery over a Small Eutrophic Lake under Changing Cloud Cover——《Remote Sensing》2017二、光学模型研究1.秋季太湖水下光场结构及其对水生态系统的影响——《湖泊科学》20092.A model to predict spatial spectral and vertical changes in the average cosine of the underwater light fields: Implications for Remote sensing of shelf-seawaters——《Continental Shelf Research》20163.A practical model for sunlight disinfection of a subtropical maturation pond——《Water Research》20174.A spectral model for correcting sun glint and sky glint——《Conference paper: Ocean Optics》20165.Absorption correction and phase function shape effects on the closure of apparent optical properties——《Applied Optics》2016三、卫星数据验证1.Assessment of Atmospheric Correction Methods for Sentinel-2 MSI Images Applied to Amazon Floodplain Lakes——《Remote Sensing》20172.Impact of spectral resolution of in situ ocean color radiometric data in satellite matchups analyses——《Optics Express》20173.Response to Temperature of a Class of In Situ Hyperspectral Radiometers——《Journal of Atmospheric and Oceanic technology》20174.The impact of the microphysical properties of aerosol on the atmospheric correction of hyperspectral data in coastal waters——《Atmos. Meas. Tech.》20155.The Potential of Autonomous Ship-Borne Hyperspectral Radiometers for the Validation of Ocean Color Radiometry Data——《Remote Sensing》2016四、光合作用研究1.Basin-scale spatio-temporal variability and control of phytoplankton photosynthesis in the Baltic Sea: The first multiwavelength fast repetition rate fluorescence study operated on a ship-of-opportunity——《Journal of Marine Systems》20172.Chlorophyll a fluorescence lifetime reveals reversible UV?induced photosynthetic activity in the green algae Tetraselmis——《Eur Biophys J》20163.Physiological acclimation of Lessonia spicata to diurnal changing PAR and UV radiation: differential regulation among downregulation of photochemistry, ROS scavenging activity and phlorotannins as major photoprotective mechanisms——《Photosynth Res》20164.Primary production calculations for sea ice from bio-optical observations in the Baltic Sea——《Elementa: Science of the Anthropocene》20155.The Use of Rapid Light Curves to Assess Photosynthetic Performance of Different Ice- Algal Communities——《Norwegian University of Science and Technology》2017五、光学参数测量1.A novel method of measuring upwelling radiance in the hydrographic sub-hull——《J. Eur. Opt. Soc.》20162.Pelagic effects of offshore wind farm foundations in the stratified North Sea——《Progress in Oceanography》20173.Penetration of Visible Solar Radiation in Waters of the Barents Sea Depending on Cloudiness and Coccolithophore Blooms——《Oceanology》20174.Physical structures and interior melt of the central Arctic sea ice/snow in summer 2012——《Cold Regions Science and Technology》20166.Role of Climate Variability and Human Activity on Poopó Lake Droughts between 1990 and 2015 Assessed Using Remote Sensing Data——《Remote Sensing》2017六、光胁迫研究1.A (too) bright future? Arctic diatoms under radiation stress——《Polar Biol》20162.Comparison of bacterial growth in response to photodegraded terrestrial chromophoric dissolved organic matter in two lakes——《Science of the Total Environment》20173.Effects of halide ions on photodegradation of sulfonamide antibiotics: Formation of halogenated intermediates——《Water Research》20164.Effects of light and short-term temperature elevation on the 48-h hatching success of cold-stored Acartia tonsa Dana eggs——《Aquacult Int》20165.Effects of light source and intensity on sexual maturation, growth and swimming behaviour of Atlantic salmon in sea cages——《Aquacult Environ Interact》2017七、水下光场研究1.Effects of an Arctic under-ice bloom on solar radiant heating of the water column——《Journal of Geophysical Research: Oceans》20162.Influence of snow depth and surface flooding on light transmission through Antarctic pack ice——《Journal of Geophysical Research: Oceans》2016八、藻类水华监测1.A Novel Statistical Approach for Ocean Colour Estimation of Inherent Optical Properties and Cyanobacteria Abundance in Optically Complex Waters——《Remote Sensing》20172.Empirical Model for Phycocyanin Concentration Estimation as an Indicator of Cyanobacterial Bloom in the Optically Complex Coastal Waters of the Baltic Sea——《Remote Sensing》2016
    留言咨询
  • 仪器简介:YSI水质垂直剖面自动监测系统 可自动监测目标水域中不同水层的水质状况,是迄今为止全球唯一成功运行、表现出色的一款自动剖面系统。 具有三种不同的配置:固定式、趸船式、浮标式 坚固、抗腐蚀绞车和驱动装置,即使在恶劣的环境下,也能保证系统正常运行 可根据潮汐和水库水位变化测量水深,确定剖面监测点位置 剖面管理&rdquo 软件,便于剖面设定、数据报告、分析和输出 检测非预定活动和错误,自动恢复程序 可集成气象传感器、日辐射传感器、雨量计和声纳测深仪 多种无线数据传输方式可选 系统应用 饮用水水源地/水库监测 -取水位置调整 -暴雨过后浊度的剖面分布 河口/海湾 研究 -有害藻华监测(赤潮监测) -河口盐度分布 -海水入侵监测(咸潮监测) -垂直混和状况 -水产养殖设施周边水质监测(低氧区) 其它水质环境监测 -水力发电排水区温度水层分布 -建筑或疏浚场地的浊度分布 -河流、上扬区的垂直混和状况 系统研究 藻类分布、迁移与群体结构 缺氧或低氧区深度监测 日照度衰减对初级生产力与底栖植物的冲击系统研究 产地:美国YSI公司。技术参数:系统指标 剖面深度:1-100米 可测水质参数:温度、电导率、盐度、酸碱度、氧化还原电位、溶解氧、浊度、叶绿素、蓝绿藻和PAR 可集成参数:风速、风向、气温、气压、湿度、雨量、光照度和声纳测深 系统构成 机械控制单元:绞车控制器、绞车系统、玻璃钢保护罩、电池箱、铅酸充电电池和太阳能充电调节器 安装平台:固定式安装在桩柱、坝面或固定结构上,趸船式或浮标式 需 配 趸船/筏组件 或 浮标平台 分析单元:带深度/水位传感器的水质多参数监测仪、气象传感器、日辐射传感器、雨量计和声纳测深仪 数据处理和传输:数据采集平台和多种数据传输方式
    留言咨询
  • 德国SEA公司是一家辐射仪器专业制造商,其生产的一系列高性能的NUVIA como170手持式核辐射表面沾污仪获得了各地的军事机构、海关和边境巡逻官员和安全部队、紧急反应部队和核专家等的高度赞誉,在各地得到了广泛的应用,同时,目前大量应用在各地的SEA产品在保护大型运输系统、机场/港口/火车站安全检查、核研究机构/核医学相关工厂安全巡检、从事或在核物质周围工作的职业人士污染检测等方面取得良好的应用成效,获得了各地的安全、研究机构的高度认可。NUVIA como170手持式核辐射表面沾污仪高灵敏表面污染检测仪/表面沾污测量仪正是德国SEA公司推出的一款性能适应性好、扩展性强的核污染安全检测工具,核心探测器采用了以闪烁体为基础的改良型新一代大面积塑料闪烁体探测器,可同时测量α、β、γ射线,具备自动探测α射线功能,可设定选择性测量α射线检测模式或β/γ射线检测模式。新型的塑料闪烁体探测器相比传统的α、β大面积氙气室探测器,具备高的灵敏度和响应性,对即使是低强度的辐射仍然具备良好的探测、响应性能,同时,新型的塑料闪烁体探测器无需充氙气,这将大大减少了仪器的运行费用,更可有效减少探测器的机械故障机率,减少后期维护费。NUVIA como170手持式核辐射表面沾污仪探测、分析功能,仪器的操作非常简单,SEA为其采用了微控方面的新技术,操作过程中的所有测量数据和信息都会根据操作者的当前工作模式自动切换显示、并且实时显示在仪器液晶屏上,纯文本显示的操作模式让即使没有操作过它的新手都能很快上手,系统基本参数和各种限值可以很快地设置好,并且操作者可以预先根据实际需要设置多种测量模式参数以方便测量时随时调取。NUVIA como170手持式核辐射表面沾污仪还具备数据分析、处理能力及完善的扩展能力,仪器机身内置有存储闪存,可以自动或者手动保存750组测量数据,前面板集成有一个RS232接口和一个外部探头接口,通过RS232接口,操作者可以方便的将机身内存数据下载到电脑端进更高级分析、处理(需选配PC端软件) ,同时仪器支持外接专用现场打印打印机,在现场快速打印出测量结果。而通过外部探头接口,可以连接SEA为CoMo 170&CoMo 300量身定做的一系列辐射剂量率探头、管道污染测量探头或者更大型的α、β表面污染探测器,这将提高CoMo 170&CoMo 300在各种环境下的适应能力。NUVIA como170手持式核辐射表面沾污仪可广泛应用在环保、公安、军队、海关、卫生、核工业、核电站等系统,SEA坚持所有部件在德国工厂生产、制造、校准的传统保证了仪器的优良品质和可靠的性能表现。新型的薄层塑料闪烁体探测器特 点:l 新型的薄层塑料闪烁体探测器,无需充气 ,减少故障机率的同时提供更佳的性能l 探测器可同时测量α射线、β射线和γ射线,可选择α射线污染测量模式、β/γ射线污染测量模式或者自动测量模式,自动测量在存在α射线辐射时自动报告。l 人体工程学设计,重量轻,高亮度的大面积LED显示,完整的刻度菜单显示,在黑暗环境中可自动感应并自动开启背景灯,照明时间可自由设定l 多样的外接式辐射剂量探测器适用性好,可在-10℃时使用不受限制。l 探测面积大:CoMo170探测面积:170cm2;CoMo300探测面积:300cm2l 用户友好界面,只需5键操作,显示单位cps、Bq或Bq/cm2可选,密码保护的高级菜单设置功能l 连接外接式辐射剂量探测器工作的CoMo 170机身集成存储闪存,测量数据自动储存(750组)并且可以通过面板上的RS232端口传输到PC上(需选配PC端软件)l β、γ本底监视与补偿 ,自动扣除本底l 自定义设置报警阈值,声光双重报警提示功能l 自定义测量时间。l 25个可自由编辑的核素库l 与可选择的区域监测仪组成固定式表面污染监测仪。l 可选配多种外接式扩展探头,如:剂量率探头或者管道污染测量,自动识别探头类型。l 可选配功能强大的PC端数据分析软件,下载机身闪存中的测量数据进行更高级的分析、处理l 可选配墙壁固定装置可用于检测手部沾污l连接外接式额外α、β探测器工作的CoMo 170可选配擦拭配件可作为擦拭检测l 可选配地表测量辅助装置可用于地面检测应 用:l 核电站l 核工业研究中心l 核医学l 高校、实验室l 环境辐射污染调查l 核安全机构(公安、军队… … )l 机场、车站、港口、海关安全检测安装擦拭板进行擦拭模式工作的CoMo 170。。。。。。规 格:探测器:ZnS涂层、薄膜塑料闪烁体探测器探头面积:CoMo170: 170cm2 / CoMo300): 300 cm2报警方式:声光报警报警阈值:可以选用cps、Bq或Bq/cm2单位进行编程设置显示单位:cps、Bq或Bq/cm2,当外接剂量率探头时显示nSv/h、μSv/h、mSv/h核素库:25个核素,并有重新设定,自动校正功能安装地表测量辅助装置工作的CoMo 170本底扣除:扣除和不扣除本底可选,本底测量时间可设本 底:CoMo 170:α:0.1 cps;β/γ:15-25 cpsCoMo 300:α:0.1 cps;β/γ:20-30 cps测量时间设置:在菜单中可选择测量时间模式或者误差率值模式(固定墙上或者擦拭测试使用),时间单位为秒存储器:750个数据,并且有打印功能(带时间记录)显 示:大尺寸LCD显示,带背景灯,128×64像素外 壳:人体工程学塑料外壳尺 寸: CoMo 170:280×125×135mm (带手柄)  CoMo 300:318×157×172mm (带手柄)工作玩意:﹣10℃~﹢40℃电 源:两节AA电池或者NiMH可充电电池(正常港电工作时间约为25~35小时)重 量: CoMo 170:750gCoMo 300:1150g探测效率:同位素名称探测效率同位素名称探测效率同位素名称探测效率C-14约 14%Co-60约 23%I-131约 21%F-18约 18%Sr-89约 27%Cs-137约 35%P-32约 25%Sr-90 / Y-90 (referred to Sr-90)约 42%Au-198约 23%S-35约 12%Tc-99m约 3%Tl-204约 43%Cl-36约 42%In-111约 8%Am-241 α约 18%K-40约 30%I-123约 7%P-238 α约 18%Co-57约 7%I-125约 12%U-238 α约 22%
    留言咨询
  • AWRMMS水面高光谱辐射移动测量系统—遥感反射率、离水辐射、水色遥感海洋光学研究产品介绍AWRMMS是一款水色遥感表观光学特性移动测量系统,设计简洁轻便,可用于各种船舶观测、携带方便。系统将采集的表观光谱信息、GPS数据与云台姿态数据,通过GPRS自动上传至预设的服务器,并记录在本地存储单元。该仪器为精确的高光谱分析应用提供极大的方便,可在UV/VIS范围测量水面处向下太阳辐照度(Ed),海面辐亮度(Lwater)及天空辐亮度(Lsky),带有液晶屏可同步显示测量的光谱信息,并且服务器后台配套处理软件可以处理、计算得到离水辐亮度(Lw)和遥感反射率(Rrs)等,形成数据产品,为水体生物光学模型提供关键参数。通过水色要素反演,可得到水体叶绿素、悬浮物质和有色溶解有机物CDOM浓度。此外,还可用来估算浮游植物的丰度和初级生产力,检测赤潮、藻华,验证卫星水色观测数据等。系统配置整套系统由1个辐照度传感器和2个辐亮度传感器组成,按照国际水色SIMBIOS计划中推荐的观测几何布置。辐亮度传感器的固定方向设置成与水面法线方向成40°。通过转动伸缩杆,以及参考数据采集器上的标尺可调整测量平面与太阳入射平面的夹角成135°,方便计算离水辐亮度与遥感反射率,用于遥感建模,可用于各种船舶的现场测量。&bull 3个Ramses传感器(1个辐照度和2个辐亮度)&bull 数据采集控制器&bull 水面辐射移动测量支架&bull 通信线缆&bull 数据分析软件数据采集控制器配套数据采集控制器设有3通道,可同时连接三个传感器,输出方式为 485 总线输出,液晶显示屏可同步显示测量的光谱信息。侧边设有黑色天线杆,用于数据传输,上方设有日射标杆,用于标记日射平面,并通过下部的角度尺,来确定测量角度。内置 GPS 定位系统,可实时读取设备经纬度信息。此外,还可通过获取的云台姿态信息,手动将设备调至水平状态。通过测量页面可设置测量次数及测量间隔,测量过程中,会在页面动态显示对应传感器通道的光谱曲线、测量姿态等信息,测量完毕后将数据自动保存在内置储存中并上传至预设服务器。 产品特征&bull 高光谱、高灵敏度辐照度和辐亮度测量&bull 国际通用的测量几何&bull 设有日射标尺可对准太阳方位角&bull 可调式三脚架可在非水平面的载具上使用,每个脚可独立调节&bull 同步获取云台姿态参数&bull 数据通过GPRS自动上传至预设的服务器&bull 数据本地保存,内存卡滚动存储&bull 通过Type-c口可直接导出本地数据&bull 体积小,低功耗,适合野外使用&bull 中文界面配套软件,操作友好产品应用&bull 离水辐亮度测量、遥感反射率测量&bull 水色要素反演——叶绿素、蓝藻、CDOM、悬浮物质等&bull 卫星数据验证&bull 海洋水色遥感研究、湖泊研究&bull 藻类水华研究、初级生产力估算&bull 气候学——大气研究&bull 极地生物研究、海岸带研究&bull 遥感反演模型的建立,光学模型研究 技术参数RAMSES传感器参数列表ACC-VISARC-VIS波长(nm)320~950检测器256 通道硅光电检测器光谱采样(nm/pixel)3.3光谱精度0.3实际通道190典型饱和度(IT: 4 ms)*单位:Wm-2 nm-110 (400 nm)*8 (500 nm)*14 (700 nm)*1Wm-2 nm-1 sr-1 (500 nm)典型 NEI (IT: 8 s)**单位:μWm-2 nm-10.4 (400 nm)**0.4 (500 nm)**0.6 (700 nm)**0.25μWm-2 nm-1 sr-1收集器类型余弦检测器FOV: 7°精度优于6~10%(取决于波长范围)优于6%积分时间4 ms~8 s测量原理辐照度辐亮度T100响应时间≤ 10 s (脉冲模式)测量间隔≤ 8 s(脉冲模式)测量角度40° ± 10°外壳材质不锈钢(1.4571/1.4404)或钛合金(3.7035)大小 (L x Ø )260 mm(ACC)/245 mm(ASC)/ 300 mm(ARC)x 48 mm重量不锈钢:~0.9 kg;钛:~ 0.7 kg数字接口RS-232 (TriOS)功耗≤ 0.85 W电源8~12 VDC (± 3 %)最大压力SubConn:30 bar防水等级IP68采样温度+2~+40 ° C环境温度+2~+40 ° C保存温度-20~+80 ° C流入速度0.1~10 m/s选配传感器倾角传感器:± 45°压力传感器: 0-30 Bar移动系统参数列表技术指标可装探头数量3只数据存储方式云存储本地同步存储,可滚动存储远程通信GPRS数据传输,3G/4G全兼容本地接口类型Type-c系统供电内置锂电池,充满后可连续工作48小时防护等级IP67云台角度分辨率5°水平仪精度优于20″基座既有三脚架式,也有万向夹基座云台姿态同步获取云台姿态参数测量杆长度1.5m/段, 2段角度可调范围水平角:-180° ~ 180°测量积分时间自适应测量间隔时间本地一键测量;也可手动设置,根据系统时钟或GPS授时,1sGPS定位精度1.5米环境工作温度-30℃~50℃环境工作湿度0~100%,不结露状态
    留言咨询
  • 一、 用途:可测量土壤或其他介质深达3米的剖面含水量,标定后可以同时测量土壤剖面的含盐量。该产品由TRIME-IPH升级而来,采用无线通讯数据传输,全面替代现有TRIME-IPH。 二、 原理:TRIME基于TDR(Time domain Reflectometry with Intelligent MicroElements)时域反射技术。用以直接测量土壤或其他介质的介电常数,介电常数又与土壤水分含量的多少有密切关系,土壤含水量即可通过模拟电压输出被读数系统计算并显示出来。测量时,金属波导体被用来传输TDR信号,TRIME工作时产生一个1GHz的高频电磁波,电磁波沿着波导体传输,并在探头周围产生一个电磁场。信号传输到波导体的末端后又反射回发射源。传输时间在10ps-2ns间。IMKO发明了这种专利测量技术,使得仪器可以检测到小至3ps的时间信号。建立了时间采样的方法。从而使得土壤水分的测量变得更为准确和方便。 三、 组成: 主要组成:剖面土壤水分传感器(TRIME-PICO-IPH):圆柱式探头,PVC材料外壳测量管:由TECANAT特殊塑料制成,有0.6米、1米、1.5米、2米、2.5米、3米五种不同深度及相关附件组成。可选国产或国外进口。数据管理器:采用掌上电脑,功能强大,读取数据及存储数据等,用户自选国外和国内品牌采集软件:PICO-TALK操作软件,用以采集数据,系统设置等,安装在掌上电脑上,有英文和中文两种版本蓝牙通讯模块:实现无线通讯,同时负责给探头供电。专用安装工具:埋设探管的专用工具套件,含土钻、支架、防震钢锤等等,为保证准确将测量管安装到位,最大程度上减小安装过程中产生的扰动,建议用户务必选择该专用安装工具。 剖面土壤水分传感器(TRIME-PICO-IPH) 专用安装工具 可选配件:表层土壤水分传感器(TRIME-PICO64/32):用于测量土壤表层含水量预打孔定位器:TRIME-PICO64/32探头定位、预打孔工具探针:TRIME-PICO64/32的探针,以做备用标定套件:用于仪器的基础校正,如更换探针,缆线长度有改变等表层水分传感器(TRIME-PICO64/32)专用土钻:用于测量深层土壤含水量时的打孔 表层水分传感器(TRIME-PICO64/32) TRIME-PICO64预打孔定位器 TRIME-PICO32预打孔定位器 延长套杆(0.5m,1m等 2种规格) 标定套件 表层水分传感器(TRIME-PICO64/32)专用土钻 四、 基本技术指标:剖面土壤水分传感器: TRIME-T3TRIME-T3C测量范围0&mdash 100%电导率范围0-6dS/m6-12dS/m12-50dS/m0-40%测量精度± 2%± 3%需要材料特殊标定(仅限T3C/44)40-70%测量精度± 3%± 4%测量重复精度± 0.3%± 0.5%温度导致的漂移± 0.3%操作温度范围-15℃~+50℃(可定制其他温度量程)测量体积3L(180mm x Ф150mm)2L(110mm x Ф150mm)适用土壤非均质土壤均质土壤,盐土传感器长度180mm110mm电缆长度标配2.5m,3.5m可选标定出厂按矿物质土标定。用户可自行使用TrimeTool进行重新标定测量管内径42mm测量管外径44.3mm测量管长度0.6m, 1m,1.5m, 2m,2.5m, 3m 表层土壤水分传感器: TRIME-PICO64TRIME-PICO32测量范围0-100%体积含水量电导率范围0-6dS/m6-12dS/m12-50dS/m0-40%测量精度± 1%± 2%需要材料特殊标定40-70%测量精度± 2%± 3%测量重复精度± 0.2%± 0.3%土壤温度测量范围-15℃~+50℃(可定制其他温度量程)土壤温度测量精度± 0.2℃温度漂移± 0.3%模拟输出接口2个0~1V(4-20mA可选)IMP232输出通道1:0~100%体积含水量通道2:-40~+70℃土壤温度工作温度-15℃~+50℃(可定制其他温度范围)数据校准标准校准用于大多数标准土壤类型,可存储最多15个用户自定义校正曲线电缆长度标配1.5m(其他长度可定制)防水等级IP68供电7-24V DC耗电待机1mA(只能用于B模式),空闲8mA,测量时100mA(持续2~3秒),用12V DC时探头主体尺寸155mm x Ф63mm155mm x Ф32mm测量体积1.25L(160mm x Ф100mm)0.25L(110mm x Ф50mm)探针长度标准160mm(暂不提供其他尺寸)标准110mm(暂不提供其他尺寸)探针直径6.0mm3.5mm 数据管理器: 数据管理器Rugged PDA N560e Palm PCCPUIntel? PXA270 624MHz based on Intel? XScale microarchitecture操作系统Microsoft Windows Mobile 5.0显示屏3.5&rsquo 全彩TFT LCD, QVGA 65536色,分辨率:480x640,TFT触摸屏内存128MB Flash ROM,64MB SDRAM电池1200mAh锂电池,可充电防水等级IP65接口USB 1.1,蓝牙2.0其他RS232,W-LAN (IEEE 802.11g),WiFi重量0.5Kg随机附件基座,触摸笔,USB电缆,充电器,软件光盘,使用手册等 野外防水型多功能数据管理器 特点防水结实,使用简单,支持中文,供电时间长,屏幕亮度高,阳光下可见,具有多种通讯方式及接口,扩展性强,可接GPS,MODEM等。广泛用于野外科学考察,林业调查,军事等领域。CPUIntel XScale PXA270, 520 MHz操作系统Microsoft Windows Mobile Version 6.1,支持16种语言,含中文系统内存128MB数据存储内存512MB扩展存储支持CFI,CFII卡SD卡,SDHC卡显示屏3.5"屏幕,TFT高亮度LCD,防太阳光辐射,阳光下可见,分辨率240 x 320,有背景灯,触摸屏供电可充电锂电14.04W-h,一次充电后,可运行20小时,可使用汽车充电器,一般充电时间4-6小时通讯接口9针COM口,全双功,DTR可控200mA,5V / USB Mini接口无线通讯支持蓝牙通讯,范围10米,可选Wi-Fi其他扩展插槽可选支持GPS,MODEM,条形码或其他特种卡操作温度-30℃ - 55℃存储温度-30℃ - 60℃防水等级IP67防震等级1.5米自由下落至混凝土地上无故障尺寸165 x 89 x 43mm(长 x 宽 x 厚)重量482克 HD2读数表: 功能用于读取水分数据,注意该读数表只能读数,无存储功能,可显示土壤水分,温度和电导率适合的探头PICO64,PICO32或PICO-IPH电池4.8V DC 2000mAh,充满电可供5000次测量防水等级IP67 蓝牙通讯模块:功能实现无线通讯,同时负责给探头供电蓝牙通讯Bluetooth 2.0兼容,工作范围:最远10m工作温度-20℃~+70℃供电1000mAh Ni-MH电池(4x1.2V),充满电后,支持大于1500次测量适合的探头PICO64,PICO32,PICO-IPH 五、 产地:德国
    留言咨询
  • 车载电离辐射监测系统应用领域放射性物质泄漏等紧急事故的应急丢失放射源搜寻大型活动放射源排查定 应急响应;安*保卫 产品特征γ能谱的采集与存储、 原位同位素鉴定H*(10)总γ剂量率的测量提供γ核素比H*(10) 剂量率声音报 警数据存储与检索二维剖面图显示表格、图表和波形图两种操作模式:跟 踪(移动使用)和记录(固定地点使用)可通过远 程 遥 控 技术参数塑料闪烁体探测器;探测器体积5L;测量范围:1nSv/h - 20uSv/h;能 量范围:50KeV - 3MeV;灵敏度:20 000cps/uSv/h(Cs-137);能够探测到高于本底2nSv/h(0.2uR/h)的辐射;系统软件平台HapCloud软件包含数据采集、核素识别、核素信息分析、放射性剂量率测量、数据库等核心模块。该系统可以获取γ能谱并识别同位素,计算每个核素的总γ剂量率和剂量率。它将测量结果和计算结果与预定义警报级别进行比较,并使用G P S数据将实际监测位置分配给相关数据和频谱记录。有完整的数据集,存储在本地数据库中。
    留言咨询
  • 实验室电磁辐射连续监测系统在电磁辐射宣传中起到了很好的作用,但是基于其不可移动性对使用范围造成了限制。针对移动宣传的需求,研发了移动点实现在线监测系统。方案能够实现如下功能:现场数据的采集与存储现场实时数据上传到监控中心配合现场显示进行实时数据发布配合现场显示进行科普宣传现场数据与监控中心实时同步现场实时数据对位置同步实时展示监测数据的网页发布实验室电磁辐射连续监测系统依据GB8702-2014电磁环境控制限值的电磁环境评估及中华人民共和国通信行业相关标准中对电磁辐射在线监测系统的要求设计,具有精度高,稳定性好,现场适应能力强等特点,满足各种条件下对电磁辐射监测的要求,系统遵循的标准;GB8702-2014《电磁环境控制限值》HJ/T10.2-1996《辐射环境保护管理导则 电磁辐射监测仪器和方法》HJ/T10.3-1996《辐射环境保护管理导则 电磁辐射环境影响评价方法与标准》HJ/T24-1998《500kV超高压送变电工程电磁辐射环境影响评价技术规范》本套设备可实现多个移动点设备共同工作,实现多监测值的实时对比展示及多实时曲线的对比展示。移动点的监测数据可上传到电磁辐射监控平台进行长期保存、分析,上传信息包含实时测量值、温度、湿度、GPS等信息。普通民众可以自由上网查询某地的电磁辐射实时值。手提供电系统为便于系统的移动应用,移动系统采用大容量蓄电池供电,方便移动稳定性好,电量不足时采用外接220v电源进行充电,但充电时不建议测量。专业设计表面喷塑处理,抗腐蚀接插件接口采用航空级接口支持工频/射频测量内置电量提示灯内置数据连接状态多种复杂环境可用抗震处理防尘处理数据采集发送该数据采集发送系统是我公司针对中国用户的实际需要,自主研发的一款集数据采集与发送二合一的数采系统,系统为可编程设置,可根据用户需求扩展功能。 支持电磁辐射测量值的实时采集与展示,可实现多种探头数据采集、数据自动传输及自动数据显示等。电池采用高性能、大容量电池支持WIFI/Zigbee等多种无线传输协议一次充电可连续使用10天以上充电过压保护放电过放保护过载保护性能稳定
    留言咨询
  • 回收维修Fluke 福禄克 Ti100红外热像仪型号Fluke TI125Fluke TI110Fluke TI100红外探测器像素160* 120160* 120160* 120对焦机制手动/自动一体对焦系统手动/自动一体对焦系统定焦:1.2米及以上距离热灵敏度(NETD)30℃目标温度时≤0.10℃(100MK)30℃目标温度时≤0.10℃(100MK)30℃目标温度时≤0.10℃(100MK)温度测量范围-20℃ 至 +350℃-20℃ 至 +250℃-20℃ 至 +250℃精度±2℃或2%(取较大值)±2℃或2%(取较大值)±2℃或2%(取较大值)红外可见光点对点融合技术完全红外光,画中画,完全可见光,AutoBlend融合,颜色报警完全红外光,画中画,完全可见光,颜色报警完全红外光图片标注系统有有-电子罗盘有有-多模式视频录制支持MPEG编码的.avi和.is3带温度信息支持MPEG编码的.avi-语音标注是(60秒)是(60秒)-激光瞄准/照明灯激光瞄准和照明灯激光瞄准和照明灯激光瞄准视频输出USB视频输出无-可充电电池2块锂离子智能电池1块锂离子智能电池1块锂离子智能电池坚固可靠两米高的自由落体测试,IP54和一体式镜盖两米高的自由落体测试,IP54和一体式镜盖两米高的自由落体测试,IP54和一体式镜盖重量0.726千克0.726千克0.726千克保修2年,额外可用2年,额外可用2年,额外可用市场价79800(TI125 9HZ)49800(TI110 9HZ)23800(TI100 9HZ)
    留言咨询
  • GroPoint土壤水分温度剖面测量系统是加拿大的GroPoint公司基于时域透射技术(TDT5)研发的,该技术相较于传统的时域反射(TDR)使得水分温度测量系统更加准确和稳定。主要特点---l 高准确性该测量系统的设计将天线穿过电路板每厘米20次,天线的有效长度是其物理长度的5倍。更长的天线可以提高每个样品的分辨率,从而滤除更多的噪音,将精度提高到±1%(VMC在8%至42%之间)。l 重复精度每次测量时,系统通过传感元件发送400,000个脉冲以生成测量数据,然后使用高级滤波技术消除噪声,并将测量结果用SDI-12协议输出发送, 确保在每次测量水分时获得相同的极端精度(±1%)。l 低功耗每次测量的总时间也少于100 ms。这意味着低功耗,使用9V电池供电的数据采集器连接情况下运行数月。GP-Profile土壤水分温度剖面传感器GP-Profile提供了使用单个探头准确高效的测量剖面土壤水分含量和温度的方法,避免了繁重的土壤剖面挖掘和繁琐的传感器埋设。它可以部署在灌溉敏感区域,以精确控制灌溉用水并提供对水分在土壤中移动的完整过程。GP- Profile有六种不同的传感器长度,适用于广泛的农作物监测。根据您的要求,可以选择两种不同的温度传感器配置。 如果您只需要测量水分,则可以不配置温度传感器,或者标准配置每隔1或2段放置温度传感器。选择适合您的应用的15厘米节段的数量。也可以使用自定义长度。主要参数1.测量范围:0% to 100 % of VMC;2.准确度:±1.0%;3.精度: 0.2%;4.测量范围:-20°C to +70°C;5.准确度:±0.5°C;6.输出:SDI-12 V1.3 (RS485可选);GP-DL4数据采集器GroPoint™ 数据采集器提供了一种便宜且简单易用的自动记录和存储GroPoint土壤传感器测量值的方法。模拟版本最多可同时连接4个传感器,而SDI-12版本最多可连接10个传感器(使用连接到2个端口的4端口SDI-12扩展条)。测量以用户选择的时间间隔记录,从每分钟一次到每十二小时。 数据存储在非易失性闪存中,即使电池发生故障也会保留。内存可以容纳32,520个测量值。配置数据记录器是通过包括Logger Config(SDI-12版本)或GroGraph(模拟版本)Windows软件完成的。 将随附的USB电缆插入数据记录器的USB端口和计算机上的USB端口,然后运行软件以设置记录间隔,SDI-12传感器地址等。防水外壳和坚固耐用的IP66 / IP68环境连接器允许户外放置此数据记录器。 使用标准的飞利浦0号螺丝刀即可轻松打开外壳以更换电池(3.0V锂电池CR2032纽扣电池为记录仪供电,而9V碱性电池为传感器供电)。 两种电池都包含在内,并在交付时预装。 正常操作下电池通常将持续约一年。记录的SDI-12传感器数据可以作为标准的CSV文件下载到您的计算机中,或者使用GP-DU手持式SDI-12传感器读取器直接显示在记录仪上。产品特点l 使用标准家用电池(用于记录仪的CR2032和用于驱动传感器的9V);l 传感器与GroPoint EN3恶劣环境连接器连接;l 防水外壳;l 长达一年的电池寿命是典型的;l 即使没有电池,数据也会保留;l 记录器数据以通用CSV格式下载,允许您在您最喜爱的软件(如Microsoft Excel)中存档和绘制数据。技术参数1.输出格式:CSV文本文件通过自带USB线缆导出;2.传感器接口:SDI-12 / RS-485 (SDI-12版本) 或 0-5mA / 4-20 mA (模拟版本);3.传感器接头:4针 (SDI-12 版本) or 3针 (模拟版本) female EN3 connector;4.传感器连接数: SDI-12类型: 10 个(通过 SDI-12专用 4端口扩展槽);5.模拟传感器:4个;6.电脑接口: USB接口;7.存储:1 MB存储空间,当连接单个传感器时,大于 50000 个数据;当连接水分剖面传感器时,大于 20000个数据;8.测量间隔:1分钟到12小时由用户指定;9.操作温度: -20°C to 65°C;10.存储温度: -20°C to 70°C;11.电源:3.0V 锂离子电池用于内存;9V 工业碱性电池用于传感器供电;12.电池寿命:9V电池可使用1年;13.尺寸规格:14.6cm × 8.9cm× 5.1cm;14.重量:272g;15.质保期限:1年;GP-BSP无线传输数据采集器 GP-BSP既是数据采集器又是无线接入点,可在测量现场通过Android设备方便的查看和下载测量数据。免费的GP Reader应用程序(仅适用于Android设备)用于检查当前测量,下载数据并可设置传感器采样间隔(从1分钟到12小时)。 随着智能手机上的应用程序打开,只需按下蓝牙传感器盒上的黑色按钮即可将其唤醒并自动建立无线连接;点击应用程序中的下载按钮可下载所有记录的数据,还可以显示当前的电池电量。该数据采集器可连接多达10个SDI-12 GroPoint传感器(使用带有4端口SDI-12扩展模块)。 数据存储在存储器中,即使电池发生故障也会保留数据;内存可以容纳32,520个测量值。产品特点l 快速访问该网站,将传感器数据无线传输到您的智能手机;l 保持连接长达60米;l 使用AA碱性电池,可6个月;即使没有电池,数据也会保留;l 防水IP65级外壳;主要参数1.传感器接口:1个EN3类型转接口(4针母口);2.存储:当连接单个传感器时,大于50000个数据;当连接水分剖面传感器时,大于20000个数据;3.电源:2节AA碱性电池;4.电池寿命:供电最长可达6个月;5.测量间隔:1分钟到12小时由用户指定;产地与厂家:加拿大 GroPoint
    留言咨询
  • 概述:BSRN1000/3000型基准辐射站按照WMO组织的“本底辐射网络(BSRN)”规范和要求,采用传统的全自动太阳跟踪器配备GPS和太阳定位探头精确的自动测量太阳能要素中的总辐射(GHI)、直接辐射(DNI)和散射辐射(DIFF)等辐射组分,是太阳能辐射的最高标准和要求,同时可用于太阳能功率预报。系统测量要素必备要素:总辐射(GHI)、散射辐射(DIFF)、直接辐射(DNI)可配天空长波辐射、净辐射、日照时数、天空成像仪、云雷达可选气象要素:风速、风向、空气温湿度、大气压力、降水系统特点:全自动太阳跟踪器,自带修正集成GPS接收机安装简易BSRN级性能无需维护支持有线、无线等多种数据传输方式,实时查看观测数据可增设其它辐射表可输出太阳位置
    留言咨询
  • OL 770 &mdash 快速光谱辐射测量系统OL 770由美国OL(Optronic Laboratories)公司设计、制造,OL是世界享有盛誉的光学计量测试仪器生产厂家,由2名NIST的资深光度、辐射度计量科学家与1970年创建。强大的计量背景,使得OL的产品的测试精度、重复性和可靠性,无人能比。产品特点:&bull Convenient USB interface&bull 25+ spectral scans/second&bull Meets CIE 127 guidelines, Conditions A & B, TLF&bull Low stray light performance&bull High spectral resolution&bull High sensitivity&bull High dynamic range&bull 0.5 nm wavelength accuracy&bull Research-grade precision&bull Compact, lightweight, portable enclosure&bull Rugged strain relief and self-centering adapter&bull 完全符合CIE 127测试规范,关于条件A B及总光通量的定义&bull 每秒超过25次的光谱采样速度&bull 杰出的测试结果可靠性、一致性、重复性&bull 内置校正光源,方便客户自行校正&bull 傻瓜式操作模式,简单易用,无需特殊培训&bull 低杂散光,高光谱解析度、高灵敏度、高动态范围&bull 0.5 nm 波长精度&bull 研究级的精度Research-grade precision&bull 设计紧凑、轻便,除了适合实验室测量外,还适合野外测量&bull 独特设计的自中心LED夹具,保证测试结果的一致性最全的功能附件:OL 770除了LED测量的常用附件外,还提供其它如温控模块、标准灯、大尺寸积分球,甚至透射、反射测试附件,为建成一个覆盖从光源到材料光学特性检测的完整实验室方案!常用LED测量附件主要针对LED单管,包括OL 15AB LED平均光强测试附件:为精确测量LED的平均光强专门设计,完全符合CIE 127 关于平均光强测试的近场AB 条件,该附件采用组合设计,同时满足AB条件,而其采用的光纤+积分球的设计,提供了绝佳的空间响应均匀性,从而有效的消除了最主要测测试误差来源!OL IS-670-LED LED总光通量测试积分球,直径6inch,采用PTFE漫反射涂层,反射率99% @ 300 nm to 1700 nm 。球体有互成90° 的入口和出口,并有一个SMA光纤接口用于连接辅助灯。该积分球兼容各种LED夹具。该积分球的独特设计在于,其内置的辅助灯还可以作为一个标准光源用于系统的校正。辅助灯用于补偿被测光源本身的反射和自吸收,作为标准光源,则可以对积分球本身光谱效率进行校正。这种设计可以让使用者现场进行高精度的校正,并且非常容易操作,而无需专门的训练和经验。而许多进口仪器不得不送到工厂进行校正。OL 770-LED 的主机设有专门的校正用光纤接口。OL 1272-LED 部分、总光通量测试积分球,是根据CIE127.2文件推荐的测试条件设计的最新一代积分球测试附件。,用于测试总光通量和局部光通量。其球体直径9.75-inch (24.75 cm),采用PTFE漫反射涂层,反射率99% @ 300 nm to 1700 nm 。球体有互成90° 的入口和出口。在球体旁边,有一个密闭暗箱,内置LED的夹具,夹具固定在可移动的导轨上,通过移动,LED可被定为在积分球内部测试总光通量,也可以在球体外部,从而相对于积分球入口形成不同的视场角度,测试局部光通量。标准视场角度有40° , 60° , 90° , and 120° 。该积分球同样配置有内置辅助灯、标准灯设计,方便校正。OL 700-30 LED发散角测试附件:用于精确测量LED的发散特性,和角度相关的光强、光谱、色度学特性。自动测试水平角度范围-90° to +90° 水平角度解析度 0.01° 角度精度 0.001° 间隔1° 扫描速度:15° /秒 OL 700-88TC 温控模块:采用液体制冷,可对LED进行热特性相关的测试,完全兼容其他的光强、光通量测试附件。OL 700-86VP 真空泵附件,用于与真空吸附性的LED夹具,夹持表面贴装性SMD LED样品 其它扩展功能附件:用于测试面光源、LED显示屏的非接触测试镜头OL 610用于测试材料、灯具涂层等的透过率、反射率积分球附件标准光源附件:标准光谱辐射标准、波长标准、光强、光通标准各种精密电流源、软件开发包等等详细情况请联络我们获取详细资料! 软件测试功能:在380 &ndash 1100 nm范围内,测试各种LED 红外LED的辐射度、光度学数据:- Total Radiant Flux (watts) - Color Purity- Total Luminous Flux(lumens) - Correlated Color Temperature- Total Spectral Flux(watts/nm) - Color Rendering Indices- Dominant Wavelength(nm) - Chromaticity Coordinates- Peak Wavelength(nm) - Averaged Radiant Intensity (watts/sr)- Half-Bandwidth(nm) - Averaged Luminous Intensity (lumens/sr)- Spectral Irradiance(watts/cm^2 nm)角度相关的数据:- Maximum intensity - Peak wavelength- Chromaticity values - Dominant wavelength- Tristimulus values - Half-bandwidth- Lab/Luv values - Color temperature- CRI - Purity- Relative power - Power
    留言咨询
  • SRS300便携式太阳辐射测量系统,将辐射表、数据采集系统、供电系统、安装支架集成在小型便携箱中,采用航空插头连接方式,便于携带和就地安装测量。可测量水平辐射、斜辐射,也可两种辐射同时测量,配置的锂电池一次充电可保持120小时的测试,内置WIFI功能的数据采集器可方便的使用笔记本电脑、平板电脑、手机进行数据的读取和下载,同时数据采集器内置的内存卡和内置锂电池可保证数据的存储以及在外部供电断电的情况下保证数据不丢失。该系统以其便捷性,可选用的高精度辐射表,非常适用于光伏电站运维人员的巡检,对现场长期监测的辐射表的比对和校准,光伏行业技术人员的实验和测试,第三方的检测以及光伏电站综合效率的验收及校核。系统应用1、水平辐射的测量(选配背板温度):利用便携式三角支架将辐射表进行水平安装,辐射表自带的水平仪可调节水平,辐射表(选配背板温度传感器)和数采通过航空插头连接,数采可自动存储长达10年的数据。2、太阳能板斜辐射、太阳能板背板温度的测量利用定制的安装支架将辐射表安装在太阳能板上,可保证辐射表和太阳能板在同一平面上。辐射表和背板温度传感器航空插头和数采通过,数采可自动存储长达10年的数据。3、水平辐射、太阳能板斜辐射、太阳能板背板温度的测量作为定制的系统,该便携式系统还可满足用户同时对水平辐射、太阳能板斜辐射和太阳能板背板温度的测量。利用便携式三角支架将辐射表进行水平安装,辐射表自带的水平仪可调节水平,利用定制的安装支架将辐射表安装在太阳能板上,可保证辐射表和太阳能板在同一平面上。辐射表和背板温度传感器航空插头和数采通过,数采可自动存储长达5年数据。4、定制应用可选配四分量净辐射表、反照率辐射表、总直散一体式辐射表,应用于各种测量需求。软件系统系统内置操作软件,可通过笔记本电脑、平板电脑或者手机进行数据的读取和下载,数据的扫描频率及格式可根据用户的要求进行编制,用户在使用过程中也可自行调整,设置过程简单便捷。数采自带的内存根据不同的扫描频率可保证5-10年的数据存储,数据存储满了之后可自动覆盖之前的数据。数采内置的锂电池可保证在外部供电中断的情况下数据不丢失。数据显示的形式也可根据用户的需求进行定制便携箱及安装支架便携箱集成专用航空插头,无需工具可进行传感器的连接和电池充电。配置太阳能板专用支架,安装方便,适用于各种规格的太阳能板。水平测量可选配便携式三角支架。
    留言咨询
  • 土壤管式剖面水分仪 400-860-5168转4652
    土壤管式剖面水分仪能够实时监测土壤的水分含量和温度,及时发现土壤墒情的变化,为农业生产提供及时、准确的信息。采用自动化监测技术,无需人工干预,降低了劳动强度,提高了工作效率。通过传输设备,土壤墒情监测系统可以实现远程监测,使农业生产者能够随时随地了解土壤墒情情况。一、产品简介土壤管式剖面水分仪是用于监测土壤剖面温度、土壤剖面湿度、土壤剖面电导率的在线监测设备,集土壤温度、水分、电导率可广泛应用于智慧大棚、智慧果园、智慧灌溉等农业工程领域。二、产品参数太阳能板功率:8W太阳能板标准工作电压:DC5V内置锂电池容量:5000mAh传感器启动时间:60S传感器供电电压:DC12V传感器供电电流:22mA传感器功耗:0.26W通讯方式:485 Modbus RTU协议测量参数:可同时测量5层(10层以下可定制层数)测量原理:通过测量土壤介电常数建立数学模型,设计螺旋式测量电极测量土壤体积含水率数据。参数测量范围精度分辨率单位土壤温度-30~70℃±0.3(-10~70℃)0.01℃土壤湿度0~100%±3%(壤土)高有机质土壤(土壤有机碳含量12%)高粘粒含量土壤(粘粒含量45%)由于其介电弛豫特性,可能需要针对特定土壤类型进行标定0.1%---土壤电导率0~20000us/cm±3%(0~10000us/cm)±5%(全量程)1us/cm 三、优势与特点★单个土壤管式传感器可以同时测量多个深度的土壤参数,监测深度可定制(小于1M)。★传感器采用低功耗设计,功耗低至0.26W,适用于野外长期无人监测。★传感器每层都可以独立测量温度、湿度、电导率参数。★传感器外壳采用进口PC材质,强度高、耐腐蚀、对环境无污染。★传感器防水等级达到IP67,应对长期室外监测。★传感器测量一定区域内的平均湿度,弥补了单点测量具有局限性的问题。★传感器采用自主设计的螺旋式测量电极,改善传感器与土壤之间的接触,尽量避免空气间隙造成的测量误差。 四、使用注意事项a.传感器使用应严格按照安装使用说明书进行。b.多个传感器同时工作时,必须间隔3米以上距离。c.传感器测量原理限制,传感器测量地为中心半径3米范围内不应有电磁线缆和强磁辐射干扰,避免造成传感器测量的巨大误差和损坏。d.传感器的安装环境应该符合传感器的测量范围,避免超量程等不规范行为。e.传感器安装应避开强酸强碱、重油污重金属环境进行。f.传感器为土壤测量传感器,禁止使用本传感器对其他物质进行测量。g.传感器安装环境不能有强振动。h.传感器不能有过强外力作用。i.禁止拆卸,私自拆卸视为不合规行为,后续将不再提供任何服务行为。 五、结构图 六、尺寸图 七、安装方法钻孔法:1. 取土钻钻头、手柄、支杆,完成后将取土钻竖直于地面,双手紧握手柄顺时针下压慢速转动。(注意:不要太用力,务必慢速多转几圈,防止钻头跑偏至孔洞打歪) 2. 将取土钻从孔洞中取出,放到盆子里,用工具把钻出的土收集到盆子里以用来和泥浆。(注意:第一钻土因为杂质过多,不做收集) 3. 反复持续上述打孔、取土,并在此过程中尝试性地将传感器轻放入孔洞中(请勿将设备用力触底),以测试孔洞的深度是否合适 若有卡顿,则使用取土钻修正,保证传感器放入、取出都比较顺畅 直到孔深与传感器所标识的安装位置齐平(零刻度线),打孔完成。4. 挑出盆中土壤杂质,石子、根、不容易溶解的土块等。将土壤搓细,以便和泥浆。5. 倒入适量水,充分搅拌至粘稠状 壤土泥浆一般不能稠于“芝麻酱”状。 6. 将泥浆慢慢倒入孔洞,大概到孔洞1/2的位置 可根据实际情况酌情增减。 7.将传感器慢慢放入孔洞中,顺时针转动并下压,速度过快可能会导致气泡不能被完全排出。(注意:再转动下压的过程中不可以上拔传感器,防止气体再次吸入孔中)8.当传感器安装到正确的深度后,设备周围会溢出一些泥浆,灌浆完成 此时传感器安装深度与洞口齐平。(注意:将传感器周围3CM以外多余的泥浆清除,防止结块影响水分下渗)掩埋法:使用镐子挖一个埋传感器的深坑,和泥浆将传感器掩埋,处理细节参照钻孔法。
    留言咨询
  • 功能:SSP地震散射剖面系统是为地形地质条件复杂的山区、场地而设计。具有分辨率高、图像直观的特点。它以非均匀地质模型为基础,适合各种复杂条件下的精细地质结构勘探。适于采空区、岩溶、孤石、软弱结构面的勘探。原理:SSP是一种地震波散射成像技术。通过使用多点激发和多点接收的散射记录,反演重建地下介质的散射体与波速分布的方法。散射波法勘探可以获得两种结果,一个是反应散射强度即波阻抗差异界面的的偏移图像,另一个是反应局部地力学特性的波速图像。低波速对应松散层、风化层、疏松区、岩溶、空洞、断层带等地质对象;高波速对应完整基岩、孤石、注浆体等地质与工程对象。技术指标:200m探测深度24位 A/D数模转换移动式数据线便于倒排列400s采样时间TDIS系列震源人工拖拉上山典型案例索引1.桥基岩溶探测2.露天矿采空区探测3.防空洞探测工程案例:1.桥基岩溶探测2.露天矿采空区探测防空洞在波速剖面图里应为低速区,在偏移图像中上界面波阻抗变低,蓝色界面,下界面波阻抗变高,红色界面,所以防空洞位置应为图中圆圈标注位置。经实际验证,与实际防空洞位置相符。3.防空洞探测图像中蓝色代表低速区,红色表示高速区。横坐标为里程,纵坐标为埋深。勘测结果表明,区内存在三个低速层,对应三个煤系地层,埋深从10m到80m。受构造影响,煤层横向连续性差,断续分布。这一结果与前期的地质勘查结果一致。区内共发现13个采空区,其中有5个采空区与隧道相交,可能对施工和安全产生影响,导致坍塌、涌水和瓦斯突出等地质灾害。建议改线。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制