当前位置: 仪器信息网 > 行业主题 > >

坩埚炉

仪器信息网坩埚炉专题为您提供2024年最新坩埚炉价格报价、厂家品牌的相关信息, 包括坩埚炉参数、型号等,不管是国产,还是进口品牌的坩埚炉您都可以在这里找到。 除此之外,仪器信息网还免费为您整合坩埚炉相关的耗材配件、试剂标物,还有坩埚炉相关的最新资讯、资料,以及坩埚炉相关的解决方案。

坩埚炉相关的资讯

  • 如何针对不同材料选择DSC/DTA坩埚
    p  针对不同材料选择DSC/DTA坩埚 ------ 概述/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/0201ab52-22db-4843-80b1-e8429e42d613.jpg" title="针对不同材料选择DSC-DTA坩埚 ------ 概述.jpg"//pp  针对不同材料选择DSC/DTA坩埚 ------ 金属/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/64d28504-2643-4f6a-91dc-bc0c9f3417b5.jpg" title="针对不同材料选择DSC-DTA坩埚 ------ 金属.jpg"//pp  针对不同材料选择DSC/DTA坩埚 ------ 陶瓷/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/badcc0ce-3b1f-4765-8f35-538e6cc43193.jpg" title="针对不同材料选择DSC-DTA坩埚 ------ 陶瓷.jpg"//pp  针对不同材料选择DSC/DTA坩埚 ------ 无机物/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/91c33e45-fba9-42d8-b165-d7b29c044579.jpg" title="针对不同材料选择DSC-DTA坩埚 ------ 无机物.jpg"//pp  span style="color: rgb(0, 176, 80) "√/span 最佳选择/pp  ?* 可能在高温下反应/pp  span style="color: rgb(255, 0, 0) "No/span 不建议使用/pp  ** 熔融前或过程中会发生反应,导致坩埚和传感器损坏,请特别注意/pp  ※ 以上内容源于各类文章,仅供参考。/pp  ※ 对于未知材料、或不确定材料是否会与坩埚发生反应的情况下,建议在其它炉子中预先测试。/p
  • 冻干过程中西林瓶破损现象分析
    冻干工艺是将液体产品在容器内进行冷冻,然后在低压环境下,通过升华形式进行干燥。而冻干制剂生产过程中可能会遇到的一个问题,就是作为容器包材的玻璃西林瓶偶尔出现破裂或破损,虽然这种现象相对罕见,但一旦发生,就可能是一个严重的问题,因为它会导致产品损失、甚至带来溢出产品和破碎玻璃渣对设备内部造成的污染。由于整个冻干过程会处于一定温差范围内进行,因此一些观点认为,这种破损现象与包材热应力有关,可以通过改变西林瓶的热性能来减少发生概率。 但事实是这样吗?本文将告诉你答案。西林瓶破损原因及种类分析在本篇引用文章中,作者通过分析西林瓶破裂形式来寻求答案,尽管文章研究的主体针对管制瓶,但破损现象在模制瓶和管制瓶上都可能发生。当然精确判断西林瓶破损的原因是复杂的,因为在冻干过程中可能会出现几种明显不同类型的破损。这些破损类型有不同的原因,需要采取不同的纠正措施。此文将重点介绍更常见的管制西林瓶的破损类型,即在大多数情况下,断裂模式如下图1所示。这种模式的特点是在玻璃瓶外表面下侧壁区域出现垂直断裂,有时在原点上方和/或下方出现分叉。 图1:冻干过程中的典型瓶裂现象当力作用在玻璃物体上时,玻璃会发生弹性变形(应变),从而产生压缩应力和拉伸应力。这些应力在玻璃中的独特分布取决于瓶型设计因素、玻璃厚度分布以及施加在物体上的力的类型。玻璃只有在拉伸应力的影响下才会破损,裂纹会沿着垂直于拉伸应力分布的方向扩展。因此,裂纹样式对应于破损时作用在玻璃物体上的力的类型是仅有的,从而有助于识别导致破裂事件的力。破裂西林瓶的不同裂纹样式示例如下图2和下图3所示。图2中的西林瓶被一个内部压力打破,这个压力是通过将西林瓶装满水,并使装满的瓶子承受液压而产生的。 图2:由于内部压力而造成的瓶裂压力最初很低,一直升高,直到小瓶破裂。断裂样式由垂直裂纹组成,该裂纹在断裂发生的精确位置上下出现分支。上图2-a)中的西林瓶显示出广泛的破裂,这是典型的相对高压。上图2-b)中的小瓶在低得多的压力下破损,显示出一个相对简单的样式,仅由一条直直的垂直裂缝构成,在下端为环状裂缝。下图3中的西林瓶被热冲击力打破,热冲击力是通过西林瓶在烘箱中加热,然后浸入冷水浴中产生的。断裂样式包括许多弯曲裂纹贯穿侧壁和瓶底区域。下图3-a)中的西林瓶在侧壁上显示出广泛的裂纹,表明在破损时存在相对较高的温差。下图3-b)中的西林瓶在较低的温差下破损,并且显示出一个相对简单的样式,该样式仅由瓶子底部周围的单个环向裂纹构成。 图3:由于热冲击而导致的瓶裂根据一些文献中总结的断裂判断方法,如上图2和上图3中的示例所示,可以得出一个假设判断,即上图1中所示的断裂样式是由于施加在西林瓶内表面的力导致瓶子向外膨胀而破裂的独特特征。同时,对在正常商业操作条件下生产的一种管制瓶进行了计算机应力分析。分析中使用的玻璃瓶的轮廓和玻璃厚度分布如下图4所示,并模拟了水冻结成冰时的膨胀水平力。下图5中显示的分析结果表明,向外膨胀力在玻璃内外表面产生的拉伸应力几乎相等,同时伴随厚度远小于圆柱体直径的薄壁圆柱体的膨胀。断裂起源将发生在外表面的该区域,因为与内表面相比,该表面具有足够严重缺陷的可能性更大。冻干过程中温度梯度是否会影响西林瓶破损?破损是否也可能是由于温度梯度产生的应力引起的呢?毕竟冻干过程中存在假定的温度梯度现象。如果温度梯度引起的断裂应力被认为与冻干过程中玻璃瓶的破损有关,则断裂样式将包括侧壁和底部区域的弯曲裂纹,其起源很可能位于底部或跟部区域的玻璃外表面,如图3所示。这与图1所示的商业生产期间破裂的西林瓶观察到的破裂样式形成直接对比。另外事实上,在正常的冻干过程中,装满药品的小瓶放在冻干机腔体内的板层上。冷量通过板层内的导热流体传导板层金属面,再缓慢冷却西林瓶的支承面区域,同时伴随辐射、对流冷却西林瓶周围的环境。由于装满产品的西林瓶瓶从室温到大约-40°C的总冷却时间通常需要较长时间才能完成,因此假设玻璃瓶内外表面之间可能产生的任何瞬时温度梯度都相对非常小。为了验证这一假设,使用理论公式来估计产生许多商业破损事件中观察到的应力大小所需的温度梯度。为了达到27.6 MPa的总断裂应力,玻璃瓶内外表面之间需要125°C的温差。对于69.0 MPa的断裂应力,需要314°C的温差。而在正常的商业冻干过程中,西林瓶冷却的方式相对柔和,玻璃中不太可能产生如此高的温度梯度。冻干过程中西林瓶破损原因总结 为证明上述论断,作者进行了如下几种实验,观察不同情况下的裂痕样式,进行进一步对比分析:Freezer test 冷冻设备试验(仅外向力)Liquid Nitrogen Immersion 液氮浸泡(加上显著的热梯度)GDFOvento Cold Bath Thermal Shock Test 烘箱至冷浴热冲击试验(仅热梯度) *得出结论:文章讨论的常见破损断裂类型是由于冷冻药品在预冻过程中产生的向外膨胀力导致的,而不是由于温度梯度。因此,玻璃瓶热性能的变化(玻璃瓶的设计变化或使用具有较低热膨胀系数的玻璃)不太可能对典型冻干过程中可能经历的破损频率产生显著差异。解决破损断裂问题的方法是进行详细的断裂分析。这种分析将清楚地区分破裂的原因,要么是由于西林瓶在生产、运输或灌装过程中的问题导致的玻璃强度降低,要么是由于产品在冻预过程中膨胀导致的作用力过大所导致的。如何减少冻干过程中的西林瓶破损?那么,如何减少产品在预冻过程中由于膨胀而产生的应力,从而减少冻干过程中西林瓶的破损呢? 让我们一起先来了解一下预冻过程中的成核理论。传统冻干的预冻过程中,晶核的形成都是随机的,如下: 图6:随机成核成核温度不同,产生的冰晶形态和大小各不相同,晶核生长的方向也是杂乱无章,导致产品在冻结过程中膨胀产生的应力比较大,从而导致西林瓶破损现象,尤其是瓶子比较大,装样量比较多时,破损现象更明显。经Controlyo技术控制成核后,所有样品在同一时间、同一温度瞬间成核,晶体生长方向也比较规则,*可以显著减少预冻时的应力,减少西林瓶破损现象。 图7:Controlyo控制成核经典案例分享用于治疗癌症的小分子药物 配方:2.5 wt% API 2 wt% NaCl (pH 7.7-7.9)100ml西林瓶,22ml 的灌装量每批85个样品 图8:随机成核与控制成核对比 从上图可以看出:用Controlyo技术在预冻过程中控制成核后,冻干后的产品显著降低了西林瓶破损率。Controlyo技术不仅可以显著减少破瓶率,还具有以下优势:样品更均一适用于高剂量样品或灌装体积较大的样品保证同一批样品及不同批次样品的均一性提高药效缩短干燥时间(30%左右)改善产品外观减少破瓶率提高产量减少产品复水时间以下引用是FDA出版并认可的结论:Controlyo晶核控制可以显著减少主干燥时间,提高蛋糕状外形,蛋糕形态,减少比表面积,提高瓶子间的均匀性,缩短复水时间。[文章摘译]:David R. Machak and Gary L. Smay,Failure of Glass Tubing Vials during Lyophilization,PDA J Pharm Sci and Tech 2019, 73 30-38*本文图片来源于网络,版权归原作者所有,如有侵权请立即联系我们删除。
  • 成核控制技术在冻干过程中的应用
    当冻干工艺放大过程中遭遇过冷度难题,该如何解决?1、预冻及成核冻干过程分为三个主要阶段: ● 预冻 ● 主干燥(一次干燥) ● 次级干燥(二次干燥) 预冻阶段主要是样品中的溶剂(多数情况下是水)凝固,形成冰,从溶质中分离出来;主干燥阶段主要是将预冻阶段形成的冰通过升华的方式去除,也是整个冻干过程中最长的一个阶段;次级干燥是利用扩散和解吸附的原理进一步去除未冻结的水分。 第一步的预冻尽管时间相对来说不是很长,但是很关键,因为:1. 它决定了样品的形态,进而决定一次干燥和二次干燥产品的性能;2. 极大地影响产品的物理化学性质(如成分的结晶);3. 对API施加了不稳定的应力(如冷冻浓缩影响)。预冻过程中产品温度随时间的变化,如图1:图1:预冻过程产品温度随时间变化图1--层板进口温度(降温速率0.5℃/min)2--成核之前样品温度(降温速率约0.3℃/min)3--成核温度Tn: 初次形成冰核的温度4-平衡凝固点Tf* Tn和Tf之间样品处于过冷状态 Q:液体的水是如何变为固体的冰? 1. 一次成核:最初的晶核出现在超过临界尺寸的分子团簇中; 2. 二次成核:冰核向冰晶的生长(“结晶”);结晶的放热事件停止了二次成核; 3. 最终固化:通过层板冷却的小瓶底部向顶部行进,是一个缓慢的过程,热量必须通过已经固化的基质和小瓶的底部传递到层板,当继续冷冻浓缩,直到达到Tg’,玻璃态的高粘度基质阻止了水的进一步结晶。在这个过程中我们通常会面临一个问题,一次成核是一个随机和自发的过程,整个批次样品的成核会发生在一定的温度和时间范围内(样品成核温度相差约9.1℃,全部成核经历的时间大约47min)(见图2),这种不同跟样品所处的环境条件以及降温速率有关。图2:同一批次样品成核温度和时间关系图50 mg/mL Sucrose 10 mL Vial 3 mL Fill Volume这种随机的不受控制的自发过程会导致:1. 同一批次中不同小瓶的成核温度不同,最 终干燥产品性能的异质性;2. 实验室(非GMP)和无菌中试或生产规模之间成核温度的批次可变性;3. 两种可变性都会影响产品和工艺性能;4. 过程控制问题(一次干燥终点指示);5. 产品质量面临风险(一批产品中不同的初次干燥时间!)6. 放大:成核温度降低1°C(较低的过冷度),初级干燥时间缩短约3%。这种预冻行为的可变性是工艺放大化转移面临的一个严重的问题,通常我们可以通过退火来改善同一批次样品的孔径大小分布,来减少批次内和批次之间冰晶形态的差异,提高样品的均一性。退火是一种比较成熟并且已被普遍接受和认可的用于冻干过程中改产产品均一性的一种方法,最佳的退火温度(在样品的Tg’和Te之间)和时间(几小时到6h不等)也需要根据不同的配方产品进行摸索来决定,然而,退火也并不是适用于所有的样品,有些时候,退火可能反而会起到不好的作用,如加剧产品的降解,因此需要对具体的工艺及储存稳定性进行详细的研究,退火也需要谨慎使用。Q:那么是否有新的技术或方法能够直接控制成核温度来改善这种差异性呢?什么是控制? A:控制就是要有使产品能够在指 定的温度和时间下完成成核的能力。2、成核控制技术种类针对目前存在的以上问题,科学家门研究出了各种不同的成核控制技术:添加成核种子或小瓶预处理诱导成核使用添加剂(例如碘化银/丁香假单胞菌)或小瓶预处理(刻划、刮擦或表面粗糙化)以产生额外的成核位点,从而促进晶核的形成。● 不适用于生产冻干肠外产品(无菌/颗粒物!)● 没有Tn的“控制”● 只是提高了平均的成核温度电诱导成核 通过强电脉冲(U=3 kV)诱导成核;需要一个与产品直接接触的电极;不能直接用于含有大量盐(如NaCl)的溶液。超声波诱导成核在过冷(亚稳)系统中使用振动诱导成核(声脉冲:10 ms,10–40 kHz);没有大规模应用的报告。真空诱导表面冻结成核通过将腔室压力降低至稍低于大气压(约1mbar),并在约-10℃下预先平衡液体产品来诱导表面冻结;过度沸腾的风险(产品外观损害、产品损失)。冰雾诱导成核将产品冷却至低于Tf(例如-5℃)的所需成核温度并平衡一定时间,然后降低腔室压力至中等负压(约50Torr),将冷氮气注入腔室,冰雾(微小冰晶)迁移到小瓶中诱导成核。冰雾成核的方法可用在实验室及生产规模的冻干设备上,但是需要考虑无菌的问题,冰雾分布的均一性以及是否能够实现瞬时成核。加压卸压法诱导成核采用加压瞬间卸压的方法,当加压到一定压力,降低层板温度至期望的成核温度,维持一定时间,瞬间降压的同时成核,压力调节采用无菌的惰性气体,无任何污染源引入到腔体中,在中试以及生产型冻干机上均可实现。具体的机理,目前有几种假说:1. 产品腔体中的气体在卸压的过程中经历了膨胀会冷却,冷却的气体接触到亚稳态的液体样品表面,诱导成核;2. 卸压会引起样品液体表面的局部蒸发,蒸发导致的冷却诱导成核;3. 突然的卸压可能会产生压力波或震动干扰,从而诱导成核;这种方法可以使整批样品在瞬间成核(几秒的时间),形成高度均匀的冰晶尺寸,但是需要耐压的产品腔才可以实现,并且价格昂贵。各种成核技术各有优缺点,不管是哪种成核技术,应用在制药行业,首先需要维持产品的无菌性,系统的完整性,另外需要考虑其适用性、有效性,针对具体产品的价值性等。3、成核控制技术案例分享材料和方法实验目的采用成核控制、传统退火程序和随机成核三种方法用于产品性能和关键指标以及冻干工艺优化潜力的比较。实验设计对于工艺1-4,二次干燥程序均为0.1℃/min升温至40℃, 维持360 min;一次干燥真空度均为57mTorr 一次干燥终点判断压力灵敏度 1mTorr(Pice和Pc差值)。实验结果图图3:不同工艺产品内部结构图 图4:不同工艺产品一次升华干燥阻力数据图图5 不同工艺一次干燥产品升华界面温度数据图图6:不同工艺一次干燥产品底部温度数据图图7 :不同工艺产品一次干燥时间图图8 :不同工艺产品最 终水分含量数据根据实验数据结果得出如下结论● 在较高的温度下成核,能够获得更大尺寸的内部孔径结构(图3);● 经过成核控制或退火处理,在一次升华过程中具有较小的升华阻力(图4);● 成核控制或退火处理检测到的产品升华界面的温度较低,这是由于升华阻力较小导致的,这样可以设置更高的层板温度,进而提高升华速率,缩短干燥时间(图5);● 在主干燥过程中,使用热电偶产品温度探头检测到的产品温度中,成核控制或退火处理获得的产品温度较低(图6);● 成核控制可以缩短一次干燥的时间(图7);● 成核控制能够获得较大的冰晶结构,有利于一次干燥,但是反过来产品具有较小的比表面积,不利于二次干燥水分的去除,因此具有相对高的残留水分,需要调整二次干燥的条件来优化(图8)。4、总结成核控制除了能够提高冻干效率,改善产品均一性外,经过研究发现,它还在改善某些产品的性能及外观方面具有良好的效果,如解决产品表面结壳,产品开裂或萎缩,裂瓶,缩短复水时间,提高产品稳定性等,成核控制技术对于冻干工艺及产品的潜在优势也在不断地探索和进一步研究中,最终的效果可以根据不同的样品通过具体的实验来验证。5、成核控制冻干设备德祥科技旗下莱奥德创提供高品质的冻干设备,具备成核控制技术功能,如果感兴趣的客户也欢迎到我们实验室来进行具体的实验实践和结果的验证。ATS SP Scientific提供的Lyostar冻干机仅需运行一个遁环即可自动摸索和开发冻干工艺。结合冻干PAT技术使漫长复杂的工艺摸索变得简单快捷有效。PAT技术——Smart 全自动工艺开发技术,Controlyo控制成核技术,TDLAS实时水蒸汽测量技术。Controlyo控制成核技术在相同的温度下,以瞬间减压的方式在同一时间让所有小瓶瞬间成核,在较高的温度下成核,产生更大、更均匀的晶体尺寸,使干燥更加一致。● 提高批次均匀性;● 无引入污染或外来物质的风险;● 增加冻干产品的蒸汽通道尺寸,进而减少干燥层的阻力;● 加快主干燥过程;● 减少产品复水时间;● 改善冻干产品的外观。莱奥德创冻干工场上海莱奥德创生物科技有限公司由德祥科技有限公司创办,专注于提供高品质的冻干设备应用和制剂开发相关服务。德祥科技有限公司服务冻干行业十余年,在涉及冷冻干燥领域的工艺开发/工艺优化/商业化等各方面拥有丰富的经验,迄今为止已为500+客户提供冻干设备及相关服务。客户产品类型涵盖:蛋白、抗体、ADC、疫苗、核酸、多脑、脂质体、IVD、食品等领域。依托于合作伙伴美国ATS SP Scientific和英国Biopharma Group的紧密合作,掌握前沿的冻干理念与技术,使用高品质的冻干设备和软件致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。Our Mission 莱奥德创冻干工场专注于提供高品质的冻干设备应用和制剂开发相关服务,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。Our Vision做冻干工艺的创新者,为生物医药开发提供优质制剂产品解决方案。
  • “蛋白样品冻干过程”干货分享!——深度解析相分离现象及影响因素
    冻干可以通过去除样品中的水分,限制分子的流动性,减慢药物成分的物理/化学反应来延长产品的保质期,然而固体状态的配方也不是一直稳定的,由于在干燥过程中,蛋白质暴露在许多应力作用下,在长期的储存过程中,仍然容易发生物理/化学反应。在冻干及储存过程中,我们常常会加入一些稳定剂来保护蛋白免受应力的影响,主要有两种稳定机理来解释:水替代假说和玻璃化假说;但是两种稳定机制都需要将蛋白质分子分散在稳定剂中,使得蛋白质和稳定剂都处于相同的单一无定形相,即不发生相分离。那么相分离是如何发生的?为什么会发生?相分离主要发生在冻干的预冻步骤,在一定程度上取决于冻干的工艺和配方成分。1、相分离的机理 图1:冻干分为三个步骤冻干主要分为三个步骤:预冻,主干燥及次级干燥。(如图1所示)在预冻过程中,溶液被降到一个很低的温度,晶核形成并且生长,样品中的溶质浓度不断浓缩,可以达到初始浓度的约50倍,如果在热力学和动力学上均利于反应发生的条件下,高浓度的溶质可以导致相分离。2、相分离热力学当溶液为成分A 和成分B的混合物,会发生下面的相互作用(如图2所示)。熵和焓之间的竞争决定了相分离的过程。相分离的热力学基于混合物的自由能(弗洛里-哈金斯理论),聚合物由于尺寸大小和连通性,不能充分利用可用体积,大分子量聚合物的熵变化较小,因此,混合物热力学更容易受到较大焓贡献的支配,当ΔGmix 0: 热力学上有利于相分离 (A-A和B-B相互作用优于A-B相互作用)。 图2:溶液A和B发生的相互作用如果相分离是热力学自发以及动力学上利于反应(足够的移动性和时间),蛋白和稳定剂会分离成两个不同的相,富含稳定剂的无定形相以及富含蛋白的无定形相,后者由于缺乏稳定剂的保护,蛋白更易于降解。(如图3所示)图3:蛋白和稳定剂会分离成两个不同的相3、相分离的检测方法无定形-无定形物质的相分离不容易检测,由于检测方法有限,证据不足,目前主要有如下检测方法:检测技术方法局限性调制DSC配方中有多个Tg’表示有多个无定形相通常,富含蛋白的相不能被DSC检测到,因为在Tg’温度下具有较小的ΔCP;要求高浓度的蛋白配方。拉曼成像技术非重叠成分峰的线谱分析范围:2-50微米;不能检出低于检测限的成分波动。固体核磁共振利用弛豫时间来探测2-5 nm, 20-50 nm分子大小物质的混溶性动态实验需要大量的样品。X射线衍射/散射在纳米尺度上探测结构特征对于两个组分,均包含重要的结构层次,无法区分相分离;成本高,动态实验。SEM肉眼观察物质的形态结果会存在模棱两可的现象;需要较大的容易辨认的相。电介质技术依赖于电场中的分子迁移率响应存在不确定性。4、工艺参数对相分离的影响过冷度-----成核温度❖热力学冻结温度和首次成核温度之间的差值为过冷度;(如图4所示)❖较高的成核温度会更易导致相分离;(由于溶质在远高于Tg’温度下进行浓缩) 图4:过冷度冷却速度❖控制达到给定过冷度的速度;❖缓慢的冻结速度会更容易导致相分离;退火❖主要用于填充剂结晶,控制冰晶形态或增加冰晶体的大小,缩短一次干燥时间;❖如果两相热力学更稳定,退火时间和迁移率的增加可能会提供相分离的机会;灌装体积❖较大的灌装体积会对相分离有较大的影响,因为在样品中具有较大的热梯度。案例分享成核温度和冷却速度对相分离的影响对已知的相分离聚合物体系 1:1 PVP29K:DEX10K(100 mg/ml) 进行研究,将冷却台放在拉曼显微镜下进行观察。(如图5所示) 图5:已知相分离聚合物体系在拉曼显微镜下的观察成核温度对相分离的影响 图6:成核温度对相分离的影响与每个单一组分相比,成核温度较高的一组(-5℃)对相分离具有较大的影响;其余的成核温度对相分离影响较小。(如图6所示)冷却速度对相分离的影响 图7:冷却速度对相分离的影响所有的冷却速度均会在一定程度上提高相分离的倾向,但是影响较小。(如图7所示)*结论在没有热历史的情况下,成核温度和冷却速率对相分离的影响较小。成核温度和灌装体积对相分离的影响 图8:成核温度和灌装体积对相分离的影响较大的灌装体积(1ml VS 0.2ml)和较高的成核温度(-5℃ VS -10 ℃)会导致相分离,可能是由于样品内部存在较大的温度梯度。(如图8所示)5、配方成分对相分离的影响在冻干过程中配方成分的兼容性是阻止相分离的关键,如研究表明聚合物体系的不混溶性随着聚合物分子量的增加而增加。对于蛋白而言,相分离的倾向性可能与稳定剂大小,静电相互作用(盐类),稳定剂类型(填充剂、表面活性剂),稳定剂浓度,蛋白质特性(等电点,大小),配方PH值等有关。案例分享——配方组分对相分离的影响❖实验进行了系统的研究,探索蛋白质:糖的比例以及蛋白质(分子量,电荷)和糖(分子量,单糖亚基和长度)的特性如何影响配方在冻干过程中的混溶性。(如图9,10,11所示)❖蛋白质和糖(200mg /mL)的混合物按以下比例(w:w):蛋白质:糖——0:1,1:9,1:4,1:2.3,1:1.5,1:1,1:5:1,2.3:1,4:1,9:1❖多个Tg’的存在表明存在相分离。 图9 图10 图11实验表明● 在所有的蛋白-糖体系均观察到了相分离现象(两个不同的Tg’),尽管不同的比例出现相分离的时间不同;● 不同蛋白-糖混合物Tg’的宽度不同,有可能多个Tg’会重叠在一起,形成一个较宽的Tg’, 导致无法检测到相分离现象;● 其中在牛血清蛋白和海藻糖混合物中,当二者比例为1:1.5和1:1 时,观察到存在相分离现象;(如图12所示) 图12● 对于蛋白-糖体系中,二者比例从1:2.3 到4:1 均观察到存在相分离现象;(如图13所示) 图13结论● 对于几乎所有被研究的体系中,当配方中蛋白质和糖的比例为1:1和1.5:1时确定会发生相分离现象,这表明蛋白质和糖的比例和系统的相分离倾向之间可能存在相关性;● 在系统的相分离趋势和以下属性之间似乎没有明显的相关性: # 蛋白质电荷/等电点 # 蛋白质分子量 # 糖的分子量 # 单糖亚基;● 在几乎所有研究的配方中,当蛋白和糖的比例为1:1时会发生相分离;● 本研究结果表明,冻干蛋白配方中应加入过量的稳定剂。6、冻干蛋白配方中相分离的重要性● 相分离取决于具体的操作过程和组分;● 在预冻过程中,温度/时间和浓度是关键因素,会影响系统相分离的趋势;● 蛋白和稳定剂的物理化学特性会影响相分离;● 在冻干过程中保护不足会导致长期储藏过程中不稳定性的增加;● 当缺乏稳定剂时,蛋白在干燥过程中会发生改变(即形成反应型结构),这可能会导致储存过程中潜在的稳定性问题;● 需要了解相分离如何影响冻干制剂的保质期;● 相分离检测是稳定性欠佳的指标;● 未检测到的相分离会影响蛋白质稳定性和整体产品质量;● 需要更好的检测方法!当前的方法可以证明样品存在相分离,但不能证明样品不存在相分离。参考文献[1] Padilla,A.M.et.Al.(2011).”The Study of Phase Separation in a Model Polymer Phase Separating System Using Raman Microscopy and a Low-Temperature Stage: Effect of Cooling Rate and
  • 冻干机试运行需要注意的情况及冻干过程
    Pilot2-4M冻干机第一次运行或停放时间较长,需要运行或重新运行时,为确认设冻干机的性能状况,应首先做一次空载运行,这时冻干机的抽空速率和真空度可能要差一些,这属于正常现象,但要密切注意以下情况:1) 制冷机组的声音、发热。2) 冷冻机组的油位、色泽。3) 压缩机机头、机尾的结霜。4) 压缩机的温度。5) 循环泵的声音和压力。6) 放气阀漏气。7) 真空泵开启30min后的声音及排烟口的排烟量。Pilot2-4M冻干机的冻干过程先是将冻干箱进行空箱降温到-40℃,然后把产品放到冻干箱内的板层上进行预冻(降温阶段)。待制品冻实后,就可以进行升华操作啦!制品的升华需要在高真空下进行,一般要求干燥箱内真空达到0.1mmHg以上。为了保证冰的升华能够持续进行,我们还需要将搁板加热,给予升华所需的热量。在冷冻干燥过程中,冻干可以分为升华阶段和制品的再干燥阶段。升华阶段要进行第一步加热,使冰大量升华。这个时候,制品温度不宜超过共熔点,通常保持在±10℃之间对冻干效果好!而制品的再干燥阶段需要进行第二步加热,以提高干燥速率。这时板层温度一般控制在30℃左右,直到制品温度与板层温度重合,即可达到干燥的终点。整个冻干时间大约需要12~24小时左右。
  • 单晶炉厂商晶阳机电开启北交所上市辅导
    5月18日,证监会披露了安信证券关于浙江晶阳机电股份有限公司(简称:晶阳机电)向不特定合格投资者公开发行股票并在北京证券交易所上市辅导备案的报告。官网显示,晶阳机电是专业的直拉式硅单晶生长炉生产厂家,目前主要产品有单晶炉、铸锭炉、石英坩埚、其他半导体相关设备,公司技术力量雄厚,研制开发技术支持能力强大,现有研发人员23名,其中多人具有硕士以上学历,并在上海同时设有销售及售后服务中心;生产基地位于国家历史文化名城嘉兴,占地面积近25000平方米(约29.8亩),生产车间包括金属加工车间、产品总装调试车间、硅单晶炉、铸锭炉试机车间、电气组立车间以及石英坩埚生产线车间。从股权结构来看,晶阳机电任何单一股东持股比例均低于30%,不存在单一股东通过实际支配公司股份表决权能够决定公司董事会半数以上成员选任或足以对股东大会的决议产生重大影响的情形。因此,公司无控股股东。程旭兵直接持有公司16.28%股权,杨金海直接持有公司7.33%股权,两位股东通过上海银坤问接控制公司15.64%股权,通过宁波德亚间接控制公司5.87%股权,合计控制公司45.11%股权。程旭兵担任公司董事长、总经理杨金海担任公司董事、副总经理,两人均为公司的创始人,对公司的发展战略、重要决策、日常经营管理均能够发挥重大影响。
  • Quantum Design光学浮区法单晶炉,高效镀金双瓣对焦助力介电材料研究
    随着信息、电子和电力工业的快速的发展,以低成本生产具有高介电常数损耗的材料成为当前关注的热点,高介电常数材料无论是在电力工程,还是在微电子行业都具有十分重要的作用,研究高介电常数材料的结构与性能,对其介电机理、压敏机理和晶界效应的探讨具有深远意义。 (InNb)0.1Ti0.9O2陶瓷不仅具有高介电系数,同时具有较小的介电损耗,是一种具应用前景的巨介电材料。这种优异的介电性质的产生机理尚处于研究阶段,单晶样品是分析材料本征性质的有利武器。由于介电测试对于样品尺寸的特殊要求,为更真实地反应样品的介电性质,获得大尺寸、高质量的 (InNb)0.1Ti0.9O2单晶变得尤为重要。浮区法单晶炉高效镀金双瓣对焦 哈尔滨工业大学宋永利等人利用光学浮区法,通过对生长条件(气氛、气压、流量、生长速率)的控制,终获得了大尺寸(4mm直径、30mm长)的单晶样品。该单晶样品的制备使用的是Quantum Design公司推出的光学浮区法单晶炉。这款高性能单晶炉采用镀金双面镜、高反射曲面设计,高温度超过2000℃;系统采用高效冷却节能设计(无需额外冷却系统),稳定的电源输出保证了灯丝的高精度恒定加热功率,可制备高质量的单晶。光学浮区法单晶炉 型号:IRF01-001-00 浮区法的主要优点是不需要坩埚,故加热不受坩埚熔点限制,因此可以生长熔点高材料;生长出的晶体沿轴向有较小的组分不均匀性,在生长过程中容易观察等。浮区法晶体生长过程中,熔区的稳定是靠表面张力与重力的平衡来保持,因此,材料要有较大的表面张力和较小的熔态密度,故浮区法对加热技术和机械传动装置的要求都比较严格。相关产品链接高精度光学浮区法单晶炉 http://www.instrument.com.cn/netshow/C121152.htm
  • 【 新课上线限时29.9 】冻干过程中的PAT技术-莱奥德创冻干工厂
    然而在整个过程中我们只能控制层板温度,不能直接控制产品温度。PAT工具是顺利实施“质量源于设计(QbD)的有效工具”,可协助建立可控的过程关键参数和不可控的关键产品参数之间的关系,使冻干变得可靠、可控、高效、高质。 新课上线 ◆ 新课特惠:新课原价:299元限时优惠:29.9元*截止时间:2023年11月30日23:59◆ 获取方式:可在线留言或拨打400 006 9696与我们联系◆ 内容大纲:✔ 从冻干过程的每个阶段出发,解析每个阶段的关键控制点,所使用的PAT工具;✔ PAT工具一:成核控制技术,多种成核控制技术原理及优缺点解析;✔ PAT工具二:产品温度探头,有线温度探头、无线温度探头的区别及使用局限;✔ PAT工具三:Smart/MTM智能工艺开发技术的原理,功能,应用于冻干技术可以解决的问题及使用限制;✔ PAT工具四:TDLAS可调谐半导体激光吸收光谱技术技术原理,应用于冻干可以解决的问题及使用限制✔ PAT工具五:终点判定工具,目前市面上可用的终点判定工具介绍及优缺点解析;✔ 理想的PAT工具是怎样的?◆ 讲师: 韩晓芳莱奥德创资深应用工程师韩晓芳,沈阳农业大学硕士学位,2011年加入德祥负责冻干机产品的技术,培训及市场开发工作。8年致力于冻干技术在生物制药行业的应用,拥有丰富的冻干工艺优化方面的经验,对目前冻干的国际前沿技术具有深入的研究和了解,针对不同客户的应用,提供多方位的解决方案。还记得莱奥德创6月冻干技术分享活动吗 12月7日-12月8日,2023年莱奥德创冻干技术理论及实操技术分享会-上海场又要来了!福利放送ing……技术分享会原票价:3288/人购买本次新课程即可享受莱奥德创线下冻干技术实操技术分享会特约优惠价格2699元!◆ 新课购买&◆ 技术分享会报名欢迎咨询400 006 9696◆ 技术分享会缴费:帐户名称:上海莱奥德创生物科技有限公司帐户号码: 1219 4564 1610 106开户行:招行股份有限公司上海长阳支行*付款时请备注:12月上海+姓名莱奥德创冻干讲堂关注“莱奥德创冻干工场“,立即获取冻干线上学习内容。基于对于冻干研发的一些考量,莱奥德创创建了金字塔冻干学习平台:包含了从冻干理论基础,到配方和工艺开发,再到放大及生产,以及进阶的设备管理和线上线下专题内容分享。内容结合了来自Biopharma的冻干理论指导体系、来自于莱奥德创产品经理及应用工程师的实践经验总结及国内外专家的专题内容。获取方式Step 1:关注莱奥德创公众号Step 2:点击菜单栏“冻干讲堂”Step 3:点击你感兴趣的内容BannerStep 4:开始学习莱奥德创冻干工场上海莱奥德创生物科技有限公司由德祥科技有限公司创办,专注于提供高品质的冻干设备应用和制剂开发相关服务。德祥科技有限公司服务冻干行业十余年,在涉及冷冻干燥领域的工艺开发/工艺优化/商业化等各方面拥有丰富的经验,迄今为止已为500+客户提供冻干设备及相关服务。客户产品类型涵盖:蛋白、抗体、ADC、疫苗、核酸、多脑、脂质体、IVD、食品等领域。依托于合作伙伴美国ATS SP Scientific和英国Biopharma Group的紧密合作,掌握前沿的冻干理念与技术,使用成熟的冻干设备和软件致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。服务优势Our Mission莱奥德创冻干工场专注于提供成熟的冻干设备应用和制剂开发相关服务,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。Our Vision做冻干工艺的创新者,为生物医药开发提供高品质制剂产品解决方案。
  • XRF科技推出全自动机器人电热熔融炉系统
    XRF科技公司最新推出全自动机器人电热熔融炉系统  澳大利亚XRF Scientific Ltd公司旗下MODUTEMP在2010年最新推出全自动机器人电热熔融炉系统——专为X荧光光谱仪制备样品,其双通道系统能达到每小时50-60个样品的自动处理量。上海凯来实验设备有限公司是其在中国的总代理。     全自动机器人电热熔融炉系统集合了从样品准备、坩埚/模具装卸、全熔融过程监控、自动倒模到熔片装卸等功能。真正将实验人员从高温恶劣环境中解放出来,也完全消除了人工备样过程中可能引入的分析误差,从而也大大提高了工作效率,保证了样品制备的可靠性和可重复性。  关于XRF Scientific Ltd  澳大利亚XRF Scientific Ltd公司是世界领先的激光诱导击穿光谱仪(LIBS)、熔融炉、高纯助溶剂、铂金/铂合金器皿制造商。  它生产的熔样机以坚固耐用、安全易操作、高效高通量著称。在世界钢铁行业内被广泛的大量的使用,已成为钢铁企业先进化验室的标准配置之一。  关于上海凯来实验设备有限公司  总部设在中国上海,成立于2004年。作为德国Haver & Boecker公司、Bϋ rkle公司、英国Optical Activity公司和Index Instruments公司、美国Ahura公司、Inorganic Venture公司、Reichert公司和W.S. Tyler公司、澳大利亚XRF Scientific 公司、瑞士SONOSWISS公司等在中国的总代理,以及作为德国Hirschmann、HosokawaAlpine的南方区总代理和Dionex液相产品上海区总代理。凯来公司致力于为生命科学和化学分析实验室用户提供优质的科学仪器及服务,同时希望不断完善自身,为客户提供更多更好的解决方案。  更多信息请登录www.chemlabcorp.com了解。
  • GES四电弧高温单晶生长炉落户中科院物理所材料基因组研究平台(怀柔科学城)
    四电弧高温单晶生长炉是一种近几年新发展起来的高温材料合成设备,非常适合生长化学性质活泼但熔点高(一般在3000℃左右)的金属间化合物,包括含有稀土元素(或金属铀)的二元及四元金属间化合物,例如UGe2、UPt3、V3Si、URu2Si2、RE2Co17、CePd2Al3、REFe10Ti2 、Nd2Fe14B、URhAl、UNiAl和RENi5等合金单晶。四电弧高温单晶系统在晶体生长中的过程如下:先将原料放在旋转的铜坩埚中,之后四个电同时放电形成高温熔化原料,在精密的提拉系统控制下使用Czochralski方法将熔化的原料拉成单晶。中国科学院物理研究所材料基因组研究平台(怀柔科学城)致力于建设成为我国、规模大、手段齐全的先进材料基因组研究平台,以提升我国在新材料研发与制造领域的研究水平,同时支撑我国物质科学领域基础研究与应用基础研究综合实力的跨越式发展。我们Quantum Design 中国子公司非常荣幸将日本GES公司设计和制造的四电弧高温单晶生长炉系统于近日安装于该平台,该系统将为用户单位在非常规超导电性、非费米液体行为及非常规量子临界行为等诸领域的科研工作提供相关单晶样品制备支持!四电弧高温单晶生长炉外观图:四电弧高温单晶生长炉原理示意图:四电弧高温单晶生长炉晶体生长过程实物图:
  • 布鲁克推出全新G6 LEONARDOTM ONH元素分析仪
    p style="text-align: justify line-height: 1.5em "  strong仪器信息网讯/strong 2019年IFEX上,布鲁克宣布推出新的G6 LEONARDO,这是一款经济而实用的利用惰性气体熔融法(IGF)测定无机样品中氮、氢、氧元素含量的分析仪器。G6 LEONARDO将SampleCare技术加入到金属和陶瓷的IGF分析中,从而扩展了布鲁克分析仪产品线。该仪器采用了可靠的Smart Molecule Sequence对ONH元素进行精确分析,采用预先校准的标准方法,同时使用氩气代替氦气,满足了工业过程和质量控制的需要,便于成本效益的操作。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/6b9e8fad-f859-4410-a76b-3d278491fb2b.jpg" title="csm_G6-LEONARDO_94d503a217.jpg" alt="csm_G6-LEONARDO_94d503a217.jpg"//pp style="text-align: justify line-height: 1.5em "  G6 LEONARDO采用的SampleCare技术还包含了EZDrive功能,这是一个经过验证的电子运动模块,用于坩埚的自动限位以及扭矩定位,操作时不需要额外的压缩空气。它保证了坩埚和电极之间更好的电接触,同时保护坩埚不受损坏。SampleCare由水冷样品端口完成,该端口保护脆弱的样品遭受不必要的加热以及氢气损失,同时仪器还包含一个大容量的粉尘收集器和在线颗粒过滤系统。/pp style="text-align: justify line-height: 1.5em "  布鲁克的Smart Molecule Sequence可以通过科学原理直接测量样品释放的气体,从而得到可靠的结果。它还允许在不添加化学物质的情况下测定氧气,确保高可靠性和低成本。样品温度可实时检测控制,防止过热和多余副产品的形成。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/053ba98c-bf1d-4ef5-8b81-8074927d92a7.jpg" title="G6-LEONARDO-Detail.jpg" alt="G6-LEONARDO-Detail.jpg" width="300" height="329" border="0" vspace="0" style="width: 300px height: 329px "//pp style="text-align: justify line-height: 1.5em "  G6 LEONARDO配备了现成的预先校准的工业标准应用方法,如钢铁和钛中O、N或H的分析,铜中O元素的分析,磁性材料和钛合金中O、H分析。这使得G6 LEONARDO能更好地应用在在金属原料制造、加工或陶瓷制造等加工过程和质量控制上。/pp style="text-align: justify line-height: 1.5em "  布鲁克公司CS/ONH元素分析业务的产品线经理Peter Paplewski博士评论道:“G6 LEONARDO可以作为一个现成的单(O, N, H)或双元素(ON或OH)分析仪。该系统是为新兴工业应用的需要而设计的,如粉末冶金过程,包括添加剂制造。”/ppbr//p
  • 中国科学院固体物理研究所和南昌大学相继顺利安装德国SciDre高温高压光学浮区法单晶炉(HKZ系列)
    近日,德国SciDre高温高压光学浮区法单晶炉(HKZ系列)分别在中国科学院固体物理研究所和南昌大学顺利完成了安装调试。光学浮区法单晶生长工艺具有无需坩埚、无污染、生长快速、易于实时观察晶体生长状态等诸多优点,有利于缩短晶体的研究周期并加快难以生长晶体的研究进展,非常适合晶体生长研究,近年来备受关注,现已被广泛应用于各种超导材料、介电和磁性材料以及其它各种氧化物及金属间化合物的单晶生长。 图1:现场安装培训 图2:现场安装培训 目前,高熔点、易挥发性材料的浮区法单晶生长是一大棘手问题,德国SciDre公司推出的HKZ系列高温高压光学浮区法单晶炉成功地克服了这一技术难题。HKZ可提供高达3000℃以上的生长温度,晶体生长腔大压力可达300bar。HKZ的诞生进一步优化了光学浮区法单晶炉的生长工艺条件,使得高熔点、易挥发性材料的单晶生长成为了可能。图3:德国SciDre公司HKZ系列高温高压光学浮区法单晶炉德国SciDre公司HKZ系列高温高压光学浮区法单晶炉技术特色:◆ 能够同时实现高压力300bar大气压(选配)和高温度3000℃(选配);◆ 能够分别立控制不同气体的流速和流量,能够实现样品生长的气体定速定量混合反应;◆ 在保持灯泡输出功率恒定的情况下,采用调节光阑(shutter)的方式对熔区进行控温,从而能够有效延长灯泡使用寿命;◆ 能够针对不同温度需求采用不同功率的灯泡,从而对灯泡进行有效利用,大化灯泡使用效率和寿命;◆ 拥有丰富的功能选件可进行选择和拓展,包括熔区红外测温选件、高1×10-5mbar的高真空选件、实现氧含量达10-12PPM的气体除杂选件、对长成的单晶可提供高压氧环境退火装置选件。图4:德国SciDre公司HKZ系列高温高压光学浮区法单晶炉原理示意图 Quantum Design 团队在中国科学院固体物理研究所和南昌大学进行的德国SciDre高温高压光学浮区法单晶炉(HKZ系列)的安装调试工作受到了客户和制造商的一致好评。我们也祝愿广大Quantum Design用户科研顺利!
  • 高温可达3000℃!高温高压光学浮区炉顺利落户中国电子科技集团公司第九研究所
    近期,德国Scientific Instruments Dresden GmbH(下文简称:ScIDre)公司生产的HKZ系列高温高压光学浮区炉在中国电子科技集团公司第九研究所顺利完成安装调试。图1:德国ScIDre制造商工程师安装现场图片图2:设备运行、调试现场图片 光学浮区法单晶生长工艺具有无需坩埚、无污染、生长快速、易于实时观察晶体生长状态等诸多优点,有利于缩短晶体的研究周期并加快难以生长晶体的研究进展,非常适合晶体生长研究,是目前比较公认的获得优质单晶样品的手段之一,现已被广泛应用于各种超导材料、介电和磁性材料以及其它各种氧化物及金属间化合物的单晶生长。 目前,高熔点、易挥发性材料是浮区法单晶生长领域的技术难点之一。针对于此,德国ScIDre公司研发推出了HKZ系列高温高压光学浮区法单晶炉,设备可提供高达3000℃以上的生长温度,同时晶体生长腔可实现高达300bar的压力,可通过高压手段达到抑制挥发的作用。HKZ的诞生进一步优化了光学浮区法单晶炉的生长工艺条件,拓宽了光学浮区技术的应用场景,使得高熔点、易挥发性材料的单晶生长成为了可能。 图3:德国ScIDre公司HKZ系列高温高压光学浮区法单晶炉德国ScIDre公司HKZ系列高温高压光学浮区法单晶炉技术特色:☛ 采用垂直式光路设计方案,加热更均匀☛ 可同时实现压力高达300bar(选配)和温度高达3000℃(选配);☛ 能够独立控制不同气体的流速和流量,能够实现样品生长的气体定速、定量混合供气;☛ 在保持氙灯输出功率恒定的情况下,采用调节光阑(shutter)的方式对熔区进行控温;☛ 能够针对不同温度需求采用不同功率的氙灯,从而对灯泡进行有效利用,充分发挥灯泡使用效率和寿命;☛ 拥有丰富的功能选件可进行选择和拓展,包括专利熔区红外测温选件、1×10-5mbar的高真空选件、实现氧含量达10-12PPM的气体除杂选件、对长成的单晶可提供高压氧环境退火装置选件等。 图4:高温高压光学浮区法单晶炉光路原理示意图 中国电子科技集团公司第九研究所(西南应用磁学研究所),主要从事磁性功能材料方向的研发、生产和基础研究,是我国磁学领域重要的综合性应用磁学研究机构之一。Quantum Design中国非常荣幸将德国ScIDre公司生产的HKZ高温高压光学浮区法单晶炉安装于中国电子科技集团公司第九研究所,该系统将为用户单位在磁性功能材料及其他新材料探索等诸领域的科研工作提供相关单晶样品制备支持!
  • 新一代高功率激光浮区法单晶炉助力哈尔滨工业大学 极端材料晶体生长实验及相关研究
    Quantum Design公司近期推出了激光浮区法单晶生长系统,该系统传承日本理化研究所(RIKEN,CEMS)的先进设计理念,具有更高功率、更均匀的能量分布和更加稳定的性能,其优越的技术性能将助力同行学者和专家的晶体生长工作!浮区法单晶生长技术因其在晶体生长过程中具有无需坩埚、样品腔压力可控、生长状态便于实时观察等诸多优点,目前已被公认为是获取高质量、大尺寸单晶的重要手段之一。激光浮区法单晶生长系统可广泛应用于凝聚态物理、化学、半导体、光学等多种学科领域相关单晶材料制备,尤其适合端材料(诸如:高饱和蒸汽压、高熔点材料及高热导率材料等),以及常规浮区法单晶炉难以胜任的单晶生长工作!跟传统的激光浮区法单晶生长系统相比,Quantum Design公司推出的新一代激光浮区法单晶炉系统具有以下技术优势:■ 功率更高,能量密度更大,加热效率更高■ 采用技术五路激光设计,确保熔区能量分布更加均匀■ 更加科学的激光光斑优化方案,有助于降低晶体生长过程中的热应力■ 采用了特的实时温度集成控制系统新一代激光浮区法单晶炉系统主要技术参数:加热控制激光束 5束激光功率 2KW熔区高温 ~3000℃*测温范围 900℃~3500℃温度稳定性 +/-1℃晶体生长控制大位移距离 150mm*晶体生长大直径 8mm*晶体生长大速度/转速 300 mm/hour 100rpm晶体生长监控 高清摄像头晶体生长控制 PC控制其它 占地面积 D140 xW210 x H200 (cm)* 具体取决于材料及实验条件哈尔滨工业大学科学工程专项建设指挥部暨空间基础科学研究中心致力于各种高熔点、易挥发的超导、磁性、铁电、热电等材料的单晶生长实验及相关物性研究,近日,我司再次同院校哈尔滨工业大学合作,顺利完成新一代高功率激光浮区法单晶炉设备采购订单,推动单晶生长工作迈向更高的台阶,我们也将一如既往,秉承精益求精的研发、设计和加工理念,为用户提供优质的技术和服务,助力用户科研事业更上一层楼!RIKEN(CEMS)设计的五束激光发生器原型机实物图 采用新一代激光浮区法单晶炉系统生长出的部分单晶体应用案例: Sr2RuO4 SmB6 Ba2Co2Fe12O22Y3Fe5O12 * 以上单晶图片由 Dr. Y. Kaneko (RIKEN CEMS) 提供
  • 多台落户!高温高压光学浮区炉相继落户北京航空航天大学、松山湖新材料实验室及北京师范大学
    众所周知,优质单晶样品是研究材料物理性质的重要条件之一,光学浮区法单晶生长技术因具有无需坩埚、无污染、生长快速、易于实时观察晶体生长状态等诸多优点,还有利于缩短晶体的研究周期加快难以生长晶体的研究进展,非常适合晶体生长,是目前比较公认的获得优质单晶样品的手段之一,现已被广泛应用于各种超导材料、介电、光学、半导体和磁性材料以及其它各种氧化物及金属间化合物的单晶生长。但浮区法单晶技术对于生长高熔点、易挥发性材料非常棘手,德国ScIDre公司推出的HKZ系列高温高压光学浮区炉成功地克服了这一技术难题。HKZ可提供高达3000℃以上的生长温度,晶体生长腔有多种压力规格可供选择,压力可高达300bar。HKZ的诞生进一步优化了光学浮区法单晶生长技术的设计理念,采用垂直式光路设计方案,使得高熔点、易挥发性材料的单晶生长成为了可能。德国ScIDre公司HKZ系列高温高压光学浮区炉具有以下技术特色:能够同时实现高压300bar大气压(选配)和高温3000℃(选配)环境;能够分别独立控制不同气体的流速和流量,能够实现样品生长的气体定速定量混合反应;在保持灯泡输出功率恒定的情况下,采用调节光阑(shutter)的方式对熔区进行控温,从而能够有效延长灯泡使用寿命;拥有丰富的功能选件可进行选择和拓展,包括专利熔区红外测温选件、10-5mbar量级真空度的高级真空选件、实现氧含量达10-12PPM级的气体除杂选件、对长成的单晶可提供高压氧环境退火装置选件。德国ScIDre公司HKZ系列高温高压光学浮区炉设备外观示意图近期,QuantumDesign中国售服团队和德国ScIDre制造商工程师协同工作,相继完成了北京航空航天大学、松山湖新材料实验室及北京师范大学等用户单位的HKZ设备的安装工作,我们期待德国ScIDre公司的HKZ系列高温高压光学浮区法单晶炉能在用户的实验室做出优秀的学术成果!用户简介:北京航空航天大学北京航空航天大学(下文简称:北航)是新中国第一所航空航天高等学府,现隶属于工业和信息化部。学校所在地北京,分为学院路校区、沙河校区(本次HKZ设备安装地点)。建校以来,北航一直是国家重点建设的高校,是全国第一批16所重点高校之一,也是80年代恢复学位制度后全国第一批设立研究生院的22所高校之一,首批进入“211工程”,2001年进入“985工程”,2017年入选国家“双一流”建设高校名单。自2004年以来获得15项国家级科技奖励一等奖、3项国家自然科学二等奖,创造了一所大学连续获国家高等级科技奖的纪录,被社会誉为科技创新的“北航模式”。用户赵侃老师研究方向:强关联量子磁性物质、拓扑磁性物态主要学术成果:1)阻挫磁性:针对以自旋冰为代表阻挫磁性绝缘体中磁交换相互作用强度偏弱的问题,首次在阻挫合金HoAgGe中实现Kagome自旋冰态。2)关联磁性:克服(Ga,Mn)As体系自旋电荷“捆绑”掺杂的局限性,开发自旋和电荷分离注入机制的新型稀磁半导体(Ba,K)(Zn,Mn)2As2。3)铁基超导:针对CaFe2As2塌缩四方相物理本质的争议,澄清相变驱动力为磁性的消失,层间As-As键仅为相变附带产物。4)拓扑物态:确认狄拉克半金属材料BaZnBi2和EuMnSb2,并首次在非共线反铁磁Mn3Ni1&minus xCuxN中实现不依赖于磁矩的拓扑反常霍尔效应(AHE)。(北京航空航天大学安装图片)北京师范大学北京师范大学是教育部直属重点大学,由北京校区(本次HKZ设备安装地点)、珠海校区两个校区(含四个校园)组成,是一所以教师教育、教育科学和文理基础学科为主要特色的著名学府,是中国历史上第一所师范大学。“七五”“八五”期间,北京师范大学被确定为国家首批重点建设的十所大学之一;“九五”期间,被首批列入“211工程”建设计划;“十五”期间,学校进入国家“985工程”建设计划。2017年,学校进入国家“世界一流大学”建设A类名单,11个学科进入国家“世界一流学科”建设名单。2022年,学校12个学科入选第二轮“双一流”建设学科,入选学科数量位居全国高校前列。用户谈国太老师、鲁兴业老师研究方向:关联电子材料的散射谱学主要研究内容:样品生长和表征结合多种实验和表征手段以全面研究新奇关联电子材料的结构、有序相和动力学采用输运、中子散射和共振非弹性X射线散射研究关联电子材料中的量子态/演生序及其相关涨落关注的材料主要包括:铁基和铜氧化物高温超导体、5d过渡族金属氧化物(如铱氧化物)、低维量子磁体、量子自旋液体等等(北京师范大学安装照片)松山湖材料实验室松山湖材料实验室(以下简称“实验室”)坐落于粤港澳大湾区重要节点城市东莞,于2017年12月22日启动建设,2018年4月完成注册,是广东省第一批省实验室之一,布局有前沿科学研究、公共技术平台和大科学装置、创新样板工厂、粤港澳交叉科学中心四大核心板块,探索形成“前沿基础研究→应用基础研究→产业技术研究→产业转化”的全链条创新模式,定位于成为有国际影响力的新材料研发南方基地、国家物质科学研究的重要组成部分、粤港澳交叉开放的新窗口。用户郭汉杰老师研究方向:强关联物理与量子磁性材料相关领域主要研究专长:光学浮区法晶体生长晶体结构及XRD精修磁结构分析中子/X射线散射及μSR(松山湖材料实验室照片)
  • 舌尖上的安全—禾工CT-1Plus电位滴定仪检测食品中二氧化硫含量
    据了解,二氧化硫作为添加剂主要有两个用途,一是用于漂白干果、干菜等;二是具有防腐、抗氧化等功效,能令其延长保质期。少量的二氧化硫进入人体被认为是安全无害的,但超量则会对人体健康造成危害。 国际多个国家和地区二氧化硫的使用限量及残留量均有明确规定,我国相关标准和法规明确了可以使用二氧化硫的食品类别及相应的使用限量和残留量,还制定了食品添加剂二氧化硫的质量规格要求,并要求只要在食品中使用了二氧化硫就必须在食品标签上进行标识。  那么,面对严格的国标和法规我们该如何对这些二氧化硫超标的食品,进行检测呢?CT-1Plus电位滴定法具有简便、快速、准确、灵敏度高等优点,在食品检测中应用广泛。由于二氧化硫浓度较低,终点颜色判断存在较大误差,而电位滴定仪依据电位突跃来判断终点,灵敏度显著高于手工滴定,并且避免人为因素,检测的重现性也显著提高。
  • 三会场交相辉映,热分析大放异彩——2018年热分析技术及应用研讨会分会报告摘录
    p  strong仪器信息网讯/strong 由北京理化分析测试技术学会热分析专业委员会和江苏省分析测试协会热分析专业委员会主办,江苏省分析测试协会协办的strong2018年热分析技术及应用研讨会/strong于2018年10月13-14日在无锡举办。大会共设置span style="color: rgb(255, 0, 0) "strong材料、溶液、仪器/strong/span三个主题的分会场,分会报告围绕热分析方法在对应主题研究领域的应用展开了讨论。诸位专家各显神通,精彩内容层出叠现,请随仪器信息网编辑走进会场,一同领略报告学者的卓越风采吧!br//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/6639c63b-3ce4-4edb-989c-0da0f4b1402a.jpg" title="分会场.png" alt="分会场.png" width="500" height="686" border="0" vspace="0" style="width: 500px height: 686px "//pp style="text-align: center "strong分会现场/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/6d67c514-36ac-4e18-a73d-2792e19a1442.jpg" title="张建军.jpg" alt="张建军.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong河北师范大学教授 张建军br//strong/pp style="text-align: center "strong报告题目:《稀土功能配合物的晶体结构、荧光及热化学性质的研究》/strong/pp  材料的使用寿命和产品的保质稳定期,可以通过研究物质的热分解反应动力学,进而得到配合物反应进度与时间、温度间的关系来进行预测。摩尔热容的测量可用于研究物质的微观结构和机理,在合成工艺设计、热量计算和燃烧机理的研究中具有重要意义。课题组合成了两种稀土芳香羧酸配合物[Eu(3,4-DMBA)sub3/sub(3,4-DMHBA)(5,5’-DM-2,2’-bipy)]sub2/sub与[Tbsub2/sub(3,4-DMBA)sub6/sub(5,5’-DM-2,2’-bipy)sub2/sub(Hsub2/subO)],并采用荧光光谱、TG-DTG/DSC及其与红外联用的方法,对合成的19种配合物进行了分析表征,表明:其共显示出四种不同类型的晶体结构 配合物具有良好的热稳定性,在升温过程中,中性配体倾向于首先失去,配体分解为脂肪族有机物和COsub2/sub、Hsub2/subO等气态小分子,最终产物生成金属氧化物 摩尔热容测量结果显示配合物热力学性质稳定、没有相变或其它任何热异常现象发生,比较了两种配合物1[Pr(III)]和7[Dy(III)]的摩尔热容,发现结构相同的两种配合物的热容值相近,故具有相近的分子间振动能。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/436a5760-26c7-4559-bd65-f48e1dfc01d2.jpg" title="李晓萌.jpg" alt="李晓萌.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong北京理工大学教授 李晓萌/strong/pp style="text-align: center "strong报告题目:《非等温DSC法研究三唑交联体系固化动力学》/strong/pp  固体推进剂体系常见的为端羟基聚丁二烯(HTPB),其具有力学性能好、粘度低、固含高、成本低等优点。粘合剂采用羟基(-OH)与异氰酸酯基(-NCO)发生反应生成氨基甲酸酯键,-NCO反应活性高,对水敏感,与水反应会生成脲键,并放出COsub2/sub,易产生气泡,氨基甲酸酯键的耐水性也有限,且新型高能氧化剂二硝酰胺铵(ADN)、硝仿肼(HNF)与异氰酸酯基相容性差。叠氮(-Nsub3/sub)和炔基(-C≡CH)的反应在很多领域应用很广,在推进剂领域具有不受水分影响,可提高固化产物弹性体中的氮含量,并有望在室温下固化的优势。首先将HTPB进行修饰得到PTPB,再合成两种叠氮固化剂,Nsub3/sub-III(三官能度)和=Nsub3/sub-II(二官能度),通过一价铜的催化来实现固化反应。之后以力学性能为判据确定了一款合成配方,并使用非等温DSC法研究了该体系的固化动力学机理。由基辛格(Kissinger)方程结合阿仑尼乌斯(Arrenius)方程,求得表观活化能Ea和指前因子A 由DSC曲线峰形指数得到n,即可预测任意温度条件下的等温固化曲线。最后得到结论PTE-0.1体系在30℃条件下,30h内即可达到98%的固化度。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/77001e80-e236-43f5-9c96-0e13f8a2ca49.jpg" title="章斐.jpg" alt="章斐.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong北京大学高级工程师 章斐/strong/pp style="text-align: center "strong报告题目:《热分析测试结果(TG、DSC)的研究性分析方法—从测试人员角度》/strong/pp  热分析测试结果是否能反馈待测样品性质的真实信息?这是一个常被人忽略的问题。受到源自仪器、环境、样品、检测原理等因素的影响,常常出现测试数据不能反映真正实验结果的现象。如何获得准确、真实的测试结果?这需要在状态合格的仪器设备上,排除与样品及非样品相关因素的干扰。热重实验中样品质量W与仪器升温速率间不具有函数关系,升温程序的改变不会使热重曲线发生变动,这是由热重分析仪中热天平和升温炉体单独测量物理量的特性所决定。测试环境中的外力震动、气路波动、天平失稳等因素,以及测试样品发生晶粒跳溅、飞离坩埚、剧烈分解、试样熔融、露出坩埚、试样膨胀等行为对样品台压力产生的变化,均会导致测试结果的失真,实验者应当从热分析曲线中识别这种现象,并重新进行测试。DSC测试中随升降温速率的设置不同会对实验结果产生不同程度的影响,这其中可能存在电源干扰、静电释放以及其它高频干扰源的影响 试样在坩埚内的气泡产生、出离坩埚等情况也是影响因素之一,因此样品制备过程显得十分重要。这些都是实验中应该辨别和避免的现象。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/4b0e6935-0d3a-4375-a2c3-7dce7bc4f20d.jpg" title="邹涛.jpg" alt="邹涛.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong北京市理化分析测试中心副研究员 邹涛/strong/pp style="text-align: center "strong报告题目:《热分析检测中的质量控制》/strong/pp  检测机构实验室质量控制,涵盖人机料法环五大要素,设备状态在整个环节中起到十分关键的作用。对设备应怎样做好质量控制工作?仪器设备通过验收后,处于整个控制流程的起步阶段,仪器经过检定或自检,就可以进行日常的检测活动。一次检定显然不能终身能用,因此会通过仪器的期间核查,来不断考察仪器的工作状态。核查的方式有:实验室内部人员比对、不同仪器比对、标物核查以及留样再测,但最好的方式还是进行实验室间比对,例如组织数家实验室进行实验数据的考核,以及参加能力验证。仪器设备验收主要是对关键测试指进行考核,如对热膨胀仪进行验收,通过采用标样对相对伸长量,平均膨胀系数等关键指标的偏差,与文献值还有实验数据进行比对,以确保仪器的可用性。仪器设备优先进行检定,条件不足的须要溯源到标准物质,再次之则要求检验检测机构保留与原检测结果相关性或准确性的凭证,即参加验证。在仪器检定、自检程序完成之后,需要对仪器设备的性能指标、检定完毕的仪器状态,同国标、ASTM、IOS等标准对仪器设备的要求是否匹配进行确认,也是必须做的工作内容。所有确认工作完成之后,方可对外进行一般性的检测服务。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/25d0aa22-21bd-4e74-ab4f-331a8c6626fd.jpg" title="苍飞飞.jpg" alt="苍飞飞.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong北京橡胶工业研究设计院 国家橡胶轮胎质量监督检验中心 北京橡院橡胶轮胎检测技术服务有限公司高级工程师 苍飞飞/strong/pp style="text-align: center "strong报告题目:《热分析技术在橡胶测试中的应用研究》/strong/pp  天然橡胶是从三叶橡胶树中收集到白色胶体,再加入固化剂经过烘干所制成 合成橡胶是人工合成的橡胶,具有线性高分子、支链高分子、体型高分子几类分子结构。它们的分子量均较大,天然橡胶分子量可达到百万级,合成橡胶也在十几万量级以上。天然橡胶在其分子链段方向具有弹性,在链段垂直方向不具有弹性,因此不可直接使用 通过在其中混入硫磺,经过高温高压加工工艺可形成C-S-C键的网络结构,即可制备出像轮胎、橡胶圈、奶嘴、密封胶条等橡胶制品。天然橡胶制成硫化胶以后,想要再制成再生胶,需要将橡胶链段进行解段,形成一些小的自由基体,其中最难解段的是C-C链段,也是制备再生胶最为困难的部分。当前我国对资源再利用十分关切,并不断加大这一领域的利用度。我国废旧轮胎产量居世界首位,并以每年8%~10%的速度急剧增加,至2020年可达2000万吨,这为再生胶的生产提供了充足的原料。再生胶可用于汽车部件、飞机跑道、枕木、塑胶跑道等产品的制造。氟醚橡胶因其耐热、耐油、耐氧化、耐化学品等优异性能,被广泛应用汽车、电子、航天、船舶等领域高精度、耐高温、高耐磨、条件苛刻的工业环境中。醚键支链的存在进一步破坏了碳主链结构的规整度,降低了其结晶能力、增大了分子链链段活动能力,同时随着柔性支链取代基的增大,使分子堆更加松散,其链段活动能力进一步增强。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/de78ab66-4bce-490f-bab9-793815fd66a2.jpg" title="张武寿.jpg" alt="张武寿.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong中国科学院化学研究所副研究员 张武寿br//strong/pp style="text-align: center "strong报告题目:《高灵敏大体积塞贝克型量热计的研制及其应用》/strong/pp  传统的Calvet型微量热仪的代表型号有TA仪器的TAM和塞塔拉姆(SETARAM)的C-80 大体积量热计目前在二次电池领域有一定需求,代表型号有热安(THT)的IAC与耐驰(NETZSCH)的IBC 284 SETARAM的LVC-1380-3W可应用于核废料的量热中 应用于化工中试的大体积量热计有SETARAM的DRC和梅特勒(METLLER)的RC1 此外大体积量热计还可应用于相变储能材料、大型样品的热容量,大型工件的热含量,冷聚变,以及人体新陈代谢热量的测定。报告中还介绍了课题组开发的Seebeck型大体积量热计的原理、结构、样机参数以及应用。大体积、高功率热量计可用于动力电池、相变建筑材料等任意大体积样品的热容量测量,有机反应热量测量,冷聚变能量测量等。大体积Seebeck型量热计仍存在热噪声、温度噪声、热分布误差(HDE)、测量时间长等问题,但已开发出了对应的降噪方法,与Calvet法相比在设计原理、降噪方法、参考池、浴槽温度、卷积核等方面具有一定特色。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/55ab44f5-d4ff-46d3-ba72-a648255a9ec0.jpg" title="解凤霞.jpg" alt="解凤霞.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong西安工程大学副教授 解凤霞/strong/pp style="text-align: center "strong报告题目:《原位微量热法研究[Cusub2/sub(Csub21/subHsub9/subOsub4/subN)sub2/subHsub2/subO]subn/sub单晶的生长过程》/strong/pp  报告从四个方面对[Cusub2/sub(Csub21/subHsub9/subOsub4/subN)sub2/subHsub2/subO]subn/subMOF单晶进行了研究:从MOF单晶生长过程的热谱图进行热动力学方法分析,计算出活化能与指前因子 通过MOF单晶的TG曲线及XRD衍射图谱,得出其具有三维孔洞网络结构 吸附试验结果表明MOF对Nsub2/sub、COsub2/sub、CHsub4/sub气体的吸附程度不同,具有选择性差异,且室温下表现的更为明显,并利用理想溶液吸附理论(IAST-Ideal Adsorbed Solution Theory)预测了多组分气体的吸附行为,较高的选择吸附比归因于MOF结构中出去配位水分子所生成的裸露金属位点,其与COsub2/sub具有强作用力 MOF对气体的吸附热力学分析利用virial II方程对等温吸附曲线的计算结果,表明MOF与COsub2/sub分子间也存在较强作用力。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/af09ec8f-aa5d-44a8-8401-fd9ce6b98fd0.jpg" title="张箭.jpg" alt="张箭.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong中国科学院大连化学物理研究所副研究员 张箭/strong/pp style="text-align: center "strong报告题目:《新型氧化剂二硝酰胺铵ADN的热行为研究》/strong/pp  固体推进剂作为战略、战术等固体发动机的动力源,一直以来都是航天航空技术的核心内容之一,我国主要采用肼催化分解技术来进行研究。复合固体推进剂由氧化剂(高氯酸铵)、粘合剂、金属燃料等组成,其中氧化剂约占推进剂总质量的60~85%。为了克服高氯酸铵(AP,NHsub4/subClOsub4/sub)能量低、特征信号强、污染环境等问题,固体推进剂的研究和开发方向正朝着高能、低特征信号、洁净、钝感而发展。而新型氧化剂二硝酰胺铵ADN被视作最有希望替代已广泛使用的AP氧化剂。国内外在ADN的研究进度有一定差距,我国的ADN仍未达到应用水准,还存在许多瓶颈问题。通过固体ADN球形化改性可改善其加工性能、降低表面缺陷。常见的几种稳定剂由于能量偏低,会降低推进剂的能量,因此通过氨基保护、硝化、脱保护三步骤合成二硝基苯二胺稳定剂,加入后使ADN的分解温度显著提高。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/c1c0b095-3bb4-49f4-a757-dc534fcf9e58.jpg" title="史学星.jpg" alt="史学星.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong首钢集团有限公司技术研究院高级工程师 史学星/strong/pp style="text-align: center "strong报告题目:《热分析在钢铁材料研究中的应用》/strong/pp  同步热分析仪和热膨胀仪在钢铁材料的研究中应用广泛,可测定钢铁的多项物理性能指标。钢的固、液相线温度是连铸生产中确定浇注温度以及研究钢液凝固过程的重要的工艺参数。浇注温度过高会导致铸坯坯壳薄并进而引起开浇溢钢或冻结。因此,须根据各钢种的凝固特点,执行相应的浇注温度控制制度。准确获得钢的固、液相线温度可提供一种最佳的低过热度的浇注操作,从而保证得到细晶粒组织以及高质量连铸坯。测定钢的固、液相线温度方法较少,仅有的YS/T533-2006方法标准已不适用于其测定,传统的计算模型或公式也已不能满足Ni系低温钢、中高锰钢和电工钢等特殊新钢种的实际生产指导需要,开发快速准确测定钢固液相线温度测量方法迫在眉睫。氧化脱碳是钢铁材料在热加工过程中的常见问题,其控制对弹簧钢、钢帘线、冷镦钢等线棒材的生产十分重要。目前气氛加热炉模拟法操作复杂、效率低、成本高,也迫切需要开发一种快捷的模拟方法。通过对现有同步热分析仪设备的气路改造,以不同的实验气氛条件模拟不同工艺,并全程采集热分析曲线及测量铁皮厚度和脱碳层深度,成功开发出一种新的钢材氧化脱碳模拟方法,拓宽了同步热分析仪的应用范围。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/1c99acc0-962b-4bdc-9132-b3376798bb10.jpg" title="李照磊.jpg" alt="李照磊.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong江苏科技大学讲师 李照磊/strong/pp style="text-align: center "strong报告题目:《聚乳酸外消旋共混物结晶行为的热分析研究》/strong/pp  聚乳酸PLA具有左旋与右旋两种构象,聚乳酸外消旋共混物由二者混合所得。立构复合晶相比均质晶具有更高的熔点和更优异的力学性能,这吸引越来越多的学者对其进行研究。使用常规DSC手段分析平衡熔点在立构复合晶与均质晶熔点差异来源中的作用,表明平衡熔点的差异仅为导致二者熔点差异的部分原因。并使用Flash DSC结合显微红外技术,研究不同温度条件下PLA外消旋共混物中氢键的形成对SC/HC竞争生长行为的影响,PLA外消旋共混物中形成的氢键可能是立构复合晶的成因。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/c6254e91-861b-4141-a812-9c69e19823fe.jpg" title="白云.jpg" alt="白云.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong北京市理化分析测试中心副研究员 白云/strong/pp style="text-align: center "strong报告题目:《热重-红外-质谱联用系统在气凝胶隔热板中的应用》/strong/pp  溶胶或溶液中的胶体粒子或高分子在一定条件下互相连接,形成空间网状结构,结构空隙中充满了作为分散介质的液体,这样一种特殊的分散体系称作凝胶。当凝胶脱去大部分溶剂,使凝胶中液体含量比固体含量少得多,或凝胶的空间网状结构中充满的介质是气体,外表呈固体状,即分散介质为气体的凝胶材料成为气凝胶,这是由胶体粒子或高聚物分子相互聚集构成的一种具有网络结构的纳米多孔性固体材料,其固体相和孔隙结构均为纳米量级。SiOsub2/sub气凝胶具有极低的热导率、超轻质、高热稳定性等特性,使其在工业、民用、建筑、航天及军事等领域具有非常广泛的应用。对气凝胶隔热板的热重分析结果可用于判定产品质量 与质谱联用实验观测到明显的水分子离子峰,表明气凝胶中硅羟基缩合生成水 与红外光谱仪联用实验谱图中峰,表明有机化合物气体的逸出。该检测技术已被航天系统采用,并作为气凝胶隔热材料产品的质量控制方法。/ppbr//ppspan style="color: rgb(38, 38, 38) "a href="https://www.instrument.com.cn/news/20181014/472856.shtml" target="_blank" style="white-space: normal "相关资讯:《金秋十月,太湖之滨,群英荟萃,共襄盛举—2018年热分析技术及应用研讨会隆重召开》/a/span/ppa href="https://www.instrument.com.cn/news/20181016/473063.shtml" target="_blank" style="white-space: normal "相关资讯:《戊戌深秋意难忘 己亥季夏再相会——2018年热分析技术及应用研讨会圆满落幕》/a/ppa href="https://www.instrument.com.cn/news/20181019/473349.shtml" target="_blank"相关资讯:《热分析群雄聚首论道——仪器厂商助力热分析研究领域高质量发展》/abr/br//p
  • 戏说纵向加热石墨炉(收官之作)
    前 言:  自从70年代起其至今,我使用过好几款仪器的石墨炉,如:PE403,PE5000,PE3010,GGX-3,180-80,Z-8000,Z-5000,Z-2000,ZA3000等。凑巧的是,上述仪器的石墨炉全部是纵向加热类型的。为了活跃论坛这个&ldquo 草根&rdquo 平台,我就将这些年对纵向加热型石墨炉的认识和体会展现给版友。  遗憾的是,一来本人的理论水平有限,二来有关石墨炉的文献与论文,从60年代的石墨炉鼻祖利沃夫和马斯曼起,一直到目前的国内外众多的原吸大咖止,比比皆是,令人目不暇接,且全部是正说。因此,如果我也采用&ldquo 正说&rdquo 石墨炉的形式,则深感力不从心,故只能&ldquo 戏说&rdquo 了,望大家见谅!  (一)纵向石墨炉的历史:  1959年,前苏联科学家利沃夫(L,vov)设计出了石墨炉坩埚原子化器。  1967年,德国学者马斯曼(H.Massmann)从利沃夫的石墨原子化器得到灵感,设计出电热石墨炉并于1970年被PE公司应用到商品原吸仪器上。  由于马斯曼设计的纵向电加热石墨炉首次成为商品仪器,所以之后有人就将这种纵向加热结构的石墨炉称之为&ldquo 马斯曼炉&rdquo ,以示纪念。  (二)纵向石墨管的结构:  首先要搞清楚何为&ldquo 纵向&rdquo ?所谓的纵向就是指作用在石墨管上的加热电流I的流通方向与通过石墨管光轴的方向一致。见图-1 所示:  图-1 纵向加热石墨炉示意图  纵向加热石墨炉的整体外观和结构示意以及实体分解如图-2,3,4所示:  图-2 纵向石墨炉外观图(Z-2000)  图-3 纵向石墨炉结构示意图  图-4 纵向石墨炉实体分解图(Z-2000)  从图-3 和图-4 可以看出,纵向石墨炉主要是由:石墨管,石墨环,电极和石英窗组成。  由于纵向石墨炉问世最早,结构相对简单,石墨管加工的一致性好且成本低廉,加之技术成熟,所以该类型的石墨炉应用较为广泛 目前国内外的原子吸收光度计的生产厂家绝大部分仍然采用的是该类型的石墨炉。  (三)纵向石墨管的种类:  无论是纵向石墨炉还是横向石墨炉,最终做热功的还是石墨管 为此有必要介绍一下纵向石墨管的种类和特点。图-5 所示的就是一部分纵向加热的石墨管的外观图。  图-5 形形色色的纵向石墨管  不知大家注意没有,在上图中最右侧的那个&ldquo 高大上&rdquo 的石墨管,就是我在70年代时使用过的美国PE-403型原子吸收分光光度计中石墨炉上的石墨管,可惜当时没有想起要保存下一只该管子的实物作为留念,不能不说是一件憾事!  (1)筒形石墨管:  纵向加热石墨炉从问世开始(以PE公司原吸为代表),石墨管就是筒形的,直至目前许多国内外仪器生产厂家例如:PE公司,热电公司,瓦里安公司,GBC公司的部分型号的仪器仍然使用着这种石墨管。如下面所示:  图-6 几种进口仪器使用的筒形石墨管  最早的传统筒形石墨管有一个弱点,那就是:由于管子的管壁厚度一致,也就是管子整体的任何一个部位的电阻值是均匀的,所以当石墨管通电加热时,理论上管子的整体的温度应该是均匀一致的才对。这种石墨管的剖面图如下:  图-7 传统筒形石墨管的剖面图  可是遗憾的是,由于纵向石墨管两端紧贴着两个质量很大的石墨环和电极之故(见图-4),所以在原子化加热开始的瞬间,石墨管两端的温度就会因为石墨环和电极的热传导作用而低于石墨管的中央部分的温度 其后经过暂短的时间后(约零点几秒),管子整体才会达到热平衡。这,就是在许多资料中所经常被垢病的&ldquo 温度梯度&rdquo 现象。  为了克服这种&ldquo 温度梯度&rdquo 的弊端,于是后人们便产生了提高筒形石墨管两端电阻值的设想。这样原来的一个阻值均匀的石墨管整体R就会被等效看做为三个串联的单体,即(R左R中   那么如何提高筒形石墨管两端的电阻值呢?方法只有一个,那就是减少管子两端管壁的厚度。我们在初中物理学到过,一个导电体的截面积与其电阻值成反比。所以减少石墨管两端管壁的厚度就可以提高电阻值。但是要想减少管子两端管壁的厚度,却不能通过将管子外径切削变薄来实现 其原因是:石墨管两端还要保持与石墨环大面积的紧密接触才能减少热损耗。所以即要想提高电阻又要保持管子与石墨环的紧密接触,那只能在管子的内壁上做文章。具体的做法是:用车刀在管子内壁两端刻上几刀沟槽,这样既不影响管子与石墨环的接触也可以提高了两端的电阻值了,可谓一举两得。其示意图和实体图见图-8和图-9 所示:  图-8 改良后的筒形石墨管示意图  图-9 改良后的筒形石墨管剖面实体图  (2)鼓形石墨管:  改良型石墨管尽管缩短了管子整体的热平衡时间,但是效果还是不太理想。于是有的仪器厂家就设想:如果让纵向石墨管中央放置样品的部位先行到达原子化温度不就可以忽略石墨环的散热影响了吗?要想做到这一点,就要从改良型筒形石墨管做反向思维了 那就是让石墨管的三部分变为(R左R右)了,于是乎,鼓形石墨管则应运而生了 其外观如下次:  图-10 鼓形石墨管外观  看到上面的鼓形石墨管,也许有人会问:这种石墨管的外径中间粗(8mm)两端细(7mm),如果依照前面导体的截面积与电阻成反比的定律,那么此管子的中央部位外径比两端的要粗1mm,其截面积一定大啊!按道理应该中间部位的电阻要小于两端才对,怎么反而说比两端的阻值要大呢?  下面我将此类管子的实际剖面图展现出来,大家就一目了然了,见图-11所示:  图-11 鼓形石墨管的剖面实例图  从上面的照片可以看到,尽管鼓形管的中间外径较两端大1毫米,但是其管壁厚度却小于两端的厚度,两者之差为(2mm-1.5mm)=0.5mm 千万别小看了这区区的0.5毫米的厚度,他却使石墨管中央部分的截面积整整小了约1/4。这样的差别,就会使该管子在原子化加热的瞬间,其中间部位迅速到达预设的原子化温度。如果用肉眼从石墨炉上盖的进样孔观察石墨管的升温状态就会发现这一过程 如图-12,13所示:  图-12 鼓形石墨管在原子化阶段升温瞬间的状态  图-13 鼓形石墨管在原子化阶段迅速达到平衡的状态  从上面两张照片图可以清晰地看到,鼓形石墨管在原子化开始的瞬间的确是从中央部位先行到达预设的原子化温度的,然后再向两端迅速延伸直至达到整体的热平衡,而这个平衡时间是非常短暂的。目前此类型石墨管主要是应用在岛津和日立的原吸上面。  此外这种鼓形石墨管还有一个优点,那就是管子中间的凹陷部位注入样品后液体不会向两端扩散 这样就保证了全部样品集中在温度最高的区域,有利于原子化。  (3)异形石墨管:  这类石墨管主要是喇叭型和哑铃型两类 由于目前几乎难以见到,故不再赘述。  (4)双进样孔鼓型石墨管:  这是一种新型的石墨管,其特点是:石墨管中央注入样品的部位被分割为两个空间 这样设计的目的是可以加大进样量,对低含量的样品起到了一个富集的效果 但是采用这种石墨管的仪器对自动进样器的精度要求是很高的,目前为止,这种双孔进样方式只有日立ZA3000型原子吸收上采用 而在横向加热石墨管上是不能实现的。该型管子的外观图和剖面图如下所示:  图-14 双孔石墨管的外观图 图-15 双孔石墨管剖面图  (5)平台石墨管:  此类石墨管就是在管子的中央安放一个悬浮的石墨平台,样品加注在平台上以完成原子化过程。平台石墨管的设计理念就是实现石墨炉分析鼻祖B.V.L&rsquo vov提出的&ldquo 恒温原子化&rdquo 的理念而问世的。该石墨管的剖面图如下:  图-16 平台石墨管  (四)纵向石墨炉的特点:  (1)升温速率:  众所周知,无论石墨炉是何种形式的,其最终做功而产生的焦耳热的关键部件是由石墨管来完成的。而影响石墨炉灵敏度和重现性的一个重要的因素则是:升温程序由灰化阶段转为原子化阶段瞬间的升温速率的快慢。  为何这个转换速率对分析的灵敏度的影响是那样大呢?其实原因很简单:当样品完成灰化步骤后,石墨管由灰化阶跃到原子化阶段的时间越短(即升温速率快)样品产生的基态原子数目越多,自然检测到的信号就越强。反之,如果石墨管升温速率慢的话,一部分样品在还未形成基态原子前就会被载气吹跑掉了,自然灵敏度就下降了。这也就是为何石墨炉在原子化阶段采取停止载气的做法的缘由 任何事物都是一分为二的,虽然可以通过停止载气来提高检测信号的灵敏度,但是样品信号的背景值也会随之加大了,熊掌鱼翅不可兼得。  那么影响石墨管升温速率的因素又是什么呢?答案是:石墨管本身的质量的大小 在同等的升温条件下,质量越小升温速率越快。举一个试验例子:如果将一个大铁球和一个小铁球同时放到火炉中,哪一个先红?毋庸置疑,还是小铁球先红(即达到热平衡早),我想这个试验结果大家均会给予认可的。目前的纵向石墨管无论是筒形的还是鼓形的其质量均在1克左右 见下表-1:  表-1  而横向石墨管的质量均比纵向石墨管大的多,一般在2.5~5.4克之间,见下表-2:  表-2  对于横向加热的石墨管而言,由于其本身的质量大于纵向石墨管,所以实际上更加注意升温速率的问题 这些石墨管的设计理念与纵向鼓形石墨管的设计如出一辙,其结构也是中央管壁薄两端管壁厚,从而造成管子整体中央电阻值大二两端小,并且这个厚薄的差异较纵向鼓形石墨管还要明显,远远大于0.5mm。见下图所示:  图-17 PE公司横向石墨管剖面图  图-18 Jena公司横向石墨管侧面图  图-19 GBC公司横向石墨管侧面图  所以,在升温速率上:从整体来看纵向石墨管优于横向石墨管(质量不同) 从局部来看二者接近(使用空间一样)。  (2)温度梯度:  自从纵向加热石墨炉问世以来,关于石墨管整个腔体内空间的温度梯度问题一直就是一个饱受诟病的争论焦点。为此,石墨炉分析鼻祖利沃夫(L,vov)先生就提出了一个&ldquo 恒温原子化&rdquo 的理念。大家熟悉的平台石墨管就是出于这个目的而研发出来的。  前面已经讲到,由于纵向石墨管两端存在石墨环和水冷电极的散热作用,故在原子化的瞬间致使管子的整体产生了一个两端低,中间高的&ldquo 温度梯度&rdquo 现象 这是一个不争的事实。  但是经过了一个暂短的时间后,石墨管会立即达到热平衡了。见下图所示:  图-20 筒形石墨管原子化阶段的升温模型  图-21 鼓形石墨管原子化阶段的升温模型  从上面的两张图的比较可以看出,鼓形管由于中间部分的温度高,故其升温速率要稍高于筒形管。  那么,横向加热的石墨管的究竟有没有&ldquo 温度梯度&rdquo 呢?见下模型图:  图-22 横向石墨炉工作原理  图-23 横向石墨管原子化阶段的升温模型  从图-22,23可以看出,横向石墨管在与电极接触的上下两端,同样也存在水冷电极的散热效应,所以对于横向石墨管整体而言同样也存在着温度梯度,只不过是在光轴通过的区域没有温度梯度罢了。因此纵向与横向石墨管的温度梯度的区别是:从整体来看,二者均有,仅是部位不同 从光轴观察空间来看,在原子化的瞬间,横向石墨管优于纵向石墨管 但是管子温度到达平衡后,二者相差无几了。既然横向石墨管的中间部位没有温度梯度的弊端,但是目前有些横向石墨管(例如PE的)仍然采用平台式的,这是为什么?  现在的问题关键是,纵向石墨管在原子化的瞬间,管子整体确实存在着温度梯度,这是一个无可争辩的事实。这个过程可用下面的模型图来说明:  图-24 鼓形石墨管原子化瞬间的升温模型图  通过上面的模型图不难看出几点:  1)在原子化瞬间鼓形管的确存在温度梯度,并且鼓形管的中央已经先行到达了预设的原子化温度(参看图-12)。  2)当石墨管整体温度到达平衡后,两端与石墨环接触的狭小部位的温度严格地讲要略低于整体的温度,这是因为石墨环的电阻要小于石墨管,因此在做功时其温度肯定比石墨管低,但是却要比水冷电极的温度高多了 由此看来,石墨环在这里不仅仅起到加持石墨管的作用,另一个不可忽略的作用就是:在石墨管和电极之间起到一个温度缓冲的隔离作用 如此就可将石墨管两端的温度梯度的影响降到了最小的程度。  3)鼓形石墨管的容积约600微升,而样品为20微升,仅占总容积的1/30,且位居管子中部。我的疑问:管子两端瞬时的温度梯度能对管子中央部位的20微升的样品产生多大的影响?我想这可能就如同地球一样,尽管南北两极温度很低,但是生活在赤道的居民没有感到寒冷吧?  4)当鼓形石墨管温度平衡后与横向加热石墨管的状态所差无几(参看图-13)。  5)石墨环的质量越小,温度梯度的影响也就越小。  6)石墨炉电路采用温控方式可以减少温度梯度的影响。  (3)零点漂移:  纵向石墨管从室温升高至3000° 时,管子本身因热涨的原因会延伸1毫米。由于纵向石墨管的延伸方向与光轴呈现同心圆的状态,所以尽管子受热膨胀,但是不会因物理挡光而使零点信号漂移。这个状态可由下图模型说明:  图-25 纵向石墨管受热膨胀方向与光轴的关系  但是当横向石墨管在受热膨胀时,其延伸方向会与光轴方向形成正交,从而影响了零点的位移。所以经常听到使用横向加热石墨炉的用户反映:&ldquo 为何我的石墨炉在空烧时会产生一个很大的吸收啊?&rdquo 其原因就在于此。这种横向石墨管在加热时的位移模型图如下所示:  图-26 横向石墨管受热膨胀方向与光轴方向的正交关系  实际上,这种石墨管膨胀方向与光轴形成正交的结果还不仅仅是零点的漂移的问题,因为石墨管在原子化阶段,管腔里面的待测元素和背景的活动非常复杂,据说要用量子力学来解释。正因如此,一直以来许多科学大咖对这个课题的研究从未停止过。  (五)纵向石墨管的加工和价格:  通过前面的介绍可以看到,无论是筒形的和鼓形的石墨管,均是圆桶形的 因此加工起来就非常简单了,仅仅使用车床切削即可 并且由于加工工序简单,所以加工出来的成品的同一性,如尺寸,质量等就很容易保证,所以价格低廉。  而横向石墨管又别称&ldquo 异形石墨管&rdquo ,所以加工起来就相对复杂多了,需要好几道工序,如PE800的石墨管,不但要切削,还要大量的铣床工序,这可以从下图的外观造型上得到印证,所以其价格较为昂贵就在所难免啦!  图-27 PE800石墨管  备 注:  (1)由于本文为&ldquo 戏说&rdquo ,可能难免有些观点不严谨或不科学,那么各位看官就权且当做饭后茶余的消遣罢了 不妥之处,尽可莞尔一笑。  (2)由于本文仅仅是谈谈个人多年来对于自己使用的纵向石墨炉的体会和看法,之所以例举了横向石墨炉的一些特点,也仅仅是为了做对比说明,仅此而已,并无丝毫褒贬和厚此薄彼之意,特此说明。
  • 超高品质单晶生长!高温可达3000℃,可胜任高熔点、高挥发性材料制备的高性能激光浮区法单晶炉LFZ
    激光浮区技术(LFZ),在过去的几十年里,作为一种简单、快速、无需坩埚的生长高质量单晶材料的方法,在高熔点材料的单晶生长领域取得进展。 LFZ与常规光学浮区技术OFZ大的区别是用于加热和熔化的光辐照源不同。OFZ通常是使用椭球镜将卤素灯或者氙灯光源聚焦到生长棒来实现晶体生长。LFZ则是采用激光作为加热光源进行晶体生长,由于激光光束具有能量密度高的特点,因此可实现高饱和蒸汽压、高熔点材料及高热导率材料等常规浮区法单晶炉难以胜任的单晶生长工作。 随着技术的不断迭代,2020年Quantum Design Japan公司和日本理化研究所Yoshio Kaneko教授密切合作,联合设计开发了新一代高性能激光浮区法单晶炉LFZ,该系统采用了5束激光光路的设计方案,保证了激光辐照强度均匀分布在原材料的环向外围,并提供高功率分别为1.5 kW和2 kW两种规格的系统。此外,在新一代高性能激光浮区炉LFZ的光路设计中,采用了Yoshio Kaneko教授的温度梯度优化设计,能有助于改善晶体生长过程中的剩余热应变弛豫;除此之外,该系统还采用了Yoshio Kaneko教授的温度反馈控制闭环设计方案,实现了温度的实时监控与自动调节。实例讲解:1. 磁性材料Bi2CuO4 传统的磁性记忆合金依赖于双磁态,如铁磁体的自旋向上、自旋向下两种状态。增加磁态数量,且采用无杂散场的反铁磁材料,有望实现更高容量存储。近一篇发表于Nature Communications期刊题为Visualizing rotation and reversal of the Néel vector through antiferromagnetic trichroism的工作表明磁电共线反铁磁Bi2CuO4中不仅具有四个稳定的Néel矢量方向,还存在引人注目的反铁磁三色现象,即在可见光范围内的磁电效应使得吸收系数随光传播矢量和Néel矢量之间的角度变化而取三个离散值。利用这种反铁磁三色性,该工作可实现可视化的场驱动Néel矢量的旋转甚至反转[1],为电场调控和光学读取的高密度存储器设计提供可能性。 在该篇工作中看,磁性材料Bi2CuO4的制备使用了Quantum Design LFZ1A 激光浮区法单晶炉。该材料表面张力较低,熔融区难以控制,早期研究多采用较快的生长速度,但生长速度过快往往会导致微裂隙的存在而影响样品品质。在此,利用LFZ1A,通过精细调节生长条件,实现了高质量单晶的生长,从而实现了更精细的磁电性质测量。 在晶体生长的初几个小时,为稳定熔融区域,激光电流手动调节在26.9 - 27.4 A范围,随后,便可以切换到自动恒温模式下,生长速度控制在2.0 mmh-1,进料棒和籽晶棒反向旋转10 rpm,实现晶体的超过24 h的稳定生长,而不需要其他的手动操作。晶体生长在流动的纯氧气氛中进行。图1. Bi2CuO4的磁性测量。SQUID面内面外磁化率的测量都表明材料是TN=44K发生了反铁磁转变。单晶棒非常容易从Z平面解理开,插图显示解理面非常光亮,表明了样品的质量很高[1]。 2. 烧绿石Nd2Mo2O7 烧绿石Nd2Mo2O7中,Mo子晶格呈现出自旋倾斜、近乎共线铁磁排布,其标量自旋手性诱导出巨大的拓扑霍尔效应,可应用于霍尔效应传感器。Nd2Mo2O7是一种高挥发性材料,单晶合成需要被加热到1630℃,MoO2等成分高度挥发,并在生长石英管内壁沉积,导致光源辐照受阻,进而导致熔融区域温度降低,生长不稳定。得益于LFZ设备高精度和快速响应的温度控制系统,在熔融区域失稳前,迅速增加激光功率,激光光通量密度比卤素灯高几个量,因而可以迅速将温度提升到1100℃,促进沉积到石英管内壁上的MoO2的再挥发,当沉积与再挥发达到平衡时,激光加热功率稳定下来,终实现晶体的稳定生长。 近发表在Physical Review B期刊题为Robust noncoplanar magnetism in band-filling-tuned (Nd1−xCax)2Mo2O7的工作中,Max Hirschberger等人通过Ca2+取代Nd3+来调控化学势,实现了对Mo子晶格倾斜自旋铁磁稳定性的调控[2]。 他们先利用Quantum Design LFZ制备了一系列不同组分的厘米尺寸单晶(Nd1−xCax)2Mo2O7(x=0.01, 0.03, 0.05, 0.07, 0.10, 0.15, 0.22, 0.30和0.40)。在氩气氛下,生长温度控制在1630-1700℃,生长速度为1.8-2 mm/h。对不同组分单晶的磁性研究证明了在x≤0.15时倾斜铁磁态以及自旋倾角具有稳定性。而在x=0.22以上,Mo-Mo和Mo-Nd磁耦合变号,自旋玻璃金属态取代倾斜的铁磁态。图2, (Nd1−xCax)2Mo2O7不同组分磁化曲线和相图。左图:x=0.01, 0.22和0.40的三个组分单晶的场冷曲线,可以清晰的判断出倾斜铁磁态和自旋玻璃态的转变温度。右图:不同组分获得的转变温度总结的相图,包括有倾斜铁磁态、自旋玻璃态和顺磁态[2]。高品质数据的采集得益于高质量的单晶样品和的成分控制。 3. 高熔点材料SmB6 SmB6是早发现的重费米子材料之一,其研究已经有五十多年的历史。随着拓扑领域的发展,近几年人们发现SmB6是一种拓扑近藤缘体。它的电缘性来自于强关联的电子相互作用,不仅如此,它的缘态存在能带反转,具有拓扑非平庸属性,表面会出现无能隙拓扑表面态。由于体态完全缘,这个表面态可以用来做新型二维电子器件[3]。 对SmB6拓扑和低温性质的准确探索,离不开高质量的材料,但因为该材料的高熔点(2350℃),很难通过常规手段获得。而Yoshio Kaneko等人应用Quantum Design LFZ实现了高品质SmB6的生长。生长条件:1标准大气压的氩气氛,气体流速2000 cc/m,生长速率20 mm/h。图3. SmB6单晶形貌图和劳厄衍射图。SmB6单晶表面如镜面般光亮,晶体(111)面的劳厄斑体现了很好的三重对称性,佐证了样品的高品质,适用于拓扑性质的精细测量[4]。 总结 综上,Quantum Design新一代高性能激光浮区法单晶炉(LFZ)与传统浮区法单晶生长系统相比,特的激光光路可实现更高功率、更加均匀的能量分布和更加稳定的性能。LFZ将浮区法晶体生长技术推向一个全新的高度,可广泛应用于制备红宝石、SmB6等高熔点材料,Ba2Co2Fe12O22等不一致熔融材料,以及Nd2Mo2O7、SrRuO3等高挥发性材料,为凝聚态物理、化学、半导体、光学等多种学科领域提供了丰富的高品质单晶储备,使得更精细的单晶性质测量和表征成为可能。图4. 新一代高性能激光浮区法单晶炉LFZ外观图(左)和原型机中被五束激光加热的原料棒(右)。 参考文献: [1]. K. Kimura, Y. Otake, T. Kimura, Visualizing rotation and reversal of the Neel vector through antiferromagnetic trichroism. Nat Commun 13, 697 (2022).[2]. M. Hirschberger et al., Robust noncoplanar magnetism in band-filling-tuned (Nd1−xCax)2Mo2O7. Physical Review B 104, (2021).[3]. N. Kumar, S. N. Guin, K. Manna, C. Shekhar, C. Felser, Topological Quantum Materials from the Viewpoint of Chemistry. Chem Rev 121, 2780-2815 (2021).[4]. Y. Kaneko, Y. Tokura, Floating zone furnace equipped with a high power laser of 1 kW composed of five smart beams. Journal of Crystal Growth 533, 125435 (2020).
  • 瑞士普利赛斯隆重推出prepASH340全自动水分灰分仪
    一. 概述普利赛斯,瑞士仪器仪表制造商,创建于1935年,欧洲知名品牌,全球知名三大电子天平品牌之一。普利赛斯,凭借其核心称重技术及“品质至上”、“开拓创新”的理念,向全球仪器仪表客户机合作伙伴提供高精度称重产品及解决方案,包括半微量天平、分析天平、精密天平、工业天平、水分测定仪等。为了更好地向食品、制药、科研院所及检验检疫等提供一种高效的水分、灰分检测仪器,普利赛斯凭借其核心称重技术,推出了prepASH 340系列全自动水分灰分分析仪。它代表当今世界高级别的热重分析仪器,在样品的准备、分析及报告形成上有革命性的改进。水分、灰分及挥发性的确定,烘箱、干燥器及分析天平的交替使用等全流程,全部自动完成。prepASH340系列全自动水分灰分仪,不仅是一台仪器,它更是一种解决方案!它高度吻合传统的马弗炉法(GB 5009.4-2010), 整体式设计替代传统方法所需的马弗炉、天平和冷却干燥器。 普利赛斯prepASH 340系列全自动水分灰分分析仪,一次最多可同时测试29个样品的水分、挥发分及灰分分析,操作简单,结构准确,质量可靠,报告详实,给客户带来很大的价值,自动分析,分析量大,优化节约劳动力,优化节约分析时间,精度及重复性的提高,流程监控及文档化等。二 传统灰分检测方法在prepASH 340全自动水分灰分仪推出前,根据GB5009.4-2010《食品中灰分的测定》,常规检测灰分的方法是,轮番利用马弗炉、冷却干燥器及电子天平等,对单一样品进行称重、烘干(碳化)、干燥器冷却、二次称重、马弗炉灼烧灰化、冷却、三次称重及计算、出具报告等。假如灰化未达到恒重,还要重复进行灼烧、取出样品、冷却、称重的循环,耗时长,效率非常低。重要试验需连轴转,安排工作人员加班。详见以下流程。三 prepASH法工作原理普利赛斯prepASH 340系列全自动水分灰分仪,依据国标水分、灰分测试要求,量身定制。其工作原理为:把国标中测试水分、挥发分及灰分的温度、时间及恒重条件等参数输到控制软件内,控制软件自动控制加热温度和测试时间,内置万分之一的分析天平,依次实时连续称量各个样品的质量,并自动记录每次称量质量,控制软件依据恒重要求(2mg/分钟)自动计算是否达到恒重。达到恒重后自动计算测试结果,提供质量、温度等变化曲线,同时自动停止测试进行降温,准备下一批次的样品测试。普利赛斯prepASH 340系列全自动水分灰分仪,采用整体式设计,以替代传统方法所需的马弗炉、天平和冷却干燥器,一次最多可同时测试29个样品的水分、挥发分及灰分。普利赛斯prepASH 340系列全自动水分灰分仪,检测中无需人工干预,自动检测、自动分析并出具测试报告。检测流程如下:四、主要功能及特点普利赛斯prepASH 340系列全自动水分灰分仪,主要功能及特点如下:1、 三合一,效率高l 整体式设计替代传统方法所需的马弗炉、天平和冷却干燥器l 一次最多可同时测试29个样品的水分、挥发分和灰分l 高性能的陶瓷坩埚和样品盘可满足高达1000℃的测试要求l 多达10步的可编程温度控制,多种停止模式l 可选择通入空气、氮气或氧气,并可选配硫酸灰化排气系统,满足各种分析l 增强冷却装置,。加速物料冷却时间,提高工作效率l 可无人值守自动运行,夜间和非工作日也可安全的自动测试2、 性能卓越l 瑞士卓越的制造工艺,给您带来高质量、高精度及高灵敏度的测试结果l 内置高精度分析天平可在高温下连续称量样品l 样品盘旋转式设计和独特的加热设计,确保为每个样品提供相同的温度分布l 自动控制温度和时间,确保最好的重现性l 可提供多种测试报告和质量、温度变化曲线等,满足专业分析的要求l 控制软件符合FDA CFR 21第11部分的要求l 测试结果符合DIN、ASTM、ICC、AOAC及GB 5009.4-2010等国标要求 3、 实时在握l 实时掌握测试过程中各项参数,快速、轻松完成测试工作l 水分、挥发分和灰分测试过程中仪器显示屏实时显示样品实际质量变化l 通过外接 电脑查看测试数据, 实时提供质量变化曲线,自动用颜色区分每个样品l 依据选定的单位自动计算结果,自动提供数据统计结果l 自助引导式prepDATA软件,无需培训即可快速掌握l 符合GLP规范的无差错报告4、 操作简单l 彩色触摸屏显示,图形化菜单,操作更简单5、 安全可靠l 可以设定炉温、自动开启炉门,减少样品的手工操作,避免错误及对人的伤害6、 多种通讯l 多种通讯方式:以太网、USB(2个)、RS232(计算机与打印机)五、主要技术参数普利赛斯prepASH 340系列全自动水分灰分分析仪,主要技术参数如下:型 号prepASH229prepASH219prepASH212最多样品数291912称重范围120g读数精度0.1mg最小样品重量0.1g温度范围(灰分测定)550~1000℃温度范围(水分测定)50~130℃硅酸盐陶瓷坩埚3525/Conradson坩埚(用于粉末应用)可选可选15氧化铝坩埚可选可选/显示屏5.7″彩色液晶触控式屏幕,目录式图形化操作界面填充气体0/3/6/9L/min(氧气、氮气、空气)最多程序步骤数10最长全部分析时间36小时连接方式USB、RS232、以太网接口电压/电流AC230V(+15/-20%)/25A净重99kg外形尺寸620(980)×590×870mm六、标准配置普利赛斯prepASH 340系列全自动水分灰分仪共有三种型号,即prepASH229、prepASH219及prepASH212。主机标配如下:l 微电脑控制加热称量装置l 转盘(SiC材质或耐挥发物材质)l 坩埚(硅酸盐陶瓷或Conradson)l 天平标准托盘l 50g砝码l 2个样品夹l 坩埚钳子l 电源装置l 排气软管l 排气软管夹七、常用选件客户可根据实际应用需要,选配以下配套件:1、 冷凝吸收单元洗涤器:洗模块,如硫磺酸2、 冷凝吸收连接系统:适用于prepASH229/219/2123、 三通气流控制单元:适用于氮气、氧气及空气4、 冷却系统 :新工厂、新设备选配5、 prepSTATION 称重站管理软件及天平数据连接电缆:适用于prepASH229/219/212 6、 空气压缩机:SILENT AIR COMPRESSOR 230V 50HZ八、常用配件客户还可根据实际应用及未来维修、维护的需要,选配以下配件:1、 29/19位样品转盘(适用于prepASH229/219) 2、 12位样品转盘(碳化硅,适用于prepASH229/219/212)3、 坩埚盖专用夹 4、 40mm天平托盘(计量检定专用) 5、 样品转盘托架 6、 陶瓷坩埚(5个/套) 7、 刚玉坩埚( 5个/套,煤炭分析用) 8、 带盖刚玉坩埚杯(无盖,5个/套,挥发物分析用) 9、 与带盖刚玉坩埚杯配套的坩埚盖(5个/套) 10、 12位样品转盘适配坩埚(5个/套) 九、 应用场合普利赛斯prepASH 340系列全自动水分灰分仪,一轮试验可以测试分析不同样品,增加样品量,最大化利用时间,广泛应用于商品评价、食品安全检测、科学研究及国家检验检疫等。l 食品(面粉制品) l 动物饲料l 农业肥料l 医药(硫酸盐灰分检测)l 木材、纸张l 建材(水泥) l 石油化工(石油/化学质量检测) l 环境(土壤,净化污泥) l 煤炭 l 烟草 十、结 论 通过大量的客户反馈及应用对比分析,可以得出以下结论:1、 普利赛斯prepASH 340系列全自动水分灰分分析仪,测试方法及测试结果高度吻合传统的马弗炉法。可在高温下自动实时称量样品质量,由控制软件自动控制测试温度和测试时间,并自动判断测试终点,与传统的马弗炉法相比可节省80%以上工作量,优化70%以上分析时间。2、 prepASH 340系列全自动水分灰分仪,可无人值守,可满足夜间和非工作日自动分析的要求。3、 prepASH 340系列全自动水分灰分仪,不仅是一台仪器,更是一种解决方案。它能够给客户带来极大的价值,包括质量保证、流程优化、效率提升、成本降低及安全性、可靠性提高等。
  • 您知道吗 | 什么样的菜刀能拍蒜
    拍蒜这一传统㕑技,广泛运用于中式烹饪之中,但是您知道什么样的菜刀适合用于拍蒜吗?图片源自网络这就涉及到刀具的强度以及韧性的概念了。强度是指金属材料在外力作用下抵抗破坏(变形和断裂)的能力。韧性是指材料在塑性变形和断裂过程中吸收能量的能力,其定义为材料在破裂前所能吸收的能量与体积的比值。对于大部分结构材料来说,同时具有高强度和高韧性是至关重要的。然而,不幸的是高强度和高韧性这两个性质通常是相互排斥的,无法获得同时拥有两种特性的材料。而对于钢铁中碳硫的测定,可以帮助我们对于菜刀本身韧性以及硬度进行了解。硫是钢材中的有害元素,容易使钢材产生热脆性,降低钢材的延展性和韧性,容易造成裂纹。而碳是决定钢材性能的最重要元素,当钢中含碳在0.8%以下时,随着含碳量的增加,钢材的强度和硬度提高,而塑性和韧性降低;但当含碳量在1.0%以上时,随着含碳量的增加,钢材的强度反而下降。这里使用来自于德国元素的inductar CS cube对不同钢铁以及铸铁样品进行了分析,结果列于表1中。实验部分首先将陶瓷坩埚放置到马弗炉里,在1300℃下加热2小时,这对于分析低碳含量的样品尤为重要。之后的操作步骤中都需要使用干净的坩埚钳夹取,避免样品污染。将钢材样品在丙酮中清洗,然后将0.5g至1g的样品(精确到1mg)添加到预热过的陶瓷坩埚中称重。加入约2g的W/Sn助熔剂以促进燃烧反应。坩埚放置在inductar CS cube的自动进样器上,之后进行分析。表1:用inductar CS cube分析不同钢材中的碳元素和硫元素的含量用燃烧法成功地测定了各种钢铁材料中碳元素和硫元素的含量。优异的线性度与多点校准可以精确分析从几个ppm到高达2%的碳含量。由于inductar CS cube对样品均匀性和制备要求较低,而且可以快速准确的得到测试结果,inductar CS cube元素分析仪完全适合于过程控制、质量控制或钢铁材质的认证。inductar CS cube 红外碳硫仪应用领域:黑色系金属合金,有色金属,有色金属,碳化物及陶瓷材料,地质矿物,电极材料的碳硫分析。特点:创新性坩埚设计,无需动力气清洁型燃烧(低灰尘和尘屑),无需外接吸尘器加热的除尘过滤器,配备了高效的风冷水冷装置可自由程序变化输出功率的感应炉 可自由程序变化的注氧流速燃烧过程可由光学摄像系统观察专利球夹设计,实现免工具维护
  • 工信部发布《限期淘汰产生严重污染环境的工业固体废物的落后生产工艺设备名录》
    中华人民共和国工业和信息化部公告2021年第25号为贯彻落实《中华人民共和国固体废物污染环境防治法》,加快淘汰产生严重污染环境的工业固体废物的落后生产工艺、设备,持续提高工业绿色发展水平,现将《限期淘汰产生严重污染环境的工业固体废物的落后生产工艺设备名录》予以公告,自2022年1月1日起施行。附件:限期淘汰产生严重污染环境的工业固体废物的落后生产工艺设备名录.pdf工业和信息化部2021年9月23日附件:限期淘汰产生严重污染环境的工业固体废物的落后生产工艺设备名录条目后括号内年份为淘汰期限,淘汰期限为2023年12月31日是指应于2023年12月31日前淘汰,其余类推;未标淘汰期限的条目为国家产业政策已明令淘汰或立即淘汰。一、石化化工1. 废旧橡胶和塑料土法炼油工艺;2. 间歇焦炭法二硫化碳工艺;3. 高汞催化剂生产设备(氯化汞含量6.5%以上);4. 使用高汞催化剂的乙炔法聚氯乙烯生产装置;5. 有钙焙烧铬化合物生产装置;6. 使用汞或汞化合物的甲醇钠、甲醇钾、乙醇钠、乙醇钾、聚氨酯、乙醛、烧碱、农药生产装置。二、钢铁1. 土法炼焦(含改良焦炉);2. 预应力钢材生产消除应力处理的铅淬火工艺;3. 采用重铬酸盐钝化技术的电解锰工艺设备(2023年12月31日);4. 钢铁行业用一段式固定煤气发生炉(不含粉煤气化炉)。三、有色金属1. 采用马弗炉、马槽炉、横罐等进行焙烧、简易冷凝设施进行收尘等落后方式炼锌或生产氧化锌工艺装备;2. 竖罐炼锌工艺和设备(2025年12月31日);3. 采用铁锅和土灶、蒸馏罐、坩埚炉及简易冷凝收尘设施等落后方式炼汞;4. 采用土坑炉或坩埚炉焙烧、简易冷凝设施收尘等落后方式炼制氧化砷或金属砷工艺装备;5. 铝自焙电解槽及160kA以下预焙槽;6. 鼓风炉、电炉、反射炉炼铜工艺及设备;7. 再生有色金属生产中采用直接燃煤的反射炉;8. 采用地坑炉、坩埚炉、赫氏炉等落后方式炼锑;9. 采用烧结锅、烧结盘、简易高炉等落后方式炼铅工艺及设备;10. 利用坩埚炉熔炼再生铝合金、再生铅的工艺及设备;11. 烧结-鼓风炉炼铅工艺;12. 离子型稀土矿堆浸和池浸工艺;13. 有色金属行业用一段式固定煤气发生炉。四、黄金1. 混汞提金工艺;2. 小氰化池浸工艺、土法冶炼工艺;3. 无环保措施提取线路板中金、银、钯等贵重金属工艺。五、医药1. 铁粉还原工艺生产咖啡因;2. 铁粉还原工艺生产对乙酰氨基酚。六、机械1. 加热温度≤1000℃的热处理氯化钡盐浴炉;2. 钻采工具接头螺纹磷化处理工艺(2023年12月31日);3. 使用汞生产开关和继电器的工艺;4. 使用汞生产气压计、湿度计、压力表、温度计(体温计除外)等非电子测量仪器的工艺(无法获得适当无汞替代品、安装在大型设备中或用于高精度测量的非电子测量设备除外)。七、船舶废旧船舶滩涂拆解工艺。八、轻工1. 脂肪酸法制叔胺工艺 2. 发烟硫酸磺化工艺 3. 铅蓄电池生产用开放式熔铅锅、开口式铅粉机 4. 管式铅蓄电池干式灌粉工艺 5. 铅蓄电池生产中铸板、制粉、输粉、灌粉、和膏、涂板、刷板、配酸灌酸、外化成、称板、包板等人工作业工艺(新建、改扩建项目禁止使用)。
  • 高频熔样机和电热熔样机对比
    -高频感应加热熔样机认知误区在X射线荧光光谱分析中,玻璃熔融法制样技术由于完全消除了样品的矿物效应和粒度效应,样品被熔剂稀释后又能一定程度的降低共存元素引起的基体效应,自1956年被发现以后,该技术经过多年逐渐发展并成熟,现在已被全世界的大量实验室采用,成为X射线荧光光谱分析中的两大样品制备方法之一。早期玻璃熔融法制片常借助于燃气灯或马弗炉,现在已经有大量的专业性强,自动化程度高的熔样机所取代。目前常用的熔样机有按照加热方法分为三种:燃气加热、电阻辐射加热和高频感应加热三种。其中由于燃气加热式熔样机由于对实验室硬件要求过高(需要配套稳定的燃气线路),且高热值燃气具有一定的危险性,在此不做讨论。高频感应加热式熔样机(简称“高频熔样机”)原理是高频电流通过线圈产生的磁场使坩埚自身电阻产生焦耳热,从而使坩埚自身发热达到熔样的目的。电阻辐射加热式熔样机(简称“电热熔样机”)原理是采用镍铬钼电阻丝、硅碳棒或硅钼棒,靠电热辐射加热达到熔样的目的。由于高频熔样机当前使用相对较少,目前在认知上有以下几大误区,我们将对比电热熔样机做对应说明:一、温控精度不能满足要求:和电热熔样机(最高控温达±0.1℃)相比,高频熔样机在温控精度上的确不占优势。但是目前红外测温的应用,已经不需要再采用老式的接触测温,温控精度也越来越高,特别是瑞绅葆FHC-00型高频熔样机已能达到±1℃。在实际熔样温度普遍1000度以上的情况下,已经能够满足日常制样需要。二、每个工位温度不一致:这是由于部分厂家高频熔样机参照电热熔样机的加热及控温系统都采用串联方式,导致没有准确测量各个工位温度,目前瑞绅葆FHC-00型高频熔样机各个工位均采用独立加热,独立测温,真实反馈工位实际温度。三、不适合大批量制样:这是由于多工位会导致两头以上的高频熔样温度可能不一致,现有的高频熔样多是两工位,与电热熔样机的四工位甚至是六工位比是效率低。单实际上解决了工位温度控制问题,也就解决了这个问题,目前瑞绅葆FHC-00型高频熔样机最高能做到六工位,结合高频熔样本身升温速度快的优点,可以达到10min/批。四、坩埚易坏:高频加热坩埚易坏这种说法不正确,实际上坩埚损坏主要是被样品中氧化性物质腐蚀,可以提前熟悉样品性质,通过预氧化来减少氧化物的损坏,同时瑞绅葆FHC-00型高频熔样机采用浇筑法来尽可能的保护坩埚。五、支架掉渣:掉渣主要是合金支架氧化导致的,但是目前瑞绅葆FHC-00型高频熔样机和电热熔样机相比,已经在使用高温陶瓷替换高温合金来做为支架。完全可以避免合金支架氧化掉渣污染样品的情况出现。六、需要外循环水:和电热熔样机相比,高频熔样高频熔样需要配套循环水,但目前可以通过配套特制小型水冷机,一次加入纯净水可以长时间使用,完全不需要外接循环水。实际上,高频熔样机与电热熔样机相比效率更高、速度更快、无需预热、即开即用,自动化程度更高、操作更简单、制样速度更快、使用成本更低,完全符合目前提倡的节能、降耗、减排的环保要求,是应提倡的一种加热方式。 高频熔样机 电加热熔样机
  • 什么是热分析(TA)及热分析实验技巧
    热分析(thermal analysis,TA)是在程序控温和一定气氛下,测量试样的某种物理性质与温度或时间关系的一类技术。常用的热分析术语1)热重thermogravimetry, TG;热重分析 thermogravimetric analysis, TGA在程序控温和一定气氛下,测量试样的质量与温度或时间关系的技术。2)差热分析differential thermal analysis,DTA在程序控温和一定气氛下,测量试样和参比物温度差与温度(扫描型)或时间(恒温型)关系的技术。3)差示扫描量热法differential scanning calorimetry,DSC在程序控温和一定气氛下,测量输给试样和参比物能量(差)[热流量(差)、热流速率(差)或功率(差)] 与温度或时间关系的技术。a. 热流型(heat-flux) DSC按程序控温改变试样和参比物温度时,测量与试样和参比物温差相关的热流量与温度或时间的关系。热流量与试样和参比物的温差成比例。b. 功率补偿型(power-compensation) DSC在程序控温并保持试样和参比物温度相等时,测量输给试样和参比物热流速率差与温度或时间的关系。4)温度调制式差示扫描量热法modulated temperature differential scanningcalorimetry, MTDSC 或 MDSCMDSC 是由 DSC 演变的一种方法,该法是对温度程序施加正弦扰动,形成热流量和温度信号的非线性调制,从而可将总热流信号分解成可逆和不可逆热流成分。即在传统线性变温基础上叠加一个正弦振荡温度程序,最后效果是可随热容变化同时测量热流量。利用傅立叶变换可将热流量即时分解成可逆的热容成分(如玻璃化转变、熔化)和不可逆的动力学成分(如固化、挥发、分解)。5)联用技术multiple techniques在程序控温和一定气氛下,对一个试样采用两种或多种分析技术。6)热重曲线thermogravimetric curve, TG curve由热重法测得的数据以质量(或质量分数)随温度或时间变化的形式表示的曲线。曲线的纵坐标为质量 m (或质量百分数),向上表示质量增加,向下表示质量减小;横坐标为温度 T 或时间 t ,自左向右表示温度升高或时间增长。7)微商热重曲线derivative thermogravimetric curve, DTG curve以质量变化速率与温度(扫描型)或时间(恒温型)的关系图示由热天平测得的数据。当试样质量增加时,DTG 曲线峰朝上;质量减小时,峰应朝下。8)差热分析曲线differential thermal analysis curve, DTA curve由差热分析测得的记录是差热分析曲线(DTA 曲线)。曲线的纵坐标是试样和参比物的温度差(Δ T ),按以往已确定的习惯,向上表示放热效应(exothermic effect),向下表示吸热效应(exothermic effect)。9)差示扫描量热曲线differential scanning calorimetry curve, DSC curve图示由差示扫描量热仪测得的输给试样和参比物的能量(差)与温度(扫描型)或时间(恒温型)的关系曲线。曲线的纵坐标为热流量(heat flow)或热流速率(heat flow rate),单位为 mW(mJ/s);横坐标为温度或时间。按热力学惯例,曲线向上为正,表示吸热效应;向下为负,表示放热效应。热重分析、差热分析和差示扫描量热分析是在催化研究领域应用较多的热分析技术。热分析技术1、 热重法原理:热重法(TG)是测量试样的质量随温度或时间变化的一种技术。如分解、升华、氧化还原、吸附、解吸附、蒸发等伴有质量改变的热变化可用 TG 来测量。TG 测量使用的气体有:Ar、Cl2 、CO2 、H2 、N2 、O2 、空气等气体。热重曲线:热重分析得到的是程序控制温度下物质质量与温度关系的曲线,即热重曲线(TG 曲线)。图1:TG与DTG曲线2、 差热分析原理:差热分析仪一般由加热炉、试样容器、热电偶、温度控制系统及放大、记录系统等部份组成,其基本原理见图 2。将样品和参比放在相同的加热或冷却条件下,同时测温热电偶的一个端插在被测试样中,另一个热端插在待测温度区间内不发生热效应的参比物中,因此试样和参比物在同时升温或降温时,测温热电偶可测定升温或降温过程中二者随温度变化所产生的温差(ΔT),并将温差信号输出,就构成了差热分析的基本原理。由于记录的是温差随温度的变化,故称差热分析。按以往已确定的习惯,向上表示放热效应(exothermic effect),向下表示吸热效应(endothermic effect)。图2:热电偶和温差热电偶差热曲线DTA 曲线的记录曲线如图 3。图3:典型DTA曲线3、差示扫描量热法原理:差示扫描量热法(DSC)就是为克服差热分析在定量测定上存在的这些不足而发展起来的一种新的热分析技术。它测量与试样热容成比例的单位时间功率输出与程序温度或时间的关系,通过对试样因发生热效应而发生的能量变化进行及时的应有的补偿,保持试样与参比物之间温度始终保持相同,无温差、无热传递,使热损失小,检测信号大。图4:功率补偿DSC示意图差示扫描量热曲线差示扫描量热曲线(DSC 曲线)与 DTA 曲线十分相似,这里不再重复。固体催化剂表面酸碱性表征对于许多化学反应,催化剂的选择和它的转化率与其固体表面酸性活性中心的数量、强度密切相关。因此,对催化剂酸/碱性的评价是非常重要的。固体催化剂表面酸碱性的测量目前主要是利用碱性气体吸附-色谱程序升温热脱附技术,但是在吸附质有分解的情况下,此法准确性差。然而,若利用碱性气体吸附-热重程序升温热脱附技术则可以弥补这一缺陷。同样,采用酸性气体吸附-热重或差热程序升温热脱附技术可以实现对固体催化剂表面碱性的表征。热分析实验技巧1 、升温速率的影响快速升温易产生反应滞后,样品内温度梯度增大,峰(平台)分离能力下降;DSC 基线漂移较大,但能提高灵敏度、峰形较大;而慢速升温有利于DTA、DSC、DTG相邻峰的分离;TG相邻失重平台的分离;DSC 基线漂移较小,但峰形也较小。对于 TG 测试,过快的升温速率有时会导致丢失某些中间产物的信息。一般以较慢的升温速率为宜。对于 DSC 测试,在传感器灵敏度足够、且不影响测样效率的情况下,一般也以较慢的升温速率为佳。2 、样品用量的控制样品量小可减小样品内的温度梯度,测得特征温度较低些也更“真实”一些;有利于气体产物扩散,使得化学平衡向正向发展;相邻峰(平台)分离能力增强,但 DSC 峰形也较小。而样品量大能提高 DSC 灵敏度,有利于检测微小的热量变化,但峰形加宽,峰值温度向高温漂移,相邻峰(平台)趋向于合并在一起,峰分离能力下降;且样品内温度梯度较大,气体产物扩散亦稍差。一般在 DSC与热天平的灵敏度足够的情况下,亦以较小的样品量为宜。3、 气氛的选择3.1 动态气氛、静态气氛与真空根据实际的反应模拟需要,结合考虑动力学因素,选择动态气氛、静态气氛或真空气氛。静态、动态与真空气氛的比较:静态下气体产物扩散不易,分压升高,反应移向高温;且易污染传感器。真空下加热源(炉体)与样品之间只通过辐射进行传热,温度差较大。且在两者情况下天平室都缺乏干燥而持续的惰性气氛的保护。一般非特殊需要,推荐使用动态吹扫气氛。若需使用真空或静态气氛,须保证反应过程中释出的气体无危害性。3.2 气氛的类别对于动态气氛,根据实际反应需要选择惰性(N2 、Ar、He)、氧化性(O2 、air)、还原性与其他特殊气氛等,并作好气体之间的混合与切换。为防止不期望的氧化反应,对某些测试必须使用惰性的动态吹扫气氛,且在通入惰性气氛前往往须作抽真空-惰性气氛置换操作,以确保气氛的纯净性。常用惰性气氛如N 2 ,在高温下亦可能与某些样品(特别是一些金属材料)发生反应,此时应考虑使用“纯惰性”气氛(Ar、He)气体密度的不同影响到热重测试的基线漂移程度(浮力效应大小)。为确保基线扣除效果,使用不同的气氛须单独作热重基线测试。3.3 气体的导热性常用气氛的导热性顺序为:He N2 ≈ air O2 Ar选择导热性较好的气氛,有利于向反应体系提供更充分的热量,降低样品内部的温度梯度,降低反应温度,提高反应速率;能使峰形变尖变窄,提高峰分离能力,使峰温向低温方向漂移;在相同的冷却介质流量下能加快冷却速率;缺点是会降低DSC灵敏度。若采用不同导热性能的气氛,需要作单独的温度与灵敏度标定。3.4 气体的流量提高惰性吹扫气体的流量,有利于气体产物的扩散,有利化学反应向正反应方向发展,减少逆反应;但带走较多的热量,降低灵敏度。对于需要气体切换的反应(如反应中从惰性气氛切换为氧化性气氛),提高气体流量能缩短炉体内气体置换的过程。不同的气体流量,影响到热重测试的基线漂移程度(浮力效应)。因此对TG测试必须确保气体流量的稳定性,不同的气体流量须作单独的基线测试(浮力效应修正)。4 、坩埚加盖与否的选择坩埚加盖的优点:a. 改善坩埚内的温度分布,有利于反应体系内部温度均匀。b. 有效减少辐射效应与样品颜色的影响。c. 防止极轻的微细样品粉末的飞扬,避免其随动态气氛飘散,或在抽取真空过程中被带走。d. 在反应过程中有效防止传感器受到污染(如样品的喷溅或泡沫的溢出)。坩埚盖扎孔的目的:a. 使样品与气氛保持一定接触,允许一定程度的气固反应,允许气体产物随动态气氛带走。b. 使坩埚内外保持压力平衡。坩埚加盖的缺点:a. 减少了反应气氛与样品的接触,对气固反应(氧化、还原、吸附)有较大碍。b. 对于有气相产物生成的化学反应,由于产物气体带走较慢,导致其在反应物周围分压较高,可能影响反应速率与化学平衡(DTG峰向高温漂移),或对于某些竞争反应机理可能影响产物的组成(改变TG失重台阶的失重率)。了解了加盖的目的、优缺点,那么具体做实验时,应如何决定呢?下面简单介绍几种情况:1. 对于物理效应(熔融、结晶、相变等)的测试或偏重于DSC的测试,通常选择加盖。2. 对于未知样品,出于安全性考虑,通常选择加盖。3. 对于气固反应(如氧化诱导期测试或吸附反应),使用敞口坩埚(不加盖)。4. 对于有气体产物生成的反应(包括多数分解反应 )或偏重于TG的测试,在不污染损害样品支架的前提下,根据反应情况与实际的反应器模拟,进行加盖与否的选择。5. 对于液相反应或在挥发性溶剂中进行的反应,若反应物或溶剂在反应温度下易于挥发,则应使用压制的Al坩埚(温度与压力较低)或中压、高压坩埚(温度与压力较高)。对于需要维持产物气体分压的封闭反应系统中的反应同样如此。5 、DSC 基线DSC基线漂移程度的主要影响因素是参比端与样品端的热容差异(坩埚质量差、样品量大小)、升温速率、样品颜色及热辐射因素(使用Al 2 O 3 坩埚时)等。在实验中,参比坩埚一般为空坩埚。若样品量较大,也可考虑在参比坩埚中加适量的惰性参比物质(如蓝宝石比热标样)以进行热容补偿。在比热测试时,对基线重复性的要求非常严格。一般使用Pt/Rh坩埚,参比坩埚与样品坩埚质量要求相近,基线测试、标样测试与样品测试尽量使用同一坩埚,坩埚的位置尽量保持前后一致。TG 热重法TG/FTIR热重法/傅立叶变换红外光谱法TG/GC热重法/气相色谱法TG/MS热重法/质谱分析TG-DSC热重法-差示扫描量热法TG-DTA热重法-差热分析参考文献[1] 刘振海,白山 立子,分析化学手册(第二版),第八分册,化学工业出版社,北京,2000.[2] 辛勤,固体催化剂研究方法,科学出版社,北京,2004.[3] 辛勤,罗孟飞,现代催化研究方法,科学出版社,北京,2009.
  • 山东某终端单位批量采购仪器、试剂、标物
    山东某单位新建RKEF实验室,需采购一批仪器设备、试剂标物及实验室器皿、劳保用品,进口、国产不限,需整包商提供报价,能做的请联系,具体采购清单如下:仪器设备:名称规格(参考型号)数量单位备注鳄式破碎机5E-JC100*603台样品前处理破碎缩分机5E-CD250*3602台样品前处理制样粉碎机5E-PC2*1002台样品前处理台式钻床Z5252台样品前处理切割机J3G-4002台样品前处理导流式二分器5E-MR1/21台代替耗时过久的人工缩分,不考虑备用托盘天平500g2台电子台秤6kg /0.1g4台电子磅称150kg/10g2台数显电热鼓风干燥箱5E-DHG4台智能马弗炉5E-MF6003台碳硫分析仪(自带天平)CS-2800G1台超纯水机AKRY-UP-18401台蒸馏水器型号:YA.ZD-10,出水量 10L/h电耗:N=7.5kw1台作为纯水机补充,平时不用电热恒温水浴锅型号:HHS-11-4,一列式四孔电耗:N=1kw3台阻尼天平型号:TG528B2台电子分析天平型号:AL104电耗:0.2kw4台电光分析天平型号:TG328A1台精度1μg(适用于仲裁分析)原子吸收光谱仪型号:AA400电耗:0.2kw1台电子万用炉型号:电耗:1kw20台或采购炉盘炉丝自行组装,备用一些炉丝玻璃仪器烘干机型号:电耗:0.8kw2台压缩机型号:DA-7002CS附电机:N=1.5kw1台荧光光谱仪MXF-24001台抽风柜尺寸:1500×850×22001套视具体房间摆放确定(包括变频、电机、管道等)分光光度计型号:7224台自动量热仪5E-AC/PL单控1台气相色谱仪型号:GC-2010 Plus1台SANTCK UPSEX-40KS1套荧光配套振动磨ZHM—1 1台荧光配套冷却循环水BLK-8FF1套荧光配套三相隔离变压器30KVA1台荧光配套熔融炉RYTN-011台荧光配套压样机ZHY—6011台荧光配套磁力搅拌器HJ-42台立式药品冷藏柜2~8℃,容积约200L,制冷方式:风冷2台标准品:样品编号样品名称单位数量注:以下标准样品无特殊说明者均为粉状或屑状,100g/瓶。YSBC13708-95铁矿石瓶2W-88304a菱铁矿瓶2GSBD33001-94铬铁矿瓶2GSBH30004-97铁矿石瓶2YSBC13709-95铁矿石瓶2GSB03-2038-2006铁矿石瓶2YSBC28783-01铁矿石瓶2GBW07220a/W-88307a铁矿石瓶2YSBC13836-96炉渣瓶2YSBC13837-96炉渣瓶2GBW 01704a转炉渣瓶2GBW 01705转炉渣瓶2GBW 01707转炉渣瓶2YSBS 19811-2000钒渣瓶2512高炉渣瓶2GBW03207矿渣硅酸盐水泥瓶5GBW03204水泥熟料瓶3GBW03203水泥生料瓶3GBW03201a硅酸盐水泥瓶3GBW11108g烟煤瓶2GBW11103f无烟煤瓶2GBW11104f无烟煤瓶2YSBC 28801b-06焦炭瓶2YSBC28003b-06焦炭瓶2GBW11101n烟煤瓶2GBW11101标煤瓶2GBW11107k烟煤瓶2YSBC20310-2002304不锈钢瓶3YSBC15208-2002低合金钢瓶4YSBC 11342-05不锈钢瓶3YSBC 11907-2003高纯镍瓶2YSBS 11378a-08304不锈钢(块状光谱控样)瓶1YSBC11103-94/9110高磷铸铁瓶2YSBC11106-94/9140高磷铸铁瓶2GSB 03-1372-2000不锈钢瓶3YSBC 11508-93铁合金瓶3YSBC16703-01石灰石瓶2YSBC28706-936#石灰石瓶2试剂、器皿及劳保用品:名称规格数量单位备注注:试剂无特殊说明均为化学纯,试剂可满足前期筹备实验、人员培训及正常生产四个月的用量分样筛200目10个常用,磨损较快分样筛80目5个分样筛18目2个分样筛10目2个分样筛4目2个塑料洗瓶500ml20个不锈钢辅料镊20cm5把不锈钢辅料镊10cm2把封口袋10#50包封口袋7#10包纸质样品袋牛皮纸台头自制取样铲亦可自行焊制标签纸小号1000张不锈钢方盘24cm*31cm20只搪瓷方盘20cm*30cm10只蓝边白色带盘盖搪瓷方盘30cm*40cm4只蓝边白色带盘盖洗耳球大号5个洗耳球小号10个棕色滴瓶125ml10个定性滤纸60cm*60cm500张定量滤纸12.5cm,快速20盒玻璃直管、弯头由供货商提供若干备用表面皿100mm10个不锈钢药匙16cm10把塑料药勺3包输血胶管6*9mm5米输血胶管5*7mm3米油画笔大号10只油画笔小号10只三角烧瓶500ml20个三角烧瓶300ml20个三角烧瓶100ml40个酸式滴定管50ml20个酸式滴定管25ml10个碱式滴定管50ml20个碱式滴定管25ml10个烧杯2000ml5个烧杯1000ml10个烧杯500ml30个烧杯400ml30个烧杯200ml10个烧杯100ml20个放水瓶10L5个放水瓶5L10个放水瓶2.5L10个试剂瓶500ml100个广口试剂瓶,需要PP 还是HDPE 材质?棕色试剂瓶500ml30个广口试剂瓶,需要PP 还是HDPE 材质?棕色试剂瓶30ml50个广口试剂瓶,需要PP 还是HDPE 材质?玻璃量筒1000ml2支玻璃量筒500ml2支玻璃量筒250ml5支玻璃量筒100ml5支玻璃量筒50ml10支可用量杯代替玻璃量筒25ml10支可用量杯代替玻璃量筒10ml20支可用量杯代替玻璃量筒5ml10支塑料量筒10ml5支塑料量筒25ml5支塑料量杯50ml5支移液管胖肚吸管50ml5支移液管胖肚吸管25ml10支移液管10ml10支移液管5ml10支移液管2ml5支带刻度铁坩埚50ml100个银坩埚50ml8个镍坩埚50ml50个刚玉坩埚50ml40个玻璃棒7-8*33020支塑料烧杯500ml10个聚四氟乙烯烧杯300ml5个容量瓶2000ml10个容量瓶1000ml10个容量瓶500ml10个容量瓶250ml20个容量瓶100ml30个容量瓶50ml60个玻璃漏斗90mm20个塑料漏斗90mm10个铁架台10个蝴蝶夹15个止水夹20个橡皮塞000# 带打孔器10个橡皮塞00# 带打孔器10个橡皮塞0# 带打孔器10个橡皮塞1# 带打孔器10个橡皮塞2# 带打孔器10个橡皮塞3# 带打孔器10个橡皮塞4# 带打孔器10个橡皮塞5# 带打孔器10个橡皮塞6# 带打孔器10个橡皮塞7# 带打孔器10个橡皮塞8# 带打孔器10个橡皮塞9# 带打孔器10个橡皮塞10# 带打孔器10个橡皮塞11# 带打孔器10个橡皮塞12# 带打孔器10个橡皮塞13# 带打孔器10个称量瓶50*3050个玛瑙研钵100mm1个石英研钵100mm1个玻璃研钵90mm2个笔式HP计PHB-31支PH试纸5本精密PH试纸5.5-9.0 5本橡皮筋大包2包真空泵及附属抽滤装置1台石棉网20*2020张石棉板5块干燥皿(自带硅胶)300mm5个二苯胺磺酸钠5瓶指示剂酸性铬蓝5瓶指示剂萘酚绿5瓶指示剂钒试剂5瓶指示剂甲基橙5瓶指示剂酚酞10瓶指示剂钙羧酸5瓶指示剂镁指示剂5瓶指示剂铜试剂20瓶指示剂三乙醇胺20瓶/箱40瓶掩蔽剂乙醇胺20瓶/箱20瓶六次甲基四胺20瓶/箱20瓶EDTA二钠20瓶/箱40瓶硫酸铜20瓶/箱40瓶硫酸亚铁铵20瓶/箱60瓶酒石酸钾钠20瓶/箱40瓶硝酸铋20瓶/箱20瓶草酸20瓶/箱40瓶硫酸镁20瓶/箱40瓶硫酸锰20瓶/箱20瓶重铬酸钾20瓶/箱60瓶氯化钠20瓶/箱60瓶碳酸钠20瓶/箱40瓶氢氧化钠20瓶/箱100瓶硝酸钾20瓶/箱100瓶氢氧化钾20瓶/箱60瓶过硫酸铵20瓶/箱40瓶强氧化剂易变质失效高锰酸钾20瓶/箱40瓶乙醇20瓶/箱200瓶硝酸20瓶/箱100瓶盐酸20瓶/箱100瓶硫酸20瓶/箱100瓶磷酸20瓶/箱100瓶高氯酸10瓶/箱50瓶氢氟酸20瓶/箱60瓶双氧水20瓶/箱60瓶丁二酮肟100g/瓶5瓶抗坏血酸100g/瓶20瓶还原剂易变质失效硫代硫酸钠20瓶/箱60瓶受热易分解无水亚硫酸钠20瓶/箱60瓶钼酸铵20瓶/箱80瓶尿素20瓶/箱100瓶硝酸银100g/瓶10瓶见光易分解氨水20瓶/箱100瓶醋酸铵20瓶/箱60瓶冰醋酸20瓶/箱100瓶氢氧化钡20瓶/箱60瓶过氧化钠10瓶/箱50瓶酒石酸锑钾20瓶/箱40瓶氯化铵20瓶/箱60瓶铬酸钾20瓶/箱40瓶酒精喷灯2只非标玻璃弯头,滴管制作易耗品:钨粒助熔剂颗粒10kg碳硫仪分析样品助融剂线状氧化铜碳硫仪厂家提供耗材用量无水高氯酸镁碳硫仪厂家提供耗材用量碳硫坩埚25*2510000个纯铁铁屑6kg碳硫仪分析样品添加剂瓷方皿30*6050个煤灰分测定瓷方皿60*9030个煤灰制备瓷坩埚30ml30个煤挥发分测定瓷坩埚50ml100个坩埚架与所购坩埚匹配,各两套长柄坩埚钳2把亦可由马弗炉厂家多配套2把无水四硼酸锂分析纯,500g/瓶荧光光谱熔片法熔剂,待定溴化铵分析纯,500g/瓶3瓶荧光光谱熔片法脱模剂专用劳保用品:医用白大褂医用无粉手套1200双耐高温手套2双牛皮,过手肘耐腐蚀手套2双医药箱1套注:若无特殊说明,以上单瓶液体试剂为500ml,固体为500g。联系方式:为避免过度打扰,请添加仪器信息网工作人员微信获取采购方联系方式:
  • 恒创立达知识小课堂开播了,欢迎围观!
    恒创立达知识小讲堂KBr溴化钾单晶生长方法是什么? 由于广大客户及专业人士对于专业知识获取的要求,恒创立达准备在仪器信息网资讯栏目中开始不定期更新恒创立达知识小讲堂栏目。今天为大家奉上更劲爆专业知识,深化关于溴化钾碎晶/粉末生产方法,让大咖们更深入的了解傅里叶红外光谱仪相关耗材的生长方法。了解到我们恒创立达对耗材专业度,从细小出发,从专业深化,从质量取胜的宗旨服务好每位用户。 小恒今天就带大家了解一下制备溴化钾的方法之一,提拉法。提拉法,是1917年由丘克拉斯基(Czochralski)发明的一种合成晶体的方法,所以也称“丘克拉斯基法”,是一种从熔融状态的原料生长晶体的方法。设备和装置主要有:坩埚、高频加热线圈、提拉杆等。 提拉法的原理是利用温场控制来使得熔融的原料生长成晶体。用于晶体生长的的原料放在坩埚中加热成为熔体,控制生长炉内的温度分布(温场),使得熔体和籽晶/晶体的温度有一定的温度梯度,这时,籽晶杆上的籽晶与熔体接触后表面发生熔融,提拉并转动籽晶杆,处于过冷状态的熔体就会结晶于籽晶上,并随着提拉和旋转过程,籽晶和熔体的交界面上不断进行原子或分子的重新排列,逐渐凝固而生长出单晶体。 具体操作方法如下:将预先合成好的多晶原料装在一个坩埚中,并被加热到原料的熔点以上,原料熔化为熔体。在坩埚上方有一个可以旋转和升降的提拉杆,杆的下端带有一个夹头,其上装有籽晶,降低提拉杆,将籽晶插入熔体中,只要温度合适,籽晶既不熔掉也不长大,然后缓慢地向上提拉和转动晶杆。同时,缓慢地降低加热功率,籽晶就逐渐长粗,小心地调节加热功率,就能得到所需直径的晶体。 提拉法可以在很短的时间,比如几天,或者一到两周内快速地生长出一块足够进行研究的晶体,因此,提拉法在新晶体探索和物性研究上应用十分广泛。如果能够设计、研究出一套适合的生长控制条件,提拉法也很容易在实验室环境或者工厂化的环境中快速生长出优质的、大尺寸的单晶。 今天恒创立达小课堂给大家介绍了提拉法,针对溴化钾单晶具体的制备方法与合成条件,我们下节课再进行了解和讲解,我们下节课再见。
  • 浅谈生活垃圾的检测方法
    p style="text-indent: 2em "摘要水泥窑无害化处置生活垃圾已成为环境治理的最优方案,得到了广泛的应用。目前不同区域不同季节生活垃圾组分波动较大,准确掌握生活垃圾的化学成分和特性,合理调整配料方案,可变废为宝,提高协同处置效率。本文从生活垃圾相关检测方法、试剂材料、仪器设备等方面对生活垃圾检测技术进行探讨。/pp style="text-indent: 2em "消除生活垃圾等废弃物的污染,实现其无害化、减量化和资源化处置,已成为我国必须解决的重大环境课题。现有多种生活垃圾处置方式,其中水泥窑协同处置生活垃圾具有明显的优势,首先高温条件可有效防止二噁英等的排放,避免二次污染,其次生活垃圾也可替代原燃材料,实现固废全量化处理和综合利用。然而作为水泥生产企业,需考虑到生活垃圾入窑掺加量会影响水泥熟料性能和水泥窑热工系统,因此准确掌握生活垃圾的化学成分和特性,严格把控掺入量就具有非常重要的意义。/pp style="text-indent: 2em "目前针对生活垃圾化学特性检测方法,仅有行业标准CJ/T 96—2013比较全面的规定了生活垃圾化学特性检测的术语和定义,样品的采集与制备,氯、总磷、总铬、有机质、pH值和重金属元素等16个项目的检测方法和质量控制。由于生活垃圾成分复杂,增加了检测生活垃圾化学成分准确性的难度,本文将对公司水泥窑协同处置生活垃圾,不同状态下的检测方法及所用设备等进行阐述介绍,为相关企业开展垃圾检测试验提供参考。/pp style="text-indent: 2em "1 生活垃圾的分类/pp style="text-indent: 2em "生活垃圾分为原生态垃圾、垃圾可燃物和不可燃物等,在水泥窑协同处置过程中可燃物经过分选后入分解炉进行高温焚烧,而不可燃物则是进行配料后当做水泥原材料一起入窑煅烧生产熟料。各种状态的垃圾检测的成分也不一样,可燃物一般检测热值、全硫、氯含量等;而不可燃物则需要检测重金属、硫、氯、R2O、CaO、MgO、Fe2O3、Al2O3、SiO2等成分。/pp style="text-indent: 2em "2 主要仪器设备及药品试剂/pp style="text-indent: 2em "仪器设备:分析天平、马弗炉、全自动量热仪、分光光度计、酸度计、电感耦合等离子体原子发射光谱仪、X-荧光光谱仪、原子荧光光谱仪、微波消解仪等。药品试剂:硝酸、硫酸、盐酸、过氧化氢、EDTA、无水碳酸钠、高氯酸、正己烷、轻质氧化镁、氟化铵、硫酸铁铵、硼氰酸钾、硫脲等。/pp style="text-indent: 2em "3 原生态生活垃圾的检测/pp style="text-indent: 2em "3.1 含水率的检测——称量法/pp style="text-indent: 2em "参照原煤收到基水分的检测方法,准确称量5 kg的生活垃圾样品放在干燥的容器内,置于电热鼓风恒温干燥箱中,在105 ℃± 5 ℃的条件下烘干9~10 h,期间经常翻动样品确保样品干燥完全,烘干至恒重后,取出置于干燥器中冷却至室温,称量、直至两次称量之差小于样品总量的百分之一,计算出样品的含水率。妥善保存烘干后的样品,用于生活垃圾其他项目的测定。/pp style="text-indent: 2em "3.2 有机质检测——灼烧法/pp style="text-indent: 2em "参照标准CJ/T 96—2013中生活垃圾有机质检测方法,称取烘干后试样约2.0 g,精确至0.000 1 g,置于已恒重的瓷坩埚中(坩埚空烧2 h)。将坩埚放入马弗炉中,从低温升起,在600 ℃下恒温6~8 h后取出坩埚移入干燥器中,冷却后称重,再将坩埚重新放入马弗炉中在同样温度下灼烧10 min,取出冷却称重,直至恒重,用失去的质量计算出样品有机质含量。此方法称样量按照2.0 g计算,检出限为0.5%。/pp style="text-indent: 2em "3.3 总氟含量的检测——离子选择电极法/pp style="text-indent: 2em "参照标准HJ 873—2017中土壤 水溶性氟化物和总氟化物的测定离子选择电极法,用碱熔法提取,在提取液中加入总离子强度调节缓冲溶液,用氟离子选择电极法测定。准确称取过100目筛样品试样约0.2 g(精确至0.000 1 g)于镍坩埚中,加入2.0 g氢氧化钠,加盖,放入马弗炉中。温度控制程序:初始温度300 ℃保持100 min,升温至560 ℃± 10 ℃保持30 min。冷却后取出,用热水(约80~90 ℃)溶解,全部转移至聚乙烯烧杯中,溶液冷却后全部转入100 mL比色管中,缓慢加入5.0 mL盐酸(1+1),混匀,用水稀释至标线,摇匀,静置待测。结果参考《氟化物测定方法》(GB 5750—85)采用离子选择电极法进行测定及计算。/pp style="text-indent: 2em "3.4 pH值的测定/pp style="text-indent: 2em "称取生活垃圾试样约5g于50mL烧杯中,加入0.1 mol/L KCl溶液40 mL,搅拌均匀后放置30 min。按照酸度计使用说明书,选择与被测试样pH接近的两种标准缓冲溶液进行仪器校准。测定时轻轻转动烧杯促使溶液均匀并达到电化学平衡,静止片刻,待读数稳定时记下pH值,结果保留两位小数。/pp style="text-indent: 2em "4 生活垃圾中可燃物的检测/pp style="text-indent: 2em "4.1 氯含量的检测——艾士卡法/pp style="text-indent: 2em "参照CJ/T 96—2013中生活垃圾氯检测方法,准确称取0.5 g(精确至0.000 1 g)生活垃圾和艾士卡混合剂混合,放入马弗炉中在680 ℃± 20 ℃熔融3 h,将单质氯、有机氯等变为氯化物。用沸水浸取过滤,在酸性介质中,加入氯化钠标准溶液及过量的硝酸银溶液,再加入正己醇,以硫酸铁铵作指示剂,用标准硫氰酸钾溶液滴定,以硫氰酸钾溶液的实际消耗量计算垃圾中氯的含量。此方法称样量按照0.5 g计算,氯含量的检出限为0.05%。/pp style="text-indent: 2em "4.2 热值的检测——氧弹法/pp style="text-indent: 2em "参照GB/T 213—2008《煤的发热量测定方法》和量热仪《操作手册》测定生活垃圾可燃物样品的热值,根据量热仪的测定量程确定样品称样量,检测热值的垃圾必须是测完含水量率后保存的垃圾样品,称样量精确至0.000 1 g,每个样品重复测定2~3次。/pp style="text-indent: 2em "4.3 灰分的测定/pp style="text-indent: 2em "准确称量约5 g(精确至0.000 1 g)生活垃圾样品,放入已在815 ℃± 5 ℃的条件下烘干至恒重的坩埚中。将坩埚放入马弗炉中,在30 min内将炉温缓慢升到300 ℃,保持30 min;再将炉温升到815 ℃± 10 ℃,在此温度下灼烧3 h;停止灼烧,待温度降至300 ℃左右时,将坩埚取出放在石棉网上,盖上盖,在空气中冷却5 min,然后将坩埚放入干燥器中,冷却至室温即可称重。重复灼烧20 min,冷却至室温后称重(两次称重相差小于0.000 3 g),根据差值计算灰分含量。/pp style="text-indent: 2em "4.4 全硫的检测——艾士卡法/pp style="text-indent: 2em "参照《煤中全硫的测定方法》(GB/T 214—2007)中艾士卡法来检测全硫。基本原理为试样与艾士卡试剂混合灼烧,在弱酸性条件下使试样中硫全部转化成可溶性硫酸盐,再加入氯化钡溶液使硫酸根离子生成硫酸钡沉淀,根据硫酸钡质量计算试样中全硫的含量。/pp style="text-indent: 2em "5 生活垃圾中不可燃物的检测/pp style="text-indent: 2em "生活垃圾不可燃物的成分复杂,暂无检测标准可参考,结合目前水泥及原材料相关标准,通过多种方法试验比对,确定了合适的检测方法。/pp style="text-indent: 2em "5.1 硫含量的检测/pp style="text-indent: 2em "生活垃圾不可燃物中硫的检测包括全硫和三氧化硫的测定,全硫用艾士卡法(同可燃物全硫测定方法)测定,三氧化硫参考《水泥用硅质原料化学分析方法》(JC/T 874—2009)中碱熔融样品的方法进行测定,而不采用直接盐酸溶解-硫酸钡重量法进行测定,对比检测结果见表1。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 498px height: 345px " src="https://img1.17img.cn/17img/images/202010/uepic/797d4e3b-7614-4ec6-b59d-7478810f2a5d.jpg" title="6373359662179143453203296.png" alt="6373359662179143453203296.png" width="498" height="345"//pp style="text-indent: 2em "对同一检测参数,采用相同或不同检测方法进行重复检测,是验证方法和数据准确性的保障。从表1数据可以看出,直接盐酸溶解-硫酸钡质量法测定三氧化硫结果明显偏低,主要是因为垃圾样品成分较复杂,直接采用酸溶无法将样品完全溶解,以致有部分样品漂浮在酸液表面,导致检测结果不准确。而压片法X-射线荧光光谱仪扫描结果与碱熔法测定数据较相近,可信度较高。/pp style="text-indent: 2em "5.2 全分析的测定/pp style="text-indent: 2em "生活垃圾不可燃物的化学全分析包括LOI、CaO、MgO、SiO2、Fe2O3、Al2O3,但由于没有可参考的检测标准,我们参照国家建材行业标准《水泥用硅质原料化学分析方法》(JC/T 874—2009)的碱熔法对试样处理后滴定检测,同时也用压片法X-射线荧光光谱仪扫描直接测定。两种实验方法对比数据见表2。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 531px height: 523px " src="https://img1.17img.cn/17img/images/202010/uepic/573ef5d9-6c1a-4248-845a-ae00de03b303.jpg" title="6373359663550117261350019.png" alt="6373359663550117261350019.png" width="531" height="523"//pp style="text-indent: 2em "从表2中结果可以看出,氢氧化钠熔样-滴定分析法与荧光光谱仪扫描结果对比整体上误差都较小,只有极个别有超差情况,由此可见采用氢氧化钠熔样-滴定和荧光光谱仪扫描法都可分析不可燃物常规化学成分,且完全能满足水泥窑协同处置生活垃圾工艺要求。/pp style="text-indent: 2em "6 生活垃圾中重金属的检测/pp style="text-indent: 2em "6.1 总铬、镉、铅的测定——电感耦合等离子体原子发射光谱法(ICP-AES)/pp style="text-indent: 2em "依据《生活垃圾化学特性通用检测方法》(CJ/T 96—2013)里面对生活垃圾消解液中总铬、镉、铅的测定,此方法生活垃圾消解液中总铬检出限为0.01 mg/L、镉为0.003 mg/L、铅为0.05 mg/L。/pp style="text-indent: 2em "称取约0.3 g的试样(精确至0.000 1 g)于微波消解管中,在通风橱内向盛有试样的消解管中加入少量去离子水润湿试样,沿管壁加入1.5 mL过氧化氢,摇匀,进行预消解,待反应平稳后,加入10 mL王水,使硝酸和试样充分混合均匀,盖上内盖,拧紧外盖,均匀放入微波消解器中,关好炉门,按照仪器操作说明书操作,选择适当的功率进行消解。消解结束,待冷却后,取出消解管,拧下消解管盖子,赶酸至1~2 mL,冷却到室温,过滤于50 mL容量瓶中,用蒸馏水洗涤数次,并将洗涤液移入容量瓶,定容,待测。/pp style="text-indent: 2em "元素标准储备液配制方法见表3。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 554px height: 250px " src="https://img1.17img.cn/17img/images/202010/uepic/cb4cf45d-1ab6-41b4-b475-a92e9ac67ee1.jpg" title="6373359665221203246682053.png" alt="6373359665221203246682053.png" width="554" height="250"//pp style="text-align: left text-indent: 2em "6.2 汞、砷的检测—原子荧光光谱法(AFS)/pp style="text-align: left text-indent: 2em "生活垃圾消解液中汞、砷的检测我们采用微波消解-原子荧光光谱法进行定量检测,生活垃圾消解液中汞的检出限为0.005 μg/L,砷的检出限为0.04 μg/L。/pp style="text-align: left text-indent: 2em "此方法主要依据为试样经过微波消解后,其中有机和无机态的汞、砷转变为汞离子、砷离子,汞被硼氢化钾(钠)还原成原子态汞,砷被还原成三价,三价砷形成砷化氢,由载气(氩气)带入原子化器中,在特制空心阴极灯照射下,基态原子被激发成高能态,受激发原子从高能态返回到基态时,发出特征波长的荧光,其荧光强度与汞、砷含量成正比,与标准系列曲线比较,确定试样中待测元素的含量。/pp style="text-align: left text-indent: 2em "7 结束语/pp style="text-align: left text-indent: 2em "(1)生活垃圾成分分析在垃圾处置行业中占有重要的地位,准确分析出生活垃圾的各组分含量,才能了解其特性,才能更好地对其进行资源化、无害化处理,提高生活垃圾协同处置的利用率。生活垃圾成分复杂、波动大,因此选择合适的检测方法至关重要。/pp style="text-align: left text-indent: 2em "(2)水泥窑协同处置生活垃圾不可燃物常规化学分析可以采用氢氧化钠熔样—滴定的方法,有条件的话也可以采用X-射线荧光仪进行检测,其结果准确、速度快,节约成本。/pp style="text-align: left text-indent: 2em "(3)针对不同类型的样品采用不同的检测方法对检测结果的准确性非常重要,生活垃圾可燃物全硫要采用艾士卡法进行测定,而不可燃物三氧化硫采用氢氧化钾碱熔法测定结果比较准确。/ppbr//ppbr//p
  • 高分子表征技术专题——热重分析技术及其在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读.期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献.借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!热重分析技术及其在高分子表征中的应用ThermogravimetricAnalysisTechnologyandItsApplicationinPolymerCharacterization作者:谢启源,陈丹丹,丁延伟*作者机构:中国科学技术大学,火灾科学国家重点实验室,合肥,230026 中国科学技术大学,合肥微尺度物质科学国家研究中心,合肥,230026  作者简介:  丁延伟,男,1975年生.博士、中国科学技术大学合肥微尺度物质科学国家研究中心教授级高级工程师.自2002年开始从事热分析与吸附技术的分析测试、实验方法研究等工作,现任中国化学会化学热力学与热分析专业委员会委员、全国教育装备标准化委员会化学分委会委员、中国分析测试协会青年学术委员会委员.曾获中国分析测试协会科学技术奖(CAIA奖)二等奖,主持修订教育行业标准《热分析方法通则》(JY/T0589.1~4-2020),以主要作者发表SCI论文30余篇,获授权专利7项.编著《热分析基础》《热分析实验方案设计与曲线解析概论》.    摘要  热重分析技术(TGA)是在程序控制温度和设定气氛下表征材料受热过程中的质量随温度或时间变化的高精度研究工具,具有重复性好、灵敏度高和热过程控制精准等优点.近年来,TGA技术在高分子材料领域得到了广泛应用,促进了高分子材料热稳定性、组成分析以及热分解机理等材料细观热响应特性的深入研究.本文分别从热重分析基本原理、仪器校准、实验方案设计、实验操作、热重曲线综合解析以及各环节中易出现的不当操作、异常数据与解决方案等方面进行阐述,并给出了在高分子科学研究领域中的典型应用案例、未来发展趋势及机遇与挑战.在实际的应用中,基于TGA与傅里叶红外光谱(FTIR)、示差扫描量热法(DSC)、气相色谱-质谱联用(GC/MS)等技术的联用分析,将有利于进一步揭示高分子材料在不同气氛和热激励等条件下的详细热响应信息,为性能优异的新型高层分子材料研发与设计、热解机理及燃烧蔓延动力学等领域提供支撑和指导.  AbstractThermogravimetricanalysistechnology(TGA)isanefficientresearchtoolthatcharacterizestheweightofmaterialswithtemperatureortimeunderaprogramcontrolledtemperatureandacertainatmosphere.OneofitsadvantagesisthattheTGAresultscanbewellrepeatedwithhighsensitivity.Inaddition,itsheatingprocessisaccuratelyandflexiblycontrolledaccordingtorealthermalenvironmentofsamples.Inrecentyears,TGAispopularlyusedinthefieldofpolymermaterials,whichpromotesthedetailedanalysesontheirthermalstability,compositionanalysisandthermaldecompositionmechanismetal.ThisreviewwillcovermanyaspectsofTGA,includingbasicprinciples,calibration,schemedesign,curveanalysis,aswellasthosecommonerrorsduringsamplepreparationandexperiments,abnormaldatafiguringandthesolutionforthem.Additionally,thetypicalapplicationcasesofTGAinpolymerscience,aswellastheiropportunityandchallengesinfuture,arealsopresented.IntheapplicationsofTGAtechnology,moreinformationaboutthethermal-responsebehaviorofpolymersunderdifferentatmosphereandheatingconditionscouldberevealedbyTGAcoupledwithFTIR,DSC,GC/MStechnology.Inthiscase,notonlytheweightinformationofsampleduringaspecificheatingcondition,butalsotheendothermicandexothermicbehaviors,releasedgascomponentsatthesametimecanbeanalyzedtogether.Theyarehelpfulfornewpolymerdesign,thermaldecompositionmechanismandflamespreadmodelsdevelopment.   关键词  热重分析技术  曲线解析  热稳定性  热解机理  案例分析  Keywords  Thermogravimetricanalysistechnology  Curveanalysis  Thermalstability  Thermaldecompositionmechanism  Caseanalysis   1热重分析技术简介  1.1热分析技术  作为现代仪器分析方法的一个重要分支,热分析技术在许多领域中得到了广泛应用[1~3].经历一百余年发展,热分析法与色谱法、光谱法、质谱法、波谱法等一起,构成了物质理化性能分析的最常用手段[4].  热分析技术是研究物质随温度变化而发生物理过程与化学反应的一种实验技术[4].该技术的主要理论基础包括:物质的平衡状态热力学、非平衡状态热力学、不可逆过程热力学和动力学等,针对微量样品,通过精确测定其宏观参数,如质量、热量、体积等随温度的变化关系,研究物质随温度变化而发生的物理和化学变化[4].  我国于2008年5月发布国家标准《GB/T6425-2008热分析术语》[5],其中,对热分析技术的定义为:“在程序控制温度(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术.”  国际热分析与量热协会(InternationalConfederationforThermalAnalysisandCalorimetry,ICTAC)根据所测定的物理性质不同,将现有的热分析技术划分为9类17种[6].  1.2热重分析技术的定义  热重分析技术(thermogravimetry,TG)是指在程序控制温度和一定气氛下连续测量待测样品的质量与温度或时间变化关系的一种热分析技术,主要用于研究物质的分解、化合、脱水、吸附、脱附、升华、蒸发等伴有质量增减的热变化过程[4,5].基于TG法,可对物质进行定性分析、组分分析、热参数测定和动力学参数测定等,常用于新材料研发和质量控制领域.在实际的材料分析中,TG法也常与其他分析方法联用,进行综合热分析,从而全面、准确地分析材料的各项热性质.  1.3热重分析的数学表达式  根据定义,样品在热重分析过程的质量随温度或时间的变化,可用下式表示:(1)  或(2)  其中,式(1)多用于等温(或包含等温)条件下测得TG实验曲线,而式(2)则多用于非等温条件下的TG实验曲线.  在实际表示中,为突出“测量”过程,常用重量(weight)来代替质量(mass).  1.4微商热重法简介  微商热重曲线(derivativethermogravimetriccurve,DTG曲线)是TG曲线进行一次微商的结果.因此,DTG曲线表征样品质量随温度或时间的变化速率,其峰值即为样品质量减小的最大速率.对于线性升温加热条件下的DTG曲线,其纵坐标单位一般是%/℃,表示温度升高1℃时,样品的相对质量变化.而对于等温实验,DTG曲线纵坐标单位一般是%/s.  微商热重法的数学表达式为:(3)  线性程序控制温度时,也可用下式表式(4)  式中,β为实验中所采用的加热或降温速率,单位℃/min.  如前所述,DTG曲线表征样品质量的变化速率,因此,为进一步分析样品质量变化的加速或减速特性,类似地,可对DTG曲线进行再次微商处理,得到二阶微商热重曲线,即DDTG曲线.目前大多数商品化仪器,DTG曲线可通过仪器自带的微商处理功能直接转换得到.与TG曲线相比,DTG曲线给出的样品质量随温度的变化速度信息,常常更直接反映了样品失重特性.图1给出了XLPE在10℃/min的加热速率下得到的TG曲线和DTG曲线,由图可见,随着温度的升高,XLPE在410~470℃温度区间急剧失重,交联聚乙烯在此温度区间迅速裂解,样品质量减少约95%,DTG曲线失重峰,对应于TG曲线的失重台阶,而由TG曲线,也可见样品受热失重后最终的残余质量.Fig.1TGandDTGcurvesofXLPEwiththeheatingrateof10℃/mininairatmosphere.    1.5热重分析的优缺点  1.5.1优点  热重法针对微量样品进行实验,具有操作简便、可重复性强、精度高、响应灵敏快速等优点.热重法可准确测量物质在不同受热和气氛条件下的质量变化特征.例如:对于升华、汽化、吸附、解吸、吸收和气固反应等质量可能发生变化的物理和化学过程,都可使用热重法进行检测与分析.此外,对于熔融、结晶和玻璃化转变等往往不形成质量变化的热过程,也可通过热重分析与其他热分析方法联用,给出所关注热行为所在温度区间的样品质量不变信息,从而支撑所针对热过程的热流分析.  由于热重法所测结果可重复性强且精度高,基于热失重数据的动力学参数计算与分析,也更具可靠性.此外,热重法仅需微量样品.因此,针对不同的样品牌号、老化样品的不同区域,都可取样进行细致分析,可深入研究各产品间的细微差异,例如:产品在使用一段时间后的材料分相行为等.  1.5.2缺点  在实际应用中,热重法也存在着一定的局限性,主要包括两个方面:样品质量变化信息表征其复杂热行为的单一局限性、微量样品检测结果与工程尺度样品实际热响应性能的一致性.  首先,对于复杂的材料受热响应性能,热重法主要针对样品在整个受热过程中所形成气相产物溢出而导致的质量减少特征,在不同温度区间或不同受热时刻的细致质量减少信息,是热重分析输出的关键数据.由于大多物理和化学过程往往都伴随着质量的变化,因此,样品的质量变化信息能够很大程度上表征各温度/时间区间的反应强度,然而,若需进一步确定其中详细的反应机理等信息,单凭热重数据往往并不完备.因此,可通过将热重技术与其他分析技术联用,综合分析材料的详细热响应行为.  其次,如前所述,针对微量样品,热重分析可实现其测量结果及其后续计算分析的精确性与可靠性等优点.然而,也正因为所检测样品的微量特性,使其测量结果不一定与工程尺度样品实际热响应性能完全一致,甚至由于实际工程中的复杂传热传质耦合过程,使热重分析不宜简单、直接地进行应用.因此,一方面,进行热重分析时,应首先清晰掌握材料的实际工程应用背景,科学系统地制定热重实验方案,并进行多工况数据的综合分析,从而确保热重分析数据与实际工程应用场景的吻合与一致 另一方面,在条件具备时,基于热重分析结果,应进行一定的放大尺度条件下的实验研究,综合不同尺度条件下的测量结果,给出材料真实热响应性能.  2热重分析仪及其工作原理  2.1工作原理  热重分析仪(thermogravimetricanalyzer)是在程序控制温度和一定气氛下,测量试样的质量随温度或时间连续变化关系的仪器.测量时,通常将装有试样的坩埚置于与质量测量装置相连的试样支持器中,在预先设定的程序控制温度和一定气氛下,进行实验测量与数据实时采集.  热重分析仪的质量测量方式主要有2种:变位法和零位法[4].变位法是根据天平横梁倾斜的程度与质量变化成比例的关系,用差动变压器等检测该倾斜度,并自动记录所得到的质量变化信息.零位法是采用差动变压器法、光学法等技术测定天平梁的倾斜度,通过调整安装在天平系统和磁场中线圈的电流,使线圈转动抑制天平横梁的倾斜.由于线圈转动所施加的力与质量变化成比例,该力与线圈中的电流成比例,通过测量电流的变化,即可得到质量变化曲线.  2.2仪器组成与结构形式  热重分析仪主要由仪器主机(程序温度控制系统、炉体、支持器组件、气氛控制系统、样品温度测量系统、质量测量系统等)、仪器辅助设备(自动进样器、压力控制装置、光照、冷却装置等)、仪器控制和数据采集及处理模块组成.图2给出了热重分析仪的结构组成示意图.Fig.2SchematicoftypicalTGequipmentwiththesampleinaheatingfurnace,whosetemperatureiscontrolledwithaprogram.    根据试样与天平刀线之间相对位置的不同,可将热重分析仪分为3类:下皿式、上皿式和水平式,其结构框图分别如图3~图5所示.Fig.3SchematicofTGequipmentwiththecrucibleatlowerpositionoftheverticalheatingfurnace.  Fig.4SchematicofTGequipmentwiththecrucibleathigherpositionoftheverticalheatingfurnace.  Fig.5SchematicofTGequipmentwiththehorizontal.    由图3~图5可见,仪器质量检测单元的天平与常规分析天平不同.该类天平横梁的一端或两端置于气氛控制的加热炉中,可以连续记录试样质量随温度或时间的变化.温度变化通过加热炉进行程序控制,试样周围温度通常用热电偶实时测量.热天平和热电偶所测数据,由仪器内置软件进行记录与处理线.  2.3基于热重分析的联用技术简介  如前所述,热重分析仪自身存在一定局限性,通常可将其与其他分析技术联用,从而对样品热响应行为进行全面分析.常用联用技术如下所述[4].  (1)同时联用技术.是指在程序控温和一定气氛下,对一个试样同时采用2种或多种热分析技术.主要包括:热重-示差扫描量热联用(TG-DSC)和热重-差热联用(TG-DTA),它们通常统称为同步热分析技术,简称STA.  (2)串接联用技术.是指在程序控温和一定气氛下,对一个试样采用2种或多种热分析技术,后一种分析仪器与前一种分析仪器进行串接.常用可串接联用技术包括:红外光谱技术(IR)、质谱技术(MS)、气相色谱技术(GC)等.此外,对于串接联用技术,可采用2种联用模式,连续串接和间歇串接模式.前者模式下,各联用技术均连续采样分析 而后种模式下,最后一级串接仪器进行间歇式采样与分析.  2.4仪器校准与状态评价  2.4.1仪器的校准  为了确保仪器工作正常和数据准确,在热重分析仪正式投入使用之前和使用期间,需分别对仪器的温度和质量测量器件进行校正.由于不同热重分析仪结构类型的差异,其校准方法存在着一定差别.  2.4.2温度校正  温度校正(temperaturecorrection)是用已知转变温度的标准物质确定仪器的测量值(Tm)和真实值(Ttr)之间关系的操作过程.通过温度校正,可得到以下关系式:(5)  其中,ΔTcorr为温度校正值.  通过温度校正,可以消除仪器的温度测量值与真实值之间的差别.例如:当使用熔融温度为156.6℃的金属In进行温度校正时,若所测熔融温度为154.1℃,则(6)  因此,在温度校正时,测量值应增加2.5℃.  进行仪器温度校正后,通常,还应在相同的实验条件下,使用标准物质进行重复实验,验证测量值与真实值之间的偏离程度.  在实际应用中,当温度范围较宽时,通常需要使用具有不同特征温度的系列标准物质,进行多点温度校正.在实际校正时,可在仪器的校正软件中分别输入相应测量值,由仪器软件生成相应的校正曲线.  对于大多商品化热重分析仪,常用的温度校正方法主要包括以下几种:  (1)居里点法.居里点法是在磁场的作用下,将铁磁性标准物质加热到某一温度时,其磁性很快完全消失而引起质量变化的原理来对温度进行校正的方法[7,8].磁性消失时所对应的温度通常称之为铁磁性材料的居里温度(Tc).居里温度只与材料的组分有关.  通常使用具有确定居里温度值的纯金属或合金作为标准物质,该温度校正过程实质上为磁性温度的测量[9].图6为使用几种磁性标准物质进行校准时得到的TG和DTG曲线.此外,通过该方法可以在单次实验中测量多个磁性样品的转变过程.Fig.6TGandDTGcurvesofseveralmagneticmaterialsfortemperaturecalibrationofTGequipmentwiththeheatingrateof10℃/mininN2atmosphere.    (2)吊丝熔断法.吊丝熔断法通过将熔点已知的纯金属细丝固定悬挂在样品支撑系统附近位置,当温度升高至其熔点时,该金属丝发生熔化并从其支撑件滴落[10,11].通过确定在已知温度熔融而引起的表观质量变化对应的温度,从而校准仪器温度.  (3)特征分解温度法.特征分解温度法是通过结构已知物质的初始分解温度来进行仪器温度校正[12].此处所指的初始分解温度为失重速率达到某一预定值之前的试样温度.标准物质应具有以下特性:在温度达到其特征分解值前具有足够的稳定性 特征分解温度具有重现性 不同来源得到的同种标准物质,其初始分解温度差异较小.  当采用热重分析仪与差热分析或示差扫描量热技术进行联用时,也可利用试样在实验过程中随温度变化而引起的熔融、晶型转变等过程产生的特征热效应,对仪器进行温度校正[13~15].例如:通过一些具有可逆“固↔固”转变或“固↔液”转变过程的物质来进行温度校正.  2.4.3质量校正  常用的质量校正方法主要包括2种:静态质量校正和动态质量校正.  (1)静态质量校正法.在某一个设定的温度和气氛下,通过对已知质量为m0的砝码进行称重测量,确定测量值mi与m0之间的差值∆mc,即:(7)  在仪器的软件中分别输入mi与m0的数值,在之后的测量中,软件将自动扣除质量差∆mc.  (2)动态质量校正法.在实验过程中,质量基线可能随温度发生一定的漂移.质量基线是在不加任何样品的条件下得到的,理论上,该质量在不同的温度下应始终保持为0.为了使得到的质量更接近真实值,通常采用扣除空白基线法和用已知质量的砝码进行动态质量校正方法对不同温度下的质量进行整体校正.  在完成以上质量校正后,可用已知分解过程的标准物质,例如:高纯碳酸钙或一水合草酸钙样品,对校正结果进行验证,评价校正结果是否合理.  2.4.4仪器状态评价  仪器在长时间工作过程中,可能出现一些不易被察觉的状态变化,在这种“亚健康”状态下,所测得异常数据一般不易察觉,此时,实验数据的准确性和重复性往往明显较差.由于不同操作人员对仪器状态是否异常的判断标准不同,从而导致采取的措施之间也存在差异,进而对实验结果带来不同程度的影响.  在分别对热重分析仪的温度和质量进行校正之后,还需要按照相应的检定规程或者校准规范等的要求,对校正结果进行评价,以确认仪器的工作状态是否可以满足实验的要求.  1997年,原国家教委于发布了《JJG(教委)014-1996热分析仪检定规程》[16],其中对于新安装、使用中和修理后的热重分析仪(TG)等仪器的检定做了规范.此外,原国家质量监督检验检疫总局分别于2017年和2002年发布了热重分析仪检定规程《JJG1135-2017热重分析仪检定规程》[17]和《JJG936-2002示差扫描热量计检定规程》[18].  3热重分析实验方案设计  3.1实验方案设计的重要性  热重实验方案设计决定着实验成败.如前所述,热重仪具有多种结构形式,在实际应用中应首先根据实验需求,选择结构形式合适的热重仪[19].例如:当需要研究易氧化试样在惰性气氛下的热行为时,应选择具有较好密封性的热重仪.此外,对于一些重量变化不明显的过程,在选择仪器时,应考虑仪器的天平质量测量灵敏度和量程.  在选定合适的热重分析仪后,还需要选择合适的实验条件,主要包括以下几个方面:试样状态(粉末、薄膜、颗粒、块体等)、试样用量、试样容器的材质和形状、实验温度范围及控制方式、实验气氛的种类和流速,以及其他条件,包括湿度控制、光照等.  此外,在实验过程中所用试样的来源、前处理方式、试样容器以及实验所用仪器自身的差异等,也可能对最终的实验结果带来影响.如果忽视这些影响因素,往往很难得到较好的热分析实验结果,甚至可能得到错误的实验结论.  3.2实验方案设计的主要内容  3.2.1热重分析仪的选择  选择合适的热重分析仪是确定热分析实验方案的第一步.在进行实验之前,应根据实验目的和样品信息,选择合适的热重分析仪.这里所指的热重分析仪,不仅仅局限于独立式热重分析仪,还包括与热重分析仪联用的热重-差热分析仪、热重-示差扫描量热仪、热重/红外光谱联用仪、热重/质谱联用仪、热重/气相色谱/质谱联用仪等形式的热分析联用仪.  在实际应用中,对于下皿式、上皿式和水平式等不同结构形式的热重仪,其性能参数(如灵敏度、控温精度等)、气氛气体的流动方式、实验温度范围、温度变化速率范围等存在一定的差异.此外,有时需要根据特殊的实验目的,在真空、高压、还原气氛、强氧化气氛、腐蚀性气氛、蒸汽等特殊条件下进行实验,此时,更应关注所选热重仪是否满足实验要求.  如前所述,在一些应用中,除了需要得到样品在加热过程中的质量信息之外,还需测量其中的热效应、生成气体种类和含量等,此时,则应采用与热重分析仪联用的相关仪器.  关于商品化热重分析仪的选用,经过近几十年的发展,当前,国外主流仪器厂商如德国Netzsch、美国TA、美国PerkinElmer、瑞士MettlerToledo等均生产有适用不同温度范围的热重分析仪和TG-DSC同步热分析仪,各型号仪器的灵敏度与可重复等性能都可满足聚合材料的常规性能测试要求,且大多均可配置自动进样器等辅助配件,提高仪器工作效率.此外,上述仪器厂商所产热重分析仪可与红外光谱仪、气相色谱仪、质谱仪中的一种或者多种进行联用,对逸出气体组分等进行综合测量.各仪器厂商的联用技术与方式存在一定差异,以满足不同的领域需求.不同型号仪器的联用技术也各有优势,应根据实际需求,合理选用.其中,德国Netzsch公司的多级热分析联用仪可实现热重分析仪与红外光谱仪、质谱、气质联用仪的联用,可以分别实现红外光谱仪与质谱、气质联用仪串接式联用和并联式联用的连接形式 瑞士MettlerToledo公司的热重分析/红外光谱/气质联用仪可实现多段气体的采集与分析功能 美国PerkinElmer公司的热重分析/红外光谱/气质联用仪可以通过八通阀的灵活切换,实现在线分析和分离分析等多模式实验测量.  3.2.2实验操作条件的选择  由热重实验得到的曲线受操作条件的影响十分显著,在应用中,应针对影响热重曲线的因素,选择合适的操作条件.主要包括:试样状态、实验气氛、温度控制程序、实验容器或支架、环境特殊实验条件、采集软件参数等.  (1)试样量/试样形状的选择.由于热重分析仪器的种类、结构形式以及实验条件等因素的差异,不同的热分析仪器对试样量或试样形状的要求差别较大.  通常情况下,热重实验的样品用量为坩埚体积的1/3~1/2.对于密度较大的无机样品,试样质量一般为10~20mg 对于在实验过程中不发生熔融的样品,在确保仪器安全的前提下,可适当加大试样量.热分析串接联用的仪器对试样的要求,与该类热分析仪对试样的要求相同.  在实际应用中,大多数热重实验对样品状态没有严格的要求,液态、块状、粉状、晶态、非晶态等形式均可以进行热重实验.实验前,可以不进行专门的处理,直接进行测试.对于较潮湿的样品,一般在实验前需进行干燥处理,以避免因溶剂或吸潮而引起曲线失真.  此外,实验时,所用试样的粒度及形状也可能影响所得热分析曲线的形状.试样粒径的不同,往往引起气体产物扩散变化,导致气体的逸出速率变化,从而引起曲线形状的变化.一般情况下,试样的粒径越小,反应速率越快,对应曲线的起始分解温度和终止分解温度也降低,同时,反应区间变窄,分解反应也越彻底.  (2)实验气氛的选择.在热重实验中可选择的气氛通常为静态(真空、高压、自然气氛)或动态气氛(氧化性气氛、还原性气氛、惰性气氛、反应性气氛),实验时,应根据需要,选择合适的实验气氛和流速.实验气氛的流速一般不宜过大,过大的流速往往导致较轻试样来不及发生完全分解而被气流带离测量体系,从而影响热分析曲线的形状.另一方面,过低的流速也不利于分解产物及时排出,往往使分解温度升高,严重时可能影响反应机理.  在选择实验气氛时,应明确实验气氛在实验过程中的作用,这里给出几种常用选择原则:如果仅是通过气氛使炉内温度保持均匀、及时将实验过程中产生的气体产物带离实验体系,通常选用惰性气氛 如果需要研究试样在特定气氛下的行为时,应选择特定的实验气氛,此时的气氛的作用可以是惰性气氛,也可以是反应性气氛 当需要研究试样在自然气氛下的热行为时,样品室无需通入气氛气体,将流速设为0或者关闭气体开关,此时,若试样发生分解,可能污染检测器 对于相邻的2个过程,可通过改变实验气氛,实现相邻过程的有效分离 对于含有复合材料或含有有机物的混合物,可根据各组分在不同温度范围发生的热分解过程,确定热稳定性不同的组分的含量 当使用反应性气氛时,应充分评估气氛对仪器关键部件的安全性,某些反应性气氛如H2、纯氧等在高温下可能与仪器的关键部件发生反应,对仪器造成不可逆的损害.  (3)温度控制程序的选择.在热重实验中,所采用的温度控制程序主要包括加热、降温、等温以及这些方式的组合等形式,其中,主要包括温度扫描速度和温度范围的确定.  对于温度扫描速率,若采用线性加热或降温过程,采用较快的加热速率,可有效提高仪器的灵敏度,然而可能导致分辨率下降,从而使相邻的过程较难分离.一般情况下,在实际应用中,应综合考虑转变的性质和仪器的灵敏度,综合选择一个合适的温度扫描速率.对于热重实验,最常用的温度扫描速率为10℃/min.  对于温度范围,应根据样品的性质和实验目的,进行合适选择.大多热重实验从室温开始进行,最高温度基于实验中可观察到所关注变化过程进行设定.对于热稳定性较低的物质,最高实验温度以覆盖物质的分解过程即可,不设为仪器可达最高温度.  在进行等温实验时,从开始温度达到设定温度所需的时间越短越好,即热惯性越小越好,以避免所关注的变化在达到设定温度的过程中已经发生.  (4)实验容器或支持器的选择.对于热重分析仪,其测试对象主要呈粉末状,通常用坩埚盛装样品.无论是坩埚还是支架,在实验过程中均不能与试样发生任何反应.  一般来说,用于热重实验的坩埚主要有敞开式和密封式2类.常用坩埚的材质有铝、石墨、金、白金、银、陶瓷和不锈钢等,实验时,应根据样品的状态、性质和测量目的合理地选择坩埚的形状和材质.  对于剧烈分解的样品,在热重实验中,应尽量减少试样用量,且应多使用浅皿坩埚.同时,应增大气氛气体的流速,从而及时带离分解产物.当使用敞口坩埚时,若出现迸溅现象而使试样未完全分解却被带出坩埚的情形,可通过坩埚加盖扎孔的方法解决.即,在盖子中心位置扎一个圆形小孔,以便实验过程中产生的气体及时逸出.与不加盖时的结果相比,由加盖坩埚所得热分析曲线形状往往明显变化,相应特征温度也升高.  在选择坩埚材质时,还应考虑坩埚需承受的最高温度及其惰性特征,例如:铝坩埚的最高使用温度不超过600℃.如需进行更高温度实验,可选用金坩埚或铂坩埚.而分解反应的热重实验一般不用铝坩埚,常用氧化铝、陶瓷、铂、铜、不锈钢等材质.由于铂对棉纤维、聚丙烯腈等物质反应具有催化作用,因此,若样品中含磷、硫和卤素,则不可用铂坩埚.此外,陶瓷类坩埚通常不适用于碱性物质、含氟聚合物及硅化合物的热重实验.  (5)环境特殊实验条件的选择.进行热重实验时,有时还需根据实验目的和样品种类,选择是否需要控制环境湿度、磁场、电场、光照等条件.  在实际应用中,应结合具体的实验目的,判断所使用的热分析仪能否满足实验要求的特殊条件,仪器通常以附件的形式来实现上述的特殊实验条件.  (6)数据采集频率的设置.通常情况下,1数据点/s的采集频率足以准确记录试样质量变化信息.对于一些非常快的变化过程,仪器默认的数据采集频率无法实时记录下该过程中的变化信息,此时,应增大采集频率.而对于耗时较长的等温实验或较低加热速率的实验,则不宜使用1数据点/s的采集频率,应降低数据采集频率.  4热重实验过程  4.1样品准备  理论上,一切非气态的试样都可以直接通过热重实验,测量其质量在一定气氛和程序控制温度下随温度或时间的连续变化过程.待测样品,应根据实验目的,进行合理制样或取样,并标明相应信息.由于热重实验所需样品量极少,应避免样品局部取样和混合不均等问题.此外,由于由不同状态的试样所得热重曲线的差别往往较大,因此,选择合适的试样状态对能否得到合理的实验结果十分关键.一般来说,不同状态的试样需做一些相应的处理才可用于热重实验.  4.2实验测试  在完成样品准备和实验条件选择之后,即可开始进行热重实验测量.整个测量过程主要包括:仪器准备、样品制备、设定实验条件和样品信息、开始实验等过程[4].  4.2.1仪器准备  若实验室供电正常,热重实验仪一般24h开机,当重新开机时,应开起仪器使其至少预热平衡30min.若仪器虽在正常使用中,调整了气氛气体,也应使仪器在调整后气氛条件下,平衡至少30min,以使炉内气体浓度保持一致.  在仪器处于平衡稳定的状态下,正式开始实验前,还应对实验中使用的坩埚进行质量扣除,即,“清零”操作,具体做法如下:  (a)将一个洁净的空坩埚置于样品支架或吊篮上,若热重仪为水平式或上皿式,应在参比支架上放置一个质量相近的同类型坩埚.关上加热炉,使天平所测质量几乎不变,几分钟后,按下面板上或仪器控制软件中的“清零”按钮.完成这一操作后,若显示的质量变化很小,则表明实验中所用的坩埚的空白质量已经扣除,装入试样后,软件显示的质量即为试样绝对质量.  在热重实验过程中,若坩埚需使用扎孔上盖或坩埚内需加稀释剂,则坩埚盖或所加稀释剂质量也应扣除.  (b)打开加热炉,将坩埚取下,用于盛装待测实验样品.对于配置自动进样器的热重仪,可集中对多个空白坩埚依次进行清零操作,软件将对自动进样器中各编号坩埚清零过程中的质量差异进行分别记录,使用时,应避免混淆坩埚顺序.  4.2.2制样  将待实验的试样放入已扣除空白质量坩埚中,试样量一般不应超过坩埚体积的1/3~1/2.对于含能材料等在高温下易剧烈分解或可熔融样品,试样用量能覆盖坩埚底部即可.对于易剧烈分解样品,也可使用较大尺寸坩埚或加入稀释剂的方法,减少试样热分解过程对支架或吊篮的损害.  对于组成不同、结构相近的系列试样,为消除试样量对实验曲线的影响,同一系列实验中,各次试样用量应相近.  将适量试样加入至坩埚后,可用镊子夹住坩埚在桌面上轻敲几次,使试样均匀分布于坩埚底部.对于易挥发、不稳定的液体黏稠试样或易吸潮的粉末试样,应尽快加载和摇匀坩埚内试样,减少试样在空气中的变化.  之后,打开加热炉,用镊子将坩埚置于热重仪的吊篮或支架上,并及时关上加热炉腔体,待试样信息设置完毕和样品质量读数稳定后,即可开始实验.  对于一些较易挥发的液体试样,在天平清零操作后,应提前在控制软件中设定相应信息,从而缩短实验开始前的等待时间.  4.2.3设定试样信息和实验条件等信息  目前的商品化热重仪都配有相应的控制软件和数据分析软件,不同厂家的仪器的软件界面各不相同,但在软件中需输入的试样信息和实验条件等大多相似.在软件中所输入的信息,可在后期的数据分析过程中查看.  在正式实验开始前,控制软件中应输入的信息主要有:  (1)样品信息.包括样品名称、编号、送样人、实验人、批次、文件名等.目前大多数热重仪软件不支持中文输入,建议多用英文字母和数字,尽量避免使用“%、?、/”以及汉字等字符.  当使用自动进样器时,除以上信息外,还应输入坩埚所对应的位置序号.  (2)实验条件信息.主要包括试样质量、温度程序信息、坩埚参数、气氛种类及流速以及数据采集频率等其他信息.  4.2.4运行实验测量  信息输入后,待试样质量稳定,即可按下控制软件中的“开始”按钮开始实验,加热炉即按设定温度控制程序对试样进行加热、降温、等温等操作,数据将自动保存.实验结束后,包括试样参数、实验程序、实验数据等信息将各自单独生成文件,供后续数据分析与处理所用.  由于热重仪天平的灵敏度较高,实验过程中,工作台附近不可出现较大的振动,加热炉出口区域也不应有较大气流波动.  5热重实验曲线解析  5.1曲线解析概述  热重曲线解析是热重实验过程的重要环节,是获得所测式样热响应特性的关键步骤,曲线解析主要包括以下几个步骤[19]:实验数据导入与基本分析、运用作图软件进一步分析、热重曲线描述、热重曲线初步解析、热重曲线综合解析以及实验报告或科研论文撰写.  5.2在仪器分析软件中的基本数据处理  5.2.1仪器分析软件中实验数据的导入  各组热重实验完成后,在仪器附带的数据分析软件中,可导入数据文件并进行数据处理与分析,不同厂商的数据文件的格式可能存在一定的差异,但都可转化输出为Excel等通用软件可读格式文件,以便于后续数据处理与分析.  5.2.2仪器分析软件中的基本作图  为了便于分析,首先可在软件中对测得的热重曲线的纵坐标进行归一化处理,将纵坐标由绝对质量换算为相对质量.对于仅含一个线性加热程序的热重实验,热重曲线常以温度为横坐标.对于温度程序中含有一个或多个等温段的实验,则其横坐标常用时间,此时,在图中也可作出“温度-时间”曲线,以显示各时刻温度.  5.2.3仪器分析软件中的曲线数学处理  在仪器附带的数据分析软件中打开数据文件并进行基本作图之后,也可直接对数据进行换算、求导、积分、平滑等进一步的数学处理.  5.2.4仪器分析软件中确定曲线的特征物理量  热重曲线中质量变化反映了试样性质随温度的变化特性,对于一个变化过程,一般用温度和质量同时描述.常用的特征温度主要包括初始温度(initialtemperature,一般用Ti表示)、外推起始温度(extrapolatedonsettemperature,Tonset)、终止温度(finaltemperature,Tf)、外推终止分解温度(extrapolatedendtemperature,Tendset)、n%分解温度(n%temperature,Tn%)和最快质量变化温度(DTG峰值温度,peaktemperature,Tp),直接使用分析软件,即可在图种标出上述特征温度.  图7给出了热重曲线中各特征温度的位置示意图,具体确定方法如下所述:Fig.7CharacteristictemperaturesinTGcurves(PointA:Initialtemperatureaccordingtoacertainmassloss PointB:Initialtemperatureaccordingtoacertainmasslossrate PointC:Extrapolatedonsettemperature PointD:Extrapolatedendtemperature PointE:Initialtemperatureaccordingtotheintersectionpointofaspecificlineandthebasetemperatures PointF:Endtemperatureaccordingtotheintersectionpointofaspecificlineandthebasetemperatures PointG:Temperatureforthemaximummasslossrate).    (1)以失重数值达到最终失重量的某一百分数时的温度值作为反应起始温度(Ti,图7中A点) 此外,n%反应温度为质量减少n%时的温度,可直接由热重曲线标出(Tn%),常用的n%分解温度主要有0%、1%、5%、10%、15%、20%、25%、50%时的Tn%,其中,0%分解温度特指试样保持质量不变的最高温度.  (2)以质量变化速率达到某一特定数值时的温度作为反应起始温度(Ti,图7中B点).  (3)以反应到达到某一特征点(如:热重曲线斜率最大)时热重曲线的切线与平台延伸线交点所对应的温度作为“外推反应起始温度”(Ti,图7中C点)和“外推反应终止温度”(Tf,图7中D点) 与Ti和Tf相比,Tonset和Tendset受人为主观判断的主影响较小,常用来表示试样的特征分解温度,而Ti和Tf则常用来表示质量变化范围的起止温度.  (4)以反应达到热重曲线上某2个预定点的连线与平台延伸线交点所对应的温度作为反应的起始温度(Ti,图7中E点)和反应终止温度(Tf,图7中F点).  (5)由微商热重曲线中得到的最快质量变化温度也称最大速率温度或微商热重峰值温度(Tp),是指质量变化速率最大的温度(图7中G点),可直接由微商热重曲线的峰值获得,Tp对应是最大质量变化速率,常用(dm/dt)p表示.  在实际应用中,何种方法所确定的初始温度等特征值,往往都存在一定的特殊性和局限性.如图7所示,常用C点外推起始温度或A点预定质量变化百分比(通常为5%)温度来表征物质的热稳定性.  5.2.5专业绘图软件的绘图与处理  当前,大多商品化仪器所附带的数据分析软件都可进行多条曲线的对比分析,也可在软件中直接进行曲线上下移动和线型颜色等编辑.然而,为进行更专业和细致的数据分析与对比,往往将数据转化输出为Text、Excel等通用格式文件,从而采用Origin、Matlab、Tecplot等专业作图软件进行分析,尤其是对多工况、多样品复杂系列实验测量结果的综合分析,即可给出静态的2D和3D图,也可根据实验研究目标,重构特征参数的时空演化动态视频,以满足实验报告、科研论文以及现场交流视频等需要.  5.3热重曲线的解析  5.3.1热重曲线的初步解析  热重曲线的初步解析主要包括如下几点.  (1)结合样品信息解释曲线中发生的变化.曲线中各典型温度区间或时刻所发生变化与样品结构、成分、处理工艺等信息密切相关.  (2)结合实验条件信息解释曲线中发生的变化.实验时采用的实验条件对热重曲线的影响较大,应结合实验所采用温度控制程序、气氛等信息,初步解释热重曲线主要特征形成的主要原因.  5.3.2热重曲线的综合解析  进行材料热响应特性研究时,采用多种实验测试方法进行综合分析,有利于更加客观、全面地揭示其中的本质特性及其影响机制.综合解析主要包括如下几个方面.  (1)通过多种分析技术与热重曲线进行互补与验证分析.例如:通过热重曲线可以得到一定范围内的质量变化信息,对于结构较复杂的物质而言,仅通过热重曲线较难准确获得在实验过程中的结构变化信息.通常利用与热重仪联用的红外光谱、质谱和气相色谱/质联用技术,综合分析在质量减少过程中产生的气体产物信息,从而获得实验过程中样品结构变化特征.  (2)通过外推法对热重曲线进行分析.由于热重曲线大多是在动态温度条件下测得,对应特征量为非热平衡状态的测量值.因此,可进行不同温度扫描速率条件下的系列热重曲线分析,将所得系列特征转变温度对温度变化速率进行数据拟合,并进行0温度变化速率条件下的外推,获得准平衡状态下的特征值.  6在高分子科学中的应用进展  由于可准确地测量物质受热过程中的质量变化及其变化速率,热重法在高分子科学中得到了广泛应用,对于升华、汽化、吸附、解吸、吸收和气固反应等物理和化学过程,都可进行定量检测.近年来,主要应用包括以下几个方面.  6.1聚合物中添加剂的影响  高分子聚合物中添加各类改性物质,是高分子材料设计与性能提升的重要研究方向.聚合物中各添加剂含量的测定,是其性能分析与配方设计的关键环节,根据各物质热稳定性差异,可由TG曲线确定添加剂的含量[20~24].  Dorez等[25]基于TG方法,研究了聚磷酸铵(APP)、磷酸二氢铵(DAP)和磷酸(PA)3种阻燃添加剂分别对聚丁二酸丁二醇酯(PBS)/亚麻纤维(Tfl)复合高分子材料热解性能的影响.图8给出了不同阻燃添加剂条件下的复合高分子聚合物TG曲线和DTG曲线,可见,其热解过程主要分2个阶段.对于不含阻燃添加剂的PBS+Tfl,样品被加热到约370℃时,其TG曲线有一个与亚麻纤维热解对应的肩形失重,而由图8(b)所示的DTG曲线可见,PBS热解主峰在400℃位置.在该复合高分子材料中添加3%质量的APP、DAP和PA后,其热解行为主要呈现2个显著变化.首先,材料的初始热解温度更低,由图8(b)所示的各DTG曲线可见,添加APP、DAP和PA的PBS+Tfl复合高分子材料分别在277、309和259℃出现第一个热解峰,这些热解峰比亚麻热解峰更早.因此,亚麻纤维热稳定性的降低,主要归因于所添加阻燃剂分解产生的磷酸对纤维素的磷酸化作用,该反应改变了纤维素的热解路径,从而有利于亚麻脱水,并形成含碳残留物.此外,PBS+Tfl原复合高分子材料的Res600为7.0%,而添加了APP和PA的材料的Res600为11.7%,可见,阻燃添加剂的加入,使得样品热解后的残留物显著增多.其次,PBS+Tfl原复合高分子材料的DTG峰值温度为400℃,而添加阻燃剂后的DTG峰值温度范围为375~380℃,即,主要热解温度区间降低,主要归因于PBS的热水解反应.Fig.8TG(a)andDTG(b)curvesofPBS+TflandFPBS+Tflwith3wt%variedphosphorousadditives(APP:AmmoniumPolyphosphate DAP:Dihydrogenammoniumphosphate PA:Phosphoricacid)(ReprintedwithpermissionfromRef.‍[25] Copyright(2014)Elsevierpress).    6.2混合物中各组分含量分析  为增强高分子材料的强度、硬度及阻燃等性能,实际使用的高分子聚合物材料中常常包含各类无机和有机组分,TG法也常用于分析确定复合材料和天然高聚物中各组分含量分析[26~28].  Rego等[28]针对9种树木样品,采用热重分析法,基于纤维素、半纤维素、木质素和水分4组分模型,通过高斯方程优化拟合,给出了各树木样品的组成,如表1所示.Table1Lignocellulosicscontents(%mass,drybasis)inthesamplesofpoplargenotypes(ReprintedwithpermissionfromRef.‍[28] Copyright(2019)Elsevierpress).  图9给出了其中一种木材样品(grimmingegenotype)的曲线拟合结果,如图所示,通过4组分热重曲线的叠加包络曲线,与实验测量的样品热重曲线吻合度高.  Fig.9ExperimentalanddeconvolutedDTGprofileforGrimmingegenotype.Curvesoffourcomponents(water,hemicellulose,celluloseandlignin)andthecombinedoneareshownforcomparisonwiththeexperimentalresults.(ReprintedwithpermissionfromRef.‍[28] Copyright(2019)Elsevierpress).    图10为氧化石墨烯(GO)和聚丙烯/氧化石墨烯/四氧化三铁(PAA/GO/Fe3O4)纳米复合材料的TG曲线[29].由图可见,对于GO样品而言,由于样品中含氧官能团的分解,TG曲线在250~350℃范围内出现明显了的重量损失.另外,在425~625℃温度范围的质量损失是GO在空气中碳的燃烧引起的.因此,在水溶性的PAA/GO/Fe3O4纳米复合材料的热重曲线中:(1)在50~150℃范围的重量损失是在样品表面物理吸附的残余水引起的 (2)在150~250℃温度范围的重量损失是在合成时加入的有机溶剂和表面活性剂引起的 (3)在350~500℃之间的重量损失是PAA的氧化分解引起的 (4)500~630℃之间的重量损失是GO在空气中碳的燃烧引起的 (5)630℃以上,在实验的温度范围内,质量没有发生明显的变化.Fig.10TGcurvesoftheGO(a)andPAA/GO/Fe3O4(b)nanocomposites(GO:Grapheneoxide PAA:Polyacrylicacid).ForGO,aweightlossfrom250-350℃isascribedtothedecompositionofoxygen-containinggroupsofGO.Theothermasslossfrom425℃to625℃isattributedtotheburningofcarboninGO.ForPAA/GO/Fe3O4,thelossstepover50-150℃mightbeduetothelossofresidualwateradsorbedphysicallyinthesample.Theweightlossaround350-500℃wasduetotheburningofPAA.Theweightlossoverthetemperaturerangeof150-250℃isattributedtotheresidualorganiccompoundsinthesample.(ReprintedwithpermissionfromRef.‍[29] Copyright(2013)TheRoyalsocietyofChemistry).    综合以上分析,由TG曲线可以确定,在PAA/GO/Fe3O4纳米复合材料中PAA:GO:Fe3O4的重量比是1:1:3.基于PAA/GO/Fe3O4纳米复合物的重量和PAA的平均分子量分析,可以估算得到每2个PAA分子连接一个纳米颗粒.  6.3TG-FTIR联用分析案例  Plassauer等[30]针对聚氨酯丙烯酸酯(PUA)和添加了磷酸酯聚氨酯丙烯酸酯(PUA-FR),采用TG-FTIR联用技术,研究了其热解特性.图11中给出了2种样品的TG-DTG曲线,同时,可见,PUA的热解过程主要分为4个阶段,各阶段质量损失分别为4.3%、24.4%、15.9%和52.8%.此外,图12中给出了PUA和PUA-FR在典型温度下的热解产物FTIR吸收光谱.  Fig.11TG(solidlines)andDTGcurves(brokenlines)ofPUAandPUA-FRunderpyrolyticconditionswiththeheatingrateof10℃/mininN2atmosphere.PUA:polyurethaneacrylate PUA-FR:flame-retardantPUAtreatedwithtris(1-chloro-2-propyl)phosphate(ReprintedwithpermissionfromRef.‍[30] Copyright(2021)Elsevier).    Fig.12(A)FTIRspectraofvolatilecomponentsandgaseousdecompositionproductsofPUAobtainedatdifferentpyrolysistemperatures:(a)200℃,(b)290℃,(c)350℃,(d)470℃ (B)FTIRspectraofvolatilecomponentsandgaseousdecompositionproductsofPUA-FRobtainedatdifferentpyrolysistemperatures:(a)290℃ (b)350℃ (c)450℃ (d)510℃(ReprintedwithpermissionfromRef.‍[30] Copyright(2021)Elsevier).    综合其热解失重曲线和热解产物吸收光谱图,可见,第一阶段(135~200℃),主要是PUA中PMMA-PHEMA段的初始热解,然而,样品中残留溶剂的蒸发量更大,成为该阶段主要生成物.  在第二阶段(266~310℃),聚丙烯酸酯主链的随机断链更为显著,形成的丙烯酸酯单体是该阶段PMMA-PHEMA段分解的主要产物.  第三阶段(348~385℃),生成了较多的二氧化碳,表明MMA/HEMA单体的分解可能与丙烯酸酯的自由基脱羧有关.对于PUA-FR样品,由于TCPP对聚丙烯酸酯具有中断其释放自由基的作用,因此抑制了该阶段的热解反应,同时由于生成了具有更高热稳定性的含碳产物和聚磷酸盐,并通过酯侧链的脱羧释放出二氧化碳,从而达到阻燃效果.  第四阶段(456~506℃),发生了HDI异氰尿酸盐和少量含羟基部分的快速释放,可见该阶段主要发生氨基甲酸酯键的解离,而从PUA的气体分解产物红外数据,可进一步看出由于氨基甲酸酯键的脱羧和相关尿素的分解,形成了氨基己基异氰尿酸盐.此外,对气体和固体分解产物的红外光谱分析表明,当温度超过400℃时,异氰尿酸盐分解为三聚氰酸和异氰酸.  6.4TG-DSC/MS联用分析案例  Mas等[31]针对二氨基顺丁烯二腈(DAMN),通过TG/DSC-MS联用,研究了DAMN的热解特性,图13给出了氩惰性气氛和20℃/min的升温速率条件下的TG、DSC和MS实验曲线.Fig.13(a)TG,(b)DTGandDSCcurvesand(c)temperature-dependentioniccurrentvariationoftheDAMNattheheatingrateof20℃/mininargonatmosphere.DAMN:Diaminomaleonitrile(ReprintedwithpermissionfromRef.[31] Copyright(2021)Elsevier).    由图13(a)可见,样品受热升温至300℃时,质量损失18%,在温度升高至其熔融转变温度(约180℃)时,DAMN已经开始热解.由图13(b)中的DTG曲线可见,该曲线反映了若干个互有重叠的分解反应,针对DTG曲线的进一步分析表明,其中包含多个DTG峰值的叠加.通过反卷积法,对叠加包络曲线进行分离处理,结果表明,该DTG曲线至少包含2个同步反应.  进一步的耦合峰值反卷积法分析表明,曲线包含3个高斯峰值,其中,如图13(b)可见,前2个峰值较低,而在较高的温度215℃处,有显著更大的另一个峰值.此外,由图13(b)中的DSC曲线可见,在由于材料熔融相变引起的第1个吸热峰位置,存在明显的少量质量损失.  图13(c)给出了DAMN热解反应中的主要气体产物的质谱曲线,其中,由图中所示的m/z=27(HCN+)碎片吸收峰值所在温度可见,脱氢氰酸化反应主要发生于上述热失重曲线的后期,而16(NH2+)、17(NH3+)和18(NH4+)碎片的变化过程,反映的是热过程中的脱氨和脱质子反应.  上述4个碎片的离子电流随温度的变化分布曲线表明,它们在195~225℃温度区间形状相似,并与图13(b)中所示的质量损失速率曲线一致.此外,m/z=28(N2+)和26(CN+)的2个相对低强度质谱曲线,也表明在熔融聚合过程中发生了脱氨和脱氰过程.  6.5热解反应动力学分析  对于大多反应体系,其动力学模型可用式(8)描述.(8)  式中α为体系反应进度或转化率,无量纲 T为温度,K β为升温速率,K/min k(T)为温度对反应速率的影响函数,1/min f(α)为反应进程对反应速率的影响机理函数,无量纲.  转化率α可用式(9)进行计算.(9)  其中m0为样品初始质量,mg m为样品当前质量,mg m∞为结束时样品残余质量,mg.  对于式(8)中的k(T),主要可用2种模型,一是较为通用的阿伦尼乌斯公式[32],如式(10)所示 二是如式(11)所示的H-E模型[33],较不常用.(10)(11)  式中,A为指前因子,1/min E为活化能,J/mol.R为气体常数,J/(molK) C为常数 m为幂指数.  反应进程机理函数f(α)描述了样品反应速率与物质自身含量的关系,不同的反应机理存对应各自的反应进程机理函数形式.其中,最为通用的是n级反应模型,如式(12)所示.(12)  式中,n即为反应级数.  综合整理式(9)、(10)和(12),可得完整的反应动力学模型,如式(13)所示.(13)  可见,上式中主要包含3个动力学参数(A,E,n),它们综合表征了样品热解反应的详细进程,因此,样品热解动力学分析的核心,即为动力学三参数(A,E,n)的求解.在众多求解方法中,常用方法有3类:微分法、积分法和GE算法,其中,前2类为线性分析法,而GE算法为非线性求解法,以下分别介绍.  6.5.1微分法  微分法通常直接针对式(13)进行求解,对于样品仅在单一扫描速率条件下的热重过程进行动力学分析,可称为单扫描速率法.基于n级反应假设,常用的单扫描速率法包含如下3种.  (a)Freeman-Carroll公式[34],通过作图可以由斜率得到活化能,如式(14)所示.(14)  (b)当n=1时,可用Newkirk公式[35],如式(15)所示.(15)  取2个实验点T1和T2,则有:(16)  (c)Achar-Brindley-Sharp公式[36],如式(17)所示(17)  采用不同f(α)函数,由以上线性方程的斜率获得E,由截距求得A.  针对不同扫描速率下测得的多条热重曲线,进行动力学分析的方法称为多重扫描速率法.实际应用中,基于微分形式的多重扫描速率法有以下几种.  (a)Kissinger-Akahira-Sunose公式[37],针对不同升温速率(β)下所测热重曲线峰值对应的温度Tp,可得到式(18),由该线性方程的斜率,可确定E,由截距可确定A.(18)  (b)Friedman公式[38],对于多条不同升温速率β下的热重曲线,选择等转化率α处,有式(19).(19)  由斜率可以求得E,截距为ln[Af(α)].  如果结合n级反应模型假设则可得:(20)  结合不同的α,由式(19)可得确定不同的截距,再基于式(20),由斜率可求得n,由截距可求得A.  此外,还有Vachuska和Vobril法[39]等,在此不再赘述.  6.5.2积分法  积分法则是通过对温度或者时间积分得到g(α)如式(21)所示.(21)  常用的积分法有如下几种.  (a)Horowitz-Metzger公式[40],如式(22)所示.  译(22)(23)  式中,Tr为满足1-α=1/e的参考温度,单位K.θ为当前温度和参考温度的差值,单位K.作lng(α)~θ图,即可由斜率确定活化能.该模型后来进一步修改为Dharwadkar-Karkhanavala公式[41],如式(24)所示.(24)  其中Ti,Tf分别为反应开始和结束的温度,单位K.  (b)Coats-Redfern公式[42],首先,采用Taylor展开取近似,得式(25)(25)  由于RT/E~0,所以,1−2RT/E≈1.式(25)可近似为式(26)(26)  即可基于斜率和截距值,算出E和A.  (c)Flynn-Wall-Ozawa公式[43~45],如式(27)所示.(27)  针对不同的升温速率β下的曲线,在等转化率α处的温度T,作lgβ~1/T图,由斜率可到E.  此外,还有Zsako公式[46]和Satava-Sestak公式[47]等,在此不赘述.  6.5.3非线性动力学求解  随着计算机科学技术的发展,可将动力学三参数的求解转化成一个迭代优化过程,即,将各参数代入反应动力学公式,根据所计算热重曲线和实际热重曲线的误差,调整参数,最终基于误差最小原则,给出最优动力学三参数值.  Tang等[48]针对PVC热解,基于3个平行反应模型,构建动力学计算公式,如式(28)所示.(28)  总的反应转化率则是3个平行反应的叠加,如式(29)所示.(29)  对式(28)中的3个平行反应进行独立求解,其显示差分格式如式(30)所示.(30)  具体计算过程中,可采用当前流行的优化求解方法:遗传算法(GeneticAlgorithm),基于该算法的不断“自然选择-繁殖”迭代,直至达到目标拟合精度.式(31)给出了评价优化参数好坏的误差函数Φ表达.(31)  其中,Φ为模型预测结果和实验值之间的误差 γ为实验和模型预测的反应进度速率(DTG)之间的误差占总误差的权重 α˙exp,i为实验测量的反应速率,1/K α˙cal,i为当前动力学三参数下计算出的反应速率,1/K α˙exp¯¯¯¯¯¯为实验测量的反应速率的均值,1/K αexp,i为实验测量的无量纲反应进度 αcal,i为该动力学3参数下计算出的无量纲反应进度.αexp¯¯¯¯¯¯为实验测量的反应进度均值.M为在特定升温速率下实验数据点的数目.  Tang等[48]基于遗传算法,进行XLPE热重曲线的拟合结果如图14所示,可见,各升温速率下,可算出与热重实验曲线吻合度很高的动力学三参数.Fig.14DTGcurvesforXLPE(Crosslinkedpolyethylene)pyrolysisinatmosphereatdifferentheatingratesandtheoptimaltheoreticalfittingbasedonsingle-scanmethod.TheoptimizationofpyrolysismodelingisbasedontheGA(Geneticalgorithm)method(ReprintedwithpermissionfromRef.[48] Copyright(2018)Elsevier).    7总结与展望  本文综述了热重分析技术在高分子表征领域的主要进展,旨在帮助大家全面掌握TGA技术的实验原理,提高实验操作与数据分析过程的有效性和准确性,进一步推动TGA技术在高分子表征领域的广泛应用.  TGA分析仪将样品精细加热调控技术与高精度质量测量技术联合,从质量变化角度,对高分子材料等受热过程中的物理与化学变化行为进行直接表征.当前,国内外相关仪器厂商的多款TGA分析仪具有的响应灵敏度、测量精度及操作方便性等各项性能已能满足大多高分子性能表征的需要.关于TGA分析仪的未来发展,主要包括如下几点:(1)进一步提高仪器准确度、灵敏度,以及稳定性 (2)不影响灵敏度的前提下,拓宽TGA分析仪的温度范围 (3)超快加热/降温速率的实现 (4)快速等温实验过程中的热惯性的进一步减小 (5)特殊实验过程所需的仪器附件研发,包括高压真空热解腔、温湿度综合控制器等 (6)与TGA分析仪联用仪器的校准方法及标准物质等方面的进一步发展 (7)仪器软件的功能拓展.  此外,关于基于TGA分析的高分子材料应用研究方面,未来机遇与挑战主要包括:(1)基于高分子材料微量样品的高精度热重数据及其计算参数,发展其对于实际工程的应用性模型,即,通过微量样品热分析参数与尺度放大(Scale-up)模型相结合,推动微量样品热分析结果在工程实际的更好应用 (2)在基于TGA分析的材料动力学模型与参数计算,进一步解决其中的动力学补偿效应(kineticcompensationeffect,KCE) (3)TGA分析技术与DSC、FTIR、GC/MS等仪器的无缝联用优化方案设计和联用数据精确、可靠分析.  最后,近年来,在国家对自主优质测试分析仪的大力资助下,具有自主知识产权的国产热重分析仪的研制呈现一些可喜的进展.未来,随着我国科研水平的不断提高,相信在热重分析仪研发方面也能取得更大突破.同时,我国相关仪器厂商也应一步一个脚印、不断提升自主创新能力,才能在日益激烈的热分析市场竞争中处于不败之地.  参考文献  1  SeifiaH,GholamibT,SeificS,GhoreishiaSM,Salavati-NiasaribM.JAnalApplPyrolysis,2020,149:104840.doi:10.1016/j.jaap.2020.104840  2  PeñalverR,Arroyo-ManzanaresN,Lopez-GarcíaI,Hernández-CórdobaM.Chemosphere,2020,242:125170.doi:10.1016/j.chemosphere.2019.125170  3  ChenYongxuan(陈咏萱),ZhouDongshan(周东山),HuWenbing(胡文兵).ActaPolymericaSinica(高分子学报),2021,52(4):423-444  4  DingYanwei(丁延伟).FundamentalsofThermalAnalysis(热分析基础).Hefei(合肥):UniversityofScienceandTechnologyofChinaPress(中国科学技术大学出版社),2020.doi:10.3866/pku.dxhx202012012  5  GB/T6425-2008NomenclatureforThermalAnalysis(热分析术语).NationalStandardsofPeople’sRepublicofChina(中华人民共和国国家标准),2008.doi:10.1016/S1734-1140(13)71006-5  6  IHainesPJ,ThermalMethodsofAnalysis:Principles,ApplicationsandProblems.SpringerScience+BusinessMedia:Dordrecht,1995.Chap1.doi:10.1007/bf02548698  7  NoremSD,O’NeillMJ,GrayAP.ThermochimActa,1970,1:29-38.doi:10.1016/0040-6031(70)85026-2  8  GallagherPK,SchreyF.ThermochimActa,1970,1:465-476.doi:10.1016/0040-6031(70)85017-1  9  OzkanUS,KumthekarMK,KarakasG.JCatal,1997,171:67-76.doi:10.1006/jcat.1997.1793  10  McGhieAR.AnalChem,1983,55:987-988.doi:10.1021/ac00257a047  11  McGhieAR,ChiuJ,FairPG,BlaineRL.ThermochimActa,1983,67:241-250.doi:10.1016/0040-6031(83)80104-x  12  BrownME,BhenguTT,SanyalDK.ThermochimActa,1994,242:141-152.doi:10.1016/0040-6031(94)85016-x  13  GallagherPK,ZhongZ,CharsleyEL,MikhailSA,TodokiM,TanaguchiK,BlaineRL.JThermAnal,1993,40:1423-1430.doi:10.1007/bf02546906  14  WeddleBJ,RobbinsSA,GallagherPK.PureApplChem,1995,67:1843-1847.doi:10.1351/pac199567111843  15  GundlachEM,GallagherPK.JThermAnal,1997,49:1013-1016.doi:10.1007/bf01996788  16  JJG014-1996VerificationRegulationforThermalAnalyzer(热分析仪检定规程).NationalEducationCommissionofPeople’sRepublicofChina(中华人民共和国国家教育委员会),1996.doi:10.1007/978-1-349-24516-1_6  17  JJG1135-2017VerificationRegulationforThermogravimetricAnalyzer(热重分析仪检定规程).GeneralAdministrationofQualitySupervision,InspectionandQuarantineofthePeople’sRepublicofChina,2017.doi:10.2753/clg0009-4609390303  18  JJG936-2002VerificationRegulationforDifferentialScanningCalorimeter(示差扫描热量计检定规程).GeneralAdministrationofQualitySupervision,InspectionandQuarantineofthePeople’sRepublicofChina,2002.doi:10.1007/BF02856701  19  DingYanwei(丁延伟),ZhengKang(郑康),QianYixiang(钱义祥).IntroductiontoThermalAnalysisExperimentDesignandCurveAnalysis(热分析实验方案设计与曲线解析概论).Beijing(北京):ChemicalIndustryPress(化学工业出版社),2020  20  GibertJP,LopezCuestaJM,BergeretA,CrespyA.PolymDegradStab,2000,67:437-447.doi:10.1016/s0141-3910(99)00142-1  21  SchindlerA,DoedtM,GezginS,MenzelJ,SchmolzerS.JThermAnalCalorim,2017,129:833-842.doi:10.1007/s10973-017-6208-5  22  VogelC,KrugerO,AdamC.JThermAnalCalorim,2016,123:1045-1051.doi:10.1007/s10973-015-5016-z  23  YuanY,MaC,ShiYQ,SongL,HuY,HuWZ,MaterChemPhys,2018,211:42-53.doi:10.1016/j.matchemphys.2018.02.007  24  WangFang(王芳),HaoJianwei(郝建薇),LiZhuoshi(李茁实),ZouHongfei(邹红飞),ActaPolymericaSinica(高分子学报),2016,7:860-870.doi:10.11777/j.issn1000-3304.2016.5329  25  DorezG,TaguetA,FerryL,LopezCuestaJM.PolymDegradStab,2014,102:152-159.doi:10.1016/j.polymdegradstab.2014.01.018  26  HatakeyamaH,JThermAnalCalorim,2014,118:23-30.doi:10.1007/s10973-014-3959-0  27  GerassimidouS,VelisCA,WilliamsPT,KomilisD,WasteManageRes,2020,38(9):942-965.doi:10.1177/0734242x20941085  28  RegoF,DiasAPS,GasguilhoM,RosaFC,RodriguesA.BiomassBioenerg,2019,122:375-380.doi:10.1016/j.biombioe.2019.01.037  29  ZhangWJ,ShiXH,ZhangYX,GuW,LiBY,XianYZ.JMaterChemA,2013,1:1745-1753.doi:10.1039/c2ta00294a  30  PassauerL.ProgOrgCoat,2021,157:106331.doi:10.1016/j.porgcoat.2021.106331  31  MasI,Hortelano,Ruiz-BermejoM,FuenteJL.EurPolymJ,2021,143:110185.doi:10.1016/j.eurpolymj.2020.110185  32  LaidlerKJ.JChemEduc,1984,61(6):494-498.doi:10.1021/ed061p494  33  HarcourtAV.PhilTransR.SocLondA,1913,212:187-204  34  FreemanES.CarrollB.JPhysChem,1958,62(4):394-397.doi:10.1021/j150562a003  35  NewkirkAE.AnalChem,1960,32(12):1558-1563.doi:10.1021/ac60168a006  36  SharpJH,WentworthSA.1969,41(14):2060-2062.doi:10.1021/ac50159a046  37  KissingerHE.AnalChem,1957,29(11):1702-1706.doi:10.1021/ac60131a045  38  FriedmanHL.JPolymSci:PolymSymp,1964,6:183-195.doi:10.1002/polc.5070060121  39  VachuskaJ,VoborilM.ThermochimActa,1971,2(5):379-392.doi:10.1016/0040-6031(71)85014-1  40  HorowitzHH,MetzgerG.AnalyChem,1963,35(10):1464-1468.doi:10.1021/ac60203a013  41  DharwadkarS,KarkhanavalaM.ThermAnal,1980,18(1):185-191.doi:10.1007/bf01909466  42  CoatsAW,RedfernJ.Nature,1964,201(4914):68-69.doi:10.1038/201068a0  43  OzawaT.BullChemSocJpn,1965,38(11):1881-1886.doi:10.1246/bcsj.38.1881  44  FlynnJH,WallLA.JResNatBurStand,1966,70(6):487-523.doi:10.6028/jres.070a.043  45  FlynnJH,WallLA.JPolymSci,PartC:PolymLett,1966,4(5):323-328.doi:10.1002/pol.1966.110040504  46  ZsakoJ.JPhysChem,1968,72(7):2406-2411.doi:10.1021/j100853a022  47  SatavaV.ThermochimActa,1971,2(5):423-428.doi:10.1016/0040-6031(71)85018-9  48  TangXY,XieQY,QiuR,YangY.PolymDegradStab,2018,154:10-26.doi:10.1016/j.polymdegradstab.2018.05.016原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21210&lang=zh《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304DOI:10.11777/j.issn1000-3304.2021.21210
  • 技术前沿|冻干过程中微塌陷如何影响冻干产品的强度?
    之前我们在《干货分享 | 冻干样品配方的关键温度的测量》中,就已经聊到过关键温度对于冻干工艺的重要性。在冷冻干燥过程中,产品应保持在其关键温度以下,如玻璃化转变温度(Tg’),共晶点(Teu)和塌陷温度(Tc),以确保一个安全和稳健的循环,并减少产品冷冻干燥后出现的有害缺陷的风险。缺陷可能包括但不限于产品内的物理塌陷或微塌陷、活性丧失和高水分含量。微塌陷程度是最具挑战性的量化缺陷之一,许多配方由于药物活性丧失而在*个周期失效。一、如何量化微塌陷程度?MicroPress 微压力冻干饼分析仪 MicroPress 微压力冻干饼分析仪是一款由Biopharma公司完全开发的创新仪器,用于量化低密度材料中的原位微观缺陷,特别是在所有冻干产品中。例如,甘露醇经常用于配方中,它具有较高的关键温度,可以掩盖具有明显较低关键温度的产品的塌陷。葡萄糖的关键温度在-41℃左右,当与甘露醇结合时,如果干燥超过关键温度,就会塌陷。然而,由于甘露醇的膨胀性,该混合物尽管可能存在结构缺陷,但一旦冷冻干燥,就具有良好的外观。在保持甘露醇浓度不变的同时,可以通过改变葡萄糖的浓度来确定微塌陷的程度和饼状结构的影响。通常, 由于高温,用来冷冻干燥这种溶液的循环不会使葡萄糖足够冷冻干燥,因此可能会发生塌陷。相反,甘露醇会干燥足够的量来保持蛋糕的结构。然而, 由此产生的,看似不明显的微观的塌陷,会影响复水性,以及药物本身的稳定性和活性。以下是结合使用了MicroPress 微压力冻干饼分析仪的具体实验方法。二、具体实验方法1、配方溶液制备样品溶液的制备方法见表1。所有化学品均来自Sigma Aldrich。使用6ml西林瓶灌装2ml。表1:起始溶液的浓度2、样品冷冻干燥这些小瓶用表2所示的方法冷冻干燥。预冻让所有的样品被冷冻,使晶体尺寸增加,样品进入下一个阶段干燥。在干燥阶段,压力降低,使冰升华,干燥产品。所有样品都放置在冻干机的同一个托盘上,以控制干燥过程中的可见变量。 表2:在SP Scientific冷冻干燥机上使用的冻干工艺3、MicroPress测量与分析所有的样品都在MicroPress上使用相同的一组参数进行分析 ,通过用户友好的软件设计,参数很容易设置,并可以更改以适应任何要求。参数设置情况见表3。表3:MicroPress测试阶段及相应的速度Extend阶段的速度为10mm/s,与估计的蛋糕高度的距离在5mm以内。Seek阶段找到蛋糕的顶部,一旦感觉到力,Compress阶段开始,然后记录施加在蛋糕上的力。4、结果分析下表4显示了从配方分析获得的结果。配方1具有最高的杨氏模量,因此是最强的蛋糕。表4:获得的3种配方的强度结果● 配方1的平均杨氏模量为0.969 kPa,配方1中最强的值为图1中的橙色。该蛋糕的杨氏模量为1.246 kPa,*应力为17.600 kPa;● 图1中的另外两条曲线分别表示配方2 (灰色) 和配方3 (蓝色) 。配方2的杨氏模量为0.473 kPa,*应力为7 kPa;● 配方3(蓝色)看似比配方2(灰色)有一个更高的*应力,实际上真正的*应力在应变51%左右,杨氏模量为0.017 kPa,*应力为2.660 kPa,是所有被分析的蛋糕中最弱的。 图1:使用MicroPress分析的三种配方图(配方1-橙色,配方2-灰色,配方3-蓝色)三、关于实验的讨论表4中为本次实验中获得的数据。甘露醇/葡萄糖样品溶液中的葡萄糖浓度越高,蛋糕的强度就越弱。传统的甘露醇被用作赋形剂,已知它对许多配方的关键温度有积极 的影响。然而,这可能掩盖了一个配方可能具有的一些关键温度。葡萄糖的塌陷温度为-41.0℃,当甘露醇冻干时,塌陷在甘露醇支架上。这种蛋糕看起来很结实, 眼见的外观良好,但当用扫描电镜或类似的技术分析时 ,晶格看起来更“湿润”,孔隙更宽。当用MicroPress分析时,增加葡萄糖浓度对材料强度的影响是非常明显的。蛋糕内的葡萄糖越多,物质强度就会减弱。当使用冷冻干燥显微镜(FDM)或差示扫描量热法(DSC)进行分析时,发现样品往往只显示甘露醇的结晶和熔化,而甘露醇有着强大的外部结构,掩盖了葡萄糖的玻璃化转变。关键温度分析只揭示了甘露醇的熔化,因此当产品冻干保持样品在-10℃以下,葡萄糖在主体材料中塌陷。因此, 由于葡萄糖的关键温度较低,甘露醇通常能够在标准的初级干燥条件下很好地干燥,而葡萄糖则不能。此外,当配方中的葡萄糖浓度增加时,蛋糕内的微塌陷程度增加,从而产生较弱的蛋糕。在储存或运输过程中,有微塌陷的材料更容易损坏或减少活性成分。四、*结论传统上,冻干样品的质量是由一些定性技术来确定的,包括;视觉评估,复水时间,与参考文献相比的外在强度,水分含量。然而,这是一种主观的分析,数据的质量可能取决于操作者的经验。Biopharma公司开发了这种压痕技术 ,并将其应用于冻干蛋糕,以减少主观性,并提供冻干产品的定性数据,以确定样品中是否存在产品缺陷。 配方中每个成分的关键温度与配方的整体关键温度同样重要,冻干产品在一个看似安全的温度会导致弱蛋糕由于冻干期间结构减弱和微塌陷影响蛋糕的强度。一旦材料被冻干,MicroPress可以用来测试得到的蛋糕的物理特性,以及它们是否在整体强度的所需参数范围内。在MicroPress上分析的蛋糕还可以使用卡尔-费休法测试水分含量, 如果需要玻璃化转变温度或熔点温度也可以使用mDSC进行测试。一旦确定了冻干样品的初始曲线,可以改变配方,增加其它辅料,这可能会影响冻干蛋糕强度。如表4所示,增加材料的浓度并不一定会增加蛋糕的强度。因此,如果在运输过程中发现蛋糕破裂或破碎的问题,则应进行轻微的改变,或包含或排除一种或多种辅料可能是有益的。
  • 近期即将实施的标准及使用仪器设备汇总
    受疫情影响,有些时日没有整理即将实施的标准,今日特意抽出时间将化学检测仪器分析的标准汇总于下表,以及所涉及到使用的仪器设备汇总,供大家方便使用,免去查找的繁琐步骤。  说明:因发标准布不久或者是版权问题,免费版还未公开暂时无法提供下载,表格中标准号有超链接,点击即可跳转标准阅读页面,输入验证码即可阅读全文。序号标准号标准名称实施日期1GB/T 19427-2022蜂胶中12种酚类化合物含量的测定 液相色谱-串联质谱法和液相色谱法2022-10-01实施2GB/T 41133-2022番茄制品中番茄红素、叶黄素、胡萝卜素含量的测定 超高效液相色谱法2022-10-01实施3GB/T 38479-2021壳聚糖含量测定 高效液相色谱法2022-07-01实施4GB/T 38478-2021虾青素旋光异构体含量的测定 液相色谱法2022-07-01实施5GB/T 41456-2022纳米技术生产环境纳米二氧化钛粉尘浓度检测方法 分光光度法2022-11-01实施6GB/T 41442-2022山羊绒净绒率试验方法 近红外光谱法2022-11-01实施7GB/T 14571.4-2022工业用乙二醇试验方法第4部分:紫外透光率的测定 紫外分光光度法2022-11-01实施8GB/T 41497- 2022钒铁 钒、硅、磷、锰、铝、铁含量的测定吗波长色散X射线荧光光谱法2022-10-01实施GB/T 19427-2022蜂胶中12种酚类化合物含量的测定 液相色谱-串联质谱法和液相色谱法2022-10-01实施  仪器和设备:  1.液相色谱-串联质谱仪:配有电喷雾离子源。  2.液相色谱仪:配有紫外(或二极管阵列)检测器.  3.超声波清洗仪。  4.分析天平:感量0.01mg和0.001g。  5.离心机:转速不低于4000r/min。  6.微量可调移液器:10ul-100ul,和0.1ml-1ml。  7.微孔滤膜:孔径0.22um。GB/T 41133-2022番茄制品中番茄红素、叶黄素、胡萝卜素含量的测定 超高效液相色谱法2022-10-01实施  仪器和设备:  1. 超高效液相色谱仪:配有二元及以上梯度泵,带二极管阵列检测器或紫外检测器。  2. 紫外分光光度计。  3. 分析天平:感量为0.01 mg和0.01 g。  4. 组织捣碎机。  5. 涡旋振荡器。  6. 减压浓缩装置。  7. 固相萃取装置。  8. 离心机:转速不低于5000 r/min。GB/T 38479-2021壳聚糖含量测定 高效液相色谱法2022-07-01实施  仪器和设备:  1. 高效液相色谱仪:配有蒸发光散射检测器。  2. 色谱柱:氨基柱(250 mm X4.6 mm,5 μm)。  3. 有机相微孔滤膜:0.45 μm。  4. 电子分析天平:感量为0.1 mg.0.01 g。  5. 电热恒温鼓风干燥箱。  6. 粉碎机。  7. 0.3mm标准检验筛。  8. 恒温磁力搅拌器。  9. 集热式磁力恒温搅拌器。  10. 旋转蒸发仪。GB/T 38478-2021虾青素旋光异构体含量的测定 液相色谱法2022-07-01实施  仪器和设备:  1. 高效液相色谱仪:配紫外检测器。  2. 分析天平:感量0.0001g。  3. 冷冻离心机。  4. 超声波清洗机。  5. 恒温水浴锅。  6. 玻璃匀浆器:20 mL.  GB/T 41456-2022纳米技术生产环境纳米二氧化钛粉尘浓度检测方法 分光光度法2022-11-01实施  设备和仪器:  1. 采样器:符合JJG 956的大气采样器。  2. 电子天平:精度0.1 mg。  3. 超声波发生器:设备参数应覆盖以下范围:频率25 kHz~100 kHz,功率100 W~300 W。  4. 浊度计:符合JJG 880的浊度计,量程下限不高于0.1 NTU.  5. 电热板:加热板面积不小于150 mmX 150 mm,温度不低于200℃。  6. 紫外-可见分光光度计:波长范围200 nm-600 nm,精度优于1nm。GB/T 41442-2022山羊绒净绒率试验方法 近红外光谱法2022-11-01实施  仪器设备  近红外光谱分析仪:  1. 推荐采用傅里叶变换色散原理的光谱仪,其他近红外光谱分析仪也可以采用。  2. 波长范围:4000 cm-1-10000 cm-1。  3. 分辨率:2 cm-1、4 cm-1 、8 cm-1均可,推荐4 cm。  4. 检测聚苯乙烯,取峰位4571.00 cm-1,准确度要求士0.5 cm-1。  5. 检测空气中的水分,取峰位7181.68 cm-1 ,准确度要求士0.1 cm-1。GB/T 14571.4-2022工业用乙二醇试验方法第4部分:紫外透光率的测定 紫外分光光度法2022-04-15发布 2022-11-01实施  仪器设备:  1. 紫外分光光度计:  双光束,测定波长200 nm~400 nm,吸光度精度优于0.001。仪器工作波长划分为两段,分别是A段(190 nm~340 nm)、B段(340 nm~400 nm)。A段波长准确度为士0.5 nm,波长重复性为≤0.2 nm 透射比准确度为士0.5%,透射比重复性≤0.2%。B段波长准确度为士1.0nm,波长重复性为≤0.5nm 透射比准确度为士0.5% ,透射比重复性≤0.2%。在220 nm处杂散光不大于0.1%。  2. 石英吸收池:  光径为10mm士0.01mm的石英吸收池和光径20mm士0.01mm的石英吸收池。以空气为参比,10mm的参比池和样品池在待测的各个波长处的吸光度差值不超过0.002。以空气为参比,20 mm的吸收池与10 mm的参比池在待测的各个波长处吸光度差值不超过0.002。  3. 氮气吹脱装置:将无油减压阀固定在氮气钢瓶上或氮气管道,并通过适当材质的管线(如聚乙烯管)与流量控制阀及插人25 mL容量瓶或锥形瓶中的收口玻璃管(6.6)相连。各部件需清洁、无污染。试样应避免与含有增塑剂的塑料制品接触。  4. 试剂瓶:容量至少500mL,配备密封性较好的瓶盖。  5. 容量瓶或锥形瓶:容量25 mL。  6. 收口玻璃管:胶头滴管玻璃部分。GB/T 41497- 2022钒铁 钒、硅、磷、锰、铝、铁含量的测定吗波长色散X射线荧光光谱法2022-04-15发布 2022-10-01实施  仪器与设备  1. 波长色散X射线荧光光谱仪:应符合GB/T 16597规定。  2. 坩埚和铸型模:坩埚和铸型模(或坩埚兼作铸型模)由不浸润的铂合金(95%Pt+5%Au)制成。坩埚容积宜大于30mL,铸型模要求底部平整光滑(底部厚度应足以防止变形)。  3. 高温炉:温度可控并至少能加热到1 000 C士20 C。  4. 熔融炉:温度可控并至少能加热到1 050 C士20 C。  5. 天平:感量不大于0.1 mg。  6. 瓷坩埚:容积约50 ml。  7. 瓷坩埚:容积约100 ml.  作者:小泥人
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制