薄膜无损检测热膨胀系数分析仪

仪器信息网薄膜无损检测热膨胀系数分析仪专题为您提供2024年最新薄膜无损检测热膨胀系数分析仪价格报价、厂家品牌的相关信息, 包括薄膜无损检测热膨胀系数分析仪参数、型号等,不管是国产,还是进口品牌的薄膜无损检测热膨胀系数分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合薄膜无损检测热膨胀系数分析仪相关的耗材配件、试剂标物,还有薄膜无损检测热膨胀系数分析仪相关的最新资讯、资料,以及薄膜无损检测热膨胀系数分析仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

薄膜无损检测热膨胀系数分析仪相关的厂商

  • 武汉嘉仪通科技有限公司成立于2009年,总部位于中国• 光谷,是以薄膜物性测量仪器和半导体工艺设备作为战略定位,实现技术自主创新的国家高新技术企业。公司集快速退火炉、霍尔效应测试仪、热电参数测试系统、热导率测试系统、相变温度分析仪、液氮低温恒温器、热膨胀系数测试系统和芯片热管理系统等物性检测仪器和半导体工艺设备的研发、市场和技术服务于一体,相继被评为湖北省“百人计划”及武汉市政府“城市合伙人”企业,并荣获“湖北省技术发明一等奖”,现建有省级工程实验室、新型研发机构以及市级企业技术中心平台。
    留言咨询
  • 深圳衡冠检测技术有限公司是中国领先的材料分析和材料测试解决方案的服务商,公司集研发、生产、销售和服务四位一体,专业提供一流的材料理化分析仪器和全面的材料物理力学测试解决方案.产品包括:导热系数仪、热膨胀仪、多元素化学成份快速分析仪、陶瓷专用检测设备、玻璃/耐火材料/炭素(石墨)试验设备、实验室研磨机、制样设备、实验电炉/工业烧结及烘烤设备等二百多种产品,其中多种产品填补了国内空白。 产品包括:一、日用/建筑/卫生/工程陶瓷检测仪器: 数显式陶瓷砖抗折仪(试验机),多元素快速分析仪,日用陶瓷热稳定性测定仪;陶瓷砖抗热震性测定仪;陶瓷砖釉面抗龟裂试验仪(蒸压釜);数显式陶瓷吸水率仪;陶瓷砖釉面耐磨性仪;陶瓷砖抗冻性测定仪;陶瓷无釉砖耐磨性能测定仪;陶瓷砖冲击试验仪;色差仪, 白度仪,陶瓷砖磨擦系数测定仪;陶瓷平整度、直角度、边直度综合测定仪;陶瓷砖厚度测量仪;致密度仪;数显式可塑性仪;电动坯料抗折仪;瓷胎透光度仪,多孔陶瓷显气率、容重试验仪;全套工程、多孔陶瓷试验仪器等。二、热分析仪器 系列热膨胀仪,系列导热系数测定仪,差热分析仪,蓄热系数仪等。三、玻璃、炭素、耐火材料试验仪器,高温铸造仪器,无机非金属材料理化实验仪器: 硅酸盐化学成份快速分析仪,;材料高温抗折仪;材料高温强度试验仪;影像式烧结点试验仪;材料荷重软化温度测定仪等;阻温特性仪,动态(静态)弹性摸量仪,玻璃析晶电炉, 玻璃软化点测定仪, 水份快速测定仪,高温型壳变形仪,全套炭素材料试验仪器。四、实验室、工业用电炉: 快速升温电阻炉;箱式梯度炉;坩锅炉(熔块炉);恒温干燥箱, 箱式炉,工业烧结炉等。五、实验室制样、研磨设备: 快速研磨机、卧式真空炼泥机;手动、电动制样机, 行星研磨机,破碎机等。
    留言咨询
  • 杭州荣探无损检测设备有限公司,坐落在盛有天堂美誉的杭州崇贤工业园区,是一家集设计、研发、生产、销售为一体的专业厂家。主要产品有RT系列超小型便携式工业X射线探伤机,产品广泛应用于焊缝无损检测、铸造无损检测、非金属无损检测、电子器件等领域。
    留言咨询

薄膜无损检测热膨胀系数分析仪相关的仪器

  • 物体由于温度改变而有胀缩现象。其变化能力以等压下,单位温度变化所导致的体积变化,即热膨胀系数表示。C0007线性热膨胀系数仪用于检测固体无机材料、金属材料的高温膨胀性能,特别是刚玉、耐火材料、精铸用型壳及型芯材料、陶瓷、陶瓷原料、瓷泥、釉料、玻璃、石墨等无机材料。 应用:多种材料 功能:上下限标记、易于阅读的千分表、台式操作 标准:ASTM D696 选配件:数显表 电气连接:220/240 VAC @ 50 HZ or110 VAC @ 60 HZ (可根据客户要求定制) 外形尺寸:H: 750mm W: 125mm D: 125mm重量: 5kg
    留言咨询
  • 一、概述:本仪器用于检测刚玉、玻璃、耐火材料、造型材料、陶瓷、釉料、石墨、碳素等无机材料、金属制品的热膨胀性能,为科研、教学提供必备的测试手段。可完成线性膨胀系数、体膨胀系数、软化温度、烧结的动力学研究并描绘出相关变化曲线。可根据需求选择无荷或有荷检测。 二,执行标准 仪器参考标准:GB/T3810.8-2016对陶瓷砖线性热膨胀的测定,GB/T16535-2008精细陶瓷线性热膨胀系数试验方法:顶杆法,GB/T16920-2015对玻璃平均线热膨胀系数的测定,GB/T3074.4-2016对石墨电极热膨胀系数的测定,GB/T 7320-2018《耐火制品热膨胀试验方法》。 三,技术参数1、最高炉温:0-1200℃。2、升温速度:0-20度/分可调,微电脑程序控温。3、自动计算补偿系数并自动补偿,也可人工修正。4、连计算机自动记录、存储、打印数椐,打印温度-膨胀系数曲线。所有试验操作均计算机界面完成,操作方便易学并提供全套软件。5、膨胀值测量范围:±2mm。6、测量膨胀值分辨率:0.1um,自动校正量程。7、试样范围:样品直径0-50mm,高5mm-70mm。8、加热炉体上下滑动方便试样装卸.8、可充氮气。9、电源电压:220V±10﹪,2KW。 四,配置清单主机一台;试验软件一套;电脑一台;合格证1份;保修卡1分;电源线1根;说明书1份;操作视频1份
    留言咨询
  • 玻璃瓶线热膨胀系数测试仪玻璃瓶线热膨胀系数测试仪适用于安瓿瓶、西林瓶、口服液瓶、输液瓶等药用玻璃制品平均线热膨胀系数的测定测试。广泛应用于制药企业、药用玻璃生产企业、药检机构等单位。 技术特征彩色大液晶显示测试结果,及每次测量值、统计值触摸屏控制,清晰直观,操作方便超大测试空间,满足很多药品玻璃容器直接测试 采用高速处理芯片,运行速度大大提高 满足GMP要求的数据本地存储、自动处理、统计测试数据功能配备测试软件系统,可打印测试结果自动计算膨胀系数、体膨胀系数、线膨胀量、急热膨胀自动计算补偿系数并自动补偿,也可人工修正自动记录、存储、打印数椐,打印温度一膨胀系数曲线。温度间距自由设定 技术特征 试验温度 室温~1000℃ 升温速度 0~20℃/min可调膨胀测量范围 0~3mm膨胀值分辨率 O.1~1µ m,自动校正量程试样范围 Ф6-45mm,长50mm,圆柱形、方形均可系统测量误差 ±0.1 ~0.5% 外形尺寸 650mm*550mm*700mm(长宽高) 重 量 约40 Kg 功 率 1800W 环境要求工作温度 ≤28℃ 相对湿度 最高80%,无凝露 工作电源 220V 50Hz参照标准4022 玻璃平均线热膨胀系数测定法产品配置 主机、触摸液晶屏、测试软件选购件:电脑玻璃瓶线热膨胀系数测试仪此为广告
    留言咨询

薄膜无损检测热膨胀系数分析仪相关的资讯

  • 具有负泊松比与负膨胀系数的新型双负超材料
    负泊松比材料在受到压缩载荷时横向收缩,负热膨胀系数材料在受热时发生收缩现象。而负泊松比和负热膨胀系数相结合的新型超材料为材料的特殊需求提供了进一步的可能性。香港城市大学深圳研究院介绍了一种具有负泊松比与负热膨胀系数的双负超材料(Extreme Mechanics Letters, 2019)。这种新型超材料基于传统的星型内凹结构。为了提高该结构的负泊松比,研究者分别在结构和排列方式上进行了创新。这种结构和排列上的创新使得超材料在受到外界力/位移载荷时呈现出内凹变形机制,从而表现出负泊松比。图1(a), (b)新构型超材料的结构以及(c), (d)两种不同的排列方式。为了得到负热膨胀系数,在一个结构中引入了两种热膨胀系数不同的材料(图1a)。蓝色的杆的热膨胀系数较小,而红色的杆热膨胀系数较大。研究者用大量的数值模拟对新构型超材料的负热膨胀系数进行了验证。在加热时红色的杆因为需要伸长的更多而使得垂直方向蓝色的杆发生弯曲,从而减小了整个结构所占有的空间,表现出负的热膨胀系数(图2)。图2新构型超材料受热变形图。为了验证该超材料的负泊松比行为,研究者们采用摩方P130 打印机对材料进行了制备。并用试验和数值仿真相结合的方法对其负泊松比行为进行了验证,两者吻合的较好。由于材料打印的尺寸在微米级别,这也为材料在声学、光学等方面的应用提供了可能性。图3新构型超材料电镜观测图以及受力变形图。该研究工作发表于Extreme Mechanics Letters,香港城市大学深圳研究院陆洋老师为通讯作者。摩方nanoArch® P130打印的轻质高强结构材料,最小杆径8 μm。深圳摩方材料科技有限公司持续助力香港城市大学深圳研究院在超材料领域的研究及应用,其自主研发的nanoArch® P130 3D打印机精度高达2微米。除上述研究工作中的超材料应用外,另一重要的应用是轻质高强力学超材料,具有超轻质量和超高强度。其优异的力学性能得益于其中的微晶格结构,如上图所示,这些微晶格结构非常复杂,使用传统的二维制造技术无法加工制作,而摩方的微尺度3D打印技术则可以快速高效加工出这种复杂三维微结构,且具有极高的打印分辨率(图中微点阵结构,最小杆径8 μm)。BMF nanoArch® P130打印系统
  • 德国Neaspec推出全新功能模块,助力热膨胀及拉曼研究领域
    德国Neaspec公司推出的neaSNOM超高分辨散射式近场光学显微系统和nano-FTIR纳米傅里叶变换红外光谱仪以其稳定的性能,高的空间分辨率和的客户体验,自面市以来,在等离子激元、物质鉴别、二维材料、生物成像等领域均获得了广泛好评和青睐。目前国内已有清华大学、南开大学、中科院物理所等数所高校和机构用户使用Neaspec产品进行更深层次的科学研究,并给出高的评价。“NeaSNOM显微镜系统大地促进了我们的贵金属纳米结构表面等离激元研究”,中山大学陈焕君教授如是说。 Neaspec公司也秉承一贯的立创新和开拓进取精神,努力为客户提供优质的服务和便捷的实验工具。近期,Neaspec公司推出了全新的Photo Thermal Expansion(PTE+)和Tip Enhanced Raman Spectroscopy(TERS)功能模块,期待可以更好地服务广大科研工作者。 Photo Thermal Expansion(PTE+)功能模块基于被检测物质在激光照明下的热膨胀,通过机械变化的检测还原物质的吸收光谱。对于热膨胀系数较大物质,尤其是高分子材料,PTE模块可以提供良好的吸收谱线,对物质鉴别、材料分析工作是很好的补充。 Tip Enhanced Raman Spectroscopy(TERS)功能模块将大拓展现有产品应用领域。物质的拉曼光谱不同于吸收或者反射光谱,反映的是非弹性散射光性质,可以得到分子振动、转动方面的信息。但是由于其信号弱,一般难以直接应用于实际分析。针增强拉曼光谱利用了AFM探针纳米的曲率半径,对物质的拉曼信号可以起到良好的增强作用。Neaspec公司基于该技术,与s-SNOM技术结合,推出了该项全新模块,以期在分子检测方面为科研工作者提供更大的便利。相关产品链接neaSNOM超高分辨散射式近场光学显微镜http://www.instrument.com.cn/netshow/C170040.htmnano-FTIR纳米傅里叶红外光谱仪http://www.instrument.com.cn/netshow/SH100980/C194218.htm
  • 小小薄膜检测有大学问 自主创新是仪器之魂 ——“创新100”走访武汉嘉仪通科技有限公司
    p    strong 仪器信息网讯 /strong 传统薄膜材料的热特性,尤其是维纳米级薄膜材料的热物性检测,很难进行无损检测,通常采用破坏性检测或者用块体性能代替。武汉嘉仪通科技有限公司经过数年的产品研发,并通过与华中科技大学缪向水教授团队密切合作,研发出了全球首台纳米级薄膜材料热分析仪器,能够实现薄膜材料相变温度和热膨胀系数的无损检测,在薄膜材料热物性检测方面取得了国际性的突破。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 400px height: 266px " src=" https://img1.17img.cn/17img/images/201911/uepic/995632ed-3e9d-4980-99e7-219950ba7b59.jpg" title=" 光功率热分析仪(OPA).png" alt=" 光功率热分析仪(OPA).png" width=" 400" height=" 266" border=" 0" vspace=" 0" / /p p style=" text-align: center " 光功率热分析仪(OPA) /p p   近日,由仪器信息网发起的“创新100”项目来到武汉嘉仪通科技有限公司(简称:武汉嘉仪通),走进了这家仅有不到七年发展历史却致力于成为薄膜材料物性测试领跑者的公司。 /p p    strong 放弃深圳百万年薪 回乡创立国产仪器公司 /strong /p p   武汉嘉仪通科技有限公司的联合创始人王愿兵,在大学毕业后进入了深圳一家仪器公司做销售,凭借善于钻研的态度和勤奋,短短几年间在公司内部晋升为中国区市场营销总监,负责油液产品中国区域的市场和销售工作。 /p p   然而,处于上升期的王愿兵对于大多数人向往的“有车有房,年薪百万”的生活并不满足。在王愿兵的眼中,由于常年与国外产品代理商接触,深切感受到国产仪器尚未得到足够的重视,国产仪器的产品相比国外,在行业竞争力方面仍存在着较大的差距,但这也意味着国家产业战略重心也将聚焦到仪器上,产业发展拥有着巨大的前景。 /p p   2012年初,带着产业报国的情怀,王愿兵毅然放弃了百万年薪,回到家乡武汉创办了武汉嘉仪通科技有限公司。创业之初,公司一边从事特种设备的代理贸易,一边积累和提升公司自主研发的实力。在一次科技研讨会上,王愿兵了解到华中科技大学教授缪向水团队在薄膜材料检测设备方面有突破性的成果,经过几轮接触双方达成了合作意向,实施成果转化,经过4年的研发探索,终于在2015年公司首台自主研发的纳米级薄膜材料光功率热分析仪成功问世。 /p p   “相比于传统的薄膜材料破坏性的热分析手段,我们的产品避免了材料在微米、纳米尺度的尺寸效应,并通过薄膜材料无损检测手段,得到的结果更加接近材料的真实性能。”王愿兵说。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 400px height: 286px " src=" https://img1.17img.cn/17img/images/201911/uepic/9e850238-8663-470b-a94d-04a92b4ef83b.jpg" title=" 武汉嘉仪通创始人王愿兵.jpg" alt=" 武汉嘉仪通创始人王愿兵.jpg" width=" 400" height=" 286" border=" 0" vspace=" 0" / /p p style=" text-align: center " 武汉嘉仪通创始人王愿兵 /p p    strong 专注薄膜材料热、电学物理性能检测仪器 打造世界级仪器公司 /strong /p p   武汉嘉仪通的产品线主要围绕着薄膜材料高低温实验室、热特性、电特性等物理性能检测展开研发,主要产品包括相变温度分析仪、热膨胀系数分析仪、薄膜热导率测试系统、薄膜热电参数测试系统、霍尔效应测试系统、薄膜变温电阻测试仪等,以及提供高低温环境的产品,包括快速红外退火炉、液氮低温恒温器等。 /p p   凭借着自主研发的国产仪器产品,武汉嘉仪通短短七年间逐渐发展成为集研发、市场和技术服务于一体的国家高新技术企业、湖北省委“百人计划”、武汉市政府“城市合伙人”人才企业荣誉等,并努力筹建湖北省科技厅工程技术研究中心、省发改委工程实验室、武汉市科技局企业研究中心等实验平台,同时致力于在全球设立办事处和联合实验室平台。截止目前,武汉嘉仪通累计服务的全球客户超过300家。覆盖材料大专院校、科研院所、工业企业和第三方检测机构等四大领域。客户覆盖中国各个区域(包括港澳台)以及海外欧洲、北美、新加坡、巴基斯坦。未来,武汉嘉仪通将在南美(巴西)、大洋洲(澳大利亚)、非洲(南非)等地建办事处及联合实验室。2018年,公司的自主研发产品收入超过了1000万 2019年公司对产品进行了全线升级,进一步缩小了和国外仪器的差距,预期自主研发产品收入超2500万。 /p p   “公司做的有价值比做得久重要,做的长久比做强重要,做强比做大重要,我们立志将公司打造成世界级的仪器公司。”对于公司的发展愿景,王愿兵十分坚毅。 /p p   为了解决部分专家学者科研资金有限的痛点,武汉嘉仪通还成立了薄膜技术服务子公司——武汉光谷薄膜技术有限公司,帮助国内及海归青年专家学者进行科研过程中的薄膜样品测试及技术服务,2018年收到了大批的测试需求。2019年公司将进一步加大宣传力度,让更多的薄膜行业科研人员了解公司的测试服务。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 400px height: 301px " src=" https://img1.17img.cn/17img/images/201911/uepic/53364a9a-c67a-4d31-b5b8-2ee80df4ef93.jpg" title=" 武汉嘉仪通现场陈列的产品.png" alt=" 武汉嘉仪通现场陈列的产品.png" width=" 400" height=" 301" border=" 0" vspace=" 0" / /p p style=" text-align: center " 武汉嘉仪通现场陈列的产品 /p p    strong 道阻且长 未来将专注于开发用户定制化的解决方案 /strong /p p   打造世界级仪器公司之路并不简单,三维材料热分析仪器领域本身就是一个红海市场,武汉嘉仪通凭借着独到的市场判断,进入了二维薄膜材料测试的细分领域,并且凭借着自主研发的仪器产品填补了市场的空白,并且逐渐占据了部分薄膜材料物性分析仪器的市场份额。 /p p   虽然有着个性化的产品,嘉仪通公司却不满于此,因为通过与用户的接触和交流,深切地了解到用户更加期待个性化的行业解决方案。由于薄膜材料的应用涵盖了大量的研究与生产领域,无论在科研工作还是企业生产过程中,用户都提出了大量个性化的应用需求。嘉仪通公司希望能在未来推出更多的应用解决方案,帮助各行各业的用户解决他们在薄膜材料测试方面产生的问题,满足用户在科研和生产研发中的实际需求。未来,公司将在芯片、显示、第三代半导体、锂电池等多个前沿领域新材料的失效分析投入更大的精力来做更加深入的研发,为用户提供更加完善的测试和解决方案。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 400px height: 267px " src=" https://img1.17img.cn/17img/images/201911/uepic/e0611af3-d77a-49b9-b104-cd2fddf151d1.jpg" title=" “创新100”调研组与武汉嘉仪通人员合影.jpg" alt=" “创新100”调研组与武汉嘉仪通人员合影.jpg" width=" 400" height=" 267" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong “创新100”调研组与武汉嘉仪通人员合影 /strong /p p   (从左至右:中科院科技战略咨询研究院学部咨询研究支撑中心王鑫、中科院科技战略咨询研究院学部咨询研究支撑中心王芳、中科院科技战略咨询研究院学部咨询研究支撑中心执行主任赵兰香、武汉嘉仪通科技有限公司总经理王愿兵、仪器信息网市场拓展部经理陈丽英、武汉嘉仪通科技有限公司市场总监张维) /p p    strong 武汉嘉仪通发展大事记 /strong /p p   2009年,武汉嘉仪通科技公司成立。 /p p   2012年,王愿兵作为CEO入主嘉仪通公司、并投入自主研发。 /p p   2015年,世界首台纳米级薄膜材料热分析仪研制成功。完成首轮融资,获批国家级高新技术企业 /p p   2017年, 自主研发产品全面销售、同时剥离代理贸易业务。自主产品年复合增长率达到50%。 /p p   2019年,产品全线升级,知识产权数量突破100件,未来3-5年加大应用开发的经费投入,预期营业收入达2500万。 /p p br/ /p p    strong 附:国产仪器腾飞行动“创新100”介绍: /strong /p p   为秉承“国产科学仪器腾飞行动”宗旨,在中国仪器仪表行业协会的指导下,仪器信息网于2018年启动“国产科学仪器腾飞行动”之“创新100”项目,筛选一批具备自主创新能力的中小仪器厂商,通过公益性的报道、走访、调研,在企业发展的关键时期“帮一把”,助力国产仪器中小厂商腾飞发展。 /p p   一、“创新100”入选标准 /p p   (1) 企业主营业务为科学仪器 /p p   (2) 企业主营产品具有自主知识产权,具备创新性 /p p   (3) 企业总部设在中国 /p p   (4) 企业科学仪器产品的年产值在3000万元以下 /p p   (5) 企业需是中国仪器仪表行业协会、中国仪器仪表学会、仪器信息网会员之一。 /p p   二、“创新100”申报流程 /p p   国产仪器腾飞行动“创新100”筛选流程包含以下环节:企业在线申报——企业创新能力审核——公益报道服务——线下资源对接——最具成长潜力企业评选。 /p p br/ /p

薄膜无损检测热膨胀系数分析仪相关的方案

  • 薄膜材料无损检测-相变温度和热膨胀系数-光功率热分析仪(OPA)上海昊扩华东大区总代理
    本仪器为无损检测,并可同时检测材料的相变温度和热膨胀系数。OPA 的研发成功,一举填补了无损检测纳米级薄膜材料相变温度和热膨胀系数的国际性空白, 能测量低至5nm的薄膜材料。
  • 用推杆式热膨胀仪检测玻璃的热膨胀系数、玻璃化转变温度和软化点性能
    热膨胀系数(CTE)、玻璃化转变温度和软化点是表征玻璃材料性能的关键参数。而推杆式热膨胀仪则能简便快速的测试这些性能。差动传感器的最优化设计使得仪器即使是在没有额外恒温设备时都可以提供超高重现性。仪器采用卧式设计,这种设计的优点在于炉子容易操作,装载样品简便。即使非理想尺寸的样品都可以很轻松的放进管状样品支架的凹槽中。热电偶直接接近样品测温,保证温度测量的重复性。同时该仪器的 c-DTA 功能使得仪器在测试热膨胀系数的同时还能测得样品的吸放热效应。
  • 采用激光干涉法测试量块的热膨胀系数
    本文介绍了一种在室温附近测试各种量块和其它相似形状材料的高精度热膨胀系数测试仪器的研究开发。量块热膨胀所引起的长度变形通过一个差分平面镜干涉仪进行测量,采用特殊的干涉相位检测技术来补偿极化混合带来的非线性误差,再结合电子相位计可以实现纳米量级的精度。由于是在真空中进行量块热膨胀测量,从而无需进行空气折射率补偿。对于导热系数较高的被测试样,缓慢的辐射热交换使得试样上的温度梯度很小并具有很好的热平衡稳定性。在所获得典型的10~30℃温度之间热膨胀测试曲线,其线性和二次方热膨胀系数都等于在20℃参考温度时的热膨胀系数。本文对此激光干涉法热膨胀仪的测量不确定进行了详细分析,而且此测量不确定度也通过国际比对得到了验证。

薄膜无损检测热膨胀系数分析仪相关的资料

薄膜无损检测热膨胀系数分析仪相关的试剂

薄膜无损检测热膨胀系数分析仪相关的论坛

  • 玻璃化转变对聚酰胺(尼龙)热膨胀系数的影响

    玻璃化转变对聚酰胺(尼龙)热膨胀系数的影响

    尼龙是一种由DuPont最先研发的聚酰胺纤维(PA 6.6),最初是作为丝绸的替代品用在纺织品和绳索制造中。后来,在英语中尼龙作为一个术语表示所有线性脂肪族聚酰胺纤维,它的应用范围迅速扩大,现在被广泛应用在包装、管道和低负载机械部件等领域。玻璃纤维和碳纤维作为填料加入到尼龙中制成的复合材料具有很好的机械强度和耐热性,使其应用范围更加宽广。耐驰热机械分析仪可以作为尼龙和其他聚合物材料膨胀系数测试的有力工具。[b]测试仪器[/b]TMA 402 F1 Hyperion[b]测试条件[/b][table][tr][td=1,1,124]温度范围[/td][td=1,1,124]升降温速率[/td][td=1,1,124]气氛[/td][td=1,1,124]样品长度[/td][td=1,1,124]样品支架[/td][td=1,1,121]测量模式[/td][/tr][tr][td=1,1,124]-30℃-200℃[/td][td=1,1,124]5℃/min[/td][td=1,1,124]He,20ml/min [/td][td=1,1,124]25.02mm[/td][td=1,1,124]熔融石英[/td][td=1,1,121]拉伸模式[/td][/tr][/table][img=,590,329]http://ng1.17img.cn/bbsfiles/images/2018/06/201806131413202108_9987_163_3.jpg!w590x329.jpg[/img][b]结果讨论[/b]聚合物材料相对金属材料具有更高的膨胀系数,一般其膨胀系数(CTE,工程膨胀系数)在10-5 1/K-10-4 1/K范围内。示例中使用的聚酰胺样品在20℃-200℃的膨胀系数为13.5X10-5 1/K(即1.35X10-4K/min)。CTE值是指在所选温度区间内平均热膨胀系数,但因为尼龙样品在65℃(起始点)附近玻璃化转变的存在,导致热膨胀曲线呈现非线性形状,因此在温度20℃-100℃之间(玻璃化之前)的热膨胀系数值较小,约为9.9X10-5 1/K。

薄膜无损检测热膨胀系数分析仪相关的耗材

  • 热膨胀芯(TEC)光纤跳线
    热膨胀芯(TEC)光纤跳线特性热膨胀芯增大了模场直径(MFD),便于耦合不仅更容易进行自由空间耦合,还能保持单模光纤的光学性能工作波长范围:980 - 1250 nm或1420 - 1620 nm光纤的TEC端镀有增透膜,以减少耦合损耗库存的光纤跳线:2.0 mm窄键FC/PC(TEC)到FC/PC接头2.0 mm窄键FC/PC(TEC)到FC/APC接头具有带槽法兰的?2.5 mm插芯到可以剪切的裸纤如需定制配置,请联系技术支持Thorlabs的热膨胀芯(TEC)光纤跳线进行自由空间耦合时,对位置的偏移没有单模光纤那样敏感。利用我们的Vytran® 光纤熔接技术,通过将传统单模光纤的一端加热,使超过2.5 mm长的纤芯膨胀,就可制成这种光纤。在自由空间耦合应用中,光纤经过这样处理的一端可以接受模场直径较大的光束,同时还能保持光纤的单模和光学性能(有关测试信息,请看耦合性能标签)。TEC光纤经常应用于构建基于光纤的光隔离器、可调谐波长的滤光片和可变光学衰减器。我们库存有带TEC端的多种光纤跳线可选。我们提供两种波长范围:980 nm - 1250 nm 和1460 nm - 1620 nm。光纤的TEC端镀有增透膜,在指定波长范围内平均反射率小于0.5%,可以减少进行自由空间耦合时的损耗。光纤的这一端具有热缩包装标签,上面列出了关键的规格。接头选项有2.0 mm窄键FC/PC或FC/APC接头、?2.5 mm插芯且可以剪切熔接的裸光纤。?2.5 mm插芯且可以剪切的光纤跳线具有?900 μm的护套,而FC/PC与FC/APC光纤跳线具有?3 mm的护套(请看右上表,了解可选的组合)。我们也提供定制光纤跳线。更多信息,请联系技术支持。 自由空间耦合到P1-1550TEC-2光纤跳线光纤跳线镀有增透膜的一端适合自由空间应用(比如,耦合),如果与其他接头端接触,会造成损伤。此外,由于镀有增透膜,TEC光纤跳线不适合高功率应用。清洁镀增透膜的接头端且不损坏镀膜的方法有好几种。将压缩空气轻轻喷在接头端是比较理想的做法。其他方法包括使用浸有异丙醇或甲醇的无绒光学擦拭纸或FCC-7020光纤接头清洁器轻轻擦拭。但是请不要使用干的擦拭纸,因为可能会损坏增透膜涂层。Item #PrefixTECEnd(AR Coated)UncoatedEndP1FC/PC (Black Boot)FC/PCP5FC/PC (Black Boot)FC/APCP6?2.5 mm Ferrule with Slotted FlangeScissor CutCoated Patch Cables Selection GuideSingle Mode AR-Coated Patch CablesTEC Single Mode AR-Coated Patch CablesPolarization-Maintaining AR-Coated Patch CablesMultimode AR-Coated Patch CablesHR-Coated Patch CablesStock Single Mode Patch Cables Selection GuideStandard CablesFC/PC to FC/PCFC/APC to FC/APCHybridAR-Coated Patch CablesThermally-Expanded-Core (TEC) Patch CablesHR-Coated Patch CablesBeamsplitter-Coated Patch CablesLow-Insertion-Loss Patch CablesMIR Fluoride Fiber Patch Cables耦合性能由于TEC光纤一端的纤芯直径膨胀,进行自由空间耦合时,它们对位置的偏移没有标准的单模光纤那样敏感。为了进行比较,我们改变x轴和z轴上的偏移,并测量自由空间光束耦合到TEC光纤跳线和标准光纤跳线时的耦合损耗(如右图所示)。使用C151TMD-C非球面透镜,将光耦合到标准光纤和TEC光纤。在980 nm 和1064 nm下,测试使用1060XP光纤的跳线和P1-1060TEC-2光纤跳线,同时,在1550 nm下,测试使用1550BHP光纤的跳线和P1-1550TEC-2光纤跳线。通过MBT616D 3轴位移台,让光纤跳线相对于入射光移动。 下面的曲线图展示了所测光纤跳线的光纤耦合性能。一般而言,对于相同的x轴或z轴偏移,TEC光纤跳线比标准跳线的耦合损耗低。而在x轴或z轴偏移为0 μm 时,标准跳线与TEC跳线的性能相似。总而言之,这些测试结果表明,TEC光纤对光纤位置的偏移远远没有标准光纤那样敏感,同时还能在zui佳光纤位置保持相同的耦合损耗。请注意,这些测量为典型值,由于制造公差的存在,不同批次跳线的性能可能有所差异。测量耦合性能装置的示意图。上图显示了用于测量耦合性能的测试装置。1060XP标准光纤和P1-1060TEC-2热膨胀芯光纤之间的耦合性能比较图。1060XP标准光纤和P1-1060TEC-2热膨胀芯光纤之间的耦合性能比较图。11550BHP标准光纤和P1-1550TEC-2热膨胀芯光纤之间的耦合性能比较图。 损伤阀值激光诱导的光纤损伤以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的zui大功率始终受到这些损伤机制的zui小值的限制。虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的jue对损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算zui大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在指定的zui大功率水平以下操作光纤元件;如果有元件并未指定zui大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。关于特定应用中光纤功率适用能力的深入讨论,请联系技术支持。Quick LinksDamage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。损伤的光纤端面未损伤的光纤端面裸纤端面的损伤机制光纤端面的损伤机制可以建模为大光学元件,紫外熔融石英基底的工业标准损伤阈值适用于基于石英的光纤(参考右表)。但是与大光学元件不同,与光纤空气/璃界面相关的表面积和光束直径都非常小,耦合单模(SM)光纤时尤其如此,因此,对于给定的功率密度,入射到光束直径较小的光纤的功率需要比较低。右表列出了两种光功率密度阈值:一种理论损伤阈值,一种"实际安全水平"。一般而言,理论损伤阈值代表在光纤端面和耦合条件非常好的情况下,可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。而"实际安全水平"功率密度代表光纤损伤的zui低风险。超过实际安全水平操作光纤或元件也是有可以的,但用户必须遵守恰当的适用性说明,并在使用前在低功率下验证性能。计算单模光纤和多模光纤的有效面积单模光纤的有效面积是通过模场直径(MFD)定义的,它是光通过光纤的横截面积,包括纤芯以及部分包层。耦合到单模光纤时,入射光束的直径必须匹配光纤的MFD,才能达到良好的耦合效率。例如,SM400单模光纤在400 nm下工作的模场直径(MFD)大约是?3 μm,而SMF-28 Ultra单模光纤在1550 nm下工作的MFD为?10.5 μm。则两种光纤的有效面积可以根据下面来计算:SM400 Fiber:Area= Pi x (MFD/2)2 = Pi x (1.5μm)2 = 7.07 μm2= 7.07 x 10-8cm2 SMF-28 Ultra Fiber: Area = Pi x (MFD/2)2 = Pi x (5.25 μm)2= 86.6 μm2= 8.66 x 10-7cm2为了估算光纤端面适用的功率水平,将功率密度乘以有效面积。请注意,该计算假设的是光束具有均匀的强度分布,但其实,单模光纤中的大多数激光束都是高斯形状,使得光束中心的密度比边缘处更高,因此,这些计算值将略高于损伤阈值或实际安全水平对应的功率。假设使用连续光源,通过估算的功率密度,就可以确定对应的功率水平:SM400 Fiber: 7.07 x 10-8cm2x 1MW/cm2= 7.1 x10-8MW =71 mW (理论损伤阈值) 7.07 x 10-8cm2x 250 kW/cm2= 1.8 x10-5kW = 18 mW (实际安全水平)SMF-28 UltraFiber: 8.66 x 10-7cm2x 1MW/cm2= 8.7 x10-7MW =870mW (理论损伤阈值)8.66 x 10-7cm2x 250 kW/cm2= 2.1 x10-4kW =210 mW (实际安全水平)多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得zui佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。 Estimated Optical Power Densities on Air / Glass InterfaceaTypeTheoretical Damage ThresholdbPractical Safe LevelcCW(Average Power)~1 MW/cm2~250 kW/cm210 ns Pulsed(Peak Power)~5 GW/cm2~1 GW/cm2a. 所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。b. 这是可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。c. 这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。插芯/接头终端相关的损伤机制有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。为了zui大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。确定具有多种损伤机制的功率适用性光纤跳线或组件可能受到多种途径的损伤(比如,光纤跳线),而光纤适用的zui大功率始终受到与该光纤组件相关的zui低损伤阈值的限制。例如,右边曲线图展现了由于光纤端面损伤和光学接头造成的损伤而导致单模光纤跳线功率适用性受到限制的估算值。有终端的光纤在给定波长下适用的总功率受到在任一给定波长下,两种限制之中的较小值限制(由实线表示)。在488 nm左右工作的单模光纤主要受到光纤端面损伤的限制(蓝色实线),而在1550 nm下工作的光纤受到接头造成的损伤的限制(红色实线)。对于多模光纤,有效模场由纤芯直径确定,一般要远大于SM光纤的有效模场。因此,其光纤端面上的功率密度更低,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到光纤中(图中未显示)。而插芯/接头终端的损伤限制保持不变,这样,多模光纤的zui大适用功率就会受到插芯和接头终端的限制。请注意,曲线上的值只是在合理的操作和对准步骤几乎不可能造成损伤的情况下粗略估算的功率水平值。值得注意的是,光纤经常在超过上述功率水平的条件下使用。不过,这样的应用一般需要专业用户,并在使用之前以较低的功率进行测试,尽量降低损伤风险。但即使如此,如果在较高的功率水平下使用,则这些光纤元件应该被看作实验室消耗品。光纤内的损伤阈值除了空气玻璃界面的损伤机制外,光纤本身的损伤机制也会限制光纤使用的功率水平。这些限制会影响所有的光纤组件,因为它们存在于光纤本身。光纤内的两种损伤包括弯曲损耗和光暗化损伤。弯曲损耗光在纤芯内传播入射到纤芯包层界面的角度大于临界角会使其无法全反射,光在某个区域就会射出光纤,这时候就会产生弯曲损耗。射出光纤的光一般功率密度较高,会烧坏光纤涂覆层和周围的松套管。有一种叫做双包层的特种光纤,允许光纤包层(第二层)也和纤芯一样用作波导,从而降低弯折损伤的风险。通过使包层/涂覆层界面的临界角高于纤芯/包层界面的临界角,射出纤芯的光就会被限制在包层内。这些光会在几厘米或者几米的距离而不是光纤内的某个局部点漏出,从而zui大限度地降低损伤。Thorlabs生产并销售0.22 NA双包层多模光纤,它们能将适用功率提升百万瓦的范围。光暗化光纤内的第二种损伤机制称为光暗化或负感现象,一般发生在紫外或短波长可见光,尤其是掺锗纤芯的光纤。在这些波长下工作的光纤随着曝光时间增加,衰减也会增加。引起光暗化的原因大部分未可知,但可以采取一些列措施来缓解。例如,研究发现,羟基离子(OH)含量非常低的光纤可以抵抗光暗化,其它掺杂物比如氟,也能减少光暗化。即使采取了上述措施,所有光纤在用于紫外光或短波长光时还是会有光暗化产生,因此用于这些波长下的光纤应该被看成消耗品。制备和处理光纤通用清洁和操作指南建议将这些通用清洁和操作指南用于所有的光纤产品。而对于具体的产品,用户还是应该根据辅助文献或手册中给出的具体指南操作。只有遵守了所有恰当的清洁和操作步骤,损伤阈值的计算才会适用。安装或集成光纤(有终端的光纤或裸纤)前应该关掉所有光源,以避免聚焦的光束入射在接头或光纤的脆弱部分而造成损伤。光纤适用的功率直接与光纤/接头端面的质量相关。将光纤连接到光学系统前,一定要检查光纤的末端。端面应该是干净的,没有污垢和其它可能导致耦合光散射的污染物。另外,如果是裸纤,使用前应该剪切,用户应该检查光纤末端,确保切面质量良好。如果将光纤熔接到光学系统,用户首先应该在低功率下验证熔接的质量良好,然后在高功率下使用。熔接质量差,会增加光在熔接界面的散射,从而成为光纤损伤的来源。对准系统和优化耦合时,用户应该使用低功率;这样可以zui大程度地减少光纤其他部分(非纤芯)的曝光。如果高功率光束聚焦在包层、涂覆层或接头,有可能产生散射光造成的损伤。高功率下使用光纤的注意事项一般而言,光纤和光纤元件应该要在安全功率水平限制之内工作,但在理想的条件下(ji佳的光学对准和非常干净的光纤端面),光纤元件适用的功率可能会增大。用户首先必须在他们的系统内验证光纤的性能和稳定性,然后再提高输入或输出功率,遵守所有所需的安全和操作指导。以下事项是一些有用的建议,有助于考虑在光纤或组件中增大光学功率。要防止光纤损伤光耦合进光纤的对准步骤也是重要的。在对准过程中,在取得zui佳耦合前,光很容易就聚焦到光纤某部位而不是纤芯。如果高功率光束聚焦在包层或光纤其它部位时,会发生散射引起损伤使用光纤熔接机将光纤组件熔接到系统中,可以增大适用的功率,因为它可以zui大程度地减少空气/光纤界面损伤的可能性。用户应该遵守所有恰当的指导来制备,并进行高质量的光纤熔接。熔接质量差可能导致散射,或在熔接界面局部形成高热区域,从而损伤光纤。连接光纤或组件之后,应该在低功率下使用光源测试并对准系统。然后将系统功率缓慢增加到所希望的输出功率,同时周期性地验证所有组件对准良好,耦合效率相对光学耦合功率没有变化。由于剧烈弯曲光纤造成的弯曲损耗可能使光从受到应力的区域漏出。在高功率下工作时,大量的光从很小的区域(受到应力的区域)逃出,从而在局部形成产生高热量,进而损伤光纤。请在操作过程中不要破坏或突然弯曲光纤,以尽可能地减少弯曲损耗。用户应该针对给定的应用选择合适的光纤。例如,大模场光纤可以良好地代替标准的单模光纤在高功率应用中使用,因为前者可以提供更佳的光束质量,更大的MFD,且可以降低空气/光纤界面的功率密度。阶跃折射率石英单模光纤一般不用于紫外光或高峰值功率脉冲应用,因为这些应用与高空间功率密度相关。MFD定义模场直径的定义模场直径(MFD)是对在单模光纤中传播的光的光束尺寸的一种量度。它与波长、纤芯半径以及纤芯和包层的折射率具有函数关系。虽然光纤中的大部分光被限制在纤芯内传播,但仍有极小部分的光在包层中传播。对于高斯功率分布,MFD是指光功率从峰值水平降到1/e2时的直径。MFD的测量通过在远场使用变孔径法来完成MFD的测量。在光纤输出的远场处放置一个通光孔径,然后测量强度。在光路中放置连续变小的通光孔径,测量每个通光孔径下的强度水平;然后以功率和孔径半角(或数值孔径)的正弦为坐标作图得到数据。使用彼得曼第二定义确定MFD,该数学模型没有假设功率分布的特定形状。使用汉克尔变换可以从远场测量值确定近场处的MFD大小TEC光纤跳线,980 nm - 1250 nmItem #Fiber TypeOperating WavelengthMode Field DiameteraAR CoatingbMax AttenuationcNAdCladding/Coating DiameterConnectorsJacketTECStandardTECStandardP1-1060TEC-21060XP980 - 1250 nm12.4 ± 1.0 μm6.2 ± 0.5 μm850 - 1250 nm≤2.1 dB/km @980 nm≤1.5 dB/km @ 1060 nm0.070.14125 ± 0.5 μm /245 ± 10 μmFC/PC (TEC) to FC/PC?3 mmFT030-YP5-1060TEC-2TEC光纤跳线,1460 - 1620 nm,镀增透膜,FC/PC(TEC)到FC/APC,2 mP6-1550TEC-2TEC光纤跳线,1460 - 1620 nm,镀增透膜,?2.5 mm插芯(TEC)到裸纤,2 m
  • DC2茎干周长生长测量仪
    DC2是C1改进版本。钢丝绳的拉力改为径向设置。这样钢丝绳对树的压力和树径无关,不同树径的测量结果可直接比较。传感器通过一个由热膨胀系数最低的合金制成的钢丝绳固定在树上。用小塑料环减少钢丝绳对树的压力,并减少摩擦阻力,大大提高灵敏度。 优点适合于所有直径大于 5厘米的树钢丝绳对树的压力和树径无关,不同树径的测量结果可直接比较钢丝绳的拉力根据树径自动调整,反应敏感 对植物无损伤 可抗拒风,雪,下跌小树枝和小果实的影响,保证稳定测量易于安装 技术参数 名称DC2周长生长测量仪2 型适用于树杆直径 5厘米传感器测量范围15 毫米复调测量范围无限准确度± 2微米(12位数采)分辨率0.001微米线性系数2%传感器的温度系数0.1微米/度钢丝绳热膨胀系数1,4 ×10-6/K工作条件温度范围 -30~40 °C, 湿度范围 0~100% 产地:德国
  • Chemplex分析仪薄型xrf样品杯
    1850:SpectroSour® 分析仪薄型xrf样品杯,单开口端;1.69”(42.9 mm)直径x 0.77”(19.6 mm)高度,100/pk产品特征:单开口外带贮液器卡环式薄膜附件ThermoPlastic® 密封适用于 XOS "Sindie® " 系统以及酸分析系统Chemplex设计的“咬合环”和单元“珠缩进”几何结构负责这个低剖面样品杯形成拉紧的薄膜样品支撑面和防漏密封。封闭端集成了一个外部溢流储层,用于收集具有膨胀趋势的热敏性流体样品。低剖面Spectro硫® 分析仪样品杯易破裂的热塑性® 密封件提供了通向集成外部溢流储液罐的通风通道。对于拉紧的薄膜样品支撑窗平面,样品杯内部和样品室之间的压差相等。低剖面形状使一些高度有限的仪器样品架能够容纳。开口端:单开口外径:1.69”(42.9 mm)高度:0.77”(19.6 mm)孔径:1.41英寸(35.8毫米)容量(CC):13
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制