当前位置: 仪器信息网 > 行业主题 > >

双光子聚合三维微纳米加工系统

仪器信息网双光子聚合三维微纳米加工系统专题为您提供2024年最新双光子聚合三维微纳米加工系统价格报价、厂家品牌的相关信息, 包括双光子聚合三维微纳米加工系统参数、型号等,不管是国产,还是进口品牌的双光子聚合三维微纳米加工系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合双光子聚合三维微纳米加工系统相关的耗材配件、试剂标物,还有双光子聚合三维微纳米加工系统相关的最新资讯、资料,以及双光子聚合三维微纳米加工系统相关的解决方案。

双光子聚合三维微纳米加工系统相关的论坛

  • 模仿蝴蝶翅膀的微观结构 科学家开发出纳米尺度光子晶体

    科技日报讯 据物理学家组织网9月3日(北京时间)报道,澳大利亚斯威本科技大学和德国埃尔朗根-纽伦堡弗里德里希·亚历山大大学(FAU)的一个国际研究团队,通过模仿蝴蝶翅膀的微观结构,开发出一种小于人类头发丝宽度的纳米级光子晶体设备,能同时适用于线性和圆形偏振光,使光通信更迅捷更安全。 该光子晶体可以同时分割左、右圆形偏振光,其设计灵感来自于卡灰蝶,也称为黄星绿小灰蝶。它的翅膀里具有三维纳米结构,赋予其充满活力的绿色。其他昆虫也有可提供色彩的纳米结构,但卡灰蝶却有着一个重要的不同。斯威本大学的马克·特纳博士说:“这种蝴蝶的翅膀包含一个互连的纳米级螺旋弹簧巨大阵列,形成了独特的光学材料。我们用这个概念来开发光子晶体装置。” 光子晶体相当于微型偏振分光镜。偏振分光镜用于现代技术,如电信、显微镜和多媒体。但天然晶体只适用于线性偏振光,不能用于圆形偏振光。研究人员利用三维激光纳米技术,使得该光子晶体具有了天然光子晶体没有的特性,从而能适用于圆偏振光。这种微型设备包含了超过75万个微小的聚合物纳米棒。 斯威本大学微光电中心主任顾敏(音译)教授说:“我们相信已经创建了第一个纳米尺度的光子晶体手性分光镜。它有可能成为开发集成光子电路的一种有用的电子元件,在光通信、影像学、计算机信息处理技术和传感中发挥重要作用。该技术为转向纳米光子器件提供了新的可能性,使我们朝着开发可以克服超高速光网络带宽瓶颈的光学芯片更近了一步。” 该研究成果已经发表在最新一期的《自然·光子学》杂志上。(记者华凌) 总编辑圈点 自然比人的想象更丰富。看似无奇的绿光,来自一种光学装置设计者从未见过的复杂结构。卡灰蝶翅膀里的天下无双的怪异阵列,是纯属偶然的基因变异数亿年积累的产物。而有想象力的科学家,在它的启发下,制造出地球上从未存在过的光学奇观。模仿自然的美,是人类创造的原动力。 《科技日报》(2013-09-04 一版)

  • 微纳米粉捕集装置

    微纳米粉捕集装置

    [font=仿宋_GB2312][size=19px]将待分离粉末加入到电磁筛分部分最上部,承筛部分放置筛孔为微米的筛网(如10、20微米)。[/size][/font][font=仿宋_GB2312][size=19px]筛网层上面有机玻璃盖,通过管路联接到微纳米物质分离捕集器。这是一款内置双层粗孔片和超细滤膜的配件,可将微纳米微粒和大于上层筛孔直径的物料分离。[img=,554,283]https://ng1.17img.cn/bbsfiles/images/2023/12/202312011653556947_148_1812435_3.png!w554x283.jpg[/img][/size][/font][font=仿宋_GB2312][size=19px]捕集器另一端联接真空泵。工作时,真空泵提供负压传输到筛分仪,筛分仪超声装置可将原料粉团聚体打开,并将堵塞的筛孔打开,有利于三维震动的筛分部分将物料快速筛下,扬起微细粒颗粒的作用,空气和纳微米颗粒由筛分仪向真空泵运移,纳微米颗粒最终在捕集器中分离富集[/size][/font][font=宋体][size=19px]。[img=,156,409]https://ng1.17img.cn/bbsfiles/images/2023/12/202312011654144101_1924_1812435_3.png!w156x409.jpg[/img]本装置特点:[font=Wingdings]u [/font][font=宋体]电磁驱动,清洁能源[/font][font=Wingdings]u [/font][font=宋体]三维抛掷筛分,速度快,重复性高[/font][font=Wingdings]u [/font][font=宋体]操作简便,功率、振幅可调节[/font][font=Wingdings]u [/font][font=宋体]独有S型压盘设计,可快速拆卸筛子,筛分效率高[/font][font=Wingdings]u [/font][font=宋体]采用单向夹具,可快速压紧[/font][font=Wingdings]u [/font][font=宋体]连续、精微、间断三种震动模式可选[/font][font=Wingdings]u [/font][font=宋体]干法、湿法筛分可选[/font][/size][/font]

  • 纳米压印设备商光舵微纳完成近亿元B+轮融资

    据致道资本官微消息,近日,致道资本已投项目——苏州光舵微纳科技股份有限公司(简称:光舵微纳)完成由国投创合投资的近亿元B+轮股权融资。作为国内领先的纳米压印技术完整方案提供商,光舵微纳经过多年的研发及市场应用推广,制造出了多款研发型纳米压印设备及全自动量产型纳米压印设备,实现了设备、耗材及工艺的全方位突破。纳米压印技术是微纳加工领域的一项关键底层技术,在国际半导体蓝图(ITRS)中,该技术被列为下一代半导体加工技术的重要代表之一。[img=图片]https://img1.17img.cn/17img/images/202401/uepic/35f3a9bc-4344-456c-bb7c-169186c68048.jpg[/img]光舵微纳在LED图形化衬底产业(LED-PSS)处于绝对的技术及市场领先地位,纳米压印设备及耗材已在客户端实现超过4000万片LED-PSS的大规模稳定量产,在此应用场景上实现了对尼康光刻机的产业化替代,并处于快速扩张阶段。同时,积极拓展纳米压印技术在高端半导体、AR衍射光波导、生物检测器件、消费电子等诸多重大[color=#686868]领域的产业化应用,并取得了重要进展。[/color][img=图片]https://img1.17img.cn/17img/images/202401/uepic/a55665c3-16b9-45c4-ad33-6ace1d7108bf.jpg[/img]此次融资完成后,光舵微纳将继续提升其核心研发团队的技术实力,积极研发应用于多个重要场景的高端纳米压印设备并进行广泛的市场开拓,进行产线扩充,推进纳米压印技术在更多应用领域的导入,打造从产品、系统到整体解决方案的商业模式,助力我国半导体制造产业的高速发展。[来源:致道资本][align=right][/align]

  • 美首次获得纳米粒子内单原子三维图像

    科技日报 2012年03月24日 星期六 本报讯 据美国物理学家组织网3月21日报道,美国科学家在3月22日出版的《自然》杂志上表示,他们发明了一种直接测量纳米材料原子结构的新方法,让他们首次得以看见纳米粒子内部的情况,并获得其单个原子及原子排列的三维图像。最新研究有望大大改进医学和生物学等领域广泛使用的X射线断层照相术获得图像的清晰度和质量。 加州大学洛杉矶分校物理学和天文学教授兼加州纳米系统研究所研究员苗建伟(音译)领导的团队使用一个扫描透射电子显微镜,在一个直径仅为10纳米的微小金粒子上方扫射了一束狭窄的高能电子。这个金纳米粒子由成千上万个金原子组成,每个金原子的大小仅为人头发丝宽度的百万分之一,它们与通过其上的电子相互作用,产生的阴影包含有金纳米粒子内部结构的信息,这些阴影被投射到扫描镜下方的一个探测器上。 研究小组从69个不同的角度进行测量,将每个阴影产生的数据聚集在一起,形成了一个纳米粒子内部的三维结构图。使用这种名为电子断层摄影术的方法,他们能直接看到单个原子的情况以及单个原子在特定的金纳米粒子内的位置。 目前,X射线晶体照相术是让分子结构内的原子三维可视化的主要方法。然而,这一方法需要测量很多几乎完全一样的样本,然后再将得到的结果平均。苗建伟说:“一般平均需要扫描数万亿个分子,这会导致很多信息丢失。而且,自然界中的大部分物质都是结构不如晶体结构那么有序的非晶体。”他表示:“现有技术主要针对晶体结构,目前还没有直接观察非晶体结构内部原子的三维情况的技术。探索非晶体材料的内部情况非常重要,因为结构上一点小小的变化都会大大改变材料的电学属性。例如,半导体内部隐藏的瑕疵会影响其性能,而新方法会让这些瑕疵无所遁形。” 苗建伟和他的同事已经证明,他们能为一个并非完美的晶体结构(比如金纳米粒子)摄像,晶体可小至0.24纳米,一个金原子的平均大小为0.28纳米。实验中的金纳米粒子由几个不同的晶粒组成,每个晶粒形成一块拼图,其中的原子采用些许不同的模式排列。纳米结构具有隐藏的晶体断片和边界,同由单一晶体结构组成的物质不同,新方法首次在三维层面实现了纳米粒子的内部可视化。 (刘霞)

  • 【分享】世界首个三维等离子标尺制成 在纳米尺度测结构

    最近,美国能源部劳伦斯-伯克利国家实验室与德国斯图加特大学研究人员合作,开发出了世界首个三维等离子标尺,能在纳米尺度上测量大分子系统在三维空间的结构。该标尺有助于科学家在研究生物的关键动力过程中,以前所未有的精度来测量DNA(脱氧核糖核酸)和酶的作用、蛋白质折叠、多肽运动、细胞膜震动等。研究论文发表在最新一期《科学》杂志上。  随着电子设备和生物学研究对象越来越小,人们需要一种能测量微小距离和结构变化的精确工具。此前有一种等离子标尺,是基于电子表面波(也叫“等离子体”)开发出的一种线性标尺。当光通过贵金属,如金或银纳米粒子的限定维度或结构时,就会产生这种等离子体或表面波。但目前的等离子标尺只能测量一维距离长度,在测量三维生物分子、软物质作用过程方面还有很大局限,其中等离子共振由于辐射衰减而变弱,多粒子间的简单耦合产生的光谱很模糊,很难转换为距离。  而新型三维等离子标尺克服了上述困难。该三维等离子标尺由5根金质纳米棒构成,其中一个垂直放在另外两对平行的纳米棒中间,形成双层H型结构。垂直的纳米棒和两对平行纳米棒之间会形成强耦合,阻止了辐射衰减,引起两个明显的四极共振,由此能产生高分辨率的等离子波谱。标尺中有任何结构上的变化,都会在波谱上产生明显变化。另外,5根金属棒的长度和方向都能独立控制,其自由度还能区分方向和结构变化的重要程度。   研究人员还用高精度电子束光刻和叠层纳米技术制作了一系列样品,将三维等离子标尺放在玻璃的绝缘介质中,嵌入样品进行测量,实验结果与计算出来的数据高度一致。与其他分子标尺相比,这种三维等离子标尺建立在化学染料和荧光共振能量转移的基础上,不会闪烁也不会产生光致褪色,在光稳定性和亮度上都很高。  谈到应用前景,该研究领导者、伯克利实验室负责人鲍尔·埃利维塞特说,这种三维等离子标尺是一种转换器,可将其附着在DNA或RNA链多个位点,或放在蛋白质、多肽的不同位置,再现复杂大分子的完整结构和生物过程,追踪这些过程的动态演变。(科技日报)

  • 用于光子相关纳米粒度仪的数字相关器

    用于光子相关纳米粒度仪的数字相关器

    用于光子相关纳米粒度仪的数字相关器动态光散射原理(光子相关普法PCS和光子交叉相关普法pccs)的纳米激光粒度仪的关键技术是提取悬浮液在溶液中的纳米颗粒的散射光的自相关函数或互相关函数,计算纳米颗粒的扩散系数,从而分析颗粒粒度。数字相关器是基于动态光的散射原理(光子相关光谱法PCS和光子交叉相关普法pccs)的粒度测试技术中提取散射光信号的自相关函数和互相关函数的装置。目前,国内应用较多此类装置主要是进口美国Brookhaven公司BI-9000AT、BI-9010AT和Turbocorr数字相关器,这些装置只能完成自相关运算而无法进行互相关运算,因此只适合用于pcs法测试纳米颗粒粒度,而无法适用于PCCS法测试纳米颗粒粒度,从而对测试环境、所测样品浓度以及测试稳定性等方面具有较大的局限性,只有制作专用大规模集成电路(ASIC),或基于DSP技术,或多片芯片及联组成,不但有很大的局限性,而且价格昂贵。另外,国内有人尝试采用软件的方式实现数字相关器,即先用光子计数器将散射光光子计数并储存在存储器中,然后根据计算计算机软件将其数据从存储器中读出进而进行相关运算,虽然这样能计算出散射光强的相关函数,但由于软件所需的处理时间内的光子丢失造成计算的相关函数偏差较大。因此,采用软件的数字相关器实时性很差,不能满足颗粒粒度分析的要求。微纳专利的用于光子相关纳米激光粒度仪的数字相关器,是一种基于动态光散射原理测试纳米及亚微米颗粒粒度测试技术中用于获得散射光信号自相关函数和互相关函数的数字相关器。本专利发明实现了光子脉冲技术、自相关运算、互相关运算以及与计算机通讯功能,具有采样速度快、延迟时间范围广、相关通道多的特点,完全满足纳米颗粒粒度测试中获取高速变化的动态散射光信号的自相关函数和互相关函数的高难度需求。 winner802 纳米激光粒度仪http://ng1.17img.cn/bbsfiles/images/2015/12/201512030937_576113_3050076_3.jpg产品简介:Winner802是我公司最新推出的基于动态光散射原理的纳米激光粒度仪,同时也是国内首款采用数字相关器的纳米激光粒度仪。本款仪器采用我公司自主研制的高速数字相关器和高性能光电倍增管为核心部件,具有操作简便、测试快捷、分辨率高等特点。适用范围:Winner802适用于各种纳米级、亚微米级固体颗粒与乳液。技术参数:规格型号Winner802执行标准 GB/T 19627-2005/ISO 13321:1996 GB/T 29022-2012/ISO 22412:2008测试范围1-10000nm(与样品有关)浓度范围0.1mg/ml--100mg/ml(与样品有关)准确度误差1%(国家标准样品D50值)重复性误差1%(国家标准样品D50值)激光光源光纤半导体激光器,λ= 532nm, 探测器光电倍增管(PMT)散射角90o样品池体积4mL温控范围5-40 ℃(精确到0.1℃)测试速度5 Min体积480mm×270mm×170mm重量12Kg数字相关器主要参数自相关通道:256 基线通道:4最小分辨时间:6ns 延迟时间:100ns-10ms(可调) 运算速度:162M/S产品特点和优势:先进的测试原理采用动态光散射原理和光子相关光谱技术,根据颗粒在液体中的布朗运动速度测定颗粒大小。大小颗粒运动速度不同,激光照射这些颗粒,不同大小的颗粒将使散射光发生快慢不同的涨落起伏。光子相关光谱法就根据特定方向的光子涨落起伏分析其颗粒大小。 极高的分辨能力使用PCS技术测定纳米级颗粒大小,必须能够分辨纳秒级信号起伏。本仪器的核心部件采用我公司研制的CR256数字相关器,具有识别8ns的极高分辨能力和极高的信号处理速度。 高灵敏度和信噪比采用专业级高性能光电倍增管(PMT),对光子信号具有极高的灵敏度和信噪比。 超强的运算能力采用自行研制的高速数字相关器CR256进行数据采集与实时相关运算,其数据处理速度高达162M,从而实时有效地反映颗粒的动态光散射信息。Winner802光子相关纳米激光粒度仪是国家科技型中小企业创新基金的项目成果,也是过内首款采用动态光散射原理的纳米粒度仪。其测量原理建立在液体颗粒布朗运动基础之上,颗粒越小,运动速度越大,运动速度越慢。它采用HAMAMATSU高性能光电倍增管和由微纳自主研发的高速数字相关器作为核心部件,通过测试某一角度的散射光的变化并求出自相关函数(即扩散系数),根据Stokes-Einstein方程计算出颗粒粒径及分布,它具有快速、高分辨率、重复及准确等特点,同时还是纳米颗粒粒度测试的首先产品。

  • 微纳形貌分析利器——4D微纳形貌动态表征DHM

    微纳形貌分析利器——4D微纳形貌动态表征DHM

    科研史上前所未有的观测手段——数字全息DHM可高速实时测量三维形貌,达到了亚纳米精度。克服了传统AFM、CLSM等需要扫描进行三维成像的特性。 表征透明/半透明三维形貌Ø 测量厚度从几纳米到几十微米Ø 可测最高三层透明薄膜Ø 测量薄膜折射率Ø 微纳器件动态三维形貌时序图(1000fps), 还可测频率响应(高达25MHz) 主要应用北京大学 搭建平面应变鼓膜实验平台测量纳米薄膜的动态力学性能天津大学 微结构表面形貌和运动特性测量华中科技大学 微纳制造与测试,微小光学元件检测,微电子制造封装与测试清华大学 透射式全息显微镜,测量透明样品形貌,还可以测量材料光学参数、内部结构以及缺陷杂质等 • 超快速高精度的三维成像,大面积三维形貌表征,表面粗糙度,MEMS振动测量分析,表征微流体器件和微颗粒三维追踪测试配合MEMS Analysis Tool、光学反射软件Reflectometry Analysis等专用软件实现更多功能[img=,600,400]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131406_01_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131407_01_1546_3.gif[/img][img=,690,]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131406_02_1546_3.jpg[/img]

  • 微纳形貌分析利器——4D微纳形貌动态表征

    微纳形貌分析利器——4D微纳形貌动态表征

    科研史上前所未有的观测手段——数字全息可高速实时测量三维形貌,达到了亚纳米精度。克服了传统AFM、CLSM等需要扫描进行三维成像的特性。 表征透明/半透明三维形貌Ø 测量厚度从几纳米到几十微米Ø 可测最高三层透明薄膜Ø 测量薄膜折射率Ø 微纳器件动态三维形貌时序图(1000fps), 还可测频率响应(高达25MHz) 主要应用北京大学 搭建平面应变鼓膜实验平台测量纳米薄膜的动态力学性能天津大学 微结构表面形貌和运动特性测量华中科技大学 微纳制造与测试,微小光学元件检测,微电子制造封装与测试清华大学 透射式全息显微镜,测量透明样品形貌,还可以测量材料光学参数、内部结构以及缺陷杂质等 • 超快速高精度的三维成像,大面积三维形貌表征,表面粗糙度,MEMS振动测量分析,表征微流体器件和微颗粒三维追踪测试配合MEMS Analysis Tool、光学反射软件Reflectometry Analysis等专用软件实现更多功能[img=,690,]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131349_01_1546_3.jpg[/img][img=,600,400]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131350_01_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131351_01_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131354_01_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131351_04_1546_3.gif[/img][img=,384,]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131358_01_1546_3.jpg[/img]

  • 微纳形貌分析利器——4D微纳形貌动态表征DHM

    微纳形貌分析利器——4D微纳形貌动态表征DHM

    科研史上前所未有的观测手段——数字全息DHM可高速实时测量三维形貌,达到了亚纳米精度。克服了传统AFM、CLSM等需要扫描进行三维成像的特性。 表征透明/半透明三维形貌Ø 测量厚度从几纳米到几十微米Ø 可测最高三层透明薄膜Ø 测量薄膜折射率Ø 微纳器件动态三维形貌时序图(1000fps), 还可测频率响应(高达25MHz) 主要应用北京大学 搭建平面应变鼓膜实验平台测量纳米薄膜的动态力学性能天津大学 微结构表面形貌和运动特性测量华中科技大学 微纳制造与测试,微小光学元件检测,微电子制造封装与测试清华大学 透射式全息显微镜,测量透明样品形貌,还可以测量材料光学参数、内部结构以及缺陷杂质等 • 超快速高精度的三维成像,大面积三维形貌表征,表面粗糙度,MEMS振动测量分析,表征微流体器件和微颗粒三维追踪测试配合MEMS Analysis Tool、光学反射软件Reflectometry Analysis等专用软件实现更多功能[img=,600,400]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131410_01_1546_3.gif[/img][img=,690,]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131410_02_1546_3.jpg[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131410_03_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131410_04_1546_3.gif[/img]

  • 炬光科技:收购SUSS MicroOptics,光学设计能力由“微”入“纳”

    [color=#f79646][b]|[/b][/color][b][color=#000000] 炬光科技完成收购SUSS MicroOptics,光学技术实力进一步增强[/color][/b][color=#000000]1月16日,炬光科技公告以0.58亿欧元(约4.55亿元)完成收购瑞士SUSS MicroOptics的100%股权,同时承接SUSS MicroTec对SUSS MicroOptics的股东贷款0.17亿欧元(约1.32亿元),通过香港炬光共计支付现金0.76亿欧元。炬光科技在高功率半导体激光、激光光学领域技术实力领先,本次收购将进一步增强公司技术实力,维持领先的产品力。开源证券维持炬光科技的盈利预测,预计2023-2025年归母净利润1.21亿元/1.73亿元/2.80亿元。[/color][color=#f79646][b]|[/b][/color][b][color=#000000] 微纳光学助推光子产业发展,SUSS MicroOptics技术研发优势显著[/color][/b][color=#000000]微纳光学技术能实现对光子的精密控制,助推智能汽车、半导体制程、医疗健康、消费电子等相关下游产业进一步融合与发展。SUSS MicroOptics深度布局微纳光学领域,能够稳定批量生产用于光纤耦合、激光准直、光场匀化、光束整形等场景的精密微纳光学元器件。根据不同产品分别采用光刻-反应离子刻蚀法以及纳米压印等工艺实现元件加工,并拥有汽车投影照明精密微透镜阵列设计和加工、衍射微纳光学器件设计等技术。产品下游包含数据通信、汽车投影照明、生命科学等领域。客户涵盖全球知名数通光芯片模组企业以及拥有汽车投影照明技术的全球多个零部件制造商,并被德国卡尔蔡司评定为首选供应商。[/color][color=#f79646][b]| [/b][/color][b][color=#000000]炬光科技战略规划布局长远,本次收购协同效应明显[/color][/b][color=#000000]炬光科技坚持“产生光子”+“调控光子”+“光子技术应用解决方案”的业务战略布局,上游做强核心元器件,中游做大应用解决方案。SUSS MicroOptics主要产品为上游核心微纳光学元器件,本次收购后,炬光科技将借助SUSS MicroOptics的微纳光学技术积累和研发优势,光学设计能力由“微”入“纳”,核心技术壁垒进一步加强,能够实现对更多类型微纳光学产品的全面覆盖,增强炬光科技在光子行业领域的领先地位;同时通过整合利用SUSS MicroOptics的品牌、客户与市场渠道,炬光科技将加速海外市场开拓,扩大全球市场空间与份额,促进公司实现跨越式成长。[/color][来源:MEMS][align=right][/align]

  • 全国纳米标委会低维纳米结构与性能工作组秘书长梁铮博士参加ChinaNANO 2017国际会议

    全国纳米标委会低维纳米结构与性能工作组秘书长梁铮博士参加ChinaNANO 2017国际会议

    8月29日,中国国际纳米科学技术会议(ChinaNANO 2017)在北京召开,中国科学院院长白春礼院士为大会主席并代表会议组委会致开幕欢迎词。泰州石墨烯研究检测平台执行主任、全国纳米技术标准化技术委员会低维纳米结构与性能工作组(下简称“全国低维工作组”)、中国国际石墨烯资源产业联盟国际标准工作委员会(下简称“中烯盟国际标委会”)秘书长梁铮博士参加了ChinaNANO 2017标准及计量分会的专家交流和讨论。国际标准化组织纳米技术标委会(下简称“国际纳米标委会”)ISO/TC229主席Koltsov博士受邀作“全球纳米材料产业标准化进展”、韩国标准科学研究所纳米安全计量中心Nam Woong Song院长受邀作“纳米安全评价标准化进展”的主旨发言,中国食品药品检定研究院徐丽明主任等其他专家分别就纳米材料安全、检测、计量以及标准物质研制作专题报告。Koltsov主席介绍了全球纳米产业的近况及前景,对国际纳米标委会的标准化工作作了说明和总结,并指出国际纳米标委会将对全球整个纳米产业提供标准化支持,推动其健康有序发展。梁铮博士向Koltsov主席汇报了我国低维纳米技术领域标准化的最新进展。8月21日,在国家纳米科学中心、全国纳米技术标准化技术委员会的大力支持和指导下,全国低维工作组在江苏泰州正式成立,编号为SAC/TC279/WG9,南京大学长江学者、国家杰出青年基金获得者王欣然教授任组长,秘书处设在泰州石墨烯研究检测平台,该工作组将全面负责组织协调全国低维纳米技术领域标准化工作。当天,中烯盟国际标委会亦同时举行揭牌仪式并召开了第一次全体工作会议。梁铮博士向Koltsov主席进一步提到,以石墨烯为代表的低维纳米材料和相关纳米技术领域目前在中国已逐步从实验室研究阶段进入到产业化阶段,具有广泛和迫切的标准化需求,需要在前期国际国内纳米技术标准化工作的基础上,充分考虑石墨烯等低维纳米材料的特殊结构与性能,研究开发准确、有效、稳定的标准方法。Koltsov主席表示,国际纳米标委会将积极探讨与中国国家标准、联盟标准等各级标准化工作组织的合作机制,推动我国低维纳米技术领域各级标准的制定,为中国乃至国际纳米材料产业的健康发展提供有力支撑。测量方法的标准化、标准物质研制和计量技术的发展是确保纳米科学研究及产业化过程中各种技术指标一致性、准确性、可靠性的重要手段。此次ChinaNANO 2017标准及计量分会专门讨论了国际国内纳米技术标准化最新工作进展、发展路线图、研究热点,纳米测量不确定度评价、标准物质研制、纳米计量等领域所面临的技术挑战等,对我国石墨烯等新兴低维纳米材料的标准化具有重要的指导意义。[align=center][img=,450,337]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311359_01_2047_3.jpg[/img][/align][align=center]全国低维工作组秘书长梁铮博士参加ChinaNano2017国际会议[/align][align=center][img=,450,337]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311400_01_2047_3.jpg[/img][/align][align=center]全国低维工作组秘书长梁铮博士认真听取报告[/align][align=center][img=,450,337]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311400_02_2047_3.jpg[/img][/align][align=center]全国低维工作组秘书长梁铮博士与国际标准化组织纳米技术标委会ISO/TC229主席Koltsov博士亲切交谈[/align]

  • 【2014诺奖回顾】光学显微纳米新时代

    【2014诺奖回顾】光学显微纳米新时代

    http://ng1.17img.cn/bbsfiles/images/2014/12/201412191620_527962_2972800_3.jpg 1873年,显微学家厄恩斯特•阿贝提出“传统光学显微镜分辨率为不会超过0.2微米”的物理限制。大约一个半世纪之后,来自美国的埃里克•白兹格(Eric Betzig)和威廉姆•莫尔纳尔(William Moerner)以及德国的斯特凡•赫尔(Stefan Hell)成功突破了这一限制,他们利用荧光分子,发明了一种超级分辨率荧光显微镜,从此开启了光学显微镜的纳米时代,正因如此,三人荣获2014年诺贝尔化学奖。 该显微镜融合了另外两种显微镜的成像原理,其一是2000年斯特凡•赫尔发明的受激发射损耗(STED)显微镜,其原理是利用两条激光束,一条激发荧光分子使其发出荧光,另一条抵消除纳米级荧光外的所有荧光;这样一纳米一纳米地扫描样品,所得图像的分辨率突破了阿贝的物理限制。其二是2006年埃里克•白兹格和威廉姆•莫尔纳尔发明的单分子显微镜,其工作原理是开关单分子荧光,科学家们反复多次对扫描同一样品,每次只让几个分子发出荧光,叠加所有图像后得到的致密图像就有纳米级分辨率。如今,纳米显微学已经广泛用于全世界,深入人们生活的各个方面,科学家们从此能了解更多活细胞中分子的细节,从而为改善人类生存环境做出更大贡献。

  • 【转帖】无机纳米粒子复合乳液的研究进展!

    无机纳米粒子复合乳液的研究进展 王玉玲,邓宝祥 (天津工业大学材料科学与化学工程学院,天津300160) 摘要:对纳米SiO2复合乳液的合成制备作了详细的综述,介绍了共混法、插层法、溶胶-凝胶法和原位分散聚合法,概述了纳米SiO2对复合材料性能的影响及其特性和发展。 关键词:纳米粒子 SiO2 聚丙烯酸 复合乳液 0引言 乳液型复合材料具有价廉、安全无污染及使用方便等特点,在胶粘剂、涂料、皮革、纸张、纤维、纺织等领域已得到广泛应用。但是乳胶膜在某些性能上存在缺点,例如,耐候性差、硬度低、胶膜冷脆热粘等,这样其应用性就会受到限制。如果在聚合物乳液中加入无机纳米粒子制成无机纳米粒子复合乳液,利用纳米材料的特性制备性能优异的复合乳液,则在乳液性能上会有很大的提高,使这种复合乳液比单纯的有机乳液具有更好的应用前景。 这种复合乳液属于有机-无机复合材料,它并非是无机相与有机相的简单加合,而是由无机相与有机相在纳米范围内结合而成,在这两相的界面上有着或强或弱的各种物理键和作用(范德华力、氢键等),这种作用赋予材料各种优异的特性。纳米级材料本身具有的特性效应,SiO2表面具有不饱和的残键及不同键合状态的—OH,促使分子呈现出三维结构形态。同时,也是由于这种三维硅石结构,庞大的比表面积和纳米效应,表面严重的配位不足,表现出极强的活性,所以,对色素粒子的吸附力很强,紧紧包裹在色素粒子的表面,形成屏蔽作用,大大降低了因紫外光的照射而造成的色素衰减,这样就能大大提高涂料的附着力与耐候性。 1纳米粒子的分散方法 纳米粒子由于颗粒小,其表面原子比率很高,比表面积大,所以颗粒间往往会通过范德华力、氢键以及一些共价键的作用而互相吸引,形成二次粒径,三次粒径,即团聚体。这种团聚现象就会使纳米粒子失去其独特性,因此合理经济的分散方法十分重要。 1.1物理机械分散法 利用机械搅拌或超声波的方式使纳米粒子均匀分散。 1.2化学试剂添加法 通过加入表面活性剂等化学试剂降低界面之间的张力,添加吸附稳定剂形成界面膜包覆纳米颗粒,即立体保护作用。 2纳米粒子复合乳液的合成方法 有关纳米复合乳液的制备方法,文献报道最多的有:共混法、插层法、溶胶-凝胶法和原位分散聚合法。 2.1共混法 这种方法是先制备出各种形态的纳米粒子,再通过各种方法(例如机械搅拌、超声波等)将其与制备好的乳液直接共混,是制备纳米杂化材料最简单的方法。为防止纳米粒子团聚,需对其表面进行处理。张宝华等通过超声分散仪将纳米SiO2直接与制备好的PUA离聚物乳液共混制得了复合乳液。用激光粒度分布仪检测表明SiO2在复合乳液中呈现纳米尺寸分布,且发现共混法制得的复合乳液能显著改善涂膜的紫外光吸收性能、热学性能及机械性能。曾丽娟等以无机系硅溶胶为主,有机高分子乳液为辅,二者共混改性硅溶胶苯丙复合涂料,所得的涂料具有无机涂料和有机涂料的特性,又弥补了两者的不足,是非常有前途的环保涂料。并在这篇文章中介绍了最佳共混条件的优化选择,以及颜填料、助剂的选用对涂料性能的影响。 2.2插层法 插层复合法是制备聚合物基无机杂化材料的一种重要方法。利用层状无机物(如硅酸盐类粘土、石墨、V2O5、Mn2O3、二硫化物等)作为无机相主体,将单体或聚合物作为客体插入主体的层间,制得插层型杂化材料。用这种方法制备无机纳米粒子复合乳液主要又分为下面3种。 2.2.1嵌入原位聚合方法 先将高分子单体和层状无机物分别溶解到某一种溶剂中,然后单体在外加条件(如氧化剂、光、热、电、引发剂等)下发生原位聚合,利用聚合时放出的热量克服硅酸盐片层间的库伦力而使其剥离,从而使纳米尺度硅酸盐片层与高分子物基体以化学键的方式结合。王一中、李同年分别以此法制备了聚甲基丙烯酸甲酯(PMMA)/蒙脱土(MMT)和聚苯乙烯(PS)/蒙脱土(MMT)嵌入混杂材料 LeewookJang和范宏制备了苯乙烯-丙烯腈(SAN)/MMT纳米复合材料 官同华等合成了聚甲基丙烯酸甲酯(PMMA)/蒙脱土(MMT)纳米材料,并对其性能进行了表征 金星等采用双-苯基二甲基十八烷基溴化铵(TBDO)作为有机插层剂对钠基蒙脱土进行了有机化处理,该有机化的蒙脱土粒子在苯乙烯单体中很容易地分散并形成稳定的胶体溶液。通过对分散由蒙脱土的苯乙烯进行自由基聚和制备了聚苯乙烯-蒙脱土纳米复合材料,X衍射和透射电镜研究表明形成了原位插层型和部分插层部分剥离型纳米复合材料。且其与纯聚苯乙烯相比,具有更高的相对分子质量,较低的玻璃化转变温度(Tg)和优良的热稳定性。

  • 关于召开全国纳米技术标准化技术委员会 低维纳米结构与性能工作组(SAC/TC279/WG9)成立会议 暨国家标准编制启动会的通知

    各相关单位和专家:近年来,越来越多的低维纳米材料,如石墨烯、二硫化钼、氮化硼、二维黑磷单晶等被相继发现,以这些材料为基础的各种复杂结构,如异质结、堆垛结构等也不断产生。这些低维纳米材料与结构的新奇性质以及在光电、催化、传感等领域的前景引起了学术界和产业界的高度关注,也逐步进入了从实验室研发到产业化应用的阶段。统一的命名方式、测试方法、技术规范、性能评价等标准的建立,对该领域相关产业和技术的发展具有有力的支撑作用,开展标准化工作已成为迫切需求。经国家标准化管理委员会和中国科学院批准,全国纳米技术标准化技术委员会低维纳米结构与性能工作组正式成立,编号为SAC/TC279/WG9,负责组织协调全国低维纳米技术领域标准化工作。经研究,定于2017年8月20日~21日在江苏省泰州市召开全国纳米技术标准化技术委员会低维纳米结构与性能工作组(SAC/TC279/WG9)成立会议,暨国家标准编制启动会。同时,为了加速国家标准、团体标准立项进度,推动我国主导相关国际标准,同期举办中国国际石墨烯资源产业联盟国际标准工作委员会第一次全体大会。现将有关事项通知如下:一、会议主体及参会对象主办单位:国家纳米科学中心、江苏省质量技术监督局承办单位:泰州市质量技术监督局、泰州石墨烯研究检测平台(全国纳米技术标准化技术委员会低维纳米结构与性能工作组秘书处)协办单位:中国国际石墨烯资源产业联盟、南京大学、东南大学、上海交通大学、复旦大学、南京邮电大学、西北工业大学、中国科学院上海技术物理研究所、内蒙古石墨烯材料研究院赞助单位:岛津企业管理(中国)有限公司、低维材料在线参会对象:全国纳米技术标准化技术委员会低维纳米结构与性能工作组全体委员、中国国际石墨烯资源产业联盟国际标准工作委员会全体委员、低维纳米技术领域相关单位及专家、有意参加标准编制工作的相关单位及专家。二、会议内容(一)全国纳米技术标准化技术委员会低维纳米结构与性能工作组成立仪式1. 领导致辞2. 工作组成员证书颁发(二)国家标准工作会议1. 20170324-T-491 国家标准《石墨烯薄膜的性能测试方法》编制启动会。报告人:智林杰研究员国家纳米科学中心2. 国家标准《储能用石墨烯基复合电极材料的振实密度测试方法》技术交流。报告人:智林杰研究员国家纳米科学中心3. 国家标准项目需求研讨(如有需求请用附件2反馈)(三)联盟标准工作会议1. 中国国际石墨烯资源产业联盟国际标准工作委员会第一次全体大会及委员证书颁发2. 纳米技术国际标准化进展。报告人:葛广路研究员国家纳米科学中心3.二维高分子材料:从微观到宏观的结构与形貌调控。报告人:张帆教授 上海交通大学4.多极轴分子铁电/压电材料。报告人:游雨蒙教授 东南大学5.新型二维材料的电子输运和器件应用。报告人:缪峰南京大学6. 原子力显微镜在纳米材料观测中的应用。报告人:陈强岛津企业管理(中国)有限公司7. 专家专题报告8. 联盟标准项目需求研讨(如有需求请用附件2反馈)三、标准化需求征集本次会议面向全国各单位征集低维纳米技术领域的标准化需求,供本次国家或联盟标准工作会议研讨和后续立项。如有需求请于7月28日前反馈《附件2:标准化需求征集表》至邮箱:[email]standard@graphene-center.org[/email]。联系人:邵悦13914543362,梁铮18936799578。四、会务安排(一)会议报到时间:8月20日全天,欢迎晚宴18:30开始。会议于8月21日召开,会期一天。(二)会议地址:泰州天德湖宾馆酒店地址:泰州市海陵区海陵南路268号(天德湖公园内)(三)交通1. 高铁到镇江南站后,会务组安排专车接站,接站发车时间:17:00(需接站者请在附件1会议回执中注明)。2. 高铁南京站到泰州火车站动车约1小时20分钟。3. 扬州泰州机场到泰州汽车南站约35分钟车程,大巴班次如下:10:00、12:00、13:40,、18:00、20:10。4. 南京禄口机场到泰州汽车南站约2.5小时车程,大巴班次如下:10:30、12:30、14:30、16:30、19:00、21:30。五、会务费用及相关事宜1.会议费用全免(含会务费、资料费、餐费)。往返差旅、zhusu费自理。2.会议酒店客房紧张,会务组可提前帮助预订房间。住宿标准:大床房和标准间均为380元/间• 天(含双早)。标准间如需拼房,请在附件1会议回执中注明。六、参会报名希各单位接此通知后于8月4日前将《附件1:会议回执》反馈至邮箱:[email]standard@graphene-center.org[/email]。参会联系人:邵悦13914543362,梁铮18936799578。会议网址:[url]http://www.grapheneiso.com/[/url]七、会议赞助更多合作,会议支持,会议展示,欢迎来电洽谈。赞助/参展联系人:袁文军13761090949,[email]sponsor@graphene-center.org[/email][align=right] [/align][align=right]全国纳米技术标准化技术委员会[/align][align=right]低维纳米结构与性能工作组 [/align][align=right] 2017年7月15日[/align][align=right] [/align]附件1:会议回执附件2:标准化需求征集表附件3:国家标准项目介绍附件1:会议回执 [table=623][tr][td]姓 名[/td][td]性别[/td][td]单位[/td][td]职务[/td][td]联系电话[/td][td]8月20日是否订房(注明大床/双床)[/td][td]8月21日是否订房(注明大床/双床)[/td][/tr][tr][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][/tr][tr][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][/tr][tr][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][/tr][tr][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][/tr][tr][td=7,1] [b]备注:会务组将到高铁镇江南站接站,接站发车时间:17:00[/b]是否需要接站: [color=red](必填项,请填“是/否”)[/color]到站班次: [color=red](若无需接站则不必填写)[/color]到站时间: [color=red](若无需接站则不必填写)[/color][/td][/tr][/table]希各单位接此通知后于8月4日前将《附件1:会议回执》反馈至邮箱:[email]standard@graphene-center.org[/email]。参会联系人:邵悦13914543362,梁铮18936799578。会议网址:[url]http://www.grapheneiso.com/[/url]附件2:标准化需求征集表[table][tr][td]项目名称(中文)[/td][td=3,1] [/td][/tr][tr][td]项目名称(英文)[/td][td=3,1] [/td][/tr][tr][td]标准类别[/td][td=3,1] 选填:产品/基础/方法/管理/安全/卫生/环保/其他[/td][/tr][tr][td]提出单位[/td][td=3,1] [/td][/tr][tr][td]主要提出人[/td][td=3,1] [/td][/tr][tr][td]主要提出人联系电话[/td][td] [/td][td]主要提出人电子邮件[/td][td] [/td][/tr][tr][td]项目提出时间[/td][td=3,1] [/td][/tr][tr][td]项目计划开始时间[/td][td] [/td][td]项目计划结束时间[/td][td] [/td][/tr][tr][td]目的、意义[/td][td=3,1] [/td][/tr][tr][td]范围和主要技术内容[/td][td=3,1] [/td][/tr][tr][td]国内外情况简要说明[/td][td=3,1] [/td][/tr][tr][td]项目成本预算[/td][td=3,1] [/td][/tr][tr][td]备注[/td][td=3,1] [/td][/tr][/table]希各单位接此通知后于8月4日前将《附件2:标准化需求征集表》反馈至邮箱:[email]standard@graphene-center.org[/email]。联系人:邵悦13914543362,梁铮18936799578。附件3:国家标准项目介绍 [table][tr][td][b]标准名称[/b][/td][td]石墨烯薄膜的性能测试方法[/td][/tr][tr][td][b]ICS分类号[/b][/td][td]07.030[/td][/tr][tr][td][b]目的意义[/b][/td][td]石墨烯是一种典型的二维纳米材料,由于石墨烯具有高电子传输速率以及光透过率,石墨烯薄膜材料被广泛应用于透明导电膜的制备,在许多光电器件,如太阳能电池、触摸屏、智能窗、液晶显示等领域中备受关注。由于不同应用对于透明导电膜的性能要求不同,在使用前需要对石墨烯薄膜的导电性、透光性等性能进行测试,以评价石墨烯薄膜的光电性能,并有助于选出符合应用所需的材料。 本标准使用四探针法对石墨烯薄膜的导电性和面电阻均匀性进行测试,使用原子力显微镜扫描法对石墨烯薄膜的厚度进行测试,使用紫外-可见-近红外分光光度法对石墨烯薄膜的透光性进行测试。国内尚无测试石墨烯薄膜上述性能的标准方法。因此,为满足国内该领域的使用需求,制定石墨烯薄膜性能测试标准具有重要意义。[/td][/tr][tr][td][b]范围和主要 技术内容[/b][/td][td]本标准规定了在常温常压空气环境下使用四探针法对石墨烯薄膜样品的导电性和面电阻均匀性进行测试的方法。通过定量测试石墨烯薄膜的方块电阻值,并结合厚度信息得到电导率值,从而进行石墨烯薄膜样品的导电性的综合评价。本标准规定了九点电阻测量法测定石墨烯薄膜的面电阻均匀性的方法,通过测定特定的九个点的方块电阻值,计算方块电阻偏差的相对大小,从而得到薄膜样品均匀性的评价。本标还准规定了原子力显微镜扫描法测定石墨烯薄膜的厚度的方法,通过扫描样品边缘处的高度差,得到薄膜的厚度信息。本标准同时规定了在空气环境下使用紫外-可见-近红外分光光度法(UV-Vis-NIR)对石墨烯薄膜样品的透光性进行测试的方法。通过定量测试石墨烯薄膜在紫外-可见-近红外波长范围内的透过率曲线,进行石墨烯薄膜样品在所选取的波长范围内透光性的综合评价。同时,本标准提供一种对可见光区域内石墨烯薄膜的透光性的评价方法。 技术内容: 使用四探针测试仪对石墨烯薄膜的方块电阻和电导率进行测试,明确石墨烯薄膜的导电性。具体为样品准备、方块电阻的测试、样品厚度测试、电导率的计算,重复进行三次样品测试。使用四探针测试仪对石墨烯薄膜的面电阻均匀性进行测试,具体为选取测试区域和测试点、方块电阻的测试、均匀性的计算。使用原子力显微镜对样品的厚度进行测试,具体为样品准备、原子力显微镜扫描得到厚度信息、多次扫描取平均值。使用紫外-可见-近红外分光光度计对石墨烯薄膜在某一波长范围的透光率进行测试,明确石墨烯薄膜的透光性。具体为样品准备、波长区间及扫描速率确定,重复进行三次样品测试,由透光率曲线得到石墨烯薄膜的透光性评价。[/td][/tr][tr][td][b]国内外情况[/b][/td][td]国内尚无对石墨烯薄膜的导电性、面电阻均匀性、厚度、透光性等性能测试制定标准方法。[/td][/tr][/table] [table][tr][td][b]标准名称[/b][/td][td]储能用石墨烯基复合电极材料的振实密度测试方法[/td][/tr][tr][td][b]ICS分类号[/b][/td][td]07.030[/td][/tr][tr][td][b]目的意义[/b][/td][td]石墨烯作为一种新型纳米材料,其独特的二维单原子层结构赋予了它许多新颖特性,如优异的机械性能、良好的导热和导电性能等,其在诸多领域均表现出良好的应用前景。基于石墨烯与锂离子电池活性电极材料的复合,一类新型纳米复合电极材料正成为科学界和工业界重点关注的能源材料体系。尽管能源电极材料的振实密度对于其实际应用至关重要,目前国际国内尚无石墨烯基复合电极材料的振实密度测试的相关标准,其主要原因是各种维度、结构和形态的石墨烯基复合电极材料在不同的堆积方式下及不同形态的测试器皿中具有不同的振实体积,致使现存的颗粒及粉末振实密度测试方法完全无法应用于该类新型的纳米材料体系;制定该类材料的振实密度测试标准对推进材料的实际应用无疑具有极其重要的意义。[/td][/tr][tr][td][b]范围和主要 技术内容[/b][/td][td]本标准提供石墨烯基复合电极材料振实密度的测定方法,即要求在考虑石墨烯基复合电极材料的结构及形态特征的基础上,将未排列及预排列的样品置于器皿形状与材料维度相匹配的器皿中振实;本标准提供一种对石墨烯基复合电极材料的振实密度进行表征的指导。 技术内容:使用振实密度测试仪将精确称量的具有不同堆积方式的石墨烯基复合电极材料根据材料的维度等结构形态信息在不同形状的体积测试器皿中进行振实,以石墨烯基复合电极材料的质量除以材料经振实后的体积,得到其振实密度值。具体为样品堆积方式的确定、器皿形状的选择、样品量的确定、振实过程的控制等,重复进行三次样品振实密度测试,确保数据可靠性。[/td][/tr][tr][td][b]国内外情况[/b][/td][td]国内尚无针对纳米材料-石墨烯基复合电极材料进行其振实密度测试的标准方法。[/td][/tr][/table]

  • Winner801光相关纳米粒度仪

    Winner801光相关纳米粒度仪Winner801是我公司最新推出的基于动态光散射原理的纳米粒度仪,也是国内首款采用光子相关光谱(PCS)技术的纳米粒度仪。它采用我公司自主研制的高速数字相关器和专业的高性能光电倍增管作为核心器件,具有快速、高分辨率、重复及准确等特点,是纳米颗粒粒度测定的首选产品。主要性能特点:先进的测试原理:本仪器采用动态光散射原理和光子相关光谱技术,根据颗粒在液体中的布朗运动的速度测定颗粒大小。小颗粒布朗运动速度快,大颗粒布朗运动速度慢,激光照射这些颗粒,不同大小的颗粒将使散射光发生快慢不同的涨落起伏。光子相关光谱法就根据特定方向的光子涨落起伏分析其颗粒大小。因此本仪器具有原理先进、精度极高的特点,从而保证了测试结果的真实性和有效性;是纳米激颗粒粒度测定的首选仪器。高灵敏度与信噪比:本仪器的探测器采用专业级高性能光电倍增管(PMT),对光子信号具有极高的灵敏度和信噪比,从而保证了测试结果的准确度;极高的分辨能力:使用PCS技术测定纳米级颗粒大小,必须能够分辨纳秒级信号起伏。本仪器的核心部件采用微纳公司研制的CR140数字相关器,具有识别8ns的极高分辨能力和极高的信号处理速度,因此可以得到准确的测定结果。超强的运算功能:本仪器采用自行研制的高速数字相关器CR140进行数据采集与实时相关运算,其数据处理速度高达125M,从而实时有效地反映颗粒的动态光散射信息。稳定的光路系统:采用短波长LD泵浦激光光源和光纤技术搭建而成的光路系统,使光子相关谱探测系统不仅体积小,而且具有很强的抗干扰能力,从而保证了测试的稳定性。高精度恒温控制系统:样品测试区域设计有半导体恒温装置,温控精度高达0.1℃,保证测试样品温度恒定,消除因温度的变化导致介质的折射率、粘度的变化以及布朗运动突变等因素,从而保证测试结果的准确度和稳定性。 适用测试对象:各种纳米级、亚微米级固体颗粒与乳液。

  • 【我们不一YOUNG】基于超声-微纳米气泡辅助技术的可变光程水质多参数检测方法研究

    [font=&][color=#666666]针对目前国家标准分析检测水质多参数方法存在的科学与技术问题,提出了一种基于超声-微纳米气泡(US-MNB)辅助技术、连续光谱法和顺序注射分析法(SIA)的可变光程水质多参数检测新方法。设计水质多参数检测系统,通过检测总磷(TP)、化学需氧量(COD)、氨氮(NH[/color][/font][font=&][size=12px][color=#666666]3[/color][/size][/font][font=&][color=#666666]-N)和六价铬(Cr[/color][/font][font=&][size=12px][color=#666666]6+[/color][/size][/font][font=&][color=#666666])四种水质参数,验证了新方法的可行性。系统设计的核心是基于超声与微纳米气泡相结合的消解室以及具有可变光程功能的光谱扫描检测室,可达到快速消解和稳定检测的目的。同时系统基于国家水质检测标准,优化了水质多参数联合检测流程,并利用分光光度法和顺序注射分析技术对四种水质参数的含量进行连续光谱检测。首先,在常温常压下采用US-MNB辅助技术结合强氧化剂对TP进行消解,同时对检测室中NH[/color][/font][font=&][size=12px][color=#666666]3[/color][/size][/font][font=&][color=#666666]-N参数显色反应后的化合物直接进行光谱扫描测定,消解后,再进行TP的测定。同理,消解COD的同时,对检测室中的Cr[/color][/font][font=&][size=12px][color=#666666]6+[/color][/size][/font][font=&][color=#666666]参数显色反应后的化合物直接进行光谱扫描测定,消解后,再进行COD的测定。整个检测过程所用时间大幅降低,可在短时间内自动完成水质多参数的测定,显著地提高了检测的效率。以上述四种水质参数为测定对象,利用最小二乘法构建回归模型,拟合回归方程并计算相关系数,并绘制各参数的浓度-吸光度标准工作曲线。结果表明:TP标准工作曲线拟合系数≥0.984 5,且浓度与吸光度成正相关,重复性(RSD)为3.05%~3.62%,加标回收率为97.8%~103.6% COD标准工作曲线拟合系数≥0.998 7,且浓度与吸光度成负相关,重复性(RSD)为2.12%~2.74%,加标回收率为98.7%~104.7% NH[/color][/font][font=&][size=12px][color=#666666]3[/color][/size][/font][font=&][color=#666666]-N标准工作曲线拟合系数≥0.995 3,且浓度与吸光度成正相关,重复性(RSD)为3.41%~3.59%,加标回收率为99.2%~102.4% Cr[/color][/font][font=&][size=12px][color=#666666]6+[/color][/size][/font][font=&][color=#666666]标准工作曲线拟合系数≥0.993 8,且浓度与吸光度成正相关,重复性(RSD)为3.51%~3.92%,加标回收率为98.9%~109.3%。系统可准确测定水样中TP、 COD、 NH[/color][/font][font=&][size=12px][color=#666666]3[/color][/size][/font][font=&][color=#666666]-N和Cr[/color][/font][font=&][size=12px][color=#666666]6+[/color][/size][/font][font=&][color=#666666]的含量,且具有良好的稳定性与可靠性。基于超声-微纳米气泡辅助技术的可变光程水质多参数检测方法研究,对于拓宽光谱法在水质多参数快速检测领域的应用以及提升检测效率等方面的研究具有重要作用。 [/color][/font]

  • 【分享】新型纳米装置将光子变为机械能

    【分享】新型纳米装置将光子变为机械能

    新型纳米装置将光子变为机械能[img]http://ng1.17img.cn/bbsfiles/images/2009/05/200905231039_151503_1644912_3.jpg[/img]一个名为拉链空穴的小装置能够将激光变为机械能。(图片提供:Matt Eichenfield,Jasper Chan/《自然》)研究人员日前研制出一种纳米装置,能够在遭遇激光时产生振动。这种设备非常灵敏,甚至能够感知单个光子的能量。研究人员相信,它将加速光学通讯系统的发展,同时帮助科学家更为精密地探知物质的一些基本属性。 据美国《科学》杂志在线新闻报道,偏振光束似乎没有实现机械功的能力(这是因为光子作为光波的载体是没有质量的),但是它们在原子水平上却能够达到一个惊人的数量。例如,科学家目前已经能够利用激光捕捉、控制及操作单个的原子。现在的问题是相同的原理是否能够作用于纳米量级——其成分要比原子水平大得多,但在大小上仍然仅相当于一米的十亿分之一。 这也正是美国帕萨迪纳市加利福尼亚州理工学院(Caltech)的一个研究小组试图要解决的问题。首先,研究人员制造了一对外部覆盖着硅微芯片材料的厚度仅为几百纳米的支架。随后,他们利用化学手段在每个支架的表面腐蚀了一连串的小洞。研究小组将这一装置称为“拉链空穴”,这是因为它与一个拉链看起来很像。研究人员在5月14日出版的《自然》杂志上报告说,这些小洞能够引导和捕捉激光束的能量,同时使装置产生振动。而振动的频率取决于激光轰击支架的强度,参与该项研究的Caltech的物理学家Oskar Painter这样表示。 这一装置的表现就像是一部音频扬声器,后者隔膜的振动取决于放大器传送的电子信号的强度。相反,像扩音器一样,拉链空穴能够通过自身的振动改变光的强度。Painter指出,总体而言,这些功能使得拉链空穴能够扮演一部完全由光控制的微型无线电发射机和接收机的角色,但它同时要比类似大小的电子装置拥有更大的操作范围。 德国加兴市马普学会量子光学研究所的物理学家Tobias Kippenberg表示,科学家可以利用这种纳米量级的装置探究物质在量子范围的属性,而这是普通电子装置无法实现的。Painter解释说,由于这种装置的振动发生频率在每秒钟1000万次到1.5亿次之间,因此能够极大地改善原子力显微镜的分辨能力。用这种装置来研究分子和原子,每秒钟可以完成数千次操作。Kippenberg表示:“这种装置在基础研究和新应用上都具有光明的前景。”(

  • 【资料】我国超分子配位聚合物研究进入国际前沿

    我国超分子配位聚合物研究进入国际前沿最近美国出版的《纳米科学与纳米技术百科全书》(十卷丛书),收入了中国科学院福建物质结构研究所吴新涛院士及其研究组人员应邀撰写的评述性论文———《超分子配位聚合物》,这表明我国超分子配位聚合物研究领域已进入国际前沿。该文以占幅19书页的专章形式被收入,据介绍,该丛书其所“囊括”的全部章节均由“世界顶级科学家提供”。   纳米是近年来发展很快的尖端科技领域,构筑超分子和超分子配位聚合物研究意义重大。这一领域在结构化学方面有结构多样性,并在功能材料等方面具有巨大的潜在应用前景。《超分子配位聚合物》这一章主要评述零维、一维、二维和三维几个方面的纳米结构材料,评述国内外这方面的前沿研究进展,特别是详细介绍了中国科学院福建物质结构研究所吴新涛、洪茂椿两位院士分别领导的研究组的工作。   据介绍,《纳米科学和纳米技术百科全书》是世界上第一部关于纳米科学和技术领域的百科全书。它在概括了近20年来有关开拓性研究成果的同时,填补了纳米科技基础和应用方面基本信息的空白;是自从纳米技术领域开辟以来唯一的一部由该领域核心知识和最新进展相结合的科学著作。   诺贝尔化学奖获得者Richard.E.Smalley教授评价说:“这部百科全书是专业研究人员、技术投资人员和开发人员查找科学、工程和医学等学科有关纳米技术的最新信息所不可缺少的参考书。它将鼓舞未来几代致力于开发新的纳米材料和器件的学术研究和工业应用研究的人们。”另一位诺贝尔化学奖获得者Jean-MarieLehn教授亦高度评价该书“对纳米科技的发展将产生深远的影响,必将成为广大科学家获取科学信息和精神鼓舞的源泉。”

  • 【分享】巧夺天工!纤维纳米发电机(图)

    【分享】巧夺天工!纤维纳米发电机(图)

    [img]http://ng1.17img.cn/bbsfiles/images/2017/10/2008441608_01_1633307_3.jpg[/img]图:(a)低倍扫描电子显维照片显示两个互相缠绕的、表明长有氧化锌纳米线阵列的纤维,其中一个镀有金。(b)高倍扫描电子显维照片显示两纤维界面处的纳米线对纳米线结构。(c)显示多根纤维组成的纤维纳米发电机的串/并连式连接来提高输出电压/电流。(图片来源:王中林实验室) 从2006年开始,王中林小组相继发明了纳米发电机、直流发电机。在2006年他首次提出了压电电子学(Piezotronics)的概念和新研究领域。由于氧化锌具有独特的半导体和压电性质,弯曲的氧化锌纳米线能在其拉伸的一面产生正电势,压缩的一面产生负电势。氧化锌半导体和金属电极之间的肖特基势垒则能控制电荷的积累与释放,从而实现机械能到电能的转化,并有效释放。   2007年初,基于压电电子学原理,王中林研究小组用超声波带动纳米线阵列运动,研制出能独立从外界吸取机械能、并将之转化为电能的纳米发电机模型。在超声波带动下,这种纳米发电机已能产生上百纳安的电流。但是,在实际环境中,机械能主要以低频震动形式存在,如空气的流动、引擎的震动等。要让纳米发电机能广泛应用于各方面,一个关键的问题就是要降低纳米发电机的响应频率,让纳米线阵列在几个赫兹的低频震动下也能将机械能转化为电能。   为了实现这一目标,王中林教授和王旭东博士及秦勇博士组成研究小组。利用溶液化学方法,他们将氧化锌纳米线沿径向均匀生长在纤维表面,然后用两根纤维模拟了将低频震动转化为电能的这一过程。为了能实现电极与氧化锌纳米线之间的肖特基接触,他们采用磁控溅射在一根纤维表面镀了一层金膜作为电极,而另一根表面是未经处理的氧化锌纳米线。当两根纤维在外力作用下发生相对运动时,表面镀有金膜的氧化锌纳米线像无数原子力显微镜探针一样,同时拨动另外一根纤维上的氧化锌纳米线;所有这些氧化锌纳米线同时被弯曲、积累电荷,然后再将电荷释放到镀金的纤维上,实现了机械能到电能的转换。   相对于之前的直流纳米发电机,新成果实现了如下突破:首先,通过让氧化锌纳米线在纤维之上生长,为实现柔软,可折叠的电源系统(如“发电衣”)等打下了基础;其次,基于纤维的纳米发电机能在低频震动下发电,这就使得步行、心跳等低频机械能的转化成为可能;再次,由于其合成方法简单,条件温和,这就大大扩展了基于氧化锌纳米线的纳米发电机的应用范围。根据目前的实验数据,他估计,如果能用这些纤维编织成布在极端优化的条件下,每平方米这样的布可能输出大约20-80毫瓦的电能。   王中林说,目前这种由两根纤维组成的纳米发电机的输出功率还很小,这主要是由于纤维的内阻较大以及纤维之间接触面积较小造成的。目前,他们正努力提高这种基于纤维的纳米发电机的输出能量。例如,通过在纤维上预先镀一层导电材料然后生长氧化锌纳米线,可以明显降低纳米发电机的内阻,进而可提高纤维基纳米发电机的输出电流;也可以通过增加纤维的数量来提高纳米发电机的输出能量。   文章的审稿人认为:“这是一项很有创意、具有突破性的研究……作者的思路是革命性的。”王中林认为,新成果将为纳米发电机在生物技术、纳米器件、个人携带式电子设备以及国防技术等领域的应用开拓更为广泛的空间。    “今天,纳米科技已经从早期对纳米材料结构和基本物理化学特性的研究,发展到利用纳米材料的优良特性有目的地制造纳米器件,各种各样的纳米器件被纷纷制造出来,如纳米传感器、纳米电动机甚至纳米机器人等。”王中林说,“但与此同时,为这些微型化、集成化的纳米器件提供能量的仍是传统电源,如电池。因此,迫切需要开发出纳米尺度的电源系统,为纳米器件的进一步小型化、集成化提供基本能源。”   目前,已经有BBC、NBC、PBS、《国家地理》等多家国际权威新闻媒体对这一重要的科学成果进行了报道。

  • 混合显微镜可从三维测量生物分子

    中国科技网讯 据每日科学近日报道,最近,美国爱荷华大学与国家能源部艾米实验室科学家合作,将光学显微与原子力显微技术结合起来,开发出一种能对单个生物分子进行三维测量的方法,准确性和精确性都达到纳米级别。最近出版的《纳米快报》上详细介绍了该技术。 现有技术只能从二维平面来测量单个分子,只有X轴和Y轴,新技术称为驻波轴向纳米仪(AWAN),让研究人员能测量Z轴,也就是高度轴,样本也不需要经过传统光学或特殊表面处理。 “这是一种全新类型的测量技术,可以确定分子Z轴方向的位置。” 论文合著者、爱荷华大学物理与天文学副教授珊吉维·西瓦珊卡说,他们承担的研究项目有两个目标:一是研究生物细胞彼此之间怎样粘合,二是开发研究这些细胞的新工具。为此他们开发了新的显微技术。 研究小组用荧光纳米球和DNA单链测试了新式混合显微镜。他们把一台商用原子力显微镜与一台单分子荧光显微镜结合。将原子力显微镜的悬臂针尖放置在一束聚焦激光束上,以产生驻波纹样。 驻波是频率和振幅均相同、振动方向一致、传播方向相反的两列波叠加后形成的波。波在介质中传播时其波形不断向前推进,称为行波;上述两列波叠加后波形并不向前推进,叫做驻波。将一个经处理发光的分子放置于驻波内,当原子力显微镜尖端上下移动时,分子表面相应于它距针尖的距离而起伏发出荧光,由此可以对这一距离进行测量。在实验中,该技术在测量分子时可以准确到1纳米内,测量可多次重复,精确度达到3.7纳米。 西瓦珊卡说,该技术可以通过显微镜来提供高分辨率数据,给医疗研究人员带来便利。还具有商业化潜力,促进单分子生物物理学的研究。(常丽君) 《科技日报》(2012-8-9 二版)

  • 好书推荐——《拉曼光谱学与低维纳米半导体》

    给大家推荐一本书,北京大学张树霖老师编著的《拉曼光谱学与低维纳米半导体》。书中前半部分主要介绍拉曼仪器,拉曼技术和拉曼相关的基础知识,后半部分介绍拉曼在纳米材料中的应用和进展。由科学出版社在2008年出版,有兴趣的同仁可以购买,相关的技术问题可以拿来讨论。作者简介:张树霖,教授/博士生导师,中国物理学会光散射专业委员会国际顾问组成员;国际拉曼光谱学大会国际执委会主席(2002-2004)、终身委员。2004年,获国家自然科学二等奖:“若干低维材料的拉曼光谱学研究”(第一作者)。1986年,获国家教委颁发的教学仪器研制一等奖:“RBD—Ⅱ型激光拉曼光谱仪”(研制主持人)。http://www.waterlike.com.tw/image/book/O58C087001.jpg

  • 【转帖】世界首个三维等离子标尺研制成功

    据美国物理学家组织网6月16日报道,最近,美国能源部劳伦斯-伯克利国家实验室与德国斯图加特大学研究人员合作,开发出了世界首个三维等离子标尺,能在纳米尺度上测量大分子系统在三维空间的结构。该标尺有助于科学家在研究生物的关键动力过程中,以前所未有的精度来测量DNA(脱氧核糖核酸)和酶的作用、蛋白质折叠、多肽运动、细胞膜震动等。研究论文发表在最新一期《科学》杂志上。   随着电子设备和生物学研究对象越来越小,人们需要一种能测量微小距离和结构变化的精确工具。此前有一种等离子标尺,是基于电子表面波(也叫“等离子体”)开发出的一种线性标尺。当光通过贵金属,如金或银纳米粒子的限定维度或结构时,就会产生这种等离子体或表面波。但目前的等离子标尺只能测量一维距离长度,在测量三维生物分子、软物质作用过程方面还有很大局限,其中等离子共振由于辐射衰减而变弱,多粒子间的简单耦合产生的光谱很模糊,很难转换为距离。  而新型三维等离子标尺克服了上述困难。该三维等离子标尺由5根金质纳米棒构成,其中一个垂直放在另外两对平行的纳米棒中间,形成双层H型结构。垂直的纳米棒和两对平行纳米棒之间会形成强耦合,阻止了辐射衰减,引起两个明显的四极共振,由此能产生高分辨率的等离子波谱。标尺中有任何结构上的变化,都会在波谱上产生明显变化。另外,5根金属棒的长度和方向都能独立控制,其自由度还能区分方向和结构变化的重要程度。

  • 基于动态光散射原理的纳米粒度仪的研制

    基于动态光散射原理的纳米粒度仪的研制

    基于动态光散射原理的纳米粒度仪的研制任中京, 陈栋章 (济南微纳颗粒技术有限公司, 济南)摘要:介绍了基于动态光散射原理的纳米粒度仪的工作原理和设计, 重点讲述了我公司自研制的CR128数字相关器的设计原理与性能特点, 以及利用该器件成功研制出的winner801光子相关纳米粒度仪的特性。关键词.. 纳米粒度仪;动态光散射(DLS);光子相关谱(PCS);数字相关器纳米颗粒的尺度一般在1-100nm之间, 是介于原子、分子和固体体相之间的物质状态。由于纳米颗粒具有尺寸小、比表面积大和量子尺寸效应, 使它具有不同于常规固体的新特性。在纳米态下, 颗粒尺寸更是对其性质有着强烈的影响, 纳米材料的粒度大小是衡量纳米材料最重要的参数之一。而常规的基于静态光散射原理的激光粒度仪的测量下限己接近极限, 但仍旧不能对纳米颗粒的粒度测试得出理想的结果甚至无能为力。光子相关光谱(Photon Correlation Spectroscopy,简称PCS)法已被证明是一种适于测量纳米及亚微米颗粒粒度的有效方法。PCS技术也成为动态光散射(Dynamic Light Scattering, 简称DLS) 技术, 主要是研究散射光在某一固定空间位置的涨落现象。其颗粒粒度测量原理建立在颗粒的布朗运动基础之上。由于颗粒的布朗运动, 一定角度下的散射光强将相对于某一平均值随机涨落。PCS技术就是通过这种涨落变化的快慢间接地得到相关颗粒粒度的信息。1 动态光散射基本原理基于动态光散射原理的颗粒粒度测试基本原理如图1.1所示。http://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441893_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441894_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441895_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441897_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441898_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441899_388_3.jpg最后再对四路基线求其平均值用于数据分析, 以免突变的光强引起光强自相关函数发生畸变。在如上的算法的基础上, 我们所研制的C R 12 8 数字相关器采用F PG A 技术, 以硬件方式实现。如图2 .1所示, 主要由取样时间发生器、取样时间、光子计数器、12 8 相关运算模块、基线运算模块、相关数据存储器、数据输出及控制电路组成。其工作原理为:选取适当的取样时间, 并在该时间段内将输入的光子数连续计数, 并将计数结果进行128 路自相关运算及基线

  • 【求助】问一个困扰很久的弱问题,关于一维纳米材料的XRD图谱

    关于一维或二维纳米材料的XRD图谱中,有的峰强度会非常高,可以说明样品按某方向生长此XRD峰强度是否也反映了材料在基底上的几何取向,还是仅仅和晶体本身的生长方向有关系?例如一种纳米线已知均按(001)方向生长,但是随机取向分布在基底上的,并非统一垂直于基底,那么(001)峰还会特别强吗?

  • 【转帖】世界上第一双纳米纤维手套日本问世

    [table=96%][tr][td][table=96%][tr][td]世界上第一双纳米纤维手套日本问世(2010-5-13 中国纺织经济信息网) [/td][/tr][tr][td][table=96%][tr][td][align=center][url]http://news.ctei.gov.cn/236876.htm[/url][/align][align=left] 日本帝人纤维公司(TEIJIN FIBERS:TFJ)开发出世界上首例高尔夫球聚酯纳米纤维手套。位于日本东京的帝人纤维制品有限公司,早在2009年11月就对世界宣布,世界上第一双纳米高尔夫球手套即将问世。并且他们委托日本一家网络公司开始对外招标。这种手套用于打高尔夫球时穿戴。根据帝人公司,这种手套的品牌名称叫“FootJoy”,属于世界上第一双用纳米纤维制造出来的高尔夫球手套。它是用纳米纤维材料做成,具有无以伦比的柔软、耐滑和高吸水和高散热性能。   日本帝人纤维公司开发出来的超细纤维厚度只有700纳米,是一般的头发丝细度的1/7500,表层却要比一般纤维更具有柔韧性。根据该公司报告,这类纳米纤维具有很强的防冲撞能力,表层耐摩擦力性能也无以伦比,还有防滑性能。  该公司宣布这种产品不久,位于日本大阪的帝人纤维公司就开始正式投产这种手套,同时也开始将这种高强度材料用于其它领域。日本网络推销公司Acushnet Japan Inc以FootJoy品牌为名,成为帝人公司的首席代理商。截至今天,日本几乎所有的高尔夫球场已用上了这种手套。  原先的传统高尔夫手套使用天然纤维或人造革制造而成。它本身可防水,表面有涂层;然而最新推出的这种手套所不同的是,它具有防滑性、柔软性、也具有高度吸水性和散热性。这种手套可排除因打高尔夫球而产生的汗液。其原理是,它与手掌接触的面积与原来的传统手套相比,增加了十余倍。并且,这种纳米手套的伸缩性也十分神奇,并且不透明。  帝人公司确信,这种材料可很快普及用于其它商业领域,可用来开发内衣、运动衣和其他工业材料。他们预计,由于这种新品,帝人公司在未来三年内将新增30亿元的收入。  日本帝人公司之所以能开发出这种高科技产品,是因为凭借刻苦的钻研精神以及高超的技术水平不断地研发新型材料,他们确信能够利用现有技术制造出更纤细、更强韧、更柔软、更轻等高性能产品。这绝非只是现有技术的单纯延伸,与之同时,世界上在不断涌现出具有重大突破的新型材料及新技术。  早在2008年7月,具有优异实用性能的高强度涤纶纳米纤维“NANOFRONT”已开始商业化生产。其实,帝人纺织公司大约40年前已经开始研发可以用于人造皮革等领域的超级细纤维,最初开发成功并进行商品化生产的产品其粗细程度达到头发的1/100。本次公布的纳米纤维比之更细,是其超级细纤维的1 /100。超级细纤维一经上市,为人造皮革、擦拭型布料等复合纤维开辟了新用途、领域。同样,对本次研发成功的纳米纤维能够在多大程度上带动现有技术的飞跃性发展,大家翘首以待。  但由于近期对于纳米材料的期待越发高涨,激发研发积极性,如果成功将纤维的单位缩至革命性的纳米水平,对于“纳米式效果”(在吸引/分离/分散功能、表面积大小等方面可开拓空间)所隐含的新型高性能原料的出现将大受瞩目。但是,就算纳米纤维得以研发成功,在批量生产的时候经常会出现韧性不够、只能形成较短的纤维长度等问题,一直都无法实现长纤维的商品化生产。面对这种情况,TFJ新近开发出“海岛型复合纺纱技术”,为高强度纳米涤纶纤维“NANOFRONT”(长纤维)的成功研发和实现商品化生产打下了坚实基础。  由于纳米纤维的纱线直径非常细,因此,纤维表面上纳米尺寸的凹凸会产生大量的摩擦力。同时,由于提高了毛细管现象以及纤维的吸附功能,拥有优异的吸水性、扩散、保水性以及蒸发面积较大等特点,它可极大地发挥冷却性能。另外,柔软度以及比油分子和微细尘粒更小的纤维直径双重作用,擦拭污渍将变得更加轻松,比使用以往超细纤维的产品擦拭性能提高30~40%。适用于对防滑要求严格的手套、功能内衣、安全护身服、利用其对肌肤摩擦伤害极小的特点可广泛应用于护肤产品、汗衫,而对吸水性、扩散性以及保水性有一定要求的冷却功能运动服却具有意想不到的作用。并且它还可应用于擦拭布料、利用其高摩擦系数的特点应用于精密擦拭布等各个不同领域。(中国非织造材料网 )[/align][/td][/tr][/table][/td][/tr][/table][/td][/tr][tr][td][img=1,1]http://www.intertek.com.cn/images/spacer.gif[/img][/td][/tr][/table]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制