当前位置: 仪器信息网 > 行业主题 > >

大气水溶性离子成分在线分析仪

仪器信息网大气水溶性离子成分在线分析仪专题为您提供2024年最新大气水溶性离子成分在线分析仪价格报价、厂家品牌的相关信息, 包括大气水溶性离子成分在线分析仪参数、型号等,不管是国产,还是进口品牌的大气水溶性离子成分在线分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合大气水溶性离子成分在线分析仪相关的耗材配件、试剂标物,还有大气水溶性离子成分在线分析仪相关的最新资讯、资料,以及大气水溶性离子成分在线分析仪相关的解决方案。

大气水溶性离子成分在线分析仪相关的资讯

  • WAGA-100大气水溶性离子在线分析仪
    大气颗粒物来源广泛,化学组分复杂,与痕量气态污染物如二氧化硫、氨等互相转化,造成大气复合污染的复杂状况。传统的大气颗粒物和气体组分多遵循采样-运输-实验室分析的流程,时间周期长,消耗人力物力较多。一些不稳定的物质在周期中容易挥发或者发生反应,导致检测结果不能准确地反映实时污染物组分浓度,造成测量误差。  因此,对颗粒物化学成分和痕量污染气体开展准确、实时、长期的监测、是治理大气颗粒物的先决基础。  聚光科技(杭州)股份有限公司(以下简称“聚光科技”)联合北京大学最新推出基于离子色谱法的WAGA-100大气颗粒物水溶性离子成分在线分析仪,可实现对大气中多种水溶性离子的自动准确测量。 WAGA-100大气水溶性离子在线分析仪可测气体组分NH3、HCl、HONO、HNO3和SO2可测颗粒物组分F-、Cl-、NO2-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+等WAGA大气颗粒物水溶性离子成分在线分析仪原理图关键技术  1)湿式平行板溶蚀器技术  它的基本工作原理是:选择能吸收被测组分的吸收剂涂渍于溶蚀器内壁,或让吸收剂以一定流速流过溶蚀器内壁,利用气体和气溶胶扩散系数的差异,使气体分子扩散到管壁被吸收剂吸收,而气溶胶不受影响一直通过扩散管,从而有效地分离气态污染物和气溶胶。湿式平行板溶蚀器工作原理示意图  2)蒸汽喷射-撞击式采样技术  基于蒸汽喷射的气溶胶采样技术原理是气溶胶颗粒在水蒸气的作用下长大,经过一个水汽分离装置后,水溶性组分进入溶液并进一步分析。该技术解决了传统膜采样法时间周期长、颗粒物成分变化等问题,应用于组分在线监测,可以实时、准确的获知颗粒物化学成分信息。 基于蒸汽喷射的气溶胶收集技术示意图  3)微差压全自动液面探测技术  基于微压差的自动化液面探测技术可以连续自动的输出收集液容积,适用于无人值守的在线监测仪器,结构简单,灵敏度高。 微差压全自动液面探测技术示意图  4)针对自动在线分析的智能化软件系统  聚光科技WAGA-100大气水溶性离子在线监测系统将采样、分析、检测单元、数据处理单元等集成在分析仪内部;通过内置程序控制电磁阀的开关和设定流量,根据时序控制不同采样流程状态下泵的工作状态和频率,减少仪器使用及维护的工作量;通过定时循环自动触发下一流程,实现流程的循环和连续在线测量,减少人工维护,实现高度自动化控制。产品特点  痕量气体和颗粒物组分的自动监测  适用于大流量的平行板溶蚀器设计  高效颗粒物捕集装置  联合北京大学研制,经十余年研发和应用验证  全自动化控制,可长时间无人值守  数据自动分析和上传应用案例 2017.04.17 凌晨5:00WAGA仪器在现场捕捉到颗粒物较高的硝酸盐和硫酸盐含量 2008.10.20~2008.11.09基于该技术现场监测的PM2.5水溶性离子成分和气体浓度的变化趋势
  • 招标!中科院大气物理所预算434万采购水溶性有机气溶胶在线分析系统
    p & nbsp & nbsp & nbsp & nbsp 5月27日,中国政府采购网发布中国科学院大气物理研究所水溶性有机气溶胶在线分析系统采购项目公开招标公告,预算434万人民币。 /p p & nbsp & nbsp & nbsp & nbsp 详细采购信息如下: /p table border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr class=" firstRow" style=" height: 30px " td width=" 52" height=" 30" style=" padding: 0px 7px border: 1px solid windowtext border-image: none background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 包号 /span /p /td td width=" 123" height=" 30" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 货物名称 /span /p /td td width=" 65" height=" 30" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 数量 /span /p p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " (套) /span /p /td td width=" 190" height=" 30" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 简要技术要求 /span /p /td td width=" 94" height=" 30" valign=" top" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 是否接受进口产品 /span /p /td /tr tr style=" height: 53px " td width=" 52" height=" 53" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 1 /span /p /td td width=" 123" height=" 53" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 水溶性有机气溶胶在线分析系统 /span /p /td td width=" 65" height=" 53" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 1 /span /p /td td width=" 190" height=" 53" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 用于大气颗粒物中水溶性有机化合物的快速同步定性、定量分析 /span /p /td td width=" 94" height=" 53" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: center line-height: 150% margin-top: auto margin-bottom: auto " span style=" line-height: 150% font-family: 宋体 font-size: 12px " 是 /span /p /td /tr /tbody /table p style=" text-align: left " br/ /p p   项目名称:中国科学院大气物理研究所水溶性有机气溶胶在线分析系统采购项目 /p p   项目编号:OITC-G17032390 /p p   项目联系方式: /p p   项目联系人:窦志超 /p p   项目联系电话:010-68725599-8447 /p p   采购单位联系方式: /p p   采购单位:中国科学院大气物理研究所 /p p   地址:北京市朝阳区德胜门外祁家豁子华严里40号 /p p   联系方式:010-82995275 /p p   代理机构联系方式: /p p   代理机构:东方国际招标有限责任公司 /p p   代理机构联系人:窦志超010-68725599-8447 /p p   代理机构地址: 北京市海淀区阜成路67号银都大厦15层(请乘大厅中间的电梯) /p
  • 8109万元 中科天融“大气细颗粒物化学成分在线监测设备研制与应用示范”重大科学仪器专项获批
    日前,国家科学技术部发布了《科技部关于2013年度国家重大科学仪器设备开发专项项目立项的通知》,由中科天融(北京)科技有限公司(以下简称:中科天融)牵头,并由中国环境监测总站作为第一技术支持单位的“大气细颗粒物化学成分在线监测设备研制与应用示范”项目脱颖而出,成功获批。这是中科天融公司首次作为牵头单位获批国家级科学仪器开发和应用示范类项目。项目针对近年来我国雾霾天气频发的现状,围绕《国家环境保护“十二五”规划》中关于复合型大气污染治理的规划,针对细颗粒物污染进行合理有效的控制,对细颗粒物进行源解析,开发出科技创新,服务经济建设和社会发展的科学仪器。项目的成功立项,主要依托国家对人民群众的身体健康和生产生活环境的密切关注、政策支持,以及中科天融公司强大的技术、研发力量,可靠的质量控制程序,良好的企业信誉和雄厚的资金实力。
  • 岛津大气中PM2.5物质成分分析仪器(2)
    近来,雾霾天气频袭中国,在相关大气污染报道中,不断出现PM2.5一词。这是指在悬浮粒子状物质中粒径小于2.5&mu m的微小粒子,容易深入肺部,可对健康造成严重影响。 日本已于2009年9月设定了微小粒子状物质(PM2.5)的环境标准,在2010年3月31日修订的「基于大气污染防止法第22条规定的与大气污染状况持续监控相关的事务处理标准」中,规定按照国家指针实施PM2.5的成分分析。2011年7月29日,日本环境省分布了新的「PM2.5成分分析指针」。 继昨日介绍之后,在此继续介绍使用岛津分析装置分析PM2.5成分的应用实例。 ICP-MS分析无机元素成分例 介绍使用ICP-MS定量城市大气粉尘标准物质(NIST SRM1648)的实例。前处理采用微波分解装置分解样品,制成硝酸溶液后进行测定。下表表示大气粉尘标准物质的定量结果。结果与保证值非常一致。 ICPM-8500的特长 实现高灵敏度、多元素的同时分析 具有ppt水平的高灵敏度,并且实现多元素的同时分析。 采用等离子微炬管,降低了氩气消耗量 采用微炬管,使氩气消耗量减半,并且,可以高灵敏度同时分析从微量到高浓度的样品。 台式装置,维护简便 通过使用自动进样器AS-9和自动稀释装置ADU-1(选配件),可以实现自动分析。 X射线荧光装置(EDX)分析无机元素成分例 EDX-720的特长 简便操作,全自动测定 实现设定工作的自动化,初学者也可完成高精度的测定。 无需前处理,直接测定滤纸 如果使用能量色散型X射线荧光分析装置,则可以无化学前处理地对捕集在滤纸上的PM2.5物质进行元素分析。 可以高灵敏度地分析宽范围的元素 TOC仪(燃烧催化氧化/NDIR检测方式)分析水溶性有机物例 作为WSOC(水溶性有机碳)的主成分二羧酸的代表例,以下表示草酸分析的结果。在配制样品的纯水中含有大约0.02mg/L的TOC杂质,因此,各草酸水溶液的TOC值偏高,但都能够以3%以下的变动系数CV值进行定量。 分析条件 装置:TOC-LCPH 催化剂:高灵敏度催化剂 进样量:500&mu L 测定项目:TOC(经过酸化通气处理的TOC) 工作曲线:0-3mgC/L邻苯二甲酸氢钾水溶液 样品:特级试剂草酸2mgC/L、1mgC/L、0.2mgC/L水溶液 草酸水溶液的TOC测定结果 样品名 TOC值(mgC/L) n=3的CV值 2mgC/L草酸水溶液 2.013 0.95% 1mgC/L草酸水溶液 1.017 1.11% 0.2mgC/L草酸水溶液 0.223 2.06% TOC-L的特长 宽测量范围4&mu g/L~30000mg/L,适用于从超纯净水到高污染水(TOC-LCSH/CPH)的一切物质。 采用680℃燃烧催化氧化方式,高效率地测定所有有机成分。具备检测限为4µ g/L的高灵敏度检测能力,对应广泛领域的样品。 省空间省能源设计 与本公司以往装置相比,电力消耗降低36%,装置幅宽缩短约20%。 丰富的型号与选配件 ・ 备有方便处理测定数据的PC型号和简单操作的单机型号 ・ 安装选配件可以测定从固体样品到气体样品 ・ 安装TN单元可以测定总氮 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 岛津大气中PM2.5物质成分分析仪器(1)
    近来,雾霾天气频袭中国,在相关大气污染报道中,不断出现PM2.5一词。这是指在悬浮粒子状物质中粒径小于2.5&mu m的微小粒子,容易深入肺部,可对健康造成严重影响。 日本已于2009年9月设定了微小粒子状物质(PM2.5)的环境标准,在2010年3月31日修订的「基于大气污染防止法第22条规定的与大气污染状况持续监控相关的事务处理标准」中,规定按照国家指针实施PM2.5的成分分析。2011年7月29日,日本环境省分布了新的「PM2.5成分分析指针」。 在此介绍2010年9月1日日本环境省指示的用于PM2.5成分分析的各分析仪器。并介绍使用岛津分析装置分析PM2.5成分的应用实例。 用于PM2.5成分分析的仪器例 摘自2010年9月1日日本环境省事务联络「关于微小粒子状物质成分分析相关的基础信息」 测定成分 分析仪器 前处理装置等 对应的岛津公司产品 多环芳烃类(PAH) GCMS或HPLC 提取 超声波提取装置 索氏提取装置 浓缩 氮气浓缩装置 旋转蒸发器 Kuderuna-Danisshu浓缩装置 离心分离 离心分离装置 GCMS-QP2010 Ultra Prominence Nexera 左旋葡聚糖 GCMS 提取、浓缩如上 衍生化 恒温槽 GCMS-QP2010 Ultra 水溶性有机碳(WSOC) TOC 超声波提取装置 TOC-L 离子成分备注1) 离子色谱仪 超声波提取装置 HIC-SP/NS 无机元素成分备注2) (X射线荧光法) EDX &mdash EDX-720 无机元素成分备注2) (ICP-MS法) ICP-MS 压力分解装置 加热板 ICPM-8500 备注1)离子成分 硫酸根离子,硝酸根离子,氯离子,钠离子,钾离子,钙离子,镁离子,铵离子 备注2)无机元素成分 钠,铝,钾,钙,钪,钛,钒,铬,锰,铁,钴,镍,铜,锌,砷,硒,铷,钼,锑,铯,钡,镧,铈,钐,铪,钨,钽,钍,铅,等 根据目的元素,也可以选择原子吸收法或ICP-AES法。「出自日本环境省暂定手册(2007年)」 备注3)关于采样   采样器的分粒装置规定使用50%分粒径为2.5&mu m± 0.2&mu m、具有按20%分粒径对80%分粒径之比规定的斜率为1.5以下的性能的分粒装置。  分粒装置例:美国联邦标准法(Federal Reference Method:FRM)所认定的装置 GCMS测定例 分析条件 分析仪器:GCMS-QP2010 Ultra 色谱柱:Rtx-35(长30m 0.32mmID df=0.25&mu m) 进样模式:无分流 气化室温度:300℃ 柱温箱温度:90℃(2分)&rarr (5℃/2分)&rarr 320℃(12分) 载气控制:氦气(线速度恒定 43.7cm/秒) 高压进样:150KPa(1.5分) 接口温度:300℃ 离子源温度:230℃ 测定模式:扫描 质量范围:m/z45-450 事件事件:0.3秒 GCMS-QP2010 Ultra的特长 高灵敏度 高灵敏度离子源提供高传输效率的离子光学系统,并实现离子源盒中温度的均一化。 高速扫描 通过新开发的ASSP&trade 专利技术,具备高速数据采集及处理能力,在扫描速度提高的同时(大于10,000 u/sec)不牺牲灵敏度。 Scan/SIM同时扫描 (FASST) FAAST(Scan/SIM同时扫描)是一项数据采集技术,能够使用户在一次分析中同时获得Scan数据及SIM数据。ASSP&trade 使这项技术的配合使用使得其性能得以提升:在不损失灵敏度的前提下将SIM的驻留时间缩短了5倍,从而使用户监测到更多的SIM通道。 Easy sTop Easy sTop功能使用户无需释放质谱真空便可以进行进样口维护,从而使停机时间最短化。 双柱MS系统(可选) GCMS-QP2010 Ultra能够容许两根窄口径毛细管柱同时与质谱仪连接。这意味着用户无需更换色谱柱即可应对不同应用需求。 生态模式 生态模式使仪器可以在待机模式时节约电量并减少载气消耗。 离子色谱仪分析离子成分例 双流路分析系统的特长 在2010年9月1日日本环境省事务联络的附件1《用于成分分析的分析仪器例》中指示如果使用2台仪器用于阳离子、阴离子分析,则分析效率高。岛津的双流路分析系统高效组合了离子用高灵敏度抑制器法和阳离子用非抑制器法,避免了由流动相置换、色谱柱更换造成的污染。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 新标发布|离子色谱法连续自动监测PM2.5中水溶性离子的技术规范
    2023年12月5日,生态环境部发布《环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范》,标准号HJ 1328—2023。该标准于2024年7月1日正式实施,规定了环境空气颗粒物(PM2.5)中水溶性离子连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断、废物处置等技术要求。本标准适用于采用离子色谱法的环境空气颗粒物(PM2.5)中水溶性离子(Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+)连续自动监测系统。环境空气样品经切割器、采样管进入仪器,通过分离装置(溶蚀器),气体样品被吸收液吸收后进入气体样品收集单元,颗粒物样品经过高温蒸汽发生器,与水蒸气混合、吸湿长大、冷凝后进入颗粒物 样品收集单元。收集后的颗粒物样品经过滤器进入阴、阳离子色谱系统,通过内标或外标定量分析其中的水溶性离子含量。详细技术规范见附件。附件:环境空气污染物(PM2.5)中水溶性离子连续自动检测技术规范.pdf
  • 广东省分析测试协会发布《水溶性有机化合物中氯、溴、碘元素的测定 电感耦合等离子体发射光谱法(征求意见稿)》团体标准征求意见稿
    各有关单位及专家:由广东省分析测试协会组织制订的《水溶性有机化合物中氯、溴、碘元素的测定 电感耦合等离子体发射光谱法》团体标准已完成征求意见稿,根据《广东省分析测试协会团体标准制修订工作程序》,现公开征求意见。欢迎各有关单位及专家提出修改意见,并请于2023年10月15日之前将《征求意见表》(附件3)反馈到下面指定邮箱。 联系人:1.梁敏思,13802833035,liangmsi@mail.sysu.edu.cn2.协会秘书处,020-37656885-227,gdaia@fenxi.com.cn 附件:1.《水溶性有机化合物中氯、溴、碘元素的测定 电感耦合等离子体发射光谱法(征求意见稿)》2.《水溶性有机化合物中氯、溴、碘元素的测定 电感耦合等离子体发射光谱法(征求意见稿)》编制说明3. 征求意见表 广东省分析测试协会2023年9月15日附件1 《水溶性有机化合物中氯、溴、碘元素的测定 电感耦合等离子体发射光谱法标准(征求意见稿)》.pdf附件2 《水溶性有机化合物中氯、溴、碘元素的测定 电感耦合等离子体发射光谱法(征求意见稿)》编制说明.pdf附件3 征求意见表.doc
  • 使用液相色谱法一次测定多种水溶性维生素
    维生素是人体重要的营养物质,但有些维生素在人体内无法合成,或合成量不能满足机体需要,要从外界摄取以满足人体需要。维生素根据溶解度的不同,分为水溶性和脂溶性两类,水溶性维生素主要有维生素C、B1、B2、B3、B5、B6、B11和B12。不同水溶性维生素的结构差异较大,化学性质不稳定,分离检测较为复杂困难。 目前水溶性维生素的测定方法主要有分光光度法、分子荧光法和高效液相色谱法等。分光光度法的样品前处理较复杂,且干扰物多,测定结果偏高。分子荧光法的样品前处理也复杂,定量不精确。高效液相色谱法的样品前处理简单,用量少,可一次分析多种水溶性维生素,是目前最合适的测定方法。实验部分 采用离子对试剂(四丁铵)作为流动相,由于离子对试剂易吸附在色谱柱上不易彻底清除,因此建议用来分析水溶性维生素的色谱柱专用。 图1. 9种水溶性维生素标准品的色谱图(上)和等高线图(下)1. 维生素 B1 (硫胺素) * 2. 维生素 B6 (吡哆素) * 3. 烟酰胺 4. 维生素 B12 (氰钴胺素) 5. 抗坏血酸糖苷 6. 维生素 C (抗坏血酸) 7. 异抗坏血酸 8. 维生素 B2 (核黄素) 9. 菸碱酸 使用二极管阵列检测器(简称:DAD),除了色谱图外,还可获得光谱图,两者结合可排除仅通过色谱保留时间定性造成的假阳性峰,能对食品和其他含有大量杂质的样品进行精确有效的分析。 图2. 维生素B6的标准曲线 9种水溶性维生素的标准曲线(浓度范围0.1 ~ 50 mg/L)均显示了良好的线性, r2 均≥ 0.996。但采用流动相进行稀释时,维生素C、异抗坏血酸和维生素B12 不稳定,为获得良好的线性,需使用新配制的溶液进行测定。 图3. 保健饮料的测定结果 图4. 营养补充剂的测定结果 该方法可同时检测多种水溶性维生素,标准曲线线性良好。借助二极管阵列检测器,可对食品和其他含有大量杂质的样品进行精确有效的分析,排除假阳性性峰的干扰。由于维生素C和异抗坏血酸不稳定,在样品制备过程中或随着时间的推移,二者容易发生分解,因此难以获得良好的线性和重现性。所以,此方法适用于定量分析,在定量分析时,建议对各维生素单独测定。关于日立高效液相色谱仪,请见链接:https://www.instrument.com.cn/netshow/SH102446/Product-C0102-0-0-1.htm 日立高新技术公司是日立集团旗下的一家仪器设备子公司。全球雇员超过10000人,在世界上26个国家及地区共有百余处经营网点。企业发展目标是"成为独步全球的高新技术和解决方案提供商",即兼有掌握先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。其产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料。其中,生命科学领域产品包括电子显微镜、原子力显微镜和分析仪器(色谱、光谱、热分析)等。
  • 产品上新—变压器油自动水溶性酸测定仪
    分析仪器作为专用设备,在电力、石化、制药、科学研究等领域都有着重要的作用,各异的功能要求造成了多样繁杂的分析仪器仪表种类,即使是同样功能的分析仪器,具体到每个行业,又有不同的要求。各类分析仪表仪器之间的原理、设计、制造等有较大区别,每一款分析仪器涉及的专业知识广而深,导致自主研发和市场开发的难度非常大,存在较高的技术壁垒。繁杂多样的下游需求结构和技术壁垒造成了行业细分市场分割特征明显。在细分领域中,常有 1~2 家技术优势、服务较好的企业在市场上具有压倒性优势,但总体企业市场规模仍普遍较小。国内还缺乏综合性横跨多领域具有明显优势地位的仪器仪表供应商。A1180自动水溶性酸测定仪是依照GB/T 7598标准设计研发,实验是在规定条件下,将试样与等体积的蒸馏水混合摇动,取其水抽出液通过比色确定其pH值。适用于变压器油、汽轮机油、抗燃油等石油产品的水溶性酸。仪器特点1、一体化设计,单片机控制。2、仪器自动化程度高。3、液晶显示,中文菜单,操作方便。4、自动完成加热、振荡、静放、油水分离、显色、比色、显示并打印测定结果。技术参数测试范围:pH3.8~7.0测量误差:≤±0.05 pH重复性: ≤0.05 pH适用温度: 5℃~40℃适用湿度:≤85%工作电源:AC220V±10%,50Hz功 率: 500W外形尺寸: 680mm×420mm×345mm
  • 低水溶性化合物TOC分析:清洁验证中棉签回收率的评估
    本研究旨在通过总有机碳(TOC)分析评测具有低水溶性的化合物能否进行回收。在默克索引中,这些化合物的可溶性说明被描述为“基本不溶”或“实际不溶”。我们的任务是在实验中测定这些化合物的溶解度,并调查研究擦拭技术的百分比回收率。鉴于保密协议,不能公开这些化合物的特性。化合物A-F(参见表1)为小分子(300-600 g/mol)。材料12x12cm不锈钢板,具有10x10cm加标区域,使用CIP-100清洗,使用低TOC水漂洗,放置干燥无粉手套容量瓶,按照Sievers® ️步骤914-80015进行清洗棉签(Texwipe Alpha棉签)预清洁的40 mL样品瓶移液管,30 mLHamilton气密注射器,使用CIP-100和低TOC水清洗使用膜电导检测技术的Sievers® ️ TOC分析仪带自动进样器步骤为最大限度地降低有机污染,在整个实验过程中须佩戴无粉手套。各化合物的溶解度通过将化合物加入低TOC水中进行经验测定。对混合物进行摇动、搅拌和超声处理以帮助化合物的溶解。目测检查后,按以下公式计算储备液的碳浓度。百分比(%碳)从化合物的经验式推导得出。如,化合物C20H22N4O10S的%碳是:用TOC分析确定各储备液的碳浓度。对化合物A和B的储备液直接分析,而化合物C到F的储备液进行10倍稀释。进行TOC分析之前,使用磷酸将少量(2 mL)的各储备液酸化到pHTOC结果与计算的碳浓度吻合,各种化合物的溶解度列在下表1中。进行棉签回收研究时,配制了以下溶液:2个样品瓶的试剂水2个样品瓶的背景棉签溶液2个样品瓶的标准添加溶液(共12个)2个样品瓶的棉签回收溶液(共12个)试剂水:30 mL的移液管用于在28个预清洁样品瓶(40 mL)中注入30 mL的低TOC水。流入后,马上盖上各样品瓶,直到以后使用。2个试剂水样品瓶进行标注并放到一边,以备随后的TOC分析。剩余的26个充注好的样品瓶用于制备背景棉签溶液、标准添加溶液和棉签回收溶液。背景棉签溶液:通过切除三个棉签尖端到30 mL低TOC水中制备两个样品瓶的背景棉签溶液。小心避免污染切入水中的棉签柄部分。标准添加溶液:在低TOC水(30 mL)中加入少量储备液(试剂量范围为0.1-1.0 mL)制备标准添加溶液(每种化合物2个样品瓶)。每种化合物所选的试剂量使最终的标准添加溶液浓度约为1 ppm C。棉签回收溶液:制备棉签回收溶液时,在不锈钢板上放置用于制备标准添加溶液的同样试剂量的储备液。溶液在10x10cm钢板表面区域均匀分布,以便干燥(大约1个小时)。然后使用三根由低TOC水预湿润的棉签擦拭钢板的表面。然后将三根棉签的尖端切入低TOC水的样品瓶(30 mL)中。分析前剧烈摇动所有的样品瓶。使用配备自动取样器的Sievers TOC分析仪(采用膜电导检测技术)对所有样品瓶(28个)进行分析。分析条件为:氧化剂流速为0.2 mL/min,酸流速为0.75 mL/min。每个样品瓶重复分析四次。舍弃各样品瓶的第一次测定数值,将后面的三次进行平均。然后将重复样品瓶的结果进行平均,显示于表1中。这些数据用于计算图1所示的百分比回收率。结论虽然化合物A至F在默克索引中描述为在水中“基本不溶”或“实际不溶”,我们通过实验测定其室温下的溶解度,其范围为百万分之几(ppm)。使用擦拭技术和TOC分析从不锈钢板上成功回收了这些化合物。本研究论证了使用TOC分析进行清洁验证应用的可行性。通过TOC分析,诸如A至F通常被认为在水中“不溶”的有机化合物实际上对于回收而言充分可溶。◆ ◆ ◆联系我们,了解更多!
  • 国家重大科学仪器设备开发专项“大气细颗粒物化学成分在线监测设备研制与应用示范”项目启动会在京召开
    2014年3月6日上午,中科天融(北京)科技有限公司牵头的国家重大科学仪器设备开发专项“大气细颗粒物化学成分在线监测设备研制与应用示范”项目启动会在京召开。中国环境监测总站院士魏复盛、中国科学院安徽光机所院士刘文清、中国环境保护部科技标准司副司长王开宇、中国环境监测总站副站长王业耀、中国节能环保集团公司董事长王小康、副总经理余红辉,中节能六合天融环保科技有限公司总经理朱彤等有关领导、专家和项目合作单位成员代表60余人参加本次启动会。  近年来大气污染问题已成为民众关心的焦点,国务院和环保部门针对大气细颗粒物污染防治问题,制定了一系列的政策和计划。“大气细颗粒物化学成分在线监测设备研制与应用示范”项目的启动,正是科技部贯彻落实国务院《国家环境保护“十二五”科技发展规划》的重大举措,是实施《环境空气细颗粒物污染防治技术政策》的切实措施,既是科研项目,也是民生项目, 对切实改善我国空气污染现状、提升民众对大气环境的满意度具有重要的现实意义和深远的社会影响。  该项目的总体目标是针对近年来我国雾霾天气频发的现状,围绕《国家环境保护“十二五”规划》中关于复合型大气污染治理的规划,研制开发具有自主知识产权的大气细颗粒物化学成分在线监测设备,填补国产仪器空白,打破国外技术垄断,同时建立相关分析方法、技术标准和全过程质控体系,整体提升仪器性能与品质,实现产业化,为我国大气污染防治提供技术支撑和数据依据。该项目由中国环境保护部组织,中科天融(北京)科技有限公司牵头,中国环境监测总站为第一技术支持单位;由聚光科技(杭州)股份有限公司、河北先河环保科技股份有限公司、武汉宇虹环保产业发展有限公司、北京大学、中国科学院大气物理研究所合作开发,中国环境监测总站、武汉市环境监测中心进行应用示范。    会前,中国节能环保集团公司董事长王小康到会场与各位专家进行交流,表示我们要借目前国家对环境污染重视程度的加强,及环保部针对雾霾开展治理的契机,大力加强对污染控制技术的开发,为治理环境的共同事业、共同愿望多做贡献。    启动会上,王开宇副司长代表环保部讲话,对重大专项启动的积极意义给予很高评价,并寄予厚望,希望各承担单位加快部署进一步推动科学仪器设备的开发和应用,服务经济和社会发展;她强调各任务承担单位和任务负责人应统一思想,做好落实,严格按项目资金管理办法执行预算,尽快启动各任务的研究任务,按时、保质完成课题的预定目标。  中国节能环保集团公司副总经理余红辉向与会领导和专家介绍了中国节能在节能环保领域所做出的成绩和优势,鼓励课题组成员勇于技术创新,在项目合作中以宏远目标为重,充分利用大数据力量,兑现项目要求和各方期望。  与会专家认真听取项目负责人郭炜所作的项目情况介绍;同时,各仪器开发单位项目负责人逐一介绍了各自承担的任务,专家组高度评价此项目,并提出许多建议。魏复盛院士特别强调研发过程中要继承先进技术,真正解决当前雾霾问题,解决全社会关注的环境问题,以改善空气质量,造福人类。同时,魏院士希望成立各单位之间沟通的平台,通过相互借鉴学习,使服务水平和产品质量明显提高。刘文清院士认为课题的承担单位都是行业内技术力量较强的企业,要把设备开发转化为企业主流产品,通过制定标准,做好质量方面的规划和支持,创造经济效益和社会效益。  启动会后,中科天融(北京)科技有限公司作为项目牵头单位,将尽快按照各级领导的建议、落实专家意见,进一步细化技术方案,积极组织,协同各任务承担单位,按时、保质完成任务书的各项预定指标,向国家和人民交一份满意的答卷!
  • Picarro | 中国农村地区大气水溶性有机物的气体-气溶胶相划分:NH3对SOA形成的增强作用
    水溶性有机物(WSOC)以气体和颗粒物的形式大量存在于大气中,在大气水反应和云凝结核(CCN)形成中发挥着重要的作用,对全球和区域气候变化有着重要影响。此外,某些WSOC是有毒的,它会影响人类健康。WSOC可从源中直接排放或从气态和颗粒有机质(OM)的光氧化中二次产生。目前,只进行了有限的测量来理解WSOC划分机制。结果表明,气体-颗粒物相划分取决于很多因素,例如气象参数、气体物质组成和凝结相性质。将气相WSOC(WSOCg)分配到气溶胶相(WSOCp)是大气二次有机气溶胶的主要形成路径。然而,WSOC划分过程的基本机制尚不清楚。基于此,在本文中,来自华东师范大学、上海市环境科学研究院和上海市环境监测中心的研究团队于2019年冬季在长江三角洲河口湿地生态系统野外科学观测站(31°44′N,121°13′E)同时测量了气体和颗粒物,包括NH3(Picarro G2103),有机酸(草酸、甲酸和乙酸)、无机离子(阳离子:Na+,NH4+,K+,Ca2+和Mg2+;阴离子:SO42&minus ,NO3&minus 和Cl&minus )和WSOC。为了全面理解WSOCp形成机制,作者还测量了300-550 nm WSOCp的光学吸收,同时测量了PM2.5并调查了气体-气溶胶相划分的影响因素以全面理解中国大气,尤其是严重冬季雾霾区的有机气溶胶行为。【结果】研究区主要污染物的时间变化。ALWC和pH对WSOCg划分的影响。NH3对中国不同区域WSOCp分布的影响。【结论】在干旱期(相对湿度(RH)80%)为气溶胶液态水(ALW),表明该区域两种不同的二次有机气溶胶(SOA)形成过程。在干旱期,温度是WSOCg吸收的主要驱动力。而在湿润期,控制WSOCg吸收的因素为ALW含量和pH,两者都会通过NH4NO3形成和有机酸中和过程被NH3显著提高。此外,作者发现,在全国范围内,WSOCp与NH4NO3的相对丰度呈较强的线性相关,其空间分布与NH3一致,进一步表明NH3在WSOCp形成中的关键作用。由于WSOCp是SOA的主要组成部分,NH3通过增加ALW的形成和WSOCg的分配来促进SOA的产生,这表明控制NH3的排放对于缓解中国雾霾污染特别是SOA是必要的。
  • 我国首个水溶性肥料行业标准即将出台
    据 “2010中国水溶性肥料高峰论坛”组委会发布的消息,我国第一个水溶性肥料行业标准即将出台。   随着我国农业的快速发展,我国水性肥料发展迅速。据国家化肥质量监督检验中心(北京)统计数据显示:近5年以来,中国登记的水溶肥料总计3433个,其中大量元素水溶肥产品有433个,中量元素水溶肥有50个,微量元素水溶肥有1195个,含氨基酸类水溶肥有1010个,含腐殖酸类水溶肥有745个。   由于我国缺少水溶性肥料的国家标准,现有水溶性肥料产品除了杂质过多、溶解率低之外,不少产品的物理性状也很难令人满意。为此,由全国肥料和土壤调理剂标准化技术委员会牵头,成都市新都化工股份有限公司参与起草的我国第一个水溶性肥料行业标准立项启动。据有关部门透露,成都市新都化工股份有限公司作为一家国内主要的复合肥生产企业,资源充沛,发展迅速,并于年底即将上市。该公司长期致力于水溶性肥料的研发,拥有强大的技术力量和品牌优势,因此作为唯一的企业起草单位参与此项标准的制定。   此次制定的水溶性肥料行业标准覆盖面广,不仅涵盖了大量元素水溶性肥料,还包括含氨基酸水溶性肥料、含腐殖酸水溶性肥料、微量元素水溶肥料等。标准还将严格限制水不溶物的比例,要求水不溶物0.5%,严格控制缩二脲,推广使用硝态氮,并对水溶性肥料中的有毒、有害物质和重金属成份指数做出了严格限制。这一标准的出台,将进一步强化水溶性肥料产品质量要求,规范水溶性肥料行业发展,促进市场良性竞争,为中国安全、高效农业的发展提供了有力保障,并将极大的促进中国水肥一体化技术的快速发展。
  • 蒸汽吸附分析仪在气溶胶吸湿性研究中的应用
    大气气溶胶是指悬浮在大气中的固体和液体颗粒共同组成的多相体系。人们所处的大气环境实际就是由不同相态的颗粒物均匀分散在空气中形成的一个气溶胶体系。常见的大气气溶胶包括直接排放至大气的沙尘、道路扬尘和黑炭等一次颗粒物,以及通过化学反应形成的二次颗粒物,例如二氧化硫和氮氧化物通过大气氧化形成的硫酸盐和硝酸盐等。由于大气气溶胶的环境、气候及健康效应,在过去几十年里,对它的理化性质的研究正日益受到包括化学家、环境学家等科学家等的重视。吸湿性是气溶胶最重要的物理化学性质之一(Tang et al., 2019a)。例如对于研究大气化学来说,吸湿性会影响实际环境条件下大气颗粒物的含水量,从而会影响颗粒物的大气化学反应活性;从大气能见度和直接辐射强迫的角度来看,在实际大气环境中,颗粒物吸水会导致其粒径增大,从而影响颗粒物的光学性质,继而影响气溶胶的消光系数、对能见度的影响以及对直接辐射强迫的影响;另外,气溶胶的吸湿性也与气溶胶颗粒物的云凝结核活性和冰核活性密切相关。1. 已有吸湿性测量技术的局限性现有研究中常用的吸湿性测量技术主要有吸湿性分级差分迁移率分析仪(H-TDMA)、电动力天平、显微镜以及红外光谱等(Tang et al., 2019a)。目前最常用的吸湿性测量技术为H-TDMA,该仪器是通过测定不同相对湿度下气溶胶的电迁移率直径来研究其吸湿性。使用该仪器对气溶胶的吸湿性进行表征时,必须假设气溶胶为球形,但某些颗粒物的形貌并不规则,例如花粉、烟炱以及矿质颗粒物等。另外,H-TDMA的测量精度较为有限,仅可测定颗粒物大于1%的直径变化。电动力天平是通过测量单个颗粒物的质量变化来研究其吸湿性,虽然它对颗粒物的形貌没有要求,但该仪器的灵敏度同样比较有限,一般只能测量大于1%的质量变化。此外,显微镜也常用于测量颗粒物的吸湿性,它可以通过测量颗粒物的形貌变化来直接观察颗粒物粒径的大小变化从而研究其吸湿性。然而该技术同样基于球形颗粒物的假设,且灵敏度有限。另外,红外光谱是一个非常灵敏的吸湿性测量方法,该方法通过测量颗粒物中水的红外光谱来研究吸湿性,但把颗粒物中水的红外吸收光谱定量转换为颗粒物的含水量时存在一定的限制。2. 蒸汽吸附分析仪虽然目前用于颗粒物吸湿性的测量手段较为丰富,但准确测定非球形的或者吸湿性较弱的颗粒物的吸湿性仍然是一个很大的挑战。本课题组自主开发和建立了使用蒸汽吸附分析仪测量大气颗粒物吸湿性的新方法,相关研究成果由Atmospheric Measurement Techniques发表(Gu et al., 2017a)。该方法通过测定不同相对湿度下颗粒物的质量变化来研究其吸湿性,其原理如图1所示。图1. 蒸汽吸附分析仪的装置示意图(Gu et al., 2017a)该仪器对颗粒物的形貌没有要求,且具有卓越的灵敏度,能够准确测定小于千分之一的质量变化;在温湿度控制方面性能突出,所能研究的相对湿度最高可达98%。由于上述卓越性能,这项测量技术非常适用于研究形貌不规则或吸湿性较弱的大气颗粒物(比如矿质颗粒物、烟炱和生物气溶胶等),目前已被成功用于研究花粉颗粒物(Chen et al., 2019 Tang et al., 2019b)、矿质颗粒物(Guo et al., 2019 Tang et al., 2019c Chen et al., 2020)、高氯酸盐(Gu et al., 2017b Jia et al., 2018)等的吸湿性,大幅度提高了我们对上述几类物质吸湿性的科学认识水平。下文将介绍蒸汽吸附分析仪的几个典型应用。2.1 花粉颗粒物花粉颗粒物是最重要的生物气溶胶之一,其年排放量为 47-84 Tg,对大气环境、人体健康和气候变化具有重要影响,同时也在植物繁衍和和生态系统演化中起着关键作用。吸湿性是花粉颗粒物最重要的理化性质之一,其会影响花粉颗粒物的质量与形貌,从而影响花粉在大气环境和呼吸道中的迁移和传输。由于花粉颗粒物的形貌不规则,且吸湿性较弱,因此先前已有的吸湿性测量技术较难准确测定花粉颗粒物的吸湿性,而我们的方法对颗粒物的形貌无要求且非常灵敏,所以非常适合用于研究花粉颗粒物的吸湿性。图2. 花粉颗粒物的产生、传输及其环境、气候及生态效应在我们已经发表的两项工作中(Chen et al., 2019 Tang et al., 2019b),我们研究了25和37摄氏度下共17种国内外代表性花粉(12种风媒、5种虫媒)的吸湿性。我们发现这些花粉颗粒具有相对较强的吸湿性。例如,当相对湿度从0%升高至90%时,花粉颗粒物的质量增加了30%-50%,当相对湿度达到95%时,花粉颗粒物的质量基本接近于干燥条件下的2倍,如图3所示。另外就目前已有的数据(包括本研究和前人的研究)来看,风媒花粉和虫媒花粉的吸湿性似乎没有系统差异,而中国常见花粉与欧洲/北美常见花粉的吸湿性也非常相似。此外,两个温度下(25和37摄氏度)花粉颗粒物吸湿性的差异比较小。本研究对于深入认识花粉颗粒物的环境行为具有重要意义,尤其是37摄氏度下的实验结果,为模拟花粉颗粒物在呼吸系统内的传输和沉降以及评估其对人体健康的影响提供了关键基础数据。图3. (a)松树花粉与(b)梨树花粉分别在25和37摄氏度下的吸湿性2.2 矿质颗粒物由干旱和半干旱地区地表排放进入大气的矿质气溶胶是一种非常常见的大气颗粒物,其年排放量居于全球第二位,大气含量则居于全球第一位。图4展示了一次典型的沙尘暴事件。矿质气溶胶作为对流层中最重要的气溶胶之一,显著影响全球大气污染、气候变化以及生物地球化学循环。吸湿性在很大程度上决定了矿质气溶胶对大气化学和气候的影响。我们使用蒸汽吸附分析仪测量了21种矿质气溶胶的质量随相对湿度(0-90%)的变化,从而定量阐明矿质气溶胶的吸湿性(Chen et al., 2020)。这21种矿质气溶胶包括14种常见矿物(如石英、长石、石灰石和伊利石等)以及7种来自全球不同地区的实际沙尘。图4. 一次典型的沙尘暴事件我们发现矿质气溶胶的吸湿性普遍较弱,如图5所示。除了蒙脱石以外,当相对湿度从0%增加至90%时,矿质气溶胶的质量增加了不到10%,表明绝大部分的矿质气溶胶的吸湿性较低。另外,我们发现矿质气溶胶的吸湿性与其比表面积密切相关,这表明矿质气溶胶的吸湿性可能是由水在颗粒物表面的吸附所决定的。例如对于蒙脱石,其比表面积较大,吸湿性也远远强于其他矿质气溶胶。上述研究结果可显著提高矿质气溶胶吸湿性的科学认识,从而有助于更好地阐明矿质气溶胶在大气化学和气候变化中的作用。图5. 矿物样品的吸湿性与(a)BET比表面积的关系以及(b)粒径的关系2.3 盐尘暴颗粒物最近几年的外场观测表明,矿质颗粒物,尤其是从干盐湖和盐碱地表面排放进入大气的矿质颗粒物,除了吸湿性很弱的矿物之外,往往还含有一定量的水溶性盐(如氯化钠和硫酸钠等)。这类矿质颗粒物常被俗称为盐尘暴颗粒物。然而,目前关于盐尘暴大气颗粒物吸湿性的科学认识还基本上处于空白阶段。在近几年发表的一项研究工作中(Tang et al., 2019c),我们在东起黄河三角洲,西至新疆罗布泊的干旱和半干旱盐碱地采集了13个地表土壤样品,采样点的地理分布如图6所示。我们使用X射线衍射仪测定了这些样品的矿物组分,使用离子色谱仪分析了它们的水溶性离子成分,并使用蒸汽吸附分析仪研究了这些样品的吸湿性。图6. 土壤样品采样点的地理分布研究发现,不同样品的吸湿性存在着很大的差异,如图7所示。对于某些盐尘暴样品,其吸湿性较弱,当相对湿度升高至90%时,其质量仅增加了10%左右,然而对于某些盐尘暴样品,当相对湿度升高至90%时,其质量已增加至干燥状态下的5倍,这基本接近于氯化钠或硫酸钠的吸湿性。随后我们又探讨了颗粒物的吸湿性与其水溶性离子含量的关系。我们发现当水溶性离子的含量越高,颗粒物的吸湿性越强。此外,我们还将颗粒物水溶性离子含量的数据输入至气溶胶热力学模型(ISORROPIA-II)中来计算颗粒物的吸湿性,结果表明该热力学模型并不能很好的模拟实际盐尘暴样品的吸湿性。以上研究结果将改变我们对于矿质颗粒物吸湿性的科学认识,进而帮助我们更好地了解矿质颗粒物在大气化学和气候系统中的作用。图7. (a)新疆自治区吐鲁番市艾丁湖表层盐土与(b)内蒙古杭锦后旗盐碱土样品的吸湿性2.4 蒸汽吸附分析仪与其他表征仪器的联用由于蒸汽吸附分析仪仅可得到颗粒物随相对湿度的质量变化,因此我们通常还会将蒸汽吸附分析仪与其他表征仪器进行联用,从而深入认识颗粒物的吸湿性。例如,在花粉颗粒物吸湿性的研究工作中(Tang et al., 2019b),除蒸汽吸附分析仪以外,我们还使用了透射傅立叶变换红外光谱仪测定样品的红外吸收,以获得花粉颗粒物的化学成分的信息。测量结果表明,花粉颗粒物的吸湿性在很大程度上决定于颗粒物中羟基的相对含量。这一研究结果揭示了花粉颗粒物的化学成分与吸湿性的关系,进一步增强了我们对花粉颗粒物的环境、健康和气候效应的认识。在代表性钙盐镁盐颗粒物吸湿性的研究工作中,我们使用蒸汽吸附分析仪与H-TDMA系统分析了八种钙盐镁盐的吸湿特性,直接得到了颗粒物在不同相对湿度(0-90%)下的液态水含量及粒径变化数据,并讨论了不同初始相态对颗粒物吸湿性的影响以及环境意义。以Ca(NO3)2为例,其在蒸汽吸附分析仪实验中观察到明显的潮解行为,表明初始相态下该颗粒物为结晶态;而在H-TDMA实验中,Ca(NO3)2气溶胶颗粒呈现连续吸湿行为,表明其初始相态为无定形态。但是,颗粒物潮解之后两种手段得到的吸湿性参数均与气溶胶热力学模型模拟值吻合,呈现出良好的一致性。结果表明,两种手段的联用能够互为补充地系统研究颗粒物在不同粒径、不同初始相态下的吸湿特性,并为气溶胶热力学模型的验证提供有效的基础物化数据。2.5 火星上的液态水我们开发的大气颗粒物吸湿性的新方法还可以用来帮助我们认识火星中的液态水。2018年,来自意大利宇航局的团队通过雷达在火星南极附近冰层的地下发现了一个液态水湖。一般来说,由于火星环境条件极度寒冷和干燥,纯净液态水很难在火星环境中稳定存在。而土壤中存在的高氯酸盐可以降低水的冰点,并可在亚饱和条件下通过吸收水蒸气形成水溶液,这可以解释为什么火星这种极度干旱的条件下可能存在液态水。目前一些研究认为,火星土壤中所含的高氯酸盐能够在相对湿度远低于100%时通过吸收大气中的水蒸气发生潮解从而形成稳定的溶液,但关于不同温度和相对湿度下高氯酸盐液态水含量的实验数据仍十分匮乏。图8. 火星液态水湖(来源于网络)我们使用蒸汽吸附分析仪测定了几种常见的高氯酸盐(无水高氯酸镁、六水合高氯酸镁、无水高氯酸钠、一水合高氯酸钠等)在不同温度下的相变和吸湿性 (Gu et al., 2017b Jia et al., 2018)。我们发现,高氯酸盐可在较低的相对湿度下吸水形成稳定的水溶液。如图9所示,对于高氯酸钠盐,在相对湿度低于20%时,其主要以无水高氯酸钠颗粒物稳定存在;当相对湿度升高至30%时,则主要以结晶态的一水合高氯酸钠稳定存在;当相对湿度进一步升高时,结晶态的一水合高氯酸钠将吸收大量水形成稳定的高氯酸钠溶液。另外,我们还发现高氯酸盐的潮解点会随着温度的升高而降低。例如一水合高氯酸钠的潮解点从5摄氏度时的∼51.5%降至30摄氏度时的∼43.5%。这项研究工作大大加深了我们对不同条件下高氯酸盐在土壤中的吸湿性的认识,并在一定程度上揭示了为什么火星上可能存在液态水背后的物理化学机制。图9 (a)高氯酸镁盐与(b)高氯酸纳盐随温度和相对湿度变化的相态图参考文献【1】Chen, L. X. D., Chen, Y. Z., Chen, L. L., Gu, W. J., Peng, C., Luo, S. X., Song, W., Wang, Z., and Tang, M. J.: Hygroscopic properties of eleven pollen species in China, ACS Earth Space Chem., 3, 2678-2683, 2019.【2】Chen, L. X. D., Peng, C., Gu, W. J., Fu, H. J., Jian, X., Zhang, H. H., Zhang, G. H., Zhu, J. X., Wang, X. M., and Tang, M. J.: On mineral dust aerosol hygroscopicity, Atmos. Chem. Phys., 20, 13611-13626, 2020.【3】Gu, W. J., Li, Y. J., Zhu, J. X., Jia, X. H., Lin, Q. H., Zhang, G. H., Ding, X., Song, W., Bi, X. H., Wang, X. M., and Tang, M. J.: Investigation of water adsorption and hygroscopicity of atmospherically relevant particles using a commercial vapor sorption analyzer, Atmos. Meas. Tech., 10, 3821-3832, 2017a.【4】Gu, W. J., Li, Y. J., Tang, M. J., Jia, X. H., Ding, X., Bi, X. H., and Wang, X. M.: Water uptake and hygroscopicity of perchlorates and implications for the existence of liquid water in some hyperarid environments, RSC Adv., 7, 46866-46873, 2017b.【5】Guo, L. Y., Gu, W. J., Peng, C., Wang, W. G., Li, Y. J., Zong, T. M., Tang, Y. J., Wu, Z. J., Lin, Q. H., Ge, M. F., Zhang, G. H., Hu, M., Bi, X. H., Wang, X. M., and Tang, M. J.: A comprehensive study of hygroscopic properties of calcium- and magnesium-containing salts: implication for hygroscopicity of mineral dust and sea salt aerosols, Atmos. Chem. Phys., 19, 2115-2133, 2019.【6】Jia, X. H., Gu, W. J., Li, Y. J., Cheng, P., Tang, Y. J., Guo, L. Y., Wang, X. M., and Tang, M. J.: Phase transitions and hygroscopic growth of Mg(ClO4)2, NaClO4, and NaClO4∙H2O: implications for the stability of aqueous water in hyperarid environments on Mars and on Earth, ACS Earth Space Chem., 2, 159-167, 2018.【7】Tang, M. J., Chan, C. K., Li, Y. J., Su, H., Ma, Q. X., Wu, Z. J., Zhang, G. H., Wang, Z., Ge, M. F., Hu, M., He, H., and Wang, X. M.: A review of experimental techniques for aerosol hygroscopicity studies, Atmos. Chem. Phys., 19, 12631-12686, 2019a.【8】Tang, M. J., Gu, W. J., Ma, Q. X., Li, Y. J., Zhong, C., Li, S., Yin, X., Huang, R. J., He, H., and Wang, X. M.: Water adsorption and hygroscopic growth of six anemophilous pollen species: the effect of temperature, Atmos. Chem. Phys., 19, 2247-2258, 2019b.【9】Tang, M. J., Zhang, H. H., Gu, W. J., Gao, J., Jian, X., Shi, G. L., Zhu, B. Q., Xie, L. H., Guo, L. Y., Gao, X. Y., Wang, Z., Zhang, G. H., and Wang, X. M.: Hygroscopic Properties of Saline Mineral Dust From Different Regions in China: Geographical Variations, Compositional Dependence, and Atmospheric Implications, J. Geophys. Res.-Atmos, 124, 10844-10857, 2019c.作者简介:唐明金,中国科学院广州地球化学研究所研究员,博士生导师。本科和硕士毕业于北京大学,博士毕业于马普化学研究所,并先后在英国剑桥大学和美国爱荷华大学从事博士后研究。主要研究方向为气溶胶化学及地球化学,已在Chemical Reviews、Atmospheric Chemistry and Physics和Journal of Geophysical Research-Atmospheres等国际知名期刊上发表SCI论文60余篇,并自2017年起担任国际SCI期刊Atmospheric Measurement Techniques副主编。曾获第18届侯德封矿物岩石地球化学青年科学家奖、第8届中国颗粒学会气溶胶青年科学家奖。
  • 【技术指导】自动水溶性酸测定仪的维护与注意事项
    自动水溶性酸测定仪维护、注意事项A1180技术指导产品介绍产品名称:自动水溶性酸测定仪产品型号:A1180概 述:自动水溶性酸测定仪是在规定条件下,将试样与等体积的蒸馏水混合摇动,取其水抽出液通过比色确定其pH值。适用于变压器油、汽轮机油、抗燃油等石油产品的水溶性酸的测定。可广泛应用于电力、石油、化工、商检及科研等部门。适应标准:GB/T 7598维护与保养1、更换指示剂指示剂溴甲酚绿和溴甲酚紫用尽后取出原瓶,重新更换,再原样装回原位。2、更换蠕动泵管打开仪器上盖,向上拔动蠕动泵的拔杆,即可松动甭管的压板,取下磨损的旧泵管,退出旧泵管上的管箍,套在一根新的泵管上,再把新管原样装回泵体上,用拔杆把泵管压板压回原位。3、更换打印纸按下左图的按钮,将打印纸按照右图装入打印机,并关闭前盖即可。注意事项1、蠕动泵仪器使用完毕后,请将蠕动泵的压臂松开,防止蠕动泵软管被压臂长期挤压,而造成损伤。2、试验用水测定试样之前,将去离子(或蒸馏水)水煮沸,赶尽其中的二氧化碳。
  • 聚焦中子活化分析技术,助力工业物料成分在线检测——访朱良漪奖获得者兰州大学黑大千
    2022年1月,中国仪器仪表学会分析仪器分会十届三次理事会及“朱良漪分析仪器创新奖”颁奖在京举行。经过10位专家的会评,2021年“朱良漪分析仪器创新奖”最终评选出“创新成果奖”3项,“青年创新奖”4名。仪器信息网同中国仪器仪表学会分析仪器分会对“朱良漪创新奖”获奖人员进行了联合采访,本期的采访对象是“青年创新奖”获得者兰州大学核科学与技术学院研究员黑大千。兰州大学核科学与技术学院 黑大千研究员主要成果:研制的中子活化分析设备的性能指标经多方测试能够满足实际应用中的需求,在研发的过程中形成了中子活化分析设备的发明专利和分析方法的软件著作权,并在煤炭和水泥等相关行业得到了实际应用和示范验证,取得了一定的社会经济效益。仪器信息网:首先恭喜您获得“2021年朱良漪分析仪器创新奖”,请向广大网友介绍一下您自己,以及您所在的单位?黑大千:各位网友好!感谢仪器信息网的采访。我是兰州大学核科学与技术学院的黑大千。目前我在主要开展核技术应用及核分析技术领域系统性研究工作,涵盖基础研究、方法学研究、应用基础研究、技术拓展等核分析技术的全链条式科研创新工作。具体研究内容包括:瞬发伽马射线中子活化分析(PGNAA)技术、核素识别与定量分析技术、中子/伽马新型探测技术、X射线分析技术、核电子学技术等。仪器信息网:请介绍您进入分析仪器领域的机缘?您在分析仪器的研制和产业化方面开展了哪些工作,取得了怎样的创新成果?黑大千:我能有幸进入分析仪器领域还要感谢国家科技部在十二五期间组织的国家重大科学仪器设备开发专项,2013年,在我的导师陈达院士、贾文宝教授的带领下,我们团队牵头获批了项目“工业物料成分实时在线检测仪器的开发和应用”,在项目执行期间,我和项目团队中的年轻人得到了充分的锻炼,从仪器硬件的优化设计,到仪器分析方法的创新突破,再到标准样品的设计优化,直至最后仪器总装、示范工程建立,我们经历了完整的分析仪器开发流程,并与分析仪器的研究与开发深深结缘。在研究工作方面,我的主要研究工作可以大致分为两个方面:1. “穷理以致其知” --- 核分析技术基础研究:从核分析技术的基本物理过程出发,探索测量信号与被测量信息间的物理机制模型建立、影响因素探索等。并在此基础上,形成全新分析方法、构建相应数据库、发展仪器设计方法并形成信息分析、系统设计软件与程序。2. “反躬以践其实” --- 仪器开发、应用研究及技术拓展:基于基础研究成果,开发了多种基于PGNAA技术的在线成分分析系统及危化品检测系统,完成了多个基于PGNAA技术的工业物料成分分析系统的示范工程建设。在基础研究取得突破性进展的基础上,进一步拓宽相关研究领域与应用。以需求为导向拓展在技术发展中的关键核心技术、并行技术、应用中的辐射防护问题等研究。包括:瞬发伽马射线中子活化成像PGAI技术研究、中子探测与能谱测量研究、X射线通讯与关键部件开发、XRT技术开发与应用、X荧光分析技术的开发与应用、中子辐射防护技术,辐射防护材料的开发等。 主持包括国家重点研发计划项目、国家重大科学仪器设备开发专项任务、国家自然科学基金、国防技术基础项目子课题、国家质量基础条件平台项目子课题等国家级项目在内的各类科研项目20余项,以第一或通讯作者身份发表SCI收录论文40余篇,以第一完成人身份获得授权发明专利10余项。仪器信息网:您所研制的仪器成果解决了哪些实际问题,仪器的主要用户有哪些,成果的市场前景如何?黑大千:在工业物料领域,如煤炭、水泥、矿石成分分析应用中,可利用在线分析技术,实现全过程的实时成分测量、分析,对对生产企业质量信息化管理、多角度质量数据分析、动态掌握质量状况等方面具有明显的促进作用,可有效提高企业产品质量控制能力。此外,在节能降耗、提升生产效能等方面具有良好的前景。工业物料成分分析系统在违禁品检测系统开发方面,面向不同使用场景,基于建立的信噪比优化评价方法,设计开发了一系列违禁品检测系统,包括:NIQAS(Nuclide Identification and Quantitative Analysis System)危化品识别检测系统、EPDS(Explosion-Proof Detection integrated System)防爆检测一体化系统、行李箱高爆炸药检测系统、掩埋爆炸物检测系统等4类危险品检测系统。这一系列的检测系统将有望满足战争遗留弹药武器的识别与指导分类;机场、高铁站等公共场所的疑似爆炸物处置过程中的检测;公众区域内行李箱中隐式爆炸物检测等一系列公共安全需求。上述成果均具有明确的市场需求以及较好的市场前景,目前部分产品已经启动产业化进程。危险品核素识别与定量分析系统仪器信息网:对于此次获奖您有何感受?您认为“朱良漪分析仪器创新奖”将给青年人带来怎样的影响?黑大千:非常感谢中国仪器仪表学会分析仪器分会以及各位评审专家对我和团队工作的认可。分析仪器的开发与研制具有鲜明的技术特点,这个行业是一个高度交叉的领域,既需要具备扎实的理论基础,也需要极强的动手能力。分析仪器开发工作者是具备“科学家”的头脑以及“工程师”的动手能力的“发明家”,需要直接分析需求、而面对需求、解决需求,厘清其间错综复杂的关系,抽丝剥茧的找出关键问题和解决方案。我们作为行业的后辈,需要向朱良漪先生等“大家”学习的地方还有很多。世界局势错综复杂,在百年未有之大变局中,自主创新是解决人民日益增长的美好生活需要和不平衡不充分的发展之间的矛盾的重要手段。“朱良漪分析仪器创新奖”为从事分析仪器研究工作的青年人提供了前进的方向和动力,将有利于激发青年人创新热情和报国之志。仪器信息网:后续您还将开展哪些创新工作?黑大千:在2021年12月,我有幸牵头获批了国家科技部重点研发计划青年科学家项目。该项目将以战略矿产资源“铀”的开采与富集过程的元素成分分析作为应用研究对象,面向地浸采铀工艺中各环节的溶液、树脂中的元素成分在线分析需求,开发基于瞬发伽马射线中子活化分析(PGNAA)技术的多元素在线分析的新方法及新设备,满足浸出、萃取、吸附等工艺环节中对溶液、树脂塔中各类元素含量实时在线检测的现实需求,为实现工艺过程规律分析、元素富集状态、过程动态调控等提供实时数据支持,并为信息化、智能化矿山的建立与资源开采提供全新在线分析技术与仪器设备。因此,未来一段时间的工作中,我和我所在的团队将聚焦将PGNAA技术的应用领域进行拓展,面向国家重大战略需求和经济主战场开发更多更有价值的分析仪器。关于“朱良漪分析仪器创新奖”朱良漪,原机械部国家仪表总局副局长、中国仪器仪表学会分析仪器分会名誉理事长,是仪器仪表和自动化控制领域最早的开拓者,影响中国仪器仪表和自动化控制行业发展的奠基人。为纪念朱良漪先生矢志不渝推动我国分析仪器事业发展的精神,以及激发企业及广大科技工作者积极投身于分析仪器的创新工作中,由中国仪器仪表学会设置、中国仪器仪表学会分析仪器分会承办执行“朱良漪分析仪器创新奖”,共分为“创新成果奖”和“青年创新奖”两个奖项。“朱良漪分析仪器创新奖”的设立不只是对朱老的怀念与敬意,更是对分析仪器创新精神的坚守与传承。自2017年举办至今,“朱良漪分析仪器创新奖”已成功颁发五届,先后有15项分析仪器创新成果、18位青年创新科学家获奖。
  • 【技术指导】石油产品水溶性酸及碱测定仪的使用方法及安装
    石油产品水溶性酸及碱测定仪使用方法、安装A1181技术指导产品介绍产品名称:石油产品水溶性酸及碱测定仪产品型号:A1181概 述:本仪器用蒸馏水或乙醇水溶液抽提试样中的水溶性酸及水溶性碱,然后,分别用甲基橙或酚酞指示剂检查抽出液颜色的变化情况,或用酸度计测定抽提物的pH值,以判断有无水溶性酸或水溶性碱的存在。适用于按GB/T 259所规定的方法测定液体石油产品、添加剂、润滑脂、石蜡及含蜡组分的水溶性酸及水溶性碱。使用方法1、当试验液体石油产品时,将50 ml试样和50 ml蒸馏水放入烧瓶,加热试样至50~60℃,倒入分液漏斗。然后轻轻摇动分液漏斗5min,不许乳化,放出澄清后下部的水层,经滤纸过滤后,滤入锥形烧瓶中。2、当试验添加剂产品时,向分液漏斗注入10 ml试样和40 ml溶剂油,再加入50 ml加热至50~60℃的蒸馏水。将分液漏斗摇动5min,澄清后分出下部的水层,经有滤纸的漏斗,滤入锥形烧瓶中。3、若石油产品用水混合后产生乳化时,则用50~60℃、1:1的95%乙醇溶液代替蒸馏水处理。4、当试验润滑脂、石蜡、地蜡及含蜡组分产品时,取50克预先熔化好的试样,将其置入瓷蒸发皿中,然后注入50 ml蒸馏水,并煮沸至完全熔化,冷却至室温后,将下部水层经有滤纸的漏斗,滤入锥形烧瓶中。5、用指示剂测定水溶性酸或水溶性碱:向两个试管中分别放入1~2ml抽提物,在第一支试管中加入2滴甲基橙溶液,并将它与装有相同体积蒸馏水和甲基橙溶液的第三支试管相比较。如果抽提物呈玫瑰色,则表示所试石油产品里有水溶性酸存在。在第二支盛有抽提物的试管中加入3滴酚酞溶液,如果溶液呈玫瑰色或红色时,则表示所试石油产品里有水溶性碱存在。当抽提物用甲基橙溶液或酚酞溶液为指示剂,没有呈现玫瑰色或红色时,则认为没有水溶性酸或水溶性碱。6、用酸度计测定水溶性酸或水溶性碱:向烧杯中注入30~50ml抽提物,电极浸入深度为10~12mm,按酸度计使用要求测定pH值,根据下表确定试样抽提物水溶液或乙醇水溶液中有无水溶性酸或水溶性碱。石油产品水(或乙醇水溶液)抽提物特性pH值1酸性2弱酸性4.5~5.03序号5.0~9.04弱碱性9.0~10.05碱性10.0用酸度计测定时同一操作者两结果之差不应大于0.05pH,取重复测定两个pH值的算术平均值作为试验结果。警告:仪器若出现故障应及时切断电源,请专业技术人员检修并排除故障后方可继续使用,防止发生意外!安装1、取出可调电热器,置于平整、耐高温、阻燃的工作台或平板上,按照图示和以下步骤安装仪器。2、将支架杆和固定台按图安装好,拧紧螺钉固定。3、将冷凝管夹持器在支架杆的合适位置,用管夹夹住分液漏斗。4、在分液漏斗下部装入烧瓶。5、试调加热器。将加热器调整旋钮逆时针调到底,接通电源,顺时针转动旋柄,逐渐加大电热器功率到适合程度(如果调小功率后,仍感到电热板温度过度,可在烧瓶与电热板间垫薄石棉网),然后关闭电源待用。
  • 上线水溶性肽HPLC创新检测方案,态创生物拥抱化妆品监管新时代
    如果说质量是产品生命,那检验检测就是产品生命的保障。尤其在美妆领域,新法规对化妆品安全性和功效性评价提出了更为严格和详细的技术要求,加强科学研究、提高检测技术能力成为重中之重。实现多物质量产的合成生物新锐态创生物,已构建全面系统的检测技术体系,贯穿从原料研发到产品应用的全链条,可为美肤产品定制专属“体检套餐”,提供规范化、高质量的产品供给与解决方案。依托专利技术的不断创新,态创生物近期首先上线水溶性肽HPLC创新检测方案,为美业伙伴赋能增效。以检测技术为抓手,研究与应用中心锻造美肤产品“质量名片”开发化妆品是一个复杂的过程,任何关键环节出现问题,如原料和配方安全性或功效性不佳,推倒重来就在所难免,因此需要持续不断的实验和论证。对此,态创生物研究与应用中心针对性打造了集基础研究(Foundation)、配方研究与应用(Formulation)、合规质控(Fulfillment)于一体的3F综合研究体系。这是合成生物业内少有的赋能产品开发全流程的管理体系,具备规范化、系统化、标准化、制度化多重优势。对标“ISO9000”族系列标准,同时实现了理化实验、微生物实验、分析实验、细胞实验、生化实验等多个实验方向的全覆盖。图说:态创生物研究人员在做细胞实验其中,态创生物专门布局了全面系统的检测技术体系,包括含量、纯度、安全性、有效性、透皮性、重金属、卫生等检测分析维度。可用以支撑产品上市前的“千锤百炼”,从研发端即严格把控产品质量,为产品进行质控背书,让产品带着“质量名片”来到消费者手中。合成生物创新检测技术,水溶性肽HPLC检测效率提升约5倍在化妆品的全部检测方法中,HPLC(高效液相色谱法)检测通常占据相当大的比例,可用来检测化妆品中的活性成分、防腐剂、色素、香料、塑化剂、抗氧化剂等。但现有HPLC分析方法一般不适用于三个以上多种水溶性肽的分析,多为一个肽对应一个方法。这会导致需不断改变分析条件,如更换流动相、更改分析程序、改变检测波长等,管理和空间投入庞大。此外,现有方法为改善色谱峰形常加入酸类,如如醋酸、三氟乙酸、磷酸等,可能导致产品酸性且有明显酸味,影响肽类稳定性,同时需要强化型色谱柱耐酸。为此,态创的科研团队经过不断探索,开发出了一套创新的水溶性肽HPLC检测方法,并已取得相关发明专利证书。其创新原理在于,溶于流动相(mobile phase)中的各组分经过固定相时,由于与固定相(station phase)发生作用(吸附、分配、排阻、亲和)的大小、强弱不同,滞留时间不同,从而先后从固定相中流出,大幅提高对水溶性肽的分析效率和普适性。图说:态创生物研发人员在做HPLC检测分析实验证明,该技术可将传统检测时间的15分钟缩短至3-4分钟,检测效率提升约5倍。经过溶剂调试、过柱创新,还增强了HPLC检测方法的通用性,目前可覆盖寡肽-1、蓝铜胜肽、二肽-2、四肽-9、乙酰基四肽-9、六肽-9、寡肽-3、乙酰基六肽-8等多种水溶性肽。基于生物化学、分析化学、自动化等技术路线,依托小分子肽的丰富研究经验,态创生物在行业内率先构建了小分子肽HPLC检测体系,具备高效率、普适性强、绿色环保等优势。结合Tidetron Tao自动化研发平台,月度可满足4-5k个检测需求。除水溶性肽外,态创生物还有多项专利涵盖棕榈酰基肽、类蛇毒肽、熊果苷等物质的HPLC检测,专利壁垒高筑。以原料研发及应用创新,率先构建纯净美肤服务全链,开启高标准、高质量发展的美业新格局。
  • 中国研发PM2.5成分监测设备以期源头“擒霾”
    中国正在进行的国产PM2.5成分监测设备研发项目取得突破性进展,已完成原理样机制造,有望三年内量产投入市场。   这项国家级 的&ldquo 大气细颗粒物化学成分在线监测设备研制与应用示范&rdquo 项目由中国节能环保集团旗下六合天融环保科技有限公司牵头承担,除了要填补国产PM2.5成分检测 监测设备的空白外,也要制定出中国首个PM2.5成分分析和监测方法标准,以从硬件和软件两个方面确保能精准地从源头治霾。   据了解,该项目2013年被纳入科技部国家重大科学仪器设备开发专项,于2013年10月正式启动,目前已顺利完成四年计划的&ldquo 第一步走&rdquo ,即研制出原理样机。此后三年内,将继续完成制作工程样机、产业化研究、投入产业化等目标。   &ldquo 原理样机的研制成功表明我们目前已经攻克了基础技术难关。&rdquo 中节能六合天融环保科技有限公司总经理朱彤说,&ldquo 我们提出向大气污染&lsquo 宣战&rsquo ,就要先明确&lsquo 与谁战&rsquo ,监测结果将为政府决策提供科学参考。&rdquo   这台原理样机形状大小如同一台家用微波炉,主要包括热光炉、空气采样系统和温度控制系统三个部分。    项目总工程师郭炜说,PM2.5中含有四种主要有害物质,即有机碳/元素碳化合物,重金属,硫酸盐/硝酸盐,水溶性离子成分。目前研制出的这种有机碳/ 元素碳成分分析仪原理样机是首台&ldquo 中国制造&rdquo 的PM2.5成分监测设备,通过分析大气中PM2.5成分物质含量,追溯有毒物质来源,从而确保有的放矢地从 源头上治理雾霾。目前公司已经制造出两台样机,一台在北京高校科研院所,另一台在广东的大气监测中心进行测试。   &ldquo 我们将测试的数据与国外设备和手工统计方法所测试的数据做比对。实践证明,测试样机的精准度和稳定性都让人满意。&rdquo 项目研发人员农勇光说。   目前,中国PM2.5成分监测设备依赖进口,而美国产品占据了大部分国际市场。&ldquo 我们预计国产设备的价格是国外产品的一半。&rdquo 郭炜说。   该项目的另一大亮点是在研发过程中,还将形成关于PM2.5成分分析和监测方法的国家标准。   参与该项目科研团队是名副其实的&ldquo 国家队&rdquo ,汇集了包括中国工程院院士魏复盛教授在内从事大气环境治理与监测、计量与监测、仪器仪表制造等多个行业的顶级权威专家和技术人员300余人。   由于PM2.5中含有四种主要有害物质。因此,整套设备由四台机器构成。除有机碳/元素碳成分监测仪外,另外针对其他三种有害物质的监测设备分别由湖北、浙江和河北的三家公司研发。   &ldquo 与进口设备相比,国产仪器已达到相同的技术水平,并在操作简易性上更具优势。&rdquo 朱彤说,&ldquo 从原料到技术,整套工艺均由国人自主开发,造价更便宜,更重要的是,各国的雾霾中有害物质的成分不尽相同,国产仪器是因地制宜的产品,在测量时更符合我国国情。&rdquo
  • CIOAE2021论在线分析仪器在“碳中和”背景下的创新
    仪器信息网讯 “第十四届中国在线分析仪器应用及发展国际论坛暨展览会(简称:CIOAE 2021)”于2021年12月9日在南京国际展览中心盛大开幕!本届论坛的主题是“高效 优质 低耗 安全 环保”。大会报告今年的一大亮点是多位专家从不同角度探讨了碳中和对在线分析仪器市场的机遇和挑战。会议现场中国仪器仪表学会分析仪器分会曹以刚副理事长主持大会,中国仪器仪表学会分析仪器分会刘长宽常务副理事长、中国仪器仪表行业协会分析仪器分会曾伟秘书长、黄步余主任委员分别致辞。CIOAE2021大会报告围绕碳中和、环境监测、环境治理、石油化工等热门领域中在线分析仪器的发展进行了探讨。碳中和中国科学院合肥物质科学研究院刘建国研究员分析了光谱技术在大气温室气体监测中的应用。围绕碳中和国家可持续发展战略以及全球盘点需要,中国需要突破温室气体浓度监测、排放反演及减排评估等方面的关键技术方法,目前国际上将排放源的监测、地面观测站、航飞的监测以及碳卫星的监测形成不同尺度和不同层面的天地一体化的温室气体核算网络,并将浓度监测结果与数值模型结合,反推全球不同区域的碳源/碳汇。目前,安光所在高分五号上搭载了大气主要温室气体监测仪、在合肥建立了超高分辨总碳柱观测站,是中国唯一TCCON候选站、研发了大气本底温室气体光腔衰荡仪器、开放光路QCL-TDLAS痕量气体监测、海水-大气界面CO2通量的实时测量装备等。为促进碳监测技术发展,安光所建设了陆地碳汇国产监测设备研发校验平台,目前是产出核心装备、高端仪器和技术标准,并促进技术转移转化。西克麦哈克田元元产品高级经理介绍了超声流量计在碳中和发展中的应用。根据欧洲经验,碳交易的价格会随时间上升,而价格足够高的时候,碳排放采用核算法就无法满足需求,需要采用高精度全范围排放计量,而目前CEMS采用皮托管测流速,对流量计算不准确,而超声流量计可以对声道流速整体取样,对流量计量更准确。新能源的大量使用必定需要能源区域间传输,而电解水+现有天然气网络掺氢可以实现能源高效远距离传输是一种很好的解决方案,而超声流量计可以实现天然气计量以及掺氢计量。在二氧化碳捕集、利用和封存中,必定需要CO2的计量,而超声流量计可以实现纯CO2流量计量。江苏舒茨测控Andreas Hester介绍了碳中和将影响的重点工业以及工业气体传感器在这些工业中的应用。环境监测中国环境监测总站张颖研究员介绍了恶臭气体在线监测技术在环境领域的应用。目前,恶臭主要是仪器测定法(用气相色谱仪或分光光度计等测量成分及浓度并换算成恶臭强度)和官能测定法(三点比较式臭袋法)。为促进恶臭的在线监测,中国环境监测总站正在制定恶臭在线连续监测技术规范,其中规定必测项目为氨、三甲胺、硫化氢、甲硫醚、二甲二硫醚、二硫化碳、苯乙烯和臭气浓度,其他特征污染物可为参考项目。赛默飞刘泽介绍了工业园区VOCs在线监测。Sentinel Pro环境过程质谱仪,可实现VOCs多点动态监测,用于厂区内VOCs泄漏溯源。MiTAP户外VOCs监测系统采用微色谱模块和传感器阵列模块,高度集成化,仪器尺寸仅为120*46*93cm,用于园区厂界特征VOCs监测。VOCs污染监测车,凭借多种VOCs监测手段相结合,进行工业园区VOCs污染排查和监测服务。中国环境监测总站齐文启研究员介绍了我国环境监测现状和发展。我国目前大气监测点位1.4万个,地表水点位3.3万个,土壤8万个,噪声19.5万个,海洋、地下水、辐射等环境质量监测网正在建设中。未来大气监测将加强臭氧和PM2.5协调控制监测,并对PM2.5、9种水溶性无机离子、24种无机元素、有机碳、总碳、多环芳烃等进行手工监测;地表水监测将开展水生生物监测以及水生生物环境DNA监测试点;海洋监测将布设1359个水质,552个沉积物点位,正在进行自动监测点位选址工作中。上海市环境监测中心王向明总工程师介绍了长三角生态绿色一体化发展示范区生态环境监测统一行动展望,为跨行政区进行统一环境监测进行探索和示范。北京市排水集团翟家骥高级工程师介绍了现场应急监测分析方案的确定及监测分析的质量控制。国科瀚海李幼安介绍了烟道贯通式氨逃逸精确监测。环境治理哈希雷斌售前应用经理讲述了哈希两款在工业污水处理中应用的新产品。污泥毒性监测预警方案主要针对工业园区污水成分复杂,容易对污泥造成损害的问题,通过监测活性污泥系统的呼吸速率,间接评估污泥活性,从而判断污泥是否受到毒性物质抑制。BIOTECTOR TOC主要解决的是工业污水含盐量高、悬浮物多、色度高等特性造成的COD测量困难,此款仪器采用了哈希的二级高级氧化技术,加上更粗的管道、耐腐蚀的材质,从而实现对难测量工业污水的TOC测量。一念传感王曜总经理介绍了TDLAS技术在垃圾焚烧发电过程中的应用,包括垃圾储存坑气体安全监测(硫化氢、甲烷、氨气、水)、炉排炉/二燃室燃烧优化(一氧化碳、氧气、甲烷、水)、吸收塔酸性气体检测(氯化氢、氟化氢、二氧化硫)。一念传感的TDLAS技术采用智能光谱分离算法,可实现两种或以上气体同时监测。石油化工恒力石化佟旭介绍了恒力(大连长兴岛)产业园以及所用的在线分析仪。恒力2000万吨/年炼化项目共安装在线分析仪表746套,其中气体分析仪表占57%(主要是氧气等)、液体分析仪表占43%(主要是电导率、pH值等)、环保仪表19台套,共建设分析小屋35间。恒力150万吨/年乙烯项目安装在线仪表591台套,其中气体分析仪表占57%(主要是色谱仪和红外分析仪等)、液体分析仪表占43%(主要是电导率、pH值等)、环保仪表11台套,共建设分析小屋29间,园区内另设4套环境大气监测站。化工仪表的主要用途包括监控工艺流程、监控关键设备、控制、连锁和环境监测。中国石化工程建设公司孙磊副总工程师(黄步余主任委员代)介绍了石油化工在线分析仪发展与智能工厂。石油化工行业正朝着“大型化、炼化一体化、基地化、全产业链”方向发展,从石化企业逐渐向能源企业转型,逐步打造智慧工程,建设智能工厂,从而提高企业竞争力。因此,未来在线分析仪在石油化工行业的应用汇越来越多。潽洛因思王帅帅技术服务经理介绍了COSA9610热值仪在石化行业的应用。除此之外,西门子沈毅产品经理介绍了西门子新升级产品GA700,通过模块化配置、现代通讯方式、即插式测量、所有模块使用公共操作接口、预见性维修等方式,大大提高了仪表的使用和维护水平,可搭载西门子U7、O7、C7等模块。旭海光电陈亮董事长介绍了简波气室在安全和环保方面的应用。优倍电气王林研发总监介绍了功能安全型仪表在分析仪器领域中的应用。重庆科技学院电气工程学院院长唐德东教授介绍了六氟化氢绝缘设备带电检测研究现状与进展。此次论坛还得到了ABB、Sievers、凯隆、雪迪龙、布鲁克、大特气体、普洛斯因、国科瀚海、哈希、春来、舒茨测控、聚光科技、凯爱、迈蒂康、霍普斯、三鸣智、优倍电气、恩伊欧、赛默飞、唯锐、康宁、华天通力、西克麦哈克、西门子、旭海光电、一念传感等120多家厂商的大力支持。
  • 8部门关注水泥中水溶性六价铬安全风险
    2月21日,质检总局召开水泥中水溶性六价铬风险会商会,就如何有效处置水泥中水溶性六价铬质量安全风险,与工业和信息化部、人力资源社会保障部、环境保护部、卫生计生委、工商总局、安全监管总局、食品药品监管总局等部门进行了会商。这也是2009年产品质量安全风险监控工作开展以来,质检总局首次召开的工业产品质量安全风险会商会。质检总局副局长魏传忠出席会议并讲话。   魏传忠在讲话中指出,水泥中水溶性六价铬问题事关重大,希望各部门高度重视,统一认识,统一思想,统一行动,合力解决潜在的质量安全风险,共同促进提高水泥产品质量安全水平。对于质检部门来说,他强调,一是要结合环境保护、水泥产业发展等方面情况,加快制定水泥中水溶性六价铬限量标准并尽快实施 二是要以适当方式向水泥生产企业通报相关风险信息,督促生产企业查找原因,改进生产技术和工艺,落实质量安全主体责任。   据悉,在今年1月发布的《关于加强产品质量安全风险监控工作的指导意见》中,质检总局提出,要以消费品为重点,以产品质量中影响人体健康和人身财产安全等因素为内容,建立以风险信息采集为基础、风险监测为手段、风险评估为支撑、风险控制为目标的产品质量安全风险监控工作体系,形成以预防为主、风险管理为核心的产品质量安全监管新机制。本次多部门参与的风险会商会,就属于风险处置机制中的重要工作之一。
  • 内蒙古石油和化学工业协会发布《水煤浆添加剂 水溶性硫酸盐含量的快速测定 离子色谱法》团体标准
    各相关单位:根据国家标准化管理委员会、民政部《团体标准管理规定》(国标委〔2019〕1号)的文件要求,按照《内蒙古石油和化学工业协会团体标准管理办法(试行)》的有关规定,由内蒙古大学牵头编制的《水煤浆添加剂 水溶性硫酸盐含量的快速测定 离子色谱法》(T/IMPCA 0009-2023)《团体标准已通过专家审定委员会审定,现予批准发布,并于 2024年1月1日起实施。 特此公告 内蒙古石油和化学工业协会2023年12月20日关于发布《水煤浆添加剂 水溶性硫酸盐含量的快速测定离子色谱法》团体标准的公告.pdf
  • 地表水中可溶性阳离子知多少?离子色谱IC-16显身手
    导读地表水是人类生活用水的重要来源之一,也是各国水资源的主要组成部分。近年来,随着工业化进程加快,过度取水和工、农业废水的排放,导致地表水受到不同程度的污染。水中可溶性阳离子(K+、NH4+、Ca2+、Mg2+等)在一定程度上反映水质,并与人民健康息息相关。为了保护自然环境,保障人体健康,亟需对地表水中可溶性阳离子进行定量分析。相对于传统方法(化学法和原子吸收法等),离子色谱法(简称IC法)无论在方法检出限、分析速度、测定范围等方面都表现出明显的优势,已成为水质中可溶性阳离子测定的重要手段。今天,我们带来离子色谱检测方案,一起来看看吧。 水中可溶性阳离子超标的危害水质中可溶性阳离子浓度会影响水体硬度,它不仅会干扰基础的新陈代谢还会诱发疾病。比如高钾、钠离子浓度过高,将会使体液失去平衡,对于肾功能不好的人有一定危害。高钙摄入能影响铁、锌、镁、磷的生物利用率,并引发肾结石、奶碱综合症等疾病;过量镁摄入,可能发生心脏完全传导阻滞或心搏停止等。 IC法测定水中可溶性阳离子相关法规随着环保监管的日趋严格,水质中可溶性阳离子的检测日益得到重视。目前我国采用离子色谱法分析水质阳离子的常见标准见下表。其中,《HJ 812-2016 水质 可溶性阳离子的测定 离子色谱法》涉及最常见的6种可溶性阳离子(Li+、Na+、K+、NH4+、Ca2+、Mg2+)。 可溶性阳离子测定,岛津IC-16显身手岛津Essentia IC-16离子色谱仪配置阳离子抑制器,可快速高效对地表水中6种可溶性阳离子进行测定,轻松应对《HJ 812-2016 水质 可溶性阳离子的测定 离子色谱法》中阳离子检测标准的要求。 l 分析条件 l 对照品色谱图按上述分析条件进行测定,对照品色谱图如图1所示。图1. 对照品溶液色谱图(1 µg/mL) l 校准曲线将对照品溶液按照上述分析条件进行测定,使用外标法定量。校准曲线见图2,线性方程、相关系数见表1。 表1. 6种水溶性阳离子校准曲线(1/C)图2. 6种水溶性阳离子校准曲线 l 实际样品取供试品溶液进样5 μL进行测定,以外标法计算供试品含量,色谱图见图3,定量结果如表2所示。图3. 样品色谱图 表2. 供试品溶液测试结果注:N.D. 表示未检出。 结语岛津Essentia IC-16离子色谱仪性能稳定,灵敏度高,配置阳离子膜抑制器CS-1000可轻松应对《HJ 812-2016水质 可溶性阳离子的测定 离子色谱法》检测标准的要求,快速、便捷的实现地表水中6种水溶性阳离子的测定。地表水安全监测刻不容缓,岛津为您的健康安全保驾护航。 本文内容非商业广告,仅供专业人士参考。
  • 低本底、自动化 | FAAS 8000ICS在线离子色谱分析系统
    在半导体行业芯片的生产过程中,环境的洁净程度直接关乎产品的良品率。空气中的分子污染物(AMC)是半导体生产工艺中最重要的化学污染之一,其中酸性物质(MA)、碱性物质(MB)是AMC污染物的重要组成部分,直接影响产品质量。● ●●洁净室AMC中酸碱性污染物的监测主要是通过离子色谱分析仪,结合人工采样、超纯水吸收法等前处理过程。此监测分析过程繁琐低效,并可能引入人工污染的风险,导致监测数据结果偏差。FAAS 8000ICS在线离子色谱分析系统 应用于半导体厂区气态分子污染物(AMC)中酸性物质(MA)、碱性物质(MB)污染物的在线监测系统。系统采用撞击式气体吸收技术结合离子色谱分析方法,实现了多点采样、气体自动吸收富集、在线质量控制等全自动在线监测功能,解决了洁净室AMC监测过程中人员投入大、数据监测频率低、数据反馈不及时等问题。性能特点自控程度高FAAS 8000ICS 实现了自动远距离采样、自动富集吸收、 自动质量控制、自动分析、数据自动上传全流程自动化。避免人工误差引入,数据准确可靠。检测能力强大体积进样浓缩,大幅提高系统检测能力,检出限可达亚ppt级,缩短系统运行周期。监测范围广单套系统最多可配置32个点位的样品采集;系统通过真空泵远距离采样,可覆盖300m范围内样品的在线监测。系统本底低系统管路及阀组采用洁净的聚四氟乙烯材料设计,满足SEMI F57中相关析出杂质的低本底控制要求。吸收效率高在线双吸收模块设计,提高样品吸收效率,缩短系统运行周期。应用领域FAAS 8000ICS在线离子色谱分析系统主要应用于洁净室环境空气中水溶性酸碱性污染物的在线监测,可扩展至大气中离子污染物的检测。应用案例采用FAAS 8000ICS在线监测洁净室中的NH4+、SO42-、NO3-、NO2-、Cl-、F- 等六种离子浓度10天内变化情况。实验结果与离线手动检测结果一致,符合半导体洁净室检测要求。
  • 2023离子色谱标准解读下:从行标看在线IC应用领域
    仪器信息网联合中国仪器仪表学会分析仪器分会离子色谱专家组于2024年3月12-13日召开“第五届离子色谱技术进展及应用”主题网络研讨会,共同探讨离子色谱的最新技术进展及热点应用等大家关心的话题(点击查看会议议程及报名方式)。离子色谱仪是高效液相色谱的一种,作为测定阴离子、阳离子及部分极性有机物种类和含量的一种液相色谱方法,已被广泛应用在环境、化工、能源、生物、医药、食品、化妆品等领域;同时,与MS、AFS的联用技术等也丰富了离子色谱的应用领域,开发了一系列具有实用性的分析方法。近些年来,离子色谱方法标准也在持续完善中。据不完全统计,离子色谱近5年发布国家标准19项,行业标准35项。行标主要涉及环保、冶金、矿业/地质、石油化工、农业、公共安全、食品、医药、玩具/消费品等领域。2023年发布的离子色谱检测行业标准有多项涉及在线离子色谱检测,且涵盖了环保、煤化工等行业。在线离子色谱品类可能存在新的行业增长点,可加速扩展环境、煤化工等领域。更多离子色谱标准解读见:《2023离子色谱标准解读上:从国标看IC新的市场机会》1、 仪器品类相比前几年发布的离子色谱检测行业标准,2023年发布的标准涉及到在线离子色谱(点击进入专场)品类。比如,2023年12月5日,生态环境部发布的《环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范》;2023年5月5日,海关总署发布《SN/T 5576-2023 煤中氟和氯的测定在线燃烧-离子色谱法》。在线离子色谱逐渐应用到更多的行业。随着在线离子色谱标准的陆续发布,这一行业可能会迎来新的发展机遇。这些标准的制定和实施将有助于规范市场,提高产品质量,推动技术创新,从而促进整个行业的繁荣发展。对于在线离子色谱的生产和销售企业来说,这些标准的发布将为其提供更加明确的发展方向和更广阔的市场空间,可能将为其带来新的业绩增长点。2、 环保行业2023年12月5日,生态环境部发布《环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范》,标准号HJ 1328—2023。该标准于2024年7月1日正式实施,规定了环境空气颗粒物(PM2.5)中水溶性离子连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断、废物处置等技术要求。该标准所监测的水溶性离子包括Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+和Ca2+。在线监测技术一种基于现场的采样分析技术,可以提供高时间分辨率的监测数据,在组分变化非常迅速的污染过程,在线监测能充分发挥其优势,捕捉到PM2.5快速上升时组分的变化,可以为环境保护政策和标准的制定提供重要的基础依据。与采用实验室手工分析方法的现行标准相比,该标准具有自动化程度高、干扰因素较少等优点,可用于指导我国颗粒物组分自动监测工作的开展,推动环境空气细颗粒物浓度持续下降。3、 煤化工行业2023年5月5日,海关总署发布《SN/T 5576-2023 煤中氟和氯的测定在线燃烧-离子色谱法》,本标准规定了离子色谱法在线吸收测定吸收液中氟离子和氯离子的详细方法。煤是国民生产和生活必不可缺的能源和化工原料,煤的质量不仅与环境污染相关,对煤化工等以煤为原材料的行业和发电厂等用煤大户也至关重要。国家市场监督管理总局发布的标准 GB/T 17608-2022《煤炭产品品种和等级划分》中,煤中氟和氯的含量都是划分煤炭等级的重要指标。传统的分析方法每次仅能测定其中一种元素,还不能实现自动化,大大影响分析效率。燃烧炉-离子色谱联用系统是燃烧裂解技术和离子色谱技术的结合,一次分析即可测定不同类型的卤素,不仅克服了传统离线燃烧技术效率低下的缺点,还避免了人为操作可能带来的误差,分析结果更加准确和稳定。附表:近5年发布的离子色谱国标和行标(部分)序号行业标准名称发布日期1石油化工GB/T 35212.4-2023天然气处理厂气体及溶液分析与脱硫、脱碳及硫磺回收分析评价方法 第4部分:用离子色谱法测定醇胺脱硫溶液中钠、镁、钙离子组成2023-05-232GB/T 41946-2022 橡胶 全硫含量的测定 离子色谱法2022-12-303GB/T 40395-2021 工业用甲醇中铵离子的测定 离子色谱法2021-08-204GB/T 40111-2021石油产品中氟、氯和硫含量的测定 燃烧-离子色谱法2021-05-215GB/T 40062-2021 变性燃料乙醇和燃料乙醇中总无机氯的测定方法 离子色谱法2021-04-306GB/T 39305-2020再生水水质 氟、氯、亚硝酸根、硝酸根、硫酸根的测定 离子色谱法2020-11-197GB/T 37907-2019 再生水水质 硫化物和氰化物的测定 离子色谱法2019-08-308HG/T 6116-2022 废弃化学品中硫、氟、氯含量测定 氧弹燃烧 离子色谱法2022-09-309SN/T 5307-2021 石油产品 氟、氯和硫的测定 直接燃烧-离子色谱法(石油)2021-06-1810GB/T 41068-2021纳米技术 石墨烯粉体中水溶性阴离子含量的测定 离子色谱法2021-12-3111GB/T 41067-2021纳米技术 石墨烯粉体中硫、氟、氯、溴含量的测定 燃烧离子色谱法2021-12-3112冶金GB/T 3884.12-2023铜精矿化学分析方法 第12部分:氟和氯含量的测定 离子色谱法和电位滴定法2023-08-0613GB/T 42276-2022氮化硅粉体中氟离子和氯离子含量的测定 离子色谱法2022-12-3014GB/T 39285-2020 钯化合物分析方法 氯含量的测定 离子色谱法2020-11-1915GB/T 38216.2-2019钢渣 氟和氯含量的测定 离子色谱法2019-10-1816GB/T 37385-2019硅中氯离子含量的测定 离子色谱法2019-03-2517YS/T 1593.4-2023 粗碳酸锂化学分析方法 第4部分:阴离子含量的测定 离子色谱法2023-04-2118YS/T 1569.4-2022 镍锰酸锂化学分析方法第 4 部分:硫酸根含量的测定 离子色谱法2022-09-3019YS/T 1497-2021 铂化合物分析方法 杂质阴离子含量测定 离子色谱法2021-12-0220YS/T 1496-2021 钯化合物分析方法 杂质阴离子含量测定 离子色谱法2021-12-0221YS/T 1472.6-2021 富锂锰基正极材料化学分析方法 第 6 部分:硫酸根含量的测定 离子色谱法2021-12-0222YS/T 445.16-2020 银精矿化学分析方法 第16部分:氟和氯含量的测定 离子色谱法2020-12-0923YS/T 1380-2020 铑化合物化学分析方法 氯离子、硝酸根离子含量的测定 离子色谱法2020-12-0924环保/水工业HJ 1328—2023《环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范》2023-12-0525HJ 1288-2023 水质丙烯酸的测定离子色谱法2023-02-0926HJ 1271-2022 环境空气颗粒物中甲酸、乙酸和乙二酸的测定离子色谱法2022-12-1227HJ 688-2019 固定污染源废气 氟化氢的测定 离子色谱法2019-12-3128HJ 1076-2019 环境空气 氨、甲胺、二甲胺和三甲胺的测定 离子色谱法2019-12-3129HJ 1041-2019 固定污染源废气 三甲胺的测定 抑制型离子色谱法2019-10-2430HJ 1040-2019 固定污染源废气 溴化氢的测定 离子色谱法2019-10-2431HJ 1050-2019水质 氯酸盐、亚氯酸盐、溴酸盐、二氯乙酸和三氯乙酸的测定 离子色谱法2019-10-2432GB/T 5750.5-2023生活饮用水标准检验方法第5部分 无机非金属指标(氟化物、硫酸盐、氯化物、硝酸盐、高氯酸盐)第6部分 金属和类金属(锂、钠、钾、镁、钙)第8部分 有机物指标(丙烯酸)第9部分 农药指标(草甘膦)第10部分 消毒副产物指标(亚氯酸盐、氯酸盐、溴酸盐、一氯乙酸、二氯乙酸、三氯乙酸、一溴乙酸、二溴乙酸)2023-03-1733矿业/地质SN/T 5576-2023 煤中氟和氯的测定在线燃烧-离子色谱法2023-05-0534SN/T 5305-2021 铅精矿中氟和氯含量的测定 离子色谱法2021-06-1835SN/T 5254-2020 煤中氟和氯的测定 高温水解-离子色谱法2020-08-2736DZ/T 0064.28-2021 地下水质分析方法 第28部分:钾、钠、锂和铵量的测定 离子色谱法2021-02-2237DZ/T 0064.51-2021 地下水质分析方法第51部分:氯化物、氟化物、溴化物、硝酸盐和硫酸盐的测定离子色谱法2021-02-2238玩具/消费品GB/T 41525-2022玩具材料中可迁移六价铬的测定 离子色谱法2022-07-1139QB/T 5529-2020 口腔清洁护理用品 水溶性焦磷酸盐和三聚磷酸盐的检测方法 离子色谱法2020-12-0940JY/T 0575-2020 离子色谱分析方法通则2020-09-2941GB/T 40895-2021化妆品中禁用物质丁卡因及其盐类的测定 离子色谱法2021-11-2642农业NY/T 3943-2021 水果中葡萄糖、果糖、蔗糖和山梨醇的测定 离子色谱法2021-11-0943NY/T 3902-2021 水果、蔬菜及其制品中阿拉伯糖、半乳糖、葡萄糖、果糖、麦芽糖和蔗糖的测定 离子色谱法2021-05-0744NY/T 3513-2019 生乳中硫氰酸根的测定 离子色谱法2019-12-2745食品YC/T 377-2019 卷烟 主流烟气中氨的测定 浸渍处理剑桥滤片捕集-离子色谱法2019-12-2646SN/T 5120-2019 进出口食用动物、饲料中亚硝酸盐测定 比色法和离子色谱法(食品)2019-09-0347SN/T 5120-2019 进出口食用动物、饲料中亚硝酸盐测定 比色法和离子色谱法(食品)2019-09-0348公共安全GA/T 1918-2021 法庭科学 亚硝酸根离子检验 化学和离子色谱法2021-10-1449GA/T 1946-2021 法庭科学 盐酸、硫酸和硝酸检验 化学和离子色谱法2021-10-1450GA/T 1628-2019| 行业标准| 法庭科学 生物检材中草甘膦检验 离子色谱-质谱法2019-10-1451电子/电气GB/T 37861-2019电子电气产品中卤素含量的测定 离子色谱法2021-05-2152GB/T 37861-2019电子电气产品中卤素含量的测定 离子色谱法2019-08-3053DL/T 2280-2021 燃煤电厂烟气中三氧化硫含量的测定 异丙醇溶液吸收 离子色谱法2021-04-2654卫生医药YY/T 1675-2019 血清电解质(钾、钠、钙、镁)参考测量程序(离子色谱法)2019-10-23仪器信息网联合中国仪器仪表学会分析仪器分会离子色谱专家组于2024年3月12-13日召开“第五届离子色谱技术进展及应用”主题网络研讨会,共同探讨离子色谱的最新技术进展及热点应用等大家关心的话题。在环境领域,离子色谱被广泛应用于大气、水质、土壤等监测方面,具有稳定性好、重现性好、精密度高等优势。会议特别举办了“离子色谱在环境领域中的应用”专场。届时,甘肃省环境监测中心教授级高级工程师张宁将分享《大气干湿沉降物中氮磷的离子色谱测定》,哈尔滨工业大学(深圳)副教授张冠将分享《电催化处理垃圾渗滤液及其含氮含氯副产物离子色谱分析》,四川大学建筑与环境学院研究员黄荣夫将分享《离子色谱-质谱联用技术在环境污染物分析中的应用》,桂林电子科技大学教授张敏将分享《离子色谱微型化研究进展》,敬请期待!!!点击可查看全部报告专家及内容(点击图片也可进入会议详情页面)。
  • 山东质量检验协会批准发布《水泥中水溶性铬(VI)含量的快速筛查方法》等9项团体标准
    依据《山东质量检验协会团体标准管理办法》相关规定,经研究,山东质量检验协会批准发布《水泥中水溶性铬(VI)含量的快速筛查方法》(T/SDAQI 092—2023)等9项团体标准(见附件)。特此公告。 附件:《水泥中水溶性铬(VI)含量的快速筛查方法》等9项SDAQI团体标准信息一览表 序号标准编号标准名称实施日期起草单位1 T/SDAQI 092—2023 水泥中水溶性铬(VI)含量的快速筛查方法发布之日起实施山东省产品质量检验研究院、山东山水水泥集团有限公司、中国联合水泥集团有限公司、山东道乐建材科技有限公司、淄博鲁中水泥有限公司、泉头集团枣庄金桥旋窑水泥有限公司、章丘华明水泥有限公司。2 T/SDAQI 093—2023 复肥中氯离子含量的快速筛查方法发布之日起实施山东省产品质量检验研究院、潍坊市安丘生态环境监控中心、临沂市产品质量监督检验所、山东省农业技术推广中心、济南市产品质量检验院、济宁市质量计量检验检测研究院、山东盟康智能科技有限公司、济南航晨生物科技有限公司、山东盟睿智能科技有限公司、齐河县农业农村局、史丹利农业集团股份有限公司。3 T/SDAQI 094—2023 热轧带肋钢筋快速筛查方法发布之日起实施山东省产品质量检验研究院、潍坊市产品质量检验所、山东钢铁股份有限公司、石横特钢集团有限公司、山东钢铁集团永锋临港有限公司、山东广富集团有限公司、日照钢铁控股集团有限公司、山东省锦冠冶金科技有限公司。4 T/SDAQI 095—2023 儿童三轮车现场检验规程发布之日起实施山东省产品质量检验研究院、山东省标准化研究院、齐鲁工业大学、中科国晟(北京)电力科技有限公司。5 T/SDAQI 096—2023 儿童推车现场检验规程发布之日起实施山东省产品质量检验研究院、山东省标准化研究院、齐鲁工业大学、中科国晟(北京)电力科技有限公司。6 T/SDAQI 097—2023 儿童自行车现场检验规程发布之日起实施山东省产品质量检验研究院、山东省标准化研究院、齐鲁工业大学、中科国晟(北京)电力科技有限公司。7 T/SDAQI 098—2023 婴儿学步车现场检验规程发布之日起实施山东省产品质量检验研究院、山东省标准化研究院、齐鲁工业大学、中科国晟(北京)电力科技有限公司。8 T/SDAQI 099—2023 电线电缆中阻燃元素的快速筛查方法 X射线荧光光谱法发布之日起实施山东省产品质量检验研究院、山东省建筑科学研究院有限公司、大连大学。9 T/SDAQI 100—2023排污、排水用多元融合塑料(PAE)内筋增强管材发布之日起实施聊城瑞盛德丰塑胶有限公司、山东省产品质量检验研究院、中国市政工程东北设计研究总院有限公司、聊城大学、新乡市市政设计研究院有限公司、郑州市市政工程勘测设计院、河南城建建设工程咨询有限公司、聊城高级工程职业学院、新乡市市政工程处有限公司、山东时雨塑胶工业有限公司、山东珑耀管业有限公司、辽宁东信塑胶科技有限公司、山东华信塑胶股份有限公司、山东陆宇塑胶有限公司、河南城建建设工程咨询有限公司、山东智行检测技术服务有限公司、宁津县产品质量监督检验所。 山东质量检验协会2023年11月30日山东质量检验协会关于批准发布《水泥中水溶性铬(VI)含量的快速筛查方法》等9项团体标准的公告.pdf
  • 在线有机碳元素碳分析仪用于重要大气污染源研究
    日前,我公司的气溶胶在线有机碳/元素碳分析仪完成在中科院山西煤化所的安装和培训。此产品将用于模拟各种煤燃烧污染源的气溶胶颗粒中有机碳,二次气溶胶碳,黑碳的排放特性研究,此仪器可为研究过程提供连续的相关重要数据,为大气污染源的监测工作提供科学保障。 已有的科学研究表明,我国的煤燃烧排放污染是空气污染中的一个非常重要的因素,我国正处在清洁能源替代高污染能源的转型期。 相关知识介绍: 大气气溶胶中2.5微米以下粒子中有机碳元素碳一般在空气总粒子占比达到30-70%,是严重危害人体健康的有效危害成份,研究证明:其危害程度甚至超过吸烟 的危害. 大气污染物中元素碳/有机碳的直接连续含量测量,可以轻易剔除很容易造成数据失真的空气中水份等无伤害数值,直接评价大气中有机物和碳类无机物污染真实状态和对生物伤害程度. 大气气溶胶有机物含量的 连续原位监测是在环境科学领域清晰,有效定量区分雾和霾的有效化学原理的仪器分析方法.可以获得以小时或分钟计的实时原始数据(不可再生),并可有效消除离线分析前采样中,运输中的样品误差(很多情况下这种误差不小于10%)。 大气气溶胶粒子中元素碳/有机碳含量的监测已成为国际上关注的热点,我公司在线大气气溶胶有机碳/元素碳分析仪产品符合NIOSH-5040和ASTM -D6877-03标准,并获得EPA-ETV认证,我公司的产品现已在长三角,株三角,北京等重点地区初步建成多点网络连续监测,使我国的大气气溶胶有机碳/元素碳的监测水平同发达国家同步. 这些大量连续累积灰霾监测宝贵数据的获得,使我们国家拥有了大气气溶胶空气环境质量评价更多的话语权。 我公司提供的元素碳/有机碳分析仪同时具备监测黑碳成份的能力,对太阳辐射水平,灰霾,沙尘传输等气象研究也提供了有力的工具. 热光分析法测量大气颗粒物中有机碳/元素碳含量是国际上公认的方法,其中光热透射法已经建立了职业健康标准- NIOSH5040,这个技术解决了光学法只能测量颗粒物黑碳含量而无法精确测量有机碳、传统热学测量法在分析过程中有机碳炭化会引起测量误差等问题,实现了对大气碳颗粒物质量浓度的高精度实时测量.使用此仪器还可以估算出重要的二次气溶胶碳(SOA or SOC)数据。 中国科学院山西煤炭化学研究所:前身是中国科学院煤炭研究室,于1954年在大连中国科学院石油研究所(即现在的中国科学院大连化学物理研究所)挂牌成立。1961年,煤炭研究室扩建为中国科学院煤炭化学研究所并开始向太原搬迁。1978年9月改名为中国科学院山西煤炭化学研究所并沿用至今。 建所以来,山西煤化所以满足国家能源战略安全、社会经济可持续发展以及国防安全的战略性重大科技需求为使命,以协调解决煤炭利用效率与生态环境问题和重点突破制约国家战略性新兴产业发展的材料瓶颈为目标,围绕煤炭清洁高效利用和新型炭材料制备与应用开展定向基础研究、关键核心技术和重大系统集成创新,逐渐由一个只有64人的实验室,发展壮大为从基础研究到工艺过程开发直至产业化的体系较为完备且在国内外相关领域具有重要影响力的现代化研究所。截至2013年底,全所在职职工580人,其中科技人员452人,中科院院士1人,“千人计划” 2 人,“百人计划”10人,研究员及正高级工程技术人员58人,副研究员及高级工程技术人员125人。
  • 在线气溶胶有机碳元素(OCEC)分析仪
    成果名称 在线气溶胶有机碳元素(OCEC)分析仪 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 &radic 研发阶段 □原理样机 □通过小试 □通过中试 □可以量产 成果简介: 碳质组分在气溶胶中含量很高,尤其是在对人类健康影响较大的细颗粒部分比例更大,约占40%-60%。气溶胶中的碳质组分通常包括有机碳(OC)和元素碳(EC)两部分,这些组分能够造成区域和城市烟霾,影响大气的能见度、破坏地球辐射平衡,从而影响全球气候。目前,对气溶胶中OC和EC的研究已经成为国内外大气化学研究和环境监测的热点。气溶胶中OC、EC的含量以及时间变化规律成为各大监测站点、气象部门极为关注的数据。 2009年,北京大学环境学院曾立民教授申请的&ldquo 在线气溶胶有机碳元素(OCEC)分析仪创制&rdquo 项目获得首届&ldquo 仪器创制与关键技术研发&rdquo 基金支持。作为该项目的启动基金,该笔经费为曾立民教授课题组提供了强有力的支持,通过关键部件的购置、机械配件的加工和控制电路的自主创制,使得曾立民教授这一填补国内空白的先进技术的前期研究得以及时启动和顺利开展。在该基金的资助下,曾立民教授课题组已开展了多项富有成效的研制工作,包括:(1)在线气溶胶有机碳元素碳(OCEC)分析仪的硬件搭建;(2)在线气溶胶有机碳元素碳(OCEC)分析仪的软件开发和调试;(3)在线气溶胶有机碳元素碳(OCEC)分析方法的创新。 这方面的测量目前仅能依靠国外的仪器,国内在该方面的仪器研发仍处于初步阶段,没有自主的产品。因此,填补该空白、自主创新开发国内自己的在线气溶胶有机碳元素碳(OCEC)分析仪成为一个必然的趋势。 应用前景: 上述关键技术的研究,为进一步开展具有自主知识产权的在线气溶胶有机碳元素(OCEC)分析仪的研制奠定了良好的基础。
  • 普仁船载大气气溶胶在线定量分析仪搭载“雪龙号”赴南极科考
    2015年11月7日,由277名队员组成的中国第32次南极科学考察队乘“雪龙号”破冰船从上海出发,赴南极进行科考任务。总航程3万海里,预计历时159天。 在此次科考中,搭载了由青岛普仁仪器有限公司研发的国内首台AOMZ-3000型船载大气气溶胶在线定量分析仪。此款仪器将PIC-online型在线离子色谱仪与PAGM 大气气溶胶在线分析仪完美结合,对各种气候条件下的大气中无机阴阳离子进行不间断检测。 此款仪器的优势在于:1、大气样品的自动采集、自动过滤、自动稀释;2、淋洗液自动生成,全程无需再重新配制;3、工作曲线自行配制、自行校准、无需人工;4、分析一次样品仅需15分钟、全天96次分析、做到全程监测;5、由于全程自动化,所以避免了人工分析的误差、数据准确度高;6、阴阳离子同时检测;7、完善的自动保护装置、当泵压异常时,程序将自动关闭并发出警示信号;8、程序可下载到手机上,随时查看分析数据。 此次南极科考,青岛普仁仪器有限公司派出技术工程师于10月下旬登上雪龙号,根据船舱内的结构,对仪器进行了特殊的改造和加固,仪器安装完成后,进行了两周的全方位测试,各项性能指标完全符合设计和使用要求。普仁船载大气气溶胶在线定量分析仪优越的性能和精干的技术服务团队,得到科考专家的一致好评。 此次普仁与国家海洋局、中国极地研究中心在南极科考的深度合作,充分证明了我公司在高端在线离子色谱仪及气溶胶在线分析仪研发方面的能力和优势。 普仁船载大气气溶胶在线定量分析仪的成功研制及应用,进一步提升了我国在线分析类仪器的整体技术等级和核心竞争力,对于促进在线分析仪器向自主创新方向发展,逐步打破进口垄断的不利局面,以满足我国日益增长的检测市场需求,保障数据信息安全,具有重要的现实意义。
  • 气溶胶质谱在线分析北京雾霾成分
    16日夜间开始,北京经历今年来持续时间最长、程度最重的雾和霾天气过程。北京南部部分站点空气质量指数爆表,天地间一片昏暗。此时,网络上、朋友圈里各类关于空气质量的言论开始流传,其中人们最为关注的是“这次雾霾里主要是含硫酸铵,̷̷原来伦敦有次硫酸铵超标,有好多人没有防护而死亡”。  网络流传硫酸铵会致命。  此次重污染天气过程中,我们呼吸的空气里这到底包含什么物质?和之前的重污染天气相比有何不同?硫酸铵会直接导致死亡吗?为此,中国天气网记者采访了中国气象科学研究院大气成分所副研究员张养梅。  北京的霾里到底有哪些成分?  中国气象科学研究院位于北京市海淀区中国气象局大院内,在气科院大楼的楼顶,气溶胶质谱仪一直默默值守,在线采集、分析北京亚微米气溶胶的成分。张养梅介绍道,所谓亚微米气溶胶是指直径在1微米以下的粒子。大家熟悉的PM2.5其实是一个总称,包括空气中直径小于或等于2.5微米的固体颗粒或液滴。研究显示,直径1微米及以下的粒子占PM2.5的60%左右,因此质谱仪采集的数据对于分析大气成分是具有代表性的。  各类颗粒在采样颗粒中所占比重。绿色代表有机气溶胶,橙色为硫酸盐、蓝色为硝酸盐,粉色为氯化物,浅橙色为铵盐。有机气溶胶所占比重最大,硝酸盐次之。  16日至20日,北京采样颗粒中有机气溶胶占比最多。  通过仪器采集数据及分析,12月5日至20日采集到的1微米及以下的粒子,主要包括有机气溶胶、硝酸盐、硫酸盐等构成。有机气溶胶是一个总称概念,具体的组成目前还没有完全研究清楚,大家经常听说的多环芳烃就是有机气溶胶的一种。硫酸盐主要来自燃煤,燃煤排放的二氧化硫发生一系列氧化反应,成为硫酸铵。硝酸盐主要来自燃煤和机动车排放,氯化物的主要来源包括垃圾焚烧、燃煤以及燃放烟花爆竹等。  16日至20日,北京采样颗粒中有机气溶胶占比最多。  通过对12月16日至20日对北京的采样颗粒进行分析后,结果显示有机气溶胶是其中占比最大的颗粒,高达45% 硝酸盐颗粒占比24%排第二,主要来自燃煤和机动车排放等 硫酸盐占比15%,主要来自燃煤等 铵盐占比12%,氯化物占比4%。  北京霾和伦敦烟雾一样吗?有致命成分?  就在北京空气质量持续恶化之时,网络谣言也开始流传。针对网上流传的硫酸铵会致命,张养梅表示这是不可能的。空气质量好时,空气中也存在有机气溶胶、硫酸盐等颗粒,只是浓度较低、颗粒物较小。霾天气时,仪器不会观测到硫酸铵,观测到的是硫酸、铵两个离子,他们结合成硫酸铵的可能性很大,空气重污染时浓度更高一些。空气中含有硫酸铵并不是政府发布红色预警的必要条件。  硫酸铵是颗粒物,和二氧化硫气体有明显区别,颗粒物对人体健康的影响程度没有气体迅速。如果空气中二氧化硫气体浓度很高的话,相当于人在“吸毒气”,对人体有致命影响。当年的伦敦烟雾在短短几天内造成数千人死亡,就是因为空气中酸性气体浓度太高。监测显示,12月5日以来,北京硫酸盐的浓度峰值出现在20日,达40-50微克/立方米,远远低于伦敦烟雾事件时的浓度。  当然,硫酸铵等颗粒物也会影响人体健康。它们会随着呼吸进入人体肺部,引发心脑血管和呼吸道的疾病。另外,北京的空气污染物中,含有一定比例的铵,会和硫酸、硝酸发生中和形成颗粒,和酸性气体相比,颗粒的危害性相对轻一些。  污染物浓度日间变化明显 夜间高白天低  分析还表明,空气中各种污染物的浓度整体呈现白天低、夜间高的变化规律。分析时,将12月5日至20日每天同一时次颗粒浓度做分类平均统计,显示颗粒物夜间浓度明显偏高,白天下降明显。  各类颗粒的浓度白天下降明显,夜间明显上升。  张养梅表示,浓度变化主要受排放量和气象条件两个因素影响。在排放量相同的情况下,从气象条件来说,夜间湿度增大,可以吸附更多污染物。同时,冬季夜间气温较低,大气边界层下压。在气体容量不变的情况下,体积变小,空气污染物浓度升高。白天,大气边界层抬升,体积增大,污染物浓度降低。  和2008年相比硫酸盐浓度下降  总体来说,和之前相比,北京空气中的颗粒种类的浓度分布排位没有太大变化,有机气溶胶的浓度一直是最大。但是分析显示,今年12月和2008年1月相比,硫酸盐在不同颗粒物比重的排位下降。  从图中可见,今年12月5日至20日,硝酸盐(蓝色)在颗粒物组成中浓度上升,基本都排在第二位,硫酸盐下降排在第三位 而2008年1月5日至2月2日,硫酸盐浓度排第二位,硝酸盐排第三位。张养梅表示,这一数据的变化也可以说明,政府对二氧化硫排放的监管和控制,比如煤改气措施、工厂加装脱硫设备等发挥了作用。硝酸盐浓度的上升,则与燃煤、机动车排放增加有一定关系。  北京的雾霾将在明天减弱消散,但在近几年中,霾仍将在秋冬季反复出现。张养梅提醒大家,虽然霾天气对人体的危害没有那么“激烈”,但仍需防护,尽量减少在户外活动的时间,外出时戴口罩。在室内时,也可启动空气净化器等设备,营造相对安全的空气环境。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制