当前位置: 仪器信息网 > 行业主题 > >

瞬态平面热源法导热系数测试系统

仪器信息网瞬态平面热源法导热系数测试系统专题为您提供2024年最新瞬态平面热源法导热系数测试系统价格报价、厂家品牌的相关信息, 包括瞬态平面热源法导热系数测试系统参数、型号等,不管是国产,还是进口品牌的瞬态平面热源法导热系数测试系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合瞬态平面热源法导热系数测试系统相关的耗材配件、试剂标物,还有瞬态平面热源法导热系数测试系统相关的最新资讯、资料,以及瞬态平面热源法导热系数测试系统相关的解决方案。

瞬态平面热源法导热系数测试系统相关的资讯

  • 美的电气选购我司瞬态导热系数仪
    美的于1968年成立于中国广东,美的是一家以家电业为主,涉足房产、物流等领域的大型综合性现代化企业集团,旗下拥有两家上市公司、四大产业集团,是中国最具规模的白色家电生产基地和出口基地。美的电气选购我司瞬态导热系数仪
  • 湘潭大学采购南京大展DZDR-S 瞬态平板法导热仪
    导热仪能测什么?其实导热仪是一种测量不同材料导热系数的仪器。导热仪的应用广泛,其主要用于金属与合金、钻石、陶瓷、石墨与碳纤维、填充塑料、高分子材料等的测试。  这次采购南京大展的DZDR-S瞬态平板法导热仪是湘潭大学化工学院,为什么会选择这款瞬态平板法导热仪?其主要是因其具备的性能优势,而且测量速度快,对于样品的形状无特殊要求,只需平整,操作简单。  在仪器的安装调试现场,技术人员就这款DZDR-S瞬态平板法导热仪测试流程、数据分析、放置样品等实际操作步骤进行说明和培训,让其使用人员进行操作,对仪器进行熟悉,针对疑问进行解答。  DZDR-S瞬态平板法导热仪的性能特点:  1、测量范围:0.0001—300W/(m*K)。  2、测量时间快。测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间。  3、多个探头可供选择。探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠。  4、测试样品类型广泛。仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定。  5、双向操作,可通过软件直接计算出导热系数。主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力。  6、彩色触摸屏显示,显示清晰度高,操作便捷。  DZDR-S瞬态平板法导热仪是南京大展仪器新推出一款设备,与其他测试方法的导热仪对比,其具备的优势明显,而且测量速度快,操作简单,并且准确度高。
  • 喀什大学加大科研投入:引进南京大展DZDR-S导热系数测定仪
    喀什大学是新疆地区一所具有较高声誉和影响力的高等学府,致力于推动科学研究和教育发展。为了满足科研需求和提升实验室设备水平,喀什大学决定采购多台南京大展DZDR-S导热系数测定仪,以提供更准确和可靠的导热系数测试数据。这批导热系数测定仪于近期完成安装调试工作,正式开始投入科研教学。   客户需求:  喀什大学一直注重科研项目和学术研究的质量,而准确测定材料的导热系数是评估材料性能和进行相关研究的关键。因此,喀什大学需要一种高精度、可靠性强且适用于多种材料的导热系数测定仪。   经过前期的调研和对比,喀什大学选择了南京大展DZDR-S导热系数测定仪。喀什大学的采购决策不仅仅关注仪器的功能和性能,更注重其完善的服务体系,能够充分保障客户仪器的正常使用,如遇到仪器使用方面的问题,能够得到及时的解决。   仪器的性能优势:  1、测量方法。DZDR-S导热系数测定仪采用非稳态法中的瞬态热源法,与其他测试方法相比,测量速度更快,准确性高。  2、测量速度快。DZDR-S导热系数测定仪能够在5~160s内测量出导热系数,提升实验的效率。  3、多功能性。DZDR-S导热系数测定仪适用于不同类型材料的导热系数测试,其中包括:液体、固体、金属、膏体、胶体、薄膜、粉末和复合材料等等,适用性广泛。  4、易用性。DZDR-S导热系数测定仪采用双向操作控制系统,仪器和计算机同时操作,彩色触摸屏操作,使得使用和操作设备变得简单和便捷。  5、数据准确性。DZDR-S导热系数测定仪拥有配套的分析软件,能够提供准确可靠的导热系数测试数据,可直接提供数据报告。  6、重复性。DZDR-S导热系数测定仪对样品实行无损检测,样品可以重复使用。   售后服务:  在仪器的安装调试现场,我司的技术工程师对仪器的操作、软件的分析等方面进行了详细的培训,整个的培训过程,也让操作人员对于仪器更加的熟悉。我司不仅是为各个行业提高高品质的检测仪器产品,同时我们更注重客户的服务体验,从售前、售中到售后,一站式的服务体系,让客户真正感受到采购南京大展仪器安心、放心。   通过采购多台南京大展DZDR-S导热系数测定仪,喀什大学成功解决了导热系数测试的需求,并提升了实验室设备水平。这个案例不仅展示了喀什大学对科研发展和教育质量的重视,也体现了南京大展DZDR-S导热系数测定仪作为高精度、可靠性和用户友好性的选择。
  • 我司成功开发出高性能瞬态光电压/光电流测试系统
    经过我司科技人员半年多的技术攻关,成功开发出太阳能电池高性能瞬态光电压/光电流测试系统,适用于钙钛矿结构、量子点结构和有机结构等太阳能电池测试。该系统采用特殊设计的低噪音放大电路确保该测试系统具有极高的灵敏度。同时考虑到材料的弛豫时间与太阳能电池结电容和取样电阻的相关性,采用优化的硬件设计方案确保了信号测量的真实性和完整性,带探针的样品仓夹使得更换样品和电学互联非常方便,基于Labview的测试软件可实时采集数据/图像显示功能。此外,采用外部调制的固体激光器而非昂贵飞秒激光器产生脉冲光(最短脉宽仅7ns)使得该测试具有高性能的前提下成本大大降低。 瞬态光电流/光电压测试系统 光电压测试模块和光电流测试模块 带探针的样品仓夹
  • 发布热阻测试、热流法导热系数测试仪新品
    DRL-III导热系数测试仪(热流法)一、产品概述 该导热系数仪采用热流法测量不同类型材料的热导率、热扩散率以及热熔。测量参照标准 MIL-I-49456A高分子材料,陶瓷,绝缘材料,复合材料,非金属材料,玻璃,橡胶,及其它的具有低、中等导热系数的材料。仅需要比较小的样品。薄膜可以使用多层技术准确的得到测量。二、主要技术参数:1:热极温控: 室温~200℃, 测温分辨率0.01℃2:冷极温控:0~99.99℃,分辨率0.01℃3:样品直径:Ф30mm,厚度0.02-20mm;4:热阻范围:0.000005 ~ 0.05 m2K/W5:导热系数测试范围: 0.010-50W/mK, 6:精度 ≤±3%7:压力测量范围:0~1000N8: 位移测量范围:0~30.00mm9:实验方式:a、试样不同压力下热阻测试。b、材料导热系数测试。c、接触热阻测试。d、老化可靠性测试。10:配有完整的测试系统及软件平台。11:操作采用全自动热分析测试软件,快速准确对样品进行试验过程参数分析和报告打印输出。三、仪器配置:1.测试主机 1台, 2.恒温水槽 1台, 3.测试软件 1套,4.胶体粉体样品框1个,*4.计算机(打印机)用户自备典型测试材料:1、金属材料、不锈钢。2、导热硅脂。3、导热硅胶垫。4、导热工程塑料。5、导热胶带(样品很薄很黏,难以制作规则的单个样品,一边用透明塑料另外一边用纸固定)。 6、铝基板、覆铜板。 7、石英玻璃、复合陶瓷。8、泡沫铜、石墨纸、石墨片等新型材料。创新点:样品夹在两个热流传感器中间测试,温度梯度固定或可调。使用内嵌的控制器或外部电脑测得样品的导热系数与热阻。自动上板移动与样品厚度测量,所有测试参数与校正数据可存于电脑内。对校正测试与样品测试进行温度程序编制、数据查看与储存。
  • 2021年热分析厂商仪器新品盘点:3台进口,11台国产
    仪器信息网盘点了2021年热分析厂商的仪器新品,进口品牌包括日立、塞塔拉姆的3台仪器新品,国产品牌包括了天美、绵阳菲纳理、上海众路、南京汇诚、上海和晟、杭州仰仪、厦门海恩迈11台仪器新品。进口品牌新品1.日本日立分析日立分析差示扫描量热仪DSC600&DSC200(上市时间:2021年1月)创新点:新登场的DSC系列提供一流的灵敏度和的基线重复精度,即使在包含痕量级热活性物质的复合材料中,也具有令人难以置信的信噪比,能够捕捉到最微小的热事件。产品介绍:DSC600内置有日立分析专有的热电堆型DSC传感器,它使用差分扫描量热法(DSC信号)温度传感器热电偶串联并多路复用(热电堆),以实现0.1 µW或更低的高灵敏度,可以测量较小的样本。DSC200是标准型号,具有高灵敏度和稳定性,但传感器价格较便宜。它的用途广泛,是产品运输和收货检查、质量保证和质量控制的理想选择。DSC600/200采用从加热器中的散热器到冷却系统无缝连接的炉体结构,并且还采用了低热容量的三层金属壁结构。 Real View样本观测单元内置200万像素高分辨率摄像头,支持样本内的局部观测。视窗(观察窗口)具有加热装置,可将测量范围从传统的室温及以上观察范围扩展到-50℃的低温。这使用户能够观察低温下样品的熔化和玻璃化转变等过程,从而满足更多的测量需求。参考价格:50万-100万元专场链接:https://www.instrument.com.cn/netshow/C373351.htm2.法国凯璞科技-塞塔拉姆法国塞塔拉姆 热重分析仪Setline TGA(上市时间:2021年10月)创新点:法国凯璞科技集团旗下塞塔拉姆仪器在中国投资建厂,为国内第一家热分析仪器合资品牌,全新Setline平台倾注了中、法、瑞研发团队共同心血,新一代独立悬挂式热重分析仪Setline TGA核心部件全部法国进口(加热体、传感器、热电偶、电路板、软件),国内组装调试。产品介绍:2019年,业界热分析品牌-法国塞塔拉姆正式发布旗下全新热分析仪器Setline DSC和Setline STA!作为法国凯璞科技集团全球战略的重要组成部分,中国区首发Setline系列产品定位于高精度、通用型实验室仪器,落户中国生产并在全球上市。全新Setline平台倾注了中、法、瑞研发团队共同心血,2021年10月,新一代中法合资热重分析仪(Setline TGA)重磅来袭,独立悬挂式热重天平设计开创又一高端热分析仪国产化的新纪元!Setline系列产品聚焦高校、科研院所、企业研发/质检中心等细分市场。SetlineTGA独特的技术设计满足高频率、高强度实验环境(特别适用于高校教学实验中心、橡塑化工企业技术研发与质量检验领域),具有易学耐用、操作简单、温度应用范围广阔和低维护成本等显著特点。SetlineTGA能出色地在聚合物、制药合成、食品、塑料、橡胶、涂料等行业领域进行研究测试、质量监控和失效分析。广泛应用于组分(如炭黑和填料)分析,热稳定性/分解,反应化学计量,反应动力学,解吸附/吸附过程,汽化行为,活性气体的影响,逸出气体分析分析(MS、FTIR、GC/MS)等。参考价格:20万-30万 专场链接:https://www.instrument.com.cn/netshow/C472018.htm国产品牌新品:1.天美(原精科/上平)天美(原精科/上平)智能差示扫描量热仪 DSC30(上市时间:2021年7月)创新点:高精度温度测量技术——硬件上采用热良导体铜块同步热电偶冷端与冷端传感器温度变化;软件上采用冷端温度—冷端等效电势高次函数拟合技术实现精确冷端补偿,得到等效热电偶热端电势后,采用分段高次拟合技术计算热电偶热端实际温度。测量结果显示,样品热反应温度准确度达到±0.1℃。 高精度温度控制技术: 采用PWM功率控制技术,功率控制分辨率达到1/40000 结合加热丝温度-电阻相关修正技术,神经网络实时优化PID参数,实现了恒温精度±0.05℃,升降温速率线性误差达1%的高精度温度控制技术。实现0.1℃/min-100℃/min的高度准确的线性升温控制。 创新型加热炉设计: 炉体采用热传导率性能最好的纯银金属,通过特殊工艺将特别设计的气氛气路整合在炉体内,既保证了温度的均一性,又提高了吹扫气流的稳定性,从而确保样品变化信号可靠采集及数据分析的准确性。 特制高灵敏度热电偶 将镍铬丝和镍硅丝和镍铬样品台经特殊工艺焊接在一起,形成高灵敏度的热流传感器。对称的镍铬样品台除了放置样品外,同时也是热电偶的一极,提供敏捷的信号捕捉能力。产品介绍:热流型差示扫描量热仪,整机一体化设计,炉体采用热传导率性能好的纯银金属,通过特殊工艺将特别设计的气氛气路整合在炉体内,既保证了温度的均一性,又提高了吹扫气流的稳定性,从而确保样品变化信号可靠采集及数据分析的准确性;将镍铬丝和镍硅丝和镍铬样品台经特殊工艺焊接在一起,形成高灵敏度的热流传感器。对称的镍铬样品台除了放置样品外,同时也是热电偶的一极,提供敏捷的信号捕捉能力;优化的温度控制方法:采用高频PWM方式控制炉温,可控功率分辨率提高到1/40000。 通过BP神经网络动态修正PID参数,改善传统PID鲁棒性,实现大范围高精度温度控制:温控恒温精度UT310微热量仪的传感器采用3D传感方式,使用546对串联的热电偶形成的环绕型热电堆 大热容量的金属体作为匀热块 样品和参比传感器以对称的方式分布排列。从而形成:高灵敏量热单元、超稳定温场、差分式热流信号、大容量样品池,使UT310微热量仪高效测量样品总产热达90%-95%,且测量误差率可达2‰以下。自动化的生产线实现了传感器所有热电偶对的生产工艺一致性。由这些热电偶构成的3D传感器,确保了结构对称性和电性能一致性,使UT型热量仪在恒温模式下具有平稳的基线,且在大范围快速温度扫描的动态模式下仍有出色的测量基线,确保了量热的准确度和参数的复现性。极高的温度稳定性和热流灵敏度确保了测量的准确度,面对极为微弱的热效应,也可从容测量。即使长时间连续测量,UT热量仪仍可具有极低的长期漂移和短期噪声。样品池内的压力往往伴随着热流的变化,UT系列提供了压强监测的功能,可辅助测试人员判断物质反应的状态。样品池容量:高达12mL。样品池种类现已有混合池,搅拌池,水解池,高压池等,可根据客户不同要求,设计更多种类。专场链接:https://www.instrument.com.cn/netshow/C441034.htm3.上海众路上海众路差示扫描量热仪(10.1寸工控机操作)DSC-500DS(上市时间:2021年6月)创新点:该款仪器相对于之前的型号需要外接点,本型号内嵌10.1寸工控机,操作更简单,为客户节省了成本。产品介绍:该款差示扫描量热仪,内嵌10.1寸安卓工控电脑,无需连接电脑,一键式操作测试氧化诱导期和熔点,自动生成氧化诱导期、熔点图谱,可接打印机打印报告图谱。数据自动测试,测试结束后仪器蜂鸣提示,过程无需人员看管,简单高效。专为塑料、橡胶行业测量氧化诱导期设计,氧化诱导期热稳定实验适用于国标GB/T17391-1998,GB/T2951.42-2008,GB/T15065-2009,GB/T19466-2009,IEC60811-4-2:2004参考价格:25000元专场链接:https://www.instrument.com.cn/netshow/C473118.htm上海众路热重分析仪TGA1150A/1450A(上市时间:2021年5月)创新点:TGA1150A——机器外形重新设计:1,原来的炉体有单纯的陶瓷纤维材料,现在是双层结构既能保证高温的实现,又能保证恒温时间。 2,炉体连接线可拆卸,便于后期维护。TGA1450A——仪器外观重新设计更新——炉体升级,又原来的单层变成了双层;炉体连接线外连。便于后期维护;整体机壳换新,结构及外形都有变化。产品介绍:热重分析法(TG、TGA)是在升温、恒温或降温过程中,观察样品的质量随温度或时间的变化,目的是研究材料的热稳定性和组份。广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控。结构优势:1.炉体加热采用贵金属镍镉合金丝双排绕制,减少干扰,更耐高温。2.托盘传感器,采用贵金属镍镉合金精工打造,具有耐高温,抗氧化,耐腐蚀等优点。3.供电,循环散热部分和主机分开,减少热量和振动对微热天平的影响。4.采用上开盖式结构,操作方便。上移炉体放样品操作很难,易造成样品杆损坏。5.主机采用水域恒温装置隔绝加热炉体对机箱及微热天平的热影响。6.可根据客户要求更换炉体参考价格:59800元/75000元专场链接:https://www.instrument.com.cn/netshow/C460037.htmhttps://www.instrument.com.cn/netshow/C461170.htm4.南京汇诚南京汇诚导热系数测试仪(高导专用)HCDR-SP(上市时间:2021年11月)创新点:瞬态平面热源导热系数测试仪可用于各种不同类型材料的热传导性能的测试,优点是测试范围广泛,最快两秒钟可以读取结果。但问题就在广上,测试范围如此广泛怎么保证测量的准确性呢?传统的一代只有一个探头,一个探头测试所有的材料,结果可想而知,测试低导段的导热系数效果非常好,但是高导的测试重复性误差就比较大。针对这个问题汇诚仪器率先研制出专门针对高导热系数材料的探头,保证了测试的重复性并且已经申请了发明专利。产品简介:HCDR-S是利用瞬态平面热源技术(TPS)开发的导热系数测试仪,可用于各种不同类型材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中比较新型的一种,它改变了传统的测量方法。在研究材料时能够快速准确的测量热导率,为企业质量监控、材料生产以及实验室研究提供了极大的方便。该仪器操作方便,方法简单易懂,不会对被测样品造成损坏。测试对象:金属、陶瓷、合金、矿石、聚合物、复合材料、纸、织物、泡沫塑料(表面平整的隔热材料、板材)、矿物棉、水泥墙体、玻璃增强复合板CRC、水泥聚苯板、夹心混凝土、玻璃钢面板复合板材、纸蜂窝板、胶体、液体、粉末、颗粒状和膏状固体等等,测试对象广泛。专场链接:https://www.instrument.com.cn/netshow/C476809.htm5.上海和晟上海和晟热重分析仪HS-TGA-101(上市时间:2021年5月)创新点:更换炉体机构;采用进口称重天平产品介绍:热重分析仪是在程序控温和一定的气氛下,测量试样与温度或时间关系的技术。通常用质量对温度或者时间绘制的TGA曲线表示TGA测量结果。TGA信号对温度或时间的一阶商,称为DTG曲线,是对TGA信号重要的补充性表示。参考价格:5万-10万专场链接:https://www.instrument.com.cn/netshow/C212283.htm上海和晟差示扫描量热仪HS-DSC-101(2021年4月)创新点:更换为金属炉体,更换进口传感器产品介绍:1.金属炉体结构,更好的解析度和分辨率以及更好的基线稳定性2.数字式气体质量流量计,精确控制吹扫气体流量,数据直接记录在数据库中3.仪器可采用双向控制(主机控制、软件控制),界面友好,操作简便参考价格:5万-10万专场链接:https://www.instrument.com.cn/netshow/C212735.htm上海和晟差示扫描量热仪(半导体制冷)HS-DSC-101A(上市时间:2021年4月)创新点:更换金属炉体;新增半导体制冷产品介绍:采用金属炉体结构,以获取更好的解析度和分辨率以及更好的基线稳定性;使用数字式气体质量流量计,精确控制吹扫气体流量,数据直接记录在数据库中;仪器可采用双向控制(主机控制、软件控制),界面友好,操作简便。专场链接:https://www.instrument.com.cn/netshow/C284150.htm6.杭州仰仪 杭州仰仪电池等温量热BIC-400A(上市时间:2021年6月)创新点:超宽温控:控温范围-40℃-100℃;精确测温:高精度多路传感器,测量精度优于1%;安全防护:异常报警、自动保护、远程更新;样品兼容:支持软包、方盒、18650、21700、26650等多种尺寸电池产品简介:BIC-400A 电池等温量热仪是一款基于功率补偿等温量热原理开发的面向各类型锂电池单体产热特性测试的专业仪器,能够实现锂电池充放电产热特性以及热物性参数测量,为电池热仿真、热管理系统设计优化以及电池热安全性能评估提供精确、稳定、可靠的基础热数据。应用领域:广泛应用于新能源汽车、储能、消费类电子、和航空航天等重要行业及领域。参考价格:10万-50万专场链接:https://www.instrument.com.cn/netshow/C460267.htm7.厦门海恩迈厦门海恩迈芯片式热重分析仪致力于原创国产高端科学分析仪器研发和产业化的创业公司——海恩迈科技,成功开发出基于悬臂梁上的实验室(Lab on a CantileverTM)技术的创新性仪器——芯片式热重分析仪。这个基于全新原理的仪器,将传统热重分析仪天平称重+炉管加热+热电偶测温的结构,用一个尺寸仅为2mm2.5mm的MEMS谐振式微悬臂梁芯片替代,实现了片上热失重分析功能。得益于芯片微小的体积,每次分析所消耗的样品量,由传统仪器的数十毫克降低至几纳克,而且极大的改善了传统仪器的热滞后效应,升降温速率也可以获得数十倍的提升。7月初,海恩迈科技携芯片式热重分析仪等创新仪器产品参加了在厦门举办的2021中国材料大会暨展览会,获得了参会专业人士的一致好评。海恩迈科技的创始人兼CEO于海涛博士于2009年,开发出了国内首款激励/检测元件片上集成的谐振式微悬臂梁,摆脱了传统的光学杠杆检测方式,有效减小了系统的体积与成本。之后,在时任传感技术国家重点实验室主任的李昕欣研究员的支持和指导下,与研究伙伴许鹏程博士共同合作,从悬臂梁结构、电路、敏感材料等多方开展深入研究,开发出了一系列气体探测器。Lab on a CantileverTM系列科学仪器包括气体吸附热力学动力学参数分析仪、微悬臂梁气敏测试仪以及芯片式热重分析仪。顾名思义,这一系列仪器的核心就是谐振式微悬臂梁。Lab on a Cantilever技术来源于于海涛博士团队一次逆向思维的头脑风暴。谐振式微悬臂梁之前一直被用作气敏传感器,受关注的是传感器的灵敏度、选择性、响应速度等参数,更多的是由敏感材料决定,谐振式微悬臂梁处于从属地位。而反向思考的话,可以通过微悬臂梁气敏传感器为主导,反过来研究敏感材料,去探究敏感吸附表象背后蕴藏着的科学本质。基于此想法,气体吸附热力学动力学参数分析仪首先被开发出来,利用世界首创的“变温微称重法”,定量测量功能材料与气体分子发生吸附时,焓变、熵变、吉布斯自由能、活化能等表界面分子作用的热力学和动力学参数。这些参数作为材料吸附的“基因参数”,决定了材料吸附的表象特征,可被用于材料吸附的机理研究以及指导新材料的调控,摆脱传统“试错法”研发新材料的盲目性。作为一款拥有完全自主知识产权的原理性创新的科学仪器,气体吸附热力学动力学参数分析仪得到专家的认可和国家的大力支持。其研发过程受到了自然科学基金重大科研仪器研制项目和国家重点研发计划项目的支持,仪器的检测方法也成功获得国家标准立项。目前,该仪器的用户包括清华大学未来实验室、上海交通大学、复旦大学、福建嘉庚创新实验室等多家国内顶级科研单位。
  • TTE系列半导体器件瞬态温升热阻测试仪研制
    table border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr td width=" 83" style=" word-break: break-all " p style=" line-height: 1.75em " 成果名称 /p /td td width=" 538" colspan=" 3" style=" word-break: break-all " p style=" text-align: center line-height: 1.75em " strong TTE /strong strong 系列半导体器件瞬态温升热阻测试仪 /strong /p /td /tr tr td width=" 91" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 538" colspan=" 3" p style=" line-height: 1.75em " 北京工业大学新型半导体器件可靠性物理实验室 /p /td /tr tr td width=" 91" p style=" line-height: 1.75em " 联系人 /p /td td width=" 167" p style=" line-height: 1.75em " 冯士维 /p /td td width=" 161" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 187" p style=" line-height: 1.75em " shwfeng@bjut.edu.cn /p /td /tr tr td width=" 91" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 535" colspan=" 3" style=" word-break: break-all " p style=" line-height: 1.75em " □正在研发& nbsp & nbsp □已有样机& nbsp & nbsp □通过小试& nbsp & nbsp □通过中试& nbsp √可以量产 /p /td /tr tr td width=" 91" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 535" colspan=" 3" style=" word-break: break-all " p style=" line-height: 1.75em " □技术转让 & nbsp & nbsp & nbsp & nbsp & nbsp √技术入股 & nbsp & nbsp & nbsp √合作开发& nbsp & nbsp √其他 /p /td /tr tr td width=" 648" colspan=" 4" style=" word-break: break-all " align=" center" valign=" top" p style=" line-height: 1.75em " strong 成果简介:& nbsp /strong /p p style=" text-align:center" strong img src=" http://img1.17img.cn/17img/images/201604/insimg/017b0e04-691a-4c5a-826e-5879aa1d7a7a.jpg" title=" 1.jpg.png" / /strong /p p style=" line-height: 1.75em " TTE-400 LED灯具模组热阻测试仪 & nbsp br/ /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201607/insimg/1a6e4129-15a9-479d-84c9-cb11df28231c.jpg" title=" 54c453eb-3470-4a19-9f93-e8a1b5170517.jpg" width=" 400" height=" 203" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 203px " / /p p & nbsp TTE-500 多通道瞬态热阻分析仪 /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201604/insimg/06a37914-c0ba-48cf-9bb6-d25fdea82661.jpg" title=" 3.png" width=" 400" height=" 146" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 146px " / /p p & nbsp & nbsp TTE-LD100 激光器用瞬态热阻分析仪 /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201604/insimg/887237ea-942e-46c5-8591-1dea99e6c712.jpg" title=" 4.png" width=" 400" height=" 143" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 143px " / /p p TTE-M100 功率器件用瞬态热阻分析仪 /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201604/insimg/aded4b1e-7f39-41c2-9e79-8177484f76d7.jpg" title=" 5.png" width=" 400" height=" 185" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 185px " / /p p & nbsp TTE-H100 HEMT用瞬态热阻分析仪 /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201604/insimg/d45a2e5c-776e-4e71-9412-67d87c17f875.jpg" title=" 6.png" / /p p TTE-S200 LED热特性快速筛选仪 /p p style=" line-height: 1.75em text-indent: 0em " & nbsp & nbsp TTE系列半导体器件瞬态温升热阻测试仪是用于半导体器件(LED、MOSFET、HEMT、IC、激光器、散热器、热管等)的先进热特性分析仪,依据国际JEDEC51的瞬态热测试方法,能够实时采集器件瞬态温度响应曲线(包括升温曲线与降温曲线),采样间隔高达1微秒,结温分辨率高达0.01℃。利用结构函数算法能方便快捷地测得器件热传导路径上每层结构的热学性能,构建等效热学模型,是器件封装工艺、可靠性研究和测试的强大支持工具,具有精确、无损伤、测试便捷、测试成本低等优点。该成果已在公司和科研院所等20多家单位应用,并可定制化生产。 /p /td /tr tr td width=" 648" colspan=" 4" style=" word-break: break-all " p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp & nbsp 本产品已投入市场应用五年时间,产品型号在不断丰富以适应庞大的市场需求,技术指标国内领先地位,可替代国外同类产品,拥有独立的自主知识产权。 br/ & nbsp & nbsp & nbsp 应用范围:功率半导体器件(LED、MOSFET、HEMT、IC、激光器、散热系统、热管等)结温热阻无损测量和流水线快速筛选。 br/ & nbsp & nbsp & nbsp 应用情况:国内已有20多家客户的生产线或实验室使用本产品,包括军工单位、芯片厂商、封装厂商、高等院校、高科技制造企业。成果适用于开展半导体晶圆及芯片设计、生产的高校、科研院所及企业。 br/ & nbsp & nbsp & nbsp 预计国内市场年需求量在500台,市场规模约5亿元。 /p /td /tr tr td width=" 648" colspan=" 4" style=" word-break: break-all " p style=" line-height: 1.75em " strong 知识产权及项目获奖情况: /strong br/ & nbsp & nbsp 拥有核心技术,国家发明专利24项,获中国发明博览会金奖1项。 br/ & nbsp & nbsp (1)专利名称:一种快速测量半导体器件电学参数温度变化系数的方法和装置(申请号:201410266126.3); br/ & nbsp & nbsp (2)专利名称:一种LED灯具热阻构成测试装置和方法(申请号:201310000861.5); br/ & nbsp & nbsp (3)专利名称:功率半导体LED热阻快速批量筛选装置(申请号:201120249012.X)。 /p /td /tr /tbody /table p br/ /p
  • 综述 | 石墨烯导热研究进展
    摘要:石墨烯具有目前已知材料中最高的热导率,在电子器件、信息技术、国防军工等领域具有良好的应用前景。石墨烯导热的理论和实验研究具有重要意义,在最近十年间取得了长足的发展。本文综述了石墨烯本征热导率的研究进展及应用现状。首先介绍应用于石墨烯热导率测量的微纳尺度传热技术,包括拉曼光谱法、悬空热桥法和时域热反射法。然后展示了石墨烯热导率的理论研究成果,并总结了石墨烯本征热导率的影响因素。随后介绍石墨烯在导热材料中的应用,包括高导热石墨烯膜、石墨烯纤维及石墨烯在热界面材料中的应用。最后对石墨烯导热研究的成果进行总结,提出目前石墨烯热传导研究中存在的机遇与挑战,并展望未来可能的发展方向。关键词:石墨烯;热导率;声子;热界面材料;悬空热桥法;尺寸效应1 引言石墨烯是具有单原子层厚度的二维材料,因为其独特的电学、光学、力学、热学性能而备受关注。相对于电学性质的研究,石墨烯的热学性质研究起步较晚。2008年,Balandin课题组用拉曼光谱法第一次测量了单层石墨烯的热导率,观察发现石墨烯热导率最高可达5300 W∙m−1∙K−1,高于石墨块体和金刚石,是已知材料中热导率的最高值,吸引了研究者的广泛关注。随着理论研究的深入和测量技术的进步,研究发现单层石墨烯具有高于石墨块体的热导率与其特殊的声子散射机制有关,成为验证和发展声子导热理论的重要研究对象。对石墨烯热导率的研究很快对石墨烯在导热领域的应用有所启发。随着石墨烯大规模制备技术的发展,基于氧化石墨烯方法制备的高导热石墨烯膜热导率可达~2000 W∙m−1∙K−1。高导热石墨烯膜的热导率与工业应用的高质量石墨化聚酰亚胺膜相当,且具有更低成本和更好的厚度可控性。另一方面,石墨烯作为二维导热填料,易于在高分子基体中构建三维导热网络,在热界面材料中具有良好应用前景。通过提高石墨烯在高分子基体中的分散性、构建三维石墨烯导热网络等方法,石墨烯填充的热界面复合材料热导率比聚合物产生数倍提高,并且填料比低于传统导热填料。石墨烯无论作为自支撑导热膜,还是作为热界面材料的导热填料,都将在下一代电子元件散热应用中发挥重要价值。本文综述了石墨烯热导率的测量方法、石墨烯热导率的研究结果以及石墨烯导热的应用。首先介绍石墨烯的三种测量方法:拉曼光谱法、悬空热桥法和时域热反射法。然后介绍石墨烯热导率的测量结果,包括其热导率的尺寸依赖、厚度依赖以及通过缺陷、晶粒大小等热导率调控方法。随后介绍石墨烯导热的应用,主要包括高导热石墨烯膜、石墨烯纤维及石墨烯导热填料在热界面材料中的应用。最后对石墨烯导热研究的发展进行展望。2 石墨烯热导率的测量方法由于石墨烯的厚度为纳米尺度,商用的测量设备(激光闪光法、平板热源法等)无法准确测量其热导率,需要采用微纳尺度热测量方法。常见的微纳尺度传热测量技术包括拉曼光谱法、悬空热桥法、3𝜔法、时域热反射法等几种。下面将重点介绍适用于石墨烯的热导率测量方法。2.1 拉曼光谱法单层石墨烯热导率是研究者最感兴趣的话题。2008年,Balandin课题组最早用拉曼光谱法测量了单层石墨烯的热导率。单层石墨烯由高定向热解石墨(HOPG)经过机械剥离法得到,悬空于刻有沟槽的SiNx/SiO2基底上,悬空长度为3 μm。测量时,选用拉曼光谱仪中波长为488 nm的激光同时作为热源和探测器,光斑大小为0.5–1 μm。激光对石墨烯产生加热作用导致石墨烯温度升高,而石墨烯拉曼光谱的G峰和2D峰随温度产生线性偏移,从而可以得到石墨烯的升温。利用热量在平面内径向扩散的傅里叶传热方程,可以得到石墨烯的平面方向内热导率。通过这一方法,测得石墨烯热导率测量结果为(5300 ± 480) W∙m−1∙K−1,是已知材料中热导率的最高值。拉曼光谱法第一次实现了单层石墨烯热导率的测量,但是其测量过程中存在较大的误差,导致不同测量结果存在差异:材料热导率由傅里叶传热方程计算得到,其中材料的吸收热量Q和升温ΔT两个参数都难以准确测量。首先,测量过程中采用了石墨块体的光吸收6%作为吸热计算的依据,与单层石墨烯在550 nm的光吸收率2.3%存在较大差异,导致测量结果可能被高估一倍左右。其次,升温ΔT通过石墨烯拉曼光谱G峰和2D峰的红移或反斯托克斯/斯托克斯峰强比计算得到,两者随温度变化率较小,需要较高的升温(ΔT ~ 50 K),导致难以准确测量特定温度下的热导率。基于拉曼光谱法,研究者不断改进测量技术,降低实验误差。在早期测量中由于石墨烯下方的SiNx基底热导率较低,约为5 W∙m−1∙K−1,在传热模型中将SiNx视为热沉存在一定误差。后来,Cai等通过在带孔的SiNx/SiO2薄膜表面蒸镀Au的方式,提高了石墨烯的接触热导,满足了热沉的边界条件,同时用功率计实时测量了石墨烯的吸收功率。同时,由于石墨烯覆盖在SiNx/SiO2薄膜上有孔和无孔的区域,可以分别测量悬空石墨烯和支撑石墨烯的热导率。张兴课题组使用双波长闪光拉曼方法,引入两束脉冲激光,周期性地加热样品并改变加热光与探测光的时间差,这样做可以将加热光和探测光的拉曼信号分开,为准确测量样品温度提供了新思路。在后续的研究中,拉曼光谱法也被应用于h-BN、MoS2、WS2等二维材料热导率的测量。2.2 悬空热桥法悬空热桥法是利用微纳加工方法制备微器件并测量纳米材料一维热输运的常用方法,多用于纳米线、纳米带、纳米管热导率的测量。微器件由两个SiNx薄膜组成,每个SiNx薄膜连接在6个SiNx悬臂上,并且沉积有Pt电极用作温度计,两个薄膜分别作为加热器(Heater)和传感器(Sensor),样品悬空加载薄膜上,电极通电后加热样品,通过电极电阻的变化测量样品的升温,从而计算热导率。Seol等最早将这一方法应用在石墨烯热导率的测量中,石墨烯被制备成宽度为1.5–3.2 μm,长度为9.5–12.5 μm的条带,覆盖在厚度为300 nm的SiO2悬臂上,两端连接在四个Au/Cr电极上作为温度计,测量得到SiO2衬底上的单层石墨烯热导率为600W∙m−1∙K−1。SiO2衬底上石墨烯热导率低于悬空石墨烯热导率及石墨热导率,是因为ZA声子和衬底间存在较强的声子散射。悬空热桥法的挑战在于如何将石墨烯悬空于微器件上,避免转移过程中出现石墨烯脱落、破碎的问题 。Li 课题组通过聚甲基丙烯酸甲酯(PMMA)保护转移法首先实现了少层石墨烯热导率的测量:首先将机械剥离法得到的少层石墨烯转移到SiO2/Si衬底上,然后旋涂PMMA作为保护层,用KOH溶液刻蚀SiO2并将PMMA/石墨烯转移至悬空热桥微器件上,再利用PMMA作为电子束光刻的掩膜版,通过O2等离子体将石墨烯刻蚀成指定大小的矩形进行测量。Shi课题组利用异丙醇提高了石墨烯的转移效率,测量了悬空双层石墨烯的热导率。Xu等进一步改良了实验工艺,通过“先转移,后制备悬空器件”的方法实现了单层石墨烯热导率的测量:首先将化学气相沉积(CVD)生长的单层石墨烯转移到SiNx衬底上,再利用电子束光刻和O2等离子体将石墨烯刻蚀成长度和宽度已知的条带,然后沉积Cr/Au在石墨烯两端作为电极,最后用KOH溶液刻蚀使其悬空。这一方法的优势在于避免了PMMA造成污染,但是对操作和工艺都提出了很高的要求。悬空热桥法也被应用于h-BN、MoS2、黑磷等二维材料热导率的测量。基于悬空热桥法,李保文课题组进一步发展了电子束自加热法,利用电子束照射样品产生加热,消除通电加热体系中界面热阻造成的误差。2.3 时域热反射法时域热反射法(Time-domain thermoreflectance,TDTR)是一种以飞秒激光为基础的泵浦-探测(pump-probe)技术,由Cahill课题组于2004年基于瞬态热反射方法提出,常用来测量材料的热导率和界面热导。在时域热反射法测量中,一束脉冲飞秒激光被偏振分束镜分为泵浦光和探测光,泵浦光对待测材料进行加热,探测光测量材料表面温度的变化。泵浦光和探测光之间的光程差通过位移台精确控制,并在每一个不同光程差的位置进行采样,得到材料表面温度随时间变化的曲线,这一曲线与材料的热性质有关。通过Feldman多层传热模型进行拟合,得到材料的热导率。实际测量中 通 常 在 材 料 表 面 沉 积 一 层 金 属 作 为 传 热 层(transducer),利用金属反射率(R)随温度(T)的变化关系(dR/dT),通过探测金属反射率的变化检测材料表面温度变化。时域热反射方法的优点在于能够同时测量材料沿c轴和平面方向的热导率,并且能够得到不同平均自由程声子对于热导率的贡献。Zhang等利用这一方法同时测量了石墨烯沿ab平面和c轴方向的热导率,发现石墨烯沿c轴方向的声子平均自由程在常温下可达100–200 nm,远高于分子动力学预测的结果。测量不同厚度的石墨烯(d = 24–410nm)表现出c轴方向热导率随厚度增加而增加的现象,常温下的热导率为0.5–6 W∙m−1∙K−1,并且随着厚度增加而趋近于石墨块体的c轴热导率(8 W∙m−1∙K−1) 。这一现象反映出,在常温下石墨烯c轴方向热导率是由声子-声子散射主导,为探讨石墨烯的传热机理提供了实验支撑。时域热反射方法的局限在于难以测量厚度较小的样品,这是因为当热流在穿透样品后到达基底,需要将基底与样品之间的界面热阻、基底的热导率作为未知数在传热模型中进行拟合,造成误差较大。对于块体石墨,时域热反射方法测量平面方向热导率为1900 ± 100 W∙m−1∙K−1,与Klemens的预测结果一致。对于厚度为194 nm的薄层石墨,测量热导率为1930 ± 1400 W∙m−1∙K−1,误差明显增大。Feser等通过调控光斑尺寸改变传热模型对石墨平面方向传热的敏感度,利用beam offset方法测量了HOPG热导率。Rodin等将频域热反射(FDTR)与beamoffset的方法结合起来,同时准确测量了HOPG的纵向和横向热导率。Chen课题组发展了无传热层(transducer less)的二维材料热导率测量方法,这种方法既可以采取FDTR频域扫描的测量方式,也可以与beam-offset方法结合,提高对平面方向热导率测量的准确度。这些测量方法为薄层材料热导率测量提供了可能的技术路径,即通过对待测样品的物理结构设计(transducerless)和传热模型设计(调控光斑尺寸与测量频率),选择性地增加对平面方向热导率的敏感度,使得即便在样品很薄、热流穿透的情况下,多引入的未知数在传热模型内具有较小的敏感度,从而实现少层/单层石墨烯平面方向热导率的测量。时域热反射法也被应用于黑磷、MoS2、WSe2等二维材料热导率的测量。基于时域热反射方法发展出频域热反射(FDTR)、two-tint、时间分辨磁光克尔效应(TR-MOKE)等测量方法以提高测量准确度。以上主要总结了石墨烯热导率的常用微纳尺度测量技术,包括拉曼光谱法、悬空热桥法和时域热反射法,不同方法的主要测量结果汇总于表1。表 1 石墨烯热导率测量主要研究结果值得注意的是,部分悬空热桥法测量的热导率显著偏低,是由于PMMA污染抑制了石墨烯声子散射。当样品厚度在微米尺度时,可通过激光闪光法进行测量,这种方法常用于块体石墨和湿化学方法制备的石墨烯薄膜,对于经过热处理还原和石墨化的石墨烯薄膜,激光闪光法测量热导率在1100–1940 W∙m−1∙K−1,热导率的差别主要来自石墨烯薄膜的制备工艺。受限于篇幅,我们将四种测量方法的示意图及主要原理汇总于图1,关于微纳尺度热测量的详细总结可参考相应综述文章。图 1 常见热测量方法示意图3 石墨烯热导率的研究进展石墨烯的热传导主要由声子贡献。和金刚石类似,石墨烯在平面方向由强化学键C―C键构成,并且由于碳原子较轻,具有极高的声速,从而在平面方向具有和金刚石相当的热导率(~2000W∙m−1∙K−1) 。关于石墨烯热传导的主要声子贡献来源,学界的认知随着研究的更新而发生变化。最早,人们预期石墨烯传热主要由纵向声学支(LA)和横向声学支(TA)贡献,这两支声子的振动平面都是沿石墨的ab平面方向。这样的预期是合理的,因为另一支横向声学支(ZA)声子的振动平面垂直于ab平面,而石墨烯作为单原子层材料,垂直平面的振动困难。而且ZA声子的色散关系是~ω2,在q →0时声速迅速减小为0,因而对石墨烯热导率几乎不产生贡献。后来,Lindsay等7通过对玻尔兹曼方程进行数值求解发现,由于单层石墨烯的二维材料特性,三声子散射中与ZA声子关联的过程受到抑制,这一规则被称为“选择定则(Selection rule)”。基于这一原因,ZA声子散射的相空间减小了60%;同时,考虑到ZA声子的数量较多,ZA声子实际成为了单层石墨烯中热导贡献最大的一支,占比约为70%。随着计算方法的进步,研究者对石墨烯中声子传导的理解逐步加深。Ruan课题组在考虑四声子散射的条件下计算了单层石墨烯的热导率,由于ZA声子数量多,导致由ZA声子参与的四声子散射过程多,通过求解玻尔兹曼输运方程(BTE)发现,ZA声子对于单层石墨烯热导率的贡献实际约为30%。Cao等通过分子动力学计算发现,考虑高阶声子散射时ZA声子对石墨烯热导率的贡献将降低。另外,第一性原理计算表明石墨烯中存在水动力学热输运和第二声现象,以及实验测量和分子动力学计算中发现石墨烯存在的热整流现象,都使得石墨烯的声子输运研究不断更新。下面针对理想的单层石墨烯单晶材料讨论其热导率的依赖关系。3.1 石墨烯热导率的厚度依赖石墨烯作为单原子层材料,表现出不同于石墨块体的声子学特征。很自然地产生一个问题,随着石墨烯的原子层数增加,石墨烯会以何种形式、在何种厚度表现出接近石墨块体的热学性质。前文Lindsay等的工作从计算角度给出了解释,在多层石墨烯和石墨中,三声子散射与原子间力常数的关系不同于单层石墨烯,导致选择定则不再适用,ZA声子的散射变大,热导率下降。这一趋势可以从图2a中明显观察到,当石墨烯的厚度从单原子变为双原子层时,ZA声子贡献的热导率大幅下降,石墨烯整体热导率降低。随着原子层数目增加,热导率持续下降。对于原子层数在5层及以上的石墨烯,其热导率已十分接近石墨块体。这一趋势也与Ghosh等对悬空石墨烯热导率的测量结果一致,在原子层数超过4层之后,石墨烯热导率接近块体石墨(图2c)。而对于放置在基底上的支撑石墨烯和上下均有基底的夹层石墨烯(Encased),热导率随层数变化没有明显规律,这主要是因为ZA声子与基底相互作用,对热导率的贡献低于悬空石墨烯,而ZA声子与基底相互作用的强度随原子层数增加而变化,导致热导率随层数变化表现出不同规律(不变或增大) 。研究石墨烯本征热导率仍需对少层及单层石墨烯热导率进行测量,对样品制备和实验测量都具有很大挑战。图 2 石墨烯热导率的尺寸效应3.2 石墨烯热导率的横向尺寸依赖由傅里叶传热定律,材料热导率,其中Cv为材料体积比热容,v为声子群速度,l为声子平均自由程。对于给定的温度,热容与声速均为定值,因而材料热导率主要由声子平均自由程决定。通常情况下,块体材料在三个维度上的尺寸都远大于声子平均自由程,声子为扩散输运,声子平均自由程主要由声子-声子散射确定,是材料固有的性质,表现出热导率与横向尺寸无关。但是对于石墨烯而言,由于制备待测样品的长度在微米级,与平面内声子平均自由程相当,存在弹道输运现象,表现出石墨烯的热导率与横向尺寸存在依赖关系。石墨烯平面方向声子平均自由程可通过计算得到。Nika等通过第一性原理计算分别对LA和TA声子求得Gruneisen参数,得到石墨烯平面方向声子平均自由程在10 μm左右,即石墨烯尺寸小于10 μm时会表现出明显的热导率随尺寸增加而增加现象(图2b)。后续计算表明,在考虑三声子过程和声子-边界散射角度的情况下,石墨烯热导率在横向尺寸L小于30 μm时遵循log(L)增加的规律,在横向尺寸为30 μm左右时达到最大值,并随横向尺寸增加而下降。检验计算结果需要对不同尺寸的单层石墨烯进行热导率测量,这对实验操作的精细度提出了极高要求。Xu等利用悬空热桥法测量了不同长度(300–9 μm)的单层石墨烯热导率,观察到其热导率随长度增加而单调增加。测量结果与分子动力学预测的热导率随长度以log(L)趋势增加的结果相符,证明了石墨烯作为二维材料的热性质(图2d)。但是作者也没有排除另外两种可能:(1)低频声子随尺寸增加而被激发,对传热贡献较大;(2)石墨烯尺寸增加改变三声子散射的相空间,影响选择定则7。由于石墨烯作为二维材料的特性,以及声子平均自由程较大、热导率较高,仍然需要进一步的理论和实验探究以深入挖掘石墨烯热导率随横向尺寸变化的物理原因。在实际应用的单晶及多晶石墨烯材料中,热导率的影响因素还包括晶粒尺寸、缺陷、同位素、化学修饰等,相关研究及综述已有报道。4 石墨烯导热的应用上一节中介绍了石墨烯具有本征的高热导率,从理论计算和实验测量中均得到了验证。上述实验测量中,研究者往往采用机械剥离法和CVD法制备石墨烯,这两种方法制备的样品具有质量高、可控性强的特点,适用于研究石墨烯的本征性质。但是,由于机械剥离法和CVD法制备石墨烯具有产量低、制备周期长、难以规模化等特点,不适用于石墨烯的宏量制备。相对应地,通过还原氧化石墨烯、电化学剥离等湿化学方法可以大批量制备石墨烯片,石墨烯片通过片层间的化学键作用可形成石墨烯膜、石墨烯纤维、石墨烯宏观体等三维结构,从而可实际应用于导热场景。4.1 高导热石墨烯膜的应用石墨烯薄膜可用作电子元件中的散热器,散热器通常贴合在易发热的电子元件表面,将热源产生的热量均匀分散。散热器通常由高热导率的材料制成,常见散热器有铜片、铝片、石墨片等。其中热导率最高、散热效果最好的是由聚酰亚胺薄膜经石墨化工艺得到的人工石墨导热膜,平面方向热导率可达700~1950 W∙m−1∙K−1, 厚度为10~100 μm,具有良好的导热效果,在过去很长一段时间内都是导热膜的最理想选择。在此背景之下,研究高导热石墨烯膜有两个重要意义,其一,是由于人工石墨膜成本较高,且高质量聚酰亚胺薄膜制备困难,业界希望高导热石墨烯膜能够作为替代方案。其二,是由于电子产品散热需求不断增加,新的散热方案不仅要求导热膜具有较高的热导率,也要求导热膜具有一定厚度,以提高平面方向的导热通量。在人工石墨膜中,由于聚酰亚胺分子取向度的原因,石墨化聚酰亚胺导热膜只有在厚度较小时才具有较高的热导率。而石墨烯导热膜则易于做成厚度较大的导热膜(~100 μm),在新型电子器件热管理系统中具有良好的应用前景。因此,石墨烯导热膜的研究也主要沿着两个方向,其一,是提高石墨烯导热膜的面内方向热导率,以接近或超过人工石墨膜的水平。其二,是提高石墨烯导热膜的厚度,扩大导热通量,同时保持良好的热传导性能。以下将从这两方面分别讨论。4.1.1 提高石墨烯膜热导率的关键技术高导热石墨烯薄膜的常见制备方法是还原氧化石墨烯。首先通过Hummers法得到氧化石墨烯(GO,graphene oxide)分散液,然后通过自然干燥、真空抽滤、电喷雾等方法得到自支撑的氧化石墨烯薄膜,并通过化学还原、热处理等方法得到还原氧化石墨烯(rGO)薄膜,最后通过高温石墨化提高结晶度,得到高导热石墨烯薄膜。影响高导热石墨烯膜热导率最重要的因素是组装成膜的石墨烯片的热导率,主要由氧化石墨烯的还原工艺决定。由于氧化石墨烯分散液的制备通常在强酸条件下进行,破坏石墨烯的平面结构,同时引入了环氧官能团,造成声子散射增加。氧化石墨烯的还原工艺对还原产物的结构、性能影响较大,因而需要选择合适的还原工艺制备石墨烯导热膜。氧化石墨烯膜在1000 ℃热处理后可以除去环氧、羟基、羰基等环氧官能团,但是石墨烯晶格缺陷的修复仍需更高温度。Shen等通过自然蒸干的方式制备了氧化石墨烯薄膜,并通过2000 ℃热处理的方式对氧化石墨烯薄膜进行石墨化,C/O原子比由石墨烯薄膜的2.9提高到石墨化后的73.1,X射线衍射(XRD)图谱上石墨烯薄膜11.1°峰完全消失,26.5°的峰宽缩窄,对应石墨(002)方向上原子层间距为0.33 nm,测量热导率为1100 W∙m−1∙K−1,热导率优于由膨胀石墨制备的石墨导热片。Xin等用电喷雾方法制备大尺寸氧化石墨烯薄膜并在2200 ℃下高温还原,得到热导率为1283 W∙m−1∙K−1的石墨烯导热膜,通过SEM截面图观察发现具有紧密的片层排列结构,且具有较好的柔性。通过拉曼光谱、XPS和XRD表征可以看出,2200 ℃为氧化石墨烯还原的最适宜温度,当还原温度更高时,石墨烯的电导率和热导率提升不再显著(图3)。4.1.2 提高石墨烯膜厚度的关键技术制备较厚的石墨烯导热膜也是研究者关心的课题。理论上讲,增加石墨烯膜的厚度只需刮涂较厚的氧化石墨烯薄膜即可。但实际操作中存在如下问题:(1)刮涂厚膜的成膜质量不高。由于氧化石墨烯分散液的浓度较低(低于10% (w)),除氧化石墨烯外其余部分均为水,需要长时间蒸发。氧化石墨烯片层与水分子以氢键相互作用,蒸发时水分子逸出,使得氧化石墨烯片层之间通过氢键形成交联,在表面形成一层“奶皮”状的薄膜。这层薄膜使氧化石墨烯分散液内部的水分蒸发减慢,且导致氧化石墨烯片层取向不一致,降低成膜质量。(2)难以通过一步法得到厚膜。由于氧化石墨烯分散液浓度较低,无论刮涂、旋涂还是喷雾等方法都无法一次制备厚度为~100 μm的氧化石墨烯薄膜。Luo等研究发现,氧化石墨烯薄膜在蒸干成形后仍然可以在去离子水浸润的情况下相互粘接,出现这种现象是因为氧化石墨烯片层在水的作用下通过氢键彼此连接,使得氧化石墨烯薄膜可以像纸一样进行粘贴起来。Zhang等利用类似的方法将制备好的氧化石墨烯薄膜在水中溶胀并逐层粘贴,经过干燥、热压、石墨化、冷压之后,得到厚度为200 μm的超厚石墨烯薄膜,热导率为1224 W∙m−1∙K−1,通过红外摄像机实测散热效果优于铜、铝及薄层石墨烯导热膜(图4)。目前制备百微米厚度高导热石墨烯薄膜的研究相对较少,除了溶胀粘接的方法之外,还可以通过电加热、金属离子键合等方法实现氧化石墨烯薄膜的搭接,有望为制备百微米厚度高导热石墨烯膜提供新思路。石墨烯导热膜的部分研究成果总结于表2中。图 4 百微米厚度石墨烯导热膜的制备、表征与热性能测试
  • 国家标准《稳态/瞬态荧光光谱仪性能测试方法》拟立项
    国家市场监督管理总局对《三重串联四极杆电感耦合等离子体质谱仪性能测试方法》等36项拟立项国家标准项目公开征求意见,征求意见截止时间为2024年7月3日。其中,国家标准计划《稳态/瞬态荧光光谱仪性能测试方法》由 TC481(全国仪器分析测试标准化技术委员会)归口 ,主管部门为科学技术部。主要起草单位全国仪器分析测试标准化技术委员会 。与国家标准同步制定外文版编号语种翻译承担单位国内外需求情况1EN兰州大学国内外有关荧光光谱仪生产及使用、管理的单位有需求。目的意义荧光光谱仪是一种常用仪器,应用广泛。本项目拟制定出稳态/瞬态荧光光谱仪主要性能测试与评价方法标准,以适应荧光光谱技术的新发展状况,改变现有标准落后于技术发展的局面,推进荧光光谱仪性能测试方法的规范化、标准化发展。范围和主要技术内容范围:本标准规定了稳态/瞬态荧光光谱仪性能测试方法。本标准适用于波长范围为 200-900 nm 的稳态/瞬态荧光光谱仪、稳态荧光光谱仪、瞬态荧光光谱仪主要性能测试与评价。主要技术内容:规定了波长范围为 200-900 nm 稳态/瞬态荧光光谱仪的波长准确性、波长重复性、灵敏度、检出限、线性、稳定性、瞬态性能的测试与评价方法。
  • 【不止于塑,仪领未来】南京大展仪器惊艳亮相2024宁波国际塑料橡胶展
    随着科技的不断进步和行业的迅速发展,橡塑行业作为国民经济的重要支柱之一,正不断吸引着全球的目光。在这个背景下,2024国际宁波塑料橡塑展如期而至,汇聚了来自世界各地的众多有名的企业,共同探讨和展示行业内的新技术与成果。    在这个展示前言技术、交流行业趋势的平台上,南京大展仪器携多款核心产品亮相,其中包括:差示扫描量热仪、热重分析仪、导热仪、炭黑含量检测仪等,展现了其在塑料橡胶检测仪器领域的优秀实力和成熟技术。    差示扫描量热仪:该设备能在程序控制温度下,测量物质与参比物之间的功率差与温度的关系,广泛应用于材料的研发、生产质量控制等领域。    热重分析仪:用于测量样品在程序控制温度下的质量和温度以及质量变化速率之间的关系,可进行材料的组分分析、热稳定性研究等,适用于橡塑、陶瓷、金属等各类材料的热性能研究。    导热仪:基于瞬态平面热源技术,能准确测量不同类型材料的导热系数,适用于塑料、橡胶、复合材料等多种材料的热传导性能评估。    炭黑含量检测仪:主要针对橡塑材料中炭黑含量的测定而设计,通过准确测量样品中的炭黑含量,对提高材料性能的稳定性和可靠性具有重要意义。    展会期间,南京大展仪器的展位前始终人头攒动。参展团队成员积极与客户互动,详细了解客户的需求,同时针对客户提出的各种问题进行耐心解答,一起探讨未来合作的可能。并且,通过现场的仪器操作演示和案例分享,让参观者直观地感受到仪器的优良性能和操作的便捷性。    通过参加2024宁波国际塑料橡塑展,南京大展仪器不仅展示了其在高分子材料测试领域的技术实力,也进一步加深了与行业内其他企业及潜在客户之间的联系,为公司未来的发展开拓了新的视野。南京大展仪器将继续秉承创新驱动发展的理念,致力于为橡塑行业提供更多高性能、高精度的检测仪器,为橡塑行业产品技术进步和创新,提供准确的测试服务支持。
  • 卓立汉光首台(套):OmniFluo900系列稳态/瞬态荧光光谱仪系统
    “首台(套)”是指国内实现重大技术突破、拥有知识产权、尚未取得市场业绩的装备产品,包括前三台(套)或批(次)成套设备、整机设备及核心部件、控制系统、基础材料、软件系统等。自2018年4月发改委等8部门联合印发《关于促进首台(套)重大技术装备示范应用的意见》以来,首台(套)重大技术装备受到了社会各界的广泛关注。各省份接连出台落地举措和认定名单,不仅给予政策上的支持,还有多达数百万的资金奖励 同时,获得首台(套)认定,也彰显着一家企业的领先科技和硬实力。  近年来,科学仪器行业也涌现了多批首台(套)仪器装备,为此,仪器信息网特别策划“聚焦科学仪器首台(套)”专题,向广大同行及用户展示这些仪器“尖子生”的创新风采。  卓立汉光的稳态/瞬态荧光光谱仪(型号:OmniFluo900)纳入《北京市首台(套)重大技术装备目录(2021年)》,该产品打破了国外垄断,填补了国内空白,为我国前沿科学研究和战略新兴产业高端设备的自主可控提供了重要支撑。  1.请介绍公司获首台(套)认定的产品推出及获认定时间,攻克了哪些技术难关,解决了国家哪些重要问题?  产品推出时间:2020年4月,  认定时间:2021年10月,  10月22日下午,由北京市首台(套)重大技术装备统筹联席会办公室、市发展改革委牵头组织的2021年全国大众创业万众创新活动周北京会场“2021年首台(套)重大技术装备授牌暨项目路演活动”在中关村国家自主创新示范区展示中心举办。  市政府副秘书长刘印春、市发展改革委、市科委中关村管委会、市经济和信息化局、市市场监管局和市知识产权局等单位相关负责人向首批首台套企业颁发了首台套证书。  卓立汉光的稳态/瞬态荧光光谱仪(型号:OmniFluo900)纳入《北京市首台(套)重大技术装备目录(2021年)》,该产品打破了国外垄断,填补了国内空白,为我国前沿科学研究和战略新兴产业高端设备的自主可控提供了重要支撑。  荧光光谱仪被广泛应用于化学、环境和生物化学领域,特别是比较前沿的如纳米材料、生物医学等领域,高端荧光光谱仪系统是必不可少的工具之一,而国内高端荧光光谱仪市场几乎被国外产品垄断。北京卓立汉光仪器有限公司一直耕耘在科研光谱领域,根据多年来在荧光测试产品生产的积累经验,目前已经攻克了开发高端荧光光谱仪所需要的大部分核心部件,如单色仪,已经开发出具有完全自主知识产权的影像谱王(Omni-λ-i)系列单色仪 单光子计数系统,已经开发出具有完全自主知识产权的210PC单光子计数器,可实现纳秒级别的门宽数据采集,目前又完成了超强的稳态激发光源和制冷探测器的开发。国内部分厂家也能提供16皮秒以上门宽的数据采集设备以及高频脉冲光源,故高端荧光光谱仪的开发可基本实现国产化,避免了因为国外卡脖子而影响仪器的交付和国内科研工作者的使用。虽然OmniFluo900系列稳态/瞬态荧光光谱仪系统的个别指标稍逊于国外产品,但整体性能已经挤入高端荧光光谱仪系统的行列。  2.该产品研制推出的背后,有哪些意义深刻的里程碑事件,或者有哪些令人难忘的研发、生产等故事可以分享?  在系统研发过程中,任何细小的瑕疵都会影响整个系统的性能表现。比如,探测器的抖动,要知道1-2ns(10E-9s)以上的抖动就会使瞬态测试的不确定大大增加。为了解决这个问题,电子工程师们集中全力,锁定问题,找寻解决方案,最终将信号的抖动量控制在1ns以内,大幅提高了时间测试精度。同样的,庞大的系统需要各部门之间乃至设备供应商通力合作,大家齐心协力不断优化产品结构,完善产品功能。最终,实现系统达到设计要求,满足客户对测试需求。  3.该产品能够实现在哪些领域的关键应用,可以帮助用户解决哪些重要问题?相比以往,在应用上有哪些变化和创新?  OmniFluo900系列稳态/瞬态荧光光谱仪系统的推出,不仅可以为国内科研用户提供高性价比的瞬态荧光分析系统,降低科研投入门槛,促进相关材料研究的发展,而且可以催生相关的行业标准,更重要的是使得国产仪器在高端荧光光谱仪系统领域占有一席之地,提高我国在高端荧光分析测试系统仪器产业的地位。  4.企业往往都希望采购成熟产品,首台(套)问世后,大规模应用和市场推广是主要难题。那么,您认为该产品的应用和市场推广层面,面临哪些挑战,公司采取了哪些手段积极应对?  OmniFluo900系列稳态/瞬态荧光光谱仪系统属于高端荧光光谱仪系统,由于在此之前国内几乎没有厂家涉猎这个领域,目前市场上高端荧光光谱仪系统领域无论是品牌认可度还是品牌知名度,均被国外品牌占领。OmniFluo900系列稳态/瞬态荧光光谱仪系统目前正在向市场推广,短期内很难与国内产品形成绝对的竞争优势,占领较大的市场份额。但国产仪器由于不受国际局势的影响,以及在产品服务上得天独厚的优势等,可以迅速提高OmniFluo900系列稳态/瞬态荧光光谱仪系统在高端荧光测试应用领域的知名度,逐步提升性能和品质,同国际大品牌公司的产品竞争。  荧光光谱检测是一种成熟的、但又不断在创新的检测方法,是很多前沿科学必不可少的工具之一,产品使用量较多以及关键零部件已经基本国产化,该产品满足实现产业化的条件。又由于相对类似的国外产品有着明显的价格优势,所以国产仪器在高端荧光光谱仪产品中有很好的性价比,随着荧光光谱仪的市场的需求和发展,有非常宽广的应用和推广前景。  5.获首台(套)重大技术装备认定对公司而言意味着怎样的激励?带来了哪些实质性的助力?下一步公司在企业发展和产品研制层面还将有哪些计划?  首先,首台(套)重大技术装备认定是对卓立汉光公司产品的极大认可,代表了市场对该产品的认可,也是对产品研发人员的一种激励。  通过首台(套)重大技术装备认定后,公司一线业务人员与竞争对手在招投标活动中,此项认定资质可以作为加分项,助力一线业务人员赢得客户,获得订单。  下一步,公司还将持续投入研发资源,继续开发和升级相关产品,并陆续推出三维荧光光谱仪、显微荧光寿命成像系统等系列产品,丰富产品线,增加应用场景,扩展应用领域,满足客户的不同需求,逐步提升市场份额。
  • 中国民用航空飞行学院选购我司快速导热系数测试仪
    中国民用航空飞行学院,简称“中飞院”,创建于1956年,是中国民用航空局直属的全日制普通高等学校,是中国民用航空局与四川省共建高校。学院作为中国民航培养高素质人才的主力高校,经过60多年的建设与发展,已成为全球民航职业飞行员培养规模在世界民航有着较高影响力的高等学府。中国民航70%以上的飞行员、80%以上的机长毕业于此,被称为“中国民航飞行员的摇篮”。中国民用航空飞行学院选购我司HS-DR-5快速导热系数测试仪,现已安装,调试完毕。HS-DR-5快速导热系数测试仪
  • 2014 科学仪器优秀新品入围名单:物性测试仪器、光学及表面分析仪器
    仪器信息网讯 第九届&ldquo 科学仪器优秀新产品&rdquo 评选活动于2014年3月份开始筹备,截止到2015年2月28日,共有253家国内外仪器厂商申报了587台2014年度上市的仪器新品。经仪器信息网编辑初审、2014中国科学仪器发展年会新品组委会初评,现已确定本届&ldquo 科学仪器优秀新产品&rdquo 的入围名单。所有申报的仪器中约有三分之一入围。   本届新品评审专业委员会邀请了超过60位业内资深专家按照严格的评审程序,对入围的新品进行网上评议。最终获奖的仪器将在&ldquo 2015年中国科学仪器发展年会&rdquo 上揭晓并颁发证书,评审结果将在多家专业媒体上公布。   本届申报的新品中共有71台物性测试仪器和92台光学及表面分析仪器通过新品组初审,其中25台物性测试仪器和8台光学及表面分析仪器入围了2014年&ldquo 科学仪器优秀新产品&rdquo ,入围名单如下(排名不分先后): 物性测试仪器 序号 仪器名称 型号 创新点 上市时间 公司名称 1 DZDR-S 瞬态平面热源法导热仪 DZDR-S 查看 2014年3月 南京大展机电技术研究所 2 激光干涉法热膨胀测试系统 CTE 201 查看 2014年9月 上海依阳实业有限公司 3 马尔文MicroCal VP-Capillary DSC 微量热差示扫描量热仪 MicroCal VP-Capillary DSC 微量热差示扫描量热仪 查看 2014年6月 英国马尔文仪器有限公司 4 电池等温量热仪 IBC 284 IBC 284 查看 2014年7月 德国耐驰热分析 5 RST系列触屏流变仪 RST系列 查看 2014年6月 美国Brookfield公司 6 MCR702 TwinDrive流变仪 MCR702 查看 2014年6月 奥地利安东帕(中国)有限公司 7 马尔文m-VROCi 微流体流变仪 m-VROCi 查看 2014年4月 英国马尔文仪器有限公司 8 麦奇克PartAn 3D颗粒图像分析仪 PartAn 3D 查看 2014年9月 大昌华嘉商业(中国)有限公司 9 全自动干/湿法粒度粒形分析仪 OCCHIO 500nano XY 查看 2014年3月 美国康塔仪器公司 10 马尔文Archimedes阿基米德颗粒计量分析系统 Archimedes 查看 2014年8月 英国马尔文仪器有限公司 11 LS-POP(9)激光粒度仪 LS-POP(9) 查看 2014年7月珠海欧美克仪器有限公司 12 NanoLab 3D激光粒度仪 NanoLab 3D 查看 2014年12月 北京赛普瑞生科技开发有限责任公司 13 动态颗粒图像分析仪 ANALYSETTE 28 ImageSizer 查看 2014年10月 北京飞驰科学仪器有限公司 14 德国新帕泰克NANOPHOX/R纳米粒度仪 NANOPHOX/R 查看 2014年12月 德国新帕泰克有限公司苏州代表处 15 磁悬浮天平高压吸附分析仪 XEMIS 查看 2014年2月 北京英格海德分析技术有限公司 16 精微高博JW-BK200C研究级双站微孔分析仪 JW-BK200C 查看 2014年1月 北京精微高博科学技术有限公司 17 超高速全自动比表面积分析仪 Kubo1108 查看 2014年6月 北京彼奥德电子技术有限公司 18 美国康塔仪器公司Vstar蒸汽吸附仪 Vstar 查看 2014年5月 美国康塔仪器公司 19 TriboLab机械与性能摩擦测试 TriboLab查看 2014年11月 布鲁克纳米表面仪器部(Bruker Nano Surfaces) 20 高性能全自动压汞仪 AutoPore V 查看2014年5月 麦克默瑞提克(上海)仪器有限公司 21 创新型全自动多站气体吸附仪 3500 查看 2014年6月 麦克默瑞提克(上海)仪器有限公司 22 万能试验机 天源A1KN万能试验机 TY8000-A1KN 查看 2014年4月 江苏天源试验设备有限公司 23 百若仪器螺栓防松检测试验机 FPL-400 查看 2014年3月 上海百若试验仪器有限公司 24 D系列电子万能试验机 D系列 查看 2014年5月 长春机械科学研究院有限公司 25 威尔逊 Wilson VH1150 VH1150 查看 2014年6月 美国标乐 光学及表面分析仪器 序号 仪器名称 型号 创新点 上市时间 公司名称 1 上海仪电科仪SGW 5自动旋光仪 SGW-5 查看 2014年1月 上海仪电科学仪器股份有限公司(原上海精密科学仪器有限公司) 2 上海仪迈IP-digi300/2数字旋光仪 IP-digi300/2 查看 2014年7月 上海仪迈仪器科技有限公司 3 新一代激光成像椭偏仪 Nanofilm_EP4SWE 查看 2014年6月 欧库睿因科学仪器(上海)有限公司 4 安东帕高精度数字式旋光仪 MCP500 查看 2014年9月 奥地利安东帕(中国)有限公司 5 LuphoScan高速非接触式3D非球面光学面形测量系统 LuphoScan120/260/420查看 2014年7月 泰勒-霍普森有限公司 6 日立高新热场式场发射扫描电镜SU5000 SU5000 查看 2014年8月 日立高新技术公司 7 SEM专用颗粒物分析系统 &mdash AZtecFeature AZtecFeature 查看 2014年12月 牛津仪器(上海)有限公司 8 拉曼-扫描电镜联用系统 RISE RISE 查看 2014年4月 泰思肯贸易(上海)有限公司   本次新品申报得到广大仪器厂商的积极响应,申报仪器数量与2013年度上市新品基本一致。需要特别指出的是,有些厂商虽然在网上进行了申报,但在规定时间内没有能够提供详细、具体的仪器创新点说明,有说服力的证明材料以及详细的仪器样本,因此这次没有列入入围名单。另外,非独家代理的代理商提供的优秀国外新品也不能入选。由于本次参与申报的厂家较多,产品涉及门类也较多,对组织认定工作提出了很高的要求,因此不排除有些专业性很强的仪器未被纳入评审范围。   该入围名单将在仪器信息网进行为期10天的公示。所有入围新品的详细资料均可在新品栏目进行查阅,如果您发现入围仪器填写的资料与实际情况不符,或非2014年上市的仪器新品,请您于2015年3月26日前向&ldquo 年会新品评审组&rdquo 举报和反映情况,一经核实,新品评审组将取消其入围资格。   2014科学仪器优秀新品组联系方式:   咨询电话:010-51654077-8032 刘先生   传真:010-82051730
  • 瞬态光谱观察光生电子在金纳米颗粒-蓝细菌杂合体的界面传递
    光能易获取、能量充足,是公认的未来人类最安全、最绿色、和最理想的替代能源之一。天然光合作用可以直接利用光能固定空气中的CO2合成有机物,但光合作用的效率较低(通常低于1%)。近年来发展的半导体材料-微生物人工杂合体系,同时结合了高效捕获光能的半导体材料和高特异性催化的微生物细胞,已经成功实现:(1)使不能利用光能的微生物能利用光能(从不能到能);(2)提高天然光合作用效率(从低效到高效)。但目前,材料吸收光能产生的电子,仅有小部分被微生物细胞利用,因此杂合体系光能到化学能的转化,还远未发挥其潜在优势,其根本原因是材料-微生物界面能量和物质传递和转化机制不清、效率低。北京时间12月23日,南方科技大学机械与能源工程系陈熹翰课题组与中国科学院深圳先进技术研究院合成所材料合成生物学研究中心高翔课题组在ACS Energy Letters合作发表题为 “Ultrafast electron transfer in Au–Cyanobacteria Hybrid for Solar to Chemical Production” 的文章。该工作构建了金纳米颗粒-蓝细菌杂合体,将光能驱动CO2合成化学品的效率提高14%。通过瞬态吸收光谱直接观察到金纳米颗粒(Au)吸收光能产生的电子,可以直接被蓝细菌细胞快速吸收。为解析电子在材料-微生物界面传递机制提供基础。南方科技大学博士生胡秋实、深圳先进技术研究院研究助理胡海涛、博士后崔蕾为文章的共同第一作者。南方科技大学陈熹翰副教授和深圳先进技术研究院高翔副研究员为文章共同通讯作者。作者首先在蓝细菌中构建了甘油的合成通路,该途径以卡尔文循环(CBB)中间代谢物磷酸二羟丙酮(DHAP)为底物,消耗一分子的还原力合成甘油,该工程菌命名为XG608。在光照条件下,成功将CO2固定并转化为甘油。在此基础上,作者向培养体系中添加金纳米颗粒,利用共培养构建了金纳米颗粒-蓝细菌的杂合体,通过吸收光谱分析,观察到杂合体中同时具有金纳米颗粒和蓝细菌的特征吸收峰。此外,金纳米颗粒在525 nm附近吸收较强,与蓝细菌的吸收光谱性能互补,可以潜在提高杂合体的光能捕获效率。通过测试,在光照的条件下,与纯蓝细菌体系相比,杂合体生物量增长了10%,甘油产量增长了14.6%。进一步通过扫描透射电子显微镜 (STEM) 结合能谱(EDS) 分析,发现金纳米颗粒分布在蓝细菌细胞内,有利于材料光生电子向微生物细胞的传递。图1. 金纳米颗粒-蓝细菌杂合体提高光能驱动CO2固定合成甘油的效率随后作者对杂合体展开了原位瞬态光谱学分析(TA),当金纳米颗粒与工程菌XG608结合时,在2 ps内观察到更快的动力学衰减,而在4 ps后动力学衰减变慢,表明金纳米颗粒吸收光能产生的电子可以快速的被工程菌吸收。进一步研究发现,当加入光系统II抑制剂DCMU后,这种衰减特征消失(光系统II功能缺失突变体中也观察到相同结果)。有意思的是,金纳米颗粒电荷转移似乎只在活细胞中可行,黑暗条件,金纳米颗粒TA动力学特征不变,电荷转移过程停止。作者推测,只有活细胞才能作为电子受体来接收光激发的电子。图2. 金纳米颗粒-蓝细菌杂合体原位瞬态吸收光谱分析基于以上的研究,作者提出光激发金纳米颗粒提供了额外电子被光合电子传递链上潜在电子受体接收,进入光合电子传递链,提高光能利用效率,进而提高光能驱动CO2固定合成化学品的效率。图3.金纳米颗粒-蓝细菌杂合体界面电子传递该研究得到了科技部合成生物学重点研发计划、国自然重点项目和面上项目、深圳市基础研究专项重点项目和深圳合成生物学创新研究院的经费支持。
  • 中国建筑科学研究院中技公司热流计法导热系数仪
    p   JW-Ⅲ 建筑材料热流计式导热仪是由中国建筑科学研究院中技公司生产。 /p p   导热系数(或热阻)是保温材料主要热工性能之一,是鉴别材料保 温性能好坏的主要标志。根据GB/T 10295-2008研制并不断完善了单试样双热流计式 JW-Ⅲ 建筑材料热流计式导热仪,进行了自动化改造升级。热流计法导热系数仪具有测试更为快速、简便、能适应更多形状厚度的测试、价格较为适中等诸多优点。 /p p   设备特点:1、电脑设置,自动控温 2、电机驱动,电动夹紧 3、配备位移传感器,自动测厚 4、配备压力传感器,过压提醒 5、自动采集数据,存储数据,打印原始数据 6、 热平衡快,温度稳定用时短,一般3个小时完成试验,比功率法导热仪节省一半时间 8、 系统误差小,检测数据重现性好。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/46483981-0202-4b20-913e-cb3c9b120e97.jpg" title=" 中技公司.jpg" / /p p style=" text-align: center " 图 JW-Ⅲ导热系数测定仪图片 /p
  • 2019稳态瞬态荧光应用技术研讨会-合肥站成功举办
    2019年04月17日,天美公司在中国科技大学科学实验中心成功举办了稳态瞬态应用技术研讨会。本次研讨会吸引了众多合肥各大高校的老师和同学参加,会议首先由天美公司华东区经理吴雪梅女士介绍了天美公司三十多年的发展情况,让与会老师对天美公司及天美公司的发展及服务有了一定的了解。   本次会议主要的目的是与各位老师分享及讨论稳态瞬态荧光及瞬态吸收的最新的测试技术及热点应用。   来自爱丁堡公司的产品经理Johnny先生介绍了稳态瞬态荧光光谱仪的最新热点应用及稳态瞬态荧光最新特殊附件的耦合和相关特殊应用,让大家了解到荧光测试技术在搭载上不同的特殊附件之后还可以开发出如此丰富多彩的应用。瞬态吸收技术与瞬态荧光在原理及应用方向上完全不同,天美公司产品经理张轩先生介绍了瞬态吸收技术及其应用,使得在座各位老师对于瞬态吸收技术及其应用有了一定的了解。  研讨会取得圆满成功,众多老师了解了稳态瞬态荧光及瞬态吸收的先进技术及其广泛应用。爱丁堡仪器旨在开发和寻找更多更新的应用方向,推动荧光光谱技术在科研中更广泛地应用,更好地帮助研究者解决科研中的问题。同时,天美(中国)也将始终秉承助力科研领域,为广大用户提供优质服务的初衷。 关于天美:  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。
  • 990稳态瞬态荧光光谱仪全球发布会在怀柔举办,取得圆满成功
    2020年12月23日,由北京卓立汉光分析仪器有限公司、北京怀柔仪器和传感器有限公司、北京市怀柔区经济和信息化局、北京市怀柔区科学技术委员会联合举办的OmniFluo990稳态瞬态荧光光谱仪全球发布会暨第一届中国光电分析仪器发展论坛在北京怀柔中建雁栖湖景酒店隆重举办。中科院理化技术研究所光化学转换与合成研究中心李嫕研究员,中国仪器仪表学会分析仪器分会吴爱华秘书长,北京大学分析测试中心陈明星高级工程师,北京市经济和信息化局智能制造与装备产业处杨晨副处长,北京市怀柔区经济和信息化局杨惠芬局长,北京市怀柔区科学技术委员会严立书记,北京市怀柔区汤河口镇赵俊石镇长,北京市怀柔区琉璃庙镇曹晓杰镇长,北京卓立汉光仪器有限公司丁良成董事长,北京怀柔仪器和传感器有限公司张鸣剑董事长,北京卓立汉光分析仪器有限公司张志涛总经理,以及中科院所各级单位、全国各大高校的材料、生物、化学、物理等方向科研人员等近百人出席线下会议。会议由怀柔区区属媒体通过线上线下进行全方位宣传报道,同时对接市级以上主流媒体对活动进行宣传。怀柔电视台对主办方代表进行采访。会议通过行业媒体仪器信息网等专业媒体合作进行全球同步直播。会议期间隆重推出了由北京卓立汉光仪器有限公司自主研制的国内商业化的稳态和荧光寿命测量系统OmniFluo990稳态瞬态荧光光谱仪,并为广大用户及从业者分享产品应用及技术前景;发布有卓立汉光和怀柔仪器联合申报的2020怀柔科学城成果落地项目-“暗场光散射显微光谱识别系统的研制及产业化”,并召开了第一届中国光电分析仪器高峰论坛,畅谈国家分析仪器的产业现状、发展机遇与未来前景,国产仪器面临哪些机遇与挑战,环境大考下国产仪器如何趁势而为,转危为机。会议得到了北京怀柔区政府和行业媒体的广泛关注,吸引了来自“产、学、政、研、用、金”等北京怀柔区政府领导、光电行业权威专家、仪器协会的用心参与,主要嘉宾从政治领域、科研领域、行业协会及用户观点等多角度出发,他们的真知灼见和科研成果代表了高端水准,对推动中国光电行业的发展起到巨大的指导和推动作用。本次会议取得了良好的效果,在2021年6月份,卓立汉光将会继续召开第二届卓立汉光逐梦光电研讨会暨第二届中国国产光电分析仪器发展论坛,届时欢迎更多专家、学者、用户给予我们更多的意见与支持!
  • 我司HS-DR-5导热系数测试仪交付南京工业大学
    我司于2023年2月13日中标南京工业大学导热系数测试仪项目,设备现已交付,并安装调试完毕。南京工业大学中标通知书上海和晟 HS-DR-5 快速导热系数测试仪
  • 千里行—天美爱丁堡稳态/瞬态荧光最新应用和技术研讨会在清华大学成功举办
    2014年的春天,大地万物复苏,天美人秉着“超越期待,坚持信赖B.E.S.T- Beyond Expect Stay Trust”的主题开始了天美(中国)第15届千里行回访活动,千里行是天美文化的一部分,是天美人的信仰,是天美回报客户的一种诚恳态度,也是天美在仪器行业前进的推动力。清华大学化学系分析测试中心宗瑞隆老师介绍分析中心概况  3月13日,天美(中国)与清华大学化学系分析测试中心在清华大学郑裕彤报告厅联合举办“千里行—稳态/瞬态荧光最新技术研讨会”。此次会议主要目的是更多地汇集稳态瞬态荧光客户在应用上的疑难问题,促进北京地区各高校,研究所荧光领域同行的沟通与交流,为共同协调突破科研上的瓶颈提高效率。天美(中国)总裁 付世江先生介绍天美发展概况Edinburgh instrument CEO Mr.Mark Vosloo 介绍爱丁堡发展概况  清华大学在分析科学领域与天美(中国)合作多年,不论是产品质量性能,工程师服务态度都是赞不绝口,分析测试中心主任林金明教授,党委书记杨成对教授,化学系童爱军教授等对于天美(中国)此次千里行-稳态/瞬态荧光最新技术研讨会活动也表示由衷的认可,会议由分析测试中心与天美(中国)分析科学团队共同主持,来自清华大学,北京大学,北京化工大学,北京科技大学,北京航空航天大学,北京理工大学,北京师范大学,首都医科大学,首都师范大学,中国地质大学,中央民族大学,中国人民大学,中国科学院系统等120多名荧光领域客户专家参与了研讨会。会议内容主要包括爱丁堡仪器全新稳态/瞬态荧光光谱仪FLS 980技术及最新应用介绍,涉及领域覆盖上转换分析、单线态氧、紫外区/近红外区量子产率测试,荧光色度分析,爱丁堡仪器与高端样品处理设备联用技术介绍,以及与相关客户在溶解有机质(DOM),荧光探针(fluorescence probe),发光材料,photocatalysis等领域的应用探讨。 天美(中国)荧光技术专家覃冰女士介绍Edinburgh FLS980和FS5荧光新产品性能Edinburgh instrument COO Mr. Roger Fenske 介绍稳态/瞬态荧光最新应用技术 研讨会参会专家认真听取稳态/瞬态荧光最新技术介绍  本次会议得到了北京地区各高校与研究所老师的称赞,参会的许多老师表明,天美(中国)很重视客户的应用状况,保持实时沟通,对于出现的问题能够及时反馈与解决,常为各位老师相互沟通交流提供了有效的平台,为大力共同推进荧光技术的发展履行其责任,贡献其力量。  致谢:清华大学化学系分析测试中心及北京地区所有参会专家更多质量千里行内容请关注活动专题页面:http://c.instrument.com.cn/custom/SH100322/公司介绍:   天美(中国)科学仪器有限公司(“天美(中国)”)是天美(控股)有限公司(“天美(控股)”)的全资子公司,从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。天美(中国)在北京、上海、等全国15个城市均设立办事处,为各地的客户提供便捷优质的服务。   天美(控股)是一家从事设计、研发、生产和分销的科学仪器综合解决方案的供应商。继2004年於新加坡SGX主板上市后,2011年12月21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司和英国Edinburgh等多家海外知名生产企业,加强了公司产品的多样化。 更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • ZOLIX发布OmniFluo990稳态瞬态光谱仪新品
    OmniFluo990稳态瞬态光谱仪 OmniFluo900系列荧光光谱仪拥有稳态荧光和瞬态荧光光谱仪两大系列产品。本系统以高性能Omni-λ 系列单色/光谱仪、高亮度复色光源及多波长单色光源、高灵敏度单光子探测器和大容量样品室为主要核心部件,配合精心优化的激发与发射光路设计,显著地提高了荧光信号探测的灵敏度,纯水拉曼信噪比可达10,000:1 以上。OmniFluo900系列以模块化设计为原则,以我公司 15 年丰富的光谱系统设计、制造及品控经验为基础,搭配时间分辨率达到皮秒量级多通道扫描单光子计数器,可方便地实现荧光(PL)光谱、激光诱导荧光(LIF)光谱、电致发光(EL)光谱及荧光量子产率(QY)等多种稳态、瞬态测试功能。本系列荧光光谱仪,还可搭配牛津仪器(Oxford Instruments)公司的温控单元及滨松(Hamamatsu)公司的各类高灵敏度探测器,便捷地在不同波段范围内获取荧光信号的温度扫描光谱,从而有效地从根本上消除传统荧光分光光度计波长测量范围有限及光谱测试种类不足等各类缺陷。在红外波段测试的稳态和瞬态数据,以及时间分辨的光谱OmniFluo990稳态瞬态光谱仪参数指标型号OmniFluo990主要功能稳态、瞬态寿命测试水拉曼信噪比?≥10000:1寿命时间范围≥500ps-ns- -10s稳态测试激发光源Gloria75X-75W光谱仪发射光谱仪 Omni-λ3027i焦距(mm)320杂散光1*10-5光谱分辨率(nm)?0.08波长准确度(nm)?±0.2波长重复性(nm)?±0.1光栅配置1200g/mm BLZ@500nm600g/mm BLZ@750nm300g/mm BLZ@1250nm通用样品室SAC-FLS样品架③标配比色皿样品架、粉末、固体样品架遮光板配有自动遮光板,防止更换样品时探测器曝光探测器带制冷的红敏光电倍增管 CR131光谱范围④185-900nm暗计数≤100CPS(制冷至 -10℃)数据采集器DCS900PC主要性能指标计数率:100Mcps分辨率:16ps/128ps-1.024ns/2.048ns--33.55us;通道数:65535时间扫描:1.05us@64ps 2.2s@33.55输入信号:±触发沿,高阻/50Ω 阈值±2V可调控制软件新版ZolixScan控制、数据采集、分析软件稳态测试功能:激发扫描,发射扫描,同步扫描,三维扫描可选功能:偏置测试,温度控制扫描瞬态测试功能:动力学扫描,寿命扫描,时间分辨光谱扫描数据处理功能:量子产率计算,TRES Slicing,光谱校正标配计算机Intel i3 双核CPU、4G内存、显示器1920*1080分辨率标配操作系统Windows 10 Home Edition注? 水拉曼测试条件:激发波长350nm,扫描范围370-450nm,狭缝带宽5nm,积分时间1s注? 测试条件:1200g/mm 500nm闪耀光栅,435.84nm,狭缝高4mm,宽10注③ 可选旋转、磁搅拌、水浴样品架注④ 可选R928(200-900nm),R13456(185-980nm),H10330C-75(950-1700nm), R5509-73(300-1700nm) 创新点:1、OmniFluo990稳态瞬态光谱仪以960为基础,增加了瞬态测试功能,配合高重频皮秒激光器,2、可以实现最快200ps以上的寿命测试。3、定位于高校、研究所、科研单位的实验室、测试中心设备,仪器整体化强,便于运输、安装,快速投入使用; OmniFluo990稳态瞬态光谱仪
  • 爱丁堡稳态瞬态光谱仪助力石墨烯科研大潮
    p   石墨烯是从石墨材料中剥离出来的,由碳原子组成的只有一层原子厚度的二维晶体,是目前人类已知的最薄、最坚硬、导热率最高、电阻率最小的纳米材料。2004年,英国曼彻斯特大学物理学家安德烈· 盖姆和康斯坦丁· 诺沃肖洛夫,成功从石墨中用胶带分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。石墨烯被认为是可以引发现代电子技术和信息技术革命的材料届的一颗璀璨的新星,越来越多的研究聚焦在石墨烯制备和应用上,而先进的检测仪器是研究石墨烯必不可少的武器。 /p p style=" text-align: center " & nbsp img title=" 1.png" src=" http://img1.17img.cn/17img/images/201512/uepic/c2c66ebc-5956-4d7f-8659-cff61e14183f.jpg" / /p p & nbsp & nbsp 爱丁堡仪器仪器公司携其主打产品稳态/瞬态荧光光谱仪加入了这支浩浩荡荡的石墨烯研究大军中,凭借其多年领跑荧光市场的技术优势,助力于石墨烯的科学研究。 /p p   爱丁堡公司目前的稳态瞬态光谱仪系列有FLS980模块化结构搭建荧光光谱仪,一体化、功能丰富的FS5荧光光谱仪,专门用于寿命测试的零时间色散的LifeSpec II和经济适用型的Mini-Tau荧光光谱仪;瞬态吸收测试有基于泵浦-探测光技术的LP980激光闪光光解光谱仪。 /p p   本文将带来使用爱丁堡荧光光谱仪在石墨烯测试中的应用。(以下测试所使用的光谱仪为Edinburgh Instrument & nbsp FLS920/FLS980/LP980) /p p strong 石墨烯纳米复合材料(Graphene-Based Nanocomposites) /strong /p p   石墨烯掺杂纳米复合材料,因其高效俘获、传输光生电子及提高对光能的吸收及污染物的吸附性能,在环境有机污染物治理中表现出十分出色的光催化活性。 /p p   下图是二氧化钛掺杂的石墨烯氧化物在光催化降解亚甲基蓝中的应用。(Zhixing Gan, etal, ACS NANO ,2014, VOL.8, NO.9, 9304–9310) /p p style=" text-align: center " img width=" 500" height=" 143" title=" 2.png" style=" width: 500px height: 143px " src=" http://img1.17img.cn/17img/images/201512/uepic/bfe91a81-b9aa-4d3b-82ce-1ded16052810.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong Mechanism of MB degradation over P25-rGO And Emission Spectra /strong br/ /p p   氧化石墨烯作为石墨烯的前体及ZnS的模板,合成了ZnS–GR 纳米复合结构,通过合成机理的研究,可以为以后合成金属硫化物掺杂的石墨烯提供有用的信息(Linhui Yu etal, Nanotechnology 24 (2013) 375601 ) /p p style=" text-align: center " & nbsp img width=" 500" height=" 135" title=" 3.jpg" style=" width: 500px height: 135px " src=" http://img1.17img.cn/17img/images/201512/uepic/6c08130f-132c-488a-ba09-3062d54f8a12.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong The possible mechanism of photocatalytic degradation of MB on ZnS–5%GR-120 nanocomposite /strong /p p   以磺化石墨烯为Pt载体,合成了小粒径的GSO3Pt复合结构, 可以作为有效的催化剂,将产氢反应的效率提高18倍 (Hui-Hui Zhang, Catal. Sci. Technol., 2013, 3, 1815 ) /p p style=" text-align: center " & nbsp img width=" 500" height=" 291" title=" 4.png" style=" width: 500px height: 291px " src=" http://img1.17img.cn/17img/images/201512/uepic/982990d5-8249-4360-a9c1-0b9a333b7377.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong A schematic illustration of photocatalytic H2 evolution from GSO3Pt /strong /p p style=" text-align: center " strong nanocomposites photosensitized by EY /strong br/ /p p strong 石墨烯量子点(Graphene Quantum Dots) /strong /p p   石墨烯量子点(GQDs)是因其受到量子局限效应和边界效应的影响,具备独特的光电磁性质,GQDs从石墨烯二维的结构变成受到三维空间限制的量子点,展现出更多新特性,成为石墨烯家族里的一员,备受研究者青睐。 /p p   下图是双层氢氧化物中形成的单层石墨烯量子点。 (Liqing Song, etal, Chem. Sci., 2015, 6, 484) /p p style=" text-align: center " img width=" 500" height=" 179" title=" 5.png" style=" width: 500px height: 179px " src=" http://img1.17img.cn/17img/images/201512/uepic/6d9e1179-f4f7-4324-ab8c-550795f335e4.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong Schematic illustration of the formation of S-GQDs in the confined space of LDH /strong /p p   过渡金属离子可以导致石墨烯量子点光致发光的淬灭,因此GQDs可用于金属离子的传感器。(Hongduan Huang, etal, Talanta 117 (2013) 152–157) /p p style=" text-align: center " img width=" 500" height=" 163" title=" 6.png" style=" width: 500px height: 163px " src=" http://img1.17img.cn/17img/images/201512/uepic/feec013d-7240-4dba-80ed-fb98410b6225.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong uenching and recovering effect of transition metal ions on the photoluminescence of GQDs. /strong br/ /p p strong 石墨烯材料相关机理研究(Mechanism) /strong /p p   目前,也有大量研究工作是针对石墨烯在化学反应及催化反应中所起到的作用, 通过机理研究可以为某一类反应提供指导性建议; /p p   石墨烯量子点上转化发光机理的研究,证明了用氙灯激发石墨烯量子点产生上转换荧光是假象, 用脉冲激光才可以观察到真正的上转换信号 ( Zhixing Gan, etal. Adv. Optical Mater. 2013, 1, 554–558 ) /p p style=" text-align: center " & nbsp & nbsp img width=" 500" height=" 192" title=" 7.png" style=" width: 500px height: 192px " src=" http://img1.17img.cn/17img/images/201512/uepic/ecd04113-8540-49c2-b103-f9872964ad95.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p & nbsp & nbsp strong (a) UCPL spectra obtained from GQDs under excitation of a femtosecond pulsed laser at 800 nm. (b) UCPL integrated intensity as a function of laser power /strong /p p   氧化石墨烯在化学反应中的作用;研究了氧化石墨烯,还原型氧化石墨烯,及功能化的还原型氧化石墨烯随着构型改变对光谱的影响;(Zhixing Gan, etl. Adv. Optical Mater. 2013, 1, 926–932 ) /p p style=" text-align: center " img width=" 500" height=" 400" title=" 8.png" style=" width: 500px height: 400px " src=" http://img1.17img.cn/17img/images/201512/uepic/c80e118d-dbf6-48b8-95ed-f7c5d7a9cb7e.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong Schematic illustration of the PL emission mechanism /strong /p p strong span style=" color: rgb(255, 0, 0) " 更多详细应用请见下列文献: /span /strong /p p 1] Zhixing Gan, Xinglong Wu, Ming Meng, Xiaobin Zhu, Lun Yang, and Paul K. Chu, ACS NANO, VOL. 8, NO. 9, 9304–9310, 2014 /p p 2]Hongduan Huang, Lei Liao, Xiao Xu a, Mingjian Zou, Feng Liu, Na Li, Talanta 117, 152–157, 2013 /p p 3] Liqing Song, Jingjing Shi, Jun Lu and Chao Lu, Chem. Sci., 6, 4846, 2015 /p p 4] Linhui Yu, Hong Ruan, Yi Zheng and Danzhen Li, Nanotechnology 24, 375601, 2013. /p p 5] Zhixing Gan, Xinglong Wu, Gengxia Zhou, Jiancang Shen, and Paul K. Chu,Adv.Optical Mater. 1, 554-558 , 2013. /p p 6] Zhixing Gan, Shijie Xiong, Xinglong Wu, Tao Xu, Xiaobin Zhu, Xiao Gan, Junhong Guo, Jiancang Shen, Litao Sun, and & nbsp Paul K. Chu, Adv. Optical Mater. 1, 926-932, 2013. /p p 7] Zhixing Gan, Xinglong Wu and Yanling Hao, CrystEng Comm, 16, 4981-4986, 2014. /p p 8] Hui-Hui Zhang, Ke Feng, Bin Chen, Qing-Yuan Meng, Zhi-Jun Li, Chen-Ho Tung and Li-Zhu Wu, Catal. Sci. Technol., 3, 1815-1821, 2013. /p p style=" white-space: normal " span style=" color: rgb(68, 68, 68) line-height: 26px font-family: Simsun font-size: 14px background-color: rgb(255, 255, 255) " br/ /span /p p style=" white-space: normal " span style=" color: rgb(68, 68, 68) line-height: 26px font-family: Simsun font-size: 14px background-color: rgb(255, 255, 255) " 关于天美: /span br/ /p p style=" padding: 0px color: rgb(68, 68, 68) line-height: 26px font-family: Simsun font-size: 14px margin-top: 0px margin-bottom: 0px white-space: normal background-color: rgb(255, 255, 255) "   天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。 /p p style=" padding: 0px color: rgb(68, 68, 68) line-height: 26px font-family: Simsun font-size: 14px margin-top: 0px margin-bottom: 0px white-space: normal background-color: rgb(255, 255, 255) "   更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn /p p style=" text-align: center " img width=" 500" height=" 313" title=" 微信长按二维码.gif" style=" width: 500px height: 313px " src=" http://img1.17img.cn/17img/images/201512/uepic/85e4ed3b-7c8f-40af-a8c1-d173db17c4be.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p
  • 2019稳态瞬态荧光应用技术研讨会-长沙站成功举办
    2019年04月15日,天美公司在长沙-中南大学成功举办了稳态瞬态应用技术研讨会。来自长沙各大高校研究所的30多位专家老师参加了此次会议。本次会议主要的目的是与各位老师分享及讨论稳态瞬态荧光最新的热点应用以及最新的高端附件耦合技术。首先,天美公司副总裁张海蓉女士介绍了天美公司近年来的发展情况   随后,来自爱丁堡公司的产品经理Johnny先生介绍了稳态瞬态荧光光谱仪的最新热点应用,如钙钛矿,OLED,单线态氧等。天美公司产品经理张轩先生介绍了荧光光谱仪最新高端附件耦合技术,包含强激光的引入、微区荧光测试以及原位量子效率测试(变温、电致发光)等技术。   除了爱丁堡及天美公司工程师分享了最新技术以外,来自湖南大学的袁泉老师以及李波博士也分别分享了荧光光谱仪在各自研究领域的相关应用。  研讨会取得圆满成功,众多老师了解稳态瞬态发光的先进技术及其广泛应用。爱丁堡仪器旨在开发和寻找更多更新的应用方向,推动荧光光谱技术在科研中更广泛地应用,更好地帮助研究者解决科研中的问题。同时,天美(中国)也将始终秉承助力科研领域,为广大用户提供优质服务的初衷。 关于天美:  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。
  • ZOLIX发布稳态瞬态光谱仪OmniFluo960新品
    OmniFluo900系列稳态瞬态荧光光谱仪 OmniFluo900系列荧光光谱仪拥有稳态荧光和瞬态荧光光谱仪两大系列产品。本系统以高性能Omni-λ 系列单色/光谱仪、高亮度复色光源及多波长单色光源、高灵敏度单光子探测器和大容量样品室为主要核心部件,配合精心优化的激发与发射光路设计,显著地提高了荧光信号探测的灵敏度,纯水拉曼信噪比可达10,000:1 以上。OmniFluo900系列以模块化设计为原则,以我公司 15 年丰富的光谱系统设计、制造及品控经验为基础,搭配时间分辨率达到皮秒量级多通道扫描单光子计数器,可方便地实现荧光(PL)光谱、激光诱导荧光(LIF)光谱、电致发光(EL)光谱及荧光量子产率(QY)等多种稳态、瞬态测试功能。本系列荧光光谱仪,还可搭配牛津仪器(Oxford Instruments)公司的温控单元及滨松(Hamamatsu)公司的各类高灵敏度探测器,便捷地在不同波段范围内获取荧光信号的温度扫描光谱,从而有效地从根本上消除传统荧光分光光度计波长测量范围有限及光谱测试种类不足等各类缺陷。在红外波段测试的稳态和瞬态数据,以及时间分辨的光谱OmniFluo900系列全功能稳态/瞬态荧光光谱仪参数指标型号OmniFluo960主要功能稳态测试水拉曼信噪比?≥10000:1寿命时间范围/稳态测试激发光源Gloria75X-75W光谱仪激发光谱仪 Omni-λ3027i焦距(mm)320杂散光1*10-5光谱分辨率(nm)?0.08波长准确度(nm)?±0.2波长重复性(nm)?±0.1光栅配置1200g/mm BLZ@300nm600g/mm BLZ@500nm 通用样品室SAC-FLS样品架③标配比色皿样品架、粉末、固体样品架遮光板配有自动遮光板,防止更换样品时探测器曝光探测器带制冷的红敏光电倍增管 CR131光谱范围④185-900nm暗计数≤100CPS(制冷至 -10℃)注? 水拉曼测试条件:激发波长350nm,扫描范围370-450nm,狭缝带宽5nm,积分时间1s注? 测试条件:1200g/mm 500nm闪耀光栅,435.84nm,狭缝高4mm,宽10注③ 可选旋转、磁搅拌、水浴样品架注④ 可选R928(200-900nm),R13456(185-980nm),H10330C-75(950-1700nm), R5509-73(300-1700nm) 创新点:仪器定位于高校、研究所、科研单位的实验室、测试中心设备,仪器整体化强,便于运输、安装,快速投入使用;2仪器根据客户需求不同,可以扩展低温,显微,磁场等不同的测试环境,便于使用者在更丰富的条件下开展的测试;3、仪器的数据采集部分,使用高灵敏度的光子计数计数,独特光路聚焦结构设计,充分满足不同测试需求。 稳态瞬态光谱仪OmniFluo960
  • 天美-爱丁堡稳态/瞬态荧光光谱仪等产品
    天美(中国)科学仪器有限公司作为国内知名科学仪器供应商,始终把对用户的技术服务作为立足之本,为了更好的为爱丁堡仪器和日立电镜用户提供服务,促进爱丁堡仪器和日立电镜的应用交流。2017年4月5日-7日,天美(中国)科学仪器有限公司在河南郑州凌云温泉酒店举办了河南省第三届天美-爱丁堡稳态/瞬态荧光光谱仪、河南省第二届日立电镜等产品最新技术和应用研讨会。郑州大学、河南大学、河南农业大学、河南师范大学、河南中医药大学、河南省农业科学院、安阳师范学院、郑州航空航天学院、洛阳师范学院、华北水利水电学院、洛玻集团、科隆电器、烟草研究院等高校和科研院所的近70位相关研究领域的专家学者参加了本次研讨会。  天美(中国)科学仪器有限公司西安分公司总经理蒲蓉女士主持了本次会议。并对天美公司的发展历程、产品线和售后服务体系等方面做了详细介绍。爱丁堡公司工程师Johnny Bray,针对稳态/瞬态荧光光谱最新应用方向和应用领域作会议报告。天美市场部产品经理覃冰女士针对显微镜耦合、上转换分析、单线态氧分析、紫外区/近红外区量子产率测试、温度相关变温荧光以及荧光吸收光谱仪的应用等内容做了详细的报告。另外天美公司的电镜部产品经理周海鑫博士介绍了日立扫描电镜最新进展和应用、120kv透射电镜在生物和材料方面的应用等方面做了报告、日立公司的席晓宁做了原子力显微镜最新进展及电镜联用等方面的报告。  通过本次技术交流,加深了公司与用户之间的感情,增强了彼此间的了解。拓展了仪器的性能,解决了实际应用中的一些问题。一些用户表达了交流会对自己的研究工作的帮助以及感谢天美公司组织了本次交流会,期待在以后工作中多沟通多合作,多推荐好的产品。天美公司西安分公司总经理蒲蓉女士做欢迎致辞爱丁堡公司工程师Johnny Bray做产品最新应用介绍认真听讲的专家学者天美公司市场部产品经理覃冰女士做荧光报告电镜市场部产品经理周海鑫博士做电镜应用方面的报告关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。
  • 160万!内蒙古大学计划采购稳态瞬态荧光光谱仪
    一、项目基本情况项目编号:NMGZCS-G-H-221008项目名称:稳态瞬态荧光光谱仪设备采购采购方式:公开招标预算金额:1,600,000.00元采购需求:合同包1(稳态瞬态荧光光谱仪设备采购):合同包预算金额:1,600,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1光学测试仪器稳态瞬态荧光光谱仪设备采购1(套)详见采购文件1,600,000.00-本合同包不接受联合体投标合同履行期限:依据招标文件和中标人的投标文件所签订的合同执行。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定:(1)具有独立承担民事责任的能力;(2)具有良好的商业信誉和健全的财务会计制度;(3)具有履行合同所必需的设备和专业技术能力;(4)有依法缴纳税收和社会保障资金的良好记录;(5)参加政府采购活动前三年内,在经营活动中没有重大违法记录;(6)法律、行政法规规定的其他条件。2.落实政府采购政策需满足的资格要求:合同包1(稳态瞬态荧光光谱仪设备采购)落实政府采购政策需满足的资格要求如下:1.所投货物属国家CCC认证目录内的产品,须取得CCC认证证书。2.所投货物属节能产品政府采购品目清单内的标★产品,须取得国家确定的认证机构出具的、处于有效期之内的节能产品认证证书。3.本项目的特定资格要求:合同包1(稳态瞬态荧光光谱仪设备采购)特定资格要求如下:(1)所投货物涉及进口产品时,提供进口货物生产厂家针对本项目的唯一授权书复印件或扫描件,如进口货物授权为在中华人民共和国境内销售的授权代理商(以下简称“进口代理”)授权,须同时提供生产厂家对“进口代理”的授权书,保证从生产厂家到投标供应商授权链的真实完整有效。如授权书为外文的,须附翻译的中文译本。三、获取招标文件时间: 2022年11月23日 至 2022年11月30日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:内蒙古自治区政府采购网方式:在线获取。获取采购文件时,需登录“政府采购云平台”,按照“执行交易→应标→项目应标→未参与项目”步骤,填写联系人相关信息确认参与后,即为成功“在线获取”。售价: 免费获取四、提交投标文件截止时间、开标时间和地点2022年12月14日 14时00分00秒 (北京时间)地点: 内蒙古自治区政府采购网(政府采购云平台)五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜本项目开标地点:内蒙古自治区呼和浩特市赛罕区昭乌达路汇商广场A座12层内蒙古新天立工程项目管理有限公司第二开标室无七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:内蒙古大学地址:呼和浩特市赛罕区大学西路235号联系方式:158489265052.采购代理机构信息名称:内蒙古新天立工程项目管理有限公司地址:内蒙古自治区呼和浩特市赛罕区昭乌达路汇商广场A座12层联系方式:158493215073.项目联系方式项目联系人:丑磊电话:15849321507内蒙古新天立工程项目管理有限公司2022年11月23日
  • 热分析在高分子材料中的应用(DSC/TGA/导热系数/TMA/DMA)
    热分析是测量材料热力学参数或物理参数随温度变化的关系,并对这种关系进行分析的技术方法。对材料进行热分析的意义在于:材料热分析能快速准确地测定物质的晶型转变、熔融、升华、吸附、脱水、分解等变化,在表征材料的热性能、物理性能、机械性能以及稳定性等方面有着广泛的应用。由于热性能是材料的基本属性之一,对材料进行热分析可以鉴别材料的种类,判断材料的优劣,帮助材料与化学领域的产品研发,质检控制与工艺优化等。既然热分析是对材料进行质量控制的重要技术手段,那么热分析到底是如何进行的呢?根据国际热分析协会(ICTA)的归纳和分类,目前的热分析方法共分为九类十七种,而常用的热分析方法(如下图所示)包括:差示扫描量热(DSC)、热重分析(TGA)、导热系数测试、热机械分析(TMA)、动态热机械分析(DMA)等5种方法。根据不同的热分析方法采用不同的热分析仪器设备,对材料的热量、重量、尺寸、模量/柔量等参数对应温度的函数进行测量,从而获得材料的热性能。接下来,让我们简单了解一下这5种热分析方法:(1)差示扫描量热(DSC)差示扫描量热法(DSC)为使样品处于程序控制的温度下,观察样品和参比物之间的热流差随温度或时间的函数。材料的固化反应温度和热效应测定,如反应热,反应速率等;物质的热力学和动力学参数的测定,如比热容,转变热等;材料的结晶、熔融温度及其热效应测定;样品的纯度等。(2)热重分析(TGA)热重分析法(TGA)用来测量样品在特定气氛中,升温、降温或等温条件下质量变化的技术。主要用于产品的定量分析。典型的TGA曲线可以提供样品易挥发组分(水分、溶剂、单体)的挥发、聚合物分解、炭黑的燃烧和残留物(灰分、填料、玻纤)的失重台阶。TGA这种方法可以研究材料和产品的分解,并得出各组分含量的信息。TGA曲线的一阶导数曲线是大家熟知的DTG曲线,它与样品的分解速率成正比。在TGA/DSC同步测试中,DSC信号和重量信息可以同时记录。这样就可以检测并研究样品的吸放热效应。下图中的黑色曲线为PET的TGA曲线,绿色为DTG曲线。下面的为在氮气气氛下的DSC曲线。右侧红色的DSC曲线显示了玻璃化转变、冷结晶和熔融过程。在测试过程中的DSC信号 (左)可以用样品质量损失进行修正。蓝色为未修正的DSC曲线,红色为因质量损失而修正的曲线。图 使用TGA/DSC(配备DSC传感器)测试的PET曲线分解过程中,化学骨架和复杂有机组分或聚合物分解形成如水、CO2或者碳氢化合物。在无氧条件下,有机分子同样有可能降解形成炭黑。含有易挥发物质的产品可以通过TGA和傅里叶红外(FTIR)或者质谱联用来判定。(3)导热系数测试对于材料或组分的热传导性能描述,导热系数是最为重要的热物性参数。LFA激光闪射法使用红外检测器连续测量上表面中心部位的相应温升过程,得到温度升高对时间的关系曲线,并计算出所需要的参数。稳态热流法热流法(HFM)作为稳态平板法的一种,可用于直接测量低导热材料的导热系数。(4)热机械分析(TMA)热机械分析,指在使样品处于一定的程序温度下和非震动载荷作用下,测量物质的形变与温度时间等函数关系的一种技术,主要测量材料的膨胀系数和相转变温度等参数。一条典型的TMA曲线表现为在玻璃化转变温度以下的膨胀、玻璃化转变(曲线斜率的变化),玻璃化转变温度以上的膨胀和塑性变形。测试可以以膨胀模式、穿透模式或者DLTMA模式(动态负载TMA模式)进行。膨胀模式的测试目的是表征样品的膨胀或收缩。基于这个原因,仅使用较小的力来保证探头和样品接触完好。测试的结果就是热膨胀系数。下图是0.5mm的样品夹在2片石英盘之间测试的膨胀曲线。样品先在仪器中升温至90˚C消除热历史。冷却至室温后,再以20K/min的升温速率从30˚C升温到250˚C,测试的探头为圆点探头,同时探头上施加很小的力0.005N。图2中上部的曲线显示样品在玻璃化转变之前有很缓慢的膨胀。继续升温,膨胀速率明显加快,这是因为在样品在经历玻璃化转变后分子的运动能力提高。之后冷结晶和重结晶发生,样品收缩。高于150˚C样品开始膨胀直至熔融。熔融伴随着样品粘度降低和尺寸减小。图 膨胀模式测试的PET的TMA曲线穿透模式主要给出温度相关的信息。样品的厚度通常不是很重要,因为探头与样品的接触面积在实验中持续变化。刺入深度受加载的力和样品几何形状的影响。在穿透模式测量中,把0.5mm厚的样品放在石英片上,圆点探头直接与样品接触。试验条件为从30˚C升温到300˚C,升温速率20K/min,加载力0.1和0.5N。这时样品未被刺入。在穿透测试过程中,探头一点一点地刺入样品。纵坐标信号在玻璃化转变发生时明显的减小,冷结晶发生时保持基本不变,到熔融又开始减小(图下图)。图 TMA穿透模式测试PETDLTMA是一种高灵敏度测试物理性能的方法。和DSC相比,它可以描述样品的机械行为。在DLTMA模式下,加载在样品上的力以给定频率高低切换。它可以测试出样品中微弱的转变,膨胀和弹性(杨氏模量)。样品刚度越大,振幅越小。图4测试的样品玻璃化转变在72˚C,之后为液态下的膨胀。振幅大是因为样品太软。然后会出现冷结晶,PET收缩,振幅开始减小。140˚C,样品重新变硬,继续膨胀直至160˚C。图 DLTMA(动态负载TMA模式)测试PET(5)动态热机械分析(DMA)使样品处于程序控制的温度下,并施加单频或多频的振荡力,研究样品的机械行为,测定其储能模量、损耗模量和损耗因子随温度、时间与力的频率的函数关系。热分析技术的实际应用热分析技术在材料领域应用广泛,如高分子材料及制品(塑料、橡胶、纤维等)、PCB/电子材料、金属材料及制品、航空材料、汽车零部件、复合材料等领域。下面通过我们实验室技术工程师做的两个热分析测试案例来展示它的应用:1.高分子材料的热裂解测试玻纤增强PA66主要应用于需要高刚性和尺寸稳定性的机械部件护罩。玻纤含量影响到制件的拉伸强度、断裂伸长率、冲击强度等力学性能。2.PCB板的爆板时间测量将样品升温到某一温度后,保持该温度并开始计时,样品发生爆板现象的时刻与保温初始时刻的时间间隔为爆板时间。其实,对于不同的材料和关注点的不同,我们所采用的热分析方法也存在差异,通常会根据实际样品情况和测试需求来选择不同的分析方法。例如,高分子材料:想要了解它的特征温度、耐热性等性能,要用DSC分析;想要了解它的极限耐热温度、组份含量、填料含量等,要用TGA分析。
  • 天美公司爱丁堡稳态瞬态光谱技术上海站研讨会圆满完成
    2019年4月16日,风和日丽。在上海交通大学分析测试中心的支持下,高端荧光光谱仪技术与市场的的引领者天美公司,在上海交通大学转化医学大楼一楼报告厅成功举办了爱丁堡仪器稳态瞬态荧光谱应用技术研讨会。来自上海交通大学、复旦大学、华东师范大学、上海大学、上海工程技术大学等上海地区高校及科研院所的近70位爱丁堡仪器用户参加了会议,原本预定50人参会的会议室不得不在后排临时加座。  会议在天美公司副总裁张海蓉的致辞中开幕。张总对参会的各位老师表示热烈欢迎,并介绍了天美集团及爱丁堡仪器公司的相关情况,并表示天美公司会持续加大对自主产品的研发与市场服务力度,将更好的国外产品引进国内,将更好的国产仪器推向世界。   随后,天美公司爱丁堡仪器产品经理张轩以及来自英国爱丁堡仪器公司的产品经理Johnny Bray , 分别就瞬态瞬态荧光光谱的基本原理,爱丁堡荧光光谱仪器热门应用与新推出的高端附件与应用进行了深入介绍。参会用户也踊跃发言讨论,与两位技术专家进行互动。原计划上午12点结束的会议一直到12点40才结束。  下午的会议在位于3楼的分析测试中心举行。张轩与Johnny在爱丁堡仪器FLS1000荧光光谱仪上对仪器软件功能及数据处理技巧进行了演示,与参会的用户就仪器操作使用方面进行了深入细致交流。   会后,与会者对天美与爱丁堡仪器公司组织本次会议高度评价,纷纷表示此次交流干货满满,受益匪浅,并希望今后能有更多机会与天美爱丁堡仪器进行交流讨论。关于天美:  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。
  • 2019年爱丁堡技术研讨会-稳态/瞬态光谱及拉曼光谱——上海首站成功举办
    为了更好的为爱丁堡用户提供服务,促进爱丁堡仪器的应用交流,天美公司于2019年10月14日在上海大学材料学院会议中心拉开了稳态瞬态光谱及拉曼光谱的巡回技术研讨会的帷幕。首站上海研讨会吸引了众多上海高校的老师和同学们参加。会议首先由天美公司华东区经理吴雪梅女士对参会的各位老师表示热烈欢迎,并介绍了天美公司三十多年的发展悠久历史以及天美公司分析产品线,使参会老师及用户更多的了解天美公司旗下产品及发展,为用户提供更好的服务。爱丁堡仪器公司是时间分辨荧光光谱仪、激光和气体传感器、激光器的世界领先制造商,并与2019年全新重磅推出拉曼光谱产品。会议期间由来自爱丁堡仪器公司的产品经理Johnny Bray先生介绍了2019年全新推出的显微共焦拉曼光谱仪RM5新品。RM5是一款紧凑型全自动显微拉曼光谱仪,可满足科研及分析工作的需求。RM5具有市场上独一无二的真共焦设计,能实现超高的光谱分辨率、空间分辨率和灵敏度。配置灵活,支持包括Mapping功能 、全自动样品台、偏振拉曼以及外置相机等多种附件和功能的实现,并且均可通过Rmancle软件直接控制(包括设置,测试及数据分析等)。同时,来自爱丁堡仪器的应用专家Stuart Thomson博士围绕着共聚焦显微拉曼光谱在科学材料领域应用的优势以及具体热点应用展开。如石墨烯材料的研究,TMD二维材料、半导体材料以及SERS等应用热点进行报告。此外,来自天美公司分析市场部的产品经理张轩先生介绍了爱丁堡稳态瞬态荧光光谱仪及高端耦合和相应的热点应用,让用户充分了解自己仪器配置的同时,还可以让大家了解到耦合不同的附件可以扩展出多种功能,用到更多热点研究当中。同时,张轩先生还介绍了瞬态吸收光谱的基本原理和应用,瞬态吸收技术与荧光技术在原理和应用上均不相同,通过详尽的介绍,使得参会老师对瞬态吸收技术以及爱丁堡LP980激光闪光光解仪均有一定的了解。会议上,与会老师积极提问,共同交流探讨。此次研讨会圆满举办,参会老师及用户对天美与爱丁堡仪器公司组织本次会议高度评价。天美公司作为全球科学仪器的知名供应商和科研工作的助手,一直致力于不断提升产品质量,为客户提供更加优质的服务。关于天美:  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。
  • 爱丁堡FLS980稳态瞬态用户培训班在北京成功举办
    2017年12月26-27日,天美公司在北京成功举办爱丁堡FLS980稳态瞬态荧光光谱仪高级用户培训班。来自各大科研单位及院校的老师和学生共6人参与了本次培训。  天美公司分析及色谱市场部经理姜振喜首先为大家介绍了天美公司的发展历程及现状,随后分析产品经理覃冰女士从稳态瞬态荧光光谱基础理论,爱丁堡FLS980稳态瞬态荧光光谱仪特点,荧光光谱技术的发展及高端耦合应用,荧光测试技巧等方面为大家作了详细讲解。在上机环节中,用户们积极参与操作,热烈讨论,通过亲身体验进一步加深对FLS980荧光光谱仪的认识。     用户们表示在本次培训中收获颇丰,不仅提高了操作仪器的技术水平,也借此机会认识了很多进行荧光研究的朋友。关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。
  • 2019年爱丁堡稳态&瞬态光谱及拉曼光谱技术研讨会-兰州站
    2019年10月18日,天美(中国)科学仪器有限公司在兰州大学分析测试中心举行2019年爱丁堡稳态&瞬态光谱及拉曼光谱技术研讨会,参加会议的有来自兰州大学的教授、博士及研究生。  兰州大学分析测试中心组建于1982年,是为高校人才培养、科学研究、社会服务提供专业分析测试服务的专业机构。为了更好的培养研究生动手能力、提高科研水平,该中心拥有多台大型仪器设备,其中包括爱丁堡瞬态&稳态荧光光谱仪。     爱丁堡仪器应用专家Stuart Thomson 博士,针对激光显微拉曼光谱仪在材料科学上的应用热点作会议报告。   爱丁堡光谱产品销售经理Johny Bray BSc 就爱丁堡仪器最新型荧光光谱仪及激光显微拉曼光谱仪的功能及构造作会议报告。   天美公司分析市场部产品经理张轩,就爱丁堡稳态&瞬态荧光光谱仪功能及相关附件的应用作会议报告。   在会议期间,爱丁堡工程师针对不同的仪器应用作了详细报告,各位教授专家、博士、硕士也针对在使用过程中遇到的问题进行了相关讨论,分享了大家在荧光研究领域的相关经验。通过会议交流,能够更好的将我们公司与科研工作者更好的联系在一起,更好的服务每一位科研工作者。  天美公司为加强与科研工作者的沟通交流,了解他们的需求,解决相关的问题,每年都会在各地举行各自技术培训班,技术交流会,仪器热点应用交流等,欢迎每一位科研工作者的加入。  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。关于天美:  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制