当前位置: 仪器信息网 > 行业主题 > >

条纹投影三维外形测量实验系统

仪器信息网条纹投影三维外形测量实验系统专题为您提供2024年最新条纹投影三维外形测量实验系统价格报价、厂家品牌的相关信息, 包括条纹投影三维外形测量实验系统参数、型号等,不管是国产,还是进口品牌的条纹投影三维外形测量实验系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合条纹投影三维外形测量实验系统相关的耗材配件、试剂标物,还有条纹投影三维外形测量实验系统相关的最新资讯、资料,以及条纹投影三维外形测量实验系统相关的解决方案。

条纹投影三维外形测量实验系统相关的资讯

  • 基于光线模型的成像系统标定与三维测量进展
    一、背景介绍:机器视觉可称为人工智能的“慧眼”,成像系统的标定又是机器视觉处理的重要环节之一,其标定精度与稳定性直接影响系统工作效率。在传统机器视觉与摄像测量标定领域,小孔透视模型仍存在高阶透镜畸变无法完备表征和多类复杂特殊成像系统不适用的问题。而基于光线的模型以成像系统聚焦状态下每个像素点均对应空间一条虚拟主光线为前提假设,通过确定所有像素点所对应光线方程的参数即可实现标定与成像表征,可避免对复杂成像系统的结构分析与建模。基于该光线模型,研究院相关课题组发展了各类特殊条纹结构光三维测量方法与系统,实验证明光线模型可通用于多类复杂成像系统的高精度测量,是校准非针孔透视成像系统的有效模型,可作为透视模型的补充。二、光线模型Baker等人最早提出了一种可表征任意成像系统的光线模型[1],认为图像是像素的离散集合,并以一组虚拟的感光元件“光素”表示每个像素与某像素相关联的空间虚拟光线间的完整几何特性、辐射特性和光学特性,如图1所示。因此,光线模型的标定即确定出所有像素点对应的光线方程,无需严格分析和构建成像系统的复杂光学成像模型,具备一定的便携性和通用性,从一定程度上也可避免镜头畸变的多项式近似表征引入的测量误差,为非小孔透视投影模型成像系统的表征提供了一种新的思路。图1 成像系统的光线模型示意图三、基于光线模型的条纹结构光三维测量在条纹结构光投影三维测量领域,光线模型一方面可作为三维重建的光线方案,用于表征大畸变镜头、光场相机、DMD投影机、MEMS投影机等多类特殊结构的成像与投影装置,可发展新的基于光线模型的条纹结构光三维测量方法与系统;另一方面,发掘光线模型在结构光测量中的优势,光线模型对克服投影与相机的非线性响应、大畸变镜头成像下提升三维重建精度具有优异的效果。3.1 Scheimpflug小视场远心结构光测量系统光线模型与三维测量课题组开发了小视场远心结构光测量系统,采用Scheimpflug结构设计确保公共景深覆盖,如图2所示。考虑到远心镜头属平行正交投影、Scheimpflug倾斜结构造成畸变模型非中心对称,因此,提出一种基于光线模型的非参数化广义标定方法[2]。系统中相机与投影机成像过程均采用光线模型表征,标定其像素与空间光线对应关系,计算光线交汇点坐标,实现三维重建。图3展示了系统实物图与五角硬币局部小区域的三维测量结果,测量精度为2 μm。图2 Scheimpflug小视场远心结构光测量系统图3 测量系统实物图与五角硬币局部的三维测量结果3.2光场相机的光线模型标定与主动光场三维测量课题组发展了基于主动条纹结构光照明的光场三维测量方法与系统。光场相机通过在传感平面前放置微透镜阵列,实现光线强度和方向的同时记录,由于存在微透镜加工误差、畸变像差、装配误差等复杂因素影响,光场相机完备表征与精密标定是个难题。课题组提出光线模型表征光场成像过程[3],即将光场相机内部看作黑盒,直接建立像素m与所对应的物空间光线方程l的参数,如图4所示。并通过标定光场所有光线与投影条纹相位的映射关系实现被测为物体的高精度三维测量,考虑光场多角度记录特点,构建基于条纹调制度的数据筛选机制,实现了场景的高动态三维测量,如图5所示,黑色面板与反光金属可同时重建。图4 光场成像模型图5 主动光场高动态三维测量3.3 DMD投影机与双轴MEMS激光扫描投影机的光线模型标定与三维测量基于微机电系统(MEMS)激光扫描的投影机以小型化、大景深的优势被应用于条纹投影测量系统,如图6(a)所示。但由于其依赖激光点的双轴MEMS扫描投影图案,不依赖镜头成像,透视投影模型表征会存在一定误差。此外, DMD等依赖镜头成像的投影机,大光圈设计也会影响小孔透视投影模型的表征精度。对此,课题组采用光线模型表征投影机[4],并提出了一种基于投影机光线模型的条纹投影三维测量系统标定方法,该方法根据双轴MEMS投影的正交相位对光线进行识别追踪,利用投影光线与相机构建的三角测量实现了三维重建。进一步发现:由于投影光线的相位一致性特性,光线模型可显著抑制系统非线性响应引起的测量误差,图6(b)展示了单目系统在3步相移条件下(未额外矫正非线性响应),分别使用透视投影模型与光线模型对石膏雕塑的三维重建结果,可见光线模型对非线性响应影响具有免疫性。图6 双轴MEMS激光扫描投影原理和石膏雕塑三维重建结果(3步相移,左图为透视投影模型,右图为光线模型)3.4单轴MEMS激光扫描投影机光线模型标定与三维测量单轴MEMS投影机将激光点扫描拓展为面扫描大幅提升了投影速率,可应用于动态测量。针对单轴MEMS投影机无透镜结构使得针孔模型不适用、单向投影无法提供正交相位特征点的问题,课题组提出一种基于等相位面模型的系统标定方法[5],推导出了相机反向投影射线与该等相位面交点处的三维坐标值与相位值间新的映射函数,实现了快速三维重建。图7展示了使用高速相机搭建的单目测量系统和重建场景,投影采集速率为1000 frame/s,采用4步相移与雷码图相位展开,三维重建速率为90 frame/s。后续为适应更高速率测量应用,可将单目扩展为双目或多目系统,采用单帧解调相位和多极线约束相位展开等方法减少投影图像数量,提升三维测量速率。图7三维测量系统与动态重建场景3.5大畸变镜头成像的光线模型标定与三维测量针对传统低阶多项式不能完备表征大畸变镜头的问题,课题组采用光线模型表征大畸变镜头相机成像,并提出一种完全脱离对相机和投影机内参依赖(透视模型依赖相机与投影机内参)的光线与条纹相位映射的三维重建方法。通过直接标定相机光线与条纹相位的倒数多项式映射系数,避免了繁琐耗时的对应点搜索与光线插值操作。图8为装配4 mm广角镜头的光线标定结果与标准球三维测量结果,可见由于广角镜头畸变较大,光线模型较透视模型重建质量有所提升。图8 广角镜头光线标定与标准球三维测量数据的拟合误差分布(a)透视投影模型,(b)光线映射模型四、总结光线模型通过确定所有像素点所对应光线方程的参数实现标定与成像表征,从而避免了对复杂成像(投影)系统的结构分析与建模,解决了特殊条纹投影三维测量系统的标定与重建问题,同时在条纹投影三维测量的系统非线性相位误差抑制和精度提升上展示出优异性能。在结构光三维测量的未来发展中,可进一步扩展光线模型三维测量的方法与应用,提升测量精度、效率与通用性,解决各类特殊复杂场景中的应用测量问题。参考文献[1] Baker S, Nayar S K. A theory of catadioptric image formation[C]//Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), January 7, 1998, Bombay, India. New York: IEEE Press, 1998: 35-42.[2] Yin Y K, Wang M, Gao B Z, et al. Fringe projection 3D microscopy with the general imaging model[J]. Optics Express, 2015, 23(5): 6846-6857.[3] Cai Z W, Liu X L, Peng X, et al. Ray calibration and phase mapping for structured-light-field 3D reconstruction[J]. Optics Express, 2018, 26(6): 7598-7613.[4] Yang Y, Miao Y P, Cai Z W, et al. A novel projector ray-model for 3D measurement in fringe projection profilometry[J]. Optics and Lasers in Engineering, 2022, 149: 106818.[5] Miao Y P, Yang Y, Hou Q Y, et al. High-efficiency 3D reconstruction with a uniaxial MEMS-based fringe projection profilometry[J]. Optics Express, 2021, 29(21): 34243-34257.课题组简介:本文作者:刘晓利 ,杨洋 ,喻菁 ,缪裕培 ,张小杰 ,彭翔 ,于起峰 ;深圳大学物理与光电工程学院深圳市智能光测与感知重点实验室。以于起峰院士领衔的深圳大学智能光测图像研究院主要研究方向包括大型结构变形与大尺度运动测量、超常光学测量与智能图像分析、计算成像与三维测量以及多传感器融合感知与控制等。
  • 蛋白质冷冻电镜投影图像有了三维重构新算法
    从冷冻电镜的多个二维投影图像进行三维重构,获得蛋白质的三维结构。 兰州大学供图蛋白质结构解析是分子生物学的核心课题,对于人们认识蛋白质的功能,理解疾病的发病机理,进行药物设计和疾病治疗等都具有非常重要的意义。近年来,冷冻电镜技术在测定生物大分子结构方面取得了突破性的进展,虽然目前DeepMind 公司开发的AlphaFold已经可以从蛋白质序列预测蛋白质的三维结构,但其准确性还有待提升,其结果也只能作为预测结果使用。近日,兰州大学信息科学与工程学院教授路永钢课题组与兰州大学生命科学院副教授朱莉以及美国欧道明大学计算机科学系教授何静合作,提出了一种基于球面嵌入的蛋白质三维重构算法,有助于从冷冻电镜图像中重构出更加准确的蛋白质三维结构。相关成果以《基于两次球面嵌入的冷冻电镜投影图像三维重构》为题在线发表于《通讯生物学》。单颗粒分析是冷冻电镜测定蛋白质结构的主流技术。在利用冷冻电镜获得大量同一种蛋白质分子的二维投影图像后,该技术利用三维重构算法可以计算出蛋白质的三维结构。其中,蛋白质三维重构的核心问题是估计每个投影图像的投影方向,其本质是一个非凸优化问题。现有的算法大多是基于模板匹配,或者是基于期望最大化的参数估计算法,容易受到初始参数选取的影响,容易陷入局部极小,可能会重构出错误的蛋白质结构。为了提升三维重构结果的可靠性,路永钢课题组在该研究工作中充分利用了全体投影图像在投影方向以及等价线方面的全体一致性约束,通过两次球面嵌入获得了在三维空间中满足全体投影图像一致性约束的投影方向估计,进而计算出了蛋白质的三维结构。这种方法的特点是不需要初始模板,尽量从数据内部挖掘约束条件,对初始化依赖较小,因而提高了重构结果的可靠性和准确性。另外,路永钢课题组还提出了新的投影方向表示方法,利用两个互相垂直的向量(投影图像的法向量和自身坐标的X轴)来表示投影方向,并且讨论了这种表示和通常使用的欧拉角表示的等价性。在该论文的实验工作中,课题组分别使用了模拟数据集和两组真实数据集对算法进行了评价。通过与目前常见的几种算法(Synchronization、LUD、EMAN 2.1和RELION-2)进行对比,验证了所提算法的有效性。模拟数据由大肠杆菌70S核糖体对应的蛋白质结构通过计算机模拟投影生成。真实数据使用了从EMPIAR数据库下载的恶性疟原虫80S核糖体数据集(EMPIAR-10028)的冷冻电镜图像,以及Hedgehog受体补丁与纳米抗体TI23复合物(EMPIAR-10328)的冷冻电镜图像。实验结果证明了该论文提出的球面嵌入算法可以更准确地估计投影方向,并且在噪声比较高的情况下(例如SNR=0.1或0.2等),该算法能大大降低投影角估计的误差。三维重构的结果也证明了利用该算法在不同噪声水平及不同数量的投影图像上进行重构时都具有一定的优越性,得到的重构结果具有更高的分辨率,也更加接近于真实结构。
  • 中科院西安光机所三维显微成像技术研究取得新进展
    日前,Nature旗下的Scientific Reports 刊登了中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室姚保利研究组题为Full-color structured illumination optical sectioning microscopy 的研究论文。  众所周知,色彩(光谱)信息是描述物体特征的一个重要物理量。三维物体彩色层析成像技术是获取物体表面形态特征的重要手段,也是真实物体三维数字化的基础。以激光共聚焦扫描显微镜为代表的点扫描显微成像技术具有三维层析成像能力,但是逐点扫描整个三维样品需要较长的时间,而且视场很小,目前仅应用于生物医学显微成像领域。条纹投影法和白光相移干涉法是较为成熟的三维物体表面成像与测量技术,得到了广泛的应用,这两种技术结合三维贴图技术(3D mapping)都可以近似得到三维物体的表面颜色信息,但是贴图技术的缺点是图像畸变大而且分辨率不高。同时,受到相位解包裹算法的限制,条纹投影法和白光相移干涉法对于表面具有复杂和突变结构的物体都不适用,而类似的复杂结构又是常见的(例如动物的毛发、机械工件的表面毛刺、植物的叶片等)。结构光照明显微(SIM)是一种特殊照明方式的宽场成像技术,经过特定算法的解算和重构可以实现三维光切片成像,并且能够精确解析样品表面的复杂结构。但目前所有的SIM都是单色的,另外,受显微物镜视场大小的限制,SIM技术目前也仅应用于微观领域。  西安光机所姚保利研究组自2010年开始SIM技术研究以来,开展了深入细致的理论和实验研究工作,首次提出并实现了基于数字微镜器件(DMD)和LED照明的SIM技术(Scientific Reports 2013,国家发明专利ZL201110448980.8)。在本次发表的研究论文中,通过使用彩色CMOS相机记录白光或多色结构光照明获得的光切片图像,对传统光切片SIM技术采用的均方根层析算法进行改进,提出了基于HSV彩色空间的彩色解码算法(已申请国家发明专利),获得了物体高分辨率彩色三维图像。结合三维多视场数据自适应融合技术,解决了对介观物体(亚毫米到毫米量级尺寸)显微成像时,由于显微物镜视场有限,无法一次获得整个物体高分辨三维图像的问题,视场范围达到了2mm2以上。研究组与中科院动物研究所开展了联合实验研究,实现了对螨虫和昆虫跳器的彩色三维光切片成像,为该方面的研究提供了有力的技术支持。同时对微电子芯片及硬币表面结构进行了大视场彩色三维成像,推动了SIM技术在三维物体表面形貌测量方面的应用。  三维成像与测量技术是目前国内外光学领域一个重要的研究方向,已嵌入到了现代工业与文化创意产业的整个流程。该研究取得的成果使西安光机所在三维显微成像方面掌握了核心技术,该技术通过与生物医学、材料化学、精密制造等学科的交叉合作,将大大提高我国在该领域的研究水平,具有广泛的应用前景。螨虫(a)和跳甲跳器(b)的彩色三维图像数字微镜器件芯片的彩色三维图像
  • 喜报 | 先临三维多功能手持3D扫描系统获智能产品创新优秀奖
    10月16日,由杭州市政府主办的2020“市长杯”杭州高价值知识产权智能产品创新创意大赛在杭州国际博览中心圆满落幕。本次大赛以“高价值智能知本,高质量杭创未来”为主题,参与企业均来自全国实力雄厚的人工智能产品相关企业,报选项目共155项 (创新组项目69项,创意组项目86项),总计涉评2112件国内专利和766件国外专利。大赛评委会将奖项分为创新组和创意组,评选范围包括:项目知识产权情况、项目创意、项目产业化程度、项目的社会效益等方面。图片源于2020杭州高价值知识产权智能产品创新创意大赛官网先临三维自主研发项目《多功能手持3D扫描系统》,经评委会全面评选后,获2020年杭州高价值知识产权智能产品创新创意大赛-创新组-优秀奖图片源于2020杭州高价值知识产权智能产品创新创意大赛官网多功能手持3D扫描系统本次获奖的多功能手持3D扫描系统是先临三维自主研发项目。该项目开创性地通过主体硬件辅以多种功能模块,配套多种扫描算法,将包括正弦条纹测量、数字散斑测量、多根平行直线测量等多种测量模式融合到一个系统中,实现多模式、低成本、高效率、高精度的3D数据获取,使一台设备同时满足不同应用领域或场景的使用需求。该套扫描系统兼容多种扫描模式与多种拼接方式,具有如下特色及优势:1)数据细节丰富,高度还原实物表面立体信息2)图形算法先进、交互流程直观高效3)材质、尺寸适应广泛,更大程度扩展扫描应用边界4)扫描流畅,数据采集传输不卡顿5)精度高,数据尺寸误差低6)模块化设计,兼容多种扫描模式和拼接模式多功能手持3D扫描系统是高效获取高品质3D数据的利器,其对于三维模型的精度、细节等的表现令其成为设计师、工程师、艺术家、医疗工作者以及科研工作者工作及学习的得力助手。目前已应用于汽车、船舶、轨道交通、航空航天、虚拟展示、家居消费、雕塑文保、教学科研、医疗健康等领域。
  • 先临三维|外星人的内部构造应该是怎样的?3D数字化解剖为你解密
    想必大家对于《et外星人》中,最后,小主人公骑着自行车带着et飞向月球的画面都记忆犹新。也通过这部电影,我们认识了外星人et。▲ 图片源于百度,电影《外星人et》剧照大家是否想探究一下外星人的内部构造?带着这样的好奇,我们开启了“解剖”、重构外星人身体之旅。我们通过3d扫描—内部数据重建—3d打印这样的技术,让外星人的内部构造也可以肉眼可见。 这次“解剖”的外星人来自very museum,是核心艺术家 steve wang的作品。他的名字是alien grey,有着我们熟识的外星人形象。姓名 grey性别 不详 年龄 不详 “解剖”的流程 以下来自grey的独白 复制一个三维的我 3d扫描获取原始 高细节彩色数据我的“皮肤”有细致的纹路,在复制精细三维数据的同时,还需要兼顾皮肤的颜色。因此,先临三维的工程师使用einscan pro 2x 2020设备获取我的等比彩色数据,为后续“解剖”做准备。▲ 精细的扫描数据,肉眼可见的皮肤纹路重构我的三维模型,制作解剖效果,还需要内部的结构。工程师将我的“头骨”利用手持扫描仪进行数据获取,头骨数据结合外形数据,“解剖”的第一步已经完成。 重构我的内部结构 后处理软件设计解剖结构设计师通过maya等数据建模软件,参考人体构造,结合我的头骨数据和外形数据,重构出内部结构。“解剖”最终造型,左右一分为二,一侧展示外形,一侧展示内部结构。 展现我的“解剖”结构 彩色3d打印机打印完整数据利用stratasys的彩色3d打印技术,实现数据的最终呈现。stratasys的全彩3d打印技术,结合了全彩,透明以及类橡胶材质的组合输出能力,使得我的左右半边外形以及内部结构的展示可以一次性完成。在保留外部轮廓的同时,内部结构也可以清晰地展示在观众面前。在创作过程中,stratasys工程师前后测试了十几个不同的版本,特别在细节方面,包括我的皮肤的颜色,质感,血管的形态,肌肉,脑干,脑沟等大脑结构中不同层次的展现。这个时候3d打印的优势就凸现出来了 – 我的数据缩小到11公分的比例,12小时之内可以完成8个不同版本的打印,实现快速评估整体的效果,确保在正确的方向去进行下一步的创作。一个对于外星来客的创意尝试,利用3D技术,终将有趣的想法,变成可见的现实。3d扫描-内部数据重建-3d打印,赋予外星人全新的形象,实现模型的快速设计制造。通过grey的解剖模型重建,我们看到了3d技术的力量。3d技术,为创意赋能。
  • 计量级蓝光三维检测系统,助力手机制造高质高效品控
    随着科技的发展,智能手机功能不断强大,因此在手机设计制造中,对质量检测的需求及检测工艺的要求日益增多。对手机制造行业来说,由人工或传统三坐标检测转变为自动化检测是行业发展的必然趋势。 图片来源:爱活网 在手机的设计和质量检测中,利用三维光学测量技术,有助于优化原型和模具的构建,易于数模比对以及对具有形状复杂、容易变形等特点的塑料零部件进行质量控制,有效节省设计和检测时间,提高生产效率,加快产品迭代速度。 OKIO-9M 蓝光三维检测系统 OKIO-9M蓝光三维检测系统,采用窄带蓝光光源,实现非接触式的物体表面三维数据的高细节、高精度快速获取。系统搭载900万像素高分辨率相机,精度可达0.01mm,平均点距可达0.05mm,可以实现高精度高细节的数据获取,从小型零部件到大型物体整体测量均可胜任,满足用户计量级别高精度的检测需求。 在手机制造行业中,OKIO-9M主要应用于实现零部件的逆向建模设计与质量检测的模型获取。基于手机部件的精密工业检测需求,OKIO-9M蓝光三维检测系统可做到快速准确的获取各零部件三维数据,解决物体复杂形面测量问题。 手机部件实例检测应用 在产品制造过程中,由于制作工艺及质量检测等问题,不可避免的会在检测样件上产生划痕、磕碰、污迹和凹坑等缺陷,因此需对手机部件做数模对比检测,以确保其质量可靠。 针对这些部件的检测,传统方式是使用三坐标和二次元来实现数据的测量,但是由于三坐标的工作方式是“打点”式,因此效率较低,每次测量需要先装夹,不能快速查看产品的整体形变,且在细小位置探针无法准确获取数据,无法做到全尺寸测量,设备的操作对检测人员的技能要求较高。 OKIO-9M的优势-手机部件的检测无需装夹,工件可随意翻转,扫描数据完整; -加工CAD模型数据与扫描数据导入检测软件可输出色谱图,通过直观的色谱图来表达产品外形的变形度和料厚余量; -可以快速检测全尺寸和形位公差,发现漏缺或多加工位置,并且可以实现全自动化检测,提高检测效率,缩短检测时间; 实例应用-手机外壳检测 手机外壳工件结构复杂,特征细节较多,在扫描检测中,需要准确获取外壳的特征,还原工件的复杂形面。利用OKIO-9M 蓝光三维检测系统获取手机外壳完整的三维数据,然后将扫描获取的三维数据导入检测软件中与标准CAD模型进行对比分析,输出准确的关键部位形变等误差质量报告,掌握详尽的三维检测结果,便于进行质量管控,方便后续的批量生产。 实例应用-后盖板检测 如今手机后盖材质越来越多样化,有塑料、金属、玻璃、陶瓷等。在变换材质的同时,为获得更好的舒适触感,手机后盖需要很高的平整度。而手机后壳的测量包括平面度、曲面度、阶高和孔深等,这对检测提出了更高的要求。 OKIO-9M支持全程自动化操作,无需人工参与,一键完成3D扫描并生成检测报告,仅需1分钟就可完成手机后盖板所有位置的检测报告,为产品提供质量考核依据。 实例应用-手机充电口检测 手机充电口检测数据图 手机充电口的尺寸,想必大家并不陌生,上图为利用OKIO-9M扫描手机充电口后与原始加工CAD模型对比的色谱图,得益于设备优良的性能,检测精度可达0.015mm-0.01mm,小尺寸物体检测也得心应手。 随着智能手机市场的火热,从外形到配置,手机制造企业之间的竞争日趋激烈,产品的迭代速度越来越快。因手机制造对设计、质量、交付时间要求严苛,以及零部件的轻量化和制造成本降低的趋势,三维检测技术在设计和品控环节中受到了越来越多手机制造商的重视。 先临三维旗下子公司天远三维坚持产品核心技术的自主研发和创新,多年来持续聚焦于工业领域的高精度、快速、便携的三维检测需求。自主研发的OKIO-9M蓝光三维检测系统,给手机制造行业带来了新的质量检测解决方案,把控产品质量,为企业有效的解决制造检测环节中的实际问题,助力企业提高产品设计及检测效率,缩短产品的上市周期,推动产业升级。
  • 计量级蓝光三维检测系统,助力手机制造高质高效品控
    随着科技的发展,智能手机功能不断强大,因此在手机设计制造中,对质量检测的需求及检测工艺的要求日益增多。对手机制造行业来说,由人工或传统三坐标检测转变为自动化检测是行业发展的必然趋势。在手机的设计和质量检测中,利用三维光学测量技术,有助于优化原型和模具的构建,易于数模比对以及对具有形状复杂、容易变形等特点的塑料零部件进行质量控制,有效节省设计和检测时间,提高生产效率,加快产品迭代速度。OptimScan 9M 蓝光三维检测系统OptimScan 9M蓝光三维检测系统,采用窄带蓝光光源,实现非接触式的物体表面三维数据的高细节、高精度快速获取。系统搭载900万像素高分辨率相机,精度可达0.01mm,平均点距可达0.05mm,可以实现高精度高细节的数据获取,从小型零部件到大型物体整体测量均可胜任,满足用户计量级别高精度的检测需求。在手机制造行业中,OptimScan 9M主要应用于实现零部件的逆向建模设计与质量检测的模型获取。基于手机部件的精密工业检测需求,OptimScan 9M蓝光三维检测系统可做到快速准确的获取各零部件三维数据,解决物体复杂形面测量问题。手机部件实例检测应用在产品制造过程中,由于制作工艺及质量检测等问题,不可避免的会在检测样件上产生划痕、磕碰、污迹和凹坑等缺陷,因此需对手机部件做数模对比检测,以确保其质量可靠。针对这些部件的检测,传统方式是使用三坐标和二次元来实现数据的测量,但是由于三坐标的工作方式是“打点”式,因此效率较低,每次测量需要先装夹,不能快速查看产品的整体形变,且在细小位置探针无法准确获取数据,无法做到全尺寸测量,设备的操作对检测人员的技能要求较高。OptimScan 9M的优势-手机部件的检测无需装夹,工件可随意翻转,扫描数据完整;-加工CAD模型数据与扫描数据导入检测软件可输出色谱图,通过直观的色谱图来表达产品外形的变形度和料厚余量;-可以快速检测全尺寸和形位公差,发现漏缺或多加工位置,并且可以实现全自动化检测,提高检测效率,缩短检测时间;实例应用-手机外壳检测手机外壳工件结构复杂,特征细节较多,在扫描检测中,需要准确获取外壳的特征,还原工件的复杂形面。利用OptimScan 9M 蓝光三维检测系统获取手机外壳完整的三维数据,然后将扫描获取的三维数据导入检测软件中与标准CAD模型进行对比分析,输出准确的关键部位形变等误差质量报告,掌握详尽的三维检测结果,便于进行质量管控,方便后续的批量生产。实例应用-后盖板检测如今手机后盖材质越来越多样化,有塑料、金属、玻璃、陶瓷等。在变换材质的同时,为获得更好的舒适触感,手机后盖需要很高的平整度。而手机后壳的测量包括平面度、曲面度、阶高和孔深等,这对检测提出了更高的要求。OptimScan 9M支持全程自动化操作,无需人工参与,一键完成3D扫描并生成检测报告,仅需1分钟就可完成手机后盖板所有位置的检测报告,为产品提供质量考核依据。实例应用-手机充电口检测手机充电口检测数据图手机充电口的尺寸,想必大家并不陌生,上图为利用OptimScan 9M扫描手机充电口后与原始加工CAD模型对比的色谱图,得益于设备优良的性能,检测精度可达0.015mm-0.01mm,小尺寸物体检测也得心应手。随着智能手机市场的火热,从外形到配置,手机制造企业之间的竞争日趋激烈,产品的迭代速度越来越快。因手机制造对设计、质量、交付时间要求严苛,以及零部件的轻量化和制造成本降低的趋势,三维检测技术在设计和品控环节中受到了越来越多手机制造商的重视。先临三维旗下子公司天远三维坚持产品核心技术的自主研发和创新,多年来持续聚焦于工业领域的高精度、快速、便携的三维检测需求。自主研发的OptimScan 9M蓝光三维检测系统,给手机制造行业带来了新的质量检测解决方案,精准把控产品质量,为企业有效的解决制造检测环节中的实际问题,助力企业提高产品设计及检测效率,缩短产品的上市周期,推动产业升级。
  • 三维扫描仪新品全球发布——思看科技NimbleTrack灵动式三维测量系统
    新品全球首发!思看科技NimbleTrack灵动式三维扫描系统!2024年4月9日,思看科技(SCANTECH) 正式发布NimbleTrack灵动式三维扫描系统。NimbleTrack集全无线、不贴点、双边缘计算、一体成型架构于一身,精准驾驭中小型场景动态三维测量,领跑工业计量“无线”新时代!灵动式三维扫描系统NimbleTrack,轻巧身型,自在随行,集全无线、多功能等超凡性能于一身,精准驾驭中小型测量场景,成就绝妙之作。其扫描仪和跟踪器深度集成高性能芯片与嵌入式电池模组,实现了全域无线测量和高速稳定的数据传输,开启工业计量智能无线新时代。整套系统巧妙融合了思看科技的自研生态圈,多种功能形态随心变幻,万般场景灵活应对,以极致技术成就极致性能。轻装上阵 即开即扫NimbleTrack超轻型机身,以极致细节重构性能想象,解锁性能美学的超然进化实力。跟踪器仅重2.2kg,身长57cm,恣意穿梭于各类场景,轻装上阵;扫描仪仅重1.3kg,单手掌控游刃有余,轻松完成长时间测量任务。标配一体式便携安全防护箱,兼顾轻型化与紧凑型,容纳万象,灵动出鞘,带上它,即开即扫,尽显轻盈畅快之感。一体成型 稳如堡垒扫描仪采用全新的碳纤维框架一体成型技术,兼备轻量化和高强度性能,在加工工艺上颠覆了传统组装式框架的装配技术,实现了超高结构稳定度和超强温度稳定性,使得一次校准即可长时间内保持良好的精度范围,让每一次扫描都尽在掌控。双内置电池 真正全无线全栈无线三维扫描系统,无线数据传输、零线缆供电,可满足无电、用电不便等应用场景,开启工业计量无线新时代。扫描仪隐藏式电池仓设计,优雅无束缚;跟踪器双循环电池仓设计,供电不间断,无线转站更顺畅。双边缘计算 性能狂飙扫描仪和跟踪器均搭载新一代高性能边缘计算模组,运算效率跃升至全新高度,解锁120 FPS高帧率流畅测量体验,每一帧都行云流水,驾驭自如。扫描时无需外接电源、贴点,与市面上现有的手持式三维扫描仪相比,整体扫描流程大幅简化,复杂场景更显从容,是当之无愧的效率担当。计量基因 精益求精 依托思看科技计量级产品成熟强大的系统架构和自研算法,最高精度可达0.025mm,在标准跟踪范围内,体积精度可达0.064 mm,精准有实力,还原肉眼可见的细微处。万般场景 挥洒自如NimbleTrack三维扫描系统小巧灵动,轻盈穿梭。面对狭小空间或视角遮挡处,扫描仪可无线单独使用,实现最高0.020 mm的高精度扫描。面对大范围测量场景,跟踪器即刻化身远距离红外标记点扫描利器,精准把控全局精度。智能边界检测模块可选配智能边界探测模块,利用高性能灰阶边缘算法,自动采集孔、槽、切边等特征的三维数据,快速获取高精度的尺寸和位置度信息。i-Probe500 跟踪式测量光笔面对隐藏点或基准孔等难以触达之处,可选配便携式测量光笔i-Probe,设备支持有线或无线传输,为精密测量提供全方位的数字化解决方案。多台跟踪器级联支持多台跟踪器级联工作,大幅扩展扫描范围,有效应对大型工件扫描场景。搭载自动化设备 搭载全新定制化三维扫描仪,为自动化解决方案量身定制装夹方式,使其更加适配各类型机器人;360度均匀分布的标记点岛结构,实现全方位精准跟踪,打造高效的自动化批量检测系统。拓展应用生态NimbleTrack是工业级三维扫描领域真正实现全无线测量的产品,凭借智能无线、不贴点、高精度、高便携性等优势,适用于各类应用场景,尤其是尺寸在40mm-2000mm之间的中小型工件,如汽车四门两盖、内饰座椅、压铸件以及新能源电池盒等。在航空飞行器检修和文物数字化等不适宜贴点的情况下,NimbleTrack表现出色。此外,它也非常适合于车间现场,特别是那些无法方便连接电源或电缆的环境,比如野外测量石油管道的腐蚀情况以及高空作业等。关于思看科技 思看科技是面向全球的三维视觉数字化综合解决方案提供商,主营业务为三维视觉数字化产品及系统的研发、生产和销售。公司深耕三维视觉数字化软硬件专业领域多年,产品主要覆盖工业级高精度和专业级高性价比两大差异化赛道,主要产品涵盖便携式3D视觉数字化产品、跟踪式3D视觉数字化产品、工业级自动化3D视觉检测系统和专业级彩色3D视觉数字化产品等。公司产品广泛应用于航空航天、汽车制造、工程机械、交通运输、3C电子、绿色能源等工业应用领域,以及教学科研、3D打印、艺术文博、医疗健康、公安司法、虚拟世界等万物数字化应用领域,致力于提供高精度、高便携和智能化的三维视觉数字化系统解决方案,打造三维视觉数字化民族品牌。
  • 张祖勋院士:工业摄影测量技术发展与应用
    引 言工业测量是指在工业生产、试验和科研各环节中,为产品的设计、模拟、测量、放样、仿制、仿真、质量控制和运动状态,提供测量技术支撑的一门学科[1]。本文中的工业测量是指尺寸、位置、形状等几何量的测量。摄影测量学是通过影像研究信息的获取、处理、提取和成果表达的一门信息科学,通常利用摄影或遥感的手段获取被测物体的影像,研究和确定被摄物体的形状、大小、位置、性质和相互关系,起始于19世纪中叶摄影机的发明和立体视觉的发现。工业摄影测量是工业测量与摄影测量技术与学科发展相结合而形成的一个细分研究领域,既可以看作是摄影测量学科的一个分支,也可以看作一个交叉学科,如图 1所示。图1 工业摄影测量与工业测量和摄影测量学科的关系由于摄影测量具有非接触、自动处理等特点,为传统工业测量提供了新方法和新技术,尤其是在智能化、自动化发展的大趋势下,以摄影测量方法为主的光学测量受到越来越广泛的重视 另一方面,由于工业测量涉及的被测物体范围广、差异大,为工业摄影测量提出了许多传统航空摄影测量方法难以直接解决的问题,而且工业测量与仪器仪表、电子电路、光学、传感器、机器人等领域联系密切,因此工业测量的需求与行业背景,也为工业摄影测量技术提供了新的创新动力。传统工业测量主要是使用三坐标测量机等传统工业测量仪器对零件进行少量人工抽检,或者用专门研制的检具对单一型号的零件进行全检。随着生产模式的变革,工业品的种类型号日益增多,客户对产品的品质要求日益增长,对工业测量技术带来了更大的挑战,在线、自动化、智能化的工业测量技术成为迫切需求。文献[2]指出工业几何量测量的核心任务是保证测量结果具有溯源性,实现产品质量状态精准高效地获取、测量数据管理、分析及后续应用等。文献[3]介绍了若干种传统的工业测量技术,其中也包括摄影测量技术。文献[4-5]介绍了多种工业摄影测量设备及其各自适合的应用场景。总体来说,没有任何一种工业测量技术可以解决所有类型工业品的测量问题,但是可以通过对工业品特点的分类,设计出几种通用的方案来解决大部分工业测量问题,也使工业测量装备在一定程度上适应柔性化生产。工业摄影测量由于其自身具有非接触、高效率、自动化等特点,很早就在工业测量领域发挥作用。随着工业生产朝着自动化、智能化方向发展以及国家智能制造战略的实施,工业摄影测量技术在工业测量领域中处于越来越重要的地位。如同计算机技术的发展推动了数字摄影测量技术的快速发展一样,仪器仪表、传感器、机器人、电子电路、芯片等技术的发展,也为工业摄影测量技术的发展注入了新的活力,因此工业摄影测量技术也迎来了最好的发展时机,近年来各种创新技术不断涌现,各种应用越来越广泛,显现出勃勃生机。1 工业摄影测量的发展现状1.1工业测量发展现状工业测量作为工业体系的基础支撑技术,目前有多种工业测量技术和设备在工业测量领域被广泛采用。每种技术设备都有其优点,但是又没有一种工业测量技术设备能够满足所有的工业测量需求,因此目前是多种工业测量技术共存的局面。下面对目前最先进的并且广泛应用的几种工业测量技术和设备进行简单介绍。(1) 三坐标测量机。三坐标测量机是传统通用三维坐标测量仪器的代表,通过测头沿导轨的直线运动来实现精确的坐标测量。它的优点是测量精确、通用性好 其不足是属于接触式测量方式,不易对准特征点,对测量环境要求高、不便携、测量范围小[6]。由于其超高精度,毫无疑问三坐标测量机目前仍然是工业测量领域应用最广泛的产品之一。由于其接触式测量等缺点,在一定程度上限制了其在自动化在线检测领域的应用。(2) 关节臂测量机。关节臂测量机是一种便携式测量仪器,对空间不同位置待测点进行接触测量,实际上是模拟了人手臂的运动方式。仪器由测量臂、码盘、测头等组成,各关节之间的测量臂的长度是固定的,测量臂之间的转角通过光栅编码度盘实时得到,最终通过空间支导线的原理实现三维坐标的测量功能。(3) 激光跟踪仪。激光跟踪仪采用球坐标测量系统,其测量原理与全站仪一样,仅仅是测距方式的不同,激光跟踪仪的测距方式是单频激光干涉测距,其精度可以达到16 μm±0.8 μm/m。Leica公司在1990年推出了第一代商用激光跟踪仪,美国的API公司和FARO公司随后推出了各自的类似产品。由于干涉法距离测量的精度高、测量速度快,因此激光跟踪仪测量性能和精度要优于全站仪。在大空间高精度工业测量领域,激光跟踪仪具有显著优势[7]。与三坐标测量仪使用的红宝石测球(图 2(a))类似,激光跟踪仪主要使用的是全反射测球(图 2(b))来进行测量,从技术原理上都属于接触式测量。接触式测量的缺点是,会对被测物体表面产生应力(某些情况下是不可忽略的),并且每接触一次只能获取一个点的坐标,测量效率低。近年来,尽管也发展出了非接触式末端测量工具,其中三坐标测量机和关节臂测量机可以使用单线激光扫描头(图 2(c)),而激光跟踪仪可以使用带有靶标点的跟踪式单线激光扫描头(图 2(d)),从技术原理上属于机械式测量和摄影测量的结合,但其激光线范围较小、测量效率仍然较低。而在自动化在线检测方面,三坐标测量机体积大且依赖恒温恒湿环境,关节臂测量机依赖于人的协作运动,激光跟踪仪在跟踪丢失后需要人工干预,故三者均难以胜任。图2 接触式和非接触式末端测量工具1.2工业摄影测量发展现状除了三坐标测量机、关节臂测量机、激光跟踪仪等传统工业测量技术和设备之外,摄影测量技术和方法在工业测量领域也发挥了重要作用,典型的工业摄影测量技术和产品包括:标志点工业摄影测量系统、结构光测量系统等,下面对这些技术进行详细介绍。根据摄影测量的定义,本文将以下利用相机进行几何量测量的测量系统,纳入到工业摄影测量的范畴。1.2.1 标志点工业摄影测量系统标志点工业摄影测量系统的工作原理是,首先在被测物体表面粘贴一定数量的均匀分布的标志点,然后在不同的位置和方向获取被测物体的数字图像(至少两幅),经过计算机图像匹配等处理及相关摄影测量计算后得到标志点精确的三维坐标。标志点工业摄影测量系统一般分为单台相机的脱机测量系统、多台相机的联机测量系统,它们均具有精度高、非接触测量和便携等特点。由于要在物体表面粘贴标志点,所以这类系统一般用于大型工业构件的曲面控制测量、装配测量等方面,很少用于在线测量领域。1.2.2 结构光测量系统常用的结构光测量系统是线结构光测量系统和面结构光测量系统。线结构光测量系统仅投射出一条激光线,光切面与物体相截为一条曲线,曲线投影到影像上,基于三角法测量原理,可以计算出该曲线上所有点的三维坐标。由于该系统每次只能测量一条曲线上的数据,因此要测量完整的物体表面需要利用机械位移机构带动光束在物体表面移动来实现扫描测量。面结构光测量通过投射带有编码信息的特殊光场,如光栅、空间编码模板等,实现物体表面投影测量。基于光栅投影的结构光测量系统,具体过程是将光栅投影到物体表面,然后利用一个或两个CCD相机观测投射条纹得到变形的光栅条纹图像,对光栅条纹图像进行解码可以实现图像对应,从而可以交会计算得到被测物体的三维空间坐标。基于该原理形成的工业测量产品包括3D相机、固定拍照式三维扫描仪等。1.3工业摄影测量的特点尽管近年来激光雷达扫描(LiDAR)、多视角立体匹配(multi-view stereo,MVS)、飞行时间法3D相机(time of flight,TOF)等新兴技术发展迅猛,成为了摄影测量领域的主要技术手段,但是由于其精度难以满足工业测量的需求,故而始终未能进入工业摄影测量领域。精度是工业测量的首要问题之一,人工目标往往比自然目标具有更高的图像定位精度,通过人工标志点可以在较大的范围内获取最高的摄影测量精度,而在较小的范围内,结构光测量系统可以发挥其静态多频相位观测带来的精度提升作用。除了精度外,实时测量、动态测量、无人工测量等也是工业测量的典型特征。工业摄影测量是利用摄影测量的技术和方法来解决工业测量的问题,因此具有非常鲜明的摄影测量的特点,比如:(1) 非接触式测量。工业摄影测量在获取影像时不需要接触目标本身,不会破坏物体本身固有属性,而且可以在一些不适宜人类进入的场所进行测量。(2) 可以瞬间记录被测物体的大量信息,包括几何信息和物理信息[8]。对于获取的信息进行实时处理,可以快速获得三维空间数据。(3) 数据自动处理。随着数字摄影测量技术的发展,摄影测量数据处理算法可以实现自动处理。(4) 随着电子电路、传感器等技术的发展,摄影仪器生产技术得到提高,测量精度不断提高。(5) 随着计算机视觉领域的新算法、新方法的引入,数字(工业)摄影测量的理论和方法也在不断完善[9]。由于以上特点的存在,工业摄影测量在工业测量领域受到越来越多的关注和越来越广泛的应用。尤其是在自动化、智能化等行业发展趋势的推动下,近年来工业摄影测量技术得到迅猛的发展。2 工业摄影测量技术重要进展一方面,随着现代工业的发展,尤其是以数字制造为核心的先进制造技术的迅猛发展,对工业摄影测量技术提出新的要求。另一方面,随着传感器、计算机、电子信息、图像处理、机器人、人工智能等技术的快速发展,工业摄影测量也与电子信息、测试计量技术与仪器、计算机视觉、机器人、人工智能等多个相关学科交叉融合,进入了快速发展的新阶段。工业测量的核心问题是精度和效率,工业零部件在设计阶段就确定了每个几何特征的公差,公差的大小决定了工业测量精度的下限,也是保证不同零部件之间可以装配成功的最低要求。在规定的测量精度范围内,尽可能地提高测量效率,是工业用户不断追求的目标。提高效率从使用角度可以体现在,节省测量前的准备时间、节省测量时的操作时间、节省测量后的处理时间,从技术角度又可以表现为实时性强(时间短)、便捷性好(易操作)、自动化程度高(省人工)以及智能化程度高(干预少)。2.1实时性集影像信息获取、处理和成果表达(输出)于一体,一步完成的摄影测量,称之为实时摄影测量[10]。它能够在影像信息获取的同时,以足够快的速度进行信息处理和成果输出。实时摄影测量的研究与应用一直是工业摄影测量的主要发展方向[11]。现代工业的发展,更是对测量的实时性提出更加迫切的需求。工业摄影测量的实时性,要求“所测即所得”,数据获取、数据处理和结果呈现同步完成,因此对测量设备和算法提出很高的要求。针对实时性的要求,笔者设计实现了一款工业级三维手持扫描测量系统,其原理如图 3所示:首先,在工业零件上或者零件周围布设一定数量的标志点,然后手持数据采集设备对工业零件进行数据采集,在数据采集的同时进行解算,并把结果传到电脑上实时呈现。该设备非常便携,即拿即测,结果实时获得。图3 工业级三维手持扫描测量原理与系统由图 3可以看到,这套工业级三维手持扫描测量系统包括两个工业相机和一套激光器。其中两个同步的工业相机,分辨率500万像素,相机拍照频率最高可达75 Hz,激光器最多同时发出17束激光线,每秒最多可采集210万个三维点,满足实时摄影测量的需求。扫描测量系统在移动过程中,激光器投射线激光,工业相机获取激光线的图像然后传到电脑上进行解析处理,获取三维数据并实时显示在电脑屏幕上。由于要达到实时处理,在下一帧数据传输之前,必须完成前一帧数据的全部处理,并更新屏幕上的结果显示。这里的数据处理包括标志点提取与定位、传感器位置姿态计算、激光线提取与三维坐标解算、三维数据的拼接与融合等,其中数据融合是有别于传统摄影测量的新方法,它基于Hasp Map体素模型进行三维重建[12-13],可以从含有大量噪声的原始测量点中提取出更高精度的三维点(如图 3(c)、3(d))。这里,工件上面粘贴标志点的作用是在扫描测量系统移动过程中确定扫描测量系统的位置和姿态。该系统中为了实现实时处理,采取的主要措施包括:(1) 使用全局快门的CMOS图像传感器[14]。摄影测量中常用的单反相机,通常都是滚动快门(或称卷帘快门),它们的像素是逐行曝光的,在静态摄影中可能不会有问题,但是在动态摄影中会产生拖影,不利于摄影测量解算,而全局快门的CMOS中所有的像素都是同时曝光的,适合于实时动态的摄影测量场景。(2) 超短曝光时间的光照技术。在动态测量中曝光时间通常小于1/1000 s才能忽略运动模糊,使用回光反射的玻璃微珠材质制作的反光标志点[15],当作摄影测量中的控制点或加密点,进行相机的定位,反光标志点可以在极短的曝光时间内在图像中呈清晰明亮的像。(3) CPU和GPU协同工作的加速算法。在实时摄影测量中,把图像加工为三维网格,需要经过畸变纠正、特征提取、特征匹配、平差、点云去噪、融合、构网等算法,每一种算法通过拆解细分,把不同的步骤分别部署到CPU或GPU上,最大效率地利用计算资源。(4) 实时渲染技术。实时计算生成的三维网格会随着扫描的时间而逐步增大,可以增加到几百万乃至几千万三角形,而每一帧图像只影响局部范围,通过局部增、删、改三维数据,并利用OpenGL顶点缓冲区技术,实现实时三维网格渲染。2.2便捷性上一节介绍的工业级三维手持扫描测量技术需要在工业零件表面或者周围粘贴标志点,这在一些特殊环境下难以适用,因此本文进一步对上述技术进行改进。工业零件表面或者周围粘贴标志点的作用是对扫描装置进行定位定姿,如果不粘贴标志点,就需要其他的定位定姿方法。在本文中提出了两种新的定位定姿方法,一种是通过增加全局控制的光学跟踪装置 一种是将标志点贴在周围的墙上然后进行反向定位。2.2.1 光学跟踪全局定位为了避免在被测物体表面贴标志点,笔者设计了光学跟踪全局定位扫描测量系统。如图 4(a)所示,该系统在数据扫描装置之外增加光学跟踪装置,二者配合工作。在扫描测量过程中,光学跟踪装置时刻观测数据扫描装置,通过数据扫描装置上的标志点实时获取数据扫描装置的位置和姿态,从而实现三维扫描数据的实时拼接融合,如图 4(b)所示。由图 4中可以看到,光学跟踪装置由双目立体视觉系统组成,在数据扫描装置外围布设了标志点框架,这样在其移动测量的过程中,光学跟踪装置实时跟踪观测数据扫描装置周围的标志点,从而对数据扫描装置进行实时定位定姿,最终将数据扫描装置获取的数据整合到统一的坐标系下,实现数据的自动实时拼接和融合。该系统不需要在被测物体表面贴标志点,可以“即拿即测”,便捷性大大提高。图4 光学跟踪全局定位扫描测量系统2.2.2标志点反向定位标志点反向定位的原理如图 5所示。图 5(a)是传统的物体表面贴点扫描测量方式,该方式通过标志点的识别定位对扫描仪进行定位定姿 图 5(b)是标志点反向定位扫描测量方式,在这种方法下标志点不是贴在物体上,而是贴在周围固定不动的墙壁上或其他结构物上。同时在扫描仪上加装了第三台定位相机,只要定位相机能够观测到周围墙上或其他结构物上的标志点即可对扫描仪进行反向定位定姿,实现所有数据的坐标系统一和自动拼接。标志点反向定位与航空摄影测量中的后方交会是同样的原理[16-17]。图5 标志点反向定位2.3自动化和智能化现代工业的发展,对工业测量的自动化、智能化水平提出了更高的要求。本文在上述手持式三维扫描测量设备的基础上,集成机器人、控制系统等硬件以及路径自动规划等软件算法,实现了自动化、智能化的工业摄影测量系统,如图 6所示。图6 自动化、智能化工业摄影测量系统本文实现的自动化智能化工业摄影测量系统包括工业测量传感器(扫描头+跟踪器)、机器人、控制系统、路径自动规划软件、测量数据后处理软件、机械工装等部分。其工作流程如图 7所示,首先根据被测工件的CAD数据,路径自动规划软件对机器人行走路径进行规划设计[18],这项工作对于同一批工件只做一次 在具体测量过程中,机器人自动按照规划设计的路径行走,一边行走一边进行扫描测量 扫描结束,数据传给测量数据后处理软件进行处理,包括自动和CAD设计数据进行比对,自动出检测报告等,如果需要还会做出是否为合格品等判断并输出结果 对所有的工件进行扫描测量、后处理等整个自动化测量过程,直到结束。图7 自动化、智能化工业摄影测量系统工作流程2.4市场应用上述技术和设备为工业测量提供了新的方法和成熟的解决方案,通过典型终端客户验证了新技术可以替代传统的测量方式,提高了工业领域决策者的信心。自动化、智能化三维测量装备面向大部分工业制造行业,不仅可以用于在线测量,而且可以实现柔性检测,促进了传统工业测量检测工艺的进步。目前本文研制成果已在汽车白车身、新能源汽车电池盒、发动机、铁路扣件、无砟轨道板、隧道管片等的在线自动化检测方面得到成功应用,通过进一步推广,可极大地提升汽车制造、轨道交通、航空航天等高端智能制造领域的自动化测量与检测水平,每年可为各类型企业创造可观的经济价值。高精度智能在线自动三维测量系统,有助于制造企业转型升级为高标准、高质量、柔性化、数字化的“智慧工厂”建设。3 工业摄影测量的主要应用方向工业摄影测量技术应用于工业设计、加工、检测等各个阶段[19],应用场景非常广泛、处理对象也千差万别。本文结合技术发展方向和趋势对其最主要的几个应用方向进行归纳介绍,包括逆向工程、质量检测、辅助智能制造。3.1逆向工程逆向工程(reverse engineering,RE)也称为反求工程,是指在缺少设计图纸和文档的情况下对产品进行复制的一种技术[20]。逆向工程作为获取零件设计加工数据最快捷的方式,具有高效率、低费用的特点,能极大缩短工业产品的研发周期[21]。近年来,随着科技的进步,逆向工程技术发展迅速,已广泛应用于汽车、航空航天、医学、文物修复等领域。工业摄影测量技术的快速发展使其成为逆向工程中数据采集的重要手段,下面以燃气轮机为例,介绍工业摄影测量技术在逆向工程中的应用。燃气轮机是一种先进而复杂的成套动力机械装备,是典型的高新技术密集型产品,也被称为“制造业皇冠上的明珠”[22],如图 8(a)、图 8(b)所示。作为高科技的载体,燃气轮机代表了多理论学科和多工程领域发展的综合水平,是21世纪的先导技术。燃气轮机主要由压气机、燃烧室、涡轮三部分组成,内部包括叶片等零部件,整体结构复杂,共计47个零件。燃气轮机对逆向精度要求极高,本次要逆向的燃气轮机长约4.5 m,要求单个零件逆向精度在0.1 mm以内,整体逆向精度在0.3 mm以内。逆向后还需进行虚拟装配,保证整体零部件符合设备工作原理。图8 燃气轮机逆向工程采用上一节介绍的工业级三维手持扫描仪对燃气轮机进行逆向。首先,利用工业级三维手持扫描仪获取了燃气轮机模型的三维表面数据,如图 8(c)所示。三维手持扫描仪在采集模型三维数据的同时进行了数据优化、去燥和精简等处理,因此提供的数据质量比较高,可以直接用于模型重建。模型重建在UG软件中完成[23],利用UG的数字编辑模块和强大的曲面造型功能重建燃气轮机曲面。采用混合曲面造型方式,先对数据进行面轮廓线特征创建,在特征线的基础上,利用UG强大的Though Curve Mesh命令,将调整好的曲线编制成光顺曲面,得到了燃气轮机的重建曲面,并且由于Though Curve Mesh可以控制四周曲面边界的曲率,因而构成的曲面质量更光顺,贴合STL数据精度也更高。曲面重建结果如图 8(d)所示。在完成曲面重建后,对重建曲面的光顺性和精度进行了分析评估,如图 8(e)所示。最后,在重建的燃气轮机模型的光顺性和精度都满足要求的条件下进行了虚拟装配,最终验证了逆向成果的正确性和可靠性,如图 8(f)所示。在该逆向过程中,采用先进的工业摄影测量技术,很好地克服了燃气轮机零件繁多、模型复杂、相互遮挡严重等问题,使得三维测量的效率大大提高,比传统接触式测量的效率提升5倍以上。3.2质量检测产品的几何特征在质量检验中占有重要地位,90%的质量检验都与几何形状参数有关[24]。几何量检测是一项基础性强、应用面广的质量检测类别。在工业生产中,机械产品的质量与零件的加工精度和装配精度有关,而加工和装配的高精度需要通过高精度的工业测量技术得以保证。例如,一辆汽车有数千个零件,由数百家工厂生产,如果没有高精度的工业测量技术作保证,是难以装配成功的。工业摄影测量已经在汽车制造业、零部件质量控制和整机装配等环节的在线检测中得到广泛采用[25-26]。下面以新能源汽车电池盒检测为例进行详细介绍。近年来,新能源汽车受到越来越多消费者的青睐。作为动力电池的主要载体,电池盒是新能源汽车必备的安全结构件,对承载、固定和保护电池组起着关键作用。电池盒的尺寸一般从1.0 m至2.5 m不等,主体结构分为上盖和下壳体,由于装配的需求,其表面分布了几百个圆孔等特征。电池盒的质量检测要求测量所有圆孔圆槽的位置公差、小铸件平面的轮廓误差、部分平面的平面度等,测量精度要求在0.1 mm以内,另外测量检测效率要求能够跟上生产效率,一般是在5~7 min之内。目前测量电池盒外形尺寸及安装孔位主要依靠三坐标接触式测量,效率不理想,难以满足生产需求。由于产量巨大,因此通过自动化在线检测来替代人工操作是基本需求。针对以上要求,以文中介绍的技术成果为基础设计了一套专门针对电池盒的自动在线测量检测系统,如图 9所示。该系统包括扫描测量仪、跟踪器、机器人、滑轨、电控等部件,通过软件实现自动路径规划、自动数据采集、自动数据处理、自动出报告等功能。图9 电池盒自动化检测系统当电池盒进入待检区后,只需按下机柜启动键,机器人即携3D扫描仪按规划路径开始扫描测量,直至测完整个工件,然后自动与CAD设计数据比对并出具PDF格式的检测报告,如图 10所示。整个过程实现了无人化的测量与检测。图10 检测结果报告除了新能源汽车电池盒,相关技术还应用到汽车白车身、高铁轨道板等部件的检测(图 11)、铁路弹条扣件在生产线上的自动化尺寸检测(图 12)等,取得了良好的经济效益和社会效益。图11 汽车白车身与高铁轨道板检测图12 铁路弹条扣件在线自动化检测3.3辅助智能制造在智能制造中,有很多场景需要借助工业摄影测量技术,才能实现自动、智能、柔性制造。比如,对于一些铸件毛坯的自动打磨,需要测量铸件毛坯的表面模型,才能进行打磨机器人路径规划,实现自动打磨 对于焊接,需要提前测量焊缝实际空间位置,才能规划焊接路径 对喷漆和涂胶等应用,也需要对物体首先进行表面测量,才能规划机器人路径实现自动柔性工作等[27]。可以说,工业摄影测量技术在智能制造的过程中能够发挥重要作用。另外,打磨、抛光、喷涂、焊接等工作都是高危险高污染的行业,迫切需要专门设备自动化完成。下面以鞋模打磨为例详细介绍工业摄影测量技术辅助智能制造。在制鞋过程的早期,需要对鞋模进行打磨,适当提升表面粗糙度便于后期涂胶粘贴更加牢固。如图 13所示,是一个工业摄影测量技术辅助鞋模打磨的设备,该设备能够实现机器人自动三维扫描、机器人自动打磨。具体工作流程是,在初期工位首先利用工业摄影测量技术对鞋模进行表面扫描测量,然后根据获取的
  • 冷冻共聚焦光电联用实现三维定位
    冷冻共聚焦显微镜及其在冷冻电子断层扫描中的价值 Cryo ET(电子断层扫描)是一种专用的透射电子显微镜技术,可以重建观察区域的三维体积。借助先进的冷冻EM(电子显微镜),图像分辨率可以提升到令人难以置信的亚纳米等级。因此,可以在细胞内的原生环境中研究蛋白质以及其他生物分子,从而揭示尚未探明的分子机制。由于细胞和组织必须薄到能够透过电子,样品必须进行切片以获取足够薄的样品体积(薄层)。为对样品中的靶区进行精确的三维定位,冷冻共聚焦显微镜是必不可少的工具。 以下部分,我们将描述冷冻电子断层扫描工作流程的主要步骤,以及如何通过冷冻共聚焦显微镜定位靶区并进行切片,以提高整个工作流程的可靠性。 在EM网格上培养细胞 通常,在涂有多孔碳膜(例如 QuantifoilR)或二氧化硅(SiO2)膜的金质或钛金网格上植入急性分离或培养的细胞(图1,Mahamid等人,2019)在后续步骤中,钛金属和二氧化硅似乎更加坚硬而且稳定,无需额外添加碳层(Toro-Nahuelpan 2019) 网格通过Poly-L-Lysin或纤连蛋白(Fibronectin)实现生物激活,胰蛋白酶解离细胞在前一晚植入,以便在后续步骤中附着在碳层表面(Mahamid等人,2019)。 图1:采用12纳米厚多孔二氧化硅膜(R 1.2/20,即孔径1.2微米,间距20微米)的3毫米EM金质(Au)网格的反射图像拼接图。HeLa细胞已经植入并玻璃化。实心箭头:定位用的中心标记;空心箭头:聚焦离子束进入的切片槽;虚线箭头:空的网格方格。一个网格方格的边长:90微米。 添加微型图案 为进入细胞样品以成功实现FIB切片并在冷冻TEM中开展后续分析,必须确保相关细胞位于网格方格的中心位置或其附近。但细胞喜欢在网格条上生长或者集簇生长,因此不适合进行FIB切片和电子透射分析。为了克服这一挑战,微型图案技术允许用户控制细胞在碳膜(图2)上的位置和分布,提高相关工作流程的可靠性。 网格表面涂有聚乙二醇(PEG),可防止生物材料附着。利用紫外激光移除该涂层,即可对细胞的黏附进行针对性控制,保证FIB切片以及TEM的可操作性(Toro-Nahuelpan 2019)。此外,可以创建特定图案,从而影响整个细胞结构并且有助于使用冷冻电子显微镜研究生物力学现象。 图2:有/无微型图案的细胞分布情况左图:分布不均的细胞(小鼠A9成纤维细胞,使用Alexa Fluor 488 Phalloidin标记,以显示纤维状肌动蛋白)。右图:网格方格中心定位精确的细胞,可进行FIB(成纤维细胞黏附在纤维蛋白原微型图案表面;图片由Alvéole与德国汉堡CSSB中心教授Kay Grünewald博士共同提供。) 投入冷冻 为在固定用于电子显微镜检查的同时确保样品接近原生状态,细胞必须极速冷冻,以免产生破坏性的冰晶。这个过程称为玻璃化,因为冰片变成无结晶的玻璃状(玻璃体) 为让样品细胞达到这种效果,网格必须快速投浸到适当的冷冻剂(通常为乙烷,或者乙烷和丙烷)中。1981年,Jacques Dubochet发表了首个手动吸液和投入冷冻方法,该方法仍获广泛使用以获取出色的结果(Dubochet, J.以及McDowall, A. W.,1981)。 在投入冷冻之前,必须去除多余的液体。标准技术是使用滤纸实现受控吸液(图3,Dubochet, J等人,1982;Bellare等人,1988;Frederik, P. M.等人,1989)。 图3:在投入冷冻前,通过吸液处理对多余液体进行受控移除。使用镊子固定网格,并通过单独步骤将吸液纸移向网格。吸液传感器可以自动并反复执行该过程。 市面上有多种不同的吸液设备,例如用于自动吸液和投入冷冻的Leica EM GP2。根据不同样品类型的多种需求,可以使用多种涉及吸液步骤的样品制备方案(另见此处)。 冷冻状况下的存储、装载和转移 玻璃化之后,样品必须在整个工作流程期间处于冷冻状况下。因此,必须对从存储到转移至不同成像系统的所有步骤进行冷冻处理,以免样品析晶和/或污染这尤其困难,因为这种低温冷冻样品会像磁铁一样吸引附近的湿气和灰尘。研究人员和制造商付出巨大的努力来开发并提供解决方案,以便在工作流程的不同步骤中保证样品安全。 样品通常以四个为一组存储在网格盒内,而网格盒又保存在大型液氮(LN2)罐中的Falcon多孔试管中。还可以使用更为复杂的冰球系统。 转移并装载到样品架时,通常使用液态氮(LN2)。不幸的是,LN2往往会在一段时间后,因为空气中的水分而产生结晶冰污染。在转移时,这些冰晶可能会附着到网格上,干扰随后的切片和成像过程。此外,LN2内部的能见度很低,因为它在不断移动,而且始终会有条纹。 因此,最好在LN2上部的气相部分装载并转移样品以保持冷冻条件,同时为装载步骤(图4)提供出色的可见性。 徕卡显微系统在提供GN2(气态氮)装载和转移设备方面拥有30多年的悠久历史。新的冷冻显微镜套件就在这些经验的基础上开发而成,同时融合众多客户的反馈意见打造出先进的转移舱和夹具系统。 图4:在冷冻显微镜套件转移舱的GN2(气态氮)环境中装载网格。转移舱的可见度在冷冻条件下不受干扰。 检查样品质量和靶分布 在冷冻工作流程中,一般而言,EM操作时间尤其宝贵,因此对样品进行早期质量检查至关重要。许多因素会关系到样品能否转移到下一个工作流程步骤,包括碳箔的结构完整性、玻璃化的质量(包括冰层的厚度及其分布)、目标细胞的存在、分布和可及性,以及目标结构的存在和定位。 所有这些参数均可通过基于相机的冷冻光学显微镜(例如THUNDER Imager EM Cryo-CLEM)或使用STELLARIS冷冻共聚焦显微镜上的相机模式来检查(图5)。 透射模式显示网格、箔膜和细胞质量,反射图像显示网格表面,尤其是呈现玻璃化质量和冰层厚度,而荧光图像可以提供有关不同靶蛋白的表达水平及其分布情况的信息。 图5:不同模式呈现出网格的完整性以及靶分布。A——网格表面的反射图像可以显示碳膜或二氧化硅层的缺陷以及冰层的厚度。B——绿色荧光(线粒体)。C——液滴分布以实现高精度关联D——通过Hoechst标记的细胞核E——所有模式的叠加图像细胞由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Ievgeniia Zagoriy友情提供。一个网格方格的边长:90微米。 在LAS X Coral Cryo软件工作流程中,用户可以在引导下,通过不同图像模式对整个网格自动创建清晰的合焦概览图像。 标记标志点、薄片点以及液滴中心 为了关联冷冻LM(光学显微镜)的3D图像以及后续的冷冻FIB-SEM/TEM图像,首先需要获取网格的概览图像以便大致对齐两种模式的图像(图6)。这里,反射图像非常重要,因为它们类似于SEM图像,但也可以使用透射图像。中心标记以及其他标志点(例如碳层中的缺陷)有助于快速定位并对齐概览图。 图6:以不同模式获取整个网格的合焦概览图像,用于识别网格缺陷、对齐标记和靶分布。中心标记用实心箭头表示,二氧化硅层中的主要缺陷用空心箭头突出显示。HeLa细胞由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Ievgeniia Zagoriy友情提供。蓝色 – Hoechst染料,细胞核;绿色 — 线粒体绿色荧光探针,线粒体;红色 - 深红色液滴和Bodipy荧光染料,脂滴。一个网格方格的边长:90微米。完整网格直径:3毫米。 其次,需要超分辨率的共聚焦3D图像。这些图像堆栈用于在潜在薄片位置的范围内执行高精度关联。完成概览图对齐后,可以找到3D共聚焦堆栈的正确位置以便后续进行高精度关联这样做的前提是必须提供图像相对于概览图以及相对于彼此的位置。这就是Coral Cryo软件工作流程之后的处理步骤(图7)。 图7:相机概览图像与共聚焦Z-堆栈相机和共聚焦图像的组合含有XY坐标位置,因此可以匹配。所有图像都包含在Coral Cryo软件工作流程期间创建的相关项目文件夹中。HeLa细胞由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Ievgeniia Zagoriy友情提供。蓝色 – Hoechst染料,细胞核;绿色 — 线粒体绿色荧光探针,线粒体;红色 - 深红色液滴和Bodipy荧光染料,脂滴。一个网格方格的边长:90微米。完整网格直径:3毫米。 必须组合相机概览图像和超分辨率3D图像以检索靶区位置并在FIB-SEM上定义切片位置。这个步骤非常重要,因为在标准FIB-SEM中,无法看到荧光以及相应的靶区点位。 EM(电子显微镜)制造商近期研发出一种集成了FIB-SEM功能的荧光显微镜,可以作为在切片过程中通过检查荧光来提高工作流程的可靠性和准确性的一种绝佳选择。不过,这些系统并不具备必要的分辨率以及采集模式的灵活性,无法像单独的共聚焦系统那样实现精确的3D定位。 如何关联并检索薄片位置 作为常用的最低标准,研究人员使用LM图像的屏幕截图在EM上检索靶区的XY坐标。不幸的是,并排比较图像不仅费力耗时而且很容易出错,因此并不可靠。身为工作流程提供商,徕卡显微系统致力于通过THUNDER Imager EM Cryo-CLEM来改善这种情况。研究人员可以在图像上定位标志点和靶区标记,然后以开放EM格式的完整坐标集导出。首先,这个流程适用于2D图像,因此合乎逻辑的下一步骤就是提高分辨率并将坐标系扩展到3D坐标。 对于高精度关联和3D定位,目前广泛采用的是基于液滴的方法(Alegretti等人,2020;Klumpe等人,2021年;Bieber, A.,Capitanio, C等人,2021)液滴通常在玻璃化之前添加到细胞中,可在LM和EM中观察到,用于通过XYZ坐标对齐图像堆栈,作为图像数据相关性的基础,从而正确定位FIB切片窗口(图8)。 典型液滴的尺寸为1微米,完全呈球形,这使其中心坐标能够进行亚衍射拟合。通过SEM中的背散射电子,可以更清晰地观察到含有金属的微滴,从而将它们与大小相似的冰晶区分开来。优先选择液滴,使其荧光发射不同于实际靶的荧光发射,以便能够更好地分辨。 图8:3D共聚焦图像(左)和俯视SEM图像(右)的最大投影。荧光液滴(1微米)在两种模式中均可以观察到,因此可以用于对齐数据。SEM图像细胞由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Herman K. H. Fung和Ievgeniia Zagoriy友情提供。一个网格方格的边长:90微米。 要使用来自冷冻LM和FIB-SEM的3D数据,在冷冻LM的引导下,进行薄片制备,可以使用一款开源软件(3D关联工具箱,简称3DCT,Jan Arnold等人,2016)。 将冷冻LM图像载入到在FIB-SEM上运行的该软件中。二维LM概览图和SEM图像之间的三点关联用于初步定位。之后,使用离子束获取相关视场,并手动点击LM堆栈和FIB图像中的相同液滴图10显示了一张LM图像和一张FIB图像,其中的靶区点位以及液滴可以在定位软件中重现其排列组合。 图9:在LM和FIB图像中关联标记。左图:点击观察结构周围的液滴,并在3D图像中执行质心定义(白圈中的绿点)计算得到的位置随后投影到FIB图像(右图)上根据液滴标记,计算目标结构的位置并标记到FIB图像中(红圈中的红点)。离子束图像由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Herman K. H. Fung友情提供。比例尺:20微米。 该软件通过对X、Y、Z信号进行高斯拟合,精准确定液滴的中心。近期的改进增加了半自动液滴检测功能以及其他功能,从而更加方便地执行冷冻FIB工作流程。(SerialFIB, Klumpes等人,2021)。 在网格条上选择围绕最终目标结构的几处液滴,作为切片处理的坐标系。基本计算方法是考虑缩放、旋转以及平移之后的线性仿射变换最后,在LM图像中选择目标结构并叠加到FIB图像上。 根据目标结构的位置,就可以定位切片窗口(图10)。 图10:定位切片窗口左:离子束细胞图像,含有标记液滴和目标结构根据目标结构的计算位置,在所用FIB-SEM的切片软件中,交互定位上下切片窗口的位置(细薄条纹上方和下方的红色方块)。图像由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Herman K. H. Fung友情提供。比例尺:20微米。 Coral Cryo工作流程具有哪些优势? Coral Cryo软件工作流程旨在为基于液滴的靶区定位工作流程提供支持。它可以提供创建合焦相机概览图像所需的成像作业(图6和图7)。所有必要的自动对焦功能均可以正确调整并分配,并且可以标记潜在薄片位置,同时能够在定义的位置执行超分辨率共聚焦Z-堆栈。 在定位管理器(图11)中,可以确定所有必要的坐标标记,并且以开放格式(*.xml)提供。此类图像会自动保存,其数据格式可以导入任何FIB-SEM软件。 图11:Coral Cryo软件模块标记点、薄片和液滴标记均可以在软件工作流程中定义。反射图像中细胞的顶部和底部坐标值可以作为在FIB SEM中正确计算靶区3D位置的额外参考。本文前述部分图像中的相同细胞经过突出显示,用于标记定义。 对齐标记用于使用相机概览图像对标记点进行初步的粗略对齐。薄片标记具有双重用途:作为进行超分辨率共聚焦3D扫描的位置标记,或者在图像采集后,作为靶结构的精确3D标记。亚像素插值确保该阶段可以在3D图像内进行高精度定位。最后,插值方法还用于标记液滴坐标,以便在FIB-SEM上进行后续液滴关联。 冷冻FIB切片 进行必要的关联并设置切片窗口,薄片位置通常会粗略切薄至大约1微米,随后进行最终的抛光步骤以达到电子透明(图12)。 图12:目标薄片的离子束图像以及SEM俯视图图像由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Herman K. H. Fung友情提供。比例尺:10微米。 采用两步方法的原因在于冰污染和/或切片材料可能会沉积在薄片上。为避免在最终薄片上发生冰污染,建议采用快速抛光工艺(Schaffer M.等人,2017)。还可以采用开源的商业软件,以自动方式进行切片。 冷冻透射电子显微镜 进行冷冻FIB切片之后,含有薄片的网格转移至冷冻TEM,通过对网格(连同薄片)逐渐倾斜,采集一系列断层扫描图像。图像经过计算处理以重建所记录体积的3D断层扫描图像。通过对样品的多个图像取平均值,可以降低固有噪点,从而对蛋白质或蛋白质复合物等颗粒获得更高分辨率的结构。这种处理方式称为亚断层图像平均(Wan和Briggs,2016;Zhang 2019)。从概念上说,这相当于通过单颗粒成像(SPA),在原位实现对大分子的亚纳米分辨率。 总 结 本文旨在表明冷冻共聚焦显微镜是冷冻工作流程中的一个重要组成部分,用于评估EM网格上玻璃化样品的质量和靶分布。在冷冻条件下记录的高分辨率共聚焦数据使科学家能够在3D荧光下识别目标结构。此外,3D体积可作为相关方法的参考,以便在FIB-SEM中检索靶结构进行切片,然后在冷冻TEM中进行电子断层扫描,以获得靶区的亚纳米分辨率图像。 Coral Cryo工作流程搭配新的共聚焦平台STELLARIS,再加上Coral Cryo软件,可以帮助新手用户创建网格概览图像、超分辨率3D图像以及精确的坐标标记,为后续的FIB切片和冷冻电子断层扫描奠定坚实基础。 参考文献:(上下滑动查看更多) 1.Allegretti M, Zimmerli CE, Rantos V, Wilfling F, Ronchi P, Fung HKH, Lee CW, Hagen W, Turoňová B, Karius K, Börmel M, Zhang X, Müller CW, Schwab Y, Mahamid J, Pfander B, Kosinski J, Beck M.: In-cell architecture of the nuclear pore and snapshots of its turnover. Nature. 2020 Oct 586(7831):796-800. doi: 10.1038/s41586-020-2670-5. Epub 2020 Sep 2. PMID: 32879490. 2.Arnold, J., Mahamid, J., Lucic, V., de Marco, A., Fernandez, J., Laugks, T., Mayer, T., Hyman, A. A., Baumeister, W., Plitzko, J. M., Biophysical Journal, Vol. 110, Feb. 2016, pp 860-869. 3.Bellare, J. R., Davis, H. T., Scriven, L. E. & Talmon, Y.: Controlled environment vitrification system: an improved sample preparation technique. J. Electron Microsc. Tech. 10, 87–111 (1988). 4.Bieber, A., Capitanio, C., Wilfling, F., Plitzko, J., Erdmann, P.S.: Sample Preparation by 3D-Correlative Focused Ion Beam Milling for High-Resolution Cryo--Electron Tomography. J. Vis.Exp. (176), e62886, doi:10.3791/62886 (2021). 5.Dubochet, J. & McDowall, A. W.: Vitrification of pure water for electron microscopy. J. Microsin cryo-electron tomography and subtomogram averaging and classification. Curr Opin Struct Biol. 2019 Oct 58:249-258. Doi: 10.1016/j.sbi.2019.05.021. 相关产品 UC Enuity 超薄切片机 徕卡显微咨询电话:400-630-7761 关于徕卡显微系统 徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。
  • 长光辰英超快三维荧光成像系统亮相蓉城,助力科研产出新速度
    近日,长光辰英S3000超快三维荧光成像系统,在成都四川大学生物治疗国家重点实验室装机试用,S3000凭借其快速共聚焦切片成像的核心特点,受到众多老师关注,争先申请试用。试用现场,产品经理对成像原理进行详细讲解,演示系统操作流程,并为试用过程中老师遇到的问题进行一一解答。川大重点实验室王老师:“将原来一整天的拍摄时间缩短到2个小时以内,这样的拍摄效率,要得”。S3000超快三维荧光成像系统,软件易学易用,操作简单。节省了共聚焦层扫的宝贵时间,提升实验效率及科学产出,更好地助力科研工作。S3000超快三维荧光成像系统由快速三维扫描狭缝转盘模块、高分辨率高灵敏度相机、大功率低光毒性LED荧光激发光源及自动化显微镜主机构成。超快共聚焦成像。采用结构光转盘技术,光通量比针孔式转盘提高数倍,允许LED激发光源共聚焦成像 根据相机配置、成像度可达30-50帧/秒 三种切片模式自由切换,实现快速成像和高质量成像的结合。全谱段探测。一个LED光源可应对全谱段检测应用,激发光:370-700 nm,发射光:410-750 nm 覆盖常见荧光染料的光谱范围 4位滤光块转轮,通道切换时间小于0.2s,滤光块免工具更换,可实现4+N多通道荧光拍摄。模块化设计。采用紧凑的共聚焦光路设计,仪器外形更小巧 无需庞大空间也可安装,共聚焦模块可灵活耦合在正置、倒置、体式等各种显微镜上,适应不同应用场景。高可靠性及可扩展性,兼容已有成像设备,让科学工作者从仪器维护中释放出来,把更多时间投入到科学研究本身。该仪器在四川大学生物治疗国家重点实验室试用展示一周后,还将在华西口腔医院及四川大学生命科学学院分别做试用演示。届时欢迎想了解的老师及经销商同仁莅临观摩试用。样片showtime小鼠神经突触 60X NA1.4 oil给药细胞 60X NA1.4 oil果蝇脑神经元 40X NA 0.95
  • 布鲁克发布Bruker高分辨率X射线三维显微成像系统(3D XRM)新品
    X射线显微CT:先进的无损三维显微镜显微CT即Micro-CT,为三维X射线成像,与医用CT(或“CAT”)原理相同,可进行小尺寸、高精度扫描。通过对样品内部非常细微的结构进行无损成像,真正实现三维显微成像。无需样本品制备、嵌入、镀层或切薄片。单次扫描将能实现对样品对象的完整内部三维结构的完整成像,并且最后可以完好取回样本品! 特点:先进的扫描引擎—可变扫描几何:可以提高成像质量,或将扫描时间缩短1/2到1/5支持重建、分析和逼真成像的软件套件 自动样品切换器技术规范:X射线源:20-100kV,10W,焦点尺寸<5μm@4WX射线探测器:1600万像素(4904×3280像素)或1100万像素(4032×2688像素)14位冷却式CCD光纤连接至闪烁体标称分辨率(最大放大率下样品的像素):1600万像素探测器<0.35um;1100万像素探测器<0.45um,重建容积图(单次扫描):1600万像素探测器,最高14456×14456×2630像素 1100万像素探测器,最高11840×11840×2150像素扫描空间:最大值:直径75mm,长70mm辐射安全:在仪器表面的任何一点上<1 uSv/h外形尺寸:1160(宽)×520(深)×330(高)毫米(带样品切换器高440毫米)重量:150千克,不含包装电源:100-240V / 50-60Hz,典型值:在最大X射线功率下为90W创新点:SKYSCAN 1275 专为快速扫描多种样品而设计。该系统采用一个功能强大的广角X 射线源(100 kV)和高效的大型平板探测器,可以轻松实现大尺寸样品扫描。由于X射线源到探测器的距离较短以及快速的探测器读出能力,SKYSCAN 1275 可以显著提高工作效率——从几小时缩短至几分钟,并保证不降低图像质量。SKYSCAN 1275 如此迅速,甚至可以实现四维动态成像。 Push-Button-CT™ 让操作变得极为简单 您只需选择手动或自动插入一个样品,就可以自动获得完整的三维容积,无需其他操作。Push-Button-CT 包含了所有工作流程:自动样品尺寸检测、样品扫描、三维重建以及三维可视化。选配自动进样器,SKYSCAN 1275可以全天候工作。 灵活易用、功能全面 除了 Push-Button-CT 模式,SKYSCAN 1275 还可以提供有经验用户所期待的 μ CT 系统功能。所有测量都支持手动设置,从而确保为难度较大的样本设置佳参数。即使在分辨率低于 5 μ m 的情况下,典型扫描时间也在15 分钟以内。 无隐性成本:一款免维护的桌面 μ CT 封闭式 X 射线管支持全天候工作,不存在因更换破损的灯丝而停机的情况,为您节约大量时间和成本。 Bruker高分辨率X射线三维显微成像系统(3D XRM)
  • 697万元!蔡司中标中科院新疆生地所三维X射线扫描成像系统采购项目
    近日,中国科学院新疆生态与地理研究所三维X射线扫描成像系统采购项目发布中标公告,卡尔蔡司以US$1,031,000.00(折合人民币约697万元)中标。一、项目编号:OITC-G220300354(招标文件编号:OITC-G220300354)二、项目名称:中国科学院新疆生态与地理研究所三维X射线扫描成像系统采购项目三、中标(成交)信息供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 新疆汇意达进出口有限公司 三维X射线扫描成像系统 卡尔蔡司Xradia515 Versa 1台 US$1,031,000.00 四、招标技术规格1. 工作条件1.1 电源:380V和230V±10%,AC(交流),50/60Hz1.2 环境温度:15-27℃(最优:18~21℃)1.3 相对湿度:20-80%2. 技术要求:*整机要求:提供的设备为成熟的型号和配置,不接受后期改造或定制开发。2.1 分辨率及成像架构#2.1.1 最高空间分辨率:最佳三维空间分辨率≤0.5μm;2.1.2 当X射线源距样品旋转轴50mm时的最佳空间分辨率≤1.0μm;2.1.3 最小可实现的体素(最大放大倍率下样品的体素大小)≤40nm;#2.1.4 系统必须采用几何+光学两级放大的架构,以满足我单位对大样品进行局部高分辨率的成像需求;#2.1.5 具备当X射线源距样本旋转轴50mm中心位置时的最佳空间分辨率≤1.0μm;(应以厂家官方发布或者第三方发布的国际文献中数据或结论为有效证明文件);2.1.6 在不破坏样品的情况下直接对直径≥20mm样品(如植物秆茎、试管边缘或高分子材料等)的侧边缘位置(即样品的旋转半径和工作距离不小于20mm)实现体素分辨率(voxel size)≤1μm的清晰扫描三维成像。2.2 三维组织表征、重构及成像2.2.1 无损伤地对样品进行三维组织表征,可获得样品的三维组织形貌及不同角度、不同位置的虚拟二维切片组织形貌信息。不需制样或只需简单制备,不需真空观察环境,不会引入人为缺陷;2.2.2 利用吸收衬度原理和相位传播衬度原理,可以对包括高原子序数和低原子序数在内的各种材料都能获得高衬度图像;2.2.3 基于CUDA的GPU加速重构,由1600张投影重构1K×1K×1K图像时间≤2.1分钟;#2.2.4 支持纵向拼接技术,通过纵向拼接扫描结果获得更高视野的数据,数据重构及纵向拼接需集成在数据采集软件,数据采集-三维重构-纵向拼接自动化,不依赖第三方软件或者离线软件;2.2.5 具有支持宽视场模式的物镜探测器,具备更宽的视野。2.3 光源与滤波片*2.3.1 高能量微聚焦闭管透射式X射线源;2.3.2 最高电压≥160kV,最低电压≤30kV,电压在最低和最高之间连续可调;2.3.3 最大功率≥10W;2.3.4 Z轴可移动范围≥190 mm;2.3.5 X射线泄露≤1μSv/hr(距离设备外壳25mm以上处);2.3.6 带有单过滤波片支架,12个适用于不同能量段扫描的滤波片。2.4 探测器2.4.1 能够实现二级放大的16bit噪声抑制闪烁体耦合探测器, 探测器能够实现≥2048×2048像素成像和三维重构;#2.4.2 具备1个大视场0.4X 物镜探测器,实现≥2048×2048像素成像和三维重构,支持宽视场模式;2.4.3 包含高对比度,低分辨率的4X物镜探测器;2.4.4 包含高对比度,高分辨率的20X 物镜探测器;2.4.5 包含高对比度,高分辨率的40X 物镜探测器;2.4.6 探测器可移动范围≥290mm。2.5 样品台及样品室2.5.1 全电脑控制高精度≥4轴马达样品台,具备超高的样品移动精度;2.5.2 样品台X轴运动范围≥45mm;Y轴运动范围≥95mm;Z轴运动范围≥45mm;2.5.3 样品台旋转运动范围:360度旋转;#2.5.4 样品台最大承重范围:≥25kg;2.5.5 样品台可承受样品尺寸范围:≥300mm;*2.5.6 样品室内配备可见光成像设备,通过电脑操作即可实现样品的扫描位置对中,并可实时监控舱室内样品情况。并且要确保系统整体运行安全和封闭性,不可为开窗设计,防止X射线辐射泄漏;#2.5.7 系统应具备智能防撞系统,可根据样品尺寸设定源和样品的范围,保障在实际成像过程中不会发生样品和源、探测器的碰撞损坏设备或样品。2.6 仪器控制与数据采集、重构、可视化及分析系统2.6.1 全数字化仪器控制,专业计算机控制工作站,应满足或优于以下配置:Microsoft Windows10 Pro 及以上操作系统、双8核 CPU、CUDA-enabled 3D GPU,硬盘容量≥12 TB、内存≥32GB、液晶显示器≥24寸,带可刻录式光驱;2.6.2 具备三维数据采集及控制软件,可实现三维断层扫描图像重构及3D视图;2.6.3 支持多种格式的CT数据和CT图像输入/输出,预览,裁剪以及格式转换;2.6.4 具有图像处理方法,实现数据图像、CT图像的降噪、锐化、增强等;2.6.5 具备自动拼接功能,具备可变曝光功能,具备导航式扫描功能;2.6.6 具备图像伪影校正等功能,确保采集图像的真实性;2.6.7 具有ROI选择功能,用户可根据需要选择区域进行局部重建;2.6.8 支持对ROI进行量化分析,可得到选定结构的体积占比、每个单元的体积、表面积、形状比、等效直径等信息;2.6.9 支持对三维数据体进行旋转、平移、缩放、斜切视图、亮度/对比度、伪彩色等操作;2.6.10 可实现标记点、标尺、角度、路径、箭头、区域(矩形/椭圆/多边形/自由绘制)、三点拟合圆等测量和标注操作;2.6.11 支持二维、三维图像不同分辨率图像的输出,且能导出二维图像序列、逐层动态视频和制作三维视频动画;2.6.12 使用阈值分割、2D笔刷进行图像分割,实现3D感兴趣区的提取或修改;2.6.13 可转化3D感兴趣区为mesh模型,支持显示效果调整和导出STL、PLY、OBJ、VTK、IVW格式文件,方便客户后续分析或逆向;2.6.14 可对量化结果进行筛选、编辑,导出文件。3. 安全防护3.1 辐射防护箱体(用于屏蔽X射线,防止泄露,保证人身安全);#3.2 安全屏蔽室需采用铅钢全封闭,不能留有可视透明窗口,设备内部样品和工作情况通过机台内部可见光相机清晰观察;3.3 双联锁X射线安全门,紧急停止开关,设备运行过程中,任何可开启之处被外力开启时,X射线立即停止;3.4 经用户授权可开通远程预警性技术服务,系统可以通过网络传输将运行数据传递给生产厂商的售后部门,实现线上的设备状态监控。4. 附件及零配件4.1离线工作站:应满足或优于以下配置:Microsoft Windows10专业版操作系统、至强4210R处理器CPU、GeForce RTX2080Ti 11G显存 GPU,硬盘容量≥6 TB、内存≥128GB、液晶显示器≥23.8寸,带可刻录式光驱;4.2 标定球样品,1个;4.3 分辨率测试卡,1个;4.4 标准样品夹持器,1套;4.5 设备维护专用工具,1套;4.6 文档资料(设备操作手册、培训资料等)。
  • 科学实验|高速热成像技术将动态空间3D与热数据相结合
    今天,小菲要跟大家分享一个使用FLIR红外热像仪做实验的有趣案例:德国耶拿弗劳恩霍夫应用光学和精密工程研究所(Fraunhofer IOF)的研究人员开发了一套成像系统,通过两台高速、高分辨率单色成像仪和一台GOBO投影仪对物体进行三维检测。在碰撞测试、安全气囊展开等典型动态应用中,除快速空间变化过程以外,温度变化也扮演着重要的作用。高速3D热成像系统的工作原理德国耶拿弗劳恩霍夫应用光学和精密工程研究所(简称“IOF”)主要从事光子学领域应用型研究,早在2016年就开发了一款高速3D成像系统。该系统由两台立体排列的高速立体黑白成像仪和一台自行研发的主动照明GOBO投影仪组成。自2019年以来,其还引入FLIR科学成像仪(FLIR X6900sc 超晶格 长波热像仪,该热像仪支持高达1000 Hz的帧速率和640×512像素的分辨率),推出了一款高速3D热成像系统。高速3D成像系统基于能灵敏感知可见光谱范围(VIS)的两台单色成像仪。二者以12,000 Hz的帧速率和1百万像素的分辨率工作——较低分辨率下还可实现更高帧速率。但两台成像仪尚无法以所需质量标准产生有意义的3D数据。此外还要借助一种复杂的照明系统,超快投射条纹图案序列,这些图案类似于常规正弦条纹,只是其宽度会不定期变化。将重建的3D数据与来自FLIR X6900sc SLS高速热像仪的2D数据相结合,生成三维高速红外图像。FLIR X6900sc超晶格探测器在长波红外范围内运行,因此在GOBO投影仪光源发出辐射的可见和近红外波长范围内不敏感。由于投射的非周期性正弦图案对物体的加热也无关紧要,因此GOBO投影仪不会影响红外成像。FLIR X6900sc SLS丨LWIR高速红外热像仪FLIR X6900sc SLS是一款面向科学家、研究人员和工程师的超快速、高灵敏度的红外热像仪。这款热像仪拥有先进的快门释放功能,搭载额外SSD硬盘后,其内置内存能发挥出超强的记录能力,无论是在实验室,还是测试现场,它都能捕捉到质量超群的高速事件定格图像。可谓一机在手,万事无忧。FLIR X6900sc超晶格长波红外热像仪在640×512像素的全尺寸格式下,记录速率高达1,004帧/秒,在最小局部图像格式下,记录速率高达29 kHz。使用这些热像仪,可以在内置内存中记录长达26秒的全帧格式数据,图像丝毫无损。凭借应变超晶格(SLS) 长波红外探测器,FLIR X6900sc SLS可实现比其他X6900s型号约短12倍的积分时间和更大的动态范围。新型系统的测量与计算在测量过程中,三台成像仪同时记录图像数据。来自黑白成像仪的数据与GOBO投影仪的非周期性条纹投影相结合,产生实际3D图像,然后计算出10对一组的图序列,以形成3D图像。这种“3D重建”会形成空间形状,然后将FLIR长波热像仪的红外图像数据叠加到该空间形状上,以便在映射过程中将温度值分配给空间坐标。当然,在测量之前,需要对由可见光成像仪和长波热像仪组成的系统进行校准。为此,IOF团队使用了带有规则的开环和闭环网格的校准板。为确保即使在温度分布均匀的条件下,仍能在可见光谱范围和长波红外中检测到这些结构,圆和背景选用了具有不同反射率(可见光)发射率(长波红外)的材料。耶拿的研究人员通过印刷电路板找到了解决该问题的方法。为此,他们开发了一款非同寻常的电路板,由规则的开环和闭环网格组成,而不是由电气组件之间的电气连接组成。高速3D热成像系统的实际应用IOF的新型高速3D热成像测量系统旨在将高动态空间3D与红外数据结合起来。运动中的运动员、碰撞测试、安全气囊展开等超快速流程不仅有表面形状的快速变化,也有局部温度的变化,过去无法同时捕获这些变化,该系统首次实现了这一目标。目前,该系统已经过各种情景的测试,其中包括篮球运动员运球(不仅会使球变形,还会引起热量):还有用于测量安全气囊展开时的温度变化和空间表示,系统在距离3米处对高速过程记录半秒钟。将三维数据与热成像信息结合后,不仅可以清楚地看到安全气囊展开后的温度,还能获得时间点和空间坐标信息。借助这些信息可以减少和防止安全气囊展开导致驾驶员受伤的风险。IOF研究团队的Martin Landmann确信:高分辨率3D数据和快速热成像图像相结合的应用场景十分广泛。Martin Landmann解释道:“举例来说,通过观察碰撞测试,研究变形和摩擦过程,或者研究超快速的热相关事件,比如安全气囊触发时的爆炸或者开关柜中的爆炸,我们可以获得非常有用的信息。”他强调称,他们正在不断地开发和优化系统。可见,将来我们有望看到弗劳恩霍夫应用光学和精密工程研究所团队的更多创新研究成果。FLIR X6900sc热像仪对于目前的长波红外或中波红外探测器,应变层超晶格(SLS)探测器提供更快的快照速度、更宽的温度频段和更好的均匀性。这款热像仪具有高级触发功能和内置RAM/SSD记录功能,配有一个四插槽电动滤片轮,可以在实验室环境下和测试范围内对高速事件实现画面定格功能。
  • 徕卡三维激光扫描仪助力冬奥雪车雪橇赛道毫米级测量
    2022年北京冬奥会赛程过半之际,我们见证了来自世界各地的运动员勇于挑战、超越自我;我们在场馆内外各个角落看到了志愿者、工作人员默默无闻、辛勤付出;在我们看不见的地方,还有更多人为冬奥奉献青春、保驾护航… … 接下来一起来了解徕卡RTC360与冬奥会结下的不解之缘。国家雪车雪橇中心是2022年北京冬奥会的比赛场地之一,它位于北京市延庆区西大庄科村,将举办冬奥会雪车、雪橇以及钢架雪车项目的比赛,是目前国内唯一一条符合冬奥会标准的雪车、雪橇赛道。由于外形仿如一条盘旋在山脉顶部的巨龙,于是北京冬奥组委也给它取了一个好听的名字—“雪游龙”。其全程长达1975米、垂直落差为121米、共有16个弯道。图片来源:张家口崇礼区人民政府官网国家雪车雪橇中心于2017年2月结束赛道选址工作,历时两年半的时间,于2019年11月完成主体工程的建设,它是北京市冬奥工程竞赛场馆中设计难度最高、施工难度最大的新建场馆,由于雪车、雪橇赛道拥有空间复杂双曲面结构,运动员最高速度可达到140km/h,离心力超过5G,比赛危险系数高,因此赛道的每一个角度、每一个曲面都需要精细到毫米级。在竣工测量工作中,北京市测绘院克服了一系列技术难题,采用徕卡RTC360三维激光扫描与极坐标测量相结合的方式进行数据采集,测绘数据达到精度指标要求,按期完成了竣工测量任务。图集1:徕卡RTC360现场扫描工作照图集2:雪车雪橇赛道点云全貌及局部点云截图北京市测绘院技术人员表示:“能够参与冬奥建设非常自豪,有一种使命感和荣誉感,由于赛道多为异形建筑,为能够圆满完成本次任务,创新采用徕卡RTC360三维激光扫描仪,一方面徕卡RTC360扫描精度高,以往外业串测这种异形建筑位置可能不准确,而使用扫描仪可以全面的掌握整个赛道信息,不会出现丢漏或数据不准确现象。另一方面徕卡RTC360作业效率非常高,整个赛道共采集320站,耗时2天半,正因为如此才能在短时间内完成赛道的竣工测量,徕卡RTC360在本项目的成功应用,为开展其他复杂异形建筑的竣工测量探索了技术路径。”屏幕前,我们看到一场场精彩赛事不断上演,本次与北京冬奥会“零距离接触”,徕卡RTC360用自己的方式——“精准如需”为冬奥建设贡献着力量。
  • 江文公司推出各类品牌工具显微镜,投影机升级改造业务
    以专业的硬件,软件技术团队,改造各种品牌的进口,国产工具显微镜,投影机. 升级改造内容: 1)通过独创的硬件,软件,使工具显微镜,投影机能测量复杂的图形,尺寸如下: 圆直径,圆周长,圆心距离,齿轮,凸轮,弧长,角度,双矩形、焊核双垂线、线心间距、偏差测定、中点间距、中点边距、线路间距、芯片位置偏、模具错位、SOPCF外形尺寸实用的内嵌式统计功能 .并可以根据用户需要定制测量功能. 2)大大提高数据处理的效率: 内嵌统计功能计算已测量参数的标准统计数据:最大值、最小值、平均值、极差、方差、标准差、离散系数等。 测量数据打印输出RS232C界面数据导出 通过RS232C标准界面和数据通讯处理软件CQCData,可以将测量结果上传到PC机,导入EXCEL表中,进行后续统计分析。 强大的数据统计 自动计算已测量参数的标准统计数据:最大值、最小值、平均值、极差、方差、标准差、离散系数等;同时处理多个管制项目。 智能化的数据报告输出 采用智能化选择性数据输出技术,实现“待测工件→测量参数→专用报告→品管统计”数据流自动化。
  • 基于Pμ SL 微尺度3D打印的三维微柱阵列电极
    微芯片电化学检测系统(microchip-based electrochemical detection system, μEDS),是一种基于电化学方法与微流控技术的检测平台,其具有高灵敏度、极少试剂消耗、快速检测、可适性高、自动化等优点,常用于现场实时应用场景,比如床边检测等。此类芯片中核心组件是微电极,其检测性能尤为关键。传统的微电极主要是二维或平面式的结构,如环状、带状、平板式。另一方面,具有三维结构的微电极因其更大的反应面积和优异的检测灵敏度已获得越来越多研究学者的关注。微尺度3D打印技术的出现,使得三维微柱阵列电极的实现变得更加便捷、快速、高效。PμSL(Projection Micro Stereolithography,面投影微立体光刻)是一种面投影微尺度超高精度光固化增材制造技术,使用高精度紫外光刻投影系统,将需要打印的三维模型分层投影至树脂液面,分层光固化成型并逐层累加,最终从数字模型直接加工得到立体样件。该技术具有打印精度高、跨尺度加工、成型效率高、制造成本低等突出优势,被认为是目前最具有前景的三维微细结构加工技术之一。图1:PμSL技术原理示意图通过结合软光刻以及金属沉积技术,PμSL微尺度 3D打印技术近期在电化学检测领域取得系列成果。其中的微电极的制备过程大致为:通过PμSL微尺度3D打印技术打印得到三维微柱阵列模具,然后通过PDMS二次翻模得到PDMS材质的三维微柱阵列,最后再经过磁控溅射等金属沉积方式将金属比如金沉积在三维微柱结构的表面作为导电层以形成最终的微柱电极。此外,还可选择性地在电极表面修饰Pt-Pd/多层碳纳米管等其他改性物质以提高电化学检测性能。研究一:基于微柱阵列电极的生物标记物高灵敏度检测研究摘要:微柱阵列电极因其高质量运输、低检测极限以及微型化的特点被广泛用于电化学检测领域。该研究工作阐述了表面镀金的PDMS基微柱阵列电极的制备、数值仿真、表面改性以及表征。9×10的微柱阵列排布在0.09cm2的区域内,其中微柱的高度分别为100 μm,300 μm 和500 μm。微柱阵列电极是使用PμSL微尺度3D打印技术与软光刻相结合的方法制备而得,通过SEM和循环伏安法进行表征测试。实验结果显示,无论扫描速率的高低,高度值更大的微柱有利于提高电流密度。Pt-Pd/多层碳纳米管材料涂覆可进一步提高微柱阵列电极的电化学检测性能。相较于平板式电极,微柱阵列电极的电化学检测灵敏度是前者的1.5倍。高度500 μm的Pt-Pd/多层碳纳米管改性的微柱阵列电极可用于检测肌氨酸(一种前列腺癌的生物标记物),其线性范围和检测极限分别是5-60 μM 和1.28 μM。这个检测范围覆盖了肌氨酸在人体组织的浓度区间(0-60 μM)。因其更高的微柱高度和更大的比表面积,微柱阵列电极比平板式电极获得了更好的检测性能。该研究工作为高检测灵敏度的微柱阵列电极在低丰度分析物的检测应用提供了有效的指导。图2:微柱阵列电极的制备过程示意图及改性电极和电化学检测中典型的三电极式简易传感装置论文信息:DOI: 10.1039/d0ra07694e.研究二:动态微流体中微柱阵列电极的电化学检测研究摘要:高集成度、高灵敏度、快速分析、极小的试剂消耗等优点促使μEDS备受学术界的关注。微小化的工作电极是μEDS的核心部件,其性能决定了整个μEDS的检测表现。相比于传统的微电极形貌,如带状、环状、圆片状,三维微柱阵列电极因其更大的反应面积,具有更高的响应电流和更低的检测极限。在该研究工作中,采用数值仿真研究了μEDS的检测性能以及三维微柱的形貌和流体的动力学参数,包括微柱的形状、高度以及排列方式和反应溶剂的流速。μEDS的尾端效应在基于预设的电流密度参数下也进行了定量分析。此外,通过结合PμSL微尺度3D打印技术与软刻蚀的方法制备的PDMS基三维微柱阵列电极与微通道集成,用于研究电化学检测。循环伏安法和计时电流法测试的结果表明,实验数据与模拟数据吻合较好。此研究为μEDS的参数设计提供了指导性建议,所使用的方案亦可适用或借鉴于分析和优化基于纳米芯片的电化学检测系统(nanochip-based electrochemical detection system, nEDS)。图3:μEDS和微柱阵列的示意图以及微柱阵列的形貌参数论文信息:DOI:10.3390/mi11090858.上述研究中微柱电极结构模具均采用PμSL微尺度3D打印技术加工,所采用的加工设备均为摩方精密(BMF, Boston Micro Fabrication)公司10 μm光学精度设备P140,其最大打印尺寸为19.2mm (L)×10.8mm (W)×45mm (H),打印层厚为 10~40 μm。图4:BMF公司10微米系列精度设备P140/S140
  • 基于Pμ SL 微尺度3D打印的三维微柱阵列电极
    微芯片电化学检测系统(microchip-based electrochemical detection system, µEDS),是一种基于电化学方法与微流控技术的检测平台,其具有高灵敏度、极少试剂消耗、快速检测、可适性高、自动化等优点,常用于现场实时应用场景,比如床边检测等。此类芯片中核心组件是微电极,其检测性能尤为关键。传统的微电极主要是二维或平面式的结构,如环状、带状、平板式。另一方面,具有三维结构的微电极因其更大的反应面积和优异的检测灵敏度已获得越来越多研究学者的关注。微尺度3D打印技术的出现,使得三维微柱阵列电极的实现变得更加便捷、快速、高效。PμSL(Projection Micro Stereolithography,面投影微立体光刻)是一种面投影微尺度超高精度光固化增材制造技术,使用高精度紫外光刻投影系统,将需要打印的三维模型分层投影至树脂液面,分层光固化成型并逐层累加,最终从数字模型直接加工得到立体样件。该技术具有打印精度高、跨尺度加工、成型效率高、制造成本低等突出优势,被认为是目前最具有前景的三维微细结构加工技术之一。图1:PμSL技术原理示意图通过结合软光刻以及金属沉积技术,PμSL微尺度 3D打印技术近期在电化学检测领域取得系列成果。其中的微电极的制备过程大致为:通过PμSL微尺度3D打印技术打印得到三维微柱阵列模具,然后通过PDMS二次翻模得到PDMS材质的三维微柱阵列,最后再经过磁控溅射等金属沉积方式将金属比如金沉积在三维微柱结构的表面作为导电层以形成最终的微柱电极。此外,还可选择性地在电极表面修饰Pt-Pd/多层碳纳米管等其他改性物质以提高电化学检测性能。研究一:基于微柱阵列电极的生物标记物高灵敏度检测研究摘要:微柱阵列电极因其高质量运输、低检测极限以及微型化的特点被广泛用于电化学检测领域。该研究工作阐述了表面镀金的PDMS基微柱阵列电极的制备、数值仿真、表面改性以及表征。9×10的微柱阵列排布在0.09cm2的区域内,其中微柱的高度分别为100 μm,300 μm 和500 μm。微柱阵列电极是使用PμSL微尺度3D打印技术与软光刻相结合的方法制备而得,通过SEM和循环伏安法进行表征测试。实验结果显示,无论扫描速率的高低,高度值更大的微柱有利于提高电流密度。Pt-Pd/多层碳纳米管材料涂覆可进一步提高微柱阵列电极的电化学检测性能。相较于平板式电极,微柱阵列电极的电化学检测灵敏度是前者的1.5倍。高度500 μm的Pt-Pd/多层碳纳米管改性的微柱阵列电极可用于检测肌氨酸(一种前列腺癌的生物标记物),其线性范围和检测极限分别是5-60 μM 和1.28 μM。这个检测范围覆盖了肌氨酸在人体组织的浓度区间(0-60 μM)。因其更高的微柱高度和更大的比表面积,微柱阵列电极比平板式电极获得了更好的检测性能。该研究工作为高检测灵敏度的微柱阵列电极在低丰度分析物的检测应用提供了有效的指导。图2:微柱阵列电极的制备过程示意图及改性电极和电化学检测中典型的三电极式简易传感装置研究二:动态微流体中微柱阵列电极的电化学检测研究摘要:高集成度、高灵敏度、快速分析、极小的试剂消耗等优点促使µEDS备受学术界的关注。微小化的工作电极是µEDS的核心部件,其性能决定了整个µEDS的检测表现。相比于传统的微电极形貌,如带状、环状、圆片状,三维微柱阵列电极因其更大的反应面积,具有更高的响应电流和更低的检测极限。在该研究工作中,采用数值仿真研究了µEDS的检测性能以及三维微柱的形貌和流体的动力学参数,包括微柱的形状、高度以及排列方式和反应溶剂的流速。µEDS的尾端效应在基于预设的电流密度参数下也进行了定量分析。此外,通过结合PμSL微尺度3D打印技术与软刻蚀的方法制备的PDMS基三维微柱阵列电极与微通道集成,用于研究电化学检测。循环伏安法和计时电流法测试的结果表明,实验数据与模拟数据吻合较好。此研究为µEDS的参数设计提供了指导性建议,所使用的方案亦可适用或借鉴于分析和优化基于纳米芯片的电化学检测系统(nanochip-based electrochemical detection system, nEDS)。图3:μEDS和微柱阵列的示意图以及微柱阵列的形貌参数上述研究中微柱电极结构模具均采用PμSL微尺度3D打印技术加工,所采用的加工设备均为摩方精密(BMF, Boston Micro Fabrication)公司10 μm光学精度设备P140,其最大打印尺寸为19.2mm (L)×10.8mm (W)×45mm (H),打印层厚为 10~40 μm。图4:BMF公司10微米系列精度设备P140/S140官网:https://www.bmftec.cn/links/10
  • 麦科三维取得摩擦传动龙门式三坐标测量设备专利
    据国家知识产权局公告,青岛麦科三维测控技术股份有限公司取得一项名为“一种摩擦传动龙门式三坐标测量设备“,授权公告号CN109707812B,申请日期为2019年3月。专利摘要显示,本发明涉及自动化测量技术领域,特别涉及一种摩擦传动龙门式三坐标测量设备。包括外罩,支架,动力系统,传动系统,工作台,所述工作台的两侧设置有若干立柱,所述两侧的立柱上分别固定有Y向导轨,所述两侧的Y向导轨之间设有X向导轨,在X向导轨上通过滑架设有Z向导轨,所述Z向导轨的末端设有扫描测头,所述滑架及X向导轨的一端分别固定有辊轮钢带式摩擦传动系统,在Z向导轨上设有与动力系统连接的辊轮导轨式的摩擦传动系统。本发明通过使用辊轮钢带式摩擦传动系统和辊轮导轨式摩擦传动系统使三坐标测量机运行稳定性强,测量精度高,震动小,传动噪声小,结构简单。
  • 基于面投影微立体光刻技术(Pμ SL)的3D打印
    面投影微立体光刻(Projection Micro Stereolithography, PμSL)是一种面投影光固化3D打印技术,适用于制作微尺度的复杂三维结构,有着高分辨率、高精度、跨尺度加工、适用材料广、加工效率高、加工成本低等诸多特点。本文将从成型原理、最小加工特征尺寸、最大成型幅面、适配打印材料、与其他3D打印技术的对比、产业化技术创新等方面,对这一技术进行详细介绍。图1 基于PμSL3D打印技术制作的复杂三维结构示例 一、成型原理 图2所示为PμSL 3D打印技术的成型过程,首先使用建模软件构建出三维结构模型;接着使用切片软件对三维模型以一定大小的层厚进行切片处理,得到一系列具有特定图案的二维图片;然后采用PμSL 3D打印系统对切片后的每一层图案进行整面投影曝光;反复重复上一步骤并层层堆叠最终成型出所需的三维结构。图2 PμSL3D打印技术成型过程 PμSL3D打印技术成型三维结构的关键在于光敏树脂材料在紫外光的作用下发生光聚合反应从而固化,而特定图形的产生则依赖于打印系统中的DMD(Digital Micromirror device)芯片所生成的数字动态掩模。如图3所示,切片后的模型数据导入到打印系统后,这些二维图像数据发送至DMD,DMD根据图像数据控制芯片上各个微镜(即DMD上的每一像素点)的偏转。因此,光源发出的紫外光在到达DMD后将重新整形生成与图形数据一致的光。最后,经调制后的光通过最终物镜投影至液态树脂材料表面,对特定区域进行选择性曝光从而生成特定结构。此外,打印系统还可通过打印平台的移动,拼接打印出大幅面的图形结构。图3 典型的PμSL3D打印系统 二、最小加工特征尺寸 通过控制投影物镜的微缩倍率,PμSL 3D打印技术可以实现几微米甚至几百纳米的特征尺寸。深圳摩方材料科技有限公司(以下简称“摩方”)基于在这一技术领域的多年沉淀,自主研发出了一系列PμSL3D打印系统,已经量产的产品最高光学分辨率可达2 μm(这里提到的光学分辨率是指投影光单个像素点的大小)。借助这一高分辨系统,2 μm线宽二维网格线条和8.5 μm杆径三维点阵得以实现(图4)。图4 摩方3D打印系统打印的2 μm线宽二维线条和8.5 μm杆径三维点阵 三、最大成型幅面 PμSL技术采用整面曝光,其中曝光图形由DMD控制产生。因此,一般情况下,PμSL 3D打印系统的最大成型幅面取决于光学分辨率大小以及DMD像素点数量,DMD成像芯片尺寸固定,通过投影镜头只能实现固定的投影幅面。最大成型幅面与系统光学分辨率呈矛盾关系,即当提高系统光学分辨率时,其最大成型幅面相应减小。拼接技术很好地解决了这一矛盾,使得高分辨、大幅面、跨尺度打印得以实现。以摩方PμSL3D打印系统为例,固定投影打印与拼接打印的幅面如表1所示。表1 固定投影打印与最大打印幅面对比 四、适配打印材料 PμSL3D打印技术的加工成型基于材料的光聚合,因此其打印材料为光敏树脂材料。针对不同应用需求,硬性树脂、韧性树脂、耐高温树脂、生物兼容性树脂、柔性树脂、透明树脂、水凝胶等诸多树脂材料已商业化。除上述纯树脂材料以外,功能颗粒掺入树脂中形成的复合树脂材料同样可用于打印,如磁性颗粒复合树脂、陶瓷颗粒复合树脂、金属颗粒复合树脂等。 五、与其他3D打印技术的对比 表2是PμSL技术与其他3D打印技术规格的对比,主要基于已商业化产品的规格对比。熔融沉积成型和聚合物喷射光固化是目前较广泛的两种3D打印技术,可实现大尺寸结构的加工成型,但其精度相对较低。激光逐点扫描光固化和双光子激光直写技术则可实现非常高的分辨率,然而逐点扫描加工的特性极大地限制了其成型速度。此外,双光子激光直写技术的成型尺寸通常在毫米级。相较而言,PμSL3D打印技术很好地平衡了高精度、高速度、大幅面的特点。表2 PμSL技术与其他3D打印技术的对比 六、产业化技术创新 相较于实验室技术,工业市场对这一技术提出了更多更高要求,包括更广泛的功能性打印材料、更大的打印幅面、更稳定的公差控制等方面。深圳摩方材料科技有限公司在这一技术的产业化上进行了诸多工业级技术创新,例如增加气泡消除系统、激光测距、加热打印等创新功能,用以进一步提高打印质量、精密控制加工公差、拓宽打印材料的范围,以满足精密工业设计和制造的需求。本文对PμSL这一高精度、高速度、大幅面的三维复杂结构成型加工技术进行了简要介绍,这一技术适用于复杂精密结构一次成型、快速原型器件验证、小批量功能部件加工等,可用于多个应用领域。后续本公众号将持续推出关于这一技术的应用案例,敬请期待。官网:https://www.bmftec.cn/links/10
  • 天远三维携手大族机器人,打造国产机器人全自动三维检测系统
    4月1日,深圳,先临三维旗下子公司天远三维与大族机器人联合发布RobotScan UE机器人全自动三维检测系统,在全自动三维检测系统自主品牌的发展中迈出重要一步,降低国外品牌的技术掣肘。 RobotScan UE机器人全自动三维检测系统每项核心组件皆为国内自主研发,包括天远三维自主研发的高精度三维扫描仪、EINSENSE Q 3D数字化全尺寸检测软件以及大族机器人机械臂。该项系统方案可实现机器人全自动、标准化三维扫描并实时进行在线检测与报告传输,同时可根据实际检测场景,进行定制化开发,为国内自动化检测领域提供一项强大的自主品牌解决方案。 RobotScan UE机器人全自动三维检测系统研发背景 随着高精度三维扫描与检测技术的不断成熟发展,三维扫描高效、高精度的应用特征,逐渐为检测行业所认可。天远三维也不断深化三维扫描检测的场景应用,特别是在现代化工厂的检验领域。 传统方式下,以人工进行三维数据获取,扫描角度、过程难以实现标准化,虽然这并不影响后续的检测环节,但是在标准化的生产方式下,数据获取的“随意性”将隐藏部分的数据信息,从而产生数据噪音。随着大数据的发展,数据的真实性以及排躁性愈发重要,自动化扫描检测解决方案因时而生,天远三维在此领域内已进行大量研发创新。为了更好地实现标准化的三维扫描检测,天远三维与大族机器人合作,以机器代替人工,打造高效、标准化的全自动三维扫描检测系统。RobotScan UE机器人全自动三维检测系统优势特点 1.全自动、标准化三维扫描检测,适用现代化工业生产环境2.各核心组件均为国内自主研发,降低国外品牌的技术掣肘3.支持蓝色激光或蓝色结构光,可根据不同的检测场景选择不同光源4.检测软件通过德国PTB认证,数据处理高效可靠,支持定制化开发RobotScan UE机器人全自动三维检测系统首发展示RobotScan UE机器人全自动三维检测系统于2021深圳国际工业零件展览会SIMM(ITES)上进行首次亮相,众多观展人员也在4馆H45展位见证了RobotScan UE机器人全自动三维检测系统的高效、高精度以及标准化检测方式。 RobotScan UE 机器人全自动三维检测系统,搭载EINSENSE Q 工业级高精度检测内核,实现智能检测。 此项合作,是国内机器人和三维扫描领域重点企业的强强联合,大族机器人拥有多年的电机、伺服驱动和运动控制经验,掌握先进的智能机器人的核心关键技术;天远三维专注于高精度3D视觉检测技术,为国家白光三维测量系统行业标准的主要起草单位之一。此次合作,通过国内高新技术的集成,推进了机器人技术在现代工业场景自动化三维检测的应用深化,对于机器人技术普及和三维扫描检测的升级都具有重要意义。 天远三维简介 先临三维旗下子公司天远三维专注于高精度3D视觉检测技术,基于多年计量行业的实践经验与技术积累,研发了激光手持三维扫描检测、高精度三维检测扫描检测、无线跟踪式扫描检测以及多机联动3D视觉检测等一系列高精度3D视觉检测方案,并自主研发3D数字化检测软件,产品广泛应用于:汽车交通、航空航天、铸造模具、电力、军工等专业领域。 大族机器人简介 深圳市大族机器人有限公司,是由上市公司大族激光科技产业集团股份有限公司投资组建,在大族电机机器人研究院100多人的团队基础上孵化而成的国家级高新技术企业。公司总部位于深圳宝安区大族激光全球智能制造产业基地,并于德国、天津设有子公司,团队汇聚了来自世界各个国家的、顶尖的机器人行业专家,助力大族机器人成为世界领先的机器人行业标杆。
  • 7693万 川大智胜光三维测量仪器专项获批
    川大智胜2013年11月15日公告,公司近日收到国家科学技术部批复的国家重大仪器设备开发专项项目任务书。公司申请的&ldquo 高速高精度结构光三维测量仪器开发与应用&rdquo 已批准立项。此次获批项目总预算7,692.94万元,其中国家专项拨款3,540.00万元,公司自筹资金4,152.94万元。项目建设期5年。项目总体目标:研发具有自主知识产权、功能健全、质量稳定可靠高速高精度结构光三维测量成套仪器等。   公司是我国空管自动化行业唯一的上市公司,占据了国内航管雷达模拟机和程序管制模拟机市场95%以上的份额。近几年我国机场的新开工建设和改扩建建设都进入高速发展期,对空管自动化市场带来了发展空间,&ldquo 十二五&rdquo 期间,低空领域的开放和通用航空的发展将是大势所趋,公司业务或迎来集中爆发期。公司在图像图形及模式识别方面具有很深厚的技术积累,可以逐步将空管领域形成的技术、理念和方案,应用到地面交通管理系统中去,随着我国陆路交通的发展,公司的智能交通业务也处于快速发展期。此次获批的&ldquo 高速高精度结构光三维测量仪器开发与应用&rdquo 项目无论是应用于空管,还是地面交通管理,都有相对广阔的市场前景,随着项目未来推进,不仅有助于公司深化产业链,打造新的竞争优势,同时也将对公司业绩提供持续的增长空间。
  • 6785万元 中航三维测量仪重大仪器专项获批
    日前,国家科学技术部发布了《科技部关于2013年度国家重大科学仪器设备开发专项项目立项的通知》,由中航工业科技与信息化部组织中航高科技发展有限公司(以下简称:中航高科)牵头承担的&ldquo 全视角高精度三维测量仪的开发和应用&rdquo 项目获得批复,这是中航工业首次获批国家级科学仪器开发和推广应用类项目。项目成功获批是中航工业基础技术板块践行&ldquo 科技立业&rdquo 与&ldquo 创新兴业&rdquo 发展方略、构建国际化开放协同科技创新体系的里程碑式进展。   该项目计划研究周期3年,总经费6785万元。中航高科作为项目牵头单位,以中航工业北控所为第一技术支撑单位,联合德国弗劳恩霍夫应用研究促进协会及哈尔滨工业大学、天津大学、北京交通大学、香港科技大学等高校,依托中航工业强度所、北京空间机电研究所、中国电科38所等应用单位,搭建产学研用一体的协同创新平台,开展仪器研制、工程化、产业化等工作。   据了解,国家重大科学仪器设备开发专项旨在提高我国科学仪器设备的自主研发和制造能力,支撑科技创新,服务经济建设和社会发展。&ldquo 全视角高精度三维测量仪的开发和应用&rdquo 项目针对航空航天、大型雷达等重要应用需求,旨在攻克超高速、高分辨率线阵列视觉传感器和核心测量算法,研发具有实时、非接触、多点同步等功能的大尺寸精密测量仪器,建立视觉三维测量仪器的研发基地、生产基地和系统集成验证中心,打破国外技术垄断和仪器封锁,服务于我国大型工业装备的研发和制造。   该项目前期经过了由国家科学技术部、中国航空工业集团公司以及第三方技术咨询、非技术内容评审、综合评议、预算评估和综合决策等多方面论证。中航工业科技与信息化部和中航高科高度重视,充分利用集团内外部资源,精心策划并组织专家审查把关,推动落实项目的立项论证工作。
  • 引进德国技术,所有显微镜均可升级到三维超景深显微镜
    上海江文国际贸易有限公司公司引进德国技术和组件,结合自主研发的三维超景深显微镜软件,推出三维超景深显微镜升级方案UMS300-3D,可将几乎所有类型的光学显微镜升级为三维超景深显微镜。 UMS300-3D 三维超景深显微镜升级方案是超景深三维显微镜的最新一代产品。UMS300-3D 三维超景深显微镜升级方案三维引进德国进口高性能三维超景深显微镜组件和技术,结合本公司的三维超景深软件,可将显微镜的景深提高几百倍,UMS300-3D 三维超景深显微镜升级方案可获得样品的三维形貌,可进行三维重构和测量。UMS300-3D 三维超景深显微镜升级方案是三维光学数码显微镜的最新代表。 UMS300-3D 三维超景深显微镜升级方案可以将现有的显微镜,升级为三维超景深显微镜,可获得样品的三维形貌,并可进行三维重构和测量,可应用于半导体、微纳米器件、机械制造、材料研究等领域的实验研究;如微芯片三维形貌分析,刻蚀试样三维形貌,封装材料,二元光学器件数据分析,机械、光学、镀膜、热处理等表面精确测量、材料显微压痕的三维测量分析、磨损表面质量评定、薄膜厚度测量、材料断口分析、金属材料和复合材料、生物材料研究等。 UMS300-3D 三维超景深显微镜升级方案可以将现有的显微镜,升级为三维超景深显微镜,满足材料表面形貌的观察,平面或三维测量,可以用于材料实验室或生产现场观测;用于金属材料断口、裂纹,磨损,腐蚀情况的三维超景深金观测, 青铜器, 陶瓷,织物,木材,纤维,古字画,壁画等方面的研究.。 UMS300-3D 三维超景深显微镜升级方案可以将现有的显微镜,升级为三维超景深显微镜,可大大降低样品制样的要求,多数样品无须制样即可以获得三维超景深的三维观察,三维拍照,三维分析效果。对于颗粒赝品的三维超景深显微图像的颗粒三维分析,粉末三维超景深图像和三维分析都可以获得良好的三维超景深显微镜效果。 UMS300-3D 三维超景深显微镜升级方案还可以大大降低客户购买三维超景深显微镜的成本,使用UMS300-3D 三维超景深显微镜升级方案的成本,大约为新购买进口三维超景深显微镜成本的10%。 UMS300-3D 三维超景深显微镜升级方案还具备以下强大的显微测量功能: 1、 组织成分分析、相含量测量 自动识别组织成分、自动测量相含量、最后得出分析报告。常用于岩石、金相、孔隙分析、夹杂分析等。 例如:成分分析,根据相含量的分布,给出三角统计图形,根据三角形分布判别种类。 2、 全自动颗粒分析与统计 提供功能强大的颗粒分析、统计工具。 自动识别颗粒、自动测量颗粒面积、粒度、圆度、最大卡规直径、形态特征等大量参数。按照参数进行分类统计,给出统计柱状图和报告。 3、 强大的辅助探测工具 提供强大的颗粒探测工具(包括魔术棒和颜色吸管),方便用户进行手动识别颗粒,观察局部特征颗粒等应用。 能根据外形、颜色等特征,识别测量颗粒与组织。
  • ​国产三坐标测量机产业走访第2站派姆特:自主创新精密测量技术,构建一体化三维测量平台
    近年来,我国高端制造业蓬勃发展,对高精度测量设备的需求持续攀升,极大地推动了以三坐标测量机为代表的精密测量仪器市场的迅猛增长。众多国内外知名品牌竞相涌入这一赛道,同时,也催生了一批崭露头角的国产新兴力量。在国产替代需求日益增长的趋势下,中国三坐标测量机企业迎来了前所未有的发展机遇。为深入了解中国三坐标测量机产业的发展态势,仪器信息网成立25周年之际,特别策划了“万里行”系列走访活动。该活动深入中国三坐标测量机代表性企业,与行业专家共同开展实地走访,探寻产业发展的最新进展和亮点,为发展新阶段赋能。走访第2站,由上海大学李明教授,仪器信息网产业研究部主任武自伟、营销服务中心经理韩永风、测量仪器编辑牛亚伟等组成的走访项目组走进派姆特科技(苏州)有限公司 (以下简称“派姆特”),派姆特华东区区域经理胡书飞、总裁助理Susan接待了走访一行人员。——企业发展进展派姆特成立于2019年,在中国、德国、日本均设有研发中心,并在苏州、西安建立了制造基地。得益于公司成立前的技术积累,派姆特在成立第一年即实现了盈利,且此后每年的收入都实现了翻倍增长。短短五年间,派姆特的团队规模已从最初的约30人发展壮大至现在的150余人。派姆特办公楼派姆特的创始人邰大勇,曾在德国马尔精密量仪和美国法如科技公司任职。他亲眼目睹了我国尺寸精密测量仪器市场几乎一度被国外品牌垄断的状况,这促使他萌生了创立一个拥有自主知识产权、受人尊重的国产高端品牌的念头。随着当前国内对供应链安全要求的日益提升,国产化替代需求旺盛,派姆特迎来了快速发展并受到了资本的青睐。2023年6月,公司获得了由中科创星独家投资的千万元级天使轮融资;同年11月,又获得了深圳高新投的第二轮融资;时隔不到一年,2024年5月,派姆特再次获得了卓远资本的第三轮融资。——产品技术与布局派姆特深耕便携式关节臂,拥有多项专利技术。其关节臂测量机涵盖6轴测量臂、7轴测量臂以及激光扫描臂,完美适应接触式与非接触式测量的多样化需求。设备内置平衡机构,采用等臂长设计,操作灵活自如,测量无死角。测量范围覆盖1.5-4.5米,可在5-45℃的全温度范围之内进行测量,内置温度传感器有效补偿温度变化带来的误差,确保测量精度位居国内顶尖水平,广泛应用于汽车、航空航天、国防军工、轨道交通、工程机械、教育等行业。胡书飞介绍道,为了向客户提供更多的测量方案,派姆特不断拓宽测量技术边界,致力于三坐标测量机的核心系统研发,包括测头、控制器和软件。去年,公司推出了FUTURE系列和PRIME系列桥式机型,以及SPACE车间型三坐标测量机。FUTURE系列采用矩形梁结构、气路分离独立控制等目前三坐标测量机的高端技术,可与进口品牌中高端计量设备相媲美。SPACE系列则专为加工现场设计,能够与机器人、自动上下料系统、机床系统等实现联机,为工业客户带来效率与质量的提升。CAM3软件作为派姆特产品矩阵的核心,是公司战略布局的重要一环。大部分三维测量硬件均需与CAM3软件配合使用,以发挥最大效能。胡书飞呼吁政府加大对软件国产化的支持力度,以便派姆特能够借此东风,打造出更加综合性的CAM3软件,以此为核心和平台,推动公司向更广阔的市场进军。目前,派姆特软件团队已超过20人,CAM3软件在上汽集团等企业中得到成功应用。派姆特的便携式测量臂由两个碳素纤维钢固定臂长和六到七个角度编码器组成。该编码器由派姆特自主研发和生产,可作为独立产品供应市场。派姆特产品矩阵市场调研数据显示,2022年全球三维尺寸测量仪器市场规模已突破100亿美元大关,预计未来将持续保持直线上升的增长态势。为了把握这一市场机遇,派姆特致力于打造一个集多场景应用、多测量精度需求的一体化三维测量平台。公司新推出的圆度仪、圆柱圆度仪和轮廓仪产品刚刚亮相市场,未来还将进一步拓展产品线,布局光笔测量仪和激光跟踪仪产品,以满足更广泛的市场需求。合影留念
  • 设备更新选型指南丨超快荧光三维成像技术推荐
    市面绝大多数共聚焦显微镜采用点扫描式激光共聚焦技术,成像速度较慢,难以满足活细胞动态观测、大视野快速扫描等成像需求。长光辰英的S3000转盘共聚焦显微镜采用三条纹转盘共聚焦成像技术,配合电动Z轴快速扫描,将成像速度提高至少二十倍。同时采用LED面光源激发光线更均匀,光毒性、光漂白性大大降低,适合连续观测。作为超快荧光三维成像的革新者,长光辰英的成像产品为活细胞,细胞生物学、微生物学、发育生物学、神经生物学及植物学等领域研究提供快速三维荧光成像的有力工具。推荐产品 S3000超快三维荧光成像系统S3000 超快三维荧光成像系统 (qq.com) PRECI SCS-F荧光单细胞分选仪PRECI SCS 微生物单细胞分选仪 (qq.com) RAColony菌落原位多表型检测与挑取工作站RAcolony 菌落原位多表型检测与挑取工作站 (qq.com) SC-catcher单细胞光镊操纵与分选系统SC-catcher单细胞光镊操纵与分选系统 (qq.com)应用案例Daphnia活体内纳米塑料颗粒排出过程的动态成像Daphnia吃到肠道内的纳米塑料颗粒会产生红色荧光,用共聚焦模式进行拍摄随着Daphnia肠道蠕动,纳米塑料颗粒排出的全部过程。此动图由10min的实际时间缩时到12s。传统点扫描激光共聚焦显微镜很难对动态过程实现拍摄,S3000转盘共聚焦成像系统可以很好地捕捉活体样本的动态变化。斑马鱼活体全鱼3D荧光成像神经细胞转入GFP基因的3d日龄斑马鱼,在镜下进行长达2h的活体动态荧光扫描,整张图由8个视野,每个视野17层进行逐层扫描成像,可以在2分钟内进行斑马鱼活体全鱼的荧光扫描,实现了激光点扫描共聚焦无法达到的速度,更好的保持斑马鱼的活性,提供长时间拍摄的条件。肺组织切片的超大视野快速成像对小鼠肺叶组织切片进行共聚焦切片扫描,在其中橙色标明的气管ROI区域进行更大放大倍数的细节扫描。对常规荧光切片扫描仪难以捕捉及判断的信号进行高清成像。肠道微生物高分辨成像利用能够代谢标记肽聚糖的D型氨基酸荧光探针(FDAA)作为工具,通过使用红绿两种FDAA探针对小鼠进行序贯在体标记,随后,对肠道微生物进行取样,并使用S3000转盘共聚焦显微镜观察双色荧光在细菌上的分布,进而推测其增殖分裂模式。【文章链接:《mLife》丨基于共聚焦荧光成像的单细胞分选测序技术揭示肠道菌群中细菌的分裂模式及种属分类 (qq.com)】【拓展阅读:想知道共聚焦显微镜下的昆虫什么样子吗?(qq.com)】【拓展阅读:HOOKE S3000转盘共聚焦显微镜下的微观世界掠影 第二篇--植物系列 (qq.com)】【拓展阅读:共聚焦显微镜下掠影 第三篇《动物组织系列》 (qq.com)如果您对我们的产品和服务感兴趣,请随时联系我们
  • 基于投影微立体光刻的3D打印技术及其应用
    作者:葛锜、李志琴、王兆龙、Kavin Kowsari、张旺、何向楠、周建林、Nicholas X Fang单位:1 Southern University of Science and Technology, China2 BMF Material Technology Inc., Shenzhen, China3 Hunan University, China4 Massachusetts Institute of Technology, USA5 Singapore University of Technology and Design, Singapore1文章导读投影微立体光刻(Projection Micro Stereolithography – PμSL)是一种基于面投影光固化原理的高精度(最高可达0.6微米)增材制造(3D打印)技术。该技术可以用于制造具有跨尺度与多材料特性的高精度复杂三维结构,在力学超材料、光学器件、4D打印、仿生材料及生物医学等领域具有广阔的应用前景。南方科技大学、深圳摩方材科技有限公司、湖南大学、麻省理工学院等单位的葛锜、李志琴、王兆龙、周建林、Nicholas X Fang等作者在《极端制造》期刊(International Journal of Extreme Manufacturing, IJEM)上发表《基于投影微立体光刻的3D打印技术及其应用》综述,系统介绍了投影微立体光刻3D打印技术的研究背景、最新进展及未来展望。2研究背景增材制造,又称3D打印,是一种以数字模型文件为基础,将部件离散成二维图形或者路径,通过逐层叠加的方式构造三维物体的快速成型技术。对比于传统制造方法,3D打印因具有制造高精度复杂三维结构、节省材料、方便快捷等优点,已被应用到航空航天、生物医疗、电子、汽车等国民经济领域。自被发明以来,3D打印发展出了各种不同的技术,包括熔融沉积成型(FDM)、墨水直写(DIW)、喷墨(Inkjet)、立体光刻(SLA)、选区激光烧结/熔融(SLS/SLM)、双光子(TPP),以及基于数字光处理(DLP)的连续液体界面制造(CLIP)、大面积快速打印(HARP)、投影微立体光刻技术(PμSL)等。对比于其他3D打印技术,投影微立体光刻技术因其可同时实现高分辨率与大幅面3D打印(图1),被应用于前沿领域的复杂三维结构制造,并产生了一系列具有影响力的科研成果。南方科技大学葛锜副教授、湖南大学王兆龙助理教授与麻省理工学院Fang教授团队联合深圳摩方材科技有限公司针对投影微立体光刻3D打印技术在最近所做的相关代表性工作逐一地进行了详细介绍。图1 不同3D打印技术的打印精度与幅面范围3最新进展投影微立体光刻是一种通过将构成三维模型的二维离散图案投影到光敏树脂表面,激发局部光固化反应的方式,逐层叠加成型三维结构的3D打印技术。通过对光路系统、光源以及打印工艺的优化,最高打印精度可达到0.6微米。面投影微立体光刻因其能够快速一体化成型高精度、跨尺度、多材料复杂三维结构,在力学超材料、光学器件、4D打印、仿生材料以及生物医药方面应用广泛。深圳摩方科技有限公司将原有投影微立体光刻3D打印技术进行发展与升级(图2a),并成功地将其转化为工业级3D打印装备,实现了稳定的超高精度-大幅面3D打印(精度:2微米,幅面:50毫米×50毫米;精度:10微米精度,幅面:94毫米×52毫米幅面),用于力学超材料、生物医疗器件、微力学器件及精密结构件等工业应用(图2b-j)。图2 投影微立体光刻3D技术及其相关工业级应用。(a)高精度-大幅面投影微立体光刻3D打印技术原理;(b)-(j)工业级应用典型案例。在实现跨尺度、多材料3D打印方面,采用面投影与图形扫描技术相结合的方法实现了跨尺度3D打印(图3a),采用吹气辅助投影微立体光刻法(图3b)与流体控制法(图3c)实现了多材料三维结构的快速打印。图3 跨尺度、多材料3D打印。(a)面投影与图形扫描结合实现跨尺度3D打印;(b)吹气辅助多材料3D打印;(c)流体控制辅助多材料3D打印。在实现力学超材料方面,通过投影微立体光刻3D打印技术一次成型以拉压变形占主导的八隅体桁架结构超轻-超硬力学超材料(图4a),通过多材料投影微立体光刻3D打印技术一次成型由两种不同刚度和热膨胀系数材料构成的负热膨胀系数超材料(图4b)。图4 力学超材料。(a)超轻-超硬力学超材料;(b)负热膨胀系数超材料。在光学器件打印方面,采用面投影立体光刻灰度曝光与表面浸润相结合的方法,实现光学镜头的3D打印(图5a),以及振动辅助与灰度曝光相结合的方法,实现表面纳米级光滑度的微透镜阵列3D打印(图5b)。图5 光学器件。(a)灰度曝光与表面浸润相结合实现光学镜头3D打印;(b)振动辅助与灰度曝光结合实现微透镜阵列3D打印。在4D打印方面,通过开发形状记忆光敏树脂,实现了大变形4D打印(图6a)、多材料4D打印(图6b)、自修4D打印(图6c),4D打印超材料结构(图6d)与4D打印吸能结构(图6e)等案例。图6 4D打印。(a)大变形4D打印;(b)多材料4D打印;(c)自修4D打印 (d)4D打印超材料结构;(e)4D打印吸能结构。4未来展望尽管面投影微立体光刻3D打印技术在近年来取得了快速的发展,但仍面临着如海量的图片数据传输与存储、多材料体素打印精确控制、高精度陶瓷打印等问题,亟待解决。5作者简介葛锜博士葛锜博士,南方科技大学机械与能源工程系长聘副教授。长期从事面投影微立体光刻3D打印技术研究,主要研究领域为4D打印、多功能3D打印、软物质力学、软体机器人、柔性电子等。王兆龙博士王兆龙博士,湖南大学机械与运载工程学院助理教授,长期从事微立体光刻3D打印,光学超材料及微流与热控理论及技术研究,先后参与包括重点国际(地区)合作研究项目及国家重点研发计划在内的多项国家自然科学基金和科技部重点研发项目。目前承担湖南省优秀青年基金及广东省重点领域研发计划等多项科研项目。Nicholas X. Fang博士Nicholas X. Fang博士,麻省理工学院机械系教授,长期从事包括微立体光刻3D打印技术在内的微纳技术研究,研究领域包括纳米光学、声学超材料、微纳制造、软物质等。本篇文章来自专辑:《极端制造》2020年第2期文章
  • 大连化物所预算869万元采购1台高分辨三维重构X射线显微镜
    近日,中国科学院大连化学物理研究所公开招标,预算869万元采购1台高分辨三维重构X射线显微镜。招标项目详情如下:项目编号:OITC-G240270123项目名称:中国科学院大连化学物理研究所高分辨三维重构X射线显微镜采购项目预算金额:869万元(人民币)最高限价(如有):869万元(人民币)采购需求:高分辨三维重构X射线显微镜 1 台/套 (允许进口产品)技术要求:1 分辨率及成像架构 ★1.1 最高空间分辨率:最佳三维空间分辨率≤0.5μm1.2 当 X 射线源距样品旋转轴 50mm 时的最佳空间分辨率≤1.0μm 1.3 最小可实现的体素(最大放大倍率下样品的体素大小)≤ 40 nm ★1.4 系统必须采用几何+光学两级放大的架构,以满足我单位对大样品进行局部高分辨率的成像需求。2 三维组织表征、重构及成像2.1 无损伤地对样品进行三维组织表征,可获得样品的三维组织形貌及不同角度、不同位置的虚拟二维切片组织形貌信息。不需制样或只需简单制备,不需真空观察环境,不会引入人为缺陷。 ★2.2 利用吸收衬度原理和相位传播衬度原理,可以对包括高原子序数和低原子序数在内的各种材料都能获得高衬度图像。 2.3 2000 张2k×2k投影重构图像数据(重构972 张Slice 图像)时间≤2.2分钟。2.4 支持纵向拼接技术,通过纵向拼接扫描结果获得更高视野的数据2.5 具备定位放大扫描功能2.6 具备样品移动自适应矫正、温度移动矫正、图像比对位移参照矫正等功能2.7 具备吸收衬度成像和基于边缘折射传播的相位衬度成像功能2.8 应具备硬件+软件的自动防撞机制, 可通过可见光扫描快速获取样品形状和实际轮廓,根据样品形状和轮廓,自动对源、探测器位置进行限位,以保证硬件和样品安全 。3 光源与滤波片★3.1 高能量微聚焦闭管透射式X射线源3.2 最高电压≥160kV,最低电压≤30kV,电压在最低和最高之间连续可调3.3 最大功率不小于25W3.4 Z轴可移动范围不小于190 mm 3.5 X射线泄露≤1μSv/hr(距离设备外壳25mm以上处)★3.6 带有单过滤波片支架,12个适用于不同能量段扫描的滤波片4 探测器4.1 能够实现二级放大的16 bit噪声抑制闪烁体耦合探测器, 探测器能够实现2048×2048以上的像素成像和三维重构★4.2 包含0.4X物镜探测器,实现2048×2048像素成像和三维重构4.3 包含高对比度,低分辨率的4X物镜探测器4.4 包含高对比度、高分辨率的20X物镜探测器4.5 探测器可移动范围不小于280mm★4.6 包含高分辨率40X物镜探测器5 样品台及样品室★5.1 全电脑控制高精度4轴马达样品台,具备超高的样品移动精度★5.2样品台X轴运动范围50mm;Y轴运动范围100mm;Z轴运动范围50mm 5.3 样品台旋转运动范围:360度旋转5.4 样品台最大承重范围:25kg5.5 样品台可承受样品尺寸范围:300mm★5.6 为了防止X 射线辐射泄漏、保护仪器操作人员,设备须采用全封闭式铅房设计,不能留有观察玻璃窗。样品室内配备可见光相机,确保操作人员无需通过观察玻璃窗即可监控和操作样品。5.7 配置原位台接口,可后期升级原位台。5.8 系统应具备智能防撞系统,可根据样品尺寸设定源和样品的范围,保障在实际成像过程中不会发生样品和源、探测器的碰撞损坏设备或样品。6 仪器控制与数据采集、重构、可视化及分析系统6.1 全数字化仪器控制,计算机控制工作站★6.2 具备三维数据采集及控制软件, 并提供1次免费升级服务。6.3 支持原始数据查看,图像标准特征显示(如亮度、对比度、放大等)、注释、测量6.4 可以进行基本图像测量,如图像计算、滤波等6.5具备快速三维数据重构软件6.6 具备三维数据可视化软件,展示三维重构结果,包括虚拟断层,着色、渲染、透视等,并实现基本分析功能和注释(3D Viewer)★6.7 专业的三维数据分析软件(一套):可进行高级三维重构后视图展示与三维高级数据处理与分析包括定量分析与统计分布、切片配准与图像滤波、三维图像数据分割与特征提取、多模态融合与分析、三维模型生成与导出,几何特征计算等(如可以实现三维数据处理,对样品三维数据结果进行相分割,孔隙率计算,裂纹及孔的尺寸统计与空间分布)并且可与其它三维软件兼容, 厂家自带软件全部功能开放7 三维X射线显微镜控制主机(须内附三维X射线显微镜控制单元)Microsoft Windows10操作系统、符合或优于Dual Eight Core CPU 、 CUDA-enabled 3D GPU,12TB(3×4 TB)硬盘容量、32GB内存、RAID-5可刻录式光驱、24寸液晶显示器;额外再配置一台数据处理工作站,要求不低于以下配置:Microsoft Windows 10及以上正版操作系统、双10核CPU、Nvidia RTX A6000GPU、6TB硬盘容量、512GB内存、RAID-5可刻录式光驱、24寸显示屏。8 样品座及标样8.1 配备对中和分辨率测试标样1套,配备针钳式样品座、夹钳式样品座、夹持式样品座、高铝基座样品座、高精度针钳式样品座。9 可拓展功能★9.1 可与双束系统、场发射电镜的数据相关关联,可将CT所获得的数据文件格式如CZI, ZVI, TIFF, MRC等格式的二维图像和TXM 3D X-ray volumes体量数据,导入到电镜或者双束系统的软件中,实现亚微米级到纳米级的数据关联以及数据处理。10 其他硬件10.1 人体工学操作台,大移动范围、高精度花岗岩工作台,四门式防辐射安全屏蔽罩,配备辐射安全连锁装置和“X-ray on”指示器 潜在投标人需于2024年06月11日至2024年06月18日,上午9:00至11:00,下午13:00至17:00(北京时间,法定节假日除外),登录东方招标平台www.oitccas.com注册并购买招标文件,并于2024年07月02日09点30分(北京时间)提交投标文件。联系方式:1. 采购人信息名称:中国科学院大连化学物理研究所地址:辽宁省大连市中山路457号联系方式:王老师,0411-843797072. 采购代理机构信息名称:东方国际招标有限责任公司地址:北京市海淀区丹棱街1号互联网金融中心20层联系方式:窦志超、王琪 010-682905233. 项目联系方式项目联系人:窦志超、王琪电话:010-68290523附件:采购需求.pdf
  • 正投影机光色参数快速测试仪用于大屏幕投影机光色参数的快速测量仪器
    正投影机光色参数快速测试仪 投影机光色参数检测仪 型号:HAD-XYI-XI正投影机光色参数快速测试仪用于大屏幕投影机光色参数的快速测量仪器,特别适用于投影机生产线上的自动调校。其测量对象包括屏幕光通量、屏幕的光通量不均匀性、对比度、色品坐标和色温。 仪器预设标准A光源及D65光源文件,并可根据用户需求,由用户意设定存储标准光源。仪器可根据不同参考光源自动修正探测器的光谱参数误差,达到屏幕的总光通量、屏幕的光通量不均匀性、色品坐标和色温的密测量。其测量度达到际水平。 仪器软件运行于Windows98/NT环境,具有友好的图形界面、能强大。采用图形化实体数据显示,可以行柱形图和亮度图切换及数据打印输出。仪器同时具有实时通讯能,适用于屏幕参数的在线测量及控制。正投影机光色参数测量,9点照度测量,颜色参数测量术标: 光通量测量范围:0-8000lm(按4m2计算) 仪器度:优于±4% 分辨率:0.05%(满量程) 线性:±1% 作温度:0-50℃ 投影屏幕测试探测器:1-9探测器为照度探测器,5、10、11探测器为色度探测器(根据用户要求仪器也可附带15个探测器) 探测器V(λ)匹配达家照度计标准 具有色温修正软件, 可确测量不同色温的光通量及色品坐标 总光通量自动计算和屏幕光通量不均匀性计算及其相关软件 微机控制及上位机通讯。 刷新频率:3次/s 供电电源:220V交流电 保修期:1年 随机附件:相关软件和说明书
  • 思看科技SIMSCAN三维扫描仪航天机成功进入中国空间站!
    近日,思看科技为中国空间站空间应用中心提供的三维扫描产品——SIMSCAN航天机成功进行梦天实验舱在轨实验,并将持续为中国空间站一系列科学实验研究提供高效、精准、稳定的非接触式三维测量服务。2022年10月31日,梦天实验舱搭载长征五号B遥四运载火箭,于文昌航天发射场顺利发射,并完成与空间站组合体交会对接,SIMSCAN航天机随梦天舱发射入轨,一道见证了中国航天这一里程碑式的时刻。梦天实验舱是组成中国空间站基本构型的三个舱段之一,由工作舱、载荷舱、货物气闸舱和资源舱组成,主要应用于开展空间科学和应用实验,是三舱中支持载荷能力最强的舱段,被誉为空间站实验“梦工场”,SIMSCAN航天机应用于梦天舱在轨实验,标志着思看科技SIMSCAN中国空间站项目圆满成功。SIMSCAN航天机中国空间站应用SIMSCAN航天机中国空间站应用从2018年初步接到中国空间站的三维测量需求,到2022年SIMSCAN 航天机发射入轨,再于2023年成功进行在轨实验,整整历时5年。SIMSCAN航天机原型期间我们不断打磨产品细节,优化产品性能,先后经过上百次仿真模拟测试,如动/静应力分析、模态分析、震动分析、热力分析、精度测试和稳定性验证等,以确保其在太空极端环境下的可靠性。项目攻克了一系列技术难题,最终在产品外形结构、重量尺寸、精度稳定性方面给出了圆满的解决方案。SIMSCAN航天机工效学评价SIMSCAN航天机将在空间站服务于各项科学实验,为实验结果提供精准的数据基础。三维扫描仪发射前打包路虽远行则将至,事虽难做则必成。历时5载,我们打磨出一款严格符合航天标准,并深受中国空间站专家认可的航天级3D扫描标杆产品。这一项目的成功,是思看科技蓄势笃行、突破创新的一大步,也是革新3D计量行业的一大步!一直以来,思看科技始终秉持着成为全球3D数字化领军品牌的愿景,以专业创新的企业价值观持续深耕三维视觉数字化领域,坚持高强度研发投入,打造出一系列具有竞争力的产品和解决方案。思看科技产品与解决方案已经广泛应用于航空航天、汽车制造、工程机械、能源重工、艺术文博、医疗健康等众多行业,致力于用高精度、高便携和智能化的产品与技术赋能智能制造企业数字化转型升级,加速推进企业智能化、自动化高质量发展。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制