当前位置: 仪器信息网 > 行业主题 > >

霉菌毒素超高效真菌毒素浓缩器

仪器信息网霉菌毒素超高效真菌毒素浓缩器专题为您提供2024年最新霉菌毒素超高效真菌毒素浓缩器价格报价、厂家品牌的相关信息, 包括霉菌毒素超高效真菌毒素浓缩器参数、型号等,不管是国产,还是进口品牌的霉菌毒素超高效真菌毒素浓缩器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合霉菌毒素超高效真菌毒素浓缩器相关的耗材配件、试剂标物,还有霉菌毒素超高效真菌毒素浓缩器相关的最新资讯、资料,以及霉菌毒素超高效真菌毒素浓缩器相关的解决方案。

霉菌毒素超高效真菌毒素浓缩器相关的论坛

  • 真菌毒素浓缩器的优点!

    真菌毒素浓缩器是一套操作简捷,用途广泛的有机溶剂快速蒸发浓缩系统,应用于不同真菌毒素检测方法(TLC,HPL,GC,LC-MS)的前处理样品浓缩干燥。通过强力的真空系统和独立干浴加热装置完成对萃取溶液的浓缩,为实验室提供快速的, 专业的真菌毒素溶剂蒸发/浓缩方案。Pribolad真菌毒素浓缩器安全,高效的对样品进行蒸发和浓缩;避免多个样品之间的交叉污染,确保整个浓缩系统的安全性和高效性;根据浓缩溶剂类型选择适宜的加热温度;通过真空阀调控实现一个或多个样品同时浓缩。

  • 真菌毒素浓缩器

    真菌毒素浓缩器

    http://ng1.17img.cn/bbsfiles/images/2015/08/201508211722_562088_3032276_3.png真菌毒素浓缩器是一套用途广泛且操作简单的有机溶剂快速, 高效,经济蒸发系统, 由不锈钢的外壳以及抗有机溶剂的导管系统组成,适用于不同霉菌毒素分析方法(HPLC LC-MSGC)前处理样品的浓缩蒸发,目前已广泛应用于食品,卫检等各个分析行业. 该系统可在短时间内实现溶液的小体积浓缩,尤其是在气流密闭状态下实现浓缩, 避免了不同样品间的交叉污染, 确保整个浓缩系统的安全性和高效性。可根据需要利用真空泵实现不间断调节蒸发浓缩速度, 有效帮助分析者提高工作效率。该浓缩系统具有以下优点:1、安全,高效的对样品进行蒸发和浓缩;2、 24位浓缩避免多个样品之间交叉污染;3、根据浓缩溶剂类型选择适宜的加热温度;4、通过真空阀调控实现一个或多个样品同时浓缩.

  • 真菌毒素无处不在

    真菌毒素无处不在 真菌毒素的检测方法1 生物鉴定法生物鉴定法利用真菌毒素能够影响微生物、家禽、水生生物等的细胞代谢过程来鉴定真菌毒素的存在,根据对生物体产生的病变、异常或死亡等判定真菌毒素的危害,该方法对样品的纯度要求较低,该方法主要用于定性分析,专一性较差,灵敏度较低,一般只是作为其他分析方法的佐证。2 化学分析方法化学分析方法检测真菌毒素主要包括以下步骤:提取、脱脂、净化、分离和鉴定。早期常用的化学分析方法有薄层层析法(Thin Layer Chromatography, TLC)和柱层层析法(ColumnChromatography,CC)。在20世纪80年代,我国将TLC作为食品及饲料中黄曲霉毒素的标准测定方法(GB/T8381-1987),将样品经提取、净化和浓缩处理后,在薄层层析板上分离后,利用黄曲霉毒素在紫外照射下可发荧光的特性进行检测。张华报道的薄层层析法检测检测霉菌毒素的灵敏度为5μg/kg,方法的结果准确,重现性好,回收率为 85%-100%。用薄层层析方法己分离出黄曲霉毒素、杂色曲霉素、青霉酸和构巢曲霉素等。柱层层析在真菌毒素样品前处理过程中得到了广泛的应用,柱层层折常用的吸附剂有氧化铝、活性炭、硅胶、镁等,将吸附剂填充到管中形成固定相,将样品提取液上柱,用流动相洗脱,利用样品中不同物质在固定相和流动相中分配系数的不同,实现样品中不同物质的分离,进而进行检测。利用亲和力不同的溶剂和不同固定相的组合可以形成不同分离能力的层析柱。基于吸附剂进行前处理的柱层析分离技术对靶标物的选择性不强,近年来,基于免疫亲和层析技术的样品前处理在真菌毒素提取中应用逐渐广泛。免疫亲和柱是将真菌毒素特异性抗体通过一定方式偶联固定在载体基质上,装柱形成微柱,用于样品前处理。其工作原理是样品溶液中的真菌毒素在流经亲和柱时,载体基质上的抗体特异性的捕获样品溶液中的真菌毒素,使真菌毒素得到净化和富集,待上样完成后用高浓度的甲醇、乙腈等溶液洗脱,将真菌毒素释放出来,得到的洗脱液用于检测。3 仪器分析法仪器分析方法是对样品进行一定的提取、净化处理后,借助检测仪器设备对待测靶标物进定性、定量分析的技术。在真菌毒素的检测分析中,常用的方法有高效液相色谱法(HighPerformance Liquid Chromatography, HPLC)、超高效液相色谱法(Ultra HPLC,UHPLC)、高效液相色谱法与质谱联用方法(HPLC-tandem mass Spectrometry, HPLC-MS/MS)、气相色谱与质谱联用法、高效液相毛细管电泳方法等。HPLC 方法是 20 世纪 60 年代末在气相色谱基础上发展起来的一种以液体为流动相的新型谱技术,在真菌毒素的检测中常采用反向色谱法。近年来,在 HPLC 方法的基础上发展起来的UHPLC 和 HPLC-MS/MS 方法比 HPLC 方法具有更高的检测灵敏度和检测通量。基于HPLC 的方法广泛的被国内外实验室和检测机构作为真菌毒素确证性检测方法。我国食品安全国家标准 GB541337-2010 中规定免疫亲和层析净化液相色谱-串联质谱法和免疫亲和层析净化高效液相色谱法分别作为乳和乳制品中 AFM1测定方法。HPLC 方法具有灵敏度高、测定结果准确可靠、特异性好的特点,基于免疫亲和柱前处理的HPLC方法与化学分析方法和生物鉴定法相比,检测时间缩短,对复杂样品的处理能力更强。但是仪器分析方法也有其缺陷,需要使用大量的有机溶剂,依赖大型精密仪器,检测成本高,需要专业的操作人员,不能满足现场快速筛查的需求。4 免疫分析方法免疫分析方法起始于20世纪50 年代,继 60 年代竞争分析原理提出后取得了巨大的进步,成为生物分析的重要手段之一。免疫分析方法从本质上说属于一种特殊形式的试剂分析法,将抗体作为核心分析试剂,基于抗体与抗原的特异性结合反应,对待测靶标物,包括小分子化合物、大分子的酶、蛋白质等,进行定性和定量分析。抗体和抗原反应的典型特点是抗体能特异性识别抗原,并发生结合反应,这种反应是可逆的,抗体与抗原的专一性比一般分析试剂间专一性强。免疫分析技术已广泛的应用于临床分析检测、食品安全检测、环境污染检测领域。免疫分析技术最早出现的是放射免疫分析,由 Berson和 Yallow首次使用,该方法的灵敏度高、特异性好,但是其最大的缺点是分析过程引入放射性核素,对操作人员和环境造成危害和污染。4.1 酶联免疫吸附法酶联免疫吸附分析法(Enzyme-linkedimmunosorbent assay,ELISA)是在免疫酶技术基础上发展起来的免疫分析方法,于 1972 年由 Engvall 首次用碱性磷酸酯酶标记免疫球蛋白用于 IgG 的测定。现已广泛的应用于分析检测领域,检测对象包括疾病诊断中的大分子检测,食品安全检测中的小分子污染物检测。ELISA 方法的原理是将抗原或抗体与酶标记后形成酶标抗原或酶标抗体,既保持抗原、抗体的免疫活性,又具有酶活性,将待测物与酶标记抗原或抗体按不同步骤与固相载体表面的抗体或抗原反应,洗涤去除未反应结合的物质,最后根据固相载体上酶的量与待测靶标物的对应比例关系进行定量分析。该方法根据反应模式的不同可分为夹心 ELISA 方法和竞争ELISA 方法,夹心 ELISA 方法主要用于检测大分子化合物,竞争 ELISA 方法主要用于检测小分子化合物。真菌毒素属于小分子物质,由于只有一个抗体结合位点,因此在真菌毒素的ELISA检测中常采用竞争分析模式。Wang等人建立了基于多克隆抗体检测AFM1的ELISA快速分析方法,对AFM1和 AFB1的检测灵敏度(IC50值)为分别为 0.014 和 0.02 ng/mL。Zhang等人研制了针对 OTA 的单克隆抗体,并用该抗体建立了间接竞争ELISA 方法测定谷物中的 OTA,方法的检出限为 0.15 ng/mL,灵敏度为 1.7ng/mL,检测范围为 0.55-6.75 ng/mL。Burmistrova 等人建立的基于单克隆抗体的 ELISA 方法在 ZEA 的检测中,检出限为 0.1 ng/mL,灵敏度为。4.2 免疫亲和方法免疫亲和方法主要用于样品的前处理过程中,主要利用抗体对待测物的专一识别特性,对待测物进行净化和浓缩,能够有效的去除样品基质干扰,提高检测灵敏度和准确性。基于免疫亲和柱的色谱分离方法被我国国家标准和国际标准定为真菌毒素检测的标准方法。免疫亲和柱常与其他检测方法联用,Li 等建立了基于免疫亲和柱的 ELISA 方法检测农产品复杂基质中的 OTA,结果表明在 OTA 添加样品检测中,经过免疫亲和柱处理后的 ELISA 检测回收率明显较未经亲和柱处理的方法回收率高。免疫亲和柱不仅可以用于样品前处理,还可直接在亲和柱上进一步反应进行定性或定量分析。Yu 等人基于免疫竞争反应原理建立了在免疫亲和柱上进行可视化检测 AFM1的方法,在样品上样完成后,再从亲和柱底端加入辣根过氧化酶(HRP)标记的 AFM1,洗脱后加入酶底物,进行显色,显色深浅与样品中 AFM1浓度成反比,根据显色深浅判别 AFM1的含量,该方法对 AFM1的灵敏度为 40 ng/L。Yuan等人基于免疫竞争原理,在凝胶上固定抗体后,制成免疫亲和柱,使其竞争性结合氯霉素和 HRP 标记的氯霉素,加入底物后显色,最终实现了对氯霉素的快速检测,方法的检出限为 1 ng/mL。4.3 [color=#0751

  • 真菌毒素与黄曲霉毒素是那些?

    黄曲霉毒素是天然存在的霉菌产生的一种毒素,已经被证明对人体容易产生癌症,是一类致癌物质。美国联邦政府有关法律规定人类消费食品和奶牛饲料中的黄曲霉毒素含量不能超过20ppb,人类消费的牛奶中的含量不能超过0.5ppb。而其它动物饲料中的含量不能超过300ppb。黄曲霉毒素是一类真菌(如黄曲霉和寄生曲霉)的有毒的代谢产物,它们具有很强的致癌性,主要存在于谷物、坚果、棉籽以及一些与人类血液,动物饲料相关的产品中。黄曲霉毒素M1是黄曲霉毒素B1的羟基化代谢产物,也是一种强致癌物质。牛乳及其制品是易受到黄曲霉毒素M1污染的食品之一。黄曲霉毒素 M1的检测方法有高效液相色谱法(HPLC),薄层层析法(TLC),酶联免疫法(ELISA)等。而使用黄曲霉毒素M1 免疫亲和柱则能够快速而准确的提纯纯化并浓缩样品中黄曲霉毒素M1组分,使得后面的分析更加轻松简单。PriboFast黄曲霉毒素总量亲和层析柱可选择性吸附样品液中的黄曲霉毒素(B1,B2,G1,G2),从而对黄曲霉毒素总量(B1,B2,G1,G2)样品起到非常针对性的纯化作用,过柱净化后的样品液可直接用于液相进行黄曲霉毒素总量(B1,B2,G1,G2)含量的检测。亲和层析柱与HPLC配合使用可达到快速测定的目的,以改善信噪比,可提高检测方法的准确度。PriboFast黄曲霉毒素总量亲和柱用于定性、定量检测谷物、副食品、酒类等食品和饲料等样本中的黄曲霉毒素总量(B1,B2,G1,G2)时的样品前处理。柱容量:≥200ng 回收率:80-90%可用于快递纯化检测牛奶,奶粉等样本中的黄曲霉毒素M1。

  • 不同基质的真菌毒素定量检测方法

    0.998 (0.25-500 ng/mL),回收率介于80-120%之间。 基于超高效液相色谱与串联四级杆飞行时间质谱平台,安捷伦已建立了较为完善的真菌毒素准确质量数据库与二级质谱图库,除了涵盖目前国家标准规定的各种真菌毒素,还包含了若干种最新发现的具有生物活性的的真菌毒素。上述所介绍的基于安捷伦液质平台开发的方法具有快速、高灵敏、高选择性和高准确度的特点,同时具有较强的抗基质干扰能力,有望扩展到其它复杂食品基质中真菌毒素的筛查与监测。来源: 安捷伦科技公司

  • 真菌毒素检测仪是干什么的

    真菌毒素检测仪是干什么的

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/10/202310270934113737_296_5604214_3.jpg!w690x690.jpg[/img]  真菌毒素检测仪是一种用于检测食品、饲料、土壤、空气和其他样本中的真菌毒素(也称为霉菌毒素或真菌代谢产物)的仪器。真菌毒素是由霉菌和其他真菌生产的化合物,它们可能对人类、动物和植物健康造成危害。  这些检测仪器的主要用途包括:  食品安全:检测食品中是否存在真菌毒素,以确保食品的质量和安全。一些真菌毒素如黄曲霉毒素、赭曲霉毒素等可能存在于粮食、坚果、香料等食品中。  饲料检测:用于监测动物饲料中的真菌毒素,以确保畜禽的健康和生产效益。  环境检测:检测土壤、空气和水中是否存在真菌毒素,以评估环境中的真菌污染水平。  医疗领域:在医疗诊断中,也可以使用真菌毒素检测仪来检测患者体液、组织或细胞中的真菌毒素,以辅助疾病诊断。  这些仪器通常使用高度灵敏的生物化学或生物分子学方法来检测真菌毒素的存在,并提供快速、准确的结果。检测真菌毒素对于保护食品安全、环境健康和人类和动物健康非常重要。

  • 饲料中的霉菌毒素

    降低养猪成本 – 如何对饲料霉菌毒素严格把关霉菌毒素是由霉菌或真菌产生的有毒物质,广泛存在于玉米和麦麸等饲料原料中,一旦忽略将为养殖业带来不可估量的损失,所以养殖管理者和技术人员要高度重视霉菌毒素的危害,将霉菌毒素预防和消除纳入保健计划中(特别是梅雨季节)。近年来,气候变暖、洪涝雨季促进了粮食生产中霉菌普遍发生和生长,再者粮食和饲料的贮藏、运输也会导致更多霉菌毒素的产生,直接表现在对畜禽的危害越来越严重。主要霉菌毒素危害表现在:黄曲霉毒素:生长迟缓、增重缓慢、肠道出血、被毛粗糙、抑郁、厌食、免疫抑制等玉米赤霉烯酮: 雌激素作用亢进,发情不规则,流产、死胎,公猪精液品质下降呕吐毒素: 损害肠道、采食量降低,容易遭到细菌的二次感染,呕吐、拒食T-2毒素: 侵害消化道、胃及肠道病变,采食量减少,拒食、呕吐,免疫抑制伏马毒素: 生长受阻,黄疸,肝组织损伤,慢性肝机能障碍,采食量下降,免疫抑制赭曲霉毒素:攻击肾脏、免疫及造血系统,肝脏变得脆弱,增重下降,生长迟缓在畜牧生产中,养殖者首要考虑的问题是:1、饲喂的饲料各种霉菌毒素是否超标;2、饲料中不同毒素污染程度来确定是否需要添加脱霉剂;3:添加多少脱霉剂较为科学科学养猪需要获得报告:1:饲料厂家提供的霉菌毒素检测报告2:脱霉剂厂家出具不同毒素吸附效率报告和添加量建议3:委托专业的检测公司进行霉菌毒素检验来确定添加剂量。******** 长期专注于霉菌毒素检测技术与产品服务,拥有多名专业人员和完备的检测实验室,尤其是在霉菌毒素检测方面。已与多家饲料、食品、保健品企业签订合约,提供检验服务。并且承担着国内多家第三方检测机构真菌毒素检测外包业务。如果您在养殖生产中对霉菌毒素的污染、危害有任何疑问,可以随时来电咨询我们,也可以委托我们对饲料及饲料原料进行霉菌毒素污染程度进行鉴定

  • 【云唐】真菌毒素残留快速检测仪的用途有哪些

    【云唐】真菌毒素残留快速检测仪的用途有哪些

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/01/202401190904346998_6585_5604214_3.jpg!w690x690.jpg[/img]  真菌毒素残留快速检测仪是一种用于快速检测食品中真菌毒素残留的仪器。它的用途非常广泛,可以帮助食品生产和加工企业确保产品的质量和安全,也可以用于食品安全监管和检测机构对食品的监督和抽检。  首先,真菌毒素残留快速检测仪可以用于谷物、饲料、食用油等食品中黄曲霉素、玉米赤霉烯酮、赭曲霉毒素等真菌毒素的快速检测。这些真菌毒素是由霉菌在食品中生长所产生的,对人类和动物的健康都有很大的危害。因此,对这些食品中真菌毒素的检测是十分必要的。  其次,真菌毒素残留快速检测仪还可以用于检测食品中其他有害物质的残留,如农药、重金属等。这些有害物质如果超标,会对人体健康造成很大的危害。因此,对这些有害物质的检测也是食品安全检测的重要内容。  此外,真菌毒素残留快速检测仪还具有操作简便、检测快速、准确度高等优点。它采用了免疫学、化学、生物学等检测技术,可以在短时间内完成对食品中真菌毒素的检测,并且准确度也非常高。这为企业和检测机构提供了更加高效、便捷的检测手段,有助于保障食品安全和消费者的健康。  综上所述,真菌毒素残留快速检测仪的用途非常广泛,可以帮助企业和检测机构快速准确地检测食品中的有害物质残留,从而保障食品安全和消费者的健康。随着人们对食品安全和健康的关注不断提高,真菌毒素残留快速检测仪的应用将会越来越广泛。

  • 粮食真菌毒素快速检测仪可以检测哪些真菌毒素

    粮食真菌毒素快速检测仪可以检测多种真菌毒素,包括但不限于黄曲霉毒素B1、玉米赤霉烯酮、呕吐毒素、伏马毒素、T-2毒素、脱氧雪腐镰刀菌烯醇和玉米赤霉烯酸等。这些毒素是粮食中常见的污染物,对粮食安全和人类健康构成严重威胁。粮食真菌毒素快速检测仪的使用,使得粮食收购、储藏、加工等现场可以快速准确地检测样品中真菌毒素的含量,为保障粮食安全提供了有效的技术支持。  同时,这种检测仪不仅限于粮食的检测,还可以用于饲料及其原料、食用油脂、牛奶及其制品中的真菌毒素检测。它的操作简便,通常采用统一的乙醇水提取方法,一次提取就可以检测多种毒素项目,而且配备的热敏打印机能够自动打印检测结果,使得检测过程更为便捷高效。  请注意,虽然粮食真菌毒素快速检测仪具有诸多优点,但在使用时仍需遵循相关操作规程,确保检测结果的准确性和可靠性。此外,对于涉及重大食品安全问题的疑虑,建议将样本送至专业实验室进行进一步的确认和详细分析。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/04/202404291015293617_3385_4214615_3.jpg!w690x690.jpg[/img]

  • 带你了解什么是真菌毒素检测仪

    [size=16px]  山东云唐生产的真菌毒素检测仪应用竞争抑制免疫层析的技术原理,通过就是通过待检测物与抗体结合的方法,分析待检样品中真菌毒素残留。可快速检测粮食、饲料、谷物、食用油、调味品中如玉米、大米、小麦、大麦、糙米、麸皮、稻谷、豆粕、米糠、饲料中的黄曲霉毒素B1、M1、总量,玉米赤霉烯酮、呕吐毒素、T2毒素、赭曲霉毒素、伏马毒素等  真菌毒素检测仪是一种用于检测食品、农产品、饲料和环境样品中真菌毒素污染的设备。真菌毒素是由一些真菌生产的化合物,它们在一些食品和农产品中可能产生,并且对人类和动物的健康有潜在的危害。  这些毒素可能在食品和饲料中积累,当人们或动物摄入受污染的食品时,可能会引发中毒。不同类型的真菌毒素可能导致不同的健康问题,包括食物中毒、中毒性霉菌综合症等。  真菌毒素检测仪的工作原理通常涉及从样品中提取潜在的真菌毒素,然后使用特定的化学方法、生物学方法或分析仪器来检测其存在。这些方法可能包括高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法(HPLC)、[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法(GC)、[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]质谱联用法([url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url])、酶联免疫吸附试验(ELISA)等。  这些检测仪器的目标是确定食品或农产品中真菌毒素的浓度,以确保其符合国际标准和法规的限制,从而保障人类和动物的健康。真菌毒素检测在食品安全、农业生产和国际贸易中起着重要作用,有助于防止潜在的毒素污染事件发生。[/size]

  • 粮食真菌毒素检测仪作用

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/06/202406210921059294_1470_5604214_3.jpg!w690x690.jpg[/img]  在粮食生产和加工过程中,真菌毒素污染一直是一个令人担忧的问题。这些真菌毒素不仅会对粮食的品质造成严重影响,还可能对人体健康产生潜在威胁。因此,对粮食中真菌毒素的检测和监测显得尤为重要。粮食真菌毒素检测仪作为一种高效、快速的检测工具,正逐渐成为粮食加工企业和食品安全部门不可或缺的重要设备。  粮食真菌毒素检测仪的主要作用在于对粮食中真菌毒素进行快速、准确的检测。它采用先进的检测原理和技术,能够在短时间内对粮食样品中的真菌毒素含量进行定量分析。与传统的检测方法相比,粮食真菌毒素检测仪具有更高的灵敏度和准确性,可以及时发现并控制粮食中的真菌毒素污染,从而保障粮食的质量安全。  粮食真菌毒素检测仪的应用范围非常广泛。首先,在粮食加工企业中,它可以帮助企业对原料粮进行快速筛查,确保原料粮的真菌毒素含量符合标准要求。同时,在粮食加工过程中,检测仪也可以用于监测成品粮的真菌毒素含量,确保产品质量安全。此外,粮食真菌毒素检测仪还可以应用于饲料加工企业,帮助企业对饲料中的真菌毒素进行快速检测,保障畜牧业的健康发展。  粮食真菌毒素检测仪的应用不仅有助于提高粮食和饲料的质量安全,还有助于降低企业的生产成本和风险。传统的真菌毒素检测方法往往需要耗费大量的时间和人力成本,而且检测周期较长,容易给企业带来经济损失。而粮食真菌毒素检测仪的快速检测能力可以大大缩短检测周期,降低检测成本,提高企业的生产效率。同时,通过及时发现和控制真菌毒素污染,企业可以避免因产品不合格而引发的法律风险和声誉损失。  此外,粮食真菌毒素检测仪的应用还具有重要的社会意义。随着人们对食品安全问题的关注度不断提高,对粮食和饲料中真菌毒素的检测和监测要求也越来越高。粮食真菌毒素检测仪的快速、准确检测能力可以为食品安全部门提供有力的技术支持,帮助他们及时发现和处理食品安全问题,保障人民群众的健康权益。同时,通过加强粮食真菌毒素的检测和监测工作,还可以促进粮食产业的健康发展,推动农业经济的持续增长。  总之,粮食真菌毒素检测仪作为一种高效、快速的检测工具,在粮食加工、饲料加工以及食品安全领域发挥着重要作用。它不仅可以提高粮食和饲料的质量安全水平,降低企业的生产成本和风险,还可以为食品安全部门提供有力的技术支持,保障人民群众的健康权益。随着技术的不断进步和应用范围的扩大,相信粮食真菌毒素检测仪将在未来发挥更加重要的作用,为粮食产业的健康发展做出更大的贡献。

  • 带你了解16种常见的真菌毒素

    带你了解16种常见的真菌毒素

    [align=center][font='黑体'][size=24px]带你了解[/size][/font][font='黑体'][size=24px]16种常见的真菌毒素[/size][/font][/align][font='仿宋'][size=20px]前言:随着社会进步和发展,人们对食品中真菌毒素关注越来越多,相关的检测方法和设备也是与日更新,大家对常见真菌毒素了解也是越来越深入,但对于一些接触较少或刚接触的真菌毒素检测工作的人来说,真菌毒素类别和关系还是有些模糊,本文从[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]质谱多组分检测的16种真菌毒素入手,简单的梳理归纳这些种毒素性质和常用信息,以其对从事真菌毒素检验的同行带来些许帮助,不当之处,欢迎指正探讨。[/size][/font][font='仿宋'][size=20px][color=#222222]1 [/color][/size][/font][font='仿宋'][size=20px]真菌[/size][/font][align=left][font='calibri'][size=13px]瑞典生物学家林奈(1707~1778),等将生物界分成植物和动物两界,这种最早的两界系统,该系统把细菌类、藻类和真菌类归入植物界,把原生动物类归入动物界。一直沿用到 20 世纪 50 年代,后来陆续发展三界系统,四界系统,五界系统以及目前流行六界系统,真菌逐步有了自己的界,与[/size][/font][url=https://baike.so.com/doc/5327659-5562831.html][font='calibri'][size=13px]植物界[/size][/font][/url][font='calibri'][size=13px]、动物界、等区别。[/size][/font][/align][align=left][font='calibri'][size=13px]真菌,是一种具[/size][/font][url=https://baike.baidu.com/item/%E7%9C%9F%E6%A0%B8/5952616?fromModule=lemma_inlink][font='calibri'][size=13px]真核[/size][/font][/url][font='calibri'][size=13px]的、产孢的、无叶绿体的[/size][/font][url=https://baike.baidu.com/item/%E7%9C%9F%E6%A0%B8%E7%94%9F%E7%89%A9/1398395?fromModule=lemma_inlink][font='calibri'][size=13px]真核生物[/size][/font][/url][font='calibri'][size=13px]。通常分为三类,即酵母菌、霉菌和蕈菌(大型真菌)。真菌是生物界中很大的一个类群,世界上已被描述的真菌约有 1万属12万余种,估计只是所有存在的一小半,有一多半未被发现。[/size][/font][/align][align=left][font='calibri'][size=13px]2 真菌毒素[/size][/font][/align][align=left][font='calibri'][size=13px]真菌毒素由真菌产生的具有生物毒性的次级代谢产物,由多种真菌产生,几乎所有的农作物都可能被污染,已知的真菌毒素多达400多种,化学性质稳定,耐高温、耐持久、耐加工过程中的各种处理,普遍具有致癌、 致畸和致突变等作用。[/size][/font][/align][align=left][font='calibri'][size=13px]一般而言,真菌毒素由4种霉菌属所产生:曲霉菌属(主要分泌黄曲霉毒素、赭曲霉毒素等)、青霉菌属(主要分泌橘霉素等)、麦角菌属(主要分泌麦角毒素)、镰孢菌属(主要分泌玉米赤霉烯酮、呕吐毒素、T-2毒素、串珠镰孢菌毒素).[/size][/font][/align][font='仿宋'][size=20px] [/size][/font][font='仿宋'][size=20px]真菌毒素的形成与真菌生长繁殖的环境条件密切相关,大部分真菌在20~28℃都能生长,在30~100℃,真菌生长显著减弱,在0℃几乎不能生长。温度25~33℃、相对湿度85%~95%的环境最适合真菌的生长和繁殖,也最容易形成真菌毒素。[/size][/font][font='仿宋'][size=20px]3多组分测定常见的16种真菌毒素[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210031348009182_6354_1849932_3.jpeg[/img][font='仿宋'][size=20px]3.1单端孢霉烯族化合物[/size][/font][font='仿宋'][size=20px]一组由某些镰刀菌种产生的生物活性和化学结构相似的有毒代谢物。分为A型与B型两组。目前已知天然污染谷物和饲料的A型主要有T-2毒素、HT-2毒素、二醋酸藨草镰刀菌烯醇,B型有雪腐镰刀菌烯醇、脱氧雪腐镰刀菌烯醇和镰刀菌烯醇X。性质稳定,在烹调过程中不易破坏。其毒作用为较强的细胞毒性、免疫抑制作用及致畸作用,部分有弱的致癌作用。[/size][/font][font='仿宋'][size=20px]3.1.1单端孢霉烯族化合物A族[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210031348006061_1460_1849932_3.png[/img][font='仿宋'][size=20px]单端孢霉烯族化合物A族主要有上图中5种,多组分检测涉及[/size][/font][font='仿宋'][size=20px]T-2[/size][/font][font='仿宋'][size=20px]和HT-2两种,[/size][/font][font='仿宋'][size=20px]T-2毒素是由多种真菌,主要是三线镰刀菌产生的单端孢霉烯族化合物(trichothecenes,TS)之一。它广泛分布于自然界,是常见的污染田间作物和库存谷物的主要毒素,对人、畜危害较大。T-2毒素为白色针状结晶,在室温条件下相当稳定,放置6~7年或加热至100~120℃1小时毒性不减。T-2毒素带有酯基,用碱处理后水解成相应的醇。[/size][/font][font='仿宋'][size=20px]HT-2是[/size][/font][font='仿宋'][size=20px]由T-2毒素在体内转变成的毒性更强的代谢产物[/size][/font][font='仿宋'][size=20px]。[/size][/font][font='仿宋'][size=20px]3.1.2单端孢霉烯族化合物B族[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210031348014544_6268_1849932_3.png[/img][font='仿宋'][size=20px]B族主要有上图5种,其中呕吐毒素(deoxynivalenol, DON),化学名为3α, 7α, 15一三羟基草镰孢菌-9-烯-8-酮,主要由禾谷镰刀菌、尖孢镰刀菌、串珠镰刀菌、拟枝孢镰刀菌、粉红镰刀菌、雪腐镰刀菌等镰刀菌产生,由于它可以引起猪的呕吐而得名,欧盟分类标准为三级致癌物。可溶于水和极性溶剂,如含水甲醇、含水乙醇或乙酸乙酯等,[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210031348010661_493_1849932_3.png[/img][font='仿宋'][size=20px]B 型化合物在 C - 8 位置上有羰基,DON、雪 腐 镰 刀 菌 烯 醇 ( NIV) 等 属 于 这 一组,依据 DON 乙酰化的位置不同,将 DON 的化学型 又 分 为 3 - 乙酰脱氧雪腐镰刀菌烯醇 ( 3 - ADON)和 15 - 乙酰脱氧雪腐镰 刀 菌 烯 醇 (15 -ADON)[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210031348017219_1145_1849932_3.png[/img][align=left][/align][align=left][font='calibri'][size=13px]NIV往往与脱氧雪腐镰刀菌烯醇同时存在于赤霉病粮食中。其急性毒性较脱氧雪腐镰刀菌烯醇强,也具有较强的细胞毒性,抑制免疫系统,造成血清总蛋白下降,碱性磷酸酶、谷草转氨酶活性升高等,并具有胚胎毒性作用。[/size][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210031348018440_9957_1849932_3.png[/img][/align][align=left][/align][align=left][font='calibri'][size=13px]3.2玉米赤霉烯酮[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210031348013893_5279_1849932_3.png[/img][/align][align=left][/align][align=left][font='calibri'][size=13px]3.3 伏马菌素[/size][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210031348020530_6115_1849932_3.png[/img][/align][align=left][font='calibri'][size=13px]3.4黄曲霉毒素[/size][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210031348021595_9945_1849932_3.png[/img][/align][align=left][/align][align=left][font='calibri'][size=13px]3.5 赭曲霉素[/size][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210031348022688_54_1849932_3.png[/img][/align][align=left][/align][align=left][font='calibri'][size=13px]3.6杂色曲霉素[/size][/font][/align][align=left][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210031348018503_9085_1849932_3.png[/img][/align][align=left][font='calibri'][size=13px]4 各种农作物中易污染的真菌毒素[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210031348025686_2365_1849932_3.png[/img][/align]

  • 真菌毒素检测仪应用范围广泛

    食品安全一直是人们关注的焦点之一。然而,尽管监管机构和生产商采取了许多措施来确保食品的安全性,但食品中真菌毒素超标仍然是一个严重的健康问题。真菌毒素是由霉菌和酵母等微生物产生的有害化合物,当它们超过了允许的限制时,可能对人体健康造成严重危害。  真菌毒素检测仪是一种用于检测食品、农产品和环境样品中真菌毒素的专业仪器。它的作用和重要性远不止于确保产品质量,还关系到人类健康和生态环境的安全。真菌毒素检测仪广泛适用于粮油系统、粮食站、粮油监测中心、粮油饲料生产加工、食品加工贸易、畜禽养殖户自查、工商质监部门市场快速筛查等单位。[font=S?hne, ui-sans-serif, system-ui, -apple-system, &][size=16px][color=#374151][/color][/size][/font]

  • 霉菌毒素产生的条件

    总体上说,霉菌毒素产生的条件取决于多方面,经常需要关注的主要包括以下五个方面因素:1、原料生物性因素:即大部分植物原料的生物学属性改变,或品系改良天然抗病力的下降,导致霉菌毒素的产生和污染。例如玉米、小麦、燕麦、大麦、花生等最易滋生9-10种霉菌毒素;大米、高粱易滋生4-5种霉菌毒素;大豆、棉花等易滋生1-2种霉菌毒素。目前我国主要种植的各种玉米尚无抗霉菌毒素品系。2、原料种植过程中的因素:多大数谷物在田间种植期间如果遇到干旱、洪涝的恶劣气候均会产生霉菌毒素。例如玉米在生长过程中要经历播种、分叶、拔节、抽雄、灌浆、乳熟、结实等不同阶段,尤其在后三个阶段期间非常容易因天气变化导致在田间发生霉变。这也就是为什么人们根据毒素污染的阶段将霉菌毒素分为田间毒素和仓储毒素两类。3、原料收获过程中的因素:谷物未完全成熟、机械磨损,昆虫鼠害损伤等均易造成霉菌毒素污染。4、饲料及原料生产储存过程中的因素:值得注意的是,霉菌的孢子总是常规存在于饲料及原料之中,等待适宜温度和湿度,进而萌发并代谢出霉菌毒素。因此在饲料及原料的生产加工和储存过程中对温度、湿度的控制尤其关键。通常玉米的水分含量超过14%,饼粕类水分超过12%即非常容易产生霉菌毒素。另外一个常知的因素温度也会让我们产生误解而犯下错误,大部分霉菌繁殖最佳温度是 25 -- 35ºC,但是人们忽略的是低温0--10 ºC同样会有霉菌的繁殖,例如黄曲霉毒素在潮热的环境下容易产生,而像呕吐毒素在0 ºC就可以产生,玉米赤霉烯酮在10 ºC时就可以产生。因此产自于北方的谷物原料中一样经常含有霉菌毒素的污染,只是霉菌毒素的种类不同于来自南方的原料。5、饲料销售及使用过程中的因素:饲料厂产品库内堆积、运输到养殖场的装载环、养殖场的场内存放、畜舍饲喂系统的再污染等因素造成了霉菌毒素的二次污染问题,这也需要饲料生产企业和养殖企业共同重视。

  • 【原创大赛】对真菌毒素的一些认识

    [size=18px][b][font=宋体] 真菌毒素是真菌产生的次生代谢产物,是生物毒素的一类,具有较高的生物毒性,如致癌、致畸和肝肾毒性等。早在[/font]11[font=宋体]世纪欧洲圣像画中就有关于真菌毒素引起中毒的描述,[/font]1960[font=宋体]年英国[/font]10[font=宋体]万多火鸡因食用被黄曲霉毒素污染的饲料而死亡的事件,真菌毒素才被大家重新认识。[/font][font=宋体] 因其具有较高的生物毒性,如摄取一定量被真菌毒素污染的食品会对人民群众的身体健康造成极大的危害。同时,真菌毒素超标也是限制我国农产品出口的极大的障碍。近年来,真菌毒素导致的食品安全问题受到了国内和国际相关组织的高度关注,其对食品的污染也被世界卫生组织列为食源性疾病的重要来源,受污染的食品也会随着人畜食物链的演进影响到环境安全。[/font][font=宋体] 植物源性食品,如大米、小麦粉、植物油、蔬菜、水果等,均是人们日常生活必备的食物来源,且是主要来源,同时这些植物源性食品中有很大一部分容易受到真菌毒素的污染,如小麦粉容易受到黄曲霉毒素[/font]B1[font=宋体]、赭曲霉毒素[/font]A[font=宋体]、玉米赤霉烯酮、脱氧雪腐镰刀菌烯醇等的污染,且这种污染是我们用肉眼不可区分的,且一种食物可能会受到多种真菌毒素的污染。同时,食品中真菌毒素的限量标准也在不断降低。而目前植物源性食品中真菌毒素的检测方法多为针对某一种或某一类真菌毒素的检测,且多以液相色谱[/font]-[font=宋体]荧光检测器检测为主。[/font][font=宋体][b][font=宋体] 为确保植物源性食品的安全,近年来世界各国聚焦威胁植物源性食品安全的主要风险来源,不断建立相关限量及检验检测技术标准,相继开展风险评估工作,当然,对于真菌毒素的研究也在其中。[/font][font=宋体] 目前研究显示,对于植物源性食品主要涉及的真菌毒素种类为黄曲霉毒素、玉米赤霉烯酮、脱氧雪腐镰刀菌烯醇、赭曲霉毒素[/font]A[font=宋体]、伏马毒素、[/font]T-2[font=宋体]毒素等。相关限量标准也一直备受各国关注,对于限量标准的制定和修订也一直没有间断。我国在二十世纪八十年代初制定了食品中黄曲霉毒素[/font]B1[font=宋体]的限量要求,后陆续对黄曲霉毒素[/font]M1[font=宋体]、展青霉素和脱氧雪腐镰刀菌烯醇制定了限量要求,到[/font]2005[font=宋体]年,整合形成[/font]GB 2761-2005[font=宋体]《食品安全国家标准[/font][font=宋体]食品中真菌毒素限量》标准,并于[/font]2011[font=宋体]年和[/font]2017[font=宋体]年分别进行了修订,依据公众健康风险和膳食暴露水平对部分食品类别的部分毒素的限量进行了调整,但伏马毒素和[/font]T-2[font=宋体]毒素尚未规定限量标准,国际上除苏联规定[/font]T-2[font=宋体]毒素在粮食中的限量外,其他国家未查询到相关限量要求。[/font][/b][/font][/b][font=宋体][b][font=宋体] [b]目前,真菌毒素的检测技术主要有免疫分析法、仪器分析法和薄层色谱法。免疫分析法主要有连接酶吸附法、胶体金染色法和同位素放射法,主要是利用生物体中的抗原细胞和抗体细胞,在真菌毒素污染后两者的反应发生变化,导致含量变化,进而通过标记抗原或抗体,通过标记物的变化判断毒素的种类与数量。仪器分析法主要有经典仪器法和新型仪器法,经典仪器法目前主要采用高效液相色谱法和高效液相色谱-串联质谱法,不同种类的真菌毒素通过液相色谱柱进行分离,根据不同毒素的性质差异选择不同的检测方式;新型仪器法主要有红外线光谱检测技术、高光谱成像检测技术和电子鼻检测技术。[/b][/font][/b][/font][/size]

  • 【原创大赛】真菌毒素的研究现状和限量要求

    [align=left][b][font=微软雅黑][font=微软雅黑]真菌毒素简介[/font][/font][font=微软雅黑][/font][/b][font=微软雅黑][font=微软雅黑]真菌毒素是真菌产生的次生代谢产物,是生物毒素的一类,具有较高的生物毒性,如致癌、致畸和肝肾毒性等。早在[/font][font=微软雅黑]11世纪欧洲圣像画中就有关于真菌毒素引起中毒的描述,1960年英国10万多火鸡因食用被黄曲霉毒素污染的饲料而死亡的事件,真菌毒素才被大家重新认识。[/font][/font][font=微软雅黑][/font][font=微软雅黑][font=微软雅黑]因真菌毒素具有较高的生物毒性,如摄取一定量被真菌毒素污染的食品会对人民群众的身体健康造成极大的危害。同时,真菌毒素超标也是限制我国农产品出口的一项极大的障碍。近年来,真菌毒素导致的食品安全问题受到了国内和国际社会相关组织的高度关注,其对食品的污染也被世界卫生组织列为食源性疾病的重要来源,受污染的食品也会随着人畜食物链的演进影响到环境安全。[/font][/font][font=微软雅黑][/font][font=微软雅黑][font=微软雅黑]植物源性食品,如大米、小麦粉、植物油、炒货及坚果制品等,均是人们日常生活必备的食物和营养来源,大米、小麦粉也是我们日常生活的主食之一,同时这些植物源性食品较易受到真菌毒素的污染,如小麦粉容易受到黄曲霉毒素[/font][font=微软雅黑]B1、赭曲霉毒素A、玉米赤霉烯酮等的污染,尤其是加工食品的这种真菌毒素污染是我们用肉眼不可区分的,且一种食物可能会受到多种真菌毒素的污染。当食品在储存、运输或者加工、经营过程中,没没有控制好相关条件,就很可能被真菌毒素污染。[/font][/font][font=微软雅黑][/font][b][font=微软雅黑][font=微软雅黑]真菌毒素的[/font][/font][font=微软雅黑][font=微软雅黑]研究现状和限量要求[/font][/font][/b][font=微软雅黑][/font][font=微软雅黑][font=微软雅黑]为确保食品的安全,近年来世界各国聚焦威胁食品安全的主要风险来源,不断建立相关限量及检验检测技术标准,相继开展风险评估工作,当然,对于真菌毒素的研究也在其中。[/font][/font][font=微软雅黑][/font][font=微软雅黑][font=微软雅黑]目前研究显示,对于植物源性食品主要涉及的真菌毒素种类为黄曲霉毒素、玉米赤霉烯酮、脱氧雪腐镰刀菌烯醇、赭曲霉毒素A、伏马毒素、T-2毒素等。相关限量标准也一直备受各国关注,对于限量标准的制定和修订也一直没有间断。我国在二十世纪八十年代初制定了食品中黄曲霉毒素B1的限量要求,后陆续对黄曲霉毒素M1、展青霉素和脱氧雪腐镰刀菌烯醇制定了限量要求,到2005年,整合形成GB 2761-2005《食品安全国家标准 食品中真菌毒素限量》标准,并于2011年和2017年分别进行了修订,依据公众健康风险和膳食暴露水平对部分食品类别的部分毒素的限量进行了调整,但伏马毒素和T-2毒素尚未规定限量标准,国际上除苏联规定T-2毒素在粮食中的限量外,其他国家未查询到相关限量要求。[/font][/font][font=微软雅黑][/font][font=微软雅黑][font=微软雅黑]GB 2761-2017《食品安全国家标准 食品中真菌毒素限量》规定了食品中6种真菌毒素的限量指标。该标准包括适用范围、术语和定义、应用原则、指标要求、附录A食品类别(名称)说明五部分内容,在使用过程中要注意,当采用本标准作为判定依据时,样品分类要依据本标准的附录A进行。[/font][/font][font=微软雅黑][/font][b][font=微软雅黑][font=微软雅黑]真菌毒素的检测技术[/font][/font][font=微软雅黑][font=微软雅黑]情况[/font][/font][font=微软雅黑][/font][/b][font=微软雅黑][font=微软雅黑]目前,真菌毒素的提取方法主要是采用合适的有机溶剂,或者采用一定比例的有机溶剂水溶液进行提取,通过超声、涡旋震荡等方式提高提取效率。[/font][/font][font=微软雅黑][/font][font=微软雅黑][font=微软雅黑]在现行的食品安全国家标准中,对于真菌毒素的净化方式主要采用的是免疫亲和柱进行,文献中对于真菌毒素提取液的净化除采用国标的方式之外,还有采用[/font][font=微软雅黑]QuEChERS净化技术、固相萃取柱技术,以及多合一的免疫亲和柱进行净化。[/font][/font][font=微软雅黑][/font][font=微软雅黑][font=微软雅黑]真菌毒素的检测方法主要有免疫分析法、仪器分析法、薄层色谱法、高效液相色谱法和高效液相色谱[/font][font=微软雅黑]-串联质谱法。免疫分析法主要有连接酶吸附法、胶体金染色法和同位素放射法,主要是利用生物体中的抗原细胞和抗体细胞,在真菌毒素污染后两者的反应发生变化,导致含量变化,进而通过标记抗原或抗体,通过标记物的变化判断毒素的种类与数量。还有一些新型的仪器法检测真菌毒素,主要有红外线光谱检测技术、高光谱成像检测技术和电子鼻检测技术。目前国家标准或者文献中报道的关于真菌毒素的检测方法中,高效液相色谱法和高效液相色谱-串联质谱法占比较高,同时因高效液相色谱-串联质谱法具有较好的灵敏度、选择性,以及较强的定性能力,而被分析工作者所青睐。但该仪器的成本较高,且对于仪器的操作者来说能力水平要求较高,因此大家在真菌毒素的检测工作中时,可以根据实验目的、所要达到的检测效果、实验室的具体情况等多方面进行综合考虑。[/font][/font][font=微软雅黑][/font][/align]

  • PriboFast○R 系列多功能净化柱,超值体验霉菌毒素检测新技术

    霉菌毒素是由霉菌或真菌产生的有毒有害物质。在土壤中,在植物上,包括谷物、饲草和青贮饲料均可发现霉菌毒素。霉菌毒素对粮食、饲料的污染已是一个全球性热点问题。目前已知的霉菌毒素高达几百种,而食品、饲料、饮料、药材行业中危害较大的主要是以黄曲霉毒素(Aflatoxin),赭曲霉毒素A(Ochratoxin A),单端孢菌毒素(Trichothecenes),玉米赤霉烯酮(Zearalenone),烟曲霉毒素(Fumonisin)和串珠镰刀菌素(Moniliformin)发生较多,由于霉菌毒素种类繁多、结构复杂多样,这就造成实际生产中,真菌毒素的定量检测成为困扰我们的重要难题之一,对于这些毒素的检测样品的净化处理显得尤为重要。目前霉菌毒素的检测方法包括薄层色谱法、酶联免疫法、免疫亲和柱净化高效液相色谱法。但薄层色谱法操作繁琐、污染大、定量差、耗时长;而酶联免疫法虽操作简单、灵敏度高,但特异性差,假阳性高;免疫亲和柱高效液相色谱法成本太高, 对于高黄曲霉毒素含量的样品偏差较大。迫切需要一种样品处理简便易行、快速准确、灵敏度高、检测限低,检测成本低廉的检测方法和技术。尤其液相色谱分离技术具有分析速度快、样品用量少、灵敏度高、分离和测定一次完成,得到越来越多行业和单位的应用,然而整个过程样品前处理的好坏将直接导致测量结果的准确与否,对样品净化的方法要求更高。Pribolab推出的新一代霉菌毒素净化柱产品,在创新发展了霉菌毒素检测的样品处理技术基础上,可以保证整个检测一开始就具有较高的重现性和可靠性。现代前处理技术在要求净化效果的同时,越来越追求方法的快速及易操作性,PriboFastR系列多功能净化柱采取的方法就是多重机制吸附杂质并快速萃取净化的方法,,它将极性、非极性及离子交换等多类官能基团作为复合吸附填料作为填充剂填充到柱体中,这些填料可以选择性的吸附样品中的如脂类、蛋白类和色素等主要杂质吸附,同时将待测目标物(如中黄曲霉毒素 玉米赤霉烯酮等各种霉菌毒素)留在样液中,从而达到净化和富集的目的。使用PriboFastR 系列多功能净化柱,能够及时快速地对从食品、饲料、饮料、药材中提取的待检液进行净化,过柱净化后的样品可以用于检测黄曲霉毒素、 玉米赤霉烯酮、呕吐毒素、雪腐镰刀菌烯醇、3-乙酰基脱氧雪腐镰刀菌烯醇、15-乙酰基脱氧雪腐镰刀菌烯醇等多种霉菌毒素。与一般的固相萃取柱(SPE)和亲和柱相比,多功能净化柱无需活化、上样、洗脱等步骤,能够将食品或饲料提取液中的杂质与真菌毒素进行一步分离,使用快捷、方便,减少萃取步骤,有效保证分析的更加准确可靠,降低检测成本,有效提高检测效率。广告嫌疑的内容部分已经过编辑(弗雷德)

  • 各种真菌毒素对人类健康的影响

    现已查明自然界存在的真菌毒素在200种以上,按真菌毒素的重要性及危害依次排列为:黄曲霉毒素(Aflatoxin,AF)、赭曲霉毒素A(Ochratoxin A,OA)、单端孢霉烯族毒素(Trichothecenes)、玉米赤霉烯酮(Zearalenone,ZEA)。真菌毒素具有两种毒性,一是致DNA损伤,有者可致癌;二是细胞毒性,有破坏质膜和细胞酶的作用。 1、黄曲霉毒素及对人类健康的影响 黄曲霉毒素(Aflatoxin,AF)是由黄曲霉(Aspergillus flavus)、寄生曲霉(A.parasiticus)代谢产生—类结构相似含多环不饱和香豆素的化合物,已分离出17种,其中4种(B1,B2,G1,G2)已完全弄清其特性并从毒物学方面进行了广泛研究,以AFB1毒性最大(大于氰化钾)。 黄曲霉毒素可存在于多种热带或亚热带地区出产的食品内。最常发现含有黄曲霉毒素的是花生。其他食品还有玉米、无花果、果仁及多类谷物中感染黄曲霉毒素都较常见。黄曲霉菌肉眼看来往往是绿色的,而黄曲霉毒素却无臭、无味、无色。 化学上而言,食物中的黄曲霉毒素呈稳定状态,能抵受一般的烹调过程,不易分解。黄曲霉毒素一旦出现,便难以消除。在现今社会里,人类因摄取到黄曲霉毒素而引起急性中毒的个案是很罕见。中毒病征可能包括发烧、呕吐及黄疸病,也可能引致急性肝脏受损,情况严重的会致命。长期摄取黄曲霉毒素与罹患肝癌有关。动物研究结果显示老鼠、仓鼠及猴子等动物经长期口服黄曲霉毒素后,可引致肝部长出肿瘤。

  • 真菌毒素检测仪介绍

    真菌毒素检测仪介绍

    [size=16px]  真菌毒素检测仪介绍  真菌毒素检测仪是一种快速检测分析设备,主要用于粮油系统、粮站、粮油监控中心、粮油饲料生产加工、食品加工贸易、畜禽养殖户自检、工业和商业质量监督部门等场所,用于检测粮食、饲料等样品中多种真菌毒素的含量,如黄曲霉毒素、呕吐毒素等。  该仪器采用一体化设计,集成了现代光电测量技术和数据处理技术,具有快速、准确、操作简便等特点。它通过检测样品中真菌毒素与特异性抗体结合后产生的荧光信号强度,计算出真菌毒素的含量。  真菌毒素检测仪具有以下特点:  稳定性高:采用进口荧光微球,颗粒均一,从源头保证产品稳定性好,批次内、批次间重现性好。试剂条可常温运存,无需冷藏。检测后,试剂条烘干后可保存一年,实现结果的可追溯性。  快速准确定量:集胶体金快速、酶联免疫定量、色谱准确检测的特点于一身,实现快速准确定量检测。  内置定量标准曲线:仪器内置标准曲线,无需使用标准品,检测时无需做标准曲线,既节省了成本,也避免了操作人员与呕吐毒素的接触,保护操作人员的安全。  自动化程度高:仪器内置操作系统,无需外接电脑,操作简便。  检测项目多:可检测黄曲霉毒素、呕吐毒素等多种真菌毒素。  总之,真菌毒素检测仪是一种高效、准确的检测设备,对于保障食品安全和人身健康具有重要意义。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/11/202311301801350787_8748_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 【云唐】真菌毒素检测仪的作用有哪些

    【云唐】真菌毒素检测仪的作用有哪些

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/03/202403010928558577_5681_5604214_3.jpg!w690x690.jpg[/img]  真菌毒素检测仪是一种用于检测真菌毒素的仪器,其作用非常重要,可以帮助人们快速、准确地检测出食品、饲料、粮食等样品中是否含有真菌毒素。以下是真菌毒素检测仪的作用:  1. 快速检测:真菌毒素检测仪采用快速检测技术,可以在短时间内得出检测结果,大大缩短了检测时间,提高了检测效率。  2. 准确度高:真菌毒素检测仪采用先进的检测技术,如色谱技术、质谱技术等,可以准确地检测出样品中各种真菌毒素的含量,避免了传统检测方法的误差和干扰。  3. 适用范围广:真菌毒素检测仪可以适用于多种样品,如粮食、饲料、食品、农产品等,可以满足不同用户的需求。  4. 自动化程度高:真菌毒素检测仪采用自动化技术,可以自动完成样品的处理、检测、数据输出等全过程,减少了人工操作的误差和繁琐性。  5. 安全性高:真菌毒素检测仪的准确性和可靠性可以保障食品安全,避免因误判而导致的食品安全问题,提高了食品的安全性。  总之,真菌毒素检测仪是一种非常有用的仪器,可以帮助人们快速、准确地检测出食品、饲料、粮食等样品中是否含有真菌毒素,保障人们的健康和食品安全。

  • 【网络讲座】食品及谷物中真菌毒素的检测 (2016-10-11 14:00 )

    【网络讲座】食品及谷物中真菌毒素的检测 (2016-10-11 14:00 )

    讲座名称:食品及谷物中真菌毒素的检测  主讲老师:张婷婷,王欣玲   张婷婷,沃特世食品与环境市场专家。王欣玲,沃特世耗材部市场专家。  主要内容:  真菌毒素是某些产毒真菌产生的次级代谢产物,农作物、饲料以及食品等加工或存储过程中都可能受到真菌的污染从而产生真菌毒素。有关机构曾在全球范围内共采集了4023个样品进行霉菌毒素检测分析。从结果上看,全球和亚洲范围内真菌毒素的分布趋势很接近,但是在亚洲同时检出多于一种真菌毒素的比例略高。这也从另一个侧面反映出,进行真菌毒素检测的必要性。这也给食品安全分析工作者带来了大量的检测任务。如何可以使现有的工作流程更加简化,分析工作更加高效,检测结果更加稳定精准,相信这是每个用户都关心的问题。 本次讲座概要: 1.实验背景 2.黄曲霉毒素分析方案 3.多真菌毒素分析方案 举行时间:2016-10-11 14:00    报名链接:  http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2149http://ng1.17img.cn/bbsfiles/images/2016/08/201608301144_607397_2507958_3.jpg手机扫描二维码,报名参会http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_669782_2507958_3.gif

  • 花生及其制品中真菌毒素污染情况调查

    花生及其制品中真菌毒素污染情况调查

    花生及其制品中真菌毒素污染情况调查真菌毒素(mycotoxin)是霉菌产生的对人体危害性很大具有生物毒性的次级代谢产物。黄曲霉毒素和镰刀菌毒素被FAO和世界卫生组织(WHO)列为自然发生的最危险的食品污染物之一[sup][1][/sup]。黄曲霉毒素是研究、监测最早也最广泛的一类毒素,由曲霉产生,较低剂量长期持续摄入或较大剂量的短期摄入,都可能诱发大多数动物的原发性肝癌,还可能造成人类的急性中毒。由于霉菌毒素是小分子有机化合物,不是复杂的蛋白质分子,所以在机体中无法产生抗体,也不能免疫。可引发各种不同的临床症状免疫系统失调,神经系统、消化系统紊乱、肿瘤[sup][2-6][/sup]。真菌毒素普遍存在于粮食中,花生在生长、收割、贮存、运输及加工中都会暴露或接触到产毒真菌,真菌及真菌毒素污染食品后,会使其食用价值降低,甚至完全不能食用,造成巨大的经济损失。真菌毒素污染问题已成为世界各国高度关注的食品安全热点问题,粮油真菌污染同样正逐渐成为我国食品安全的隐患[sup][7][/sup],目前研究较多的是十几种对人类危害较大的真菌毒素[sup][6,8][/sup],但针对花生及其制品的多组分真菌毒素的全方面检测研究,尚未见报道,相关研究多集中在DON、ZEN、AF,检测方法也是适用于一种 、一类或特定类型的毒素。因此为了解花生及其加工产品真菌毒素污染情况,对花生及其制品同时进行16种真菌毒素检测与分析,并对粮食中真菌毒素的重点研究方法进行了展望,以期望为真菌毒素研究提供参考。1 材料与方法1.1 主要仪器与试剂高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱仪(美国waters TQ-S);电子天平(感量0.001g赛多利斯BT-223S);高速粉碎机(大德 DFY-C);多位试管涡旋振荡器(德国Heidolph Multi Reax); 漩涡混匀器(SCILOGEX MX-S); 乙腈(CH[sub]3[/sub]CN 美国默克公司 色谱纯);Multitoxin 标准物质( QCM7C1) ,16 种真菌毒素标准品AFB[sub]1[/sub] ( L18204A) 、AFB[sub]2 [/sub]( L18204A) 、AFG[sub]1 [/sub]( L18204A) 、AFG[sub]2[/sub] ( L18204A) 、DON ( L17012M) 、 3-ADON ( L17012M ) 、15-ADON ( L17012M ) 、NIV ( L17012M) 、ZEN( L16165M) 、OTA( L18304B) 、FB[sub]1 [/sub]( L18025M) 、FB[sub]2[/sub] ( L18025M) 、FB[sub]3[/sub] ( L18415C) 、ST ( 18325S ) 、T-2 毒 素 ( L19302M ) 和 HT-2 毒 素( L19302M) ,以及相应的 16 种[sup]13[/sup]C 同位素内标标准溶 液 均 购 自 美 国 ROMER。1.2 方法1.2.1 检测方法:采用同位素稀释[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱测定方法,严格按照操作规程进行检测,并采取平行样品,加标回收,标准物质对照等措施做好内部质量控制,对超标样品及时进行复测。AFB[sub]1[/sub]、AFB[sub]2[/sub]、AFG[sub]1[/sub] 的检测限均为 0. 1 μg /kg,AFG[sub]2[/sub] 为 0. 5 μg /kg,OTA 和 T-2 毒 素 均 为 1. 0 μg /kg, DON、3-ADON、15-ADON、ZEN、FB[sub]1[/sub]、FB[sub]2[/sub]、ST 和 HT-2毒素均为5. 0μg /kg,FB[sub]3[/sub]为10. 0μg /kg,NIV为35. 0μg /kg。1.2.2 统计分析: 所测数据全部输入Excel数据库,数据比较采用PEMS3.1统计软件进行。2 结果与分析2.1 花生及其制品(花生酱、花生油)监测结果采用优化后方法对[color=black]花生及其制品包括熟花生、花生油、生花生和花生[/color][color=black]酱[/color][color=black]进行检测,检出真菌毒素3种,分别为AFB[/color][sub][color=black]1[/color][/sub][color=black]、AFB[/color][sub][color=black]2[/color][/sub][color=black]和AFG[/color][sub][color=black]1[/color][/sub][color=black],5 .0%(3/60),其他毒素均未检出。[/color]黄曲霉毒素类毒素是污染花生及其制品的主要真菌毒素,2018-2019年[color=black]AFB[/color][sub][color=black]1[/color][/sub][color=black]、AFB[/color][sub][color=black]2[/color][/sub]检出率范围为6.7%-60.0%。花生及其制品中AFB[sub]1[/sub]限量标准为20μg/kg,AFB[sub]2、[/sub]国标尚无限量标准[color=black],由此得出花生及其制品中[/color]AFB[sub]1[/sub][color=black]总超标率为6.7%(4/60)[/color],超标的花生油均为散装花生油,鉴于花生及其制品是黄曲霉毒素的主要来源食品之一,长期、高摄入者有风险,仍需要对花生及其制品的黄曲霉毒素污染情况及食用人群的健康风险进行监测和评估。2018年-2019年花生及其制品各年度、各食品类别和16种真菌毒素检测结果见表1、表2和图1。 表1 2018年-2019年花生及其制品中黄曲霉毒素检测结果(μg/kg)[table][tr][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]年份(年)[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]检测[/size][/font][/align][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]项目[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]样品[/size][/font][/align][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]数(份)[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]检出[/size][/font][/align][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]数(份)[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]检出[/size][/font][/align][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]率(%)[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]超标[/size][/font][/align][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]率(%)[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]最大值[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]最小值[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]平均值[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]P[sub]50[/sub][/size][/font][/align][/td][/tr][tr][td=1,4][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]2018[/size][/font][/align][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]2019[/size][/font][/align][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]2018[/size][/font][/align][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]2019[/size][/font][/align][/td][td=1,4][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]AFB[sub]1[/sub][/size][/font][/align][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]AFB[sub]2[/sub][/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]30[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]18[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]60.0[/size][/font][/align][/td][td=1,4][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]15.0[/size][/font][/align][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]3.3[/size][/font][/align][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]/[/size][/font][/align][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]/[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]57.5[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]0.05[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]8.0[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]0.71[/size][/font][/align][/td][/tr][tr][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]30[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]5[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]16.7[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]46.2[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]0.05[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]2.8[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]0.05[/size][/font][/align][/td][/tr][tr][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]30[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]12[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]40.0[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]6.42[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]0.05[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]1.3[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]0.05[/size][/font][/align][/td][/tr][tr][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]30[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]2[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]6.7[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]18.4[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]0.05[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]1.0[/size][/font][/align][/td][td][align=center][font=Microsoft YaHei, Arial, Helvetica][size=16px]0.05[/size][/font][/align][/td][/tr][/table][table][tr][td=8,1][align=center]表2 花生及其制品中各食品类别黄曲霉毒素检测结果(μg/kg)[/align][/td][/tr][tr][td][align=center]污染物[/align][/td][td][align=center]食品类别[/align][/td][td][align=center]样品数[/align][/td][td][align=center]平均值[/align][/td][td][align=center]P[sub]50[/sub][/align][/td][td][align=center]最大值[/align][/td][td][align=center]检出率(%)[/align][/td][td][align=center]超标率(%)[/align][/td][/tr][tr][td=1,4][align=center]AFB[sub]1[/sub][/align][/td][td][align=center]花生油[/align][/td][td][align=center]16[/align][/td][td][align=center]7.89[/align][/td][td][align=center]0.11[/align][/td][td][align=center]57.5[/align][/td][td][align=center]56.2(9/16)[/align][/td][td][align=center]12.5(2/16)[/align][/td][/tr][tr][td][align=center]生花生[/align][/td][td][align=center]14[/align][/td][td][align=center]3.62[/align][/td][td][align=center]0.05[/align][/td][td][align=center]46.2[/align][/td][td][align=center]35.7(5/14)[/align][/td][td][align=center]7.14(1/14)[/align][/td][/tr][tr][td][align=center]熟花生[/align][/td][td][align=center]20[/align][/td][td][align=center]0.53[/align][/td][td][align=center]0.05[/align][/td][td][align=center]3.30[/align][/td][td][align=center]33.3(4/12)[/align][/td][td][align=center]0[/align][/td][/tr][tr][td][align=center]花生酱[/align][/td][td][align=center]10[/align][/td][td][align=center]3.38[/align][/td][td][align=center]0.05[/align][/td][td][align=center]20.1[/align][/td][td][align=center]30.0(3/10)[/align][/td][td][align=center]10.0(1/10)[/align][/td][/tr][tr][td=1,4][align=center]AFB[sub]2[/sub][/align][/td][td][align=center]花生油[/align][/td][td][align=center]16[/align][/td][td][align=center]0.96[/align][/td][td][align=center]0.05[/align][/td][td][align=center]6.42[/align][/td][td][align=center]31.2(5/16)[/align][/td][td][align=center]—[/align][/td][/tr][tr][td][align=center]生花生[/align][/td][td][align=center]14[/align][/td][td][align=center]1.46[/align][/td][td][align=center]0.05[/align][/td][td][align=center]18.4[/align][/td][td][align=center]21.4(3/14)[/align][/td][td][align=center]—[/align][/td][/tr][tr][td][align=center]熟花生[/align][/td][td][align=center]20[/align][/td][td][align=center]0.05[/align][/td][td][align=center]0.05[/align][/td][td][align=center]0.05[/align][/td][td][align=center]0[/align][/td][td][align=center]—[/align][/td][/tr][tr][td][align=center]花生酱[/align][/td][td][align=center]10[/align][/td][td][align=center]1.01[/align][/td][td][align=center]0.05[/align][/td][td][align=center]5.49[/align][/td][td][align=center]30.0(3/10)[/align][/td][td][align=center]—[/align][/td][/tr][tr][td=1,4][align=center]AFG[sub]1[/sub][/align][/td][td][align=center]花生油[/align][/td][td][align=center]16[/align][/td][td][align=center]0.08[/align][/td][td][align=center]0.05[/align][/td][td][align=center]0.55[/align][/td][td][align=center]6.25(1/16)[/align][/td][td][align=center]—[/align][/td][/tr][tr][td][align=center]生花生[/align][/td][td][align=center]14[/align][/td][td][align=center]0.05[/align][/td][td][align=center]0.05[/align][/td][td][align=center]0.05[/align][/td][td][align=center]0[/align][/td][td][align=center]—[/align][/td][/tr][tr][td][align=center]熟花生[/align][/td][td][align=center]20[/align][/td][td][align=center]0.05[/align][/td][td][align=center]0.05[/align][/td][td][align=center]0.05[/align][/td][td][align=center]0[/align][/td][td][align=center]—[/align][/td][/tr][tr][td][align=center]花生酱[/align][/td][td][align=center]10[/align][/td][td][align=center]0.55[/align][/td][td][align=center]0.05[/align][/td][td][align=center]3.30[/align][/td][td][align=center]20.0(2/10)[/align][/td][td][align=center]—[/align][/td][/tr][tr][td=1,4][align=center]AFTG[sub]2[/sub][/align][/td][td][align=center]花生油[/align][/td][td][align=center]16[/align][/td][td][align=center]0.25[/align][/td][td][align=center]0.25[/align][/td][td][align=center]0.25[/align][/td][td][align=center]0[/align][/td][td][align=center]—[/align][/td][/tr][tr][td][align=center]生花生[/align][/td][td][align=center]14[/align][/td][td][align=center]0.25[/align][/td][td][align=center]0.25[/align][/td][td][align=center]0.25[/align][/td][td][align=center]0[/align][/td][td][align=center]—[/align][/td][/tr][tr][td][align=center]熟花生[/align][/td][td][align=center]20[/align][/td][td][align=center]0.25[/align][/td][td][align=center]0.25[/align][/td][td][align=center]0.25[/align][/td][td][align=center]0[/align][/td][td][align=center]—[/align][/td][/tr][tr][td][align=center]花生酱[/align][/td][td][align=center]10[/align][/td][td][align=center]0.25[/align][/td][td][align=center]0.25[/align][/td][td][align=center]0.25[/align][/td][td][align=center]0[/align][/td][td][align=center]—[/align][/td][/tr][/table][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310241443401175_5759_4033901_3.png[/img][/align]3 讨论感官正常花生米粒大而饱满,而往往那些干瘪,没有正常长成熟,在生长期出现营养不良的籽粒易被真菌毒素污染[sup][10][/sup]。但有的感官正常,检出含量也很高,需要通过检测才可以判断其真菌毒素含量。由检测结果看出:小作坊或散装油超标多些,可能和日常检测条件有关,大厂家具备好的原材料和成品检验设施条件,能时刻监测产品质量。我们肉眼会发现霉变花生米,但制成花生油根本看不出,可能仅仅是一粒霉变花生米而导致一桶油的质量出现问题。从本次调查看出:2018和2019年度、各花生制品类别的真菌毒素污染水平不同,粮食受真菌毒素感染具有很多影响因素,如天气数据,农业措施等等。有多种真菌毒素的预测模型被研发并被应用:如加拿大安大略湖地区的小麦脱氧雪腐镰刀菌烯醇的预测DONcast、意大利伏马毒素的预测软件、英国 Home-Grown Cereal Authority ( HGCA)的镰刀菌真菌毒素风险评估模型[sup][11][/sup]。预测的实施需要气象部门、农业部门、环境部门、粮食部门及卫生部门等多部门联合,如农业部门的栽培育种,科学轮作、适时收获,收割时粮食清洁与干燥,颗粒完整等都会降低感染真菌毒素的概率[sup][10-11][/sup]。通过多部门精诚协作,建立一个综合预警模型,实施预防为主的食品安全策略。另外,污染真菌的判定依据是真菌毒素限量,经过物理加工,其真菌毒素会有一定的变化,国内缺乏初加工或加工产品的真菌限量标准,将造成原粮的浪费,因此我国目前真菌毒素限量标准分类和毒素种类,均有待补充和细化[sup][11-13][/sup]。总之,在美味营养的背后,如何从花生等粮食源头的种植,一直到收获、贮藏、加工产品的全产业链,保障花生等粮油原料的食品安全,是我们今后工作的重中之重,依托以上部门大数据,能做到精准公共卫生更是我们的理想目标。参考文献:王 峰,仓以鹏,蔡 晶,等. 高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-三重四级杆质谱法测定面粉中17种真菌毒素[J].食品科 技,2014,39(11):332.许娇娇,黄百芬,周健,等. 直接稀释-超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法快速测定谷物及其制品中16种真菌毒素[J]. 中国食品卫生杂志,2017 ,29(6):709.李 娜,孙 辉,唐朝晖,等.小麦及其制品加工过程主要真菌毒素含量的变化[J].粮油食品科技,2014,22 (2):30 .孙 利,霍江莲,崔维刚,等. 粮食产品中真菌毒素的色谱及质谱检测技术研究进展[J].食品科学,2013,34(19):367.谭 杰,杜苑琪,肖小华,等. 食品中霉菌毒素样品前处理及分析方法研究进展[J].分析测试学报,2017,36(6):829.马惠蕊,王玉坤,刘淑艳,等. 食源性真菌毒素检测技术研究进展[J]. 福建分析测试,2011,20(1):40.张家宁, 丁 轲 ,郭思梦,等.[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]法检测粮谷制品中 4 种单端孢霉烯类真菌毒素[J]. 中国粮油学报, 2016 ,31( 12 ):153.刘 丹,韩小敏,李凤琴,等. 花生油和玉米油中多组分真菌毒素高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱检测方法的建立[J]. 食品科学, 2017, 38, (10): 297.中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局. 食品安全国家标准 食品中真菌毒素限量:GB 2761-2017 [s].北京:中国标准出版社,2017.耿建强,赵丽,张旭,等. 我国婴幼儿营养米粉中真菌毒素污染情况调查[J].中国食品卫生杂志,2017,29 (1):67-69.李磊,姬建生,赵军锋. 河南省玉米真菌毒素污染调查[J].中国卫生检验杂志 ,2017,27 (8):1173.畅慧霞,王亚平.粮食及其制品真菌毒素监测与处理技术发展现状与趋势[J].河南工业大学学报(社会科学版),2014,10,(2):15-19.刘 青,邹志飞,余炀炀,等.食品中真菌毒素法规限量标准概述[J]. 中国酿造, 2017 , 第36 ( 1 ):12-17.[/s]

  • 【资料】食品中真菌毒素限量将统一

    谷类、乳制品、水果等多种和百姓饮食息息相关的食物,在生长或生产的过程中极有可能存在真菌毒素污染,而现行的GB2761-2005《食品中真菌毒素限量》提出的相关食品真菌毒素限量的执行标准,则存在交叉、重复、矛盾或缺失等问题。卫生部为此组织成立食品真菌毒素限量标准整合完善工作组,于8月3日向社会公开发布《食品安全国家标准食品中真菌毒素限量》(征求意见稿),主要修改了食品中黄曲霉毒素M1、黄曲霉毒素B1、脱氧雪腐镰刀菌烯醇(DON)、展青霉素等4种限量指标,增补了赭曲霉毒素A、玉米赤霉烯酮等2种指标。 [b] 真菌毒素因何而生[/b] 何谓真菌毒素?《征求意见稿》对此下的定义——产毒真菌在生长繁殖过程中产生的次生有毒代谢产物。据了解,此次修改中涉及的黄曲霉毒素是一类真菌的有毒代谢产物,具有致癌性。黄曲霉毒素M1是黄曲霉毒素B1的代谢产物。经摄入含有黄曲霉毒素B1饲料的奶牛产出的牛奶中,便含有黄曲霉毒素M1。 另据了解,在大麦、玉米中含有较高浓度的脱氧雪腐镰刀菌烯醇(DON),是最常见的一种污染粮食、饲料和食品的霉菌毒素之一,大多在低温、潮湿和收割季节,在谷物庄稼中慢慢生长;主要生长在水果上的展青霉素,主要污染水果及其制品;赭曲霉毒素A是由多种生长在粮食(小麦、玉米、大麦、燕麦、黑麦等)、花生、蔬菜(豆类)等农作物上的曲霉和青霉产生的;玉米赤霉烯酮主要是由生长在小麦和玉米等农作物上的真菌产生。 [b]为何原限量标准多数保留[/b] 在此次《征求意见稿》中,多数真菌毒素保留原先的限量标准,但在编制过程中,充分考虑了不同标准的安全性。例如,《征求意见稿》编制说明中指出,目前世界各国对黄曲霉毒素M1有两种不同意见,以欧盟一些国家为代表提出乳中黄曲霉毒素M1的限量为0.05μg/kg;另一种意见是以美国、日本等国提出0.5μg/kg的指标。编制说明介绍,“食品添加剂联合专家委员会第56届会议报告指出,黄曲霉毒素M1为0.05μg/kg和0.5μg/kg这两个指标在致癌性方面之间并无显著差异。本次修订保留黄曲霉毒素M1为0.5μg/kg的限量指标。” 再如,编制说明认为:“根据国际组织、发达国家和主要贸易国关于食品中展青霉素限量标准以及我国苹果和山楂制品中展青霉素的污染监测结果、暴露评估结果,我国现行限量与国际标准一致并安全有效。因此,苹果和山楂制品中展青霉素限量仍保持为50μg/kg。” [b]新标准更符合国情[/b] 编制说明介绍,《征求意见稿》中涉及的真菌毒素指标6项,涉及的清理工作涉及食品卫生标准27项、食用农产品质量安全标准39项、食品质量标准18项、有关的行业标准16项等。 “新的真菌毒素基础标准分析了我国现行有效的食用农产品质量安全标准、食品卫生标准、食品质量标准以及有关食品的行业标准中强制执行的标准中真菌毒素的限量指标,提出了相关标准的交叉、重复、矛盾或缺失等问题,提交详细的比较结果。”项目组专家认为。 编制说明指出,征求意见稿分析了欧盟、日本、美国及我国香港、台湾等地食品中的真菌毒素限量标准的制标情况及其规定,根据我国食品中真菌毒素的。监测结果,结合了我国居民膳食真菌毒素的暴露量及主要食物的贡献率,按大类(如蔬菜)、亚类(如叶菜)、品种(如菠菜)、加工方式(如罐头菠菜、干食用菌)为主线,尽量以大类和亚类为主整合限量,辅以品种和加工方式例外单列,提出了我国需要制定限量指标的真菌毒素项目和食品类别以及适合我国国情的食品真菌毒素国家安全标准建议值。

  • 【“仪”起享奥运】物理降解真菌毒素的方法

    [font=宋体][size=15px]物理降解法主要是通过改变外部环境条件或利用物理射线对真菌毒素进行降解,常见的物理降解方法包括高温降解法、吸附法和辐射法等。真菌毒素具有热稳定性,需通过较高的温度处理才能破坏其分子结构。高温加热可降解大部分真菌毒素,但同时中药材中的蛋白质、氨基酸等也会被破坏[/size][/font][font=宋体][size=15px],因此其应用范围狭小。吸附法是目前应用最广泛的方法,其原理是利用吸附剂(如纳米制品、蒙脱石或活性炭等)与真菌毒素结合形成稳定的化合物,从而达到降解真菌毒素的目的。[/size][/font][font=system-ui, -apple-system, BlinkMacSystemFont, &][size=15px][font=宋体]吸附剂对于真菌毒素的吸附主要依靠氢键、离子键等[/font][font=宋体],活性炭因比表面积大且价格低廉被广泛应用[/font][/size][/font][font=宋体][size=15px]。[/size][/font][font=宋体][size=15px]吸附法对样品几乎没有影响,是一种绿色安全的手段。辐射法是通过[/size][/font][font=system-ui, -apple-system, BlinkMacSystemFont, &][size=15px]γ[/size][/font][font=宋体][size=15px]射线、电子束及紫外线照射,破坏真菌毒素的化学结构,进而达到降解的目的。该法操作简便,可应用于大规模生产。[/size][/font][font=system-ui, -apple-system, BlinkMacSystemFont, &][size=15px]Nurtjahja[/size][/font][font=宋体][size=15px]等[/size][/font][font=宋体][size=15px]通过射线辐照发现肉豆蔻中[/size][/font][font=system-ui, -apple-system, BlinkMacSystemFont, &][size=15px]AFB[sub]1[/sub][/size][/font][font=宋体][size=15px]含量降低,黄曲霉菌群总数下降。[/size][/font][font=system-ui, -apple-system, BlinkMacSystemFont, &][size=15px][font=宋体]辐射法是最有潜力的降解手段之一,但是在大规模生产中需考虑成本问题。[/font][/size][/font]

  •  霉菌毒素的危害及对策

    霉菌毒素的危害及对策近几年来,霉菌毒素中毒给畜牧业带来的危害越来越大。据联合国粮农组织调查,全世界贸易供应的谷物中,有25%受到霉菌毒素的污染。在高温高湿地区这种污染更加严重。我国是霉菌污染比较严重的国家,陈必芳等在1996年从全国28个省市采集104个饲料加工厂和养殖场饲料及饲料原料样品627份,检测结果显示配合饲料霉菌污染率100%,饲料原料污染率99%。另调查结果显示,我国配合饲料饲料和原料污染霉菌毒素超标的比例高达60 %~70 %以上。 霉菌毒素对动物除中毒和致死外,更重要的是不易被发现机体免疫机能下降、生长受阻、生产性能和抗病力降低,故饲料中霉菌毒素有“隐形杀手”之称。其对动物生产性能和人类健康的负面影响是非常大的。因此,饲料霉变问题是饲料工业和畜牧业生产中不可忽视的问题,霉菌毒素污染问题应引起世界的广泛关注。 1. 霉菌毒素及其污染现状 霉菌毒素是某些霉菌在谷物或饲料上生长繁殖过程中产生的有毒二次代谢产物,毒素在谷物的生长过程、饲料的制造、贮存及运输过程中皆可产生。对畜禽造成很大危害的便是由霉菌产生的霉菌毒素。一般而言,霉菌毒素主要是由四种霉菌属所产生:曲霉菌属(主要分泌黄曲霉毒素、赭曲霉毒素等);青霉菌属(主要分泌桔霉素等);麦角菌属(主要分泌麦角毒素);梭菌属(主要分泌呕吐毒素、玉米赤霉烯酮、T-2毒素、串珠镰孢菌毒素等)。迄今为止已经有超过300种霉菌毒素被分离和鉴定出来,上述的几种毒素即为现今普遍认识的8种主要毒素。

  • 不同环境条件下粮食及其制品真菌毒素变化趋势

    不同环境条件下粮食及其制品真菌毒素变化趋势基金项目:安阳市科技攻关项目(2018-78)作者简介:李俊玲(1971-),女,硕士,副主任技师;研究方向:理化检验;Email:lijunlingf@163.com作者单位:河南省安阳市疾病预防控制中心,河南省安阳市自由路1号邮编:455000摘要:目的 为了解在不同环境条件下粮食及其制品真菌毒素含量的变化趋势,为食品安全风险评估、标准制定、修订及跟踪评价提供真菌毒素含量数据。方法 采用同位素稀释超高效液相色谱-串联质谱法(UPLC-MS/MS)测定小麦、玉米不同环境条件下 16种真菌毒素含量。结果 小麦低温密闭的储存条件仅对伏马菌素(FB,包括FB1、FB2和FB3)含量有影响,在30天FB含量变化不显著,在90天后显著提高2.1-34.0倍,对脱氧雪腐镰刀菌烯醇(DON)含量稳定;小麦干燥通风条件下,16种真菌毒素含量30天无显著性差异,DON在90天时显著下降1.4倍,在其它时间含量变化不显著,180天DON小幅升高至0天水平,FB2在90天和180天分别显著上升6.4倍和11.5倍,FB3在180天显著上升2.1倍;高温高湿条件下3-乙酰脱氧雪腐镰刀菌烯醇(3-ADON)、雪腐镰刀菌烯醇(NIV)和FB1在30天,DON、ZEN在90天时均显著降低,分别降低1.2-4.6倍,AFB1在30天、FB2在90天、FB3在180天分别显著升高3.8、11.0和3.9倍;不同粮食状态贮存365天后低温麦粒和低温小麦粉除FB2有显著性差异,DON、ZEN、FB1以及FB3均无显著性差异;不同包装材料真菌毒素密闭低温和干燥贮存时纸袋与塑料袋DON、玉米赤霉烯酮(ZEN)以及FB均无显著差异。玉米及其制品在不同贮存条件对DON和ZEN含量的影响无显著差异性,15-AC在3个贮存条件下都显著升高,在180天和365天黄曲霉毒素B1(AFB1)含量降低,黄曲霉毒素B2(AFB2)含量升高(除在365天低温密闭和干燥通风降低外),FB1、FB2和FB3在3个贮存条件储存180天后含量均下降,至365天又有小幅回升。结论 粮食及其制品中DON含量相对较稳定,小麦FB含量在三个储存条件下均有不同程度的升高,对于已经存在的真菌毒素,三种储存方式下其含量变化趋势不同,应根据不同的粮食种类选择合适的储存条件和储存时间,总体来看真菌毒素稳定存在,因此从源头控制是最好的措施,粮食储存环节也是至关重要的环节。关键词: 粮食;小麦;玉米;储存 ;真菌毒素Trends of mycotoxins in grain and its products under different environmental conditionsLI Junling(Anyang Center for Disease Control and Prevention, Henan Anyang 455000, China)Abstract: Objective In order to understand the changing trend of mycotoxins content in grain and its products under different environmental conditions, and to provide mycotoxins content data for grain safety risk assessment, standard formulation, revision and follow-up evaluation. Methods The contents of 16 mycotoxins in wheat and maize under different environmental conditions were determined by UPLC-MS /MS. Results The contents of Fumonisin (FB, including FB1, FB2 and FB3) in wheat were only affected by the storage conditions under low temperature and airtight storage conditions. FB content was not significantly changed at 30 days, but increased by 2.1-34.0 times at 90 days, especially for the content of deoxynivalenol (DON) was stable. Under dry and ventilated conditions, there was no significant difference in the contents of 16 mycotoxins at 30 days, DON decreased 1.4 times at 90 days, and FB2 increased 6.4 times and 11.5 times at 90 and 180 days, respectively. FB3 increased 2.1 times in 180 days. At high temperature and high humidity, 3-acetyl deoxynivalenol (3-ADon), NIvalenol (NIV) and FB1 significantly decreased at 30 days, DON and ZEN significantly decreased by 1.2-4.6 times at 90 days, respectively. AFB1 at 30 days, FB2 at 90 days and FB3 at 180 days were significantly increased by 3.8, 11.0 and 3.9 times, respectively. There were significant differences between low temperature wheat grains and low temperature wheat flour except FB2, but no significant differences between DON, ZEN, FB1 and FB3. There was no significant difference between paper bag and plastic bag DON, zelalenone (ZEN) and FB when the mycotoxins of different packaging materials were stored in sealed low temperature and dry. There was no significant difference in the effects of maize and its products on DON and ZEN contents under different storage conditions, 15-AC increased significantly under three storage conditions, aflatoxin B1(AFB1) content decreased on 180 days and 365 days, aflatoxin B2(AFB2) content increased (except low temperature airtight and dry ventilation decreased on 365 days). The contents of FB1, FB2 and FB3 decreased after 180 days of storage, and then increased slightly after 365 days. Conclusion DON content in grain and its products is relatively stable, FB content of wheat under the condition of the three storage has the varying degree to rise, to the already existing mycotoxins, three storage mode its content change trend is different, should according to different types of grai to choose the appropriate storage conditions and storage time, overall mycotoxins are stable, So control at source is the best measure, and grain storage is also crucial.Key words: grain Wheat Corn Storage mycotoxin真菌毒素是由真菌产生的具有生物毒性的次级代谢产物。粮食及其制品在生长、收割、贮存、运输及加工中都会暴露或接触到产毒真菌。常见的产毒真菌有曲霉属,青霉属,镰刀菌属,目前已知的真菌毒素多达400多种,广泛存在于世界各地的粮食及其制品中,不仅造成产品品质下降、经济损失,而且对人类健康产生极大地危害。由于霉菌毒素是小分子有机化合物,不是复杂的蛋白质分子,所以在机体中无法产生抗体,也不能免疫,而且其化学性质稳定,各毒素的毒性大小、毒作用机理、毒素作用的器官、系统不尽相同。各种毒素既可引起急性中毒,但更多是长期低剂量摄入引起的慢性中毒,主要表现为肝脏、肾脏、神经系统、生殖系统、消化系统损害和免疫抑制、细胞毒性等。多数真菌毒素同时也是致癌、致畸和致突变的物质,如黄曲霉毒素、赭曲霉毒素、单端孢霉烯族化合物等都被证明具有较强的致癌性,各真菌毒素之间还可产生协同作用而加强毒性,目前已被联合国粮农组织和世界卫生组织确定为最危险的自然发生食品污染物之一。我国主要粮食受镰刀菌毒素污染较严重,据化学结构不同,镰刀菌毒素分为单端孢霉烯族化合物、玉米赤霉烯酮 、伏马菌素等类型,脱氧雪腐镰刀菌烯醇属于单端孢霉烯族化合物B类化合物。针对以上高毒性真菌毒素和我国的污染情况,为了解粮食及其制品中真菌毒素污染情况,也为监管部门制定政策及国家卫生标准提供理论及数据支持,于2018-2019年连续在收获季节对河南省田间地头新收获的小麦、玉米同时进行16种真菌毒素暴露风险及不同环境条件下变化趋势的研究,16种真菌毒素分别为黄曲霉毒素(aflatoxin,AF)包括AFB1、AFB2、AFG1、AFG2,伏马菌素(fumonisins,FB)包括FB1、FB2和FB3,脱氧雪腐镰刀菌烯醇 (deoxynivalenol,DON) 及其乙酰化衍生物3-乙酰脱氧雪腐镰刀菌烯醇(3-ADON)和15-乙酰脱氧雪腐镰刀菌烯醇(15-ADON),雪腐镰刀菌烯醇(nivalenol,NIV)、玉米赤霉烯酮(zearalenone,ZEN)、赭曲霉毒素A(ochratoxin A,OTA)、杂色曲霉素(sterigmatocytin,ST)、T-2毒素、HT-2毒素。这些毒素也是主要贸易国(地区)食品中重点关注和监控的真菌毒素以及粮食及其制品中常见的易被污染危害人类健康的十几种真菌毒素,以期望为真菌毒素研究提供初步调查和参考。小麦储存是小麦原料向小麦加工制品转变中不可避免的环节。如田间未感染,收获后遇潮湿环境会使毒素增加。储存环境不当会使镰孢菌毒素继续增加。为探讨不同的贮藏环境、贮藏时间、粮食状态以及包装材料对真菌毒素含量的影响。本实验拟将小麦及其制品、玉米及其制品分别储存在高温高湿、低温密封、干燥通风三种常见环境下,在不同储存时间、储存小麦粒和小麦粉以及不同包装材料下,对其真菌毒素含量变化进行研究。1 材料与方法1.1 材料1.%2.%3 样品来源 2019年,在河南省范围内采集小麦和玉米,在主产区采样,采集当地农户当年生产的小麦粒样品和玉米及其制品。采样工作由相关地市级粮食部门承担。采样后我们按照检测要求先测定小麦粒和玉米中16种真菌毒素含量,再选取有代表性的16份样品,模拟在高温高湿、低温密封、干燥通风三种常见环境下,分别对其储存30天、90天、180天和365天(玉米及其制品分别在180天和365天)后的真菌毒素含量进行测定;测定小麦粉分别在两种包装(聚乙烯袋、牛皮纸袋)中真菌毒素的含量;对存放小麦籽粒和小麦粉真菌毒素含量变化等进行深入研究。1.1.2 主要仪器与试剂: TQ-S超高效液相色谱-串联质谱仪(美国Waters),电子天平(感量0.001g),高速粉碎机,多位试管涡旋振荡器,漩涡混匀器。Multitoxin 标准物质(QCM7C1),16种真菌毒素标准品AFB1(L18204A)、AFB2(L18204A)、AFG1(L18204A)、AFG2(L18204A)、DON(L17012M)、3-ADON(L17012M)、15-ADON(L17012M)、NIV(L17012M)、ZEN(L16165M)、OTA(L18304B)、FB1(L18025M)、FB2(L18025M)、FB3(L18415C)、ST(18325S)、T-2毒素(L19302M)和HT-2毒素(L19302M),以及相应的15种13C同位素内标标准溶液(无15-ADON)均购自美国ROMER;乙腈(CH3CN,色谱纯)。2.%2 方法1.2.1 储存条件高温高湿:通过四分法分别选取样品各500g,放置于恒温培养箱中,温度设为35℃,湿度控制在75%左右。 低温密封:通过四分法分别选取样品各500g,装入干净的自封袋中,密封后,放入4℃冰箱中。干燥通风:通过四分法分别选取样品各500g,用干净的自封袋盛装放于实验室,自封袋敞口以保持空气流通,通过空调将实验室温度控制在20℃上下,湿度50%左右。 1.2.2 真菌毒素检测、质控以及评价和统计方法采用同位素稀释超高效液相色谱-串联质谱(UPLC-MS/MS)法测定16种真菌毒素含量,通过全过程空白、平行、加标回收、标准物质对照实验、超标样品及时复测等措施,进行质量控制,保证数据的准确性。AFB1、AFB2、AFG1的检测限均为0.1μg/kg,AFG2为0.5μg/kg,OTA和T-2毒素均为1.0μg/kg,DON、3-ADON、15-ADON、ZEN、ST和HT-2毒素均为5.0μg/kg,FB1、FB2均为0.5μg/kg,FB3为1.2μg/kg,NIV为2.9μg/kg。按照GB2761-2017《食品安全国家标准 食品中真菌毒素限量》进行评价,所测数据全部输入Excel数据库,采用PEMS3.1统计软件进行计量资料统计学分析,来计算集中趋势指标。2 结果与分析2.1 不同储存条件下小麦样品真菌毒素含量测定除表1所列毒素外,其它毒素AFG1、AFG2、T-2、HT-2和ST在三个储存条件下含量均小于检出限,故没统计其变化量。结果见表1。表1 不同储存条件下小麦样品真菌毒素含量测定(μg/kg)储存条件储存时间(天)DON3-AC15-ACNIVZENFB1FB2FB3AFTB1AFTB2OTA低温密封01180.0011.5214.9020.9019.508.890.250.600.120.050.76301457.0011.0016.6017.9021.107.201.621.150.050.050.50901119.004.6816.909.1417.5018.3*8.51*7.44*0.050.050.841801213.0014.1016.6017.0013.3011.2*3.44*2.44*0.220.051.023651110.602.506.361.4515.7020.8*5.14*3.41*0.200.050.61干燥通风01180.0011.5214.9020.9019.508.892.500.600.120.050.76301179.002.509.6125.907.445.372.500.600.240.050.7990830.00*15.9015.901.4517.7011.301.59*0.100.200.051.081801087.0010.205.880.4512.207.752.87*1.28*0.100.050.923651262.3017.0017.801.4524.7021.003.941.760.050.051.90高温高湿01180.0011.5214.9020.9019.508.890.250.600.100.050.76301000.002.5*8.549.6*11.204.58*0.550.600.38*0.100.9090924.003.282.501.457.14*10.102.76*1.150.100.051.03180765.003.145.081.4519.7413.102.502.32*0.050.050.86注:*表示和0天同种污染项目有显著性差异(P0.05)2.1.1小麦低温密闭真菌毒素测定结果与0天相比:低温密闭的储存条件仅对FB有影响,其它真菌毒素随贮存时间的延长会引起含量变化,但无显著差异性。尤其对于DON 在平均值超标的情况下放30天、90天、180天和365天均无显著变化,含量很稳定;小麦在30天FB1、FB2和FB3含量变化均不显著,在90天后均显著提高2.1-34.0倍。低温密闭条件下利于FB的生长。2.1.2小麦干燥通风真菌毒素测定结果和0天比较:16种真菌毒素含量30天无显著性差异,DON在90天时显著下降1.4倍,其它时间含量变化不显著,180天DON也会小幅升高至0天水平。FB2在90天和180天分别显著上升6.4倍和11.5倍,FB3在180天显著上升2.1倍。2.1.3小麦高温高湿真菌毒素测定结果与0天相比:3-AC、NIV和FB1在30天,DON、ZEN在90天时均显著降低,分别降低1.2-4.6倍,AFB1在30天、FB2在90天、FB3在180天分别显著升高3.8、11.0和3.9倍。2.2 不同粮食状态贮存365天测定真菌毒素结果 由表2看出:低温麦粒和低温小麦粉除FB2有显著性差异,DON、ZEN、FB1以及FB3均无显著性差异,其它真菌毒素均未检出。表2 不同包装材料和粮食状态小麦样品真菌毒素含量测定(μg/kg)真菌毒素储存条件包装材料粮食状态纸袋塑料袋小麦粒小麦粉DON低温1154.40 1110.60 404.20 438.39 干燥990.60 1070.29 445.72 571.30 ZEN低温18.61 21.25 4.94 8.61 干燥14.64 20.28 5.12 2.50 FB1低温21.36 20.76 7.84 12.49 干燥14.51 18.62 7.585.18 FB2低温4.82 4.92 0.37 2.49*干燥3.47 3.91 1.57 1.48 FB3低温3.00 2.97 0.60 1.60 干燥2.90 3.12 0.60 0.60 注:*表示小麦粉和小麦粒有显著性差异(P0.05)2.3 不同包装材料真菌毒素结果由表2看出密闭低温和干燥贮存时纸袋与塑料袋DON、ZEN以及FB均无显著差异。2.4 玉米真菌毒素测定结果由表3看出,贮存条件对玉米及其制品DON和ZEN含量的影响无差异性,其它表中所列的毒素在180天内均受低温、干燥和高温等贮存条件的影响,15-AC在3个贮存条件下都显著升高,180天和365天AFB1含量降低,AFB2含量升高(除在365天低温密闭和干燥通风降低外),可能是AFB1转化为AFB2导致其含量升高,FB1、FB2和FB3在3个贮存条件下储存180天后含量均下降,至365天又有小幅回升。其它7种在0天时含量小于检出限,放365天仍小于检出限。表3 不同储存条件下玉米及其制品真菌毒素含量测定(μg/kg)储存条件储存时间(月)ZENDON15-ACAFB1AFB2FB1FB2FB3低温密封0天100.00149.0010.002.440.052604.00475.00435.00180天90.70222.0028.6*2.160.19*708.00*128.00189.00365天45.00170.0028.1*1.870.051626.60347.00319.70干燥通风0天100.00149.0010.002.440.052604.00475.00435.00180天107.00208.0024.001.67*0.16*676.00*175.00181.00365天55.70167.0022.901.22*0.051555.00317.80311.20高温高湿0天100.00149.0010.002.440.052604.00475.00435.00180天99.80184.0022.6*0.99*0.11*540.00*145.00*140.20*365天83.90152.5023.8*0.48*0.10*1219.00256.00237.00注:*表示和0天有显著性差异(P0.05)3 讨论国外对粮食中真菌毒素污染调查也表明,真菌毒素检出率高,部分地区超标严重,据联合国粮农组织估算,全球每年约有25%的粮食受到不同程度真菌毒素污染,造成数千亿元损失,严重影响经济、贸易和社会发展。无论是发展中国家,还是美国、加拿大、法国、英国、澳大利亚等发达国家都存在严重的真菌毒素污染问题,粮食及其制品中真菌毒素污染问题是世界各国高度关注的食品安全热点问题。中国是受真菌毒素污染比较严重的国家之一,每年因真菌毒素污染粮油造成的直接经济损失达680亿~850亿元,2010年在西班牙的91份婴儿谷物食品中黄曲霉毒检出率为66%;2010年江淮地区一些省份新收获小麦DON污染严重,封存了170余万吨毒素超标粮食。我们于2016年就对河南省小麦粉及其制品中脱氧雪腐镰刀菌烯醇及其衍生物进行了监测,共监测生面制品和馒头182份,监测食品包括小麦粉、生湿面制品面条、生干面制品挂面,发酵面制品馒头等,DON检出普遍,检出率为100%,含量范围15.5-4664.0μg/kg,平均检测值575.0μg/kg,P50为331.2μg/kg,有健康风险。共监测面包饼干样品90份,监测食品类别包括烘焙面制品面包、饼干类,DON检出率为100%,总体超标率为8.9%,有健康风险。紧接几年也做了真菌调查,发现DON普遍存在,寻找不含DON空白小麦粉都很难。有时候只凭肉眼是看不出的,像玉米发白部分不一定真菌毒素含量高,但磨成粉后,感官肉眼看不出来的,有可能是含量很高。真菌毒素污染可分为农作物收获前、收获后、储存运输及加工过程的污染,从源头控制是最好的措施。。源头控制好了,粮食储存环节也是至关重要的环节,由于磨粉过程使面粉与镰刀菌充分混合,在贮藏过程中易导致小麦粉的营养物质被真菌利用,从而使DON等真菌毒素大量增加。三个储存条件真菌毒素基本稳定或者个别稍有变化,含量显著升高的真菌毒素在储存条件下适宜真菌存在和毒素稳定,降低可能是发生化学转化,如FB1向FB2和FB3转化,也可能转化为隐蔽型真菌毒素、与蛋白质、淀粉结合或者我们没有监测的毒素项目。FB含量的降低可能不仅是由于高温下发生的美拉德反应使伏马毒素发生了化学降解,还可能是由于FB与其他成分的相互作用而导致毒素结构发生改变。尽管高温处理可降低毒素含量,但大多数可稳定存在,热稳定性较强。所以要想控制真菌毒素的生长,就要保证粮食储存在良好的条件下(水分14%)同时还要控制虫害,产毒菌不适于生长了,可以尽可能地降低有毒真菌的毒性进一步表达。此外,如果粮食已经成熟,应尽快储存在适宜的环境,真菌毒素就不会进一步积累了。小麦收割后和贮存中含水量过高,被霉菌污染发生霉变进而产生毒素也是重要的原因。参考文献: 王建林,龚阿琼,戴晋军,等.2016 年上半年我国原料及饲料毒素检测分析.中国饲料,2016,(22):43~44. 何智勇,牛红红,魏春雁,等.真菌毒素的危害及应对措.植物保护,2016 (22):100-101. 王丽娟,柯润辉,安红梅,等.固相萃取柱净化—液相色谱—串联质谱法测定糕点中脱氧雪腐镰刀菌烯醇及其衍生物和玉米赤霉烯酮.食品工业科技,2017,38(14):31-32. 耿建强,赵丽,张旭,等.我国婴幼儿营养米粉中真菌毒素污染情况调查.中国食品卫生杂志,2017,29 (1):167-69. 朱芸,雒婉霞,赵清荣,等.液质联用同位素内标法同时测定 3 类小麦终产品中4 种 B 类单端孢烯霉族类真菌毒素.中国卫生检验杂志, 2017,27(13): 1863. 王守经,胡 鹏,汝 医,等.谷物真菌毒素污染及其控制技术.中国食物与营养,2012,18(3): 13-16. 解魁,李杉,杨丽,等.2013年河南省部分食品中真菌毒素污染状况分析.现代预防医学,2015,42 (21):3877-3879. 刘青,邹志飞,余炀炀,等.食品中真菌毒素法规限量标准概述.中国酿造,2017,36 (1):12-17. 马惠蕊,王玉坤,刘淑艳,等.食源性真菌毒素检测技术研究进展.福建分析测试,2011,20(1):40. 廉慧锋,赵笑天,王蓉珍,等.超高效液相色谱-串联质谱法同时测定玉米、花生、麦仁中的9种真菌毒素. 食品科学,2010,31(20):360-361. 中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局.食品安全国家标准 食品中真菌毒素限量:GB 2761-2017 .北京:中国标准出版社,2017. 许娇娇,黄百芬,周健,等.直接稀释-超高效液相色谱-串联质谱法快速测定谷物及其制品中16种真菌毒素.中国食品卫生杂志,2017,29(6):709. 李 娜,孙 辉,唐朝晖,等.小麦及其制品加工过程主要真菌毒素含量的变化.粮油食品科技,2014,22(2):30. 畅慧霞,王亚平.粮食及其制品真菌毒素监测与处理技术发展现状与趋势.河南工业大学学报(社会科学版),2014,10,(2):15-19.

  • 正确认识霉菌毒素

    霉菌毒素是霉菌在谷物(大豆、玉米、麸皮)中繁殖过程中或者储存过程中产生的有毒代谢产物。正确认识这些毒素,可以帮助我们更好地预防并选择有针对性的脱霉剂。 霉菌毒素常见以下几种: 黄曲霉毒素 这是一种最为常见的毒素,主要是由黄曲霉和寄生曲霉产生的有毒代谢产物。黄曲霉毒素被动物采食后,迅速被胃肠道吸收,它在肝脏中的浓度最高,所以肝脏的受害最严重。肝为机体重要的免疫器官和代谢器官,一旦受损会导致全身性出血、消化机能障碍和神经症状。 玉米赤霉烯酮 又称F-2毒素,主要是禾谷镰刀菌的一种代谢产物,属于镰刀菌毒素类,它主要影响动物的生殖系统。玉米赤霉烯酮可促进子宫DNA、RNA和蛋白质的合成,使动物发生雌激素亢进症,所以又被称为类动情毒素。该毒素可使母猪外阴持续性红肿,这种红肿症状常被误认为是母猪发情,但出现症状的母猪却不接受公猪爬跨配种。其对公猪的影响也很显著,可导致性欲低下、精液量减少、密度降低,精子萎缩、变形,或畸形率增加等。 T-2毒素 它是三线镰刀菌、拟技孢镰刀菌、梨孢镰刀菌等的有毒代谢产物,属于镰刀菌毒素类。T-2毒素有较强的细胞毒性,可破坏组织黏膜的完整性,使免疫细胞的功能下降,引起贫血、出血。由于T-2毒素能刺激肠道黏膜,因此还会引起猪的呕吐和腹泻。 赭曲霉毒素 与黄曲霉毒素有些相似,主要侵害肝脏和肾脏。它可使肠道相关淋巴组织坏死,降低吞噬细胞的吞噬作用,影响细胞免疫和体液免疫。母猪长期过量饲喂赭曲霉毒素污染的饲料,有可能影响后代的免疫机能。 烟曲霉毒素 该毒素常出现于玉米产区,它对机体呼吸道的损伤比较严重。有的猪场呼吸道问题总是反复难以治愈,可考虑是不是烟曲霉毒素在其中作怪。另外该毒素中毒后猪的生产性能和繁殖性能也遭到破坏,明显的症状是胚胎发育受损,免疫机能降低。 呕吐毒素 在早期阶段中,呕吐毒素能导致皮肤刺激,缺乏食欲,呕吐;在后期,则会引起出血、消化道的坏疽、中枢神经系统问题、免疫系统的破坏、骨髓造血功能的衰退以及生殖功能衰

  • 食品真菌毒素检测仪操作复杂吗

    [size=16px]食品真菌毒素检测仪操作复杂吗真菌毒素检测仪的操作相对简便,不需要复杂的实验室设备和专业人员的操作技术。一般用户也可以按照操作指南轻松完成样品的准备、测试和结果的判断。真菌毒素检测仪的操作步骤通常包括样本制备、仪器操作以及数据读取和分析。在样本制备阶段,需要称取一定量的样品,加入相应的试剂进行研磨和混匀。在仪器操作阶段,只需开启仪器,选择相应的程序,将处理好的样本放入仪器中,按下开始键即可开始检测。检测完成后,仪器会自动给出真菌毒素的含量,用户可以根据需要进行数据记录和分析。此外,真菌毒素检测仪还具有高灵敏度、准确性以及快速检测的优势,能够在短时间内得出检测结果,为粮食的安全监管提供及时、准确的数据支持。因此,真菌毒素检测仪在粮食安全监管领域发挥着不可或缺的作用。总的来说,真菌毒素检测仪的操作并不复杂,其简便的操作性和高效的检测能力使得真菌毒素检测变得更加普及和易于推广。但为了保证检测结果的准确性和仪器的正常运行,用户仍需要遵循操作指南,并注意保持操作环境的卫生和仪器的清洁。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/03/202403271105379577_9933_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 真菌毒素检测仪检测原理是什么

    真菌毒素检测仪检测原理是什么

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=16px]真菌毒素检测仪检测原理是什么,真菌毒素检测仪的检测原理主要基于竞争抑制免疫层析技术。这种技术利用抗原与抗体特异性结合的性质,通过待检测物与抗体竞争结合的方式,对样品中真菌毒素残留进行精确分析。在检测过程中,仪器采用了高灵敏度的检测系统,能够对微量的真菌毒素进行准确的定量分析。同时,为了确保检测结果的准确性,真菌毒素检测仪采用了高品质的抗体和抗原,经过严格的筛选和优化,确保了与待检测真菌毒素的高亲和性和特异性。此外,真菌毒素检测仪还配备了多种检测模式,可以根据不同的需求进行选择,提高了检测的灵活性和准确性。这种设备可以对粮食、饲料、谷物、食用油、调味品等多种食品中的真菌毒素进行快速定量检测,包括T2毒素、呕吐毒素、赭曲霉毒素、伏马毒素、玉米赤霉烯酮等。总的来说,真菌毒素检测仪通过其高效的检测原理和技术,为食品安全和质量控制提供了重要的保障。[/size][size=15px][img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/04/202404150949345736_3578_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 大豆真菌毒素检测仪用途

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/07/202407090903426440_1452_5604214_3.jpg!w690x690.jpg[/img]  大豆真菌毒素检测仪的用途  1. 保障食品安全  大豆真菌毒素检测仪的首要用途是保障食品安全。通过快速准确地检测大豆中的真菌毒素含量,可以及时发现超标问题,防止受污染的大豆流入市场,保障消费者的饮食安全。同时,对于已经流入市场的产品,也可以通过抽检和追溯,及时发现和处理问题,减少食品安全事故的发生。  2. 指导农业生产  大豆真菌毒素检测仪还可以用于指导农业生产。通过对不同种植区域、不同品种、不同生长阶段的大豆进行真菌毒素检测,可以了解真菌毒素的分布规律和影响因素,为制定科学的种植管理措施提供数据支持。例如,可以根据检测结果调整种植密度、施肥量、灌溉量等管理措施,降低真菌毒素的产生和积累。  3. 评估粮食质量  大豆真菌毒素检测仪还可以用于评估粮食质量。在粮食收购、储存、运输等环节,可以通过对大豆进行真菌毒素检测,了解其质量状况,为制定合理的价格和质量标准提供依据。同时,对于已经储存的粮食,也可以通过定期检测,了解其真菌毒素含量的变化情况,及时采取措施防止质量下降。  4. 科研与教学  大豆真菌毒素检测仪还可以用于科研和教学。在科研领域,可以利用该仪器开展真菌毒素的生成机制、代谢途径、毒性评价等方面的研究,为制定更加有效的防控措施提供理论支持。在教学领域,可以利用该仪器进行实验教学,帮助学生了解真菌毒素的危害和检测方法,提高食品安全意识和操作技能。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制