当前位置: 仪器信息网 > 行业主题 > >

双向拉伸聚丙烯薄膜厚度测试仪

仪器信息网双向拉伸聚丙烯薄膜厚度测试仪专题为您提供2024年最新双向拉伸聚丙烯薄膜厚度测试仪价格报价、厂家品牌的相关信息, 包括双向拉伸聚丙烯薄膜厚度测试仪参数、型号等,不管是国产,还是进口品牌的双向拉伸聚丙烯薄膜厚度测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合双向拉伸聚丙烯薄膜厚度测试仪相关的耗材配件、试剂标物,还有双向拉伸聚丙烯薄膜厚度测试仪相关的最新资讯、资料,以及双向拉伸聚丙烯薄膜厚度测试仪相关的解决方案。

双向拉伸聚丙烯薄膜厚度测试仪相关的论坛

  • 聚丙烯拉伸断裂标称应变如何测量?

    我们要测试聚丙烯的拉伸断裂标称应变,我们所使用的试验机是INSTRON的万能材料试验机,在试验机的位伸范围内聚丙烯样条根本拉不断,也就是在拉伸范围内不出现断裂行为,在这种情况下该如何测试聚丙烯的拉伸断裂标称应变呢?

  • 聚丙烯SEM分析求助

    聚丙烯SEM分析求助

    请问一下这个通过SEM拍摄得到的聚丙烯表明形貌怎么解释啊,已知该聚丙烯是薄膜结构,厚度5um,经历过熔融、冷却后就成图中的样子了[img=pp sem,613,380]https://ng1.17img.cn/bbsfiles/images/2023/12/202312061531326339_3802_6174691_3.png!w613x380.jpg[/img]

  • 【求助】求助聚丙烯(PP材料)滤膜

    实验室内使用的,需要这样的过滤聚丙烯膜,说一下大概要求:1、酸HCl,碱NaOH,有机试剂乙腈的承受能力。2、低压:室温条件,水,流速1ml/min,压力低于0.05MPa/平方厘米。3、厚度:松散的结构,厚度1mm左右。4、孔径:2um左右。目前看到很多供应PP材料膜的都是很薄的0.18mm左右,估计是类似纸一样的,这种估计在一定流速条件下压力就比较大。我用过0.22um的膜,像纸一样。不知孔径2um以后会不会厚一点松散一点?对于过滤膜不是很懂,因此向版友们请教。如果有相关的信息内容量比较大,回复时可以以附件或者网页连接的形式给我。谢谢!

  • 【分享】冰衣保鲜剂——— 聚丙烯酸钠

    鱼、虾、肉等冷冻食品在冷库中冷藏时,因触及冷藏室内的干燥空气,冻品中的水分将蒸发,使冻品干燥。食品与空气接触加上金属离子的作用,引起蛋白质变质、脂肪酸败、生鲜味散失,风味顿减,减重损耗也随之而生,使商品价值明显降低。为了防止这些不良影响,用清水或者胶质水在鱼体表面形成一层薄冰膜,使鱼体与干燥空气脱离接触,这就是冰衣加工。但是仅用清水,冰会迅速升华,那就需要多次的进行冰衣加工,而且一遇振动,冰衣会产生龟裂,龟裂后冰衣易脱落,只要一个地方发生这样的情形,冻品内部的冰就会连续不断地从这里升华,干燥变质随之发生。羧甲基纤维素、甲基纤维素、聚乙烯醇、海藻酸钠等胶体溶液都可以弥补用清水做冰衣加工的缺点。但是它们只有使被处理物与外气遮断的作用,防变黄、褪色的效果并不理想。  聚丙烯酸钠是美国FDA、日本厚生省、中国卫生部等批准使用的食品添加剂,用于多种食品的增稠、增筋、稳定和保鲜。聚丙烯酸钠是水溶性高分子化合物,溶于水形成极粘稠的透明溶液,其黏度约为羧甲基纤维素钠(CMC)、海藻酸钠的15~20倍,对肉类表面有优良的附着力,而且对金属离子有封锁能力,如果冷冻前用聚丙烯酸钠处理,形成一层隔断空气的“冰衣”,则可大大延长鱼、虾、肉等冷冻食品的保鲜期,保鲜效果显著。  聚丙烯酸钠作为冰衣加工剂具有以下优点:能形成与清水外衣同样的玻璃状透明膜,显著提高商品价值;溶液没有起泡性,所以在浸渍或喷雾时不会发生起泡的麻烦;对金属离子有封锁作用,可防止鱼类等因金属离子的催化作用而发生变黄褪色;可增强冰衣的弹性和强度,减少因机械碰击引起的脱落现象;冰衣完全升华时,其黏性涂膜会密集的被覆在肉类表面,故短期内不必再冰衣而能继续冷冻,被膜效果可持续很久;冰衣升华较慢,可减少冰衣的工作次数,从而可节省工资降低成本;只需添加0.1%聚丙烯酸钠就可制成保鲜液,包括加工损失在内,每吨鱼虾只需聚丙烯酸钠15~45克,丙二醇100~200克,简便经济;聚丙烯酸钠是合成品,保管中绝对不会发生腐败、变质、发黄等现象;聚丙烯酸钠水溶性好,解冻时易于溶解洗去。  使用方法:将聚丙烯酸钠粉末(约占冰衣用水的0.05%~0.1%)慢慢添加入水中,边加边搅拌,得到一透明液体,将需要冷藏的鱼、虾浸渍于上述液体中数秒后取出,即可放入冷库贮藏,冰衣附着量约为鱼、虾重量的2%~3%,厚度约为2~3mm。食用时将鱼、虾取出,洒水、解冻即可得到处于新鲜状态的鱼、虾。如果先将聚丙烯酸钠粉末用3~5倍重量的丙二醇分散,再溶解于水,制得的冰衣保鲜效果更好。

  • 聚丙烯 XRD 图谱分析 求大佬讲解一下

    聚丙烯 XRD 图谱分析 求大佬讲解一下

    测试了不同拉伸条件下 PP(聚丙烯)的XRD图谱,发现拉伸越高,前三个晶面的峰强度逐渐升高,但是,随着拉伸 曲线的基线越来越歪,下面的弥散峰区域越大导致结晶度降低。这是正常情况吗,还是样品的问题?求大佬解答一下。[img=PP,690,285]https://ng1.17img.cn/bbsfiles/images/2023/03/202303291048480228_8391_5507459_3.png!w690x285.jpg[/img]

  • 【求助】谁有聚丙烯(pp)和聚乙烯(pe)薄膜的远红外光谱图?

    我是做红外测温的,测温范围是0度-100度,对应的波长大致在1-15个微米。但是由于卫生要求,必须在探测器前面套一薄膜,薄膜厚度大致在1丝左右(普通保鲜膜的厚度),能查到,pp和pe材料能够投射这个区域的红外光,但是一直找不到光谱图,查过好多国外网站也没有找到。相信这里会有贵人相助。谢谢先。

  • 【原创】用红外光谱测定PP的等规度?

    近日从网上看到个专利:CN02112546.5摘要: 双轴拉伸聚丙烯等规度的红外光谱法快速测定的方法是一种用红外光谱法快速测定双轴拉伸聚丙烯等规度的方法,a、制取样片:将该模具放入已升温并稳定在175±1℃的加热台中,待温度再次升至175±1℃时,即刻加压至4t,恒温恒压时间<2秒,即刻卸压至零压,抽出金属压片模具放入冷却盒冷却至室温后,取出薄膜样片,按以上的方法制取两片厚度相同的薄膜样片;b、样片的测试:将压制的两片薄膜样片插入红外光谱仪的测试支架上,分别在两个样片上取任意几个测试点,测998cm.主权项:1、一种双轴拉伸聚丙烯等规度的红外光谱法快速测定的方法,其特征在于测定方法为: a、制取样片:将加热台恒温控制器调至175±1℃,将样品的料粒或粉料置于衬铝箔的金属压片模具中,将该模具放入已升温并稳定在175±1℃的加热台中,待温度再次升至175±1℃时,即刻加压至4t,恒温恒压时间<2秒,即刻卸压至零压,抽出金属压片模具放入冷却盒冷却至室温后,取出薄膜样片,按以上的方法制取两片厚度相同的薄膜样片; b、样片的测试:将压制的两片薄膜样片插入红外光谱仪的测试支架上,分别在两个样片上取任意几个测试点,测998cm-1和1460cm-1透射红外线光谱并转换成吸光度红外光谱; c、数据处理:将以上所测两薄膜样片的吸光度光谱值按大小顺序排列,算得等规度Y=75.9308R+73.5054,其中R=A998/A1460。  但是我用聚丙烯薄膜作了下,跟这个说的差好多啊.有没有哪位大虾验证一下,或者解释一下呀.

  • 关于聚丙烯酰胺水解度的测定

    一直以来,关于聚丙烯酰胺的水解度测定(Q/SY119)一直是困扰用户和生产厂商的难题:1.测试重点较难把握;2.同样的样品同样的化验人员连续几次试验均难以得到相同的结果;3.同样的样品不同化验人员测试的结果相差极大。这尤其增加了生产厂家和用户的争议;我们、经过上千次试验,终于将电脑检测技术用于聚丙烯酰胺水解度的测定,取得了较好的使用效果。其原理是把溶液(指的是按照Q/SY119处理好的聚丙烯酰胺溶液)加入指示剂后的颜色滴定至滴定终点以及滴定过量后的颜色变化逐段比较,并将其各段颜色指标进行量化,极为精准的判断出了该溶液的滴定终点。本方法的成功率超过95%,成功时的错误率不大于2%,极为精确的测定出了聚丙烯酰胺的水解度,解决了一直以来困扰聚丙烯酰胺用户和生产厂商的难题。

  • 试样状态调节对聚丙烯PP力学结果有多大影响?国高材独家数据为你揭秘!

    环境的温度、湿度及试样在该环境中放置时间的长短等对塑料性能测试结果有相当大的影响。为了得到重复性、再现性和可比性好的测试结果,国标中对塑料试样状态调节和试样的环境及操作程序做出了统一规定。然而,试样状态调节过程中,关于温度偏离和时间偏离对材料力学性能测试结果影响的研究,至今仍未见公开资料分享。国高材分析测试中心专注于高分子材料创新及各项性能表征,本文以一则客户案例为切入口,探究结晶性聚丙烯状态调节时的温度偏离和时间偏离对材料力学性能结果的影响,希望能帮助各位材料同仁对[b][color=#FF8124]国标中试样状态调节的规定[/color][/b]有更深入的理解。[b][color=#5B5046][back=#F4EFEB]一、案例背景[/back][/color][/b][back=#F4EFEB][/back]实际检测中,客户注塑聚丙烯材料样条后,由于寄送试样过程的温湿度环境和时间差异,无法保证和标准要求一致,因此,了解样品偏离标准状态调节会对测试结果造成怎样的影响,针对样品状态调节偏离对测试结果的影响进行探究有极其重要的意义。[b][color=#5B5046][back=#F4EFEB]二、标准依据[/back][/color][/b][back=#F4EFEB][/back]依据GB/T 2546.2-2003《塑料 聚丙烯(PP)模塑和挤出材料 第2部分 试样制备和性能测定》关于试样状态调节规定:“未填充的PP材料的状态调节应按GB/T 2918的规定进行。状态调节条件为[b][color=#FF8124]23℃±2℃[/color][/b],时间至少40h但不超过96h。填充的PP材料试样应附加相对湿度50%±10%的要求。”[b][color=#5B5046][back=#F4EFEB]三、试验过程[/back][/color][/b][back=#F4EFEB][/back][b]3.1 状态调节温度的影响[/b]试样方案:模拟日常试样状态调节的极限条件,选择低温0℃(冬季)、高温45℃(夏季)调节与标准环境(23℃、50%Rh)调节试样进行比对,方案如下:[align=center]表1 试验方案[/align][img]https://p9-tt-ipv6.byteimg.com/origin/pgc-image/4bf827e14c5f4b519f53cddfc58bd76b[/img]试验结果见图1、图2:[img]https://p26-tt.byteimg.com/origin/pgc-image/74fd73d20a344a349b50530241c2e5fe[/img][align=center]图1 不同温度下状态调节48h的测试结果[/align][img]https://p6-tt-ipv6.byteimg.com/origin/pgc-image/0b87ddf46c124f58a29c227f4361bfe4[/img][align=center]图2 不同温度下状态调节72h的测试结果[/align]1、试验结果表明,样品注塑后置于0℃进行调节,再恢复至标准状态调节24h后测试,其结果与在标准环境下调节相同时间的测试结果基本一致。2、试验结果表明,试样注塑后置于45℃进行调节,再恢复至标准状态调节24h后测试,与在标准环境下调节相同时间的测试结果相比,其刚性指标(拉伸强度、弯曲强度、弯曲模量、规定挠度弯曲应力)呈现小幅增长,偏差在可接受范围,其次,[b][color=#FF8124]韧性指标拉伸屈服应变小幅下降,但冲击强度出现了严重下降,破坏形式也由部分破坏变成完全破坏[/color][/b],如图3,图4。[img]https://p1-tt-ipv6.byteimg.com/origin/pgc-image/2c7f768e91f144eab67d6d201a579940[/img][align=center]图3 部分破坏(P)图[/align][img]https://p9-tt-ipv6.byteimg.com/origin/pgc-image/871a41cded3c4882b6de908af23291a4[/img][align=center]图4 完全破坏(C)图[/align]分析:聚丙烯材料经过注塑,从熔体快速淬火成玻璃态,其体系处在热力学非平衡态,材料的凝聚态结构不稳定,使用45℃高温环境处理后使其[b][color=#FF8124]向稳定的平衡态转变[/color][/b],其刚性提升,但韧性会随之下降。[b]3.2 状态调节时间的影响[/b]试验方案:在标准环境状态下持续调节,测试试样性能随时间的变化,试验结果见图5。[img]https://p1-tt-ipv6.byteimg.com/origin/pgc-image/0d18ef45992d4bc0868add7a3aef8056[/img][align=center]图5 标准环境状态下调节不同时间的测试结果[/align]小结:就该材料而言,随时间延长,刚性指标(拉伸强度、弯曲强度、弯曲模量、规定挠度弯曲应力)其测试结果与24h测试结果偏离不大;韧性指标(拉伸屈服应变、冲击强度)出现下降,拉伸屈服应变降幅较小,冲击强度15天内波动较小,但存放86天后其冲击强度结果严重下降。分析:在长期的存放过程中,试样逐步向稳定的平衡态转变,[b][color=#FF8124]刚性呈上升趋势,韧性出现大幅下降[/color][/b]。[b]3.3 探究材料冲击性能与结晶度的关系[/b]试验表明,聚丙烯材料的冲击性能和材料的凝聚态结构平衡状态有密切关系,所以使用材料[b][color=#FF8124]结晶温度至熔融温度的区间温度[/color][/b]对试样进行热处理,是否能打破试样的稳定平衡态,使其冲击性能得到恢复?通过热分析发现,客户委托试样的结晶温度为123.7℃,其熔点温度为167.12℃,见图6。[img]https://p26-tt.byteimg.com/origin/pgc-image/23fcfbf71622400681642704cd70a1b9[/img][align=center]图6 聚丙烯材料DCS测试曲线[/align]试验方案:[b][color=#E36C09]将调节时间大于86天的[/color][/b]冲击样条置于140℃烘箱中热处理2h后,再置于标准环境中调节48小时进行正常测试。试验结果见图7。[img]https://p1-tt-ipv6.byteimg.com/origin/pgc-image/2724ed32384d43238d1ba8d6581e206b[/img][align=center]图7 热处理(140℃)前后冲击强度对比[/align]试验结果表明:使用材料结晶温度至熔融温度的区间温度(140℃)热处理后的聚丙烯材料试样,再置于标准状态下调节48h测试,试样的冲击强度由15kJ/m^2恢复至45kJ/m^2,其冲击性能产生了明显变化,即试样的稳定平衡态遭到破坏,恢复至非平衡态。[b]四、总结[/b]通过试验可得出如下结论。(1)试样状态调节偏离,即温度和时间的偏离对聚丙烯材料的部分性能会产生很大的影响,如冲击性能。所以,试样的状态调节是保证检测结果可靠性和一致性必不可少的重要环节。(2)对于冲击性能衰减后的聚丙烯材料,使用材料结晶温度至熔融温度的区间温度对试样进行热处理,可以使其冲击强度恢复。

  • 霍尔效应测试仪 ITO 薄膜测试案例

    样品: ITO 氧化铟锡, 标记为 ITO1, ITO2, ITO3样品薄膜厚度: 60 - 100 nm样品尺寸: 10 * 10 mm实验内容: 载流子浓度, 类型, 霍尔迁移率, 方块电阻 实验仪器: 上海伯东英国 NanoMagnetics ezHEMS [url=http://www.hakuto-vacuum.cn/product-list.php?sid=131][color=#0000ff]霍尔效应测试仪[/color][/url]测试温度和磁场温度: 300K RT 1 Tesla[color=#ff0000]* 在测试开始前, 仪器均经过标准样品校验. 所有样品根据 ASTM 标准.[/color][b][color=#000000]样品 ITO1 测试结果:[/color][color=#000000]I-V 测量结果[img=霍尔效应测试仪 ITO 薄膜]http://www.hakuto-vacuum.cn/hakuto_upfile/images/ITO-nano.jpg[/img][/color][/b][color=#000000][b]VdP 测量结果[/b][/color][color=#000000] 测量头类型: RT Head 磁场: 9677G 厚度: 80nm[img=霍尔效应测试仪 ITO 薄膜]http://www.hakuto-vacuum.cn/hakuto_upfile/images/ITO-vdp.jpg[/img][/color][b]部分测试结论:[/b]1. 得到的电阻值彼此相容.2. 所有的IV 曲线都是线性的3. 所有样本都是欧姆的,统一的,均匀的.4. Van der Pauw 测试为了保证准确性, 测试了2次, 测试结果是相同的. ...[color=#ff0000]* 鉴于信息保密, 更详细的霍尔效应测试案例欢迎联络上海伯东[/color]

  • 利用回火调节聚丙烯的结晶度

    利用回火调节聚丙烯的结晶度

    [u][color=#00807a]简介:[/color][/u][color=#1f497d][/color]聚合物材料中含有的热历史,比如冷却速率和存储温度,都对它们的性能有着重要影响。在这里,我们利用回火工艺对聚丙烯的结晶度进行调节。[u][color=#00807a]测试条件:[/color][/u][color=#1f497d][/color]11.00mg聚丙烯样品在160°C烘箱内干燥聚丙烯材料90min来模拟热老化,接着用DSC 214 进行升温-降温-升温测试,温度范围从室温到200°C,升温速率和降温速率均为10K/min。同样的聚丙烯样品10.67mg,没有经过回火处理,也进行上述同样条件的DSC测试。[u][color=#00807a]测试结果:[/color][color=#00807a][img=,590,329]http://ng1.17img.cn/bbsfiles/images/2018/06/201806131440427647_7125_163_3.png!w590x329.jpg[/img][/color][/u][color=#00807a][color=#000000] 图[/color][color=#000000]1 [/color][color=#000000]聚丙烯材料在回火处理前后的第一次升温曲线对比[/color][/color][color=#00807a][color=#000000]图1对比DSC第一次升温测试,没有回火处理的样品在168.1°C熔融,热焓是95.5J/g。而回火老化过的样品在较高温度174.2°C处熔融,热焓高达到111.75J/g。这是因为在160°C回火期间,部分聚合物链段重排形成新的结晶结构,而且晶粒尺寸更大,结晶度也较高。[/color][/color][color=#00807a][color=#000000][img=,590,329]http://ng1.17img.cn/bbsfiles/images/2018/06/201806131442534664_3178_163_3.png!w590x329.jpg[/img][/color][/color][color=#000000][color=#000000] 图2 聚丙烯材料在回火处理前后的第二次升温曲线对比[/color][/color][color=#000000][color=#00807a][/color][/color]图2是两个样品的第二次升温曲线。因为样品经历过相同的10K/min降温冷却后,具有几乎完全同样的热历史,所以它们的第二次升温曲线也几乎完全一致(在119°C处的额外峰很可能是样品中含有少量的聚乙烯材料)。同时,此图谱也展现了DSC 214 Polyma绝佳的重复性。

  • 微波消解聚丙烯空气采样膜

    各位前辈好!近期在做聚丙烯空气采样膜的消解(质量约0.03g),微波消解后发现消解结果不理想,膜基本没消解完,请问大家有做类似的实验吗?情况是怎样的啊? 消解体系:1)硝酸2 mL+盐酸2 mL+双氧水1 mL 2) 王水8 mL; 3) 硝酸5 mL+双氧水2 mL; 4)王水4 mL+1mL氢氟酸。四种消解体系中4)消解稍微好一些,但是还是没有消解完全。微波消解程序: 温度 升温时间(min) 保持时间(min) 功率 80 5 2 1600W 120 5 2 1600W 160 5 5 1600W 180 5 10 1600W 200 5 30 1600W

  • 玻纤增强的聚丙烯按177.1520是否合适

    玻纤增强的聚丙烯 如果按177.1520要求测密度,很有可能不合格。FDA中是否有针对玻纤增强聚丙烯的标准呢。目前没有找到相关资料我知道有个177.2355 矿物增强尼龙

  • 【求助】寻求材料性能测试仪器

    寻求操作简单,价格便宜的材料性能测试仪器,主要用于聚丙烯、ABS等塑料制品的抗压、抗冲击和耐热性能及拉伸强度、弹性模量和耐热性测试,望各位高手推荐,感激不尽!

  • 【原创】测量薄膜厚度和光学常数的方法

    摘要: 借助于不同的色散公式, 运用改进的单纯形法拟合分光光度计测得的透过率光谱曲线, 来获得薄膜的光学常数和厚度。用科契公式分别对电子束蒸发的T i O 2和反应磁控溅射的S i3 N 4,以及用德鲁特公式对电子束蒸发制备的I T O薄膜进行了测试, 结果表明测得的光学常数和厚度, 与已知的光学常数以及台阶仪测得的结果具有很好的一致性。这种方法不仅简便, 而且不需要输人任何初始值, 具有全局优化的能力, 对厚度较薄的薄膜也可行。采用不同的色散公式可以获得各种不同薄膜的光学常数和厚度, 这在光学薄膜、 微电子和微光机电系统中具有实际的应用价值。

  • 【求助】关于聚丙烯酸树脂和乙烯树脂的问题

    我正在寻求植物标本的保护涂料。我想用聚丙烯酸树脂或乙烯树脂的溶剂作为涂料,刷涂在植物标本的表面,起到隔绝空气和防潮防腐的目的。标本经过我处理已不会腐败,但是为了保险起见,我需要再刷涂一层保护膜。我知道聚丙烯酸树脂乳液和乙烯树脂是绘画保护上光剂和油画隔离光油的原料之一,且溶于酒精。由于我不是化工领域的专业人员,我尚不清楚它们的性状和使用细节,同时也不了解“聚氧化乙烯树脂(peo) ”和我所说的绘画用乙烯树脂在使用上有什么区别。请大家帮我看下聚丙烯酸树脂和聚氧化乙烯树脂(peo) 是否能满足我以下的要求:1:保护涂层材料需要是非油性的中性物质,能达到表面覆膜的目的,拥有良好的透明性、稳定性、不变色性;又是非油性上光剂,能够与酒精(或水)调合。2:操作方便,无毒安全。由于是生物标本制品,我在使用前不得不慎重。聚丙烯酸树脂或乙烯树脂是否能用于表层涂刷?我是否能直接将其浸泡入酒精制成涂刷溶液?最后,我在什么地方才能买到聚丙烯酸树脂或乙烯树脂?诚求善解,谢谢

  • 【讨论】椭偏仪测量薄膜厚度

    在si片上镀一层纳米碳膜,碳膜表面光洁如镜面,采用椭偏仪测量薄膜的厚度,测量时选择基底材料为si,将k设为0(透明薄膜,不知是否准确或透明薄膜如何定义?),根据SEM测量得到的薄膜厚度拟合得到一个n值(2.0921),采用此n值对类似情况下制备的薄膜进行厚度测量,测量得到的结果还行,基本与肉眼看到的薄膜厚度差别相当。不知此方法是否正确?1.是否能采用透明膜的测量方法测量碳膜?2.采用同一n值测量厚度是否合适?希望高手指点,谢谢!

  • 【原创】【第三届原创大赛】钻井液用聚丙烯酰胺钾盐中钾含量测定的不确定度评定

    钻井液用聚丙烯酰胺钾盐中钾含量测定的不确定度评定【摘要】:“测量不确定度”是当前国际上表示检测结果的通用做法,如何对测量结果的不确定度进行合理的评定,是一直以来困扰检测实验室的一个难题。作者依据测量不确定度的评价原则,通过实例,简要阐述了对钻井液用聚丙烯酰胺钾盐中钾含量进行不确定度的评定,对钻井液化学剂检测分析领域测量中不确定度具有借鉴意义。【关键词】:不确定度评定 钻井液化学剂检测分析 钻井液用聚丙烯酰胺钾盐中钾含量引言:GB/T15481-2000《检测和校准实验室能力的通用要求》中规定:校准实验室在进行所有校准时都应作测量不确定度的评定程序;检测实验室应具有并应用“测量不确定度的评定程序”,当检测方法妨碍对测量不确定度进行严格统计学上的计算时,实验室至少应努力找出影响不确定度的所有分量并做出合理评估。钻井液用聚丙烯酰胺钾盐在钻井生产中常用作页岩抑制剂,为了保证该产品具有较强的抑制粘土和钻屑水化分散能力,控制地层造浆,具有良好的防塌效果,应严格控制钾含量测定指标。钾离子含量测定是评价该类产品使用性能的一项重要技术指标,在针对高分子聚合物进行钾离子含量测定时,存在操作步骤复杂,对技术指标测定影响因素较多情况。因此,有必要对钻井液用聚丙烯酰胺钾盐中钾含量测定的不确定度进行分析评定。在钻井液化学剂性能的检验工作中,各种参数的数学关系比较复杂,且很难搜集到该方面不确定度的评定先例借鉴,通过对钻井液用聚丙烯酰胺钾盐中钾含量测定的不确定度评定,对开展检测工作有极大指导意义。现以钻井液用聚丙烯酰胺钾盐中钾含量这个常用的关键技术指标为例,对其检测结果的不确定度进行评定。以期与大家共同讨论本领域技术指标测量不确度的评定,不妥之处,敬请指正。1 概述采用中国石油化工集团公司企业标准Q/SH 0048—2007《钻井液用聚丙烯酰胺钾盐技术要求》测试钻井液用聚丙烯酰胺钾盐中钾含量,通过计算合并样本标准差,评定钻井液用聚丙烯酰胺钾盐中钾含量测定结果的不确定度。1.1测试原理和测试过程1.1.1测试原理钻井液用聚丙烯酰胺钾盐中钾含量的测试与计算是基于滴定度表示法的,利用已知浓度的氯化钾标准溶液得出四苯硼钠溶液对钾离子的滴定度,尔后用已知滴定度的四苯硼钠溶液,进行实验,根据滴定结果计算得出钻井液用聚丙烯酰胺钾盐的钾含量。1.1.2测试过程1.1.2.1 钾离子滴定度求解过程《钻井液用聚丙烯酰胺钾盐技术要求》中4.2。1.1.2.2 样品测试过程《钻井液用聚丙烯酰胺钾盐技术要求》中4.3。1.1.3整个测试过程如图1钾离子滴定度求解过程四苯硼钠对钾离子滴定度样品的称量样品的灰化滴定样品测试过程图1 测试过程1.2环境条件 温度20℃,温度波动±2℃/h,相对湿度不大于60%。1.3 仪器与材料包括《钻井液用聚丙烯酰胺钾盐技术要求》中4.22 建立数学模型建立钻井液用聚丙烯酰胺钾盐中钾含量测定的数学模型式中:H ——钾含量,%;T ——滴定度;20 ——移取四苯硼钠的毫升数,单位为毫升(mL);V[fo

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制