当前位置: 仪器信息网 > 行业主题 > >

氮气氢气乙炔丙烷天然气减压器

仪器信息网氮气氢气乙炔丙烷天然气减压器专题为您提供2024年最新氮气氢气乙炔丙烷天然气减压器价格报价、厂家品牌的相关信息, 包括氮气氢气乙炔丙烷天然气减压器参数、型号等,不管是国产,还是进口品牌的氮气氢气乙炔丙烷天然气减压器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氮气氢气乙炔丙烷天然气减压器相关的耗材配件、试剂标物,还有氮气氢气乙炔丙烷天然气减压器相关的最新资讯、资料,以及氮气氢气乙炔丙烷天然气减压器相关的解决方案。

氮气氢气乙炔丙烷天然气减压器相关的方案

  • 减压器检漏,减压阀门检漏
    上海伯东氦质谱检漏仪客户案例:减压器主要用于半导体管路中气体减压,调节气体压力,减压器要求在真空模式下漏率小于 1X10-8 mbar l/S
  • 氦质谱检漏仪减压器检漏
    减压器, 又称减压阀门, 是将高压气体降为低压气体, 并保持输出气体的压力和流量稳定不变的调节装置. 主要应用于半导体管路或实验室压力控制. 减压器本身如果出现泄漏, 会直接导致高压气体泄漏, 一旦气体属于有毒有害气体, 将导致严重的生产事故! 因此减压器在出厂前必须经过严格的泄漏检测, 氦质谱检漏法与传统泡沫法对比, 利用氦气作为示踪气体可精确定位, 定量漏点, 在真空模式下, 可以显示 1X10-12 mbar l/s 的漏率值, 上海伯东氦质谱检漏仪现已广泛应用于减压阀检漏
  • 利用 GPA 2186 分析天然气凝析液
    本应用简报讨论了对从天然气中除去的重质烃类即所谓“天然气凝析液(NGL)”的分析。天然气是一种天然存在的烃类气体混合物,其主要由甲烷组成,但通常还包含不同量的其它高级烷烃,甚至还有少量的二氧化碳、氮气和硫化氢。此外,天然气中可能包含大量的乙烷、丙烷、丁烷、戊烷及其它重质烃类,在甲烷被出售用作商业用途之前必须除去这些烃类。页岩气是储藏在页岩内部的天然气,而页岩是一种细粒度沉积岩,其中可能富含石油和天然气。过去十年间,结合水平钻井与水力压裂已经能够获取大量的页岩气,而在此之前,生产页岩气的成本非常高。从天然气凝析液中分离出的一种馏分被称作y 级馏分,其通常通过管道转移至集中式储存设施中以备分馏。美国中部实验室分析管道中的这些天然气凝析液并颁发用于确定产品市场价值的分析证书。
  • 气相色谱扩展天然气便携、在线分析方案
    目标组分:氢气,氦气,氧气,氮气,甲烷,二氧化碳,乙烷,丙烷,丁烷,异丁烷,戊烷,异戊烷,正己烷,正庚烷,正辛烷,正癸烷分析约1000BTU 的管道气(大量的甲烷和少量的C6以上的化合物),90秒内完成分析。分析方法:提供自带分析软件,实现一键式交钥匙工程;可执行ASTM,ISO,GPA热值分析方法便携性:可实验室、野外便携及车载便携,支持在线无人值守分析仪器主要特点:?速度快 – 可在几十秒至2分钟内完成目标气体组分的全分析?自动化 – 可实现气体自动进样,自动分析,自动输出结果,全程软件自动控制?精度高 – 高精度电子气路控制与温度控制,实现0.2%的连续进样重复性?使用安全 – 无需使用任何可燃性气体,且分析检测过程中无火焰?检测范围广 – 基于微机电技术高精度检测器,实现0-100%范围的气体检测?网路智能 – 可个性化定制各种远程传输接口协议,例如 ModBus,实现在线无人值守的智能化操作?热值软件 – 可符合ASTM、ISO、GPA方法实现自动计算天然气热值
  • 使用天然气分析仪检测天然气热值的实验操作步骤
    检测天然气热值通常需要使用天然气分析仪,该仪器能够测量天然气中各种组分的含量,从而计算出天然气的热值。以下是一般的实验操作步骤:1. 准备工作:确保天然气分析仪处于正常工作状态。检查仪器的校准状态,确保准确性。2. 样品采集:从天然气源头采集代表性的样品。样品应该是真实来源的典型天然气,以确保实验结果的可靠性。3. 样品预处理:将采集到的天然气样品通入样品处理系统。这可能涉及到去除杂质、水分等步骤,以确保分析的准确性。4. 样品分析:将经过预处理的天然气样品输入到天然气分析仪中。仪器将分析样品中各种组分的含量,例如甲烷、乙烷、丙烷等。
  • GC-FID成分分析-----氢气做燃烧气应用于海上液化天然气运输
    海底天然气主要成分主要是甲烷,当甲烷从海底开采时,易与其他化学物质(如硫化氢、二氧化碳、水分和其他碳氢化合物)结合。用作天然气之前,需要将这些杂质从甲烷中除去。液化天然气设施上可以选择钢瓶或者氢气发生器为GC-FID提供氢气,但钢瓶中的气体耗尽,可能会导致样品分析的延迟和中断,并且钢瓶中含有的高压氢气,也会造成安全问题。使用氢气发生器为GC-FID提供燃烧气,可以减少钢瓶运输和租赁费用的波动。因其只储存少量的气体,也更为安全。氢气发生器还配有开机自检、内部检漏、报警等功能,以保证使用安全。并且氢气发生器可以可以24/7按需全天候持续供应高纯度气体,更为方便。所以对于浮式液化天然气(FLNG)装置,钢瓶的运输和使用存在一定风险,氢气发生器可以提供更为简单和安全的解决方案。
  • 采用单模块MicroGC Fusion快速分析天然气组分丙烷
    采用单模块MicroGC Fusion快速分析天然气组分快速和精确地分析天然气的化学组分和物理性质对于天然气生产厂, 采集厂和气体分配公司的密闭输送是极为重要的. 此外, 天然气发动机, 锅炉, 和设备的制造厂依靠天然气的计算来确定重点发展的技术指标, 例如热效率.由于天然气组分的变化, 必须监测气体的物理性质, 如压缩率, 相对密度, 和热值(英国热量单位, 或BTU). 热值上的小差别可产生显著的经济影响.基于已通过验证的微电子机械系统(MEMS) 技术, Micro GC Fusion 能用单个模块分析C1-C8 "+" (天然气中存在的从C1甲烷到C8辛烷"+"所有碳氢化合物和永久性气体). 可程序升温的色谱柱大大提高分析速度和分离效果, 降低分析的周期时间和增大样品分析的效率. 程序升温还可以快速清洗色谱柱, 防止柱内残余污染物和对色谱柱寿命的影响.基于网络的Micro GC Fusion 用户界面与Diablo EZReporter 软件的组合可在每次样品运行后自动计算化学组分和物理性质.
  • 使用单检测器 Deans Switch 系统分析天然气中的丙烷
    本实验建立了使用毛细管柱、单个阀、单个TCD 检测器、微板流路控制技术(CFT)Deans Switch 系统进行气态和液态天然气的分析方法。此应用摘要描述了分析气态或液态天然气中氮气、氧气、二氧化碳及碳原子数为1-6 的正烷烃的方法。
  • 使用 Agilent 990 微型气相色谱反吹至检测器选件进行一分钟天然气分析
    于 Agilent 990 微型气相色谱平台,开发了一种用于天然气分析的快速解决方案。采用双通道(第一个为直型 HayeSep A 通道,第二个为 CP-Sil 5CB BF2D 通道)配置,能够在一分钟内完成天然气分析。在 HayeSep A 通道上对甲烷、空气、二氧化碳、乙烷和丙烷进行分析。在 BF2DCP-Sil 5CB 通道上对丙烷、丁烷、异丁烷、戊烷、异戊烷、2,2-二甲基丙烷和C6/C6+ 烃进行分离。系统具有了良好的重现性。与其他 990 微型气相色谱天然气分析仪相比,这种快速解决方案能够进一步提高天然气分析的速度。
  • 气相色谱法分析天然气的测试方法
    气相色谱法分析天然气的测试方法摘要:天然气,是一种多组分的混合气态化石燃料,主要成分是烷烃,其中甲烷占绝大多数,另有少量的乙烷、丙烷和丁烷。它主要存在于油田、气田、煤层和页岩层。天然气燃烧后无废渣、废水产生,相较煤炭、石油等能源有使用安全、热值高、洁净等优势。
  • 石化应用方案一:天然气中N2的分析
    所谓天然气,就是一种多组分的混合气态化石燃料,主要成分是烷烃,其中甲烷占绝大多数,另有少量的乙烷、丙烷和丁烷,根据国家标准GBT13610-2014 (上一版 GB/T 13610-2003)规定,使用气相色谱方法,搭配多种阀柱方案选择,可依据实际情况灵活应变检测。
  • 石化应用方案一:天然气中CO的分析
    所谓天然气,就是一种多组分的混合气态化石燃料,主要成分是烷烃,其中甲烷占绝大多数,另有少量的乙烷、丙烷和丁烷,根据国家标准GBT13610-2014 (上一版 GB/T 13610-2003)规定,使用气相色谱方法,搭配多种阀柱方案选择,可依据实际情况灵活应变检测。
  • 石化应用方案一:天然气分析
    所谓天然气,就是一种多组分的混合气态化石燃料,主要成分是烷烃,其中甲烷占绝大多数,另有少量的乙烷、丙烷和丁烷,根据国家标准GBT13610-2014 (上一版 GB/T 13610-2003)规定,使用气相色谱方法,搭配多种阀柱方案选择,可依据实际情况灵活应变检测。
  • 石化应用方案一:天然气中C2 -C5的分析
    所谓天然气,就是一种多组分的混合气态化石燃料,主要成分是烷烃,其中甲烷占绝大多数,另有少量的乙烷、丙烷和丁烷,根据国家标准GBT13610-2014 (上一版 GB/T 13610-2003)规定,使用气相色谱方法,搭配多种阀柱方案选择,可依据实际情况灵活应变检测。
  • 石化应用方案一:天然气中H2的分析
    所谓天然气,就是一种多组分的混合气态化石燃料,主要成分是烷烃,其中甲烷占绝大多数,另有少量的乙烷、丙烷和丁烷,根据国家标准GBT13610-2014 (上一版 GB/T 13610-2003)规定,使用气相色谱方法,搭配多种阀柱方案选择,可依据实际情况灵活应变检测。
  • 石化应用方案一:天然气中O2的分析
    所谓天然气,就是一种多组分的混合气态化石燃料,主要成分是烷烃,其中甲烷占绝大多数,另有少量的乙烷、丙烷和丁烷,根据国家标准GBT13610-2014 (上一版 GB/T 13610-2003)规定,使用气相色谱方法,搭配多种阀柱方案选择,可依据实际情况灵活应变检测。
  • 石化应用方案一:天然气中CH4的分析
    所谓天然气,就是一种多组分的混合气态化石燃料,主要成分是烷烃,其中甲烷占绝大多数,另有少量的乙烷、丙烷和丁烷,根据国家标准GBT13610-2014 (上一版 GB/T 13610-2003)规定,使用气相色谱方法,搭配多种阀柱方案选择,可依据实际情况灵活应变检测。
  • 石化应用方案一:天然气中CO2的分析
    所谓天然气,就是一种多组分的混合气态化石燃料,主要成分是烷烃,其中甲烷占绝大多数,另有少量的乙烷、丙烷和丁烷,根据国家标准GBT13610-2014 (上一版 GB/T 13610-2003)规定,使用气相色谱方法,搭配多种阀柱方案选择,可依据实际情况灵活应变检测。
  • 气相色谱法分析乙炔气中微量硫化物
    乙炔是炔烃化合物中体积最小的,主要用于焊接及切断金属等。在化工领域,乙炔是一种重要的工业原料,是制造乙醛、醋酸、苯、合成橡胶和合成纤维的基本原料。工业用的乙炔气通常含有硫化氢和磷化氢等杂质。乙炔中硫化物含量的测定,是乙炔生产醋酸等化工产品过程中一个重要的控制指标。硫化物含量超标可导致设备腐蚀、催化剂失活等严重后果,从而影响生产的安全稳定运行。因此,在生产过程中要及时、准确的测定硫的含量,确保装置正常运行。气体中的硫化物主要依据的检测方法为ASTM D6228 气相色谱和火焰光度检测法测定天然气和气体燃料中含硫化合物的试验方法。本实验采用配备了惰性进样阀和FPD 检测器的ThermoScientific Trace 1310 分析,分析合成气中微量的硫化物。为了避免硫化氢的吸附,试验中所有连接管路和接头都采用了惰性化处理。
  • 使用单检测器 Deans Switch 系统分析天然气中的氮气
    本实验建立了使用毛细管柱、单个阀、单个TCD 检测器、微板流路控制技术(CFT)Deans Switch 系统进行气态和液态天然气的分析方法。此应用摘要描述了分析气态或液态天然气中氮气、氧气、二氧化碳及碳原子数为1-6 的正烷烃的方法。
  • 使用单检测器 Deans Switch 系统分析天然气中的乙烷
    本实验建立了使用毛细管柱、单个阀、单个TCD 检测器、微板流路控制技术(CFT)Deans Switch 系统进行气态和液态天然气的分析方法。此应用摘要描述了分析气态或液态天然气中氮气、氧气、二氧化碳及碳原子数为1-6 的正烷烃的方法。
  • 使用单检测器 Deans Switch 系统分析天然气中的异戊烷
    本实验建立了使用毛细管柱、单个阀、单个TCD 检测器、微板流路控制技术(CFT)Deans Switch 系统进行气态和液态天然气的分析方法。此应用摘要描述了分析气态或液态天然气中氮气、氧气、二氧化碳及碳原子数为1-6 的正烷烃的方法。
  • 使用单检测器 Deans Switch 系统分析天然气中的新戊烷
    本实验建立了使用毛细管柱、单个阀、单个TCD 检测器、微板流路控制技术(CFT)Deans Switch 系统进行气态和液态天然气的分析方法。此应用摘要描述了分析气态或液态天然气中氮气、氧气、二氧化碳及碳原子数为1-6 的正烷烃的方法。
  • 采用 Agilent 8355 硫化学发光检测器分析天然气和气体燃料中的正丁硫醇
    天然气和气体燃料中的硫具有腐蚀性、毒性以及难闻的气味。可采用多种方法测量硫含量,每种技术都有其自身的优势。而 Agilent 8355 硫化学发光检测器专门设计用于满足甚至超出所有测试要求,尤其具有以下优势:• 线性响应• 非淬灭性能• 检测限/定量限• 简便易用• 正常运行时间更长配备硫化学发光检测器的气相色谱提供了天然气和气体燃料中硫杂质和含硫气味剂的快速鉴定和定量分析方法。这些杂质和气味剂包括空气、甲烷、丙烷、沼气和炼厂燃料气中的含硫化合物。
  • 采用单模块MicroGC Fusion快速分析天然气组分异戊烷
    采用单模块MicroGC Fusion快速分析天然气组分快速和精确地分析天然气的化学组分和物理性质对于天然气生产厂, 采集厂和气体分配公司的密闭输送是极为重要的. 此外, 天然气发动机, 锅炉, 和设备的制造厂依靠天然气的计算来确定重点发展的技术指标, 例如热效率.由于天然气组分的变化, 必须监测气体的物理性质, 如压缩率, 相对密度, 和热值(英国热量单位, 或BTU). 热值上的小差别可产生显著的经济影响.基于已通过验证的微电子机械系统(MEMS) 技术, Micro GC Fusion 能用单个模块分析C1-C8 "+" (天然气中存在的从C1甲烷到C8辛烷"+"所有碳氢化合物和永久性气体). 可程序升温的色谱柱大大提高分析速度和分离效果, 降低分析的周期时间和增大样品分析的效率. 程序升温还可以快速清洗色谱柱, 防止柱内残余污染物和对色谱柱寿命的影响.基于网络的Micro GC Fusion 用户界面与Diablo EZReporter 软件的组合可在每次样品运行后自动计算化学组分和物理性质.
  • 采用单模块MicroGC Fusion快速分析天然气组分异丁烷
    采用单模块MicroGC Fusion快速分析天然气组分快速和精确地分析天然气的化学组分和物理性质对于天然气生产厂, 采集厂和气体分配公司的密闭输送是极为重要的. 此外, 天然气发动机, 锅炉, 和设备的制造厂依靠天然气的计算来确定重点发展的技术指标, 例如热效率.由于天然气组分的变化, 必须监测气体的物理性质, 如压缩率, 相对密度, 和热值(英国热量单位, 或BTU). 热值上的小差别可产生显著的经济影响.基于已通过验证的微电子机械系统(MEMS) 技术, Micro GC Fusion 能用单个模块分析C1-C8 "+" (天然气中存在的从C1甲烷到C8辛烷"+"所有碳氢化合物和永久性气体). 可程序升温的色谱柱大大提高分析速度和分离效果, 降低分析的周期时间和增大样品分析的效率. 程序升温还可以快速清洗色谱柱, 防止柱内残余污染物和对色谱柱寿命的影响.基于网络的Micro GC Fusion 用户界面与Diablo EZReporter 软件的组合可在每次样品运行后自动计算化学组分和物理性质.
  • 使用单检测器 Deans Switch 系统分析天然气中的异丁烷
    本实验建立了使用毛细管柱、单个阀、单个TCD 检测器、微板流路控制技术(CFT)Deans Switch 系统进行气态和液态天然气的分析方法。此应用摘要描述了分析气态或液态天然气中氮气、氧气、二氧化碳及碳原子数为1-6 的正烷烃的方法。
  • 气相色谱法(PDHID检测器)分析空分液氧中乙炔及高纯氩气中氮气
    本文使用岛津GC-2030气相色谱仪,结合脉冲氦离子化检测器(PDHID)和中心切割技术,一台色谱可同时满足液氧中微量乙炔和氩气中微量氮气两个关键指标的测定。分析重复性和灵敏度较高,连续五次重复进样相对标准偏差(RSD)小于1%,最低检出限氮气12ppb、乙炔9ppb,远远优于国标的要求。
  • 福立天然气分析解决方案
    天然气指在地表以下、空隙性地层中、天然存在的烃类和非烃类混合物。按定义将天然气分为两大类,一类是可燃性天然气,其组成大部分为碳氢化合物;另一类为不可燃天然气,其组成大部分为二氧化碳和氮气。  天然气的组成是指天然气中所含的组分及其在可检测范围内相应的含量。此配置仪器主机采用GC9720气相色谱仪,高灵敏FID、TCD检测器,配备三阀四柱阀进样切换系统,实现一次进样即可把样品中H2、O2、N2、CO、CO2、C1以上烃类等组分一次检测,FID检测谱图与TCD检测谱图自动合并为一张谱图,校正归一化法自动定量分析及热值显示,气路全EPC/AFC气路控制,全反控工作站,进样切换阀采用美国进口VICI阀头,全自动气动控制,所有仪器方法条件均由电脑工作站控制,并以文件形式存储,实现不同检测项目色谱条件的一键式转换,仪器的操作只需会电脑的基本操作及可完成对样品的检测,真正实现仪器的全自动化、智能化、操作简单化。
  • 采用单模块MicroGC Fusion快速分析天然气组分乙烷
    采用单模块MicroGC Fusion快速分析天然气组分快速和精确地分析天然气的化学组分和物理性质对于天然气生产厂, 采集厂和气体分配公司的密闭输送是极为重要的. 此外, 天然气发动机, 锅炉, 和设备的制造厂依靠天然气的计算来确定重点发展的技术指标, 例如热效率.由于天然气组分的变化, 必须监测气体的物理性质, 如压缩率, 相对密度, 和热值(英国热量单位, 或BTU). 热值上的小差别可产生显著的经济影响.基于已通过验证的微电子机械系统(MEMS) 技术, Micro GC Fusion 能用单个模块分析C1-C8 "+" (天然气中存在的从C1甲烷到C8辛烷"+"所有碳氢化合物和永久性气体). 可程序升温的色谱柱大大提高分析速度和分离效果, 降低分析的周期时间和增大样品分析的效率. 程序升温还可以快速清洗色谱柱, 防止柱内残余污染物和对色谱柱寿命的影响.基于网络的Micro GC Fusion 用户界面与Diablo EZReporter 软件的组合可在每次样品运行后自动计算化学组分和物理性质.

厂商最新方案

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制