当前位置: 仪器信息网 > 行业主题 > >

双向反射透射空间分布测量系统

仪器信息网双向反射透射空间分布测量系统专题为您提供2024年最新双向反射透射空间分布测量系统价格报价、厂家品牌的相关信息, 包括双向反射透射空间分布测量系统参数、型号等,不管是国产,还是进口品牌的双向反射透射空间分布测量系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合双向反射透射空间分布测量系统相关的耗材配件、试剂标物,还有双向反射透射空间分布测量系统相关的最新资讯、资料,以及双向反射透射空间分布测量系统相关的解决方案。

双向反射透射空间分布测量系统相关的资讯

  • 玻璃行业中的透射与反射色彩质量测量—色差仪
    玻璃作为一种常见的材料,广泛应用于建筑、汽车、家具等领域。在玻璃行业中,透射和反射是两个重要的性质。透射涉及玻璃对可见光的透明程度和色彩表现,而反射关乎玻璃表面镀膜的效果。本文将介绍如何使用在线ERX55分光光度仪和ColorXRAG3色度分析仪来监控色彩质量和测量玻璃镀膜的反射率。透射是玻璃行业中最重要的光学性质之一,它决定了玻璃对可见光的透明程度和色彩表现。当光穿过玻璃时,会受到折射现象的影响。折射是光在从一种介质传播到另一种介质时改变方向的现象。这种折射现象使得玻璃能够将光有效地传播到玻璃的另一侧,使我们能够透过玻璃看到外面的世界。在玻璃行业中,透射率是一个重要的参数。透射率定义为通过玻璃的光强与入射光强的比值。透射率越高,玻璃对光的透明度就越好。而对于特定波长的光,其透过玻璃的能量与光谱分布有关,因此,不同类型的玻璃可能对不同波长的光具有不同的透射率。透射率的测量通常使用分光光度计来完成。在线ERX55分光光度仪是高精度的测量仪器,可以用于测量透明薄膜的色彩、可见光透射和雾度,持续监控色彩质量。通过持续监控透明薄膜的色彩质量,生产厂家可以确保产品的一致性和稳定性。反射是另一个在玻璃行业中需要关注的光学现象。反射率是一个指标,用于衡量光线在物体表面反射的程度。在玻璃制造过程中,常常会在玻璃表面进行涂层处理,这些涂层能够改变玻璃的反射性能。通过合理设计涂层,可以实现特定的反射率,使玻璃在特定波长范围内表现出所需的特殊光学效果,如防紫外线、隐私保护等。玻璃作为非散射性物体,在传统的直接照明测量设备中无法准确提供色彩数据。为解决这一问题,ColorXRAG3色度分析仪成为了一种重要工具。该设备具备宽波长范围(330nm到1,000nm)和高光学分辨率(1nm),可在实验室中安装在支架上,对放置在样品支架上的玻璃板进行测量。同时,它也可用于在线测量,安装在玻璃板上方的横梁用于测量低辐射玻璃,或安装在玻璃板下方用于测量遮阳镀膜。ColorXRAG3色度分析仪具有紧凑型设计,可从距离玻璃板10mm处捕获非散射性样品的光谱数据和色彩反射值,甚至能鉴定多银层镀膜。该仪器采用氙气闪光灯,同时采用+15°:-15°、+45°:-45°和+60°:-60°三种光学结构,每秒进行一次测量,以实现全方位的色彩数据获取。其中,±15°的测量值与传统实验室测量的积分球光学结构结果相同,而±45°和±60°的测量值则可以显示不同观察角度下的色彩变化。ColorXRAG3色度分析仪的应用为玻璃行业提供了一种高效、准确的色彩测量解决方案,使生产厂家能够更好地控制透射与反射性能,提高产品质量,并满足不同市场需求,推动玻璃行业的持续发展。透射和反射是玻璃行业中非常重要的光学现象。透射性能决定了玻璃的透明度和色彩表现,而反射率则与玻璃表面的涂层处理密切相关。使用在线ERX55分光光度仪和ColorXRAG3色度分析仪,可以对玻璃产品的透射性能和反射性能进行精确测量和监控,从而保证玻璃产品的质量和性能达到预期要求。“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 175nm-50000nm变角度透射反射光学性能检测方法进展
    随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。本文主要介绍采用珀金埃尔默紫外/可见/近红外光谱仪和Spectrum 3红外傅里叶变换红外光谱仪,配置TAMS等可变角度测试附件,测试样品不同角度下绝对反射率、透射率数据,实现175nm-50000nm透射率、反射率等光学性能的精确表征。TAMS附件为变角度绝对反射、变角度透射测试附件,如下图所示,检测器和样品台均可以360度旋转,通过样品台和检测器配合旋转,测试不同角度下透射和反射信号。 Lambda系列分光光度计 TAMS变角度透射反射附件光路图图1 仪器外观图以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。01样品变角度透射测试采用TAMS附件可以方便快捷的测试样品不同角度下透射数据,自动测试样品不同角度下P光和S光下透射率曲线,一次设置即可完成所有角度在不同偏振态下透射率曲线测试,测试曲线如下图所示。 图2 样品不同角度和偏振态下透射率测试数据(点击查看大图)TAMS附件配套不同的偏振组件,可以自动测试样品不同波长下偏振信号,如下图测试石英样品在45度下偏振P光和S光反射数据: 图3 样品紫外波段P光和S光偏振测试(点击查看大图)02样品变角度透射/反射曲线测试通过软件设置,可一次性测试得到样品透射和反射率曲线,如下图,该样品在可见波长下反射率大于99.5%,透射率低于0.5%,可同时表征高透和减反性能。 图4 样品45度透射和反射曲线测试(点击查看大图)03NIST标准铝镜10度反射率曲线测试测试NIST标准铝镜10度下反射率数据,如下图所示,黑色曲线为TAMS测试曲线,红色为NIST标准值曲线,两条测试曲线完全重合,进一步证明测试系统的可靠性,可以准确测试样品的光学数据。 图5 NIST标准铝镜10度反射率曲线测试(红色为NIST标准曲线)04样品变角度全波长反射曲线测试(200-2500nm)软件设置不同的测试角度和偏振方向,自动测试样品不同角度下P光和S光偏振态下反射率曲线,如下图所示,200-2500nm整个波段下测试曲线均有优异信噪比,尤其是在紫外区(200-400nm),可以完成各波长范围的反射性能测试。 图6 样品全波段(200-2500nm)变角度反射率测试(点击查看大图)05不同膜系设计的镀膜样品性能验证测试样品600-1400nm下45度反射率曲线,该样品在1200nm以上属于高反射率,反射率大于99.5%,同时需要关注600-1200nm范围各个吸收峰情况,该波段下吸收峰非常尖锐,同时吸收峰较多,需要仪器具备高分辨率,从而准确测试出每一个尖锐吸收峰信号。 图7 膜系设计验证样品45度反射率测试(点击查看大图)06双向散射分布函数(BSDF)测试除了测试常规变角度透射和反射曲线外,TAMS附件可以自动测试样品不同角度下透射和反射率信号,可以得出样品不同角度下的透射分布函数(BTDF)和反射分布函数(BRDF)信号,最终得到双向散射分布函数(BSDF)。采用该附件可方便测试样品双向散射分布函数(BSDF)、双向反射分布函数(BRDF)、双向透射分布函数(BTDF)等光学参数测试,测试结果如下图所示: 图8 BRDF和BTDF测试(点击查看大图)如下图所示,测试样品不同波长下BSDF分布函数曲线(BRDF + BTDF),从而可以得出样品随不同角度下透射和反射信号变化情况。 图9 样品不同波长下BSDF(BRDF+BTDF)测试(点击查看大图)07窄带滤光片测试Lambda系列光谱仪为双样品仓设计,TAMS附件可与标准检测器、积分球检测器自由更换。对于窄带滤光片样品,即需要准确测设带通区域的透过率、半峰宽,也需要准确测试截止区吸光度值(OD值),可直接切换标准检测器进行检测。 图10 用于激光雷达的镀膜镜片透射和OD值测试数据(点击查看大图)08红外波段区变角透射反射测试珀金埃尔默傅里叶变换红外光谱仪,可广泛应用于上述红外材料光学性能测试,可测试样品在不同波段下红外透光率以及反射率,搭配变角透射及变角反射附件,可以实现不同角度下透射率及反射率测试,如下图为红外波段透射和反射测试曲线: 图11 用于Spectrum 3傅里叶红外的TAMS附件 图12 红外TAMS附件测试样品红外波段不同角度透射数据Summary综上,采用Lambda系列紫外/可见/近红外分光光度计以及傅里叶红外光谱仪,搭配TAMS、标准检测器、积分球等多种采样附件,可以组合出完备的材料光学性能测试平台,满足光学镀膜测试的多样化需求,更加准确便捷的得到样品的光学检测数据。 关注我们
  • 透射与反射测量技术关键工具及颜色测量方法
    在现代科学研究和工业应用中,精确的物质性质测量是至关重要的。特别是在材料科学、光学工程以及生物医学领域,透射测量与反射测量技术的应用日益增多,它们在各自的领域内发挥着不可替代的作用。透射测量是指测量光线通过物质后的强度变化,以此来分析物质的特性;而反射测量则是基于光线打到物质表面后反射回来的光强变化进行分析。这两种测量技术虽然操作原理不同,但都旨在通过光与物质的相互作用来揭示物质的内在属性。一、透射测量与反射测量的比较分析透射式和反射式分光光度计均能利用光源的闪烁特性,覆盖360至750纳米范围内的全部波长光线进行照射。通过对透射光或反射光的测量,这些设备能够创建出色彩的量化图谱(即色彩“指纹”)。在反射光谱中,主要波长决定了颜色的属性。紫色、靛蓝及蓝色属于短波段,波长介于400至550纳米之间;绿色处于中波段,波长在550至600纳米;而黄色、橙色及红色表示长波段光。对于光亮增白剂(OBA)和荧光剂这类特殊物质,它们的反射率甚至可以超过100%。反射式分光光度仪通过照射光源至样本表面并记录以10纳米步长测得的反射光比例,以此来分析颜色。这种方法适用于完全不透明的物质,通过反射光的量化,可以准确测量其色彩。而配备透射功能的分光光度仪则是通过让光穿透样本,使用对面的探测器来捕获透过的光。这一过程中,探测器会测量透射光的波长及其强度,并把它们转换成平均透射率的百分比,以量化样本的特性。尽管反射模式能够用于分析半透明表面,但准确了解样本的透明度是必须的,因为这直接关系到最终数据的准确性。二、样品确实不允许光线穿透吗?测量透射率与评估不透明度并不总是等同的,因为不透明度涉及两个方面:是否能遮挡视线穿过的表面或基质,以及材料允许光线通过的程度。通常,您可能会认为您的手是不透光的,从某种角度来看,这是正确的。然而,当您把手电筒紧贴手掌并开启时,会发现光线能够从手的另一侧透射出来。半透明与透明材质的本质区别半透明材料允许光线穿透,却不允许清晰的视线通过。举个例子,经过蚀刻处理的浴室塑料门便是半透明的。相比之下,透明材料,如普通的玻璃板,可以让人从一侧清楚地观察到另一侧的物体。三、实际应用及解决方案考虑到涂料,当其涂布于墙面时,其不透明性足以覆盖下层材料,阻止透视效果。但要准确评估涂料的不透明度,我们需采用对比度分析法。一旦应用于基底,涂料通常表现出高不透明度,使得Ci7500台式色差仪成为其测量的理想工具。至于塑料,虽然肉眼看来我们可能无法通过塑料样本看穿,但它们可能具备一定的光透过性。比如,外观不透明的塑料瓶,在未经测试前其真实透光性难以判断。以过氧化氢瓶为例,其内容物若暴露于阳光下会迅速分解,因此这类瓶子通常呈棕色,以屏蔽阳光。然而,置于强烈光源下,这些瓶子是能透光的。鉴于成本考虑,过氧化氢瓶的制造尽量保持不透明。在纺织品的应用上,选择分光光度仪时需考虑具体的使用场景。美国纺织化学师与印染师协会(AATCC)推荐将样品折叠至四层以确保不透明度的测量。这一方法对于测量厚实的织物如灯芯绒裤或棉质卷料足够有效,但对于透明或薄的半透明尼龙材料,采用其他量化技术可能更为合适。请记住,在测量特定允许一定光线透过的纺织品时,按照ASTM的203%遮光测试标准,必须使用具备透射功能的分光光度仪进行测量。Ci7600台式分光光度仪、Ci7800台式分光色差仪和Ci7860台式色差仪均支持透射和反射模式测量,它们为需要同时评估不透明与半透明样本的应用场景提供了理想解决方案。这些设备能够执行三种主要测量方式:①直接透射测量:针对完全透明的样本设计,如塑料拉链袋和清晰的玻璃板。②全透射测量:适合那些允许光线穿透但视线模糊的半透明样本,比如橙汁、洗涤液以及2升容量的塑料瓶。③雾度测量:针对那些能够散射光线的半透明样本,如汽车尾灯的塑料覆盖件,这类样本散射红色光线,而不直接显露灯泡和灯丝。若您的需求仅限于测量完全不透明的表面,Ci7500台式色差仪或许更符合您的需求。然而,如果您的主要测量对象为不透明表面,偶尔也需测量一些允许光线透过的物体,那么具备透射测量功能的设备,如Ci7600台式测色仪或更高端的型号,将是更合适的选择。四、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 光伏材料的角度分辨反射/透射分析
    光学镀膜材料在太阳能行业应用广泛:由化学气相沉降法生成的氧化锌涂层,自然形成金字塔形表面质地,在薄膜太阳能电池领域被用于散射太阳光。将不同折射系数的高分子材料排列组成的全息滤光镜,将太阳光在空间上分成不同颜色的色带(棱镜一样),将不同响应波长的光伏电池调到每个波长的焦距处,从而形成一种新型的多结太阳能电池。位于硅太阳能电池前部的纳米圆柱形硅涂层起米氏散射的作用,因此增加了在更宽入射角范围和偏振情况下的光被太阳能电池的吸收。曲面型光电模块的渲染和原理图。3M可见镜膜能够使模块在可见光区表现为镜像,而在近红外光区变为黑色。对于所有的光学涂层——特别是那些非垂直角度接收阳光或者阳光入射的涂层,表征波长、角度和偏振测定的反射和入射就尤为关键。PerkinElmer公司的自动化反射/透射附件ARTA,可以测定任何入射角度、检测角度、S和P偏振光在250-2500nm的范围内的谱图,从而告诉我们:所有的入射光都去哪儿啦?装备了ARTA的LAMBDA紫外/可见/近红外分光光度计样品3M可见光镜膜:吸收紫外光,反射可见光,透过红外光。仪器PerkinElmer公司的LAMBDA 1050+紫外/可见/近红外分光光度计。150mm积分球,Spectralon涂层积分球包含硅和InGaAs检测器,检测样品200-2500nm的范围内的总透射谱和总反射谱。装备了150mm积分球的LAMBDA紫外/可见/近红外分光光度计ARTA,配备PMT和InGaAs检测器的积分球(60mm),能在水平面上围绕样品旋转340°,进行角度分辨测量。3M薄膜固定在ARTA样品支架上的照片实验结果用150mm积分球附件测量的3M薄膜的总反射和总透射谱图。薄膜在750nm附近具有预期的突变,在此处有将近100%的可见光反射率和约90%的红外光透射率。3M薄膜对于s(左图)和p(右图)偏振光的角度分辨反射谱图。对于所有的偏振情况,直至50˚的范围内反射到透射的转变都很急剧,但是有轻微的蓝移。对于入射角在约50˚以上的情况,s偏振光的转换终止,并且薄膜开始失去对光谱的分光功能。这种情况的一个明显后果就是在冬天或者纬度高于30˚的区域的夏季月份,曲面型光电镜片的工作效率都很低。更多详情,请扫描二维码下载完整应用报告。
  • 光学薄膜透射反射性能检测方法进展
    随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。本文主要介绍采用PerkinElmer紫外可见近红外光谱仪配置可变角度测试附件,直接测试样品不同角度下绝对反射率、透射率曲线,无需参比镜校准,操作简单方便,测试结果更加准确。附件为变角度绝对反射、变角度透射率测试附件,如下图所示,检测器和样品台均可以360度旋转,通过样品台和检测器配合旋转,测试不同角度下透射和反射信号。PerkinElmer Lambda1050+ 光谱仪自动可变角附件光路图图1 仪器外观图固定布局 工具条上设置固定宽高背景可以设置被包含可以完美对齐背景图和文字以及制作自己的模板下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。样品变角度透射测试采用自动可变角附件可以方便快捷的测试样品不同角度下透射数据,自动测试样品不同角度下P光和S光下透射率曲线,一次设置即可完成所有角度在不同偏振态下透射率曲线测试,无需多次操作,测试曲线如下图所示。图2 样品不同角度和偏振态下透射率测试数据样品变角度透射/反射曲线测试同一个样品,可以通过软件设置一次性测试得到样品透射和反射率曲线,如下图所示,该样品在可见波长下反射率大于99.5%,透射率低于0.5%,可同时表征高透和减反性能。图3 样品45度透射和反射曲线测试NIST标准铝镜10度反射率曲线测试采用自动可变角附件测试NIST标准铝镜10度下反射率曲线,如下图所示,黑色曲线为自动可变角附件测试曲线,红色为NIST标准值曲线,发现两条测试曲线完全重合,进一步证明测试系统的可靠性,可以准确测试样品的光学数据。图4 NIST标准铝镜10度反射率曲线测试(红色为NIST标准曲线)样品变角度全波长反射曲线测试(200-2500nm)软件设置不同的测试角度和偏振方向,自动测试样品不同角度下P光和S光偏振态下反射率曲线,如下图所示,200-2500nm整个波段下测试曲线均有优异信噪比,尤其是在紫外区(200-400nm),可以完成各波长范围的反射性能测试。图5 样品全波段(200-2500nm)变角度反射率测试不同膜系设计的镀膜样品性能验证
  • 蓝菲光学公司的FS2投射灯测量系统用于标定光谱特性
    一种新的投射灯测量标准出现在地平线上,蓝菲光学公司已经开发出FS2投射灯光谱通量测量系统,它可以精确地测量出光辐射度、光度学和色度学等参数。对于商用、海用、军事、头戴式、应急路旁和室内外照明手电筒等投射灯的开发和制造方面,该专用的测试系统是对灯的发光效能进行综合评价的最有效校准仪器。 这种FS2系统可以测量总光谱辐射通量 (Watts/nm)、总辐射通量(Watts)、总光通量(lumens)、色温(CCT)、灯泡性能随时间的变化、峰值波长和主波长、光谱纯度、显色指数(CRI)、色度坐标和有效带宽等参数。该系统具有很大的动态范围,因此可以对各种灯泡,包括LED、钨灯、氙灯、氪灯等灯泡进行测量。 该系统包括一个积分球表面镀有蓝菲光学公司所特有的高漫反射率材料Spectraflect?的反射面,因此空间尺寸非常紧凑。对于测量方向性很强的投射光源来说,可以保证获得一致的、可重复和可再现的测量结果。借助于位于侧面的输入口,可以很方便地测量前向总光谱通量,在积分球的内部,有一个供选用的内部安装平台,可以用它来测量手电筒等投射灯的总光谱通量。 借助于一个吸收校正灯泡,可以对置换误差进行校正,并且提供了前向光谱通量标准,以供用户进行自行校准。灯泡的分布能进一步减少空间置换误差。投射灯专用的光谱通量测量软件MtrX-Flashlight提供了一个用户友好的、直观的平台,通过它可以对系统进行校正和分析测量结果。所有的测量结果都可以立即在图形界面中显示出来,并且能够生成并打印出报告。
  • 电池电解液液体透射测量工具—台式色差仪
    随着科技的飞速发展,电池已经成为我们日常生活中不可或缺的能量储存好帮手!从我们的便携式电子设备,到那些酷炫的电动交通工具,都要靠电池的支持才能动起来。没错,电池可是真正的能量源头呢!然而,要说到电池的性能和稳定性,可真得多亏了电解液,它是电池的核心组件之一!电解液主要由溶剂、导电盐和添加剂组成。溶剂通常是有机溶剂,例如碳酸酯、碳酸酰、醚类等,导电盐则是决定电池电导率的关键因素。添加剂的加入可以调节电解液的性质,如粘度、化学稳定性等,以提高电池的性能。有了优秀的电解液,电池的表现就会更稳定、更强劲。这样一来,我们的电子设备就能续航更久,电动交通工具也能跑得更远。所以说,不管是充电还是输出电能,电解液功不可没啊!然而,电解液的透射性质有时候可能会遇到一些问题哦!比如,如果电解液的透明性不够好,光线就可能被挡住,影响电池内部的能量传输效率,让电池性能变差。另外,电解液对特定波长的光线吸收过多,可能引起化学反应,导致电池不稳定。而且,电解液中溶质的浓度变化也会影响光线透射的特性。那么,我们要如何解决这个透射相关的问题呢?这就需要依靠Ci7x00系列的Ci7800台式分光色差仪与Ci7860精密色差仪来帮忙!这两款仪器可谓是我们的得力助手!Ci7800台式分光色差仪,可以简单快速地测量电解液的透射率,看看它有没有足够的透明性,保证光线能顺利穿过,让电池能高效传导能量。Ci7800色彩色差仪支持多达5个反射孔径和4个透射孔径,可通过不同位置的端口来测量各种样品的色彩与外观。这项功能使得它在许多领域中都得到了广泛应用。此外,Ci7800还支持多达3个UV滤光镜来控制纺织品、塑料、油漆、涂料和纸张中的荧光增白剂。设备内置数码相机具有预览和主动目标定位功能,可保证测量区域的准确定位,并能捕获图像以备日后检索。同时,它还能检测样品上的污点、划痕或缺陷,并提供随附的测量数据以备审计,为质量控制提供了有效支持。如果我们想要更深入的了解电解液的光学特性,这时候Ci7860精密色差仪就派上用场了!它不仅可以测量透射率,还能给我们提供更多数据,包括吸收特性和反射率等等。这样一来,我们就能全方位地了解电解液的性质,发现其中的问题,进而针对性地优化电解液的配方。Ci7860精密色差仪广泛应用于多个工业领域,包括纸张、纺织物、塑料、颜料、汽车以及屏幕色彩校正等。它为这些行业提供了可靠的色彩测量和管理解决方案,帮助企业提高产品质量,降低生产成本,增强市场竞争力。有了这两款色差仪,我们可以轻松解决电解液透射相关的问题!通过优化电解液的性能,我们就能让电池表现得更稳定、更强劲,让我们的电子设备续航更久,电动交通工具跑得更远,让我们的生活更便利、更美好。同时,这些仪器的应用也推动着科技的不断发展,让能源领域取得了更大的进步。随着技术的不断创新和仪器的不断完善,相信电池的未来会变得更加出色!“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 教你如何测定微小样品的透过率、反射率
    随着机器的小型化趋势,光学部件也在不断微小化,如摄像镜头中的透镜、传感器部件、光盘中的拾音器组件等。因此微小样品的准确测量十分必要。要准确获得这些微小样品的测定,需要缩小入射光束,以使光斑照射到样品上。日立开发了各种微小样品测量附件,为光电领域提高解决方案。1. 微小样品的透过率测量使用日立UH4150选配微小样品透过率测定附件和全积分球,利用φ1 mm 掩光膜即可测定透镜的透射率。图1 小尺寸透镜的外观 图2 两种透镜的透过光谱 微小样品透过率测定附件由聚光透镜、参比光束光阑以及微小样品支架构成,可准确测定微小样品和任意微小零配件的透射率。微小样品支架可搭载最大直径为φ20mm的样品,标配φ3mm的掩光膜,用户也可选配φ1mm的掩光膜等。图3 微小样品透过率测定附件 2. 微小样品镜面反射率的测定手机镜头和车载摄像头中图像传感器的红外截止滤光片尺寸微小,使用UH4150选配微小样品5度绝对反射附件即可测定滤光片的反射率。图4 红外滤光片的镜面反射光谱 可以看到滤光片在可见区的反射率低,在近红外区的反射率较高。微小5 °镜面绝对反射附件由反射附件、聚光透镜、参比光束光阑以及微小样品支架构成。与5 °镜面反射附件(标准)相比,样品位置的光束较小,支持微小样品反射光谱的测定。图5 微小样品反射率测定附件3. 微小样品的全反射率测定使用日立UH4150 搭配微小样品全反射/漫反射测量附件,测量了LED灯反射板的全反射率。图6 LED灯的反射板测定时使用铝制平面镜作为标准参考,利用铝制平面镜的绝 对反射率将LED灯反射板的反射率的相对值转换为绝对值,得到全反射光谱如图所示。图7 LED 灯反射板的全反射光谱测定结果表明该反射板的反射率高达90%,可以有效利用LED灯光源的光通量,提高照明效率。综上案例,使用具有大型样品室的日立紫外可见近红外分光光度计UH4150,容易构建不同样品的光学测量系统,可搭配多种附件,实现低噪音测定微小样品。拨打 4006305821,获取更多信息
  • 【标准解读】透射电镜图像法测量多相体系中纳米颗粒粒径
    透射电子显微镜(TEM)具有原子水平的分辨能力,它不仅可以在观察样品微观形态,还可以对所观察区域的内部结构进行表征,成为纳米技术研究与发展不可或缺的工具。特别是TEM配合图像分析技术对多相体系中纳米颗粒粒度进行分析具有一定的优势。本文将对已实施的GB/T 42208-2022 《纳米技术 多相体系中纳米颗粒粒径测量透射电镜图像法》进行解读。多相体系是指体系内部不均匀的体系,在物理化学中也称为非均相体系、混相体系或者复相体系。而纳米颗粒受尺寸限制往往存在于材料基体中,形成多相体系来增加整个材料特性,这可能关系到后续产品的性能和安全性,因此对多相体系中纳米颗粒的评价尤为重要。透射电镜能作为最直观、准确的设备能够对样品内部进行评价,在多相体系中的纳米颗粒粒径表征中不可或缺。本标准从很大程度上完善和补充国内现有标准的不足,给出较为完整的多相体系中纳米颗粒粒径分析评价方法,不仅对于多相体系中纳米颗粒的粒径这种需要探讨体系内部的颗粒测量给出了方案,而且对于不同TEM的颗粒测量结果一致性评判具有重要的参考价值。本文件适用于固相多相体系中的粒径测量。考虑到多相体系的多样性,胶体和生物组织中的纳米颗粒,只要样品制备满足透射电子显微镜观察的要求,也适用本文件.一、背景纳米材料由于表面效应、量子尺寸效应、体积效应和量子隧道效应等,使材料表现出传统固体不具有的化学、电学、磁学、光学等特异性能。同时,受到尺寸的限制,纳米材料单独使用的场合有限,往往存在于材料基体中,形成多相体系来增加整个材料特性。但是由于纳米颗粒粒径较小、比表面积较大、表面能较大,极易团聚,致使其在多相体系中很难表征和评价。研究多相体系中纳米颗粒的粒度测量,对优化材料结构,改善材料的性能有着极大的促进作用,对推动纳米材料的应用和发展具有重要的意义。多相体系中纳米颗粒不同于单一的纳米颗粒,它对检测方法、样品处理及样品制备都有较高的要求。扫描电子显微镜和原子力显微镜由于成像原理的问题,不利于多相体系中纳米颗粒的测量。因此在本标准发布之前,国内该内容处于空白,本标准聚焦透射电镜的成像原理,对样品制备、图像获取、图像分析、结果表示、测量不确定度等技术内容给出了充分的、系统的说明。二、规范性引用文件和参考资料本标准在制定过程中,在符合GB/T1.1-2020《标准化工作导则 第1部分:标准的结构和编写》国家标准编写要求的基础上,充分参照了现行相关国家标准中的相关术语及技术内容的表述,包括颗粒系统术语、纳米材料术语、微束分析、粒度分析、纳米技术等各个专业领域;同时,在规范表达上,也充分征求了行业专家、资深从业者、用户的意见和建议,力求做到专业、通俗、易懂。 三、制定过程本标准涉及的领域较为专业,因此集合了国内相关领域的一批权威代表性机构合作完成。牵头单位为国家纳米科学中心,主要参加单位包括国标(北京)检验认证有限公司、北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)、深圳市德方纳米科技股份有限公司、中国计量大学、北京粉体技术协会等。对于标准中的重要技术内容,如实验步骤、不同多相体系样品的制备方法、图像获取方式、图像分析、数据处理等均进行了实验验证,确定了标准中相关技术的操作可行性。四、适用范围本文件适用于固相多相体系中纳米颗粒的粒径测量和粒径分布。胶体和生物组织中的纳米颗粒,只要样品制备满足透射电子显微镜观察的要求,也适用本文件。 五、主要内容本标准描述了利用透射电子显微镜图像处理和分析技术进行纳米颗粒在多相体系中分散的粒径测量方法的全流程,包含了标准所涉及的术语和定义,TEM的成像原理,不同类型样品的制备方法,详尽的实验步骤,结果表示以及测量不确定度的来源,并在附录中针对不同的样品类型给出了实用案例。术语及定义:即包括了纳米颗粒、分散的术语定义,还包括了TEM中明场相、暗场像、扫描透射电子显微图像和高角环形暗场像等几种成像方式的定义。一般原理:利用透射电镜图像评估纳米颗粒在多相体系中的粒径测量,主要基于透射电子显微镜中电子束穿透样品成像的原理,并对图像进行处理,通常需要借助粒径分析软件进行粒径测量,以避免人为因素的干扰。样品制备:纳米颗粒在多相体系中的分散,由于多相体系材料不同,样品制备方法不同,系统的介绍了纳米复合材料的制备、多相固态金属材料的制备以及多相生物材料的制备方法,这包含了超薄切片技术、离子减薄技术、生物染色技术等。实验步骤:包含了装样、仪器准备、图像获取的全过程。需要注意的是根据多相体系材料及其中纳米颗粒的种类和状态的不同,在测试过程中要明确选用明场、暗场、高角环形暗场等合适的成像技术,并保证有足够清晰度和对比度的透射图像,能够准确识别到图像中的纳米颗粒。除此之外,为了使拍摄所得的图像中包含有足够的样品数量进行粒径测量,需要在不同的位置多次拍摄。具体的过程,本标准在附录A中以镍基高温合金多相体系中纳米颗粒为例,给出了详细过程。粒径测量:多相体系中的纳米颗粒的透射电子显微镜图像通常存在背景亮度不均匀、分散相边界与图像背景灰度差小的特点,因此需要图像处理将样品图像从背景中区分出来。总体目标是将数字显微照片从灰度图像转化为由离散颗粒和背景组成的二值化图像。重点采用阈值算法进行单个颗粒的测量。同时,颗粒粒径测量时测量颗粒数量对测量不确定的影响较大,因此需要确认最少测量颗粒数,这也取决于实际的测量需求。在结果表示方面,实验室可以根据实际需求,只评价纳米颗粒粒径的大小,也可以以纳米颗粒的分布范围为评价目标。在标准的附录中给出了两种分布范围方式。不确定度:对多相体系中纳米颗粒的粒径测量的测量不确定度主要来源包含了样品均匀性、样品制备、图像处理和测量所需的颗粒数不足等。在上述基础上,给出了测量报告的信息及内容。本文作者:常怀秋 高级工程师;国家纳米科学中心 技术发展部Email:changhq@nanoctr.c
  • 蓝菲光学成功交付上海市质检院定制摄影镜头光谱透射率及色贡献指数检测系统
    2019年11月蓝菲光学成功交付上海质检定制摄影镜头光谱透射率及色贡献指数检测系统。光谱透射率及色贡献指数是衡量摄影镜头质量优劣的重要指标。摄影镜头的光谱透射比特性直接影响彩色摄影的色再现质量,ISO规定了以用对数透射比为基础的色贡献指数来描述照相镜头的色再现性(ISO 6728-1983)。我们知道照相镜头是由多片透镜组成的,其设计是由全世界多个厂商共同协作的,不同厂商根据其设计方案,则选用不同的透镜玻璃。照相机的色贡献指数是由整个镜头的综合光谱透过率决定的。从某种意义上讲,用于照相镜头的每一块透镜玻璃都应该测量其色贡献指数,并且测试值符合标准要求。上海市质量监督检验技术研究院,是国家市场监督管理总局批准设立的,经上海市人民政府依法设置的非营利性公益科研类政府实验室,是国家级产品质量监督检验研究院。是集产品质量检验检测、计量校准、体系与产品认证、标准化服务、培训与咨询为一体的全国最具有综合竞争力的检测院所之一。上海市质检院针对采购检测仪器具有很高的产品要求,在产品质量、性能、售后服务等一系列考察后,选定蓝菲光学定制生产镜头色贡献指数检测系统。蓝菲光学定制生产的镜头色贡献指数检测系统基于积分球的光谱透射率测试系统,来获取镜头的光谱透射比。待测镜头最大尺寸128mm(D)*366mm(L), 待测镜头重量5kg以内。镜头透过率范围一般在4%-98%。硬件系统由积分球,光谱仪,准直光源,夹具和暗室组成。系统符合JBT8248.1-1999 照相镜头光谱透射比的测量方法和JBT8251-1999 照相镜头的色贡献指数国标。蓝菲光学高漫反射涂料很受行业认可,该测试系统积分球内部使用Spectraflect® 涂料在紫外-可见光-近红外光谱区内漫反射率高达98%。积分球的开口处采用刀刃结构有助于收集大角度散射,挡板采用最小化设计,使得探测器能够最大程度地看到球内壁表面。探测器口位于球的顶部和底部,使用挡板遮挡防止样品和参考口光束直接照射。蓝菲光学的光谱仪光谱范围350-1100nm,该光谱仪内置的电制冷、薄型背照式CCD探测器可高效地抑制杂散光。所使用的准直光源均匀性>90%,光斑大小可调,配套软件显示光谱透射比和色贡献指数,光谱间隔为10nm,此外允许我们自定义光谱及对软件二次开发,方便实用。图1 上海质检定制摄影镜头光谱透射率及色贡献指数检测系统图图2 摄影镜头光谱透射率及色贡献指数检测系统软件界面蓝菲光学定制的摄影镜头光谱透射率及色贡献指数检测系统设计灵活,可依照标准定制,适用于各类镜头透过率和色贡献指数测试。
  • 百实创发布透射电子显微镜原位-原子尺度双倾力热电集成系统新品
    关于INSTEMS系统原位透射电子显微分析方法是实时观测和记录位于电镜内部的样品对于不同外场如力、热、电等激励信号的动态响应过程的方法,是当前物质结构表征科学中最新颖和最具发展空间的研究领域之一。受限于透射电镜样品室狭小的空间及特殊的结构,目前商业化的透射电镜原位力学样品杆多采用探针式力场加载,无法实现双轴倾转,大大限制了研究者从原子尺度下原位研究材料的力学行为及变形机制。针对这一世界性技术难题,百实创公司专项开发的INSTEMS系列透射电镜用原位原子尺度双轴倾转力、热、电一体化综合测试系统拥有独特创新设计的MEMS芯片以及与之相匹配的微驱动系统,保证了样品在透射电镜毫米尺度空间内实现力场与热场或电场耦合加载条件下,同时具备大角度正交双轴倾转功能,进而实现在多场耦合加载下材料原子尺度显微结构及其性能演化的原位观察与记录。该系统可实现1200℃高温下力热耦合加载,最大驱动力大于100mN,驱动行程大于4μm,最小驱动步长低于0.5nm,达到国际领先水平,极大的扩展了透射电子显微镜在材料科学原位研究领域的应用。本系统与各大品牌电镜有优异的机械及电磁兼容性,稳定性高,保证电镜原有的分辨能力。整合了独特创新设计的MEMS芯片与微型驱动器的高集成Mini-lab原位样品搭载平台,保证了不同形状、性质的样品在TEM中有稳定的力、热、电加载实验环境,并能精确控制参数变量;通过更换不同Mini-lab实验台,可以灵活的实现力、热、电单场或任意两场耦合加载,并能做到互不干扰。精密的结构设计保证样品能在场加载条件下实现大角度双倾,结合皮米级超高精度控制系统,确保显示的原子像无抖动、分辨率高。功能强大,操作便捷的控制软件提供了丰富的加载模式,并实时收集与处理数据,满足用户不同条件下的实验与测试设计要求。可实现多场耦合加载:ISTEMS系列产品具有高度集成的可定制化微型实验系统。通过更换不同功能的微型实验台(Mini-lab),该系列可灵活施加力、热、电等多种外场组合。Mini-lab独特的MEMS芯片设计和新颖的集成策略解决了小区域多场耦合加载兼容性难题。可独立控制多场加载,避免相互干扰。 原子尺度分辨率:INSTEMS系列结构紧凑的微型实验台和特殊设计的β轴倾转机构完美融合了多场耦合施加和双轴倾转功能,可轻松实现原子尺度分辨的动态观察。 高精度控制与测量:超灵敏微型驱动器稳定的四电极MEMS芯片 可靠的电学连接无干扰的电路布局 强大的高精度多通道源表确保INSTEMS系列产品可同时实现高精度加热、pm级驱动控制和pA级电信号测量。 适用范围极宽、功能易于扩展:INSTEMS系列适用于多种形态尺寸的材料(适用于块体以及一维、二维纳米材料);可实现多种类型的多场耦合施加(热-力-电耦合);加载灵活,可对样品进行拉伸加载、压缩加载、弯曲加载,也可进行纳米压痕实验;同时可根据用户需求进行功能扩展。适用于大部分固体无磁材料的研究。 关键技术指标与参数:热场指标温度范围室温~1200℃*加热速率>10000℃/s温度精度≥98%测温方式四电极法EDS兼容性√力场指标驱动精度<500pm最大驱动力>100mN最大位移4μm电场指标最大输出电压±50V电流测量范围1pA-1A*电压测量范围100nV-50V双倾指标α角倾转范围±25°β角倾转范围±25°*驱动精度<0.1°分辨率极限稳定性<50pm/s*空间分辨率≤0.1nm* * 列出参数取决于Mini-lab型号与电镜状态。 硬件说明:样品杆部分包含双轴倾转样品杆与配套的Mini-lab实验台,MET型号样品杆可兼容所有类型的Mini-lab实验台。软件控制:力、热、电三场都具有丰富的加载模式可供选择:力场可选择单向拉/压加载或循环加载;电场拥有7种可供选择的波形加载;热场可自由设置温控程序。 应用范围1. 高温环境下的力学行为在力场与热场条件下原位实时观察材料原子像,并能获取成分信息。可应用于加速蠕变、高温相变、元素扩散、高温塑性变形、再结晶、析出相与位错的关系等方面的研究。原位原子尺度研究高温合金相在高温下(1150℃)的形变机理原位观察超级合金在400℃与750℃下塑性变形过程2. 高温环境下的电学行为 在热场与电场条件下原位实时观察材料原子像,并获取电场数据。可应用于热电材料、半导体、相变存储、电场可靠性分析、介电材料等领域的研究。 热电耦合条件下SnSe原位原子尺度失效分析3. 力与电场的交互行为在力场与电场条件下原位实时观察材料原子像,测量和控制样品电信号。可应用于压电材料、铁电材料、锂离子电池、柔性电子器件等领域的研究。 4. 力场、热场、电场单场条件下的材料组织变化可定量的控制单力场、热场、电场施加于样品,并实时原位的观察样品原子像及成分信息。高熵合金900℃条件下观察元素扩散创新点:一、独特设计的MEMS芯片以及与之相匹配的微驱动系统,保证了样品在TEM毫米尺度空间内,在力场与热场或电场耦合加载条件下具备大角度双轴倾转功能,进而实现在多场耦合加载下材料原子尺度显微结构及其性能演化的原位观察与记录。该系统可实现1200℃高温下力热耦合加载,驱动力大于100mN,驱动行程大于4μ m,最小驱动步长低于0.5nm,达到国际领先水平。 二、MEMS芯片采用特殊结构及材料设计,加热响应迅速(>10000℃/s),温度精度高>98%,热稳定好(<50pm/s),使用寿命长(>100h),相较于传统一次性使用的MEMS芯片,很大程度上降低了实验成本。 三、采用高度集成的可定制化微型实验系统,可实现力、热、电以及力热耦合,力电耦合和热电耦合等多种外场的施加。 四、适用范围广,不仅适用于多种类,多维度材料研究,还可实现包括拉伸、压缩、弯曲、纳米压痕等多种力场加载方式。 透射电子显微镜原位-原子尺度双倾力热电集成系统
  • 微型光谱仪之反射检测
    1、技术简介  光在两种物质分界面上改变传播方向又返回原来物质中的现象,叫做光的反射。正是因为光在物体表面发生的反射,我们的眼睛才能感知到周围的世界的颜色与景象。反射是通过光入射到物体表面后在不同波长段的反射率差异引起。光谱仪获得的反射光谱信息就像人眼所见到的视觉内容一样,但是光谱信息更为数据化、更客观。反射测量可以测试物体的颜色,或者通过判定物体的反射光谱差异进行多样品的筛选和品控。 镜面 粗糙表面图5.1 反射原理图  2、 应用说明  由于某些检测样本的特殊性,不能完全依赖于化学方法进行检测,反射光谱模型作为一种迅速、高性价比的检测方法,可以作为化学分析方法在其他应用领域的替代方案,甚至可以直接用来测试粉末状样品。反射光谱检测方法不能判定是否适用于被测目标样本的原有模样,所以还是需要尝试多次对照测试它们的反射光谱,提高光谱数据的准确性。  化学分析的方法可以用来提高最低检出限,并确定掺杂成分,但是光学的方法可以进行预先的快速查看与筛选。将反射光谱检测与化学计量学相结合,利用可见光和近红外漫反射光谱提供快速、无损的检测。在实际检测中,可以分析不同的样本之间的差异。数学上来说,主成分包含在了定义的所有波长多维空间的范围内。主成分使我们能够获得多维数据集和重要维度,然后从无意义的噪音中分离出有意义的信息。  食品安全:香料检测,香蕉成熟度分析,芒果与鳄梨区分检测等   自然环境:水体汞污染监测,农作物分析等  3 、典型产品和配置  颜色检测配置:  1. 光谱仪  2. 光源  3. 积分球:积分球可以180° 收集样品表面的反射光,所以它能尽可能多地收集样品表面的反射光。反射式积分球还能使用在弯曲表面,或者颜色测量。它能将样品表面发射的光很好地在积分球内部进行匀化,然后再耦合到光谱仪。反射光通过圆形的入射光孔径进入积分球,然后经过分球内壁涂抹的特殊涂层材料的均匀反射。图2 积分球示意图  4. 反射探头:当需要快速测量样品或者应用在样品表面非常小的采样点时,反射探头既可以测量镜面反射,也可以测量漫反射,而且可以基于光源和光谱仪的配置不同,选择不同类型的扩大波长范围的反射探头。探头的发射光和反射光是同一方向的,接收到的光是反射光的一部分,所以使用反射探头测量反射光谱是一种相对测量。图3 反射探头  5. 采样附件(光纤、滤光片、透反射支架、动态样品台等):透反射支架用来固定反射探头的标准配件,同时也可以用于透射测量。使用透反射支架,可以有效地减少光源对样品的过度加热,对于生物样品或者有机样品,还有那些低熔点的样品非常重要 动态样品台,基于样品台旋转或者直线移动来对样品进行测量,并获得测量的平均信号。这种测量方式避免了结果的多样性,提高了样品测量的均一性结果,特别是对于谷物、种子和土壤类等不均一的样品,是比较理想的选择。 图4 反射支架和样品台  6. 准直透镜:在做反射测量时,准直透镜可以使用在光纤的末端来准确地固定入射光和反射光的角度。镜面发射或者漫反射都可以使用这样的测量方式,但是我们需要固定夹具来对测量系统进行固定。准直透镜必须预先调焦来避免光束的发散,来保证获得更好的光谱。  7. 光谱仪控制软件图5 反射检测典型配置  典型配置  典型产品:高灵敏度光谱仪,光源,滤光片,积分球,透反射支架,动态样品台,准直透镜  4 、应用文章  4.1 香料掺假检测图6 不同香料检测光谱  4.2 香蕉成熟度检测图7 不同成熟度香蕉光谱图  4.3 芒果与鳄梨区分检测图8 芒果与鳄梨检测光谱  4.4 基于SPR快速检测花生过敏源图9 过敏源光谱  4.5 无人机智能农业检测 图10 无人机农业检测光谱图  4.6 农作物成分检测图11 农作物成分光谱图  4.7 水体汞污染监测图12 水体检测光谱图(来源:海洋光学)
  • Science:透射电镜新突破!电子叠层衍射成像实现晶格振动原子分辨率极限
    透射电子显微镜(TEM)在物理、化学、结构生物学和材料科学等领域的微纳结构研究中发挥着重要作用。电子显微镜像差校正光学的进展极大地提高了成像系统的质量,将空间分辨率提高到了低于50pm的水平。然而,在实际样品中,只有在极端条件下才能达到这个分辨率极限,其中一个主要的障碍是,在比单层更厚的样品中,多电子散射是不可避免的(由于电子束与原子静电势之间的强库仑相互作用)。多次散射改变了样品内部的光束形状,并导致探测器平面上复杂的光强分布。当对厚度超过几十个原子的样品进行成像时,样品的对比度与厚度之间存在非线性甚至非单调的依赖关系,这阻碍了通过相位对比成像方式直接确定样品的结构。定量结构图像解释通常依赖于密集的图像模拟和建模。直接修正样品势需要解决多重散射的非线性反函数问题。尽管已经通过不同的方法对晶体样品的不同布拉格光束进行相位调整(其中大部分是基于布洛赫波理论),但对于具有大晶胞或非周期结构的一般样品来说,这些方法变得极其困难,因为需要确定大量未知的结构因子。Ptychography(叠层衍射成像)是另一种相位修正方法,可以追溯到20世纪60年代Hoppe的工作。现代成熟的装置使用多重强度测量——通常是通过小探针扫描广大的样品收集的一系列衍射图案。这种方法已广泛应用于可见光成像和X射线成像领域。直到最近,电子叠层衍射成像技术还受到样品厚度和电子显微镜中探测器性能的限制。二维(2D)材料和直接电子探测器的发展引起了更广泛的新兴趣。用于薄样品(如2D材料)的电子叠层衍射成像已达到透镜衍射极限的2.5倍的成像分辨率,降至39μm阿贝分辨率。然而,这种超分辨率方法只能可靠地应用于小于几纳米的样品,而较厚样品的分辨率与传统方法的分辨率没有实质性差异。对于许多大块材料来说,这样的薄样品实际上很难实现,这使得目前的应用局限于类2D系统(例如扭曲的双层)。对于比探针聚焦深度更厚的样品,多层叠层衍射成像方法提出了使用多个切片来表示样品的多层成像。所有切片的结构可以分别恢复。目前,利用可见光成像或X射线成像都成功地演示了多层叠层衍射成像。然而,由于实验上的挑战,只有少数的多层电子叠层衍射成像证据的报道,并且这些报道在分辨率或稳定性方面受到限制。透射电子显微镜使用波长为几皮米的电子,有可能以原子的固有尺寸最终确定的固体中的单个原子成像。然而,由于透镜像差和电子在样品中的多次散射,图像分辨率降低了3到10倍。康奈尔大学研究人员通过逆向解决多次散射问题,并利用电子叠层衍射成像技术克服电子探针像差,证明了厚样品中不到20皮米的仪器(图像)模糊以及线性相位响应;原子柱的测量宽度受到原子热涨落的限制,新的研究方法也能够在所有三维亚纳米尺度的精度从单一的投影测量定位嵌入原子的掺杂原子。相关研究工作以“Electron ptychography achieves atomic-resolution limits set by lattice vibrations”为题发表在《Science》上。图1 多层电子叠层衍射成像原理图2 PrScO3的多层电子叠层衍射重建图3 多层电子叠层衍射成像的空间分辨率和测量精度图4 多层电子叠层衍射的深度切片
  • PSC发布非接触式亚微米分辨红外拉曼同步测量系统新品
    非接触式亚微米分辨红外拉曼同步测量系统 — —mIRage O-PTIR系统 产品简介:美国PSC (Photothermal Spectroscopy Corp, 前身Anasys公司)最新发布的一款应用广泛的亚微米级空间分辨率的非接触式亚微米分辨红外拉曼同步测量系统。基于独家专利的光热诱导共振(PTIR)技术,mIRage产品突破了传统红外的光学衍射极限,其空间分辨率高达500 nm,可以帮助科研人员更全面地了解亚微米尺度下样品表面微小区域的化学信息。 mIRageTM O-PTIR 光谱O-PTIR (Optical Photothermal Infrared) 光谱是一种快速简单的非接触式光学技术,克服了传统IR衍射的极限。与传统FTIR不同,不依赖于残留的IR 辐射分析,而通过检测由于本征红外吸收引发的样品表面快速的光热膨胀或收缩,来反映微小样品区域的化学信息。 mIRage工作原理:• 可调的脉冲式中红外激光汇聚于样品表面,并同时发射与红外激光共线性的532 nm的可见探测激光;• 当IR吸收引发样品材料表面的光热效应,并被可见的探测激光所检测到;• 反射后的可见探测激光返回探测器,IR信号被提取出来;• 通过额外地检测样品表面返回的拉曼信号,可以实现同时的拉曼测量。 O-PTIR克服了传统红外光谱的诸多不足:• 空间分辨率受限于红外光光波长,只有10-20 μm• 透射模式需要复杂的样品准备过程,且只限于薄片样品• 无传统ATR模式下的散射像差和接触污染 O-PTIR的优势之处在于: • 亚微米空间分辨的IR光谱和成像(~500 nm),且不依赖于IR波长• 与透射模式相媲美的反射模式下的图谱效果• 非接触测量模式——使用简单快捷,无交叉污染风险• 很少或无需样品制备过程 (无需薄片), 可测试厚样品• 可透射模式下观察液体样品• 可以与拉曼联用,实现同时同地相同分辨率的IR和Raman测试,无荧光风险mIRage 技术参数 波谱范围模式探针激光样品台最小步长样品台X-Y移动范围IR (1850-800 cm-1)反射 532 nm 100 nm 110*75 mmIR (3600-2700 cm-1)透射Raman (3900-200 cm-1)反射 重要应用实例分析: 1、多层薄膜 高光谱成像: 1 sec/spectra. 1 scan/spectra样品区域尺寸:20 μm x 85 μm size. 1 μm spacing.图谱中可以明显看出在不同区域上的羰基,氨基以及CH2 拉伸振动的分布。 2、高分子膜缺陷左:尺寸为240 μm的两层薄层上缺陷的光学图像;右:在无缺陷处(红色)和缺陷处(蓝色)的样品的IR谱图,998 cm-1处为of isotactic polypropylene 的特征红外吸收峰。 3、生命科学 左:70*70 μm范围的血红细胞的光学照片;中:红色条框区域在1583cm-1处的Raman照片;右:红血细胞选择区域的同步的IR和Raman图谱 上左:水中上皮细胞的光学照片;上右:目标分子能够在红外光谱上很容易的区分和空间分离,可以明显看到0.5-1.0 μm的脂肪包体;下:原理示意图:红外光谱测量使用透射模式,步长为0.5 μm。 4、医药领域 左:PLGA高分子和Dexamethasone药物分子的混合物表面的光学照片中:在1760 cm-1 出的高光谱图像,显示了 PLGA在混合物中的分布,图像尺寸40 μm * 40 μm右:在1666 cm-1 出的高光谱图像,显示了 Dexamethasone在混合物中的分布,图像尺寸40 μm *40 μm 5、法医鉴定 左:800 nm纤维的光学照片右:纳米纤维不同区域的O-PTIR图谱 6、其他领域• 故障分析和缺陷• 微电子污染• 食品加工• 地质学• 考古和文物鉴定 部分用户及发表文章 [1] Ji-Xin Cheng et al., Sci. Adv.2016, 2, e1600521.[2] Ji-Xin Cheng et al., Anal. Chem. 2017, 89, 4863-4867.[3] Label-Free Super-Resolution Microscopy. Springer, Biological and Medical Physics, Biomedical Engineering.创新点: mIRage O-PTIR (Optical Photothermal Infrared) 是基于独家专利的光热诱导共振(PTIR)技术,m其突破了传统红外的光学衍射极限,空间分辨率高达500 nm,可有效助力科研人员更全面地了解亚微米尺度下样品表面微小区域的化学信息。 非接触式亚微米分辨红外拉曼同步测量系统
  • 如何测量绝对反射与相对反射?
    1. 前言光照射到物体上,由于物体的表面不同,通常会发生两种反射,镜面反射和漫反射,如图所示。图1 光在物体表面的反射示意图对于玻璃、镀膜基板、滤光片等表面光滑的零部件,镜面反射率是评价其光学特性的重要参数,测定反射率最常用的仪器是紫外可见近红外分光光度计。日立紫外产品线丰富,波长测试范围涵盖紫外可见区域到近红外区域,可以满足样品不同波长下的测量需求。2. 应用数据镜面反射根据测量方式的不同,分为相对反射率和绝对反射率。客户需要根据样品特征,选择不同的测量方式。日立具有5°到75°固定入射光角度的镜面反射附件,适用于多种样品的镜面反射测量。图2 绝对反射测量图3 相对反射测量绝对反射率通常使用V-N法进行测量,直接获得样品的反射特性,应用广泛。但是对于低反射率的样品,使用相对反射测量,可以有效扩大动态范围。 2.1 石英基板的相对反射率测量 • 测量附件图4 5o 相对反射附件• 测量结果 使用紫外可见分光光度计U-3900 的5o相对反射附件,以BK7玻璃为参考标准品测定石英基板的相对反射光谱。结果表明石英基板的相对反射率约为80%。 图5 石英基板的相对反射率通过日立U-3900的选配程序包,使用相对反射率得到转换后的绝对反射率,如下图所示。如果直接测定石英基板的绝对反射率,光谱易受噪声影响。图6 石英基板转换后的绝对反射率2.2 铝平面镜和金平面镜的绝对反射率金平面镜表面涂有金膜,该金膜在红外区域具有高反射率。铝平面镜是表面涂有铝膜,在可见光区到近红外区有较高的反射率和较小的角度依赖性。两者常作为相对反射测量时的标准面。• 测量附件图7 5 o绝对反射附件• 测量结果 使用紫外可见近红外分光光度计UH4150的5°绝对反射附件分析了金平面镜和铝平面镜的绝对反射率。 图8 金平面镜和铝平面镜的绝对反射率 结果表明,在可见光区域,铝平面镜的反射率超过80%。金平面镜的反射率在可见光区域较低,但其在近红外区域的反射率较高。因此在测量样品的相对反射率时,如果需要关注近红外区域,可以使用在近红外区具有高反射率的金平面镜作为标准面。 3. 结论样品的镜面反射率有两种测量方式,相对反射率和绝对反射率。对于低反射性样品,使用相对反射附件测量其相对反射率,可以获得信噪比良好的光谱,如玻璃基板上薄膜的反射率。对于通常的样品,可以直接使用绝对反射附件测量其绝对反射率。日立提供多种镜面反射测量附件,还可根据客户需求量身定制,满足各种样品的镜面反射率测量。
  • 中科院物理所研制出原位透射电镜测量仪器
    最近,中国科学院物理研究所/北京凝聚态物理国家实验室SF1组研制出新的原位透射电镜测量装置,实现了纳米管/纳米线场效应晶体管器件单元在透射电镜中的原位表征。在确定器件材料结构的同时,原位测量电输运性质。他们将这种方法运用到双壁碳纳米管研究上,在实验上直接获得了双壁碳纳米管电输运性质与手性指数的对应关系,相关结果发表在J. Am. Chem. Soc. 131, 62 (2009) 上,这项研究对双壁纳米管基本物性的理解和未来应用均具有重要意义。   双壁碳纳米管由两个单壁碳纳米管套构而成,为纳米光电功能复合材料提供了理想的结构组元,也是研究纳米管层间原子相互作用的最简单材料体系。纳米管的电子结构唯一地决定于表征其原子结构的手性指数(n, m),在实验上测量纳米管物理性质与手性指数的一对一关系,从本征结构出发理解碳纳米管的特殊性质是一个基本的科学问题。该研究小组的博士生刘开辉、副研究员王文龙、工程师许智、研究员白雪冬和王恩哥等人用微加工工艺制作特殊衬底并构造双壁纳米管场效应晶体管,做到器件电输运测量与透射电镜表征相兼容,成功测得了手性依赖的纳米管电输运性质。双壁碳纳米管每一层可能是金属性的(M),也可能是半导体性的(S),根据两者的组合方式有四种类型的双壁碳纳米管,即M/M, M/S, S/S和S/M。他们系统研究了四种组合情况下的双壁纳米管,实现纳米管输运性质与手性指数的直接对应。并且,通过对同一种类型纳米管(S/M)做大量器件样品的研究,证明了层间距是影响双壁纳米管输运性质的主要因素。他们还采用较大电流脉冲烧蚀纳米管的外壁,将探测深入到纳米管内壁,实现了双壁纳米管的逐层测量。实现单个纳米结构单元/材料微区的结构分析与原位性质测量,建立性质与结构的一对一关系,是纳米科学和低维材料物理研究的重要课题。   自2002年以来, SF1组与Q01组和美国佐治亚理工学院王中林教授合作,将扫描探针技术与透射电镜技术结合,研发原位透射电镜实验仪器,开展纳米操纵和纳米测量研究,在单根纳米管/纳米线的操纵和测量方面已经取得了系列进展(申请仪器和方法的发明专利5项,发表多篇论文如APL 87, 163106 (2005) APL 88, 133107 (2006) APL 89, 221908 (2006) APL 92, 213105 (2008) 等)。   该工作得到国家自然科学基金委、国家科技部和中科院的资助。
  • Nature重磅:用透射电子显微镜追踪液体中单个吸附原子!
    表面上的单个原子或离子,影响从成核到电化学反应以及多相催化的多个过程。透射电子显微镜(TEM)是一种主要的方法,可用来可视化的各种衬底上的单个原子。它通常需要高真空条件,但已被开发用于液体和气体环境中的原位成像,其结合的空间和时间分辨率是任何其他方法所无法比拟的,尽管有电子束对样品的影响。当使用商业技术在液体中成像时,包裹样品的窗口和液体中的电子散射,通常将可达到的分辨率限制在几个纳米。另一方面,石墨烯液体电池,实现了液体中金属纳米颗粒的原子分辨率成像。在此,来自英国曼彻斯特大学的Roman Gorbachev&Sarah J. Haigh等研究者展示了一个双石墨烯液体电池,其由中心的二硫化钼单分子层组成,再用六方氮化硼间隔层与两个封闭的石墨烯窗口隔开,这使得在盐溶液中以原子分辨率监测单分子层上铂吸附原子的动力学成为可能。相关论文以题为“Tracking single adatoms in liquid in a Transmission Electron Microscope”于2022年07月27日发表在Nature上。石墨烯,具有极薄、高机械强度、低原子序数、化学惰性、不渗透性和清除侵略性自由基的能力,是原位TEM电池的理想窗口材料。初始的石墨烯液体电池(GLC)设计,依赖于两个石墨烯薄片之间液体囊的随机形成,因此,在长时间的电子暴露下,其产率较低,稳定性较差。更先进的设计,包括了SiNx或六方氮化硼(hBN)的图案间隔层来定义液体袋,从而改善了GLC几何形状和实验条件的控制。在此,研究者开发了一种双石墨烯液体电池(DGLC),用于在透射电镜中研究原子薄膜上单个溶剂化金属原子的运动。这是由于非原位STEM研究表明,液体环境的选择,可以改变金属原子从纳米团簇到单个原子的分布,但原位实验探测这种行为是不可行的,甚至在早期的研究中,单个原子在液体中的成像被证明是难以捉摸的。研究者的重点是MoS2上的Pt,已有的丰富数据使其成为探索原子分辨率液体电池显微镜的局限性和潜力的理想模型系统。DGLC如图1a所示,由两个hBN间隔层组成,每层数十纳米厚,中间夹有二硫化钼(MoS2)单层。两种hBN间隔都包含用电子束光刻和随后的反应离子蚀刻预图纹的空洞。利用堆栈顶部和底部的几层石墨烯(FLG)将液体样品困在空隙中。原子平面的hBN晶体与石墨烯和MoS2形成密封;如果电池局部破裂,这可以防止渗漏,单个细胞之间的液体转移和液体的完全损失。研究表明,通过对70000多个单吸附原子吸附位点的成像,研究者比较了吸附原子在完全水合和真空状态下的位置偏好和动态运动。研究发现,与真空相比,吸附原子在液相中的吸附位分布有所改变,扩散系数也有所提高。这种方法,为单原子精度的化学过程原位液相成像铺平了道路。图1. 双液电池的设计图2. 水溶液环境中单Pt吸附原子在MoS2上的吸附位点图3. 在液槽和真空中的首选吸附位点图4. 使用最近邻链接的单原子跟踪综上所述,尽管强调了理解电子束效应和对复杂水合体系中原子行为进行补充理论研究的重要性,但本文的结果表明了测量固液界面上吸附原子运动的能力。该实验技术广泛适用于不同的材料系统,并提供了一种在不同环境中获得以前无法获得的原子解析、动态、结构信息的途径,适用于物理科学中的许多不同系统。文献信息Clark, N., Kelly, D.J., Zhou, M. et al. Tracking single adatoms in liquid in a Transmission Electron Microscope. Nature (2022). https://doi.org/10.1038/s41586-022-05130-0
  • Zenith Polymer® 白色漫反射片
    用于背光系统的耐用、超实惠漫反射片独特的属性Labsphere的Zenith漫反射片由聚四氟乙烯聚合物制成,具有独特的光学性能。薄片为各种光散射应用提供漫透射,并为各种背光应用提供漫反射和耐用性。该材料非常适合用作辐射测量和光度扩散以及一般背光、平板和显示器的应用。各种尺寸和厚度Zenith漫反射片的厚度为100 μm、250 μm、500 μm、1 mm和2 mm,在250 ~ 2500nm波长范围内的透射值约为4% ~ 50%。可根据客户要求定制尺寸和厚度。 特点: 朗伯特性耐久性、易清洗高透射率,低反向散射特性应用:辐射测量和光度扩散普通背光照明平板显示器订购信息
  • 百实创发布透射电子显微镜原位-原子尺度双倾力电耦合系统新品
    INSTEMS系列为用户提供了7种原位TEM实验平台。其中包含三种单外场施加平台,三种双外场耦合平台和一种三外场耦合平台。三种单外场产品为INSTEMS-M(力学加载)、INSTEMS-E(电学加载)和INSTEMS-T(热场加载);三种双外场耦合产品为INSTEMS-ME(力电耦合)、INSTEMS-TE(热电耦合)和INSTEMS-MT(力热耦合);一种三外场耦合产品为INSTEMS-MET(力热电耦合)。产品介绍:INSTEMS-ME可以实现多种模式的电学施加和高精度的电学测量。同时,可以根据不同的倾转需求选择不同驱动方式。该产品可实现拉伸、压缩、弯曲等多种力学加载模式。借助于独创的力电耦合模式,INSTEMS-ME完美保存了TEM样品杆的双轴倾转功能,成为市场上首个可实现原子尺度力电耦合研究的实验平台。突出优势:1、力场施加条件下高温加热能力超宽加热范围( RT-1200 oC ) 超高加热精度( 最大驱动力 100 mN最大驱动位移4 μm驱动精度电流测量范围1 pA-1 A空间分辨率≤0.1 nmEDS兼容性√应用领域:压电材料铁电材料驱动/传感光电伏材料锂离子电池纳米器件柔性电子器件 … … 创新点:拥有pA等级的高精度电场测量,同时能实现7种电场加载模式应用,包括波形选择与恒压恒流模式等 透射电子显微镜原位-原子尺度双倾力电耦合系统
  • 定制镜面反射测量附件
    1. 镜面反射附件可以用来干什么呢? 镜面反射与我们的日常生活密切相关,如利用镜面反射进行照明和聚集能量的日光灯灯罩、高原上的太阳灶,另外,一些显示器面板,如电脑、手机的显示屏,需要使用增透膜(AR涂层),减少镜面反射,从而让屏幕的画面更清晰,减少鬼影和光斑。 在研发生产或质量检测中,需要对这些元件进行镜面反射测定,据此评价它们的性能。由于这些元件的种类多样,需要测定不同固定角度下的镜面反射,因此定制不同入射角的镜面反射附件可以直接测定不同元件的镜面反射率,提高评价效率。可用于测定光学玻璃,塑料,滤光片,镜子等样品。能够为从事玻璃,滤光片及化学领域的客户带来解决方案。2.镜面反射附件是什么样子的呢? 日立紫外-可见-近红外分光光度计UH4150在镜面反射测量中,可以提供4种固定入射角的标准选配附件,分别是5°,12°,30°和45°。凭借丰富的研发经验,日立可以定制不同固定入射光角度的镜面反射附件。附件的详细信息,请点击以下链接。https://www.instrument.com.cn/netshow/sh102446/s926340.htm有任何关于日立定制附件的问题,请拨打: 400-630-5821
  • 以“太行”之名,挺起透射电镜产业的中华脊梁——我国首台国产商业场发射透射电镜诞生
    1月20日,由生物岛实验室领衔研制,拥有自主知识产权的首台国产商业场发射透射电子显微镜TH-F120“太行”在广州发布。这标志着我国已掌握透射电镜用的电子枪等核心技术,并具备量产透射电镜整机产品的能力。  透射电镜技术跨越多个学科、工程技术复杂、攻关难度大。经过三年多努力,中国科学家们完成了我国首台100%自主知识产权的120千伏场发射透射电镜的整机研制,实现了0.2nm分辨率的成像能力,达到了产品化的水平。  “这对于我国摆脱进口依赖、实现高水平科技自立自强具有重大意义。”中国科学院院士、生物岛实验室主任徐涛介绍,这将打破国内透射电镜100%依赖进口的局面,场发射透射电子显微镜将为我国在材料科学、生命科学、半导体工业等前沿科学及工业领域的高质量发展提供有力支撑。  以“太行”之名,挺起透射电镜产业的中华脊梁  如果说光学显微镜揭开了细胞的秘密,那么透射电子显微镜则把纳米级的微观世界展示在人类眼前。1933年,世界上第一台透射电镜诞生,为科学研究提供更强有力的武器,也因此被誉为高端科学仪器皇冠上的“明珠”。  透射电镜具有极高的行业垄断性与技术门槛。行业数据显示,此前,我国透射电镜100%依赖进口,国产化尚属空白。2022年,我国进口透射电镜约300台,进口总额超30亿元,预计2022年至2028年期间,年复合增长率超5.8%。  生物岛实验室生物电子显微镜技术研发创新中心研究员孙飞早在2016年便带领团队联合中国科学院生物物理研究所启动了预研工作。  “我们通过广泛交流,集合了有志于从事国产电镜自主研制的科学家和工程师,涵盖了电子光学、机械、自动化控制、软件等相关领域。”孙飞介绍,其中既有来自国内外学界的科研人才,也有在产业界深耕扫描电子显微镜多年的领军人物,“大家都抱有同样的愿景,就是造出我们国家自己的透射电镜。”  2020年,这支来自全国各地甚至海外的队伍集结在广州的生物岛实验室组展开技术攻关。团队成立三年多以来,在国家自然科学基金委、科技部、广东省科技厅、广州市科技局的大力支持下,相关研发工作接连取得重大突破——先后成功研制120千伏场发射电子枪、120千伏低纹波高压电源、400万像素和1600万像素棱镜耦合CMOS电子探测相机、100万杂合像素直接电子探测相机等透射电镜核心关键部件。  据悉,电子枪是透射电镜的“光源”,其作用是发射高能电子束照射到样品上,是透射电镜最为核心的部件之一。“将原有的30千伏场发射电子枪提升为120千伏,要解决电子源发射稳定性、高压真空打火等问题。经过不断的摸索,我们突破国外相关技术壁垒,去年成功实现120kV场发射电子枪的稳定量产。”孙飞说到。如今,生物岛实验室是我国唯一有能力量产该透射电镜核心部件的单位。  孙飞直言,更大的困难在于如何将各个研制成功的部件组合起来实现联调,真正拿到高分辨率图像。“拿到分辨率优于0.2nm图像的那天,我们非常激动,我国终于突破这一关键技术。”  为了进一步推动透射电镜的产业化,生物岛实验室与国内领先的科学仪器公司国仪量子联合成立了广州慧炬科技有限公司,致力于将透射电镜技术商业化应用。  “我们成功走到今天,得益于生物岛实验室作为新型研发机构的特殊体制机制,保证了研发队伍的稳定。同体制内外并行发力,与产业界的紧密合作。同时,国家部委项目的支持,保证了项目研制的可持续性。”孙飞说。  此次广州慧炬科技有限公司推出的首款透射电镜新品TH-F120,取名源自中华名山“太行”,寓意TH-F120将如太行山一样成为中国透射电镜产业的脊梁。  向“珠穆朗玛”进发,将推出更高千伏电镜透视更厚材料  广州慧炬科技有限公司总经理曹峰正在推进“太行”的商业化应用。他介绍,场发射透射电镜在高端科研、产业发展应用广泛、意义重大。在生命科学研究领域,它可以看到蛋白质的生物结构;用在集成电路领域,可以实现半导体的缺陷检测;用在新材料领域,可开展锂电池的研发等等。  曹峰表示,“太行”是拥有原子级分辨率的显微放大设备,信息分辨率达0.2nm,可以呈现大多数晶体的排列结构。广州日报记者现场看到,“太行”能清晰呈现小鼠大脑中的髓鞘组织、小鼠肝脏细胞的里的线粒体。“它是多个技术的复合体。我们必须在每个环节都做到极致,才能保证设备整体达到超高分辨率。”曹峰说。  尽管“太行”是该公司推出的“入门级”产品,现已具备多项先进性能——一是自主研制的高亮度场发射电子枪,相比于同级进口产品的热发射电子枪,亮度更高,发射稳定性和相干性更优,匹配自主研制的电磁透镜系统,针对120kV成像平台特别优化电子光学设计,可为用户带来更佳的图像衬度和分辨率;二是自主研制的高稳定性低纹波高压电源,实现了高压自动控制,保证电子枪稳定发射;三是标配自主研制的高像素CMOS相机,在低电子剂量的工况下仍可呈现丰富的样品细节;四是以人机分离为设计理念,匹配高度自动化的控制系统,使图像采集工作更加舒适高效;五是预设充足的拓展接口和整机升级空间,满足用户需求迭代,有效延长整机使用年限。  曹峰透露,团队明年计划研制出200千伏场发射透射电镜。“电压虽然看起来只是增加了80千伏,但研制难度却是指数级增加,设备的稳定性、防护性都需要进一步探索。”  曹峰表示,电压越高意味着电子能量越高,就越能穿透更厚的样品。目前120千伏的电镜,可以穿透大约50纳米厚度的材料。但是对于常见的100纳米的材料,还需要200甚至300千伏的电镜。  在未来数年,该公司计划推出场发射透射电镜系列EM -F200“峨眉”、KL -F300“昆仑”,冷冻透射电镜系列YL -F100C“玉龙”、TGL -F200C“唐古拉”、 ZMLM -F300C“珠穆朗玛”,热发射透射电镜系列QL -T120“秦岭”、DX -LaB120“丹霞”。“我们的透射电镜产品取名均源自中华名山,代表慧炬立足中国、放眼世界,助力科研工作者勇攀高峰、不断突破。”曹峰说。  此次“太行”的发布,是生物岛实验室“二次创业”,向成果转化专业机构成功转型的缩影。作为广州市首批省实验室之一,生物岛实验室不断培养高价值专利,与本地头部企业共建联合实验室、技术产业转化中心,累计孵化企业12家,其中4家估值已经超亿元。通过技术作价、配比投入等方式撬动社会资本近1.5亿元,助力科研成果高效率转化,赋能产业科技创新,为广州高质量发展作出突出贡献。
  • 850万!高分辨率场发射透射电子显微镜设备采购安装
    1、项目编号:JNSMX公标【2022】01号2、项目名称:高分辨率场发射透射电子显微镜设备采购安装3、预算金额:850万元4、最高限价:850万元5、采购需求:高分辨率场发射透射电子显微的采购、安装、调试及售后服务等,主要用途:精确测量碳纳米材料的厚度与层数;获得碳纳米材料的结晶度信息;获得碳纳米材料催化剂的相关信息,包括催化剂的纳米形貌、元素组成、元素分布、晶体分布等。本项目共一个标段(详见采购需求)。6、合同履行期限:合同签订后8个月内将所有仪器、设备送至采购人指定地点,并安装调试到位至验收合格。7、本项目不接受联合体投标。8、本项目接受进口产品。
  • PSC发布mIRage超高空间分辨红外成像光谱仪新品
    超高空间分辨红外成像光谱仪 — —mIRage O-PTIR系统 产品简介:美国PSC (Photothermal Spectroscopy Corp, 前身Anasys公司)最新发布的一款应用广泛的亚微米级空间分辨率的红外光谱和成像采集系统mIRage。基于独家专利的光热诱导共振(PTIR)技术,mIRage产品突破了传统红外的光学衍射极限,其空间分辨率高达500 nm,可以帮助科研人员更全面地了解亚微米尺度下样品表面微小区域的化学信息。 mIRageTM O-PTIR 光谱O-PTIR (Optical Photothermal Infrared) 光谱是一种快速简单的非接触式光学技术,克服了传统IR衍射的极限。与传统FTIR不同,不依赖于残留的IR 辐射分析,而通过检测由于本征红外吸收引发的样品表面快速的光热膨胀或收缩,来反映微小样品区域的化学信息。 mIRage工作原理:• 可调的脉冲式中红外激光汇聚于样品表面,并同时发射与红外激光共线性的532 nm的可见探测激光;• 当IR吸收引发样品材料表面的光热效应,并被可见的探测激光所检测到;• 反射后的可见探测激光返回探测器,IR信号被提取出来;• 通过额外地检测样品表面返回的拉曼信号,可以实现同时的拉曼测量。 O-PTIR克服了传统红外光谱的诸多不足:• 空间分辨率受限于红外光光波长,只有10-20 μm• 透射模式需要复杂的样品准备过程,且只限于薄片样品• 无传统ATR模式下的散射像差和接触污染 O-PTIR的优势之处在于: • 亚微米空间分辨的IR光谱和成像(~500 nm),且不依赖于IR波长• 与透射模式相媲美的反射模式下的图谱效果• 非接触测量模式——使用简单快捷,无交叉污染风险• 很少或无需样品制备过程 (无需薄片), 可测试厚样品• 可透射模式下观察液体样品• 可以与拉曼联用,实现同时同地相同分辨率的IR和Raman测试,无荧光风险mIRage 技术参数 波谱范围模式探针激光样品台最小步长样品台X-Y移动范围IR (1850-800 cm-1)反射 532 nm 100 nm 110*75 mmIR (3600-2700 cm-1)透射Raman (3900-200 cm-1)反射 重要应用实例分析: 1、多层薄膜 高光谱成像: 1 sec/spectra. 1 scan/spectra样品区域尺寸:20 μmx 85 μm size. 1 μm spacing.图谱中可以明显看出在不同区域上的羰基,氨基以及CH2 拉伸振动的分布。 2、高分子膜缺陷左:尺寸为240 μm的两层薄层上缺陷的光学图像;右:在无缺陷处(红色)和缺陷处(蓝色)的样品的IR谱图,998 cm-1处为of isotactic polypropylene 的特征红外吸收峰。 3、生命科学 左:70*70 μm范围的血红细胞的光学照片;中:红色条框区域在1583cm-1处的Raman照片;右:红血细胞选择区域的同步的IR和Raman图谱 上左:水中上皮细胞的光学照片;上右:目标分子能够在红外光谱上很容易的区分和空间分离,可以明显看到0.5-1.0 μm的脂肪包体;下:原理示意图:红外光谱测量使用透射模式,步长为0.5 μm。 4、医药领域 左:PLGA高分子和Dexamethasone药物分子的混合物表面的光学照片中:在1760 cm-1 出的高光谱图像,显示了 PLGA在混合物中的分布,图像尺寸40 μm * 40 μm右:在1666 cm-1 出的高光谱图像,显示了 Dexamethasone在混合物中的分布,图像尺寸40 μm *40 μm 5、法医鉴定 左:800 nm纤维的光学照片右:纳米纤维不同区域的O-PTIR图谱 6、其他领域• 故障分析和缺陷• 微电子污染• 食品加工• 地质学• 考古和文物鉴定 部分用户及发表文章 [1] Ji-Xin Cheng et al., Sci. Adv.2016, 2, e1600521.[2] Ji-Xin Cheng et al., Anal. Chem. 2017, 89, 4863-4867.[3] Label-Free Super-Resolution Microscopy. Springer, Biological and Medical Physics, Biomedical Engineering.创新点:基于独家专利的光热诱导共振(PTIR)技术,mIRage突破了传统红外的光学衍射极限,空间分辨率高达500 nm;可以与拉曼联用,实现同时同地相同分辨率的IR和Raman测试,但无任何荧光风险;非接触式测量,避免了交叉污染。 mIRage超高空间分辨红外成像光谱仪
  • 赛默飞透射电镜助力超导理论研究
    2023年2月22日,清华大学朱静院士团队联合复旦大学车仁超教授和北京大学李源副教授在《自然》杂志上发表了题为” Topological spin texture in the pseudogap phase of a high-Tc superconductor” [1] 的文章。该研究工作采用赛默飞透射电子显微镜(TEM)首次在赝能隙态YBa2Cu3O6.5材料中发现了拓扑磁涡旋结构的存在。该拓扑磁涡旋结构的发现在实空间微观尺度上给赝能隙态下的时间反演对称性破缺提供了的直接图像证据,并且发现该拓扑磁涡旋结构在电荷密度波态时被破坏,进入到超导态时又重新出现,这一发现对揭示高温超导的微观机理具有重大的意义,而先进的透射电子显微镜在这一发现上更是功不可没。朱静院士,车仁超教授等人深耕于超导材料研究领域,洛伦兹低温原位透射电镜研究领域,电子显微学研究领域多年,取得了一系列重要研究成果。在本研究中,研究团队利用复旦大学电子显微镜实验室新安装的Spectra 300透射电子显微镜开展低温洛伦兹样品测试,获得了此次重大发现。2021年,赛默飞上海纳米港(Shanghai NanoPort, Thermo Fisher Scientific)有幸参与其中部分实验工作,在创建冷冻实验环境和原位数据采集方面积极地配合支持。本文将主要介绍两种电子显微学技术——洛伦兹透射电镜(LTEM)和积分差分相位衬度(iDPC)在该工作中起到的关键作用。洛伦兹透射电镜(LTEM)正常TEM光路下,物镜处于开启状态,样品在物镜上下极靴中间处于~2T的强磁场中,样品本征的磁结构会被物镜的强磁场破坏。为了在无磁环境下观察样品本征的磁结构,赛默飞场发射透射电镜Talos和球差校正透射电镜Spectra都可以通过关闭物镜电流使样品处于零磁场环境,再由位于物镜下极靴内部的洛伦兹磁透镜实现对样品微观本征磁结构的观察。LTEM成像模式主要有两种:Fresnel成像模式和Foucault成像模式。Fresnel成像模式是通过改变图像的离焦量实现对磁畴或畴壁的观察。其图像主要特点是欠焦和过焦条件下磁畴畴壁的衬度是相反的,而正焦图像则没有磁衬度。Foucault成像是通过遮挡或者保留后焦面上与磁畴相关的衍射信号来实现(类似于暗场像), 适用于观测不同磁化取向的磁畴。图1a-c分别为该文章中赝能隙态YBa2Cu3O6.5样品的正焦、过焦以及欠焦下的Fresnel图像,离焦量为±1.08 mm。其反转的衬度特点,切实证明了该样品中存在拓扑学特征的畴结构。此外,赛默飞透射电镜上的洛伦兹功能不仅可以实现无磁环境,还可以很方便地通过改变物镜电流来改变磁场,用于原位研究磁结构随磁场强度的变化。在本研究中,作者通过改变物镜电流对样品施加外磁场影响,拓扑学特征消失,进一步证明了该效应是由磁学特性引起的。作者通过使用强度传递方程(Transport of Intensity Equation, TIE)的相位重构技术[2],对LTEM图像进行数据处理得到拓扑磁涡旋结构的磁场方向和相对强度分布(图1d-e, i-l)。图1m-n是由LTEM结果推测出来的两种可能的磁涡旋结构示意图。该文章中LTEM实验分别在赛默飞Spectra300,Themis和Titan机台进行了重复验证,均观察到拓扑磁涡旋结构。图1 (a-c)LTEM Fresnel模式下赝能隙态YBa2Cu3O6.5样品的正焦、过焦、欠焦图像(离焦量为±1.08 mm),样品处于300 K,零磁场环境,标尺为500 nm;(d-e)为通过TIE算法得到的磁场和磁场强度图像;(f-j)为红色方框对应的剪裁放大图像;(k-l)为单个磁涡旋结构的磁场和磁场强度图;(m-n)为两种可能的拓扑磁涡旋结构示意图[1]除了常规的LTEM成像外,赛默飞球差校正透射电镜Spectra系列可以通过物镜球差校正器对LTEM光轴进行像差校正。像差校正洛伦兹模式下可以得到优于1nm的信息分辨率,从而帮助科研工作者观察到更小的磁结构。积分差分相位衬度(iDPC)球差校正透射电镜的超高空间分辨率提供了关于拓扑自旋结构的出现与局域晶体结构之间关系的更多信息。铜基超导材料中氧原子的掺杂或缺失对材料性能具有重要的影响,直接观察到氧原子的占位对深入揭示材料微观结构与性能之间的关系具有重大的意义。然而,广泛使用的扫描透射电镜(STEM)的高角环形暗场(HAADF)图像,因其主要接收高角卢瑟福散射信号,导致轻重元素无法同时成像,C、N、O等轻原子无法观察到。STEM环形明场(ABF)像虽然能观察到轻元素,但ABF图像无法直接解读,而且存在对样品厚度要求高、图像信噪比不佳等问题。为了解决以上问题,赛默飞提出并发展了积分差分相位衬度(iDPC)技术。iDPC这一全新STEM成像模式的出现,大大提高了透射电子显微镜捕获原子的能力。iDPC技术具有能实现轻重原子同时成像,能实现低电子剂量,高分辨和高信噪比成像,图像衬度易解读等优点[3]。目前,iDPC技术已成为材料表征领域技术热点,在表征轻元素占位、二维材料、电子束敏感材料、超导体等领域具有重要的应用。iDPC成像技术现已完全集成在赛默飞球差校正电镜Spectra和场发射电镜Talos上,能实现iDPC图像的在线采集和显示。图2 (a) YBa2Cu3O6.0, (b) YBa2Cu3O6.5和(c) YBa2Cu3O6.9的原子分辨率iDPC图像[1]图2为YBa2Cu3O6.0、YBa2Cu3O6.5和YBa2Cu3O6.9的高分辨iDPC图像,可以清楚的观察到氧原子的位置,随着氧掺杂含量的不同,Cu-O链上的氧占位逐渐增加。值得注意的是赝能隙态YBa2Cu3O6.5的Cu-O链上出现了氧富集和氧缺失的有序排列。作者认为这种氧的有序排列有利于拓扑磁涡旋结构沿c轴自由排列,是观察磁涡旋结构的最佳区域。作者认为现阶段不能完全排除氧填充链激发磁性的可能。赛默飞将致力于相关电子显微学技术的研发与应用,为材料的电、磁学性能研究提供更强大的助力。作者:刘建参考文献[1] Zechao Wang, Ke Pei, Liting Yang, Chendi Yang, Guanyu Chen, Xuebing Zhao, Chao Wang, Zhengwang Liu, Yuan Li, Renchao Che & Jing Zhu. Topological spin texture in the pseudogap phase of a high-Tc superconductor. Nature (2023). https://doi.org/10.1038/s41586-023-05731-3[2] M. Beleggia, M.A. Schofield, V.V. Volkov, Y. Zhu. On the transport of intensity technique for phase retrieval. Ultramicroscopy 102 (2004) 37–49.[3] Ivan Lazi&cacute , Eric G.T. Bosch and Sorin Lazar. Phase contrast STEM for thin samples: Integrated differential phase contrast. Ultramicroscopy 160, 265-280 (2016).
  • 1850万!中国科学院金属研究所场发射透射电子显微镜、广角X射线散射仪等采购项目
    一、项目基本情况1.项目编号:OITC-G230311156项目名称:中国科学院金属研究所场发射透射电子显微镜采购项目预算金额:850.0000000 万元(人民币)最高限价(如有):850.0000000 万元(人民币)采购需求:包号设备名称数量简要用途交货期预算交货地点是否允许采购进口产品1场发射透射电子显微镜1套本系统主要用于各种材料高分辨快速成像和化学分析,系统由电子光学系统、高压系统、真空系统等部分组成。合同生效后18个月850万元中国科学院金属研究所是 投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得转包、分包,评标、授标以包为单位。合同履行期限:合同生效后18个月内交货。本项目( 不接受 )联合体投标。2.项目编号:23CNIC-031692-009项目名称:中国科学院金属研究所广角X射线散射仪采购项目预算金额:700.0000000 万元(人民币)最高限价(如有):700.0000000 万元(人民币)采购需求:名称:广角X射线散射仪数量:1套简要技术要求:本设备用于在温度(普冷区)、应力、磁场等复杂环境下精准测量金属、塑晶、磁性等材料的X射线衍射谱;可在温度(深冷区)、压力等环境下测试材料X射线原子对分布函数。用以研究材料多尺度应力分配、压力诱导分子有序度变化等材料科学共性问题。★微焦斑转靶最大额定输出功率:不低于800 W★ 微焦斑转靶额定管电压:不低于50 kV★微焦斑转靶额定管电流:不低于16 mA(50 kV下)★无液氦分体式超低振动设计,不消耗液氦★ 温度范围:10 K-350 K★ 温度稳定性:≤100 mK合同履行期限:合同生效后8个月本项目( 不接受 )联合体投标。3.项目编号:23CNIC-031692-008项目名称:中国科学院金属研究所高温微动磨损试验机采购项目预算金额:300.0000000 万元(人民币)最高限价(如有):300.0000000 万元(人民币)采购需求:名称:高温微动磨损试验机数量:1套简要技术要求:本设备用于各种材料、涂层和薄膜在高温环境下的摩擦磨损性能测试,可为各种材料和各种涂层以及薄膜的研究提供有效手段,符合国家及相关国际标准,接触形式包括点、线、面三种。★高载荷模块:3—2500N, 加载控制精度:±1%,分辨率:0.1N★行程:0.01—5mm ,位移控制精度:优于10um,重现性:0.3%位移传感器:分辨率:2 μm,响应时间: 10 s★频率:1—500Hz 合同履行期限:合同生效后6个月本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年07月04日 至 2023年07月11日,每天上午9:30至11:30,下午13:30至16:30。(北京时间,法定节假日除外)地点:北京市西城区北三环中路25号英斯泰克大厦5层方式:电话联系购买售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。(一)1.采购人信息名 称:中国科学院金属研究所     地址:辽宁省沈阳市沈河区文化路72号        联系方式:佟老师 024-23971066      2.采购代理机构信息名 称:中国仪器进出口集团有限公司            地 址:北京市西城区北三环中路25号英斯泰克大厦            联系方式:唐经理 010-60961220/18612037725 陶经理010-60961520/18618131338            3.项目联系方式项目联系人:陶经理电 话:  010-60961520(二)1.采购人信息名 称:中国科学院金属研究所     地址:沈阳市沈河区文化路72号        联系方式:佟老师;024-23971066      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:王军、郭宇涵、李雯;010-68290508、010-68290599            3.项目联系方式项目联系人:佟老师电 话:  024-23971066
  • 2021年度中国市场电镜新品盘点(18款): 场发射、扫描透射成主流
    经历2020年疫情笼罩,2021年全球电镜市场规模回暖,规模再次以个位数速率增长,作为最大需求单一市场国家,中国则实现20%以上增长。电镜新品发布也迎来活跃一年,发布新品不仅低、中、高端产品基本覆盖,大部分主流品牌皆有输出,国产方面也多点开花。以下对2021年在电镜新品进行盘点,数据主要统计自本网报道或公开信息,如有遗漏、错误欢迎在留言区补充或邮件(yanglz@instrument.com.cn )。2021年电镜发布新品速览(按发布时间顺序)类型品牌产品名称型号描述SEM蔡司新一代Gemini场发射扫描电镜系列GeminiSEM 360GeminiSEM 460GeminiSEM 560高分辨,不挑样日本电子肖特基场发射电镜JSM-IT800(i)/(is)适用观测半导体器件聚束科技高通量(场发射)扫描电镜Navigator-100B PLUS国产高通量场发射升级款祺跃科技原位高温扫描电镜-国产原位高温日本电子新型扫描电子显微镜JSM-IT510钨灯丝电镜升级飞纳台式场发射扫描电镜Phenom Pharos G2分辨率提至1.8nm日立两款场发射扫描电子显微镜SU8600SU8700聚焦自动获取大量数据功能国仪量子场发射扫描电镜SEM5000国产场发射扫描电镜TEM日本电子新一代冷冻电镜CRYO ARMTM 300II (JEM-3300)速度、操作、通量全面升级赛默飞球差校正透射电镜Spectra Ultra适合电子束敏感材料的球差电镜赛默飞扫描透射电镜Talos F200E为半导体行业设计纳镜鼎新高通量生物扫透电镜智眸365(Smart View 365)国产高通量生物扫描透射电镜聚焦离子束显微镜赛默飞聚焦离子束扫描电子显微镜 (FIB-SEM)Helios 5 PXL Wafer DualBeam聚焦半导体领域其他日本电子超微电子衍射平台Synergy-ED电镜-x射线衍射平台赛默飞定制球差校正电镜Spectra φ定制球差电镜扫描电镜:11款齐发,9款场发射!扫描电镜方面,场发射产品成为新品主流,蔡司和日立分别发布3款、2款场发射电镜,日本电子发布场发射和钨灯丝升级产品,飞纳台式场发射电镜分辨率提升至1.8nm。国产方面,国仪量子也加入场发射产品行列,聚束科技发布高通量场发射升级产品,祺跃科技则基于其原位力学技术,发布原位高温扫描电镜。蔡司|新一代Gemini场发射扫描电镜系列【3款】Gemini系列新品,左至右:GeminiSEM 360,GeminiSEM 460,GeminiSEM 560【发布会专题】 发布时间:3月24日参考价格:300-600万元蔡司此次发布的GeminiSEM 360,GeminiSEM 460,GeminiSEM 560是Gemini电子光学系统针对不同的应用场景衍生出的三款新型号。GeminiSEM 360搭载1型Gemini镜筒,是一款高通用性成像工具。其物镜为静电透镜+磁透镜复合透镜,在提高其电子光学性能的同时将它们对样品的影响降至更低。即使对极具挑战的样品也能进行高品质成像。Beam booster技术具有镜筒内的电子加减速功能,可确保获得小束斑和高信噪比;Gemini镜筒内带有平行设计的镜筒内二次电子和背散射电子探测器,可实现信号的高效采集,同步获取形貌衬度和成分衬度像。GeminiSEM 460搭载2型Gemini镜筒,专为应对复杂的分析工作而设计。它除了复合透镜和镜筒内加减速设计以外,利用双聚光镜设计实现更加灵活的束流调节。用户可以在小束流的高分辨成像模式与大束流的分析模式之间进行无缝切换,对称设计的EDS接口可让您获得无阴影的成分分布图,而物镜无漏磁设计可以让您获得无畸变的大面积EBSD花样。您还可以通过加装各种原位实验附件将Gemini 460升级为一个自动化原位实验平台。GeminiSEM 560搭载3型Gemini镜筒,带给用户极致的高分辨成像体验。该款镜筒拥有两个可协同工作的电子光学系统:Nano-twin透镜和新型电子光学引擎Smart Autopilot,可通过聚光镜优化所有工作条件下的电子束会聚角,进一步提升分辨力;还可实现1倍到200万倍的无缝过渡,大视野导航和亚纳米成像一镜到底。日本电子|场发射电镜JSM-IT800半透镜版本(i)/(is)新型肖特基场发射扫描电子显微镜JSM-IT800【产品链接 】 发布时间:8月31日参考价格:200-400万元JSM-IT800 集成了用于高分辨率成像的透镜内肖特基 Plus 场发射电子枪、创新的电子光学控制系统“Neo Engine”, 以及追求易用性的GUI“ SEM中心”可以完全整合JEOL 的x射线能谱仪。JSM-IT800 有五种不同物镜版本:混合镜头版本 (HL),这是一种通用 FE-SEM;超级混合镜头版本(SHLs/SHL,功能不同的两个版本),可实现更高分辨率的观察和分析;以及新开发的半透镜版本(i/is,两个不同功能的版本),适用于半导体器件的观察。半透镜通过在物镜下方形成的强磁场透镜会聚电子束来实现超高分辨率。此外,该系统有效地收集从样品发射的低能量二次电子,并使用上部透镜内检测器 (UID) 检测电子。因此,它可以对倾斜样品和横截面样品进行高分辨率观察和分析,这正是半导体器件故障分析所需的。此外,它对于电压对比度观察也非常有用。聚束科技|高通量(场发射)扫描电子显微镜 Navigator-100B PLUS高通量(场发射)扫描电子显微镜 Navigator-100B PLUS【 产品链接】 发布时间:8月参考价格:500-700万元成像速度在同等条件下是同类机型的10倍以上,可在72小时内以4nm 像素完成对10x10 mm2 区域的无遗漏采集。 新机型在硬件部分模组提升较大,配备新型电子枪,电子束落点能量范围可达30keV,涵盖绝大多数扫描电镜落点能量需求范围。分辨率可达1.0nm (15keV下), 且在1-3kV低加速电压下即可获得1.5nm高分辨率的同时,仍能保持1‰以下的低图像畸变。具备高度智能化,包括简单快捷全景光学导航、一键全自动换样、全景光学导航、实时聚焦追踪,可以实现全自动超大区域(100mm×100mm)全息地图集式拍摄,并绘制成全景地图式信息浏览。祺跃科技|原位高温扫描电镜祺跃科技原位高温扫描电镜新品【发布详情】 发布时间:10月14日新开发的扫描电镜设计理念包括样品室空间从紧凑到合理,样品台承载能力较大、成像探测器承温能力提升、保证高真空足够的抽气能力等,达到追求时序信息的目标。本次新品实现整机国产化的核心部件包括高温二次电子探测器、三维移动平台与大载荷拉伸平台、1400度原位加热器、超大结构样品腔室和超高真空系统等。保障电镜极端环境长时间稳定运行的相关模块包括冷阱、等离子清洗、极靴屏蔽、红外测温等。同时兼容EDX和EBSD等,还预留设置了多种通讯接口,为今后拓展更多原位技术留有余地。 日本电子|钨灯丝扫描电镜升级产品JSM-IT510钨灯丝扫描电子显微镜JSM-IT510【产品链接】 发布时间:11月8日参考价格:130-200万元为了满足基础研究、工业现场对更快获取结果数据等, JSM-IT510系列进一步提升了InTouchScope™ 的可操作性。借助新增的Simple SEM功能,现在可以将日常工作 “交给”仪器。主要特点包括:新型“Simple SEM”功能、最新型低真空二次电子探头 (LHSED)、 扫描电镜图像和能谱的一体化、实时立体三维图像、实时分析功能、新的导航放大功能、0 倍放大、显示X射线产生区域、SMILE VIEW™ Lab管理软件等。飞纳|第二代肖特基场发射台式扫描电镜Phenom Pharos G2飞纳台式场发射扫描电镜 Phenom Pharos G2【 产品链接 】 发布时间:11月24日参考价格:200-300万元Phenom Pharos G2, 集背散射电子成像、二次电子成像和能谱分析功能于一体。高亮度肖特基场发射电子源,使用户可以轻松获得高分辨率图像,且低电压性能优异。Pharos G2分辨率提升至1.8nm,采用热场发射电子源,信噪比高,使用寿命长,保证长期稳定的性能。飞纳台式场发射扫描电镜能谱一体机标配背散射电子成像、二次电子电子成像和能谱分析功能,可对各种样品进行高分辨成像及元素分析。日立|全新场发射扫描电镜SU8600和SU8700全新冷场发射扫描电镜SU8600(左)和热场发射扫描电镜SU8700(右)【发布会专题】 发布时间:12月9日全新一代冷场发射扫描电镜SU8600不光保留了日立传统冷场电镜的优点,还采用了新型冷场电子枪,可选择更多种类的探测器,而且具有全新的自动数据获取功能,这些技术的加入使得SU8600的成像、分析能力以及自动化性能都有了质的飞跃。具体特点包括:强大自动化功能、成熟的电子光学系统、强大的图像显示和存储、简便的操作等。全新一代热场发射扫描电镜SU8700是一款集高分辨观察、高效率分析、自动化操作等特点于一身的扫描电镜。全新的自动数据获取功能,电子光学系统,多探头检测系统等技术的加入使得SU8700的成像和分析能力有了质的飞跃。具体特点包括:强大的自动化功能、全新的电子光学系统、高效的分析能力、丰富的样品适用性、简便的操作等。国仪量子|场发射扫描电子显微镜SEM5000场发射扫描电镜SEM5000【 发布信息 】 参考价格:200-300万元新品场发射扫描电子显微镜SEM5000,是一款高分辨的多功能扫描电镜,分辨率优于1 nm,放大倍数超过一百万倍。SEM5000的新型镜筒,优化了电子光路设计,采用高压隧道技术,在高电压和低电压下均能实现高质量成像;系统配置了无漏磁物镜,实现了无漏磁高分辨成像,适用于磁性样品分析;可选配多种探测器及其它分析仪器,能够满足用户的各种需求。将广泛应用于锂电池材料、新型纳米材料、半导体材料、矿物冶金、地质勘探、生物等领域。透射电镜:冷冻电镜、球差电镜,国产扫描透射透射电镜方面,面向高端市场的扫描透射电镜成为新品主流。日本电子新一代冷冻电镜JEM-3300年初上市。赛默飞球差电镜新品Spectra Ultra、扫描透射电镜新品Talos F200E更加关注半导体领域。国产方面,基于生物到实验室和生物物理所合作,针对病理组织样本高通量成像需求的专用扫描透射电子显微镜SmartView发布。日本电子|新型冷冻电镜JEM-3300新型冷场发射低温电子显微镜(cryo-EM)——CRYO ARM™ 300 II (JEM-3300)【 产品链接 】 发布时间:1月22日参考价格:3000-5000万元JEM-3300新型冷冻电镜基于“快速、易于操作、获得高对比度和高分辨率图像”的理念而开发。与之前的CRYO ARM™ 300相比,JEM-3300可进行高质量数据的快速采集、操作简便,并在通量方面有大幅提升。主要特点:通过最佳电子束控制实现高速成像,独特的“Koehler mode”照射模式允许均匀电子束照射到样品的特定位置,JEM-3300吞吐量相比上一代提升两倍或更高;提高了高质量图像采集的硬件稳定性,配备了一种新型冷场发射枪(cold FEG)、新的柱内 Omega 能量过滤器;系统升级后可操作性更高等。赛默飞| 球差校正透射电镜Spectra Ultra 新一代扫描透射电镜Spectra Ultra S/TEM【产品详情】 发布时间:3月3日参考价格:2500-5000万元全新Spectra Ultra在数分钟内即可灵活优化高级成像和分析条件。出于加快材料研究进程以及高通量需求,用户现在可以以非常快的速度稳定地调节加速电压。这极大扩展了研究的样品范围,最大程度地减少了电子束损伤,并显著降低了工具的优化耗时。“配置了Ultra-X的Spectra Ultra改变了材料科学研究人员和半导体从业者的游戏规则。它可以通过迅速施加不同的加速电压来显著减少电子束损伤,并且用户将能够检测极低浓度的轻元素。”赛默飞世尔材料科学副总裁Rosy Lee表示,“此外,与其他商业化解决方案相比,用户可以以更高的分辨率快速成像快速分析,以研究新材料和改进现有材料。”赛默飞| Talos F200E扫描透射电镜Talos F200E扫描透射电镜发布时间:3月17日参考价格:600-1500万元Talos F200E (S)TEM提供原子级分辨率成像、快速EDS)分析和增强的数据可靠性,专为满足半导体行业日益增长的需求而设计。且具有成本效益,易用性高,帮助半导体实验室实现快速的样品表征,加快可以量产的速度,提高制程良率。“随着创新的步伐不断加快,半导体企业要求其分析实验室加快周转时间,并在各种设备和工艺技术上提供更可靠和可复现的(S)TEM数据,以支持他们的业务,”赛默飞半导体事业部副总裁Glyn Davies表示,“Talos F200E通过提供高质量的图像数据、快速的化学分析和行业领先的缺陷表征等特质,可以为客户提供高性价比、易用的解决方案。”纳镜鼎新|高通量生物扫描透射电子显微镜SmartView高通量生物扫透电子显微镜智眸365(Smart View 365)【产品详情】 发布时间:7月28日智眸365(Smart View 365)以其高通量、全自动、超高清图像的优越特性在降低人员工作强度的同时为专家分析和诊断病理提供更多的信息,有效提高诊断的效率与正确率。满足专业用户对超微病理诊断的需求。主要特点包括:高通量高效率,插入病理切片样品仓,选定工作模式,一次性自动连续完成多至500个样品成像等;高分辨,分辨率高达0.9nm STEM图像;高稳定运行,长寿命、超稳定的场发射电子源;使用简单等。聚焦离子束显微镜赛默飞|Helios 5 EXL晶圆聚焦离子束扫描电子显微镜Helios 5 EXL晶圆聚焦离子束扫描电子显微镜【产品详情】 发布时间:4月21日参考价格:700-1500万元Helios 5 EXL旨在满足半导体厂商随着规模化经营而不断增加的样品量以及相应的分析需求。这款产品拥有的机器学习和先进的自动化能力,可提供精确的样品制备,以支持5纳米以下节点技术和全环绕栅极半导体制程以及良率提高。赛默飞半导体事业部副总裁Glyn Davies 表示:“半导体实验室正面临着巨大的压力,在不增加成本的情况下,他们需要更快地提供TEM分析数据,以支持制程监控并提升学习曲线,Helios 5 EXL可以通过可扩展的、可复现的和高精度的TEM样品制备来应对这一挑战。”其他新品:扩展技术与定制产品日本电子|超微电子衍射平台Synergy-ED超微电子衍射平台Synergy-ED发布时间:5月31日日本电子与Rigaku公司联合开发出Synergy-ED,一个超微电子衍射平台(ED),通过将日本理学的结构分析技术和设备(如其高灵敏度检测器)与日本电子的透射电子显微镜相结合,将两者的核心技术结合起来,希望新品的技术能够应用于材料研究、化学和药物开发等领域,并为利用电子衍射进行单晶结构分析提供新的解决方案。在以前困难的亚微米范围内,结构分析成为可能。赛默飞|定制球差校正电镜Spectra φ定制的高分辨率扫描透射电子显微镜Spectra φ发布时间:5月20日定制的高分辨率扫描透射电镜Spectra φ,用以支持莫纳什大学在先进材料方面的研究。该仪器安装在澳大利亚莫纳什电子显微镜中心(MCEM)。Spectra φ提供增强的电子束灵活性,以优化复杂材料系统的高速多维成像。Spectra φ 的设计和制造符合由MCEM 和澳大利亚科学院院士Joanne Etheridge教授领导的团队的规格。通过将 Spectra φ 纳入其仪器阵容,莫纳什大学将继续推动对重要能源相关的开创性研究,包括高效光伏设备、电池、材料轻量化、低功耗电子产品和清洁发电等。
  • 光的反射和折射定律改变将衍生新型光学元件
    中国学生在哈佛大学做博士后研究发现   人工界面改写光的反射和折射定律   光的折射和反射定律是几何光学的基础。但是美国哈佛大学物理学家用一系列实验演示了光线的传播可以不遵从这些经典定律。这意味着,或许有一天当你用一块平面镜端详自己容貌时,看到的却是哈哈镜的变形效果。   光在不同介质中的传播速度不一样。当一束光从空气中斜射向水中,光束的传播方向会发生改变,这就是所谓的折射现象。它的准确表述即折射定律是很多年前由物理学家斯涅尔、数学家笛卡尔以及费马确立的。这一定律表明,光线在界面的折射角仅由光在两种物质中的传播速度决定。而早在古希腊时期由欧几里德发现的反射定律更简单:光的反射角等于入射角。   经典的反射和折射定律都很自然地认为一个界面仅仅是区分两种物质的理想边界,换句话说,是两种介质而不是它们的截面影响了光的传播。哈佛大学研究人员的创新在于意识到界面可以成为决定光的传播的因素。他们的实验表明,精巧设计的界面能够干预光的传播。   研究人员利用硅片和空气界面处一层薄薄的金属阵列来演示一系列违背经典反射和折射定律的现象。这个阵列中的每个组成单元都类似微小的英文字母“V”,其大小和间距都远小于光的波长以及入射光束横截面的尺寸。这些“V”字形的单元的大小、夹角和朝向都不同,这样设计是为了控制光波和不同单元的相互作用时间:每个金属“V”都类似一个光的陷阱,能够将光波“囚禁”一段时间再释放出来。   阵列的设计使得这个“囚禁”时间沿界面从右向左线性增加,这样即使垂直入射,光束不同部分经历不同的时间延迟,透射以及反射光束就不再沿着垂直于界面的方向传播了。而当光以倾斜的角度入射,按不同的“界面”设计,反射和折射光可以被操纵朝向任何方向。反射角不一定等于入射角,反射光甚至可以被“反弹”回光源方向,而不是像一般情况那样折向远离光源方向。这就是平面镜可以有哈哈镜的效果的原因。   这项成果2日发表在美国新一期《科学》杂志上,第一作者虞南方目前在哈佛大学工程和应用科学学院做博士后研究,虞南方2004年本科毕业于北京大学电子学系,2009年在哈佛大学获博士学位。   利用界面来控制光束不同部分的时延是一个具有革新意义的概念。虞南方告诉新华社记者,他们已用这种人工界面产生了“光涡旋”,这种奇异的光束在空间里螺旋前进,因而可以用来操纵旋转微小的悬浮颗粒。他预计,这一概念将衍生出一系列有用的光学元件,比如可以纠正相差的超薄平面聚焦镜片、可以采集大范围入射阳光的太阳能汇聚装置。哈佛大学目前已就这一成果提出专利申请。
  • 球差校正透射电子显微镜新技术及应用研讨会在陵水成功举办
    3月7日,“中国电子显微镜学会第十一届常务理事会”召开同期,由中国电子显微镜学会主办的“球差校正透射电子显微镜新技术及应用研讨会”在陵水举办,研讨会邀请数位青年专家代表以报告和座谈讨论的形式分享各自在球差校正透射电镜技术及应用方面的新应用进展。同时,出席本次研讨会的还包括中国电子显微镜学会常务理事代表、电镜类科学仪器公司代表等,大家在讨论环节,针对应用进展、仪器技术需求、更好合作等话题进行了深层次的交流探讨。研讨会现场中国科学院院士、浙江大学教授张泽致辞张泽院士在致辞中表示,电子显微学是一门涉及物理、化学等,且与电镜相关仪器设备紧密关联起来的交叉学科,交叉学科的发展,无论技术研究、方法学研究,还是仪器技术开发等,大家都需要互相支持、互相欣赏。其次,从电镜等设备引进时间分布来看,大家有先后,建议大家互通有无,共同发展。同时强调,仪器设备技术对于原创性、变革性成果至关重要,仪器设备的自主发展是学科将来更好发展的必经之路。最后表示,青年学者们的工作情况代表着中国电子显微学界发展的进展,希望大家在本次交流中收获进步,在进步中相互支持、共谋发展。报告人:浙江大学教授 田鹤报告题目:电荷与自旋相关局域有序特性的探索研究电荷与自旋相关局域有序特性对于进一步发现关联材料等的新奇物性具有重要意义,田鹤在报告中分享了团队十余年来,利用原子尺度电子显微技术方法研究电荷与自旋相关局域有序特性的一些探索。围绕电荷成像的瓶颈与关键问题、自旋成像的瓶颈与关键问题、涡旋电子探针问题、散射理论与实验设置问题等依次展开讨论。实现了电荷、自旋局域有序特性的一些探测,包括原子层面的电荷、轨道、自旋耦合,电荷、轨道、自旋等多自由度调控等。最后,田鹤表示,电子显微学方法的研究虽然周期较长,但是是值得付出一生的事业,这也呼应了那句古语“工欲善其事必先利其器”。报告人:中国科学院大学教授 周武报告题目:功能材料的单原子尺度谱学研究在催化剂中起到关键作用的可能是一些单个金属原子的原子尺度结构特征,所以除了看到这些单个金属原子,还需要分析这些金属原子的种类、这些单个金属原子跟周围其它非金属原子发生怎样的配位相互作用等。报告中,周武主要分享了团队近年来关于功能材料单原子尺度谱学的研究进展。研究主要基于独特的单色仪球差校正透射电镜开展,该电镜是国际上能量分辨率和空间分辨率最高的30kV低压电镜之一。报告首先介绍了孤立单金属原子谱学分析首要解决的孤立单金属原子成像问题,通过仪器方法的突破案例等分享了如何保证成像的质量。接着,讲解了进一步谱学分析的相关进展。并分享了利用这些方法应用于单原子催化剂等实际样品中的一些案例和取得的系列成果,说明了球差显微镜的重大意义。报告人:清华大学副研究员 陈震报告题目:Electron psychography for ultrahigh resolution imaging of atomic structure and spin texture陈震长期致力于开发新型电子显微学技术,尝试突破现有球差透射电子显微镜成像技术的极限,进一步提高球差透射电子显微镜的空间分辨率。报告主要分享了利用psychography(叠层技术)方法对原子结构和磁结构高分辨成像的研究。研究主要基于四维扫描透射电子显微术(4D-STEM)。陈震首先介绍了psychography方法的一系列优势,分辨率方面,基于球差校正高分辨的基础,进一步把球差透射电子显微镜的空间分辨率提高2.5倍,至0.3埃以下。他进一步介绍了psychography方法在电磁场成像方面的发展情况,并介绍了团队在超高分辨率的磁结构成像的最新进展:揭示复杂氧化物中最邻近的氧原子的分布细节,且精确测出铁原子间距。叠层球差透射电子显微技术在工程材料等领域有着广泛的应用潜力。报告人:北京工业大学 李志鹏报告题目:透射电镜原位原子尺度多场耦合研究平台开发及应用李志鹏博士长期致力于发展原子分辨的材料力学性能原位实验装置。他介绍了他参与发展的世界最先进(领先)的“球差透射电子显微镜力-热-电学实验装置”,可以实现原子分辨的单一(力、热、电)或耦合外场(力-热-电)原位实验。该类实验在原子尺度阐明先进材料结构-性能相关性,为高性能新材料开发提供关键实验数据和重要理论支撑。李志鹏博士介绍了多种球差电子显微镜原位原子尺度力-热-电单/多场耦合实验室的研发及其在金属、合金、半导体等多种材料领域和研究方向中的应用。其参与发展的多项成果在百实创(北京)科技有限公司转化,并推出INSTEMS系列球差透射电镜原位原子分辨力热电集成实验室系统。在高校与企业优势互补下,李志鹏博士进一步介绍了最近拓展的系列国际前沿新技术,例如原子级漂移校正技术等,这些项技术预计在今年成熟并推广应用。另外李志鹏博士也介绍了百实创发展的多个先进球差电镜功能化实验室(实验装置),如球差电镜霍尔样实验台、球差电镜多样品载具、透射电镜通用标准双倾样品杆等。报告人:浙江大学教授 余倩报告题目:金属力学性能和位错调控结构金属材料的应用广泛而重要,但长久以来,金属材料强度和塑形不可兼得的问题一直难以解决,这往往是由位错等缺陷导致的。余倩在报告中从三个方面介绍了其团队如何调控位错,进而改变材料的力学性能,以追求更高强度的前提下,保证足够的塑性变形能力。第一部分为加入微量合金元素,使得位错结构发生改变,产生一些新的交互作用;第二部分则通过大量的合金元素来制造无序结构,即利用近年国际前沿的复杂合金体系(高熵合金)去调控位错行为;第三部分是利用界面调控,即使用一种更强的显微结构界面进行位错形核与运动行为调控。报告人:南京理工大学副教授 周浩报告题目:原子尺度镁合金界面偏析及其形成机理研究金属纳米材料的概念已经被提出很久,但当前工程应用依旧困难,主要是剧烈塑性变形技术提出至今已35年,尚未解决;另外受限纳米晶体界面,界面稳定性低。周浩报告中针对以上问题,团队从镁合金入手,分享了工程材料提高界面稳定性相关的研究进展。研究以溶质元素的界面偏析调控界面结构,提高界面稳定性为金属材料纳米化提供了新的思路,具体结论包括孪晶界面的周期性导致偏析结构呈现显著周期性,具体晶格结构受元素类型、界面能等因素影响;晶界偏析也呈现显著周期性结构,偏析结构与热处理工艺无明显关系;Ag等低温固溶度低、扩散速率快的元素易于形成位错偏析等。仪器技术及应用交流环节,除了电子显微学前沿应用,大家也针对疫情下售后零部件供货周期问题、进口高端透射电镜功能附件的维修周期、高端电镜后台软硬件开放权限、国内产业化、人才培养、国内期刊发展、操作人员变动频繁等相关问题进行了广泛探讨。同时,中小国产科学仪器企业呼吁国家、高校、研究所等相关部门给予国产科学仪器企业与国际大公司在付款方式等方面同等的公平待遇。会后留影
  • 130万!中国科学院上海应用物理研究所透射电镜原位高温力学测量杆
    项目编号:STC22A076项目名称:中国科学院上海应用物理研究所透射电镜原位高温力学测量杆预算金额:130.0000000 万元(人民币)最高限价(如有):130.0000000 万元(人民币)采购需求:透射电镜原位高温力学测量杆可以实现在外场环境下原位动态研究的材料塑性变形机制、断裂行为、辐照后合金的力学行为、微纳乃至原子尺度下的辐照缺陷运动、相变等微观机理研究。有助于进一步提升熔盐堆材料的评估研究能力。本次项目招标的透射电镜原位高温力学测量杆能够实现在高温下进行原位力学实验,并且可以双轴倾转。合同履行期限:交货期:自合同签订后4个月内。本项目( 不接受 )联合体投标。
  • 世界上最小的超小型透射电镜进入中国生命科院研究领域
    LVEM5超小型透射电镜落户北京大学三医院 近日,LVEM5超小型透射电镜在北京大学三医院(北医三院)安装完成,将助力北医三院的医学研究和临床诊断。 北京大学三医院是国内医院之一,始建于1958年,是集医疗、教学、科研和预防保健为一体的高水平、现代化的三等医院。同时,依托于北京大学医学部(原北京医科大学),北医三院拥有强大的基础医学科研能力,是国内的医学研究机构。 此次,北医三院购置LVEM5超小型透射电镜,主要是希望借助LVEM5低电压和便捷快速的特点,更好的满足医疗和科研的要求:1. LVEM5是目前的低电压透射电镜。传统透射电镜的加速电压一般高达100kV,而LVEM5仅需5kV。这一特性是使得LVEM5可以不经重金属染色,直接观察生物样品,从而避免了因重金属染色带来的样品扭曲,反应出样品真实的形貌。这对于医学研究尤为重要。2. LVEM5是目前的小型透射电镜,其体积与普通光学显微镜相仿,可以放置在普通写字台,且维护和使用都异常简便。这让LVEM5非常适合于非电镜专业的研究人员使用,对样品进行快速检测。更多关于LVEM5产品信息,请参见QUANTUM量子科学仪器公司中文网站及英文网站: http://www.qd-china.com/products2.aspx?id=241关于Quantum Design InternationalQuantum Design International是的科研设备制造商和仪器分销商,于1982年创建于美国加州圣迭戈。公司生产的 SQUID 磁学测量系统 (MPMS) 和材料综合物理性质测量系统 (PPMS) 已经成为公认的测量平台,广泛的分布于上几乎所有材料、物理、化学、纳米等研究领域的实验室。同时美国 Quantum Design 公司还利用自己遍布的专业营销和售后队伍打造一个代理分销网络,与其他的设备制造商合作,为其提供遍布全球的专业产品销售和售后服务网络。2007年,Quantum Design International并购了欧洲大的仪器分销商LOT公司,现已成为著名的科学仪器领域的跨国公司。目前公司拥有分布于英国、美国、法国、德国、巴西、印度,日本和中国等地区的数十个分公司和办事处,业务遍及全球一百多个和地区。 中国地区是Quantum Design International公司活跃的市场,公司在北京、上海和广州设有分公司或办事处。几十年来,公司与中国的科研和教育领域的合作有成效,为中国的科研进步提供了可靠的先进设备以及高效优质的售后服务。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制